Science.gov

Sample records for abscission zone az

  1. Profiling gene expression in citrus fruit calyx abscission zone (AZ-C) treated with ethylene.

    PubMed

    Cheng, Chunzhen; Zhang, Lingyun; Yang, Xuelian; Zhong, Guangyan

    2015-10-01

    On-tree storage and harvesting of mature fruit account for a large proportion of cost in the production of citrus, and a reduction of the cost would not be achieved without a thorough understanding of the mechani sm of the mature fruit abscission. Genome-wide gene expression changes in ethylene-treated fruit calyx abscission zone (AZ-C) of Citrus sinensis cv. Olinda were therefore investigated using a citrus genome array representing up to 33,879 citrus transcripts. In total, 1313 and 1044 differentially regulated genes were identified in AZ-C treated with ethylene for 4 and 24 h, respectively. The results showed that mature citrus fruit abscission commenced with the activation of ethylene signal transduction pathway that led to the activation of ethylene responsive transcription factors and the subsequent transcriptional regulation of a large set of ethylene responsive genes. Significantly down-regulated genes included those of starch/sugar biosynthesis, transportation of water and growth promoting hormone synthesis and signaling, whereas significantly up-regulated genes were those involved in defense, cell wall degradation, and secondary metabolism. Our data unraveled the underlying mechanisms of some known important biochemical events occurring at AZ-C and should provide informative suggestions for future manipulation of the events to achieve a controllable abscission for mature citrus fruit.

  2. Cell Wall Remodeling in Abscission Zone Cells during Ethylene-Promoted Fruit Abscission in Citrus.

    PubMed

    Merelo, Paz; Agustí, Javier; Arbona, Vicent; Costa, Mário L; Estornell, Leandro H; Gómez-Cadenas, Aurelio; Coimbra, Silvia; Gómez, María D; Pérez-Amador, Miguel A; Domingo, Concha; Talón, Manuel; Tadeo, Francisco R

    2017-01-01

    Abscission is a cell separation process by which plants can shed organs such as fruits, leaves, or flowers. The process takes place in specific locations termed abscission zones. In fruit crops like citrus, fruit abscission represents a high percentage of annual yield losses. Thus, understanding the molecular regulation of abscission is of capital relevance to control production. To identify genes preferentially expressed within the citrus fruit abscission zone (AZ-C), we performed a comparative transcriptomics assay at the cell type resolution level between the AZ-C and adjacent fruit rind cells (non-abscising tissue) during ethylene-promoted abscission. Our strategy combined laser microdissection with microarray analysis. Cell wall modification-related gene families displayed prominent representation in the AZ-C. Phylogenetic analyses of such gene families revealed a link between phylogenetic proximity and expression pattern during abscission suggesting highly conserved roles for specific members of these families in abscission. Our transcriptomic data was validated with (and strongly supported by) a parallel approach consisting on anatomical, histochemical and biochemical analyses on the AZ-C during fruit abscission. Our work identifies genes potentially involved in organ abscission and provides relevant data for future biotechnology approaches aimed at controlling such crucial process for citrus yield.

  3. Cell Wall Remodeling in Abscission Zone Cells during Ethylene-Promoted Fruit Abscission in Citrus

    PubMed Central

    Merelo, Paz; Agustí, Javier; Arbona, Vicent; Costa, Mário L.; Estornell, Leandro H.; Gómez-Cadenas, Aurelio; Coimbra, Silvia; Gómez, María D.; Pérez-Amador, Miguel A.; Domingo, Concha; Talón, Manuel; Tadeo, Francisco R.

    2017-01-01

    Abscission is a cell separation process by which plants can shed organs such as fruits, leaves, or flowers. The process takes place in specific locations termed abscission zones. In fruit crops like citrus, fruit abscission represents a high percentage of annual yield losses. Thus, understanding the molecular regulation of abscission is of capital relevance to control production. To identify genes preferentially expressed within the citrus fruit abscission zone (AZ-C), we performed a comparative transcriptomics assay at the cell type resolution level between the AZ-C and adjacent fruit rind cells (non-abscising tissue) during ethylene-promoted abscission. Our strategy combined laser microdissection with microarray analysis. Cell wall modification-related gene families displayed prominent representation in the AZ-C. Phylogenetic analyses of such gene families revealed a link between phylogenetic proximity and expression pattern during abscission suggesting highly conserved roles for specific members of these families in abscission. Our transcriptomic data was validated with (and strongly supported by) a parallel approach consisting on anatomical, histochemical and biochemical analyses on the AZ-C during fruit abscission. Our work identifies genes potentially involved in organ abscission and provides relevant data for future biotechnology approaches aimed at controlling such crucial process for citrus yield. PMID:28228766

  4. A new aspect of flower abscission: involvement of a specific alkalization of the cytosol in the abscission zone cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The correlation between organ abscission and pH changes in the abscission zone (AZ) cells, visualized by the pH-sensitive and intracellularly trapped dye, 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein-acetoxymethyl (BCECF-AM) ester derivative, combined with confocal microscopy was studied. ...

  5. Microarray analysis of the abscission-related transcriptome in tomato flower abscission zone in response to auxin depletion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abscission, the separation of organs from the parent plant, results in postharvest quality loss in many fresh produce. The process is initiated by changes in the auxin gradient across the abscission zone (AZ), is triggered by ethylene and may be accelerated by postharvest stresses. Although changes ...

  6. Abscission of flowers and floral organs is closely associated with alkalization of the cytosol in abscission zone cells

    PubMed Central

    Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Riov, Joseph; Belausov, Eduard; Kochanek, Betina; Tucker, Mark L.; Meir, Shimon

    2015-01-01

    In vivo changes in the cytosolic pH of abscission zone (AZ) cells were visualized using confocal microscopic detection of the fluorescent pH-sensitive and intracellularly trapped dye, 2’,7’-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF), driven by its acetoxymethyl ester. A specific and gradual increase in the cytosolic pH of AZ cells was observed during natural abscission of flower organs in Arabidopsis thaliana and wild rocket (Diplotaxis tenuifolia), and during flower pedicel abscission induced by flower removal in tomato (Solanum lycopersicum Mill). The alkalization pattern in the first two species paralleled the acceleration or inhibition of flower organ abscission induced by ethylene or its inhibitor 1-methylcyclopropene (1-MCP), respectively. Similarly, 1-MCP pre-treatment of tomato inflorescence explants abolished the pH increase in AZ cells and pedicel abscission induced by flower removal. Examination of the pH changes in the AZ cells of Arabidopsis mutants defective in both ethylene-induced (ctr1, ein2, eto4) and ethylene-independent (ida, nev7, dab5) abscission pathways confirmed these results. The data indicate that the pH changes in the AZ cells are part of both the ethylene-sensitive and -insensitive abscission pathways, and occur concomitantly with the execution of organ abscission. pH can affect enzymatic activities and/or act as a signal for gene expression. Changes in pH during abscission could occur via regulation of transporters in AZ cells, which might affect cytosolic pH. Indeed, four genes associated with pH regulation, vacuolar H+-ATPase, putative high-affinity nitrate transporter, and two GTP-binding proteins, were specifically up-regulated in tomato flower AZ following abscission induction, and 1-MCP reduced or abolished the increased expression. PMID:25504336

  7. Abscission of flowers and floral organs is closely associated with alkalization of the cytosol in abscission zone cells.

    PubMed

    Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Riov, Joseph; Belausov, Eduard; Kochanek, Betina; Tucker, Mark L; Meir, Shimon

    2015-03-01

    In vivo changes in the cytosolic pH of abscission zone (AZ) cells were visualized using confocal microscopic detection of the fluorescent pH-sensitive and intracellularly trapped dye, 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF), driven by its acetoxymethyl ester. A specific and gradual increase in the cytosolic pH of AZ cells was observed during natural abscission of flower organs in Arabidopsis thaliana and wild rocket (Diplotaxis tenuifolia), and during flower pedicel abscission induced by flower removal in tomato (Solanum lycopersicum Mill). The alkalization pattern in the first two species paralleled the acceleration or inhibition of flower organ abscission induced by ethylene or its inhibitor 1-methylcyclopropene (1-MCP), respectively. Similarly, 1-MCP pre-treatment of tomato inflorescence explants abolished the pH increase in AZ cells and pedicel abscission induced by flower removal. Examination of the pH changes in the AZ cells of Arabidopsis mutants defective in both ethylene-induced (ctr1, ein2, eto4) and ethylene-independent (ida, nev7, dab5) abscission pathways confirmed these results. The data indicate that the pH changes in the AZ cells are part of both the ethylene-sensitive and -insensitive abscission pathways, and occur concomitantly with the execution of organ abscission. pH can affect enzymatic activities and/or act as a signal for gene expression. Changes in pH during abscission could occur via regulation of transporters in AZ cells, which might affect cytosolic pH. Indeed, four genes associated with pH regulation, vacuolar H(+)-ATPase, putative high-affinity nitrate transporter, and two GTP-binding proteins, were specifically up-regulated in tomato flower AZ following abscission induction, and 1-MCP reduced or abolished the increased expression.

  8. De novo Transcriptome Sequencing and Development of Abscission Zone-Specific Microarray as a New Molecular Tool for Analysis of Tomato Organ Abscission

    PubMed Central

    Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Riov, Joseph; Mugasimangalam, Raja; Kuravadi, Nagesh A.; Kochanek, Bettina; Salim, Shoshana; Tucker, Mark L.; Meir, Shimon

    2016-01-01

    Abscission of flower pedicels and leaf petioles of tomato (Solanum lycopersicum) can be induced by flower removal or leaf deblading, respectively, which leads to auxin depletion, resulting in increased sensitivity of the abscission zone (AZ) to ethylene. However, the molecular mechanisms that drive the acquisition of abscission competence and its modulation by auxin gradients are not yet known. We used RNA-Sequencing (RNA-Seq) to obtain a comprehensive transcriptome of tomato flower AZ (FAZ) and leaf AZ (LAZ) during abscission. RNA-Seq was performed on a pool of total RNA extracted from tomato FAZ and LAZ, at different abscission stages, followed by de novo assembly. The assembled clusters contained transcripts that are already known in the Solanaceae (SOL) genomics and NCBI databases, and over 8823 identified novel tomato transcripts of varying sizes. An AZ-specific microarray, encompassing the novel transcripts identified in this study and all known transcripts from the SOL genomics and NCBI databases, was constructed to study the abscission process. Multiple probes for longer genes and key AZ-specific genes, including antisense probes for all transcripts, make this array a unique tool for studying abscission with a comprehensive set of transcripts, and for mining for naturally occurring antisense transcripts. We focused on comparing the global transcriptomes generated from the FAZ and the LAZ to establish the divergences and similarities in their transcriptional networks, and particularly to characterize the processes and transcriptional regulators enriched in gene clusters that are differentially regulated in these two AZs. This study is the first attempt to analyze the global gene expression in different AZs in tomato by combining the RNA-Seq technique with oligonucleotide microarrays. Our AZ-specific microarray chip provides a cost-effective approach for expression profiling and robust analysis of multiple samples in a rapid succession. PMID:26834766

  9. Overexpression of INFLORESCENCE DEFICIENT IN ABSCISSION activates cell separation in vestigial abscission zones in Arabidopsis.

    PubMed

    Stenvik, Grethe-Elisabeth; Butenko, Melinka A; Urbanowicz, Breeanna Rae; Rose, Jocelyn K C; Aalen, Reidunn B

    2006-06-01

    Plants may shed organs when they have been injured or served their purpose. The differential pattern of organ abscission in different species is most likely the result of evolutionary adaptation to a variety of life styles and environments. The final step of abscission-related cell separation in floral organs of wild-type Arabidopsis thaliana, which only abscises sepals, petals, and stamens, is controlled by INFLORESCENCE DEFICIENT IN ABSCISSION (IDA). Here, we demonstrate that Arabidopsis 35S:IDA lines constitutively overexpressing IDA exhibit earlier abscission of floral organs, showing that the abscission zones are responsive to IDA soon after the opening of the flowers. In addition, ectopic abscission was observed at the bases of the pedicel, branches of the inflorescence, and cauline leaves. The silique valves also dehisced prematurely. Scanning electron microscopy indicated a spread of middle lamella degradation from preformed abscission zone cells to neighboring cells. A transcript encoding an arabinogalactan protein (AGP) was upregulated in the 35S:IDA lines, and large amounts of AGP were secreted at the sites of abscission. AGP was shown to be a constituent of wild-type floral abscission zones during and soon after cell separation had been completed. We suggest that the restricted expression pattern of IDA precludes abscission of nonfloral organs in Arabidopsis.

  10. Cellular and Pectin Dynamics during Abscission Zone Development and Ripe Fruit Abscission of the Monocot Oil Palm

    PubMed Central

    Roongsattham, Peerapat; Morcillo, Fabienne; Fooyontphanich, Kim; Jantasuriyarat, Chatchawan; Tragoonrung, Somvong; Amblard, Philippe; Collin, Myriam; Mouille, Gregory; Verdeil, Jean-Luc; Tranbarger, Timothy J.

    2016-01-01

    The oil palm (Elaeis guineensis Jacq.) fruit primary abscission zone (AZ) is a multi-cell layered boundary region between the pedicel (P) and mesocarp (M) tissues. To examine the cellular processes that occur during the development and function of the AZ cell layers, we employed multiple histological and immunohistochemical methods combined with confocal, electron and Fourier-transform infrared (FT-IR) microspectroscopy approaches. During early fruit development and differentiation of the AZ, the orientation of cell divisions in the AZ was periclinal compared with anticlinal divisions in the P and M. AZ cell wall width increased earlier during development suggesting cell wall assembly occurred more rapidly in the AZ than the adjacent P and M tissues. The developing fruit AZ contain numerous intra-AZ cell layer plasmodesmata (PD), but very few inter-AZ cell layer PD. In the AZ of ripening fruit, PD were less frequent, wider, and mainly intra-AZ cell layer localized. Furthermore, DAPI staining revealed nuclei are located adjacent to PD and are remarkably aligned within AZ layer cells, and remain aligned and intact after cell separation. The polarized accumulation of ribosomes, rough endoplasmic reticulum, mitochondria, and vesicles suggested active secretion at the tip of AZ cells occurred during development which may contribute to the striated cell wall patterns in the AZ cell layers. AZ cells accumulated intracellular pectin during development, which appear to be released and/or degraded during cell separation. The signal for the JIM5 epitope, that recognizes low methylesterified and un-methylesterified homogalacturonan (HG), increased in the AZ layer cell walls prior to separation and dramatically increased on the separated AZ cell surfaces. Finally, FT-IR microspectroscopy analysis indicated a decrease in methylesterified HG occurred in AZ cell walls during separation, which may partially explain an increase in the JIM5 epitope signal. The results obtained

  11. Cellular and Pectin Dynamics during Abscission Zone Development and Ripe Fruit Abscission of the Monocot Oil Palm.

    PubMed

    Roongsattham, Peerapat; Morcillo, Fabienne; Fooyontphanich, Kim; Jantasuriyarat, Chatchawan; Tragoonrung, Somvong; Amblard, Philippe; Collin, Myriam; Mouille, Gregory; Verdeil, Jean-Luc; Tranbarger, Timothy J

    2016-01-01

    The oil palm (Elaeis guineensis Jacq.) fruit primary abscission zone (AZ) is a multi-cell layered boundary region between the pedicel (P) and mesocarp (M) tissues. To examine the cellular processes that occur during the development and function of the AZ cell layers, we employed multiple histological and immunohistochemical methods combined with confocal, electron and Fourier-transform infrared (FT-IR) microspectroscopy approaches. During early fruit development and differentiation of the AZ, the orientation of cell divisions in the AZ was periclinal compared with anticlinal divisions in the P and M. AZ cell wall width increased earlier during development suggesting cell wall assembly occurred more rapidly in the AZ than the adjacent P and M tissues. The developing fruit AZ contain numerous intra-AZ cell layer plasmodesmata (PD), but very few inter-AZ cell layer PD. In the AZ of ripening fruit, PD were less frequent, wider, and mainly intra-AZ cell layer localized. Furthermore, DAPI staining revealed nuclei are located adjacent to PD and are remarkably aligned within AZ layer cells, and remain aligned and intact after cell separation. The polarized accumulation of ribosomes, rough endoplasmic reticulum, mitochondria, and vesicles suggested active secretion at the tip of AZ cells occurred during development which may contribute to the striated cell wall patterns in the AZ cell layers. AZ cells accumulated intracellular pectin during development, which appear to be released and/or degraded during cell separation. The signal for the JIM5 epitope, that recognizes low methylesterified and un-methylesterified homogalacturonan (HG), increased in the AZ layer cell walls prior to separation and dramatically increased on the separated AZ cell surfaces. Finally, FT-IR microspectroscopy analysis indicated a decrease in methylesterified HG occurred in AZ cell walls during separation, which may partially explain an increase in the JIM5 epitope signal. The results obtained

  12. Stamen Abscission Zone Transcriptome Profiling Reveals New Candidates for Abscission Control: Enhanced Retention of Floral Organs in Transgenic Plants Overexpressing Arabidopsis ZINC FINGER PROTEIN21[C][W][OA

    PubMed Central

    Cai, Suqin; Lashbrook, Coralie C.

    2008-01-01

    Organ detachment requires cell separation within abscission zones (AZs). Physiological studies have established that ethylene and auxin contribute to cell separation control. Genetic analyses of abscission mutants have defined ethylene-independent detachment regulators. Functional genomic strategies leading to global understandings of abscission have awaited methods for isolating AZ cells of low abundance and very small size. Here, we couple laser capture microdissection of Arabidopsis thaliana stamen AZs and GeneChip profiling to reveal the AZ transcriptome responding to a developmental shedding cue. Analyses focus on 551 AZ genes (AZ551) regulated at the highest statistical significance (P ≤ 0.0001) over five floral stages linking prepollination to stamen shed. AZ551 includes mediators of ethylene and auxin signaling as well as receptor-like kinases and extracellular ligands thought to act independent of ethylene. We hypothesized that novel abscission regulators might reside in disproportionately represented Gene Ontology Consortium functional categories for cell wall modifying proteins, extracellular regulators, and nuclear-residing transcription factors. Promoter-β-glucuronidase expression of one transcription factor candidate, ZINC FINGER PROTEIN2 (AtZFP2), was elevated in stamen, petal, and sepal AZs. Flower parts of transgenic lines overexpressing AtZFP2 exhibited asynchronous and delayed abscission. Abscission defects were accompanied by altered floral morphology limiting pollination and fertility. Hand-pollination restored transgenic fruit development but not the rapid abscission seen in wild-type plants, demonstrating that pollination does not assure normal rates of detachment. In wild-type stamen AZs, AtZFP2 is significantly up-regulated postanthesis. Phenotype data from transgene overexpression studies suggest that AtZFP2 participates in processes that directly or indirectly influence organ shed. PMID:18192438

  13. Genome-wide identification of cassava R2R3 MYB family genes related to abscission zone separation after environmental-stress-induced abscission

    PubMed Central

    Liao, Wenbin; Yang, Yiling; Li, Yayun; Wang, Gan; Peng, Ming

    2016-01-01

    Cassava plants (Manihot esculenta Crantz) resist environmental stresses by shedding leaves in leaf pulvinus abscission zones (AZs), thus leading to adaptation to new environmental conditions. Little is known about the roles of cassava R2R3 MYB factors in regulating AZ separation. Herein, 166 cassava R2R3 MYB genes were identified. Evolutionary analysis indicated that the 166 R2R3 MYB genes could be divided into 11 subfamilies. Transcriptome analysis indicated that 26 R2R3 MYB genes were expressed in AZs across six time points during both ethylene- and water-deficit stress-induced leaf abscission. Comparative expression profile analysis of similar SOTA (Self Organizing Tree Algorithm) clusters demonstrated that 10 R2R3 MYB genes had similar expression patterns at six time points in response to both treatments. GO (Gene Ontology) annotation confirmed that all 10 R2R3 MYB genes participated in the responses to stress and ethylene and auxin stimuli. Analysis of the putative 10 R2R3 MYB promoter regions showed that those genes primarily contained ethylene- and stress-related cis-elements. The expression profiles of the genes acting downstream of the selected MYBs were confirmed to be involved in cassava abscission zone separation. All these results indicated that R2R3 MYB plays an important regulatory role in AZ separation. PMID:27573926

  14. Comparative transcriptional survey between laser-microdissected cells from laminar abscission zone and petiolar cortical tissue during ethylene-promoted abscission in citrus leaves

    PubMed Central

    Agustí, Javier; Merelo, Paz; Cercós, Manuel; Tadeo, Francisco R; Talón, Manuel

    2009-01-01

    Background Abscission is the cell separation process by which plants are able to shed organs. It has a great impact on the yield of most crop plants. At the same time, the process itself also constitutes an excellent model to study cell separation processes, since it occurs in concrete areas known as abscission zones (AZs) which are composed of a specific cell type. However, molecular approaches are generally hampered by the limited area and cell number constituting the AZ. Therefore, detailed studies at the resolution of cell type are of great relevance in order to accurately describe the process and to identify potential candidate genes for biotechnological applications. Results Efficient protocols for the isolation of specific citrus cell types, namely laminar abscission zone (LAZ) and petiolar cortical (Pet) cells based on laser capture microdissection (LCM) and for RNA microextraction and amplification have been developed. A comparative transcriptome analysis between LAZ and Pet from citrus leaf explants subjected to an in-vitro 24 h ethylene treatment was performed utilising microarray hybridization and analysis. Our analyses of gene functional classes differentially represented in ethylene-treated LAZ revealed an activation program dominated by the expression of genes associated with protein synthesis, protein fate, cell type differentiation, development and transcription. The extensive repertoire of genes associated with cell wall biosynthesis and metabolism strongly suggests that LAZ layers activate both catabolic and anabolic wall modification pathways during the abscission program. In addition, over-representation of particular members of different transcription factor families suggests important roles for these genes in the differentiation of the effective cell separation layer within the many layers contained in the citrus LAZ. Preferential expression of stress-related and defensive genes in Pet reveals that this tissue is likely to be reprogrammed to

  15. Overexpression of SlREV alters the development of the flower pedicel abscission zone and fruit formation in tomato.

    PubMed

    Hu, Guojian; Fan, Jing; Xian, Zhiqiang; Huang, Wei; Lin, Dongbo; Li, Zhengguo

    2014-12-01

    Versatile roles of REVOLUTA (REV), a Class III homeodomain-leucine zipper (HD-ZIP III) transcription factor, have been depicted mainly in Arabidopsis and Populus. In this study, we investigated the functions of its tomato homolog, namely SlREV. Overexpression of a microRNA166-resistant version of SlREV (35S::REV(Ris)) not only resulted in vegetative abnormalities such as curly leaves and fasciated stems, but also caused dramatic reproductive alterations including continuous production of flowers at the pedicel abscission zone (AZ) and ectopic fruit formation on receptacles. Microscopic analysis showed that meristem-like structures continuously emerged from the exodermises of the pedicel AZs and that ectopic carpels formed between the first and second whorl of floral buds in 35S::REV(Ris) plants. Transcriptional data suggest that SlREV may regulate genes related to meristem maintenance and cell differentiation in the development of the flower pedicel abscission zone, and modulate genes in homeodomain and MADS-box families and hormone pathways during fruit formation. Altogether, these results reveal novel roles of SlREV in tomato flower development and fruit formation.

  16. Development and regulation of pedicel abscission in tomato

    PubMed Central

    Ito, Yasuhiro; Nakano, Toshitsugu

    2015-01-01

    To shed unfertilized flowers or ripe fruits, many plant species develop a pedicel abscission zone (AZ), a specialized tissue that develops between the organ and the main body of the plant. Regulation of pedicel abscission is an important agricultural concern because pre-harvest abscission can reduce yields of fruit or grain crops, such as apples, rice, wheat, etc. Tomato has been studied as a model system for abscission, as tomato plants develop a distinct AZ at the midpoint of the pedicel and several tomato mutants, such as jointless, have pedicels that lack an AZ. This mini-review focuses on recent advances in research on the mechanisms regulating tomato pedicel abscission. Molecular genetic studies revealed that three MADS-box transcription factors interactively play a central role in pedicel AZ development. Transcriptome analyses identified activities involved in abscission and also found novel transcription factors that may regulate AZ activities. Another study identified transcription factors mediating abscission pathways from induction signals to activation of cell wall hydrolysis. These recent findings in tomato will enable significant advances in understanding the regulation of abscission in other key agronomic species. PMID:26124769

  17. Involvement of hydrogen peroxide in leaf abscission signaling, revealed by analysis with an in vitro abscission system in Capsicum plants.

    PubMed

    Sakamoto, Masaru; Munemura, Ikuko; Tomita, Reiko; Kobayashi, Kappei

    2008-10-01

    Although auxin and ethylene play pivotal roles in leaf abscission, the subsequent signaling molecules are poorly understood. This is mainly because it is difficult to effectively treat the intact abscission zone (AZ) with pharmacological reagents. We developed an in vitro experimental system that reproduces stress-induced leaf abscission in planta. In this system, 1-mm-thick petiole strips, encompassing the AZ, were separated within 4 days of abscission at the AZ through cell wall degradation in an auxin depletion- and ethylene-dependent manner. The system allowed us to show that hydrogen peroxide (H(2)O(2)) is involved in abscission signaling. Microscopic analyses revealed continuous H(2)O(2) production by AZ cells. H(2)O(2) scavengers and diphenylene iodonium, an inhibitor of NADPH oxidase, suppressed in vitro abscission and cellulase expression. Conversely, the application of H(2)O(2) promoted in vitro abscission and expression of cellulase. Ethephon-induced abscission was suppressed by inhibitors of H(2)O(2) production, whereas the expression of ethylene-responsive genes was unaffected by both H(2)O(2) and an H(2)O(2) inhibitor. These results indicated that H(2)O(2) acts downstream from ethylene in in vitro abscission signaling. In planta, salinity stress induced the expression of genes that respond to ethylene and reactive oxygen species, and also induced H(2)O(2) production at the AZ, which preceded leaf abscission. These results indicate that H(2)O(2) has roles in leaf abscission associated with ethylene both in vitro and in planta.

  18. Identification and Kinetics of Accumulation of Proteins Induced by Ethylene in Bean Abscission Zones 1

    PubMed Central

    del Campillo, Elena; Lewis, Lowell N.

    1992-01-01

    A two-dimensional gel electrophoresis system that combines a cationic polyacrylamide gel electrophoresis at pH near neutrality with sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to analyze the spectrum of basic polypeptides that accumulate in bean (Phaseolus vulgaris) abscission zones after treatment with ethylene. Results showed that, as abscission progressed, at least seven basic proteins accumulated in the abscission zone prior to the accumulation of 9.5 cellulase. Six of the seven proteins correspond to pathogenesis-related (PR) proteins. Among them, two isoforms of β-1,3-glucanase and multiple isoforms of chitinase were identified. A 22 kilodalton polypeptide that accumulated to high levels was identified as a thaumatin-like protein by analysis of its N-terminal sequence (up to 20 amino acids) and its serological relationship with heterologous thaumatin antibodies. A 15 kilodalton polypeptide serologically related to PR P1 (p14) from tomato was identified as bean PR P1 (p14)-like protein. The kinetics of accumulation of glucanases, chitinases, thaumatin-like and PR P1 (p14)-like proteins during ethylene treatment were similar and they showed that PR proteins accumulated in abscission zones prior to the increase in 9.5 cellulase. Addition of indoleacetic acid, a potent inhibitor of abscission, reduced the accumulation of these proteins to a similar extent (60%). The synchronized accumulation of this set of PR proteins, early in the abscission process, may play a role in induced resistance to possible fungal attack after a plant part is shed. The seventh protein does not correspond to any previously characterized PR protein. This new 45 kilodalton polypeptide accumulated in abscission zones on exposure to ethylene concomitantly with the increase in 9.5 cellulase. Its N-terminal sequence (up to 15 amino acids) showed some homology with the amino terminal sequence of chitinase. Polyclonal antibodies against chitinase recognized the 45

  19. MOLECULAR ANALYSIS OF THE INTERACTION OF ETHYLENE AND AUXIN DURING FLOWER ABSCISSION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abscission, the separation of organs from the parent plant, results in postharvest quality loss in many ornamentals and other fresh produce. The process is initiated by changes in the auxin gradient across the abscission zone (AZ), is triggered by ethylene, and may be accelerated by postharvest stre...

  20. The manipulation of auxin in the abscission zone cells of Arabidopsis flowers reveals that indoleacetic acid signaling is a prerequisite for organ shedding.

    PubMed

    Basu, Manojit M; González-Carranza, Zinnia H; Azam-Ali, Sayed; Tang, Shouya; Shahid, Ahmad Ali; Roberts, Jeremy A

    2013-05-01

    A number of novel strategies were employed to examine the role of indoleacetic acid (IAA) in regulating floral organ abscission in Arabidopsis (Arabidopsis thaliana). Analysis of auxin influx facilitator expression in β-glucuronidase reporter plants revealed that AUXIN RESISTANT1, LIKE AUX1, and LAX3 were specifically up-regulated at the site of floral organ shedding. Flowers from mutants where individual family members were down-regulated exhibited a reduction in the force necessary to bring about petal separation; however, the effect was not additive in double or quadruple mutants. Using the promoter of a polygalacturonase (At2g41850), active primarily in cells undergoing separation, to drive expression of the bacterial genes iaaL and iaaM, we have shown that it is possible to manipulate auxin activity specifically within the floral organ abscission zone (AZ). Analysis of petal breakstrength reveals that if IAA AZ levels are reduced, shedding takes place prematurely, while if they are enhanced, organ loss is delayed. The At2g41850 promoter was also used to transactivate the gain-of-function AXR3-1 gene in order to disrupt auxin signaling specifically within the floral organ AZ cells. Flowers from transactivated lines failed to shed their sepals, petals, and anthers during pod expansion and maturity, and these organs frequently remained attached to the plant even after silique desiccation and dehiscence had taken place. These observations support a key role for IAA in the regulation of abscission in planta and reveal, to our knowledge for the first time, a requirement for a functional IAA signaling pathway in AZ cells for organ shedding to take place.

  1. The Manipulation of Auxin in the Abscission Zone Cells of Arabidopsis Flowers Reveals That Indoleacetic Acid Signaling Is a Prerequisite for Organ Shedding1[C][W][OA

    PubMed Central

    Basu, Manojit M.; González-Carranza, Zinnia H.; Azam-Ali, Sayed; Tang, Shouya; Shahid, Ahmad Ali; Roberts, Jeremy A.

    2013-01-01

    A number of novel strategies were employed to examine the role of indoleacetic acid (IAA) in regulating floral organ abscission in Arabidopsis (Arabidopsis thaliana). Analysis of auxin influx facilitator expression in β-glucuronidase reporter plants revealed that AUXIN RESISTANT1, LIKE AUX1, and LAX3 were specifically up-regulated at the site of floral organ shedding. Flowers from mutants where individual family members were down-regulated exhibited a reduction in the force necessary to bring about petal separation; however, the effect was not additive in double or quadruple mutants. Using the promoter of a polygalacturonase (At2g41850), active primarily in cells undergoing separation, to drive expression of the bacterial genes iaaL and iaaM, we have shown that it is possible to manipulate auxin activity specifically within the floral organ abscission zone (AZ). Analysis of petal breakstrength reveals that if IAA AZ levels are reduced, shedding takes place prematurely, while if they are enhanced, organ loss is delayed. The At2g41850 promoter was also used to transactivate the gain-of-function AXR3-1 gene in order to disrupt auxin signaling specifically within the floral organ AZ cells. Flowers from transactivated lines failed to shed their sepals, petals, and anthers during pod expansion and maturity, and these organs frequently remained attached to the plant even after silique desiccation and dehiscence had taken place. These observations support a key role for IAA in the regulation of abscission in planta and reveal, to our knowledge for the first time, a requirement for a functional IAA signaling pathway in AZ cells for organ shedding to take place. PMID:23509178

  2. Analysis of Gene Promoters for Two Tomato Polygalacturonases Expressed in Abscission Zones and the Stigma

    PubMed Central

    Hong, Seung-Beom; Sexton, Roy; Tucker, Mark L.

    2000-01-01

    The tomato (Lycopersicon esculentum cv Ailsa Craig) polygalacturonase genes TAPG1 (LYCes;Pga1;2) and TAPG4 (LYCes;Pga1;5) are abundantly expressed in both abscission zones and the pistils of mature flowers. To further investigate the spatial and temporal expression patterns for these genes, the TAPG gene promoters were ligated to β-glucuronidase (GUS) reporter genes and transformed into tomato. GUS expression with both constructs was similar and entirely consistent with the expression patterns of the native gene transcripts. GUS activity was observed in the weakening abscission zones of the leaf petiole, flower and fruit pedicel, flower corolla, and fruit calyx. In leaf petiole and flower pedicel zones this activity was enhanced by ethylene and inhibited by indole-3-acetic acid. On induction of abscission with ethylene, GUS accumulation was much earlier in TAPG4:GUS than in TAPG1:GUS transformants. Moreover, TAPG4:GUS staining appeared to predominate in the vascular bundles relative to surrounding cortex cells whereas TAPG1:GUS was more evenly distributed across the separation layer. Like the native genes, GUS was also expressed in the stigma. Activity was not apparent in pistils until the flowers had opened and was confined to the stigma and style immediately proximal to it. A minimal promoter construct consisting of a 247-bp 5′-upstream element from TAPG1 was found to be sufficient to direct GUS expression in both abscission zones and the stigma. PMID:10889236

  3. Flavor of oranges as impacted by abscission zone formation for trees affected by huanglongbing disease and Lasiodiploida infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trees affected by Huanglongbing (HLB) exhibit excessive fruit drop, which is exacerbated by secondary infection of the abscission zone by the fungus Lasiodiplodia. ‘Hamlin’ orange trees, both healthy and affected by HLB, Candidatus Liberibacter asiaticus (CLas, determined by Polymerase chain reactio...

  4. Transcriptome profiling of petal abscission zone and functional analysis of AUX/IAA family genes reveal that RhIAA16 is involved in petal shedding in rose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rose is one of the most important cut flowers among ornamental plants. Rose flower longevity is largely dependent on the timing of petal shedding occurrence. To understand the molecular mechanism underlying petal abscission in rose, we performed transcriptome profiling of the petal abscission zone d...

  5. Two abscission zones proximal to Lansium domesticum fruit: one more sensitive to exogenous ethylene than the other

    PubMed Central

    Taesakul, Prapinporn; Siriphanich, Jingtair; van Doorn, Wouter G.

    2015-01-01

    Longkong (Lansium domesticum) fruit grows in bunches and is also sold as bunches. Individual fruit can separate from the bunch both before and after commercial harvest. The fruit has two separation sites. The first is located between bracts on the stem and the fused sepals (separation zone 1: SZ1) and the second between the fused sepals and the fruit (separation zone 2: SZ2). True abscission occurred at both zones. We investigated whether the two zones were active at different stages of development and if they were differentially sensitive to ethylene. Abscission occurred in the SZ1 in very young fruit (fruit still at the ovary stage), during early fruit development (5 weeks after full bloom; WAFB), and in ripe and overripe fruit (15–17 WAFB). Abscission did not spontaneously occur in the SZ2, but by the time the fruit was fully ripe, 15 WAFB, and later, a slight mechanical force was sufficient to break this zone. In fruit bunches severed from the tree at 5, 8, and 13 WAFB, break strength (BS) in SZ1 decreased much more after exogenous ethylene treatment than that in SZ2. Ethylene induced abscission in the SZ1, but not in SZ2. At 5, 8, and 13 WAFB, treatment with 1-methylcyclopropane (1-MCP; an inhibitor of ethylene perception) had a small effect on BS in the SZ1 and no effect in the SZ2. It is concluded that abscission in the SZ1 was much more sensitive to ethylene than that in the SZ2. In intact plants SZ1 reacts to endogenous ethylene, e.g., as a result of stress, while SZ2 apparently allows animals to remove the ripe fruit from the tree with minimal force. PMID:25954290

  6. De novo transcriptome sequencing and customized abscission zone-specific microarray as a new molecular tool for analysis of tomato organ abscission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abscission, which is the process of organ separation, is a highly regulated process occurring as a final stage of organ development. In the tomato (Solanum lycopersicum) system, flower and leaf abscission was induced by flower removal or leaf deblading, leading to auxin depletion which results in in...

  7. Polyamine-induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission

    PubMed Central

    Parra-Lobato, Maria C.; Gomez-Jimenez, Maria C.

    2011-01-01

    After fruit ripening, many fruit-tree species undergo massive natural fruit abscission. Olive (Olea europaea L.) is a stone-fruit with cultivars such as Picual (PIC) and Arbequina (ARB) which differ in mature fruit abscission potential. Ethylene (ET) is associated with abscission, but its role during mature fruit abscission remains largely uncharacterized. The present study investigates the possible roles of ET and polyamine (PA) during mature fruit abscission by modulating genes involved in the ET signalling and biosynthesis pathways in the abscission zone (AZ) of both cultivars. Five ET-related genes (OeACS2, OeACO2, OeCTR1, OeERS1, and OeEIL2) were isolated in the AZ and adjacent cells (AZ–AC), and their expression in various olive organs and during mature fruit abscission, in relation to interactions between ET and PA and the expression induction of these genes, was determined. OeACS2, OeACO2, and OeEIL2 were found to be the only genes that were up-regulated in association with mature fruit abscission. Using the inhibition of ET and PA biosynthesis, it is demonstrated that OeACS2 and OeEIL2 expression are under the negative control of PA while ET induces their expression in AZ–AC. Furthermore, mature fruit abscission depressed nitric oxide (NO) production present mainly in the epidermal cells and xylem of the AZ. Also, NO production was differentially responsive to ET, PA, and different inhibitors. Taken together, the results indicate that PA-dependent ET signalling and biosynthesis pathways participate, at least partially, during mature fruit abscission, and that endogenous NO and 1-aminocyclopropane-1-carboxylic acid maintain an inverse correlation, suggesting an antagonistic action of NO and ET in abscission signalling. PMID:21633085

  8. HLB-associated pre-harvest fruit abscission is mediated by jasmonate/ethylene signaling triggered by secondary fungal infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One symptom of citrus huanglongbing (HLB) is excessive pre-harvest fruit drop. Recently, higher incidence of Lasiodiplodia theobromae (Diplodia) was found in HLB-symptomatic orange calyx abscission zones (AZ-C) than in non-symptomatic fruit, and the infection was positively correlated with the reduc...

  9. Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato

    NASA Astrophysics Data System (ADS)

    Xie, Qiaoli; Hu, Zongli; Zhu, Zhiguo; Dong, Tingting; Zhao, Zhiping; Cui, Baolu; Chen, Guoping

    2014-03-01

    MADS-domain proteins are important transcription factors involved in many biological processes of plants. In our study, a tomato MADS-box gene, SlFYFL, was isolated. SlFYFL is expressed in all tissues of tomato and significantly higher in mature leave, fruit of different stages, AZ (abscission zone) and sepal. Delayed leaf senescence and fruit ripening, increased storability and longer sepals were observed in 35S:FYFL tomato. The accumulation of carotenoid was reduced, and ethylene content, ethylene biosynthetic and responsive genes were down-regulated in 35S:FYFL fruits. Abscission zone (AZ) did not form normally and abscission zone development related genes were declined in AZs of 35S:FYFL plants. Yeast two-hybrid assay revealed that SlFYFL protein could interact with SlMADS-RIN, SlMADS1 and SlJOINTLESS, respectively. These results suggest that overexpression of SlFYFL regulate fruit ripening and development of AZ via interactions with the ripening and abscission zone-related MADS box proteins.

  10. Transcriptome Profiling of Petal Abscission Zone and Functional Analysis of an Aux/IAA Family Gene RhIAA16 Involved in Petal Shedding in Rose

    PubMed Central

    Gao, Yuerong; Liu, Chun; Li, Xiaodong; Xu, Haiqian; Liang, Yue; Ma, Nan; Fei, Zhangjun; Gao, Junping; Jiang, Cai-Zhong; Ma, Chao

    2016-01-01

    Roses are one of the most important cut flowers among ornamental plants. Rose flower longevity is largely dependent on the timing of petal shedding occurrence. To understand the molecular mechanism underlying petal abscission in rose, we performed transcriptome profiling of the petal abscission zone during petal shedding using Illumina technology. We identified a total of 2592 differentially transcribed genes (DTGs) during rose petal shedding. Gene ontology term enrichment and pathway analysis revealed that major biochemical pathways the DTGs were involved in included ethylene biosynthesis, starch degradation, superpathway of cytosolic glycolysis, pyruvate dehydrogenase and TCA cycle, photorespiration and the lactose degradation III pathway. This suggests that alterations in carbon metabolism are an important part of rose petal abscission. Among these DTGs, approximately 150 genes putatively encoding transcription factors were identified in rose abscission zone. These included zinc finger, WRKY, ERF, and Aux/IAA gene families, suggesting that petal abscission involves complex transcriptional reprogramming. Approximately 108 DTGs were related to hormone pathways, of which auxin and ethylene related DTGs were the largest groups including 52 and 41 genes, respectively. These also included 12 DTGs related to gibberellin and 6 DTGs in jasmonic acid pathway. Surprisingly, no DTGs involved in the biosynthesis/signaling of abscisic acid, cytokinin, brassinosteroid, and salicylic acid pathways were detected. Moreover, among DTGs related to auxin, we identified an Aux/IAA gene RhIAA16 that was up-regulated in response to petal shedding. Down-regulation of RhIAA16 by virus-induced gene silencing in rose promoted petal abscission, suggesting that RhIAA16 plays an important role in rose petal abscission. PMID:27695465

  11. Transcriptome Profiling of Petal Abscission Zone and Functional Analysis of an Aux/IAA Family Gene RhIAA16 Involved in Petal Shedding in Rose.

    PubMed

    Gao, Yuerong; Liu, Chun; Li, Xiaodong; Xu, Haiqian; Liang, Yue; Ma, Nan; Fei, Zhangjun; Gao, Junping; Jiang, Cai-Zhong; Ma, Chao

    2016-01-01

    Roses are one of the most important cut flowers among ornamental plants. Rose flower longevity is largely dependent on the timing of petal shedding occurrence. To understand the molecular mechanism underlying petal abscission in rose, we performed transcriptome profiling of the petal abscission zone during petal shedding using Illumina technology. We identified a total of 2592 differentially transcribed genes (DTGs) during rose petal shedding. Gene ontology term enrichment and pathway analysis revealed that major biochemical pathways the DTGs were involved in included ethylene biosynthesis, starch degradation, superpathway of cytosolic glycolysis, pyruvate dehydrogenase and TCA cycle, photorespiration and the lactose degradation III pathway. This suggests that alterations in carbon metabolism are an important part of rose petal abscission. Among these DTGs, approximately 150 genes putatively encoding transcription factors were identified in rose abscission zone. These included zinc finger, WRKY, ERF, and Aux/IAA gene families, suggesting that petal abscission involves complex transcriptional reprogramming. Approximately 108 DTGs were related to hormone pathways, of which auxin and ethylene related DTGs were the largest groups including 52 and 41 genes, respectively. These also included 12 DTGs related to gibberellin and 6 DTGs in jasmonic acid pathway. Surprisingly, no DTGs involved in the biosynthesis/signaling of abscisic acid, cytokinin, brassinosteroid, and salicylic acid pathways were detected. Moreover, among DTGs related to auxin, we identified an Aux/IAA gene RhIAA16 that was up-regulated in response to petal shedding. Down-regulation of RhIAA16 by virus-induced gene silencing in rose promoted petal abscission, suggesting that RhIAA16 plays an important role in rose petal abscission.

  12. Examination of the Abscission-Associated Transcriptomes for Soybean, Tomato, and Arabidopsis Highlights the Conserved Biosynthesis of an Extensible Extracellular Matrix and Boundary Layer

    PubMed Central

    Kim, Joonyup; Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Yang, Ronghui; Meir, Shimon; Tucker, Mark L.

    2015-01-01

    Abscission zone (AZ) development and the progression of abscission (detachment of plant organs) have been roughly separated into four stages: first, AZ differentiation; second, competence to respond to abscission signals; third, activation of abscission; and fourth, formation of a protective layer and post-abscission trans-differentiation. Stage three, activation of abscission, is when changes in the cell wall and extracellular matrix occur to support successful organ separation. Most abscission research has focused on gene expression for enzymes that disassemble the cell wall within the AZ and changes in phytohormones and other signaling events that regulate their expression. Here, transcriptome data for soybean, tomato and Arabidopsis were examined and compared with a focus not only on genes associated with disassembly of the cell wall but also on gene expression linked to the biosynthesis of a new extracellular matrix. AZ-specific up-regulation of genes associated with cell wall disassembly including cellulases (beta-1,4-endoglucanases, CELs), polygalacturonases (PGs), and expansins (EXPs) were much as expected; however, curiously, changes in expression of xyloglucan endotransglucosylase/hydrolases (XTHs) were not AZ-specific in soybean. Unexpectedly, we identified an early increase in the expression of genes underlying the synthesis of a waxy-like cuticle. Based on the expression data, we propose that the early up-regulation of an abundance of small pathogenesis-related (PR) genes is more closely linked to structural changes in the extracellular matrix of separating cells than an enzymatic role in pathogen resistance. Furthermore, these observations led us to propose that, in addition to cell wall loosening enzymes, abscission requires (or is enhanced by) biosynthesis and secretion of small proteins (15–25 kDa) and waxes that form an extensible extracellular matrix and boundary layer on the surface of separating cells. The synthesis of the boundary layer

  13. Transcriptome Analysis of Soybean Leaf Abscission Identifies Transcriptional Regulators of Organ Polarity and Cell Fate

    PubMed Central

    Kim, Joonyup; Yang, Jinyoung; Yang, Ronghui; Sicher, Richard C.; Chang, Caren; Tucker, Mark L.

    2016-01-01

    Abscission, organ separation, is a developmental process that is modulated by endogenous and environmental factors. To better understand the molecular events underlying the progression of abscission in soybean, an agriculturally important legume, we performed RNA sequencing (RNA-seq) of RNA isolated from the leaf abscission zones (LAZ) and petioles (Non-AZ, NAZ) after treating stem/petiole explants with ethylene for 0, 12, 24, 48, and 72 h. As expected, expression of several families of cell wall modifying enzymes and many pathogenesis-related (PR) genes specifically increased in the LAZ as abscission progressed. Here, we focus on the 5,206 soybean genes we identified as encoding transcription factors (TFs). Of the 5,206 TFs, 1,088 were differentially up- or down-regulated more than eight-fold in the LAZ over time, and, within this group, 188 of the TFs were differentially regulated more than eight-fold in the LAZ relative to the NAZ. These 188 abscission-specific TFs include several TFs containing domains for homeobox, MYB, Zinc finger, bHLH, AP2, NAC, WRKY, YABBY, and auxin-related motifs. To discover the connectivity among the TFs and highlight developmental processes that support organ separation, the 188 abscission-specific TFs were then clustered based on a >four-fold up- or down-regulation in two consecutive time points (i.e., 0 and 12 h, 12 and 24 h, 24 and 48 h, or 48 and 72 h). By requiring a sustained change in expression over two consecutive time intervals and not just one or several time intervals, we could better tie changes in TFs to a particular process or phase of abscission. The greatest number of TFs clustered into the 0 and 12 h group. Transcriptional network analysis for these abscission-specific TFs indicated that most of these TFs are known as key determinants in the maintenance of organ polarity, lateral organ growth, and cell fate. The abscission-specific expression of these TFs prior to the onset of abscission and their functional

  14. Transcriptome Analysis of Soybean Leaf Abscission Identifies Transcriptional Regulators of Organ Polarity and Cell Fate.

    PubMed

    Kim, Joonyup; Yang, Jinyoung; Yang, Ronghui; Sicher, Richard C; Chang, Caren; Tucker, Mark L

    2016-01-01

    Abscission, organ separation, is a developmental process that is modulated by endogenous and environmental factors. To better understand the molecular events underlying the progression of abscission in soybean, an agriculturally important legume, we performed RNA sequencing (RNA-seq) of RNA isolated from the leaf abscission zones (LAZ) and petioles (Non-AZ, NAZ) after treating stem/petiole explants with ethylene for 0, 12, 24, 48, and 72 h. As expected, expression of several families of cell wall modifying enzymes and many pathogenesis-related (PR) genes specifically increased in the LAZ as abscission progressed. Here, we focus on the 5,206 soybean genes we identified as encoding transcription factors (TFs). Of the 5,206 TFs, 1,088 were differentially up- or down-regulated more than eight-fold in the LAZ over time, and, within this group, 188 of the TFs were differentially regulated more than eight-fold in the LAZ relative to the NAZ. These 188 abscission-specific TFs include several TFs containing domains for homeobox, MYB, Zinc finger, bHLH, AP2, NAC, WRKY, YABBY, and auxin-related motifs. To discover the connectivity among the TFs and highlight developmental processes that support organ separation, the 188 abscission-specific TFs were then clustered based on a >four-fold up- or down-regulation in two consecutive time points (i.e., 0 and 12 h, 12 and 24 h, 24 and 48 h, or 48 and 72 h). By requiring a sustained change in expression over two consecutive time intervals and not just one or several time intervals, we could better tie changes in TFs to a particular process or phase of abscission. The greatest number of TFs clustered into the 0 and 12 h group. Transcriptional network analysis for these abscission-specific TFs indicated that most of these TFs are known as key determinants in the maintenance of organ polarity, lateral organ growth, and cell fate. The abscission-specific expression of these TFs prior to the onset of abscission and their functional

  15. Changes in Free and Conjugated Indole 3-Acetic Acid and Abscisic Acid in Young Cotton Fruits and Their Abscission Zones in Relation to Fruit Retention during and after Moisture Stress

    PubMed Central

    Guinn, Gene; Brummett, Donald L.

    1988-01-01

    Experiments were conducted with field-grown cotton (Gossypium hirsutum L.) in 1985 and 1986 to determine effects of water deficit on levels of conjugated indole 3-acetic acid (IAA) and abscisic acid (ABA) in young fruits (bolls) and their abscission zones in relation to boll retention. Tissues were harvested three times during an irrigation cycle in 1985. They were harvested twice during an irrigation cycle and once after irrigation in 1986 to determine extent of recoveries of measured parameters. As reported earlier, the free IAA content of abscission zones decreased with moisture stress. Irrigation caused a partial recovery in free IAA content of abscission zones and caused a partial recovery in rate of boll retention. In contrast to free IAA, conjugated IAA increased with water deficit, both in 3-day-old bolls and in their abscission zones. Bolls contained much more ester IAA than their abscission zones. Some, but not all, of the increase in ester IAA in bolls during moisture stress could have come from a conversion of amide-linked IAA. Amide IAA decreased slightly during stress and increased after irrigation, but the concentration was low relative to ester IAA. Free and conjugated ABA both increased during stress and decreased after irrigation. However, the concentration of conjugated ABA remained relatively high in abscission zones. Ester IAA, being more resistant than free IAA to enzymic destruction during stress, may hasten recovery of fruit retention after relief of stress by providing a source of free IAA in abscission zones to inhibit continued abscission. PMID:16665881

  16. 77 FR 36439 - Safety Zone; Bullhead City Regatta; Bullhead City, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-19

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Bullhead City Regatta; Bullhead City, AZ... temporary safety zone on the navigable waters of the Colorado River in Bullhead City, Arizona for the Bullhead City Regatta on August 11, 2012. This temporary safety zone is necessary to provide for the...

  17. 78 FR 34300 - Safety Zone; Bullhead City Regatta, Bullhead City, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Bullhead City Regatta, Bullhead City, AZ... temporary safety zone on the navigable waters of the Colorado River in Bullhead City, Arizona for the Bullhead City Regatta on August 10, 2013. This temporary safety zone is necessary to provide for the...

  18. 78 FR 44011 - Safety Zone; Bullhead City Regatta; Bullhead City, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Bullhead City Regatta; Bullhead City, AZ... temporary safety zone on the navigable waters of the Colorado River in Bullhead City, Arizona for the Bullhead City Regatta on August 10, 2013. This temporary safety zone is necessary to provide for the...

  19. 76 FR 38568 - Safety Zone; Bullhead City Regatta, Bullhead City, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Bullhead City Regatta, Bullhead City, AZ... temporary safety zone on the navigable waters of the Colorado River in Bullhead City, Arizona for the Bullhead City Regatta on August 13, 2011. This temporary safety zone is necessary to provide for the...

  20. 75 FR 20920 - Safety Zone; Lake Havasu Grand Prix, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Lake Havasu Grand Prix, Lake Havasu, AZ... temporary safety zone upon the navigable waters of Lake Havasu on the Colorado River in Lake Havasu City, Arizona for the Lake Havasu Grand Prix. This temporary safety zone is necessary to provide for the...

  1. 78 FR 66267 - Safety Zone; HITS Triathlon Series; Colorado River; Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; HITS Triathlon Series; Colorado River; Lake... establishing a safety zone upon the navigable waters of the Colorado River in support of the HITS Triathlon... Series; Colorado River, Lake Havasu City, AZ. (a) Location. The safety zone includes the waters in...

  2. Characterization and structural analysis of wild type and a non-abscission mutant at the development funiculus (Def) locus in Pisum sativum L

    PubMed Central

    Ayeh, Kwadwo Owusu; Lee, YeonKyeong; Ambrose, Mike J; Hvoslef-Eide, Anne Kathrine

    2009-01-01

    Background In pea seeds (Pisum sativum L.), the Def locus defines an abscission event where the seed separates from the funicle through the intervening hilum region at maturity. A spontaneous mutation at this locus results in the seed failing to abscise from the funicle as occurs in wild type peas. In this work, structural differences between wild type peas that developed a distinct abscission zone (AZ) between the funicle and the seed coat and non-abscission def mutant were characterized. Results A clear abscission event was observed in wild type pea seeds that were associated with a distinct double palisade layers at the junction between the seed coat and funicle. Generally, mature seeds fully developed an AZ, which was not present in young wild type seeds. The AZ was formed exactly below the counter palisade layer. In contrast, the palisade layers at the junction of the seed coat and funicle were completely absent in the def mutant pea seeds and the cells in this region were seen to be extensions of surrounding parenchymatous cells. Conclusion The Def wild type developed a distinct AZ associated with palisade layer and counterpalisade layer at the junction of the seed coat and funicle while the def mutant pea seed showed non-abscission and an absence of the double palisade layers in the same region. We conclude that the presence of the double palisade layer in the hilum of the wild type pea seeds plays an important structural role in AZ formation by delimiting the specific region between the seed coat and the funicle and may play a structural role in the AZ formation and subsequent detachment of the seed from the funicle. PMID:19549315

  3. ROLE OF ETHYLENE IN LEAF ABSCISSION

    DTIC Science & Technology

    position of application. The positional effects of auxin are explained as being due to differences in transport in the explant. Thus, distally applied auxin ...inhibits abscission regardless of the accelerated rate of ethylene evolution by being rapidly transported to the abscission zone. Auxin applied

  4. 76 FR 62760 - Foreign-Trade Zone 277-Western Maricopa County, AZ; Application for Temporary/Interim...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    .../Interim Manufacturing Authority; Sub-Zero, Inc.; (Refrigerators); Goodyear, AZ An application has been... County Foreign Trade Zone, Inc., grantee of FTZ 277, requesting temporary/ interim manufacturing...

  5. The Phytotoxin Coronatine Induces Abscission-Related Gene Expression and Boll Ripening during Defoliation of Cotton

    PubMed Central

    Tian, Xiaoli; Duan, Liusheng; Zhang, Mingcai; Tan, Weiming; Xu, Dongyong; Li, Zhaohu

    2014-01-01

    Defoliants can increase machine harvest efficiency of cotton (Gossypium hirusutum L.), prevent lodging and reduce the time from defoliation to harvest. Coronatine (COR) is a chlorosis-inducing non-host-specific phytotoxin that induces leaf and/or fruit abscission in some crops. The present study investigates how COR might induce cotton leaf abscission by modulating genes involved in cell wall hydrolases and ACC (ethylene precursor) in various cotton tissues. The effects of COR on cotton boll ripening, seedcotton yield, and seed development were also studied. After 14 d of treatment with COR, cells within the leaf abscission zone (AZ) showed marked differentiation. Elevated transcripts of GhCEL1, GhPG and GhACS were observed in the AZs treated with COR and Thidiazuron (TDZ). The relative expression of GhCEL1 and GhACS in TDZ treated plants was approximately twice that in plants treated with COR for 12 h. However, only GhACS expression increased in leaf blade and petiole. There was a continuous increase in the activity of hydrolytic enzymes such as cellulase (CEL) and polygalacturonase (PG), and ACC accumulation in AZs following COR and TDZ treatments, but there was greater increase in ACC activity of COR treated boll crust, indicating that COR had greater ripening effect than TDZ. Coronatine significantly enhanced boll opening without affecting boll weight, lint percentage and seed quality. Therefore, COR can be a potential cotton defoliant with different physiological mechanism of action from the currently used TDZ. PMID:24845465

  6. The phytotoxin coronatine induces abscission-related gene expression and boll ripening during defoliation of cotton.

    PubMed

    Du, Mingwei; Li, Yi; Tian, Xiaoli; Duan, Liusheng; Zhang, Mingcai; Tan, Weiming; Xu, Dongyong; Li, Zhaohu

    2014-01-01

    Defoliants can increase machine harvest efficiency of cotton (Gossypium hirusutum L.), prevent lodging and reduce the time from defoliation to harvest. Coronatine (COR) is a chlorosis-inducing non-host-specific phytotoxin that induces leaf and/or fruit abscission in some crops. The present study investigates how COR might induce cotton leaf abscission by modulating genes involved in cell wall hydrolases and ACC (ethylene precursor) in various cotton tissues. The effects of COR on cotton boll ripening, seedcotton yield, and seed development were also studied. After 14 d of treatment with COR, cells within the leaf abscission zone (AZ) showed marked differentiation. Elevated transcripts of GhCEL1, GhPG and GhACS were observed in the AZs treated with COR and Thidiazuron (TDZ). The relative expression of GhCEL1 and GhACS in TDZ treated plants was approximately twice that in plants treated with COR for 12 h. However, only GhACS expression increased in leaf blade and petiole. There was a continuous increase in the activity of hydrolytic enzymes such as cellulase (CEL) and polygalacturonase (PG), and ACC accumulation in AZs following COR and TDZ treatments, but there was greater increase in ACC activity of COR treated boll crust, indicating that COR had greater ripening effect than TDZ. Coronatine significantly enhanced boll opening without affecting boll weight, lint percentage and seed quality. Therefore, COR can be a potential cotton defoliant with different physiological mechanism of action from the currently used TDZ.

  7. 78 FR 17097 - Safety Zone; Lake Havasu Triathlon; Lake Havasu City, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Lake Havasu Triathlon; Lake Havasu City, AZ.... 165.T11-474 to read as follows: Sec. 165.T11-474 Safety Zone; Lake Havasu Triathlon; Lake Havasu...

  8. 75 FR 38754 - Safety Zone; IJSBA World Finals; Lower Colorado River, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    .... USCG-2010-0509] RIN 1625-AA00 Safety Zone; IJSBA World Finals; Lower Colorado River, Lake Havasu, AZ... IJSBA World Finals. This temporary safety zone is necessary to provide for the safety of the... World Finals. The event will consist of 300 to 750 personal watercrafts racing in a circular course....

  9. 75 FR 64708 - Reorganization of Foreign-Trade Zone 75 under Alternative Site Framework; Phoenix, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ...; Phoenix, AZ Pursuant to its authority under the Foreign-Trade Zones Act of June 18, 1934, as amended (19 U...; Whereas, the City of Phoenix, grantee of Foreign-Trade Zone 75, submitted an application to the Board (FTZ... Maricopa County and portions of Pinal and Yavapai Counties, Arizona, within and adjacent to the...

  10. 78 FR 23135 - Safety Zone; Blue Water Resort & Casino West Coast Nationals; Parker, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... temporary safety zone includes the waters of the Colorado River between Headgate Dam and 0.5 miles north of... vessels intending to transit or anchor in the impacted portion of the Colorado River from 6 a.m. to 6 p.m... Nationals, Parker, AZ. (a) Location. This temporary safety zone includes the waters of the Colorado...

  11. 78 FR 33703 - Safety Zone; Great Western Tube Float; Colorado River; Parker, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... No. USCG-2013-0268] RIN 1625-AA00 Safety Zone; Great Western Tube Float; Colorado River; Parker, AZ... Tube Float on June 8, 2013. This temporary safety zone is necessary to provide for the safety of the....). The Parker Area Chamber of Commerce is sponsoring the Great Western Tube Float, which is held on...

  12. A petal breakstrength meter for Arabidopsis abscission studies

    PubMed Central

    Lease, Kevin A; Cho, Sung Ki; Walker, John C

    2006-01-01

    Background Abscission is the regulated dropping of plant organs, such as leaves or flower petals. This process involves a break down of the cell wall between layers of cells in the abscission zone, causing the organ to become detached. The model plant Arabidopsis thaliana undergoes floral organ abscission. Various experimental methods have been used to study Arabidopsis floral organ abscission, including measuring the petal breakstrength, or the amount of force required to pull a petal from the receptacle. Petal breakstrength provides a quantitative insight into the physical integrity of the petal abscission zone. Results We developed a petal breakstrength meter that allows rapid data acquisition on a personal computer. We present the design of the device and show its utility in measuring Arabidopsis petal breakstrength for abscission studies. Conclusion This petal breakstrength meter should enable researchers to perform the petal breakstrength assay as a routine part of the characterization of environmental and genetic factors affecting abscission. PMID:16483376

  13. Comprehensive analysis of SAUR gene family in citrus and its transcriptional correlation with fruitlet drop from abscission zone A.

    PubMed

    Xie, Rangjin; Dong, Cuicui; Ma, Yanyan; Deng, Lie; He, Shaolan; Yi, Shilai; Lv, Qiang; Zheng, Yongqiang

    2015-11-01

    Small auxin-up RNA (SAUR) gene family is large, and the members of which can be rapidly induced by auxin and encode highly unstable mRNAs. SAUR genes are involved in various developmental and physiological processes, such as leaf senescence, fruitlet abscission, and hypocotyl development. However, their modes of action in citrus remain unknown. Hereby, a systematic analysis of SAUR gene family in citrus was conducted through a genome-wide search. In this study, a total of 70 SAUR genes, referred to as CitSAURs, have been identified in citrus. The evolutionary relationship and the intro-exon organization were analyzed, revealing strong gene conservation and the expansion of particular functional genes during plant evolution. Expression analysis showed that the major of CitSAUR genes were expressed in at least one tissue and showed distinctive expression levels, indicating the SAUR gene family play important roles in the development and growth of citrus organs. However, there were more than 20 CitSAUR genes such as CitSARU36, CitSAUR37, and CitSAUR54 exhibiting very low expression level in all tissue tested. Twenty-three out of 70 CitSAUR genes were responded to indole-3-acetic acid (IAA) treatment, of which just CitSAUR19 was down-regulated. Additionally, 14 CitSAUR genes exhibited distinct changes during fruitlet abscission, however just 5 of them including CitSAUR06, CitSAUR08, CitSAUR44, CitSAUR61, and CitSAUR64 were associated with fruitlet abscission. The current study provides basic information for the citrus SAUR gene family and will pave the way for deciphering the precise role of SAURs in citrus development and growth as well as fruitlet abscission.

  14. 75 FR 19250 - Safety Zone; BWRC Spring Classic, Parker, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... safety zone within the Lake Moolvalya region of the navigable waters of the Colorado River in Parker... Moolvalya region on the Colorado River in Parker, Arizona. A temporary safety zone is necessary to provide... entire width of the Colorado River from Headgate Dam to 0.5 miles north of Blue Water Marina,...

  15. 78 FR 19988 - Safety Zone; BWRC Spring Classic, Parker, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... safety zone within the Lake Moovalya region of the navigable waters of the Colorado River in Parker... Casino Spring Classic, which is held on the Lake Moovalya region of the Colorado River in Parker, Arizona... zone includes the waters of the Colorado River between Headgate Dam and 0.5 miles north of the...

  16. 75 FR 22697 - Safety Zone; APBA National Tour, Parker, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... safety zone within the Lake Moolvalya region of the navigable waters of the Colorado River in Parker... representative. The limits of this temporary safety zone are the portion of the Colorado River from Headgate Dam... anchor in a portion of the Colorado River from 6 a.m. to 6 p.m. on April 30, 2010 through May 2,...

  17. 75 FR 19246 - Safety Zone; Desert Storm, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-14

    ... zone within the Thompson Bay region of the navigable waters of the Colorado River in Lake Havasu, Lake... to be held on Thompson Bay region of the Colorado River in Lake Havasu City, Arizona. A temporary... vessels intending to transit or anchor in a portion of the lower Colorado River from 8 a.m. on April...

  18. 78 FR 60698 - Safety Zone, Lucas Oil Drag Boat Racing Series; Thompson Bay, Lake Havasu City, AZ.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone, Lucas Oil Drag Boat Racing Series; Thompson... Guard is establishing a temporary safety zone within the navigable waters of Thompson Bay in Lake Havasu... Thompson Bay, Lake Havasu, AZ for The Lucas Oil Drag Boat Racing Series. This safety zone is necessary...

  19. Abscission of mango fruitlets as influenced by enhanced ethylene biosynthesis.

    PubMed

    Nunez-Elisea, R; Davenport, T L

    1986-12-01

    Experiments were conducted on developing fruitlet explants of two mango (Mangifera indica L.) cultivars to establish the source and dynamics of ethylene production prior to and during fruitlet abscission. Abscission of all fruits in the samples occurred at approximately 86 and 74 hours postharvest in ;Keitt' and ;Tommy Atkins,' respectively. Increased abscission began 26 hours from harvest and was preceded by enhanced ethylene synthesis. Enhanced ethylene production initiated approximately 48 hours prior to abscission and increased to a maximum near the time of fruitlet abscission. The seed produced the highest amount of ethylene on a per gram fresh weight basis. The pericarp, however, was the main source of ethylene on an absolute basis, since it represented more than 85% of total fruitlet weight. Pedicels containing the abscission zone produced no detectable ethylene prior to or at the moment of abscission. Fumigation of ;Tommy Atkins' fruitlets with 1, 15, or 100 microliters per liter ethylene accelerated abscission by 24 to 36 hours in comparison with unfumigated controls. Diffusion of ethylene from distal fruitlet tissues to the abscission zone triggers the events leading to separation of the fruit from the tree.

  20. Resolving new ultrastructural features of cytokinetic abscission with soft-X-ray cryo-tomography

    PubMed Central

    Sherman, Shachar; Kirchenbuechler, David; Nachmias, Dikla; Tamir, Adi; Werner, Stephan; Elbaum, Michael; Elia, Natalie

    2016-01-01

    Mammalian cytokinetic abscission is mediated by the ESCRT membrane fission machinery. While much has been clarified on the topology and kinetics of abscission through high-resolution microscopy, key questions regarding the mechanism of abscission remain open. Here we apply cryogenic soft-X-ray tomography to elucidate new ultrastructural details in the intercellular membrane bridge connecting cells undergoing abscission. In particular, we resolve defined ring-like structures inside the midbody dark zone that have been inaccessible to EM, and identify membrane extrusions at the abscission sites. In cells at late stages of abscission we resolve a complex array of helical spirals, extending the structural information obtained by EM. Our results highlight the advantages of soft-X-ray tomography and emphasize the importance of using complementary approaches for characterizing cellular structures. Notably, by providing new structural data from intact cells we present a realistic view on the topology of abscission and suggest new mechanistic models for ESCRT mediated abscission. PMID:27282220

  1. Core Mechanisms Regulating Developmentally Timed and Environmentally Triggered Abscission[OPEN

    PubMed Central

    2016-01-01

    Drought-triggered abscission is a strategy used by plants to avoid the full consequences of drought; however, it is poorly understood at the molecular genetic level. Here, we show that Arabidopsis (Arabidopsis thaliana) can be used to elucidate the pathway controlling drought-triggered leaf shedding. We further show that much of the pathway regulating developmentally timed floral organ abscission is conserved in regulating drought-triggered leaf abscission. Gene expression of HAESA (HAE) and INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) is induced in cauline leaf abscission zones when the leaves become wilted in response to limited water and HAE continues to accumulate in the leaf abscission zones through the abscission process. The genes that encode HAE/HAESA-LIKE2, IDA, NEVERSHED, and MAPK KINASE4 and 5 are all necessary for drought-induced leaf abscission. Our findings offer a molecular mechanism explaining drought-triggered leaf abscission. Furthermore, the ability to study leaf abscission in Arabidopsis opens up a new avenue to tease apart mechanisms involved in abscission that have been difficult to separate from flower development as well as for understanding the mechanistic role of water and turgor pressure in abscission. PMID:27468996

  2. Carbohydrate Stress Affecting Fruitlet Abscission and Expression of Genes Related to Auxin Signal Transduction Pathway in Litchi

    PubMed Central

    Kuang, Jian-Fei; Wu, Jian-Yang; Zhong, Hai-Ying; Li, Cai-Qin; Chen, Jian-Ye; Lu, Wang-Jin; Li, Jian-Guo

    2012-01-01

    Auxin, a vital plant hormone, regulates a variety of physiological and developmental processes. It is involved in fruit abscission through transcriptional regulation of many auxin-related genes, including early auxin responsive genes (i.e., auxin/indole-3-acetic acid (AUX/IAA), Gretchen Hagen3 (GH3) and small auxin upregulated (SAUR)) and auxin response factors (ARF), which have been well characterized in many plants. In this study, totally five auxin-related genes, including one AUX/IAA (LcAUX/IAA1), one GH3 (LcGH3.1), one SAUR (LcSAUR1) and two ARFs (LcARF1 and LcARF2), were isolated and characterized from litchi fruit. LcAUX/IAA1, LcGH3.1, LcSAUR1, LcARF1 and LcARF2 contain open reading frames (ORFs) encoding polypeptides of 203, 613, 142, 792 and 832 amino acids, respectively, with their corresponding molecular weights of 22.67, 69.20, 11.40, 88.20 and 93.16 kDa. Expression of these genes was investigated under the treatment of girdling plus defoliation which aggravated litchi fruitlet abscission due to the blockage of carbohydrates transport and the reduction of endogenous IAA content. Results showed that transcript levels of LcAUX/IAA1, LcGH3.1 and LcSAUR1 mRNAs were increased after the treatment in abscission zone (AZ) and other tissues, in contrast to the decreasing accumulation of LcARF1 mRNA, suggesting that LcAUX/IAA1, LcSAUR1 and LcARF1 may play more important roles in abscission. Our results provide new insight into the process of fruitlet abscission induced by carbohydrate stress and broaden our understanding of the auxin signal transduction pathway in this process at the molecular level. PMID:23443112

  3. Source-zone characterization of a chlorinated-solvent contaminated Superfund site in Tucson, AZ.

    PubMed

    Brusseau, M L; Nelson, N T; Zhang, Z; Blue, J E; Rohrer, J; Allen, T

    2007-02-20

    An extensive site-characterization project was conducted at a large chlorinated-solvent contaminated Superfund site in Tucson, AZ. The project consisted of several components, including traditional site-characterization activities, tracer tests, laboratory experiments conducted with core material collected from the site, and mathematical modeling. The primary focus of the work presented herein is the analysis of induced-gradient contaminant elution tests conducted in a source zone at the site, investigation of the potential occurrence of immiscible liquid in the saturated zone, characterization of the relationship between mass flux reduction and mass removal, and evaluation of the impact of source-zone management on site remediation. The results of the present study, along with those of prior work, indicate that immiscible liquid is likely present in the saturated zone at the site source zones. Extensive tailing and rebound was observed for the contaminant-elution tests, indicating nonideal transport and mass-transfer behavior. The elution data were analyzed with a source-zone-scale mathematical model, and the results indicated that nonideal immiscible-liquid dissolution was the primary cause of the observed behavior. The time-continuous relationship between mass flux reduction and mass removal associated with the plume-scale pump-and-treat operation exhibited an initial large drop in mass flux with minimal mass removed, followed by a period of minimal mass flux reduction and a second period of large reduction. This behavior reflects the impact of both source-zone and aqueous-plume mass removal dynamics. Ultimately, a greater than 90% reduction in mass flux was achieved for a mass removal of approximately 50%. The influence of source-zone management on site remediation was evaluated by conducting two predictive simulations, one for which the source zones were controlled and one for which they were not. A plume-scale model was used to simulate the composite

  4. Source-zone characterization of a chlorinated-solvent contaminated Superfund site in Tucson, AZ

    NASA Astrophysics Data System (ADS)

    Brusseau, M. L.; Nelson, N. T.; Zhang, Z.; Blue, J. E.; Rohrer, J.; Allen, T.

    2007-02-01

    An extensive site-characterization project was conducted at a large chlorinated-solvent contaminated Superfund site in Tucson, AZ. The project consisted of several components, including traditional site-characterization activities, tracer tests, laboratory experiments conducted with core material collected from the site, and mathematical modeling. The primary focus of the work presented herein is the analysis of induced-gradient contaminant elution tests conducted in a source zone at the site, investigation of the potential occurrence of immiscible liquid in the saturated zone, characterization of the relationship between mass flux reduction and mass removal, and evaluation of the impact of source-zone management on site remediation. The results of the present study, along with those of prior work, indicate that immiscible liquid is likely present in the saturated zone at the site source zones. Extensive tailing and rebound was observed for the contaminant-elution tests, indicating nonideal transport and mass-transfer behavior. The elution data were analyzed with a source-zone-scale mathematical model, and the results indicated that nonideal immiscible-liquid dissolution was the primary cause of the observed behavior. The time-continuous relationship between mass flux reduction and mass removal associated with the plume-scale pump-and-treat operation exhibited an initial large drop in mass flux with minimal mass removed, followed by a period of minimal mass flux reduction and a second period of large reduction. This behavior reflects the impact of both source-zone and aqueous-plume mass removal dynamics. Ultimately, a greater than 90% reduction in mass flux was achieved for a mass removal of approximately 50%. The influence of source-zone management on site remediation was evaluated by conducting two predictive simulations, one for which the source zones were controlled and one for which they were not. A plume-scale model was used to simulate the composite

  5. Auxin is a long-range signal that acts independently of ethylene signaling on leaf abscission in Populus

    PubMed Central

    Jin, Xu; Zimmermann, Jorma; Polle, Andrea; Fischer, Urs

    2015-01-01

    Timing of leaf abscission is an important trait for biomass production and seasonal acclimation in deciduous trees. The signaling leading to organ separation, from the external cue (decreasing photoperiod) to ethylene-regulated hydrolysis of the middle lamellae in the abscission zone, is only poorly understood. Data from annual species indicate that the formation of an auxin gradient spanning the abscission zone regulates the timing of abscission. We established an experimental system in Populus to induce leaf shedding synchronously under controlled greenhouse conditions in order to test the function of auxin in leaf abscission. Here, we show that exogenous auxin delayed abscission of dark-induced leaves over short and long distances and that a new auxin response maximum preceded the formation of an abscission zone. Several auxin transporters were down-regulated during abscission and inhibition of polar auxin transport delayed leaf shedding. Ethylene signaling was not involved in the regulation of these auxin transporters and in the formation of an abscission zone, but was required for the expression of hydrolytic enzymes associated with cell separation. Since exogenous auxin delayed abscission in absence of ethylene signaling auxin likely acts independently of ethylene signaling on cell separation. PMID:26322071

  6. Effects of the pouring temperature on the formation of the bonding zone between AZ91 and AlSi17 in the compound casting process

    NASA Astrophysics Data System (ADS)

    Mola, R.; Bucki, T.; Dziadoń, A.

    2017-02-01

    The compound casting process was used to join AZ91 magnesium alloy to AlSi17 aluminium alloy. Liquid AZ91 was poured onto a solid AlSi17 insert placed in a steel mould heated to 370 °C. The experimental results showed that the temperature of the AZ91 melt affected the formation of the bonding zone between the two alloys. A continuous bonding zone was formed by applying a pouring temperature of 650 °C. The use of higher temperatures, i.e. 680 °C and 700 °C, did not lead to the formation of a continuous metallurgical transition zone at the AZ91/AlSi17 interface. The bonding zone was analysed using an optical microscope and a scanning electron microscope equipped with an energy dispersive X-ray (EDS) detector. The structural constituents of the bonding zone near the AlSi17 alloy were: an Al3Mg2 intermetallic phase, primary Si particles surrounded by a rim of an Mg2Si intermetallic phase and fine Mg2Si particles. The area of the bonding zone that was adjacent to the AZ91 alloy had a eutectic structure composed of an Mg17Al12 intermetallic phase and a solid solution of Al and Si in Mg.

  7. Primary and Secondary Abscission in Pisum sativum and Euphorbia pulcherrima—How Do They Compare and How Do They Differ?

    PubMed Central

    Hvoslef-Eide, Anne K.; Munster, Cristel M.; Mathiesen, Cecilie A.; Ayeh, Kwadwo O.; Melby, Tone I.; Rasolomanana, Paoly; Lee, YeonKyeong

    2016-01-01

    Abscission is a highly regulated and coordinated developmental process in plants. It is important to understand the processes leading up to the event, in order to better control abscission in crop plants. This has the potential to reduce yield losses in the field and increase the ornamental value of flowers and potted plants. A reliable method of abscission induction in poinsettia (Euphorbia pulcherrima) flowers has been established to study the process in a comprehensive manner. By correctly decapitating buds of the third order, abscission can be induced in 1 week. AFLP differential display (DD) was used to search for genes regulating abscission. Through validation using qRT-PCR, more information of the genes involved during induced secondary abscission have been obtained. A study using two pea (Pisum sativum) mutants in the def (Developmental funiculus) gene, which was compared with wild type peas (tall and dwarf in both cases) was performed. The def mutant results in a deformed, abscission-less zone instead of normal primary abscission at the funiculus. RNA in situ hybridization studies using gene sequences from the poinsettia differential display, resulted in six genes differentially expressed for abscission specific genes in both poinsettia and pea. Two of these genes are associated with gene up- or down-regulation during the first 2 days after decapitation in poinsettia. Present and previous results in poinsettia (biochemically and gene expressions), enables a more detailed division of the secondary abscission phases in poinsettia than what has previously been described from primary abscission in Arabidopsis. This study compares the inducible secondary abscission in poinsettia and the non-abscising mutants/wild types in pea demonstrating primary abscission zones. The results may have wide implications on the understanding of abscission, since pea and poinsettia have been separated for 94–98 million years in evolution, hence any genes or processes in common

  8. 77 FR 20356 - Foreign-Trade Zone 277-Western Maricopa County, AZ; Application for Manufacturing Authority...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... Manufacturing Authority; Suntech Arizona, Inc., (Solar Panel Manufacturing), Goodyear, AZ An application has... 275 and 290 watt solar panels for industrial use. Components and materials sourced from abroad... to choose the duty rates during customs entry procedures that apply to solar panels (duty-free)...

  9. The ARF, AUX/IAA and GH3 gene families in citrus: genome-wide identification and expression analysis during fruitlet drop from abscission zone A.

    PubMed

    Xie, Rangjin; Pang, Shaoping; Ma, Yanyan; Deng, Lie; He, Shaolan; Yi, Shilai; Lv, Qiang; Zheng, Yongqiang

    2015-12-01

    Completion of the whole genome sequencing of citrus enabled us to perform genome-wide identification and functional analysis of the gene families involved in agronomic traits and morphological diversity of citrus. In this study, 22 CitARF, 11 CitGH3 and 26 CitAUX/IAA genes were identified in citrus, respectively. Phylogenetic analysis revealed that all the genes of each gene family could be subdivided into three groups and showed strong evolutionary conservation. The GH3 and AUX/IAA gene families shrank and ARF gene family was highly conserved in the citrus genome after speciation from Arabidopsis thaliana. Tissue-specific expression profiles revealed that 54 genes were expressed in at least one tissue while just 5 genes including CitARF07, CitARF20, CitGH3.04, CitAUX/IAA25 and CitAUX/IAA26 with very low expression level in all tissues tested, suggesting that the CitARF, CitGH3 and CitAUX/IAA gene families played important roles in the development of citrus organs. In addition, our data found that the expression of 2 CitARF, 4 CitGH3 and 4 AUX/IAA genes was affected by IAA treatment, and 7 genes including, CitGH3.04, CitGH3.07, CitAUX/IAA03, CitAUX/IAA04, CitAUX/IAA18, CitAUX/IAA19 and CitAUX/IAA23 were related to fruitlet abscission. This study provides a foundation for future studies on elucidating the precise role of citrus ARF, GH3 and AUX/IAA genes in early steps of auxin signal transduction and open up a new opportunity to uncover the molecular mechanism underlying citrus fruitlet abscission.

  10. Effect of Friction Stir Processing on Microstructure and Mechanical Properties of AZ91C Magnesium Cast Alloy Weld Zone

    NASA Astrophysics Data System (ADS)

    Hassani, Behzad; Karimzadeh, Fathallah; Enayati, Mohammad Hossein; Sabooni, Soheil; Vallant, Rudolf

    2016-07-01

    In this study, friction stir processing (FSP) was applied to the GTAW (TIG)-welded AZ91C cast alloy to refine the microstructure and optimize the mechanical properties of the weld zone. Microstructural investigation of the samples was performed by optical microscopy and the phases in the microstructure were determined by x-ray diffraction (XRD). The microstructural evaluations showed that FSP destroys the coarse dendritic microstructure. Furthermore, it dissolves the secondary hard and brittle β-Mg17Al12 phase existing at grain boundaries of the TIG weld zone. The closure and decrease in amount of porosities along with the elimination of the cracks in the microstructure were observed. These changes were followed by a significant grain refinement to an average value of 11 µm. The results showed that the hardness values increased to the mean ones, respectively, for as-cast (63 Hv), TIG weld zone (67 Hv), and stir zone (79 Hv). The yield and ultimate strength were significantly enhanced after FSP. The fractography evaluations, by scanning electron microscopy (SEM), indicated to a transition from brittle to ductile fracture surface after applying FSP to the TIG weld zone.

  11. Ethylene-induced differential gene expression during abscission of citrus leaves

    PubMed Central

    Merelo, Paz; Cercós, Manuel; Tadeo, Francisco R.; Talón, Manuel

    2008-01-01

    The main objective of this work was to identify and classify genes involved in the process of leaf abscission in Clementina de Nules (Citrus clementina Hort. Ex Tan.). A 7 K unigene citrus cDNA microarray containing 12 K spots was used to characterize the transcriptome of the ethylene-induced abscission process in laminar abscission zone-enriched tissues and the petiole of debladed leaf explants. In these conditions, ethylene induced 100% leaf explant abscission in 72 h while, in air-treated samples, the abscission period started later and took 240 h. Gene expression monitored during the first 36 h of ethylene treatment showed that out of the 12 672 cDNA microarray probes, ethylene differentially induced 725 probes distributed as follows: 216 (29.8%) probes in the laminar abscission zone and 509 (70.2%) in the petiole. Functional MIPS classification and manual annotation of differentially expressed genes highlighted key processes regulating the activation and progress of the cell separation that brings about abscission. These included cell-wall modification, lipid transport, protein biosynthesis and degradation, and differential activation of signal transduction and transcription control pathways. Expression data associated with the petiole indicated the occurrence of a double defensive strategy mediated by the activation of a biochemical programme including scavenging ROS, defence and PR genes, and a physical response mostly based on lignin biosynthesis and deposition. This work identifies new genes probably involved in the onset and development of the leaf abscission process and suggests a different but co-ordinated and complementary role for the laminar abscission zone and the petiole during the process of abscission. PMID:18515267

  12. 78 FR 17099 - Safety Zone; BWRC Southwest Showdown 2, Parker, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... temporary safety zone within the Lake Moolvalya region of the navigable waters of the Colorado River in... held on the Lake Moolvalya region of the Colorado River in Parker, Arizona. This temporary safety zone... zone includes the waters of the Colorado River between Headgate Dam and 0.5 miles north of the...

  13. 75 FR 26098 - Safety Zone; Under Water Clean Up of Copper Canyon, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Under Water Clean Up of Copper Canyon, Lake... establishing a temporary safety zone on the navigable waters of Lake Havasu in the Copper Canyon in support of the underwater cleanup of Copper Canyon. This temporary safety zone is necessary to provide for...

  14. Ethephon induced abscission in mango: physiological fruitlet responses

    PubMed Central

    Hagemann, Michael H.; Winterhagen, Patrick; Hegele, Martin; Wünsche, Jens N.

    2015-01-01

    Fruitlet abscission of mango is typically very severe, causing considerable production losses worldwide. Consequently, a detailed physiological and molecular characterization of fruitlet abscission in mango is required to describe the onset and time-dependent course of this process. To identify the underlying key mechanisms of abscission, ethephon, an ethylene releasing substance, was applied at two concentrations (600 and 7200 ppm) during the midseason drop stage of mango. The abscission process is triggered by ethylene diffusing to the abscission zone where it binds to specific receptors and thereby activating several key physiological responses at the cellular level. The treatments reduced significantly the capacity of polar auxin transport through the pedicel at 1 day after treatment and thereafter when compared to untreated pedicels. The transcript levels of the ethylene receptor genes MiETR1 and MiERS1 were significantly upregulated in the pedicel and pericarp at 1, 2, and 3 days after the ethephon application with 7200 ppm, except for MiETR1 in the pedicel, when compared to untreated fruitlet. In contrast, ethephon applications with 600 ppm did not affect expression levels of MiETR1 in the pedicel and of MiERS1 in the pericarp; however, MiETR1 in the pericarp at day 2 and MiERS1 in the pedicel at days 2 and 3 were significantly upregulated over the controls. Moreover, two novel short versions of the MiERS1 were identified and detected more often in the pedicel of treated than untreated fruitlets at all sampling times. Sucrose concentration in the fruitlet pericarp was significantly reduced to the control at 2 days after both ethephon treatments. In conclusion, it is postulated that the ethephon-induced abscission process commences with a reduction of the polar auxin transport capacity in the pedicel, followed by an upregulation of ethylene receptors and finally a decrease of the sucrose concentration in the fruitlets. PMID:26442021

  15. 75 FR 61619 - Safety Zone; IJSBA World Finals, Lower Colorado River, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; IJSBA World Finals, Lower Colorado River... Arizona in support of the International Jet Sports Boating Association (IJSBA) World Finals. This..., 2010, we published a notice of proposed rulemaking (NPRM) entitled Safety Zone; IJSBA World Finals...

  16. 76 FR 61261 - Safety Zone; IJSBA World Finals; Lower Colorado River, Lake Havasu, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; IJSBA World Finals; Lower Colorado River... support of the International Jet Sports Boating Association (IJSBA) World Finals. This temporary safety... The International Jet Sports Boating Association is sponsoring the IJSBA World Finals. The event...

  17. 78 FR 17869 - Safety Zone; Desert Storm Shootout; Lake Havasu, Lake Havasu City, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... establishing a temporary safety zone on the navigable waters of the Colorado River in Lake Havasu, Lake Havasu... LLC is sponsoring the Desert Storm Shootout, which is to be held on the Colorado River in Lake Havasu... vessels intending to transit or anchor in a portion of the Colorado River from 8 a.m. to 6 p.m. on...

  18. Microstructure formation in partially melted zone during gas tungsten arc welding of AZ91 Mg cast alloy

    SciTech Connect

    Zhu Tianping Chen, Zhan W.; Gao Wei

    2008-11-15

    During gas tungsten arc (GTA) welding of AZ91 Mg cast alloy, constitutional liquid forms locally in the original interdendritic regions in the partially melted zone (PMZ). The PMZ re-solidification behaviour has not been well understood. In this study, the gradual change of the re-solidification microstructure within PMZ from base metal side to weld metal side was characterised. High cooling rate experiments using Gleeble thermal simulator were also conducted to understand the morphological change of the {alpha}-Mg/{beta}-Mg{sub 17}Al{sub 12} phase interface formed during re-solidification after partial melting. It was found that the original partially divorced eutectic structure has become a more regular eutectic phase in most of the PMZ, although close to the fusion boundary the re-solidified eutectic is again a divorced one. Proceeding the eutectic re-solidification, if the degree of partial melting is sufficiently high, {alpha}-Mg re-solidified with a cellular growth, resulting in a serrated interface between {alpha}-Mg and {alpha}-Mg/{beta}-Mg{sub 17}Al{sub 12} in the weld sample and between {alpha}-Mg and {beta}-Mg{sub 17}Al{sub 12} (fully divorced eutectic) in Gleeble samples. The morphological changes affected by the peak temperature and cooling rate are also explained.

  19. Auxin involvement in tepal senescence and abscission in Lilium: a tale of two lilies

    PubMed Central

    Lombardi, Lara; Arrom, Laia; Mariotti, Lorenzo; Battelli, Riccardo; Picciarelli, Piero; Kille, Peter; Stead, Tony; Munné-Bosch, Sergi; Rogers, Hilary J.

    2015-01-01

    Petal wilting and/or abscission terminates the life of the flower. However, how wilting and abscission are coordinated is not fully understood. There is wide variation in the extent to which petals wilt before abscission, even between cultivars of the same species. For example, tepals of Lilium longiflorum wilt substantially, while those of the closely related Lilium longiflorum×Asiatic hybrid (L.A.) abscise turgid. Furthermore, close comparison of petal death in these two Lilium genotypes shows that there is a dramatic fall in fresh weight/dry weight accompanied by a sharp increase in ion leakage in late senescent L. longiflorum tepals, neither of which occur in Lilium L.A. Despite these differences, a putative abscission zone was identified in both lilies, but while the detachment force was reduced to zero in Lilium L.A., wilting of the fused tepals in L. longiflorum occurred before abscission was complete. Abscission is often negatively regulated by auxin, and the possible role of auxin in regulating tepal abscission relative to wilting was tested in the two lilies. There was a dramatic increase in auxin levels with senescence in L. longiflorum but not in Lilium L.A. Fifty auxin-related genes were expressed in early senescent L. longiflorum tepals including 12 ARF-related genes. In Arabidopsis, several ARF genes are involved in the regulation of abscission. Expression of a homologous transcript to Arabidopsis ARF7/19 was 8-fold higher during senescence in L. longiflorum compared with abscising Lilium L.A., suggesting a conserved role for auxin-regulated abscission in monocotyledonous ethylene-insensitive flowers. PMID:25422499

  20. Auxin involvement in tepal senescence and abscission in Lilium: a tale of two lilies.

    PubMed

    Lombardi, Lara; Arrom, Laia; Mariotti, Lorenzo; Battelli, Riccardo; Picciarelli, Piero; Kille, Peter; Stead, Tony; Munné-Bosch, Sergi; Rogers, Hilary J

    2015-02-01

    Petal wilting and/or abscission terminates the life of the flower. However, how wilting and abscission are coordinated is not fully understood. There is wide variation in the extent to which petals wilt before abscission, even between cultivars of the same species. For example, tepals of Lilium longiflorum wilt substantially, while those of the closely related Lilium longiflorum×Asiatic hybrid (L.A.) abscise turgid. Furthermore, close comparison of petal death in these two Lilium genotypes shows that there is a dramatic fall in fresh weight/dry weight accompanied by a sharp increase in ion leakage in late senescent L. longiflorum tepals, neither of which occur in Lilium L.A. Despite these differences, a putative abscission zone was identified in both lilies, but while the detachment force was reduced to zero in Lilium L.A., wilting of the fused tepals in L. longiflorum occurred before abscission was complete. Abscission is often negatively regulated by auxin, and the possible role of auxin in regulating tepal abscission relative to wilting was tested in the two lilies. There was a dramatic increase in auxin levels with senescence in L. longiflorum but not in Lilium L.A. Fifty auxin-related genes were expressed in early senescent L. longiflorum tepals including 12 ARF-related genes. In Arabidopsis, several ARF genes are involved in the regulation of abscission. Expression of a homologous transcript to Arabidopsis ARF7/19 was 8-fold higher during senescence in L. longiflorum compared with abscising Lilium L.A., suggesting a conserved role for auxin-regulated abscission in monocotyledonous ethylene-insensitive flowers.

  1. 1-Aminocyclopropane-1-Carboxylate Oxidase Induction in Tomato Flower Pedicel Phloem and Abscission Related Processes Are Differentially Sensitive to Ethylene

    PubMed Central

    Chersicola, Marko; Kladnik, Aleš; Tušek Žnidarič, Magda; Mrak, Tanja; Gruden, Kristina; Dermastia, Marina

    2017-01-01

    Ethylene has impact on several physiological plant processes, including abscission, during which plants shed both their vegetative and reproductive organs. Cell separation and programmed cell death are involved in abscission, and these have also been correlated with ethylene action. However, the detailed spatiotemporal pattern of the molecular events during abscission remains unknown. We examined the expression of two tomato ACO genes, LeACO1, and LeACO4 that encode the last enzyme in ethylene biosynthesis, 1-aminocyclopropane-1-carboxylate oxidase (ACO), together with the expression of other abscission-associated genes involved in cell separation and programmed cell death, during a period of 0–12 h after abscission induction in the tomato flower pedicel abscission zone and nearby tissues. In addition, we determined their localization in specific cell layers of the flower pedicel abscission zone and nearby tissues obtained by laser microdissection before and 8 h after abscission induction. The expression of both ACO genes was localized to the vascular tissues in the pedicel. While LeACO4 was more uniformly expressed in all examined cell layers, the main expression site of LeACO1 was in cell layers just outside the abscission zone in its proximal and distal part. We showed that after abscission induction, ACO1 protein was synthesized in phloem companion cells, in which it was localized mainly in the cytoplasm. Samples were additionally treated with 1-methylcyclopropene (1-MCP), a competitive inhibitor of ethylene actions, and analyzed 8 h after abscission induction. Cell-layer-specific changes in gene expression were observed together with the specific localization and ethylene sensitivity of the hallmarks of cell separation and programmed cell death. While treatment with 1-MCP prevented separation of cells through inhibition of the expression of polygalacturonases, which are the key enzymes involved in degradation of the middle lamella, this had less impact on

  2. ACTION OF AUXIN ON LEAF ABSCISSION

    DTIC Science & Technology

    Experiments have been conducted to investigate a two-stage effect of auxin on abscission. The two stages were demonstrated on greenhouse-grown Black...the second stage - the stage which is stimulated by auxin . Similar experiments were performed with petioles of various lengths and ages. The...implications of these results indicate possible sites of auxin action on leaf abscission. (Author)

  3. Abscission: Role of Abscisic Acid

    PubMed Central

    Cracker, L. E.; Abeles, F. B.

    1969-01-01

    The effect of abscisic acid on cotton (Gossypium hirsutum L. cv. Acala 4-42) and bean (Phaseolus vulgaris L. cv. Red Kidney) explants was 2-fold. It increased ethylene production from the explants, which was found to account for some of its ability to accelerate abscission. Absci is acid also increased the activity of cellulase. Increased synthesis of cellulase was not du to an increase in aging of the explants but rather was an effect of abscisic acid on the processes that lead to cellulase synthesis or activity. PMID:16657181

  4. Genome-wide digital transcript analysis of putative fruitlet abscission related genes regulated by ethephon in litchi

    PubMed Central

    Li, Caiqin; Wang, Yan; Ying, Peiyuan; Ma, Wuqiang; Li, Jianguo

    2015-01-01

    The high level of physiological fruitlet abscission in litchi (Litchi chinensis Sonn.) causes severe yield loss. Cell separation occurs at the fruit abscission zone (FAZ) and can be triggered by ethylene. However, a deep knowledge of the molecular events occurring in the FAZ is still unknown. Here, genome-wide digital transcript abundance (DTA) analysis of putative fruit abscission related genes regulated by ethephon in litchi were studied. More than 81 million high quality reads from seven ethephon treated and untreated control libraries were obtained by high-throughput sequencing. Through DTA profile analysis in combination with Gene Ontology and KEGG pathway enrichment analyses, a total of 2730 statistically significant candidate genes were involved in the ethephon-promoted litchi fruitlet abscission. Of these, there were 1867 early-responsive genes whose expressions were up- or down-regulated from 0 to 1 d after treatment. The most affected genes included those related to ethylene biosynthesis and signaling, auxin transport and signaling, transcription factors (TFs), protein ubiquitination, ROS response, calcium signal transduction, and cell wall modification. These genes could be clustered into four groups and 13 subgroups according to their similar expression patterns. qRT-PCR displayed the expression pattern of 41 selected candidate genes, which proved the accuracy of our DTA data. Ethephon treatment significantly increased fruit abscission and ethylene production of fruitlet. The possible molecular events to control the ethephon-promoted litchi fruitlet abscission were prompted out. The increased ethylene evolution in fruitlet would suppress the synthesis and polar transport of auxin and trigger abscission signaling. To the best of our knowledge, it is the first time to monitor the gene expression profile occurring in the FAZ-enriched pedicel during litchi fruit abscission induced by ethephon on the genome-wide level. This study will contribute to a better

  5. Genome-wide digital transcript analysis of putative fruitlet abscission related genes regulated by ethephon in litchi.

    PubMed

    Li, Caiqin; Wang, Yan; Ying, Peiyuan; Ma, Wuqiang; Li, Jianguo

    2015-01-01

    The high level of physiological fruitlet abscission in litchi (Litchi chinensis Sonn.) causes severe yield loss. Cell separation occurs at the fruit abscission zone (FAZ) and can be triggered by ethylene. However, a deep knowledge of the molecular events occurring in the FAZ is still unknown. Here, genome-wide digital transcript abundance (DTA) analysis of putative fruit abscission related genes regulated by ethephon in litchi were studied. More than 81 million high quality reads from seven ethephon treated and untreated control libraries were obtained by high-throughput sequencing. Through DTA profile analysis in combination with Gene Ontology and KEGG pathway enrichment analyses, a total of 2730 statistically significant candidate genes were involved in the ethephon-promoted litchi fruitlet abscission. Of these, there were 1867 early-responsive genes whose expressions were up- or down-regulated from 0 to 1 d after treatment. The most affected genes included those related to ethylene biosynthesis and signaling, auxin transport and signaling, transcription factors (TFs), protein ubiquitination, ROS response, calcium signal transduction, and cell wall modification. These genes could be clustered into four groups and 13 subgroups according to their similar expression patterns. qRT-PCR displayed the expression pattern of 41 selected candidate genes, which proved the accuracy of our DTA data. Ethephon treatment significantly increased fruit abscission and ethylene production of fruitlet. The possible molecular events to control the ethephon-promoted litchi fruitlet abscission were prompted out. The increased ethylene evolution in fruitlet would suppress the synthesis and polar transport of auxin and trigger abscission signaling. To the best of our knowledge, it is the first time to monitor the gene expression profile occurring in the FAZ-enriched pedicel during litchi fruit abscission induced by ethephon on the genome-wide level. This study will contribute to a better

  6. A knotted1-like homeobox protein regulates abscission in tomato by modulating the auxin pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    KD1, a gene encoding a KNOTTED1-LIKE HOMEOBOX transcription factor is known to be involved, in tomato, in ontogeny of the compound leaf. KD1 is also highly expressed in both leaf and flower abscission zones. Reducing abundance of transcripts of this gene in tomato, using both virus induced gene sile...

  7. CAST AWAY, a membrane-associated receptor-like kinase, inhibits organ abscission in Arabidopsis.

    PubMed

    Burr, Christian A; Leslie, Michelle E; Orlowski, Sara K; Chen, Iris; Wright, Catherine E; Daniels, Mark J; Liljegren, Sarah J

    2011-08-01

    Receptor-like kinase-mediated cell signaling pathways play fundamental roles in many aspects of plant growth and development. A pair of Arabidopsis (Arabidopsis thaliana) leucine-rich repeat receptor-like kinases (LRR-RLKs), HAESA (HAE) and HAESA-LIKE2 (HSL2), have been shown to activate the cell separation process that leads to organ abscission. Another pair of LRR-RLKs, EVERSHED (EVR) and SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1, act as inhibitors of abscission, potentially by modulating HAE/HSL2 activity. Cycling of these RLKs to and from the cell surface may be regulated by NEVERSHED (NEV), a membrane trafficking regulator that is essential for organ abscission. We report here the characterization of CAST AWAY (CST), a receptor-like cytoplasmic kinase that acts as a spatial inhibitor of cell separation. Disruption of CST suppresses the abscission defects of nev mutant flowers and restores the discrete identity of the trans-Golgi network in nev abscission zones. After organ shedding, enlarged abscission zones with obscured boundaries are found in nev cst flowers. We show that CST is a dual-specificity kinase in vitro and that myristoylation at its amino terminus promotes association with the plasma membrane. Using the bimolecular fluorescence complementation assay, we have detected interactions of CST with HAE and EVR at the plasma membrane of Arabidopsis protoplasts and hypothesize that CST negatively regulates cell separation signaling directly and indirectly. A model integrating the potential roles of receptor-like kinase signaling and membrane trafficking during organ separation is presented.

  8. Differential expression of several xyloglucan endotransglucosylase/hydrolase genes regulates flower opening and petal abscission in roses

    PubMed Central

    Singh, Amar Pal; Dubey, Shveta; Lakhwani, Deepika; Pandey, Saurabh Prakash; Khan, Kasim; Dwivedi, Upendra Nath; Nath, Pravendra; Sane, Aniruddha P.

    2013-01-01

    Flower opening is a process that requires movement of petals from a closed position to a horizontal open position, while petal abscission requires cell-wall disassembly. Both processes are controlled by ethylene and require cell-wall modification at the junction (abscission zone) of the petal and thalamus to facilitate the movement or separation of petals. In the present study, a family of xyloglucan endotransglucosylase/hydrolase (XTH) genes was studied to understand their role in petal abscission in flowers of Rosa bourboniana (ethylene sensitive, early abscising) and Rosa hybrida (less ethylene sensitive, late abscising). Transcriptome sequencing of petal abscission zone cDNA was performed at different time points (ethylene treated and untreated) and screened for XTH genes. The study identified nine new XTH genes that showed differential changes in gene expression during flower opening and abscission. Of these, RbXTH3, RbXTH5, RbXTH6 and RbXTH12 were rapidly induced by ethylene within 1–4 h of ethylene treatment, corresponding to the period of flower opening. These genes also showed an early up-regulation during flower opening under ethylene-untreated (field abscission) conditions, indicating a possible role in anthesis and petal movement during flower opening. Other genes such as RbXTH4 and RbXTH9 were up-regulated later at 8–12 h after ethylene treatment and at 24–36 h under natural abscission conditions, indicating a possible role in abscission. Treatment with a higher ethylene dose (15 µL L−1 ethylene) accelerated abscission, leading to higher steady-state levels of XTH gene transcripts at an earlier time point compared with 0.5 µL L−1 ethylene. In contrast, transcript accumulation of most of the XTHs was considerably delayed in the late-abscising rose, R. hybrida, in keeping with the slower flower opening and delayed petal abscission. The results suggest coordinated action of different XTHs in cell-wall modification of xyloglucan moieties during

  9. 77 FR 52681 - Reorganization and Expansion of Foreign-Trade Zone 219 Under Alternative Site Framework Yuma, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... categorized as magnet sites, Site 3 would be removed from the zone and the grantee proposes one initial usage... the zone, to a five-year ASF sunset provision for magnet sites that would terminate authority for...

  10. Understanding the Physiology of Postharvest Needle Abscission in Balsam Fir.

    PubMed

    Lada, Rajasekaran R; MacDonald, Mason T

    2015-01-01

    Balsam fir (Abies balsamea) trees are commonly used as a specialty horticultural species for Christmas trees and associated greenery in eastern Canada and United States. Postharvest needle abscission has always been a problem, but is becoming an even bigger challenge in recent years presumably due to increased autumn temperatures and earlier harvesting practices. An increased understanding of postharvest abscission physiology in balsam fir may benefit the Christmas tree industry while simultaneously advancing our knowledge in senescence and abscission of conifers in general. Our paper describes the dynamics of needle abscission in balsam fir while identifying key factors that modify abscission patterns. Concepts such as genotypic abscission resistance, nutrition, environmental factors, and postharvest changes in water conductance and hormone evolution are discussed as they relate to our understanding of the balsam fir abscission physiology. Our paper ultimately proposes a pathway for needle abscission via ethylene and also suggests other potential alternative pathways based on our current understanding.

  11. Understanding the Physiology of Postharvest Needle Abscission in Balsam Fir

    PubMed Central

    Lada, Rajasekaran R.; MacDonald, Mason T.

    2015-01-01

    Balsam fir (Abies balsamea) trees are commonly used as a specialty horticultural species for Christmas trees and associated greenery in eastern Canada and United States. Postharvest needle abscission has always been a problem, but is becoming an even bigger challenge in recent years presumably due to increased autumn temperatures and earlier harvesting practices. An increased understanding of postharvest abscission physiology in balsam fir may benefit the Christmas tree industry while simultaneously advancing our knowledge in senescence and abscission of conifers in general. Our paper describes the dynamics of needle abscission in balsam fir while identifying key factors that modify abscission patterns. Concepts such as genotypic abscission resistance, nutrition, environmental factors, and postharvest changes in water conductance and hormone evolution are discussed as they relate to our understanding of the balsam fir abscission physiology. Our paper ultimately proposes a pathway for needle abscission via ethylene and also suggests other potential alternative pathways based on our current understanding. PMID:26635863

  12. Abscission, organ separation, is more complex than you might think

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abscission, organ separation, is an integral part of the life of a plant. Natural and artificial regulation of abscission can have substantive effects on crop yield and fruit quality. It’s been nearly 100 years since the discovery that ethylene played a role in abscission and more than 50 years si...

  13. Environmental Factors in the Physiology of Abscission

    PubMed Central

    Addicott, Fredrick T.

    1968-01-01

    This paper reviews the physiological effects of the principal environmental factors which can influence the process of leaf abscission. The factors include temperature, light, water, gases, mineral elements, soil conditions, and parasitic organisms. These factors influence a variety of internal physiological conditions and processes which in turn may either accelerate or retard the process of abscission. The most important internal factors include A) sugar, pectin, cellulose, and other carbohydrates; B) energy-yielding respiration; C) enzymic reactions; D) amino acids, purines, and other nitrogenous substances; E) levels of plant hormones; and F) the molecular biological pathway. The current information is consistent with the hypothesis that the environmental factors act in leaf abscission via direct or indirect influences on the synthesis or reaction rate of enzymes. PMID:16657013

  14. The Transcription Factor AtDOF4.7 Is Involved in Ethylene- and IDA-Mediated Organ Abscission in Arabidopsis.

    PubMed

    Wang, Gao-Qi; Wei, Peng-Cheng; Tan, Feng; Yu, Man; Zhang, Xiao-Yan; Chen, Qi-Jun; Wang, Xue-Chen

    2016-01-01

    Organ abscission is an important plant developmental process that occurs in response to environmental stress or pathogens. In Arabidopsis, ligand signals, such as ethylene or INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), can regulate organ abscission. Previously, we reported that overexpression of AtDOF4.7, a transcription factor gene, directly suppresses the expression of the abscission-related gene ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 2 (ADPG2), resulting in a deficiency of floral organ abscission. However, the relationship between AtDOF4.7 and abscission pathways still needs to be investigated. In this study, we showed that ethylene regulates the expression of AtDOF4.7, and the peptide ligand, IDA negatively regulates AtDOF4.7 at the transcriptional level. Genetic evidence indicates that AtDOF4.7 and IDA are involved in a common pathway, and a MAPK cascade can phosphorylate AtDOF4.7 in vitro. Further in vivo data suggest that AtDOF4.7 protein levels may be regulated by this phosphorylation. Collectively, our results indicate that ethylene regulates AtDOF4.7 that is involved in the IDA-mediated floral organ abscission pathway.

  15. The Transcription Factor AtDOF4.7 Is Involved in Ethylene- and IDA-Mediated Organ Abscission in Arabidopsis

    PubMed Central

    Wang, Gao-Qi; Wei, Peng-Cheng; Tan, Feng; Yu, Man; Zhang, Xiao-Yan; Chen, Qi-Jun; Wang, Xue-Chen

    2016-01-01

    Organ abscission is an important plant developmental process that occurs in response to environmental stress or pathogens. In Arabidopsis, ligand signals, such as ethylene or INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), can regulate organ abscission. Previously, we reported that overexpression of AtDOF4.7, a transcription factor gene, directly suppresses the expression of the abscission-related gene ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 2 (ADPG2), resulting in a deficiency of floral organ abscission. However, the relationship between AtDOF4.7 and abscission pathways still needs to be investigated. In this study, we showed that ethylene regulates the expression of AtDOF4.7, and the peptide ligand, IDA negatively regulates AtDOF4.7 at the transcriptional level. Genetic evidence indicates that AtDOF4.7 and IDA are involved in a common pathway, and a MAPK cascade can phosphorylate AtDOF4.7 in vitro. Further in vivo data suggest that AtDOF4.7 protein levels may be regulated by this phosphorylation. Collectively, our results indicate that ethylene regulates AtDOF4.7 that is involved in the IDA-mediated floral organ abscission pathway. PMID:27379143

  16. The Abscission Checkpoint: Making It to the Final Cut.

    PubMed

    Nähse, Viola; Christ, Liliane; Stenmark, Harald; Campsteijn, Coen

    2017-01-01

    Cytokinesis is the final stage of cell division and is concluded by abscission of the intercellular bridge to physically separate the daughter cells. Timing of cytokinetic abscission is monitored by a molecular machinery termed the abscission checkpoint. This machinery delays abscission in cells with persistent chromatin in the intercellular bridge. Recent work has also uncovered its response to high membrane tension, nuclear pore defects, and DNA replication stress. Although it is known that the abscission checkpoint depends on persistent activity of the Aurora B protein kinase, we have only recently begun to understand its molecular basis. We propose here a molecular framework for abscission checkpoint signaling and we discuss outstanding questions relating to its function and physiological relevance.

  17. Role of RNA and Protein Synthesis in Abscission

    PubMed Central

    Abeles, F. B.

    1968-01-01

    The cell separation aspect of abscission is thought to involve the action of specific cell wall degrading enzymes. Enzymes represent synthesis which in turn is preceded by the synthesis of specific RNA molecules, and it follows that inhibition of either of these processes would also block abscission. Since abscission is a localized phenomenon usually involving 2 or 3 cell layers, RNA and protein synthesis should also be localized. Manipulations of plant material which either accelerate or retard abscission may be due to the regulation of RNA and protein synthesis. This paper is a review of literature concerned with these and related questions. Images PMID:16657020

  18. Early Induction of Apple Fruitlet Abscission Is Characterized by an Increase of Both Isoprene Emission and Abscisic Acid Content12[W][OA

    PubMed Central

    Giulia, Eccher; Alessandro, Botton; Mariano, Dimauro; Andrea, Boschetti; Benedetto, Ruperti; Angelo, Ramina

    2013-01-01

    Apple (Malus domestica) fruitlet abscission represents an interesting model system to study the early phases of the shedding process, during which major transcriptomic changes and metabolic rearrangements occur within the fruit. In apple, the drop of fruits at different positions within the cluster can be selectively magnified through chemical thinners, such as benzyladenine and metamitron, acting as abscission enhancers. In this study, different abscission potentials were obtained within the apple fruitlet population by means of the above-cited thinners. A metabolomic study was conducted on the volatile organic compounds emitted by abscising fruitlets, allowing for identification of isoprene as an early marker of abscission induction. A strong correlation was also observed between isoprene production and abscisic acid (ABA) levels in the fruit cortex, which were shown to increase in abscising fruitlets with respect to nonabscising ones. Transcriptomic evidence indicated that abscission-related ABA is biologically active, and its increased biosynthesis is associated with the induction of a specific ABA-responsive 9-cis-epoxycarotenoid dioxygenase gene. According to a hypothetical model, ABA may transiently cooperate with other hormones and secondary messengers in the generation of an intrafruit signal leading to the downstream activation of the abscission zone. The shedding process therefore appears to be triggered by multiple interdependent pathways, whose fine regulation, exerted within a very short temporal window by both endogenous and exogenous factors, determines the final destiny of the fruitlets. PMID:23444344

  19. Bimodal effect of hydrogen peroxide and oxidative events in nitrite-induced rapid root abscission by the water fern Azolla pinnata

    DOE PAGES

    Cohen, Michael F.; Gurung, Sushma; Birarda, Giovanni; ...

    2015-07-09

    In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM NaNO2, and 10 mM H2O2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H2O2, dramatically stimulated root abscission of A. pinnata in response to nitrite, especially for plants previously cultivated inmore » medium containing 5 mM KNO3 compared to plants cultivated under N2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. Lastly, we hypothesize that metabolic products of nitrite and NO react with H2O2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission.« less

  20. Bimodal effect of hydrogen peroxide and oxidative events in nitrite-induced rapid root abscission by the water fern Azolla pinnata

    SciTech Connect

    Cohen, Michael F.; Gurung, Sushma; Birarda, Giovanni; Holman, Hoi-Ying N.; Yamasaki, Hideo

    2015-07-09

    In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM NaNO2, and 10 mM H2O2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H2O2, dramatically stimulated root abscission of A. pinnata in response to nitrite, especially for plants previously cultivated in medium containing 5 mM KNO3 compared to plants cultivated under N2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. Lastly, we hypothesize that metabolic products of nitrite and NO react with H2O2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission.

  1. Bimodal effect of hydrogen peroxide and oxidative events in nitrite-induced rapid root abscission by the water fern Azolla pinnata

    PubMed Central

    Cohen, Michael F.; Gurung, Sushma; Birarda, Giovanni; Holman, Hoi-Ying N.; Yamasaki, Hideo

    2015-01-01

    In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM NaNO2, and 10 mM H2O2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H2O2, dramatically stimulated root abscission of A. pinnata in response to nitrite, especially for plants previously cultivated in medium containing 5 mM KNO3 compared to plants cultivated under N2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. We hypothesize that metabolic products of nitrite and NO react with H2O2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission. PMID:26217368

  2. An improved fruit transcriptome and the identification of the candidate genes involved in fruit abscission induced by carbohydrate stress in litchi

    PubMed Central

    Li, Caiqin; Wang, Yan; Huang, Xuming; Li, Jiang; Wang, Huicong; Li, Jianguo

    2015-01-01

    Massive young fruit abscission usually causes low and unstable yield in litchi (Litchi chinensis Sonn.), an important fruit crop cultivated in tropical and subtropical areas. However, the molecular mechanism of fruit drop has not been fully characterized. This study aimed at identification of molecular components involved in fruitlet abscission in litchi, for which reference genome is not available at present. An improved de novo transcriptome assembly was firstly achieved by using an optimized assembly software, Trinity. Using improved transcriptome assembly as reference, digital transcript abundance (DTA) profiling was performed to screen and identify candidate genes involved in fruit abscission induced by girdling plus defoliation (GPD), a treatment significantly decreased the soluble sugar contents causing carbohydrate stress to fruit. Our results showed that the increasing fruit abscission rate after GPD treatment was associated with higher ethylene production and lower glucose levels in fruit. A total of 2,771 differentially expressed genes were identified as GPD-responsive genes, 857 of which were defined by GO and KEGG enrichment analyses as the candidate genes involved in fruit abscission process. These genes were involved in diverse metabolic processes and pathways, including carbohydrate metabolism, plant hormone synthesis, and signaling, transcription factor activity and cell wall modification that were rapidly induced in the early stages (within 2 days after treatment). qRT-PCR was used to explore the expression pattern of 15 selected candidate genes in the abscission zone, pericarp, and seed, which confirmed the accuracy of our DTA data. More detailed information for different functional categories was also analyzed. This study profiled the gene expression related to fruit abscission induced by carbohydrate stress at whole transcriptome level and thus provided a better understanding of the regulatory mechanism of young fruit abscission in litchi. PMID

  3. Fruit abscission by Physalis species as defense against frugivory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit abscission as a response to herbivory is well-documented in many plant species, but its effect on further damage by mobile herbivores that survive fruit abscission is relatively unstudied. Physalis plants abscise fruit containing feeding larvae of their main frugivore, Heliothis subflexa Guen...

  4. Ethephon As a Potential Abscission Agent for Table Grapes: Effects on Pre-Harvest Abscission, Fruit Quality, and Residue

    PubMed Central

    Ferrara, Giuseppe; Mazzeo, Andrea; Matarrese, Angela M. S.; Pacucci, Carmela; Trani, Antonio; Fidelibus, Matthew W.; Gambacorta, Giuseppe

    2016-01-01

    Some plant growth regulators, including ethephon, can stimulate abscission of mature grape berries. The stimulation of grape berry abscission reduces fruit detachment force (FDF) and promotes the development of a dry stem scar, both of which could facilitate the production of high quality stemless fresh-cut table grapes. The objective of this research was to determine how two potential abscission treatments, 1445 and 2890 mg/L ethephon, affected FDF, pre-harvest abscission, fruit quality, and ethephon residue of Thompson Seedless and Crimson Seedless grapes. Both ethephon treatments strongly induced abscission of Thompson Seedless berries causing >90% pre-harvest abscission. Lower ethephon rates, a shorter post-harvest interval, or berry retention systems such as nets, would be needed to prevent excessive pre-harvest losses. The treatments also slightly affected Thompson Seedless berry skin color, with treated fruit being darker, less uniform in color, and with a more yellow hue than non-treated fruit. Ethephon residues on Thompson Seedless grapes treated with the lower concentration of ethephon were below legal limits at harvest. Ethephon treatments also promoted abscission of Crimson Seedless berries, but pre-harvest abscission was much lower (≅49%) in Crimson Seedless compared to Thompson Seedless. Treated fruits were slightly darker than non-treated fruits, but ethephon did not affect SSC, acidity, or firmness of Crimson Seedless, and ethephon residues were below legal limits. PMID:27303407

  5. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission

    PubMed Central

    Santiago, Julia; Brandt, Benjamin; Wildhagen, Mari; Hohmann, Ulrich; Hothorn, Ludwig A; Butenko, Melinka A; Hothorn, Michael

    2016-01-01

    Plants constantly renew during their life cycle and thus require to shed senescent and damaged organs. Floral abscission is controlled by the leucine-rich repeat receptor kinase (LRR-RK) HAESA and the peptide hormone IDA. It is unknown how expression of IDA in the abscission zone leads to HAESA activation. Here we show that IDA is sensed directly by the HAESA ectodomain. Crystal structures of HAESA in complex with IDA reveal a hormone binding pocket that accommodates an active dodecamer peptide. A central hydroxyproline residue anchors IDA to the receptor. The HAESA co-receptor SERK1, a positive regulator of the floral abscission pathway, allows for high-affinity sensing of the peptide hormone by binding to an Arg-His-Asn motif in IDA. This sequence pattern is conserved among diverse plant peptides, suggesting that plant peptide hormone receptors may share a common ligand binding mode and activation mechanism. DOI: http://dx.doi.org/10.7554/eLife.15075.001 PMID:27058169

  6. PKCɛ switches Aurora B specificity to exit the abscission checkpoint

    PubMed Central

    Pike, Tanya; Brownlow, Nicola; Kjaer, Svend; Carlton, Jeremy; Parker, Peter J.

    2016-01-01

    The ‘NoCut', or Aurora B abscission checkpoint can be activated if DNA is retained in the cleavage furrow after completion of anaphase. Checkpoint failure leads to incomplete abscission and a binucleate outcome. These phenotypes are also observed after loss of PKCɛ in transformed cell models. Here we show that PKCɛ directly modulates the Aurora B-dependent abscission checkpoint by phosphorylating Aurora B at S227. This phosphorylation invokes a switch in Aurora B specificity, with increased phosphorylation of a subset of target substrates, including the CPC subunit Borealin. This switch is essential for abscission checkpoint exit. Preventing the phosphorylation of Borealin leads to abscission failure, as does expression of a non-phosphorylatable Aurora B S227A mutant. Further, depletion of the ESCRT-III component and Aurora B substrate CHMP4C enables abscission, bypassing the PKCɛ–Aurora B exit pathway. Thus, we demonstrate that PKCɛ signals through Aurora B to exit the abscission checkpoint and complete cell division. PMID:28004745

  7. PKCɛ switches Aurora B specificity to exit the abscission checkpoint.

    PubMed

    Pike, Tanya; Brownlow, Nicola; Kjaer, Svend; Carlton, Jeremy; Parker, Peter J

    2016-12-22

    The 'NoCut', or Aurora B abscission checkpoint can be activated if DNA is retained in the cleavage furrow after completion of anaphase. Checkpoint failure leads to incomplete abscission and a binucleate outcome. These phenotypes are also observed after loss of PKCɛ in transformed cell models. Here we show that PKCɛ directly modulates the Aurora B-dependent abscission checkpoint by phosphorylating Aurora B at S227. This phosphorylation invokes a switch in Aurora B specificity, with increased phosphorylation of a subset of target substrates, including the CPC subunit Borealin. This switch is essential for abscission checkpoint exit. Preventing the phosphorylation of Borealin leads to abscission failure, as does expression of a non-phosphorylatable Aurora B S227A mutant. Further, depletion of the ESCRT-III component and Aurora B substrate CHMP4C enables abscission, bypassing the PKCɛ-Aurora B exit pathway. Thus, we demonstrate that PKCɛ signals through Aurora B to exit the abscission checkpoint and complete cell division.

  8. FOREVER YOUNG FLOWER Negatively Regulates Ethylene Response DNA-Binding Factors by Activating an Ethylene-Responsive Factor to Control Arabidopsis Floral Organ Senescence and Abscission.

    PubMed

    Chen, Wei-Han; Li, Pei-Fang; Chen, Ming-Kun; Lee, Yung-I; Yang, Chang-Hsien

    2015-08-01

    In this study of Arabidopsis (Arabidopsis thaliana), we investigated the relationship between FOREVER YOUNG FLOWER (FYF) and Ethylene Response DNA-binding Factors (EDFs) and functionally analyzed a key FYF target, an Ethylene-Responsive Factor (ERF), that controls flower senescence/abscission. Ectopic expression of EDF1/2/3/4 caused promotion of flower senescence/abscission and the activation of the senescence-associated genes. The presence of a repressor domain in EDFs and the enhancement of the promotion of senescence/abscission in EDF1/2/3/4+SRDX (converting EDFs to strong repressors by fusion with the ERF-associated amphiphilic repression motif repression domain SRDX) transgenic plants suggested that EDFs act as repressors. The significant reduction of β-glucuronidase (GUS) expression by 35S:FYF in EDF1/2/3/4:GUS plants indicates that EDF1/2/3/4 functions downstream of FYF in regulating flower senescence/abscission. In this study, we also characterized an ERF gene, FOREVER YOUNG FLOWER UP-REGULATING FACTOR1 (FUF1), which is up-regulated by FYF during flower development. Ectopic expression of FUF1 caused similar delayed flower senescence/abscission as seen in 35S:FYF plants. This phenotype was correlated with deficient abscission zone formation, ethylene insensitivity, and down-regulation of EDF1/2/3/4 and abscission-associated genes in 35S:FUF1 flowers. In contrast, significant promotion of flower senescence/abscission and up-regulation of EDF1/2/3/4 were observed in 35S:FUF1+SRDX transgenic dominant-negative plants, in which FUF1 is converted to a potent repressor by fusion to an SRDX-suppressing motif. Thus, FUF1 acts as an activator in suppressing EDF1/2/3/4 function and senescence/abscission of the flowers. Our results reveal that FYF regulates flower senescence/abscission by negatively regulating EDF1/2/3/4, which is the downstream gene in the ethylene response, by activating FUF1 in Arabidopsis.

  9. Protein kinase C epsilon in cell division: control of abscission.

    PubMed

    Saurin, Adrian T; Brownlow, Nicola; Parker, Peter J

    2009-02-15

    Cell division requires the separation and partitioning of sister chromatids to opposite ends of the cell before an actomyosin ring contracts the membrane in between during cytokinesis. The final irreversible step occurs during abscission when the ring breaks down and the membrane is sealed in its place. The physical mechanics of contraction depend on RhoA, which is stimulated by a centralspindlin complex around the cell equator. However exactly how these events are reversed to allow actomyosin breakdown and abscission were not well understood. Here we will discuss new findings that implicate Protein Kinase C epsilon (PKCepsilon) as a regulator of RhoA signalling required for abscission.

  10. Abscission checkpoint control: stuck in the middle with Aurora B.

    PubMed

    Carmena, Mar

    2012-07-01

    At the end of cell division, the cytoplasmic bridge joining the daughter cells is severed through a process that involves scission of the plasma membrane. The presence of chromatin bridges 'stuck' in the division plane is sensed by the chromosomal passenger complex (CPC) component Aurora B kinase, triggering a checkpoint that delays abscission until the chromatin bridges have been resolved. Recent work has started to shed some light on the molecular mechanism by which the CPC controls the timing of abscission.

  11. Transcriptome analysis of soybean leaf abscission identifies transcriptional regulators of organ polarity and cell fate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abscission, organ detachment, is a developmental process that is modulated by environmental factors. To understand the molecular events underlying the progression of abscission in soybean, we induced abscission in 21 day-old soybean by treating leaf explants with ethylene. RNA-seq was completed for ...

  12. Deer predation on leaf miners via leaf abscission

    NASA Astrophysics Data System (ADS)

    Yamazaki, Kazuo; Sugiura, Shinji

    2008-03-01

    The evergreen oak Quercus gilva Blume sheds leaves containing mines of the leaf miner Stigmella sp. (Lepidoptera: Nepticulidae) earlier than leaves with no mines in early spring in Nara, central Japan. The eclosion rates of the leaf miner in abscised and retained leaves were compared in the laboratory to clarify the effects of leaf abscission on leaf miner survival in the absence of deer. The leaf miner eclosed successfully from both fallen leaves and leaves retained on trees. However, sika deer ( Cervus nippon centralis Kishida) feed on the fallen mined leaves. Field observations showed that deer consume many fallen leaves under Q. gilva trees, suggesting considerable mortality of leaf miners due to deer predation via leaf abscission. This is a previously unreported relationship between a leaf miner and a mammalian herbivore via leaf abscission.

  13. Deer predation on leaf miners via leaf abscission.

    PubMed

    Yamazaki, Kazuo; Sugiura, Shinji

    2008-03-01

    The evergreen oak Quercus gilva Blume sheds leaves containing mines of the leaf miner Stigmella sp. (Lepidoptera: Nepticulidae) earlier than leaves with no mines in early spring in Nara, central Japan. The eclosion rates of the leaf miner in abscised and retained leaves were compared in the laboratory to clarify the effects of leaf abscission on leaf miner survival in the absence of deer. The leaf miner eclosed successfully from both fallen leaves and leaves retained on trees. However, sika deer (Cervus nippon centralis Kishida) feed on the fallen mined leaves. Field observations showed that deer consume many fallen leaves under Q. gilva trees, suggesting considerable mortality of leaf miners due to deer predation via leaf abscission. This is a previously unreported relationship between a leaf miner and a mammalian herbivore via leaf abscission.

  14. ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins.

    PubMed

    Caballe, Anna; Wenzel, Dawn M; Agromayor, Monica; Alam, Steven L; Skalicky, Jack J; Kloc, Magdalena; Carlton, Jeremy G; Labrador, Leticia; Sundquist, Wesley I; Martin-Serrano, Juan

    2015-05-26

    The endosomal sorting complexes required for transport (ESCRT) machinery mediates the physical separation between daughter cells during cytokinetic abscission. This process is regulated by the abscission checkpoint, a genome protection mechanism that relies on Aurora B and the ESCRT-III subunit CHMP4C to delay abscission in response to chromosome missegregation. In this study, we show that Unc-51-like kinase 3 (ULK3) phosphorylates and binds ESCRT-III subunits via tandem MIT domains, and thereby, delays abscission in response to lagging chromosomes, nuclear pore defects, and tension forces at the midbody. Our structural and biochemical studies reveal an unusually tight interaction between ULK3 and IST1, an ESCRT-III subunit required for abscission. We also demonstrate that IST1 phosphorylation by ULK3 is an essential signal required to sustain the abscission checkpoint and that ULK3 and CHMP4C are functionally linked components of the timer that controls abscission in multiple physiological situations.

  15. REGULATION OF ETHYLENE EVOLUTION AND LEAF ABSCISSION BY AUXIN

    DTIC Science & Technology

    It is shown that auxin enhanced ethylene evolution occurs in a variety of plant material, and that ethylene evolution can be constrolled by...endogenous as well as exogenous levels of auxin . The importance of auxin regulated ethylene evolution on a physiological process is demonstrated by investigating the abscission of bean petiole explants.

  16. Cloning and molecular characterization of an ethylene receptor gene, MiERS1, expressed during mango fruitlet abscission and fruit ripening.

    PubMed

    Ish-Shalom, Mazal; Dahan, Yardena; Maayan, Inbar; Irihimovitch, Vered

    2011-08-01

    We isolated and characterized a mango (Mangifera indica L.) cDNA homolog of the ethylene receptor gene ERS1, designated MiERS1. Genomic Southern blot analysis suggested the existence of a second gene with homology to MiERS1. Spatial and temporal expression patterns of MiERS1 were first studied during fruitlet drop and compared with those of a previously identified MiETR1 gene that encodes an ETR1-type ethylene receptor. Experiments were conducted on developing fruitlet explants in which fruitlet abscission was induced by ethephon treatment. Northern analysis revealed a notable increase in MiERS1 mRNA levels in the fruitlet's activated abscission zone within 24 h of ethephon application, followed by a decreasing pattern 48 h post-treatment. A transient, albeit lesser, increase in MiERS1 mRNA levels was also observed in treated fruitlet seed and mesocarp tissues. In contrast, in the abscission zone, accumulation of MiETR1 transcript remained unchanged; a temporal increase in MiETR1 transcript level was observed in the fruitlet mesocarp, whereas in the seed, MiETR1 expression had already dropped by 24 h. Expression profiles of MiERS1 and MiETR1 were then studied during fruit ripening. In agreement with a previous study and coinciding with the climacteric rise in ethylene production, RNA blot analysis revealed that during fruit ripening, MiETR1 mRNA level increases in both mesocarp and seed tissues. Unexpectedly, however, in those same tissues, MiERS1 transcript accumulation was barely detected. Collectively, our data highlight MiERS1's possible specific function in regulating fruitlet abscission rather than fruit ripening.

  17. Abscission is regulated by the ESCRT-III protein shrub in Drosophila germline stem cells.

    PubMed

    Matias, Neuza Reis; Mathieu, Juliette; Huynh, Jean-René

    2015-02-01

    Abscission is the final event of cytokinesis that leads to the physical separation of the two daughter cells. Recent technical advances have allowed a better understanding of the cellular and molecular events leading to abscission in isolated yeast or mammalian cells. However, how abscission is regulated in different cell types or in a developing organism remains poorly understood. Here, we characterized the function of the ESCRT-III protein Shrub during cytokinesis in germ cells undergoing a series of complete and incomplete divisions. We found that Shrub is required for complete abscission, and that levels of Shrub are critical for proper timing of abscission. Loss or gain of Shrub delays abscission in germline stem cells (GSCs), and leads to the formation of stem-cysts, where daughter cells share the same cytoplasm as the mother stem cell and cannot differentiate. In addition, our results indicate a negative regulation of Shrub by the Aurora B kinase during GSC abscission. Finally, we found that Lethal giant discs (lgd), known to be required for Shrub function in the endosomal pathway, also regulates the duration of abscission in GSCs.

  18. Natural Variation in Fruit Abscission-Related Traits in Apple (Malus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abscission or retention of ripening fruit is a major component of seed dispersal strategies and also has important implications for horticultural production. Abscission-related traits have generally not been targeted in breeding efforts, and their genetic bases remain mostly unknown. We evaluated ...

  19. ATR and a Chk1-Aurora B pathway coordinate postmitotic genome surveillance with cytokinetic abscission

    PubMed Central

    Mackay, Douglas R.; Ullman, Katharine S.

    2015-01-01

    Aurora B regulates cytokinesis timing and plays a central role in the abscission checkpoint. Cellular events monitored by this checkpoint are beginning to be elucidated, yet signaling pathways upstream of Aurora B in this context remain poorly understood. Here we reveal a new connection between postmitotic genome surveillance and cytokinetic abscission. Underreplicated DNA lesions are known to be transmitted through mitosis and protected in newly formed nuclei by recruitment of 53BP1 and other proteins until repair takes place. We find that this genome surveillance initiates before completion of cytokinesis. Elevating replication stress increases this postmitotic process and delays cytokinetic abscission by keeping the abscission checkpoint active. We further find that ATR activity in midbody-stage cells links postmitotic genome surveillance to abscission timing and that Chk1 integrates this and other signals upstream of Aurora B to regulate when the final step in the physical separation of daughter cells occurs. PMID:25904336

  20. Eph-mediated tyrosine phosphorylation of citron kinase controls abscission

    PubMed Central

    Jungas, Thomas; Perchey, Renaud T.; Fawal, Mohamad; Callot, Caroline; Froment, Carine; Burlet-Schiltz, Odile; Besson, Arnaud

    2016-01-01

    Cytokinesis is the last step of cell division, culminating in the physical separation of daughter cells at the end of mitosis. Cytokinesis is a tightly regulated process that until recently was mostly viewed as a cell-autonomous event. Here, we investigated the role of Ephrin/Eph signaling, a well-known local cell-to-cell communication pathway, in cell division. We show that activation of Eph signaling in vitro leads to multinucleation and polyploidy, and we demonstrate that this is caused by alteration of the ultimate step of cytokinesis, abscission. Control of abscission requires Eph kinase activity, and Src and citron kinase (CitK) are downstream effectors in the Eph-induced signal transduction cascade. CitK is phosphorylated on tyrosines in neural progenitors in vivo, and Src kinase directly phosphorylates CitK. We have identified the specific tyrosine residues of CitK that are phosphorylated and show that tyrosine phosphorylation of CitK impairs cytokinesis. Finally, we show that, similar to CitK, Ephrin/Eph signaling controls neuronal ploidy in the developing neocortex. Our study indicates that CitK integrates intracellular and extracellular signals provided by the local environment to coordinate completion of cytokinesis. PMID:27551053

  1. Cross-talk between environmental stresses and plant metabolism during reproductive organ abscission

    PubMed Central

    Sawicki, Mélodie; Aït Barka, Essaïd; Clément, Christophe; Vaillant-Gaveau, Nathalie; Jacquard, Cédric

    2015-01-01

    In plants, flowering is a crucial process for reproductive success and continuity of the species through time. Fruit production requires the perfect development of reproductive structures. Abscission, a natural process, can occur to facilitate shedding of no longer needed, infected, or damaged organs. If stress occurs during flower development, abscission can intervene at flower level, leading to reduced yield. Flower abscission is a highly regulated developmental process simultaneously influenced and activated in response to exogenous (changing environmental conditions, interactions with microorganisms) and endogenous (physiological modifications) stimuli. During climate change, plant communities will be more susceptible to environmental stresses, leading to increased flower and fruit abscission, and consequently a decrease in fruit yield. Understanding the impacts of stress on the reproductive phase is therefore critical for managing future agricultural productivity. Here, current knowledge on flower/fruit abscission is summarized by focusing specifically on effects of environmental stresses leading to this process in woody plants. Many of these stresses impair hormonal balance and/or carbohydrate metabolism, but the exact mechanisms are far from completely known. Hormones are the abscission effectors and the auxin/ethylene balance is of particular importance. The carbohydrate pathway is the result of complex regulatory processes involving the balance between photosynthesis and mobilization of reserves. Hormones and carbohydrates together participate in complex signal transduction systems, especially in response to stress. The available data are discussed in relation to reproductive organ development and the process of abscission. PMID:25711702

  2. ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins

    PubMed Central

    Caballe, Anna; Wenzel, Dawn M; Agromayor, Monica; Alam, Steven L; Skalicky, Jack J; Kloc, Magdalena; Carlton, Jeremy G; Labrador, Leticia; Sundquist, Wesley I; Martin-Serrano, Juan

    2015-01-01

    The endosomal sorting complexes required for transport (ESCRT) machinery mediates the physical separation between daughter cells during cytokinetic abscission. This process is regulated by the abscission checkpoint, a genome protection mechanism that relies on Aurora B and the ESCRT-III subunit CHMP4C to delay abscission in response to chromosome missegregation. In this study, we show that Unc-51-like kinase 3 (ULK3) phosphorylates and binds ESCRT-III subunits via tandem MIT domains, and thereby, delays abscission in response to lagging chromosomes, nuclear pore defects, and tension forces at the midbody. Our structural and biochemical studies reveal an unusually tight interaction between ULK3 and IST1, an ESCRT-III subunit required for abscission. We also demonstrate that IST1 phosphorylation by ULK3 is an essential signal required to sustain the abscission checkpoint and that ULK3 and CHMP4C are functionally linked components of the timer that controls abscission in multiple physiological situations. DOI: http://dx.doi.org/10.7554/eLife.06547.001 PMID:26011858

  3. Inhibition of ESCRT-II-CHMP6 interactions impedes cytokinetic abscission and leads to cell death.

    PubMed

    Goliand, Inna; Nachmias, Dikla; Gershony, Ofir; Elia, Natalie

    2014-11-15

    Recently the ESCRT-III filamentous complex was designated as the driving force for mammalian cell abscission, that is, fission of the intercellular membrane bridge connecting daughter cells at the end of cytokinesis. However, how ESCRT-III is activated to set on abscission has not been resolved. Here we revisit the role of the upstream canonical ESCRT players ESCRT-II and CHMP6 in abscission. Using high-resolution imaging, we show that these proteins form highly ordered structures at the intercellular bridge during abscission progression. Furthermore, we demonstrate that a truncated version of CHMP6, composed of its first 52 amino acids (CHMP6-N), arrives at the intercellular bridge, blocks abscission, and subsequently leads to cell death. This phenotype is abolished in a mutated version of CHMP6-N designed to prevent CHMP6-N binding to its ESCRT-II partner. Of interest, deleting the first 10 amino acids from CHMP6-N does not interfere with its arrival at the intercellular bridge but almost completely abolishes the abscission failure phenotype. Taken together, these data suggest an active role for ESCRT-II and CHMP6 in ESCRT-mediated abscission. Our work advances the mechanistic understanding of ESCRT-mediated membrane fission in cells and introduces an easily applicable tool for upstream inhibition of the ESCRT pathway in live mammalian cells.

  4. Relationship between petal abscission and programmed cell death in Prunus yedoensis and Delphinium belladonna

    PubMed Central

    Yamada, Tetsuya; Ichimura, Kazuo

    2007-01-01

    Depending on the species, the end of flower life span is characterized by petal wilting or by abscission of petals that are still fully turgid. Wilting at the end of petal life is due to programmed cell death (PCD). It is not known whether the abscission of turgid petals is preceded by PCD. We studied some parameters that indicate PCD: chromatin condensation, a decrease in nuclear diameter, DNA fragmentation, and DNA content per nucleus, using Prunus yedoensis and Delphiniumbelladonna which both show abscission of turgid petals at the end of floral life. No DNA degradation, no chromatin condensation, and no change in nuclear volume was observed in P. yedoensis petals, prior to abscission. In abscising D.belladonna petals, in contrast, considerable DNA degradation was found, chromatin was condensed and the nuclear volume considerably reduced. Following abscission, the nuclear area in both species drastically increased, and the chromatin became unevenly distributed. Similar chromatin changes were observed after dehydration (24 h at 60°C) of petals severed at the time of flower opening, and in dehydrated petals of Ipomoea nil and Petunia hybrida, severed at the time of flower opening. In these flowers the petal life span is terminated by wilting rather than abscission. It is concluded that the abscission of turgid petals in D. belladonna was preceded by a number of PCD indicators, whereas no such evidence for PCD was found at the time of P. yedoensis petal abscission. Dehydration of the petal cells, after abscission, was associated with a remarkable nuclear morphology which was also found in younger petals subjected to dehydration. This nuclear morphology has apparently not been described previously, for any organism. PMID:17618454

  5. Relationship between petal abscission and programmed cell death in Prunus yedoensis and Delphinium belladonna.

    PubMed

    Yamada, Tetsuya; Ichimura, Kazuo; van Doorn, Wouter G

    2007-10-01

    Depending on the species, the end of flower life span is characterized by petal wilting or by abscission of petals that are still fully turgid. Wilting at the end of petal life is due to programmed cell death (PCD). It is not known whether the abscission of turgid petals is preceded by PCD. We studied some parameters that indicate PCD: chromatin condensation, a decrease in nuclear diameter, DNA fragmentation, and DNA content per nucleus, using Prunus yedoensis and Delphinium belladonna which both show abscission of turgid petals at the end of floral life. No DNA degradation, no chromatin condensation, and no change in nuclear volume was observed in P. yedoensis petals, prior to abscission. In abscising D. belladonna petals, in contrast, considerable DNA degradation was found, chromatin was condensed and the nuclear volume considerably reduced. Following abscission, the nuclear area in both species drastically increased, and the chromatin became unevenly distributed. Similar chromatin changes were observed after dehydration (24 h at 60 degrees C) of petals severed at the time of flower opening, and in dehydrated petals of Ipomoea nil and Petunia hybrida, severed at the time of flower opening. In these flowers the petal life span is terminated by wilting rather than abscission. It is concluded that the abscission of turgid petals in D. belladonna was preceded by a number of PCD indicators, whereas no such evidence for PCD was found at the time of P. yedoensis petal abscission. Dehydration of the petal cells, after abscission, was associated with a remarkable nuclear morphology which was also found in younger petals subjected to dehydration. This nuclear morphology has apparently not been described previously, for any organism.

  6. ESCRT-III assembly and cytokinetic abscission are induced by tension release in the intercellular bridge.

    PubMed

    Lafaurie-Janvore, Julie; Maiuri, Paolo; Wang, Irène; Pinot, Mathieu; Manneville, Jean-Baptiste; Betz, Timo; Balland, Martial; Piel, Matthieu

    2013-03-29

    The last step of cell division, cytokinesis, produces two daughter cells that remain connected by an intercellular bridge. This state often represents the longest stage of the division process. Severing the bridge (abscission) requires a well-described series of molecular events, but the trigger for abscission remains unknown. We found that pulling forces exerted by daughter cells on the intercellular bridge appear to regulate abscission. Counterintuitively, these forces prolonged connection, whereas a release of tension induced abscission. Tension release triggered the assembly of ESCRT-III (endosomal sorting complex required for transport-III), which was followed by membrane fission. This mechanism may allow daughter cells to remain connected until they have settled in their final locations, a process potentially important for tissue organization and morphogenesis.

  7. Allele-Specific Interactions between CAST AWAY and NEVERSHED Control Abscission in Arabidopsis Flowers.

    PubMed

    Groner, William D; Christy, Megan E; Kreiner, Catherine M; Liljegren, Sarah J

    2016-01-01

    An advantage of analyzing abscission in genetically tractable model plants is the ability to make use of classic genetic tools such as suppression analysis. We have investigated the regulation of organ abscission by carrying out suppression analysis in Arabidopsis flowers. Plants carrying mutations in the NEVERSHED (NEV) gene, which encodes an ADP-ribosylation factor GTPase-activating protein, retain their outer floral organs after fertilization. Mutant alleles of CAST AWAY (CST), which encodes a receptor-like cytoplasmic kinase, were found to restore organ abscission in nev flowers in an allele-specific manner. To further explore the basis of the interactions between CST and NEV, we tested whether the site of a nev mutation is predictive of its ability to be suppressed. Our results suggest instead that the strength of a nev allele influences whether organ abscission can be rescued by a specific allele of CST.

  8. Chlamydial infection induces host cytokinesis failure at abscission.

    PubMed

    Brown, Heather M; Knowlton, Andrea E; Grieshaber, Scott S

    2012-10-01

    Chlamydia trachomatis is an obligate intracellular bacteria and the infectious agent responsible for the sexually transmitted disease Chlamydia. Infection with Chlamydia can lead to serious health sequelae such as pelvic inflammatory disease and reproductive tract scarring contributing to infertility and ectopic pregnancies. Additionally, chlamydial infections have been epidemiologically linked to cervical cancer in patients with a prior human papilomavirus (HPV) infection. Chlamydial infection of cultured cells causes multinucleation, a potential pathway for chromosomal instability. Two mechanisms that are known to initiate multinucleation are cell fusion and cytokinesis failure. This study demonstrates that multinucleation of the host cell by Chlamydia is entirely due to cytokinesis failure. Moreover, cytokinesis failure is due in part to the chlamydial effector CPAF acting as an anaphase promoting complex mimic causing cells to exit mitosis with unaligned and unattached chromosomes. These lagging and missegregated chromosomes inhibit cytokinesis by blocking abscission, the final stage of cytokinesis.

  9. Chlamydial Infection Induces Host Cytokinesis Failure at Abscission

    PubMed Central

    Brown, Heather M.; Knowlton, Andrea E.; Grieshaber, Scott S.

    2012-01-01

    Chlamydia trachomatis is an obligate intracellular bacteria and the infectious agent responsible for the sexually transmitted disease Chlamydia. Infection with Chlamydia can lead to serious health sequelae such as pelvic inflammatory disease and reproductive tract scarring contributing to infertility and ectopic pregnancies. Additionally, chlamydial infections have been epidemiologically linked to cervical cancer in patients with a prior human papilomavirus (HPV) infection. Chlamydial infection of cultured cells causes multinucleation, a potential pathway for chromosomal instability. Two mechanisms that are known to initiate multinucleation are cell fusion and cytokinesis failure. This study demonstrates that multinucleation of the host cell by Chlamydia is entirely due to cytokinesis failure. Moreover, cytokinesis failure is due in part to the chlamydial effector CPAF acting as an anaphase promoting complex mimic causing cells to exit mitosis with unaligned and unattached chromosomes. These lagging and missegregated chromosomes inhibit cytokinesis by blocking abscission, the final stage of cytokinesis. PMID:22646503

  10. Abscissic acid localization by light microscopic immunohistochemistry in Chenopodium polyspermum L. Effect of water stress.

    PubMed

    Sotta, B; Sossountzov, L; Maldiney, R; Sabbagh, I; Tachon, P; Miginiac, E

    1985-03-01

    An indirect immunohistochemical technique was developed using a rabbit anti-abscissic acid (ABA) serum and the soluble peroxidase-antiperoxidase (PAP) complex for the localization of endogenous ABA in the aerial parts of Chenopodium. Terminal bud, axillary bud bearing nodes, and adult leaves were prefixed by a soluble carbodiimide to obtain the coupling of ABA on cellular proteins and postfixed by a conventional mixture of aldehydes. They were then embedded in paraffin or in plastic. Numerous controls were carried out on sections and on a model system to test the validity of the technique. Based on the staining patterns observed along the plant, an apico-basal gradient of ABA was revealed. In the older buds, ABA was mainly concentrated in the quiescent meristematic cells of the apex. Phloem cells of the main axis and chloroplasts of the leaves were specifically labeled. No reaction product was visualized in the parenchyma cells or in the cambial zone. Water stress, which is known to increase ABA content, induced an increase of immunoreactivity within the same compartments. This physiological test validates the stain.

  11. Transcriptomics of shading-induced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk

    PubMed Central

    2011-01-01

    Background Naphthaleneacetic acid (NAA), a synthetic auxin analogue, is widely used as an effective thinner in apple orchards. When applied shortly after fruit set, some fruit abscise leading to improved fruit size and quality. However, the thinning results of NAA are inconsistent and difficult to predict, sometimes leading to excess fruit drop or insufficient thinning which are costly to growers. This unpredictability reflects our incomplete understanding of the mode of action of NAA in promoting fruit abscission. Results Here we compared NAA-induced fruit drop with that caused by shading via gene expression profiling performed on the fruit abscission zone (FAZ), sampled 1, 3, and 5 d after treatment. More than 700 genes with significant changes in transcript abundance were identified from NAA-treated FAZ. Combining results from both treatments, we found that genes associated with photosynthesis, cell cycle and membrane/cellular trafficking were downregulated. On the other hand, there was up-regulation of genes related to ABA, ethylene biosynthesis and signaling, cell wall degradation and programmed cell death. While the differentially expressed gene sets for NAA and shading treatments shared only 25% identity, NAA and shading showed substantial similarity with respect to the classes of genes identified. Specifically, photosynthesis, carbon utilization, ABA and ethylene pathways were affected in both NAA- and shading-induced young fruit abscission. Moreover, we found that NAA, similar to shading, directly interfered with leaf photosynthesis by repressing photosystem II (PSII) efficiency within 10 minutes of treatment, suggesting that NAA and shading induced some of the same early responses due to reduced photosynthesis, which concurred with changes in hormone signaling pathways and triggered fruit abscission. Conclusions This study provides an extensive transcriptome study and a good platform for further investigation of possible regulatory genes involved in the

  12. Greening America's Capitals - Phoenix, AZ

    EPA Pesticide Factsheets

    This report shows design concepts to make pedestrians and bicyclists safer while maintaining on-street parking and providing space for a future streetcar or trolley in Phoenix, AZ. It also shows green infrastructure strategies for arid places.

  13. ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission.

    PubMed

    Christ, Liliane; Wenzel, Eva M; Liestøl, Knut; Raiborg, Camilla; Campsteijn, Coen; Stenmark, Harald

    2016-02-29

    Cytokinetic abscission, the final stage of cell division where the two daughter cells are separated, is mediated by the endosomal sorting complex required for transport (ESCRT) machinery. The ESCRT-III subunit CHMP4B is a key effector in abscission, whereas its paralogue, CHMP4C, is a component in the abscission checkpoint that delays abscission until chromatin is cleared from the intercellular bridge. How recruitment of these components is mediated during cytokinesis remains poorly understood, although the ESCRT-binding protein ALIX has been implicated. Here, we show that ESCRT-II and the ESCRT-II-binding ESCRT-III subunit CHMP6 cooperate with ESCRT-I to recruit CHMP4B, with ALIX providing a parallel recruitment arm. In contrast to CHMP4B, we find that recruitment of CHMP4C relies predominantly on ALIX. Accordingly, ALIX depletion leads to furrow regression in cells with chromosome bridges, a phenotype associated with abscission checkpoint signaling failure. Collectively, our work reveals a two-pronged recruitment of ESCRT-III to the cytokinetic bridge and implicates ALIX in abscission checkpoint signaling.

  14. ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission

    PubMed Central

    Christ, Liliane; Wenzel, Eva M.; Liestøl, Knut; Raiborg, Camilla

    2016-01-01

    Cytokinetic abscission, the final stage of cell division where the two daughter cells are separated, is mediated by the endosomal sorting complex required for transport (ESCRT) machinery. The ESCRT-III subunit CHMP4B is a key effector in abscission, whereas its paralogue, CHMP4C, is a component in the abscission checkpoint that delays abscission until chromatin is cleared from the intercellular bridge. How recruitment of these components is mediated during cytokinesis remains poorly understood, although the ESCRT-binding protein ALIX has been implicated. Here, we show that ESCRT-II and the ESCRT-II–binding ESCRT-III subunit CHMP6 cooperate with ESCRT-I to recruit CHMP4B, with ALIX providing a parallel recruitment arm. In contrast to CHMP4B, we find that recruitment of CHMP4C relies predominantly on ALIX. Accordingly, ALIX depletion leads to furrow regression in cells with chromosome bridges, a phenotype associated with abscission checkpoint signaling failure. Collectively, our work reveals a two-pronged recruitment of ESCRT-III to the cytokinetic bridge and implicates ALIX in abscission checkpoint signaling. PMID:26929449

  15. Opposing Activities of Aurora B Kinase and B56-PP2A Phosphatase on MKlp2 Determine Abscission Timing.

    PubMed

    Fung, Suet Yin Sarah; Kitagawa, Mayumi; Liao, Pei-Ju; Wong, Jasmine; Lee, Sang Hyun

    2017-01-09

    After cleavage furrow ingression during cytokinesis, nascent daughter cells remain connected by an intercellular bridge (ICB) and the midbody [1, 2]. The midbody becomes an assembly platform for ESCRT complexes that split apart the plasma membrane (PM) anchored to the ICB and complete abscission, which is the final step of cell division [3-5]. Aurora B governs abscission by regulating its timing as a checkpoint [6-10]. However, the underlying mechanisms for this process remain unknown. Here, we reveal the mechanism controlling abscission through integration of Aurora B kinase and B56-bound PP2A phosphatase activities on the kinesin motor protein MKlp2. We identify MKlp2 as an essential protein for promoting abscission, which may regulate tethering and stabilizing of the PM to the microtubule cytoskeleton at the ICB through its previously uncharacterized lipid association motif (LAM). MKlp2 recruits Aurora B to the ICB [11-15]. In turn, Aurora B phosphorylation of MKlp2 S878 in the LAM is a key inhibitory signal for abscission. Conversely, B56-PP2A promotes abscission by opposing Aurora B phosphorylation of MKlp2 S878. Strikingly, a phospho-resistant MKlp2 S878A mutant overcomes Aurora-B-mediated abscission blockade. Thus, abscission is determined by the balance of Aurora B and B56-PP2A activities on MKlp2 S878 within the LAM. Together, these findings establish a key mechanism for Aurora B regulation of abscission in mammalian cells.

  16. Implications of nonrandom seed abscission and global stilling for migration of wind-dispersed plant species.

    PubMed

    Thompson, Sally E; Katul, Gabriel G

    2013-06-01

    Migration of plant populations is a potential survival response to climate change that depends critically on seed dispersal. Biological and physical factors determine dispersal and migration of wind-dispersed species. Recent field and wind tunnel studies demonstrate biological adaptations that bias seed release toward conditions of higher wind velocity, promoting longer dispersal distances and faster migration. However, another suite of international studies also recently highlighted a global decrease in near-surface wind speeds, or 'global stilling'. This study assessed the implications of both factors on potential plant population migration rates, using a mechanistic modeling framework. Nonrandom abscission was investigated using models of three seed release mechanisms: (i) a simple drag model; (ii) a seed deflection model; and (iii) a 'wear and tear' model. The models generated a single functional relationship between the frequency of seed release and statistics of the near-surface wind environment, independent of the abscission mechanism. An Inertial-Particle, Coupled Eulerian-Lagrangian Closure model (IP-CELC) was used to investigate abscission effects on seed dispersal kernels and plant population migration rates under contemporary and potential future wind conditions (based on reported global stilling trends). The results confirm that nonrandom seed abscission increased dispersal distances, particularly for light seeds. The increases were mitigated by two physical feedbacks: (i) although nonrandom abscission increased the initial acceleration of seeds from rest, the sensitivity of the seed dispersal to this initial condition declined as the wind speed increased; and (ii) while nonrandom abscission increased the mean dispersal length, it reduced the kurtosis of seasonal dispersal kernels, and thus the chance of long-distance dispersal. Wind stilling greatly reduced the modeled migration rates under biased seed release conditions. Thus, species that require

  17. New Clothes for the Jasmonic Acid Receptor COI1: Delayed Abscission, Meristem Arrest and Apical Dominance

    PubMed Central

    Kim, Joonyup; Dotson, Bradley; Rey, Camila; Lindsey, Joshua; Bleecker, Anthony B.; Binder, Brad M.; Patterson, Sara E.

    2013-01-01

    In a screen for delayed floral organ abscission in Arabidopsis, we have identified a novel mutant of CORONATINE INSENSITIVE 1 (COI1), the F-box protein that has been shown to be the jasmonic acid (JA) co-receptor. While JA has been shown to have an important role in senescence, root development, pollen dehiscence and defense responses, there has been little focus on its critical role in floral organ abscission. Abscission, or the detachment of organs from the main body of a plant, is an essential process during plant development and a unique type of cell separation regulated by endogenous and exogenous signals. Previous studies have indicated that auxin and ethylene are major plant hormones regulating abscission; and here we show that regulation of floral organ abscission is also controlled by jasmonic acid in Arabidopsis thaliana. Our characterization of coi1-1 and a novel allele (coi1-37) has also revealed an essential role in apical dominance and floral meristem arrest. In this study we provide genetic evidence indicating that delayed abscission 4 (dab4-1) is allelic to coi1-1 and that meristem arrest and apical dominance appear to be evolutionarily divergent functions for COI1 that are governed in an ecotype-dependent manner. Further characterizations of ethylene and JA responses of dab4-1/coi1-37 also provide new information suggesting separate pathways for ethylene and JA that control both floral organ abscission and hypocotyl growth in young seedlings. Our study opens the door revealing new roles for JA and its interaction with other hormones during plant development. PMID:23573263

  18. Post-pruning shoot growth increases fruit abscission and reduces stem carbohydrates and yield in macadamia

    PubMed Central

    McFadyen, Lisa M.; Robertson, David; Sedgley, Margaret; Kristiansen, Paul; Olesen, Trevor

    2011-01-01

    Background and Aims There is good evidence for deciduous trees that competition for carbohydrates from shoot growth accentuates early fruit abscission and reduces yield but the effect for evergreen trees is not well defined. Here, whole-tree tip-pruning at anthesis is used to examine the effect of post-pruning shoot development on fruit abscission in the evergreen subtropical tree macadamia (Macadamia integrifolia, M. integrifolia × tetraphylla). Partial-tree tip-pruning is also used to test the localization of the effect. Methods In the first experiment (2005/2006), all branches on trees were tip-pruned at anthesis, some trees were allowed to re-shoot (R treatment) and shoots were removed from others (NR treatment). Fruit set and stem total non-structural carbohydrates (TNSC) over time, and yield were measured. In the second experiment (2006/2007), upper branches of trees were tip-pruned at anthesis, some trees were allowed to re-shoot (R) and shoots were removed from others (NR). Fruit set and yield were measured separately for upper (pruned) and lower (unpruned) branches. Key Results In the first experiment, R trees set far fewer fruit and had lower yield than NR trees. TNSC fell and rose in all treatments but the decline in R trees occurred earlier than in NR trees and coincided with early shoot growth and the increase in fruit abscission relative to the other treatments. In the second experiment, fruit abscission on upper branches of R trees increased relative to the other treatments but there was little difference in fruit abscission between treatments on lower branches. Conclusions This study is the first to demonstrate an increase in fruit abscission in an evergreen tree in response to pruning. The effect appeared to be related to competition for carbohydrates between post-pruning shoot growth and fruit development and was local, with shoot growth on pruned branches having no effect on fruit abscission on unpruned branches. PMID:21325025

  19. Ethylene: role in fruit abscission and dehiscence processes.

    PubMed

    Lipe, J A; Morgan, P W

    1972-12-01

    Two peaks of ethylene production occur during the development of cotton fruitz (Gossypium hirsutum L.). These periods precede the occurrence of young fruit shedding and mature fruit dehiscence, both of which are abscission phenomena and the latter is generally assumed to be part of the total ripening process. Detailed study of the dehiscence process revealed that ethylene production of individual, attached cotton fruits goes through a rising, cyclic pattern which reaches a maximum prior to dehiscence. With detached pecan fruits (Carya illinoensis [Wang.] K. Koch), ethylene production measured on alternate days rose above 1 microliter per kilogram fresh weight per hour before dehiscence began and reached a peak several days prior to complete dehiscence. Ethylene production by cotton and pecan fruits was measured just prior to dehiscence and then the internal concentration of the gas near the center of the fruit was determined. From these data a ratio of production rate to internal concentration was determined which allowed calculation of the approximate ethylene concentration in the intact fruit prior to dehiscence and selection of appropriate levels to apply to fruits. Ethylene at 10 microliters per liter of air appears to saturate dehiscence of cotton, pecan, and okra (Hibiscus esculentus L.) fruits and the process is completed in 3 to 4 days. In all cases some hastening of dehiscence was observed with as little as 0.1 microliter of exogenous ethylene per liter of air. The time required for response to different levels of ethylene was determined and compared to the time course of ethylene production and dehiscence. We concluded that internal levels of ethylene rose to dehiscence-stimulating levels a sufficience time before dehiscence for the gas to have initiated the process. Since our data and calculations indicate that enough ethylene is made a sufficient time before dehiscence, to account for the process, we propose that ethylene is one of the regulators of

  20. Ethylene: Role in Fruit Abscission and Dehiscence Processes 12

    PubMed Central

    Lipe, John A.; Morgan, Page W.

    1972-01-01

    Two peaks of ethylene production occur during the development of cotton fruitz (Gossypium hirsutum L.). These periods precede the occurrence of young fruit shedding and mature fruit dehiscence, both of which are abscission phenomena and the latter is generally assumed to be part of the total ripening process. Detailed study of the dehiscence process revealed that ethylene production of individual, attached cotton fruits goes through a rising, cyclic pattern which reaches a maximum prior to dehiscence. With detached pecan fruits (Carya illinoensis [Wang.] K. Koch), ethylene production measured on alternate days rose above 1 microliter per kilogram fresh weight per hour before dehiscence began and reached a peak several days prior to complete dehiscence. Ethylene production by cotton and pecan fruits was measured just prior to dehiscence and then the internal concentration of the gas near the center of the fruit was determined. From these data a ratio of production rate to internal concentration was determined which allowed calculation of the approximate ethylene concentration in the intact fruit prior to dehiscence and selection of appropriate levels to apply to fruits. Ethylene at 10 microliters per liter of air appears to saturate dehiscence of cotton, pecan, and okra (Hibiscus esculentus L.) fruits and the process is completed in 3 to 4 days. In all cases some hastening of dehiscence was observed with as little as 0.1 microliter of exogenous ethylene per liter of air. The time required for response to different levels of ethylene was determined and compared to the time course of ethylene production and dehiscence. We concluded that internal levels of ethylene rose to dehiscence-stimulating levels a sufficience time before dehiscence for the gas to have initiated the process. Since our data and calculations indicate that enough ethylene is made a sufficient time before dehiscence, to account for the process, we propose that ethylene is one of the regulators of

  1. Synaptic Vesicle Proteins and Active Zone Plasticity

    PubMed Central

    Kittel, Robert J.; Heckmann, Manfred

    2016-01-01

    Neurotransmitter is released from synaptic vesicles at the highly specialized presynaptic active zone (AZ). The complex molecular architecture of AZs mediates the speed, precision and plasticity of synaptic transmission. Importantly, structural and functional properties of AZs vary significantly, even for a given connection. Thus, there appear to be distinct AZ states, which fundamentally influence neuronal communication by controlling the positioning and release of synaptic vesicles. Vice versa, recent evidence has revealed that synaptic vesicle components also modulate organizational states of the AZ. The protein-rich cytomatrix at the active zone (CAZ) provides a structural platform for molecular interactions guiding vesicle exocytosis. Studies in Drosophila have now demonstrated that the vesicle proteins Synaptotagmin-1 (Syt1) and Rab3 also regulate glutamate release by shaping differentiation of the CAZ ultrastructure. We review these unexpected findings and discuss mechanistic interpretations of the reciprocal relationship between synaptic vesicles and AZ states, which has heretofore received little attention. PMID:27148040

  2. Computational model of cytokinetic abscission driven by ESCRT-III polymerization and remodeling.

    PubMed

    Elia, Natalie; Fabrikant, Gur; Kozlov, Michael M; Lippincott-Schwartz, Jennifer

    2012-05-16

    The endosomal sorting complex required for transport (ESCRT)-III complex, capable of polymerization and remodeling, participates in abscission of the intercellular membrane bridge connecting two daughter cells at the end of cytokinesis. Here, we integrate quantitative imaging of ESCRT-III during cytokinetic abscission with biophysical properties of ESCRT-III complexes to formulate and test a computational model for ESCRT-mediated cytokinetic abscission. We propose that cytokinetic abscission is driven by an ESCRT-III fission complex, which arises from ESCRT-III polymerization at the edge of the cytokinetic midbody structure, located at the center of the intercellular bridge. Formation of the fission complex is completed by remodeling and breakage of the ESCRT-III polymer assisted by VPS4. Subsequent spontaneous constriction of the fission complex generates bending deformation of the intercellular bridge membrane. The related membrane elastic force propels the fission complex along the intercellular bridge away from the midbody until it reaches an equilibrium position, determining the scission site. Membrane attachment to the dome-like end-cap of the fission complex drives membrane fission, completing the abscission process. We substantiate the model by theoretical analysis of the membrane elastic energy and by experimental verification of the major model assumptions.

  3. Involvement of Abscisic Acid in Ethylene-Induced Cotyledon Abscission in Cotton Seedlings.

    PubMed Central

    Suttle, J. C.; Hultstrand, J. F.

    1993-01-01

    Cotton (Gossypium hirsutum L. cv LG102) seedlings raised from seeds exposed to 100 [mu]M norflurazon (NFZ) during imbibition contained reduced levels of free abscisic acid (ABA) and were visibly achlorophyllous. Exposure of untreated cotton seedlings to ethylene concentrations >1 [mu]L/L for 24 h resulted in cotyledon abscission. In contrast, exposure of NFZ-treated seedlings to concentrations of ethylene [less than or equal to]50 [mu]L/L elicited no cotyledon abscission. Application of ABA, an ABA analog, or jasmonic acid to NFZ-treated seedlings restored ethylene-induced abscission. Isolated cotyledonary node explants prepared from NFZ-treated seedlings exhibited an altered dose-response pattern of ethylene-induced petiole abscission. Endogenous levels of free IAA were unaltered in NFZ-treated seedlings. Ethylene treatment (50 [mu]L/L, 24 h) had no effect on free indoleacetic acid (IAA) levels in either control or NFZ-treated seedlings. Levels of conjugated (ester plus amide) IAA were substantially increased in NFZ-treated seedlings regardless of ethylene treatment. These results indicate that endogenous ABA plays an essential, but physiologically undefined, role in ethylene-induced cotyledon abscission in cotton. PMID:12231720

  4. Control of Abscission in Agricultural Crops and Its Physiological Basis 1

    PubMed Central

    Cooper, W. C.; Rasmussen, G. K.; Rogers, B. J.; Reece, P. C.; Henry, W. H.

    1968-01-01

    Some naphthalene and phenoxy compounds prevent preharvest drop of apples, pears, and citrus fruits. These studies have been complicated by an unrecognized high level of ethylene produced by leaves and fruit on trees sprayed with these growth regulators. An apparent contradiction is the effectiveness of both 2,4-dichlorophenoxyacetic acid and n-dimethylaminosuccinamic acid (a growth retardant which retards biosynthesis of auxin) in preventing abscission of apples. Thus, in the presence of low auxin concentrations in the tissue, this growth retardant prevents fruit abscission even more effectively than 2,4-dichlorophenoxyacetic acid at high auxin concentrations in the tissue. This anomaly is clarified on the basis that n-dimethylaminosuccinamic acid, in the presence of a known low ethylene biosynthesis, delays maturity of the fruit and thus prevents fruit abscission. On the other hand, 2,4-dichlorophenoxyacetic acid prevents abscission by direct growth hormone action, in spite of the side effects of ethylene production which speeds ripening of the fruit. With the promotion of abscission of leaves and fruit of agricultural crops, attention is given to the use of chemicals which induce ethylene production when applied to the plant, but which have no growth promotion effect to retard abscission. We can distinguish 5 kinds of such chemicals. One group includes gibberellic and abscisic acids that induce treated leaves to produce ethylene and abscise (under certain circumstances). However, they do not induce ethylene production by fruit and do not promote fruit abscission. A second group includes ascorbic acid, which, when used at relatively high levels, induces fruit to produce enough ethylene to promote abscission. Ascorbic acid-treated leaves also produce ethylene but not enough to cause much defoliation. A third group includes protein-synthesis inhibitors, such as cycloheximide. When low concentrations (about 30 μmoles/l) are sprayed on the fruit, the rapid effect of

  5. Timing is everything: early degradation of abscission layer is associated with increased seed shattering in U.S. weedy rice

    PubMed Central

    2011-01-01

    Background Seed shattering, or shedding, is an important fitness trait for wild and weedy grasses. U.S. weedy rice (Oryza sativa) is a highly shattering weed, thought to have evolved from non-shattering cultivated ancestors. All U.S. weedy rice individuals examined to date contain a mutation in the sh4 locus associated with loss of shattering during rice domestication. Weedy individuals also share the shattering trait with wild rice, but not the ancestral shattering mutation at sh4; thus, how weedy rice reacquired the shattering phenotype is unknown. To establish the morphological basis of the parallel evolution of seed shattering in weedy rice and wild, we examined the abscission layer at the flower-pedicel junction in weedy individuals in comparison with wild and cultivated relatives. Results Consistent with previous work, shattering wild rice individuals possess clear, defined abscission layers at flowering, whereas non-shattering cultivated rice individuals do not. Shattering weedy rice from two separately evolved populations in the U.S. (SH and BHA) show patterns of abscission layer formation and degradation distinct from wild rice. Prior to flowering, the abscission layer has formed in all weedy individuals and by flowering it is already degrading. In contrast, wild O. rufipogon abscission layers have been shown not to degrade until after flowering has occurred. Conclusions Seed shattering in weedy rice involves the formation and degradation of an abscission layer in the flower-pedicel junction, as in wild Oryza, but is a developmentally different process from shattering in wild rice. Weedy rice abscission layers appear to break down earlier than wild abscission layers. The timing of weedy abscission layer degradation suggests that unidentified regulatory genes may play a critical role in the reacquisition of shattering in weedy rice, and sheds light on the morphological basis of parallel evolution for shattering in weedy and wild rice. PMID:21235796

  6. Roles of Ethylene Production and Ethylene Receptor Expression in Regulating Apple Fruitlet Abscission1[OPEN

    PubMed Central

    Eccher, Giulia; Begheldo, Maura; Boschetti, Andrea; Ruperti, Benedetto; Botton, Alessandro

    2015-01-01

    Apple (Malus × domestica) is increasingly being considered an interesting model species for studying early fruit development, during which an extremely relevant phenomenon, fruitlet abscission, may occur as a response to both endogenous and/or exogenous cues. Several studies were carried out shedding light on the main physiological and molecular events leading to the selective release of lateral fruitlets within a corymb, either occurring naturally or as a result of a thinning treatment. Several studies pointed out a clear association between a rise of ethylene biosynthetic levels in the fruitlet and its tendency to abscise. A direct mechanistic link, however, has not yet been established between this gaseous hormone and the generation of the abscission signal within the fruit. In this work, the role of ethylene during the very early stages of abscission induction was investigated in fruitlet populations with different abscission potentials due either to the natural correlative inhibitions determining the so-called physiological fruit drop or to a well-tested thinning treatment performed with the cytokinin benzyladenine. A crucial role was ascribed to the ratio between the ethylene produced by the cortex and the expression of ethylene receptor genes in the seed. This ratio would determine the final probability to abscise. A working model has been proposed consistent with the differential distribution of four receptor transcripts within the seed, which resembles a spatially progressive cell-specific immune-like mechanism evolved by apple to protect the embryo from harmful ethylene. PMID:25888617

  7. Roles of Ethylene Production and Ethylene Receptor Expression in Regulating Apple Fruitlet Abscission.

    PubMed

    Eccher, Giulia; Begheldo, Maura; Boschetti, Andrea; Ruperti, Benedetto; Botton, Alessandro

    2015-09-01

    Apple (Malus × domestica) is increasingly being considered an interesting model species for studying early fruit development, during which an extremely relevant phenomenon, fruitlet abscission, may occur as a response to both endogenous and/or exogenous cues. Several studies were carried out shedding light on the main physiological and molecular events leading to the selective release of lateral fruitlets within a corymb, either occurring naturally or as a result of a thinning treatment. Several studies pointed out a clear association between a rise of ethylene biosynthetic levels in the fruitlet and its tendency to abscise. A direct mechanistic link, however, has not yet been established between this gaseous hormone and the generation of the abscission signal within the fruit. In this work, the role of ethylene during the very early stages of abscission induction was investigated in fruitlet populations with different abscission potentials due either to the natural correlative inhibitions determining the so-called physiological fruit drop or to a well-tested thinning treatment performed with the cytokinin benzyladenine. A crucial role was ascribed to the ratio between the ethylene produced by the cortex and the expression of ethylene receptor genes in the seed. This ratio would determine the final probability to abscise. A working model has been proposed consistent with the differential distribution of four receptor transcripts within the seed, which resembles a spatially progressive cell-specific immune-like mechanism evolved by apple to protect the embryo from harmful ethylene.

  8. Survival and arm abscission are linked to regional heterothermy in an intertidal sea star.

    PubMed

    Pincebourde, Sylvain; Sanford, Eric; Helmuth, Brian

    2013-06-15

    Body temperature is a more pertinent variable to physiological stress than ambient air temperature. Modeling and empirical studies on the impacts of climate change on ectotherms usually assume that body temperature within organisms is uniform. However, many ectotherms show significant within-body temperature heterogeneity. The relationship between regional heterothermy and the response of ectotherms to sublethal and lethal conditions remains underexplored. We quantified within-body thermal heterogeneity in an intertidal sea star (Pisaster ochraceus) during aerial exposure at low tide to examine the lethal and sublethal effects of temperatures of different body regions. In manipulative experiments, we measured the temperature of the arms and central disc, as well as survival and arm abscission under extreme aerial conditions. Survival was related strongly to central disc temperature. Arms were generally warmer than the central disc in individuals that survived aerial heating, but we found the reverse in those that died. When the central disc reached sublethal temperatures of 31-35°C, arms reached temperatures of 33-39°C, inducing arm abscission. The absolute temperature of individual arms was a poor predictor of arm abscission, but the arms lost were consistently the hottest at the within-individual scale. Therefore, the vital region of this sea star may remain below the lethal threshold under extreme conditions, possibly through water movement from the arms to the central disc and/or evaporative cooling, but at the cost of increased risk of arm abscission. Initiation of arm abscission seems to reflect a whole-organism response while death occurs as a result of stress acting directly on central disc tissues.

  9. Ethylene and flower longevity in Alstroemeria: relationship between tepal senescence, abscission and ethylene biosynthesis.

    PubMed

    Wagstaff, Carol; Chanasut, Usawadee; Harren, Frans J M; Laarhoven, Luc-Jan; Thomas, Brian; Rogers, Hilary J; Stead, Anthony D

    2005-03-01

    Senescence of floral organs is broadly divided into two groups: those that exhibit sensitivity to exogenous ethylene and those that do not. Endogenous ethylene production from the former group is via a well-characterized biochemical pathway and is either due to developmental or pollination-induced senescence. Many flowers from the order Liliales are characterized as ethylene-insensitive since they do not appear to produce endogenous ethylene, or respond to exogenous ethylene treatments, however, the majority of cases studied are wilting flowers, rather than those where life is terminated by perianth abscission. The role of ethylene in the senescence and abscission of Alstroemeria peruviana cv. Rebecca and cv. Samora tepals was previously unclear, with silver treatments recommended for delaying leaf rather than flower senescence. In the present paper the effects of exogenous ethylene, 2-chloroethylphosphonic acid (CEPA) and silver thiosulphate (STS) treatments on tepal senescence and abscission have been investigated. Results indicate that sensitivity to ethylene develops several days after flower opening such that STS only has a limited ability to delay tepal abscission. Detachment force measurements indicate that cell separation events are initiated after anthesis. Endogenous ethylene production was measured using laser photoacoustics and showed that Alstroemeria senesce independently of ethylene production, but that an extremely small amount of ethylene (0.15 nl flower(-1) h(-1)) is produced immediately prior to abscission. Investigation of the expression of genes involved in ethylene biosysnthesis by semi-quantitative RT-PCR indicated that transcriptional regulation is likely to be at the level of ACC oxidase, and that the timing of ACC oxidase gene expression is coincident with development of sensitivity to exogenous ethylene.

  10. Ethylene Evolution following Treatment with 1-Aminocyclopropane-1-carboxylic Acid and Ethephon in an in Vitro Olive Shoot System in Relation to Leaf Abscission

    PubMed Central

    Lavee, S.; Martin, George C.

    1981-01-01

    1-Aminocyclopropane-1-carboxylic acid (ACC) supplied via the cut base of detached olive shoots caused a burst of ethylene from leaves, but other cyclopropanes tested did not exhibit this effect. Ethephon (ET) and another ethylene-releasing compound caused a prolonged increase in ethylene evolution. ACC had only a very limited effect on leaf abscission regardless of concentration, whereas shoots placed with cut bases in ET for 60 to 80 minutes exhibited 100% leaf abscission within 90 hours. Shoots with inflorescences treated with ET just prior to anthesis began to wilt in vitro within 20 to 30 hours and failed to exhibit leaf abscission. At earlier stages of development, ET induced more leaf abscission on reproductive shoots than on vegetative shoots. It is suggested that the duration of ethylene evolution from the leaves governs their potential for abscission and that bursts of ethylene evolution even though large in amount may not induce abscission. Images PMID:16661837

  11. 76 FR 23787 - Voluntary Termination of Foreign-Trade Subzone 75D, STMicroelectronics, Inc., Phoenix, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ...., Phoenix, AZ Pursuant to its authority under the Foreign-Trade Zones Act of June 18, 1934, as amended (19 U... issued a grant of authority to the City of Phoenix (grantee of FTZ 75) authorizing the establishment of Foreign-Trade Subzone 75D at the STMicroelectronics, Inc., facility in Phoenix, Arizona (Board Order...

  12. Identification and molecular characterization of an IDA-like gene from litchi, LcIDL1, whose ectopic expression promotes floral organ abscission in Arabidopsis

    PubMed Central

    Ying, Peiyuan; Li, Caiqin; Liu, Xuncheng; Xia, Rui; Zhao, Minglei; Li, Jianguo

    2016-01-01

    Unexpected abscission of flowers or fruits is a major limiting factor for crop productivity. Key genes controlling abscission in plants, especially in popular fruit trees, are largely unknown. Here we identified a litchi (Litchi chinensis Sonn.) IDA-like (INFLORESCENCE DEFICIENT IN ABSCISSION-like) gene LcIDL1 as a potential key regulator of abscission. LcIDL1 encodes a peptide that shows the closest homology to Arabidopsis IDA, and is localized in cell membrane and cytoplasm. Real-time PCR analysis showed that the expression level of LcIDL1 accumulated gradually following flower abscission, and it was obviously induced by fruit abscission-promoting treatments. Transgenic plants expressing LcIDL1 in Arabidopsis revealed a role of LcIDL1 similar to IDA in promoting floral organ abscission. Moreover, ectopic expression of LcIDL1 in Arabidopsis activated the expression of abscission-related genes. Taken together, our findings provide evidence that LcIDL1 may act as a key regulator in control of abscission. PMID:27845425

  13. Transcriptomic signatures in seeds of apple (Malus domestica L. Borkh) during fruitlet abscission.

    PubMed

    Ferrero, Sergio; Carretero-Paulet, Lorenzo; Mendes, Marta Adelina; Botton, Alessandro; Eccher, Giulia; Masiero, Simona; Colombo, Lucia

    2015-01-01

    Abscission is the regulated process of detachment of an organ from a plant. In apple the abscission of fruits occurs during their early development to control the fruit load depending on the nutritional state of the plant. In order to control production and obtain fruits with optimal market qualities, the horticultural procedure of thinning is performed to further reduce the number of fruitlets. In this study we have conducted a transcriptomic profiling of seeds from two different types of fruitlets, according to size and position in the fruit cluster. Transcriptomic profiles of central and lateral fruit seeds were obtained by RNAseq. Comparative analysis was performed by the functional categorization of differentially expressed genes by means of Gene Ontology (GO) annotation of the apple genome. Our results revealed the overexpression of genes involved in responses to stress, hormone biosynthesis and also the response and/or transport of auxin and ethylene. A smaller set of genes, mainly related to ion transport and homeostasis, were found to be down-regulated. The transcriptome characterization described in this manuscript contributes to unravelling the molecular mechanisms and pathways involved in the physiological abscission of apple fruits and suggests a role for seeds in this process.

  14. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1), ADPG2, and QUARTET2 Are Polygalacturonases Required for Cell Separation during Reproductive Development in Arabidopsis[W

    PubMed Central

    Ogawa, Mikihiro; Kay, Pippa; Wilson, Sarah; Swain, Stephen M.

    2009-01-01

    Cell separation is thought to involve degradation of pectin by several hydrolytic enzymes, particularly polygalacturonase (PG). Here, we characterize an activation tagging line with reduced growth and male sterility caused by increased expression of a PG encoded by QUARTET2 (QRT2). QRT2 is essential for pollen grain separation and is part of a small family of three closely related endo-PGs in the Arabidopsis thaliana proteome, including ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1) and ADPG2. Functional assays and complementation experiments confirm that ADPG1, ADPG2, and QRT2 are PGs. Genetic analysis demonstrates that ADPG1 and ADPG2 are essential for silique dehiscence. In addition, ADPG2 and QRT2 contribute to floral organ abscission, while all three genes contribute to anther dehiscence. Expression analysis is consistent with the observed mutant phenotypes. INDEHISCENT (IND) encodes a putative basic helix-loop-helix required for silique dehiscence, and we demonstrate that the closely related HECATE3 (HEC3) gene is required for normal seed abscission and show that IND and HEC3 are required for normal expression of ADPG1 in the silique dehiscence zone and seed abscission zone, respectively. We also show that jasmonic acid and ethylene act together with abscisic acid to regulate floral organ abscission, in part by promoting QRT2 expression. These results demonstrate that multiple cell separation events, including both abscission and dehiscence, require closely related PG genes. PMID:19168715

  15. Precipitation Simulation of AZ91 Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Cao, W.; Chen, S.-L.; Zhu, J.; Zhang, F.; Luo, A. A.; Schmid-Fetzer, R.

    2014-03-01

    Precipitation simulation of AZ91 (Mg-9Al-1Zn; all compositions are in wt.% unless otherwise stated.) magnesium alloy is carried out in this work using the PanPrecipitation module of Pandat™ software. In addition to the software, the thermodynamic database, mobility database, and precipitation database for AZ91 were developed to perform the simulation. The simulated results, such as the number density and particle size of the γ-Mg17Al12 precipitate, showed good agreement with the experimental data. Moreover, the simulated results were then used as input for the prediction of yield strength and micro-hardness of AZ91 aged at different temperatures, which also agreed well with experimental results. To demonstrate the applicability of the databases developed for AZ91, simulations were also carried out for two compositions with lower and higher Zn content. The simulated hardness showed reasonable agreement with the published experimental data.

  16. Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways

    PubMed Central

    Domingos, Sara; Scafidi, Pietro; Cardoso, Vania; Leitao, Antonio E.; Di Lorenzo, Rosario; Oliveira, Cristina M.; Goulao, Luis F.

    2015-01-01

    Understanding abscission is both a biological and an agronomic challenge. Flower abscission induced independently by shade and gibberellic acid (GAc) sprays was monitored in grapevine (Vitis vinifera L.) growing under a soilless greenhouse system during two seasonal growing conditions, in an early and late production cycle. Physiological and metabolic changes triggered by each of the two distinct stimuli were determined. Environmental conditions exerted a significant effect on fruit set as showed by the higher natural drop rate recorded in the late production cycle with respect to the early cycle. Shade and GAc treatments increased the percentage of flower drop compared to the control, and at a similar degree, during the late production cycle. The reduction of leaf gas exchanges under shade conditions was not observed in GAc treated vines. The metabolic profile assessed in samples collected during the late cycle differently affected primary and secondary metabolisms and showed that most of the treatment-resulting variations occurred in opposite trends in inflorescences unbalanced in either hormonal or energy deficit abscission-inducing signals. Particularly concerning carbohydrates metabolism, sucrose, glucose, tricarboxylic acid metabolites and intermediates of the raffinose family oligosaccharides pathway were lower in shaded and higher in GAc samples. Altered oxidative stress remediation mechanisms and indolacetic acid (IAA) concentration were identified as abscission signatures common to both stimuli. According to the global analysis performed, we report that grape flower abscission mechanisms triggered by GAc application and C-starvation are not based on the same metabolic pathways. PMID:26157448

  17. Expression analysis in soybean of IDA-like, HAESA-like and other key regulatory proteins during leaf abscission and cyst nematode infected roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stimulatory and inhibitory role of ethylene and auxin, respectively, in leaf abscission is well documented. More recently, IDA peptides and their putative interacting receptor like kinase partner, HAESA, were shown to be essential components in Arabidopsis floral organ abscission. It was propo...

  18. Perfil de Franklin Chang- Díaz de Franklin Chang-Díaz

    NASA Video Gallery

    Franklin Chang-Díaz, el primer astronauta hispano de la NASA, habla sobre qué lo inspiró a trabajar con cohetes y convertirse en astronauta. Chang-Díaz alienta a los jóvenes para que sigan sus sueños.

  19. Profilin 1 is required for abscission during late cytokinesis of chondrocytes

    PubMed Central

    Böttcher, Ralph T; Wiesner, Sebastian; Braun, Attila; Wimmer, Reiner; Berna, Alejandro; Elad, Nadav; Medalia, Ohad; Pfeifer, Alexander; Aszódi, Attila; Costell, Mercedes; Fässler, Reinhard

    2009-01-01

    Profilins are key factors for dynamic rearrangements of the actin cytoskeleton. However, the functions of profilins in differentiated mammalian cells are uncertain because profilin deficiency is early embryonic lethal for higher eukaryotes. To examine profilin function in chondrocytes, we disrupted the profilin 1 gene in cartilage (Col2pfn1). Homozygous Col2pfn1 mice develop progressive chondrodysplasia caused by disorganization of the growth plate and defective chondrocyte cytokinesis, indicated by the appearance of binucleated cells. Surprisingly, Col2pfn1 chondrocytes assemble and contract actomyosin rings normally during cell division; however, they display defects during late cytokinesis as they frequently fail to complete abscission due to their inability to develop strong traction forces. This reduced force generation results from an impaired formation of lamellipodia, focal adhesions and stress fibres, which in part could be linked to an impaired mDia1-mediated actin filament elongation. Neither an actin nor a poly-proline binding-deficient profilin 1 is able to rescue the defects. Taken together, our results demonstrate that profilin 1 is not required for actomyosin ring formation in dividing chondrocytes but necessary to generate sufficient force for abscission during late cytokinesis. PMID:19262563

  20. Leaf Abscission Induced by Ethylene in Water-Stressed Intact Seedlings of Cleopatra Mandarin Requires Previous Abscisic Acid Accumulation in Roots.

    PubMed

    Gomez-Cadenas, A.; Tadeo, F. R.; Talon, M.; Primo-Millo, E.

    1996-09-01

    The involvement of abscisic acid (ABA) in the process of leaf abscission induced by 1-aminocyclopropane-1-carboxylic acid (ACC) transported from roots to shoots in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings grown under water stress was studied using norflurazon (NF). Water stress induced both ABA (24-fold) and ACC (16-fold) accumulation in roots and arrested xylem flow. Leaf bulk ABA also increased (8-fold), although leaf abscission did not occur. Shortly after rehydration, root ABA and ACC returned to their prestress levels, whereas sharp and transitory increases of ACC (17-fold) and ethylene (10-fold) in leaves and high percentages of abscission (up to 47%) were observed. NF suppressed the ABA and ACC accumulation induced by water stress in roots and the sharp increases of ACC and ethylene observed after rewatering in leaves. NF also reduced leaf abscission (7-10%). These results indicate that water stress induces root ABA accumulation and that this is required for the process of leaf abscission to occur. It was also shown that exogenous ABA increases ACC levels in roots but not in leaves. Collectively, the data suggest that ABA, the primary sensitive signal to water stress, modulates the levels of ethylene, which is the hormonal activator of leaf abscission. This assumption implies that root ACC levels are correlated with root ABA amounts in a dependent way, which eventually links water status to an adequate, protective response such as leaf abscission.

  1. Development of Rolling Schedules for AZ31 Magnesium Alloy Sheets

    DTIC Science & Technology

    2015-06-01

    received AZ31B, a magnesium (Mg) alloy that contains approximately 3% aluminum and 1% zinc. In particular, we investigated the ability to roll AZ31B to...ARL-TR-7277 ● JUNE 2015 US Army Research Laboratory Development of Rolling Schedules for AZ31 Magnesium Alloy Sheets by...7277 ● JUNE 2015 US Army Research Laboratory Development of Rolling Schedules for AZ31 Magnesium Alloy Sheets by Laszlo Kecskes, Heidi

  2. High-resolution transcript profiling reveals shoot abscission process of spruce dwarf mistletoe Arceuthobium sichuanense in response to ethephon

    PubMed Central

    Wang, Yonglin; Xiong, Dianguang; Jiang, Ning; Li, Xuewu; Yang, Qiqing; Tian, Chengming

    2016-01-01

    Arceuthobium (dwarf mistletoes) are hemiparasites that may cause great damage to infected trees belonging to Pinaceae and Cupressaceae. Currently, dwarf mistletoe control involves the use of the ethylene-producing product ethephon (ETH), which acts by inducing dwarf mistletoe shoot abscission. However, the process by which ETH functions is mostly unknown. Therefore, the transcriptome of the ETH-exposed plants was compared to non-exposed controls to identify genes associated with the response to ethephon. In this study, the reference transcriptome was contained 120,316 annotated unigenes, with a total of 21,764 ETH-responsive differentially expressed unigenes were identified. These ETH-associated genes clustered into 20 distinctly expressed pattern groups, providing a view of molecular events with good spatial and temporal resolution. As expected, the greatest number of unigenes with changed expression were observed at the onset of abscission, suggesting induction by ethylene. ETH also affected genes associated with shoot abscission processes including hormone biosynthesis and signaling, cell wall hydrolysis and modification, lipid transference, and more. The comprehensive transcriptome data set provides a wealth of genomic resources for dwarf mistletoe communities and contributes to a better understanding of the molecular regulatory mechanism of ethylene-caused shoots abscission. PMID:27941945

  3. Clks 1, 2 and 4 prevent chromatin breakage by regulating the Aurora B-dependent abscission checkpoint

    PubMed Central

    Petsalaki, Eleni; Zachos, George

    2016-01-01

    When chromatin is trapped at the intercellular bridge, cells delay completion of cytokinesis (abscission) to prevent chromosome breakage. Here we show that inhibition of Cdc-like kinases (Clks) 1, 2 or 4 accelerates midbody resolution in normally segregating cells and correlates with premature abscission, chromatin breakage and generation of DNA damage in cytokinesis with trapped chromatin. Clk1, Clk2 and Clk4 localize to the midbody in an interdependent manner, associate with Aurora B kinase and are required for Aurora B–serine 331 (S331) phosphorylation and complete Aurora B activation in late cytokinesis. Phosphorylated Aurora B–S331 localizes to the midbody centre and is required for phosphorylation and optimal localization of the abscission protein Chmp4c. In addition, expression of phosphomimetic mutants Aurora B–S331E or Chmp4c-S210D delays midbody disassembly and prevents chromatin breakage in Clk-deficient cells. We propose that Clks 1, 2 and 4 impose the abscission checkpoint by phosphorylating Aurora B–S331 at the midbody. PMID:27126587

  4. Clks 1, 2 and 4 prevent chromatin breakage by regulating the Aurora B-dependent abscission checkpoint.

    PubMed

    Petsalaki, Eleni; Zachos, George

    2016-04-29

    When chromatin is trapped at the intercellular bridge, cells delay completion of cytokinesis (abscission) to prevent chromosome breakage. Here we show that inhibition of Cdc-like kinases (Clks) 1, 2 or 4 accelerates midbody resolution in normally segregating cells and correlates with premature abscission, chromatin breakage and generation of DNA damage in cytokinesis with trapped chromatin. Clk1, Clk2 and Clk4 localize to the midbody in an interdependent manner, associate with Aurora B kinase and are required for Aurora B-serine 331 (S331) phosphorylation and complete Aurora B activation in late cytokinesis. Phosphorylated Aurora B-S331 localizes to the midbody centre and is required for phosphorylation and optimal localization of the abscission protein Chmp4c. In addition, expression of phosphomimetic mutants Aurora B-S331E or Chmp4c-S210D delays midbody disassembly and prevents chromatin breakage in Clk-deficient cells. We propose that Clks 1, 2 and 4 impose the abscission checkpoint by phosphorylating Aurora B-S331 at the midbody.

  5. Presynaptic active zones in invertebrates and vertebrates

    PubMed Central

    Ackermann, Frauke; Waites, Clarissa L; Garner, Craig C

    2015-01-01

    The regulated release of neurotransmitter occurs via the fusion of synaptic vesicles (SVs) at specialized regions of the presynaptic membrane called active zones (AZs). These regions are defined by a cytoskeletal matrix assembled at AZs (CAZ), which functions to direct SVs toward docking and fusion sites and supports their maturation into the readily releasable pool. In addition, CAZ proteins localize voltage-gated Ca2+ channels at SV release sites, bringing the fusion machinery in close proximity to the calcium source. Proteins of the CAZ therefore ensure that vesicle fusion is temporally and spatially organized, allowing for the precise and reliable release of neurotransmitter. Importantly, AZs are highly dynamic structures, supporting presynaptic remodeling, changes in neurotransmitter release efficacy, and thus presynaptic forms of plasticity. In this review, we discuss recent advances in the study of active zones, highlighting how the CAZ molecularly defines sites of neurotransmitter release, endocytic zones, and the integrity of synapses. PMID:26160654

  6. Effect of Sb on the microstructure and mechanical properties of AZ91 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Wang, Qudong; Chen, Wenzhou; Ding, Wenjiang; Zhu, Yanping; Mabuchi, M.

    2001-03-01

    Effects of Sb addition on the microstructure, mechanical properties, and fracture behaviors of AZ91 magnesium alloy, as well as the sensitivity to section thickness of the structure and mechanical properties, have been studied. The results show that when Sb is added into the AZ91 alloy, the grain is refined, the Mg17Al12 phase is refined and granulated, and a new Mg3Sb2 phase is formed and becomes coarse needle-shaped as Sb content increases. The room-temperature tensile strength, elongation, and impact toughness increase first, and then decrease with increasing Sb content. The study on sensitivity to section thickness shows that, when composition is constant, the room-temperature tensile strength and elongation increase with the reduction of section thickness; when section thickness is constant, the room-temperature tensile strength and elongation increase first, and then decrease with increasing Sb content. Additionally, the Sb addition improves the tensile strength of the AZ91 alloy at 100°C and 150°C. The room-temperature tensile and impact fractographs of the AZ91 alloy show intergranular fracture. With increasing Sb content, the tearing deformation zones on the both fractographs enlarge at first, and then diminish, which is consistent with the change of tensile strength, elongation, and impact toughness increasing first, and then reducing with increasing Sb content.

  7. Biochemistry Games: "AZ-Quiz" and "Jeopardy!"

    ERIC Educational Resources Information Center

    Rostejnska, Milada; Klimova, Helena

    2011-01-01

    "AZ-Quiz" and "Jeopardy!" are popular television shows and serve as the basis for in-class games designed to support and diversify chemistry instruction at the high school level. Both games were created in Microsoft PowerPoint, which is an easily accessible and controllable instrument that enables the creation of engaging animation. The use of…

  8. 76 FR 45644 - Arizona Disaster #AZ-00016

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... is hereby amended to modify the incident description for this disaster from Monument Fire to Monument... ADMINISTRATION Arizona Disaster AZ-00016 AGENCY: U.S. Small Business Administration. ACTION: Amendment 1. SUMMARY: This is an amendment of the Administrative declaration of disaster for the State of Arizona dated...

  9. 76 FR 42156 - Arizona Disaster #AZ-00016

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... ADMINISTRATION Arizona Disaster AZ-00016 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of Arizona dated 07/11/2011. Incident: Monument Fire. Incident Period: 06/12/2011 and continuing. Effective Date:...

  10. 78 FR 57923 - Arizona Disaster #AZ-00029

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-20

    ... ADMINISTRATION Arizona Disaster AZ-00029 AGENCY: Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of Arizona dated 09/13/2013. Incident: Yarnell Hill Fire. Incident Period: 06/28/2013 through 07/10/2013. Effective Date:...

  11. Pollination increases ethylene production in Lilium hybrida cv. Brindisi flowers but does not affect the time to tepal senescence or tepal abscission.

    PubMed

    Pacifici, Silvia; Prisa, Domenico; Burchi, Gianluca; van Doorn, Wouter G

    2015-01-15

    In many species, pollination induces a rapid increase in ethylene production, which induces early petal senescence, petal abscission, or flower closure. Cross-pollination in Lilium hybrida cv. Brindisi resulted in a small increase in flower ethylene production. In intact plants and in isolated flowers, pollination had no effect on the time to tepal senescence or tepal abscission. When applied to closed buds of unpollinated flowers, exogenous ethylene slightly hastened the time to tepal senescence and abscission. However, exogenous ethylene had no effect when the flowers had just opened, i.e. at the time of pollination. Experiments with silver thiosulphate, which blocks the ethylene receptor, indicated that endogenous ethylene had a slight effect on the regulation of tepal senescence and tepal abscission, although only at the time the tepals were still inside buds and not in open flowers. Low ethylene-sensitivity after anthesis therefore explains why pollination had no effect on the processes studied.

  12. Somatic cell encystment promotes abscission in germline stem cells following a regulated block in cytokinesis.

    PubMed

    Lenhart, Kari F; DiNardo, Stephen

    2015-07-27

    In many tissues, the stem cell niche must coordinate behavior across multiple stem cell lineages. How this is achieved is largely unknown. We have identified delayed completion of cytokinesis in germline stem cells (GSCs) as a mechanism that regulates the production of stem cell daughters in the Drosophila testis. Through live imaging, we show that a secondary F-actin ring is formed through regulation of Cofilin activity to block cytokinesis progress after contractile ring disassembly. The duration of this block is controlled by Aurora B kinase. Additionally, we have identified a requirement for somatic cell encystment of the germline in promoting GSC abscission. We suggest that this non-autonomous role promotes coordination between stem cell lineages. These findings reveal the mechanisms by which cytokinesis is inhibited and reinitiated in GSCs and why such complex regulation exists within the stem cell niche.

  13. 1-Aminocyclopropane-1-Carboxylic Acid Transported from Roots to Shoots Promotes Leaf Abscission in Cleopatra Mandarin (Citrus reshni Hort. ex Tan.) Seedlings Rehydrated after Water Stress.

    PubMed

    Tudela, D; Primo-Millo, E

    1992-09-01

    The effect of water stress and subsequent rehydration on 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase activity, ethylene production, and leaf abscission was studied in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings. Leaf abscission occurred when drought-stressed plants were allowed to rehydrate, whereas no abscission was observed in plants under water stress conditions. In roots of water-stressed plants, a high ACC accumulation and an increase in ACC synthase activity were observed. Neither increase in ACC content nor significant ethylene production were detected in leaves of water-stressed plants. After rehydration, a sharp rise in ACC content and ethylene production was observed in leaves of water-stressed plants. Content of ACC in xylem fluid was 10-fold higher in plants rehydrated for 2 h after water stress than in nonstressed plants. Leaf abscission induced by rehydration after drought stress was inhibited when roots or shoots were treated before water stress with aminooxyacetic acid (AOA, inhibitor of ACC synthase) or cobalt ion (inhibitor of ethylene-forming enzyme), respectively. However, AOA treatments to shoots did not suppress leaf abscission. The data indicate that water stress promotes ACC synthesis in roots of Cleopatra mandarin seedlings. Rehydration of plants results in ACC transport to the shoots, where it is oxidized to ethylene. Subsequently, this ethylene induces leaf abscission.

  14. Characteristics of AZ31 Mg alloy joint using automatic TIG welding

    NASA Astrophysics Data System (ADS)

    Liu, Hong-tao; Zhou, Ji-xue; Zhao, Dong-qing; Liu, Yun-teng; Wu, Jian-hua; Yang, Yuan-sheng; Ma, Bai-chang; Zhuang, Hai-hua

    2017-01-01

    The automatic tungsten-inert gas welding (ATIGW) of AZ31 Mg alloys was performed using a six-axis robot. The evolution of the microstructure and texture of the AZ31 auto-welded joints was studied by optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction. The ATIGW process resulted in coarse recrystallized grains in the heat affected zone (HAZ) and epitaxial growth of columnar grains in the fusion zone (FZ). Substantial changes of texture between the base material (BM) and the FZ were detected. The {0002} basal plane in the BM was largely parallel to the sheet rolling plane, whereas the c-axis of the crystal lattice in the FZ inclined approximately 25° with respect to the welding direction. The maximum pole density increased from 9.45 in the BM to 12.9 in the FZ. The microhardness distribution, tensile properties, and fracture features of the AZ31 auto-welded joints were also investigated.

  15. Effects of loading methods on microstructure of diffusion welded joint of AZ31B/Cu with Ni interlayer

    NASA Astrophysics Data System (ADS)

    Du, S. M.; Zhang, Y. Q.; Du, C.; Hu, J.

    2017-02-01

    Diffusion brazing was carried out to weld AZ31B magnesium alloy and copper with Ni foil interlayer under different loading methods that are divided into intermittent gradient pressure, gradient pressure and constant pressure. The microstructure and element diffusion of welded joint were analyzed by SEM and EDS. The results show that the AZ31B/Cu can achieve good bonded joint composed of brazing seam zone and magnesium substrate grain boundary penetration zone at 500 °C for 20 min. The loading methods have great influence on the thickness of brazing seam zone, microstructure and α-Mg grain size of the welded joint. At intermittent gradient pressure, the brazing seam zone reaches the biggest width of 0.18 mm, and the microstructure of brazing seam zone is composed of Cu11Mg10Ni9, (α-Mg+Mg2Cu+Mg2Ni)eutectic structure and α-Mg. Under gradient pressure, the width of brazing seam zone reduces, and the microstructure of brazing seam zone is mainly dominated by (α-Mg+Mg2Cu+Mg2Ni)eutectic structure and Cu11Mg10Ni9 compounds closed magnesium matrix. When using constant pressure, the microstructure of joint is similar to that under intermittent gradient pressure, the brazing seam zone reaches the smallest width of 0.11 mm, and the size of α-Mg grains reduces.

  16. Computer simulation of the leaching and washing of waste in tanks C-106, AY-102, AZ-101, and AZ-102

    SciTech Connect

    MacLean, G.T.

    1997-05-01

    The waste in underground storage tanks C-106, AY-102, AZ-101, and AZ-102 will be used to prepare feed material for the proposed high level waste vitrification demonstration plant at Hanford. A chemical process simulation computer program called the Environment Simulation Program (ESP) was used to estimate the compositions and quantities of this waste and the products after pretreatment processing. The amount of precipitated material in Tank C-106 predicted to be dissolved by sluicing is 27 wt.%. The amount of precipitated material predicted to be dissolved by mild leaching is about 30% for the C-106 and AY-102 combined waste and about 50% for AZ-101, and 35% for AZ-102 wastes. The predicted caustic solution raw material requirements for leaching are 158 m{sup 3} for C-106 and AY-102, 60 m{sup 3} for AZ-101, and 146 m{sup 3} for AZ-102, all as 50 wt.% NAOH.

  17. Influence of Microstructure of Friction Stir Welded Joints on Growth and Properties of Microarc Oxidation Coatings on AZ31B Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Chen, Tingfang; Li, Yongliang; Xue, Wenbin; Yang, Chaolin; Qu, Yao; Hua, Ming

    2015-03-01

    Ceramic coatings on friction stir welded (FSW) joints of AZ31B magnesium alloy were fabricated by microarc oxidation (MAO) method in silicate electrolyte. Microstructure, phase constituents, microhardness and electrochemical corrosion behaviors of bare and coated magnesium alloys at different zones of FSW joints for different oxidation time were investigated. The influence of microstructure at different zones on the growth of MAO coatings was analyzed. The results show that the MAO coatings on FSW joints are uniform, and they have almost the same morphology, phase constituents, hardness and corrosion resistance at base metal, stir zone and heat-affected zone. The properties of MAO coatings are independent on the microstructures of AZ31B alloy. In addition, the microstructures of magnesium alloy near the coating/alloy interface at different zones of FSW joint was not changed by microarc discharge process.

  18. Microstructure and mechanical properties of Si and Sb added AZ91 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Srinivasan, A.; Pillai, U. T. S.; Pai, B. C.

    2005-08-01

    The effect of Si (individual and combined) with 0.2 pct Sb additions on the microstructure and mechanical properties of permanent mold AZ91 alloy has been studied. The results indicate that Si addition introduces a Chinese script Mg2Si phase at the grain boundary along with the Mg17Al12- β phase and reduces ductility and strength of the alloy both at room and high temperatures. A small amount of Sb addition modifies the Mg2Si phase besides distributing it evenly along the grain boundary. Improved room- and high-temperature mechanical properties are observed in Sb added AZ91+xSi alloys. However, maximum properties are noticed with the alloy having the combined addition of 0.2 silicon and antimony. Fractograpy of tensile- and impact-tested AZ91 alloy shows cleavage and brittle type of failure. Addition of Si reduces the quasi-cleavage planes, whereas Sb addition increases it while also increasing the plastic zone.

  19. A cellular automaton model for microstructural simulation of friction stir welded AZ91 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Akbari, Mostafa; Asadi, Parviz; Besharati Givi, MohammadKazem; Zolghadr, Parisa

    2016-03-01

    To predict the grain size and microstructure evolution during friction stir welding (FSW) of AZ91 magnesium alloy, a finite element model (FEM) is developed based on the combination of a cellular automaton model and the Kocks  -  Mecking and Laasraoui-Jonas models. First, according to the flow stress curves and using the Kocks  -  Mecking model, the hardening and recovery parameters and the strain rate sensitivity were calculated. Next, an FEM model was established in Deform-3D software to simulate the FSW of AZ91 magnesium alloy. The results of the FEM model are used in microstructure evolution models to predict the grain size and microstructure of the weld zone. There is a good agreement between the simulated and experimental microstructures, and the proposed model can simulate the dynamic recrystallization (DRX) process during FSW of AZ91 alloy. Moreover, microstructural properties of different points in the SZ as well as the effect of the w/v parameter on the grain size and microstructure are considered.

  20. Biological control of bacterial wilt in Arabidopsis thaliana involves abscissic acid signalling.

    PubMed

    Feng, Dong Xin; Tasset, Céline; Hanemian, Mathieu; Barlet, Xavier; Hu, Jian; Trémousaygue, Dominique; Deslandes, Laurent; Marco, Yves

    2012-06-01

    Means to control bacterial wilt caused by the phytopathogenic root bacteria Ralstonia solanacearum are limited. Mutants in a large cluster of genes (hrp) involved in the pathogenicity of R. solanacearum were successfully used in a previous study as endophytic biocontrol agents in challenge inoculation experiments on tomato. However, the molecular mechanisms controlling this resistance remained unknown. We developed a protection assay using Arabidopsis thaliana as a model plant and analyzed the events underlying the biological control by genetic, transcriptomic and molecular approaches. High protection rates associated with a significant decrease in the multiplication of R. solanacearum were observed in plants pre-inoculated with a ΔhrpB mutant strain. Neither salicylic acid, nor jasmonic acid/ethylene played a role in the establishment of this resistance. Microarray analysis showed that 26% of the up-regulated genes in protected plants are involved in the biosynthesis and signalling of abscissic acid (ABA). In addition 21% of these genes are constitutively expressed in the irregular xylem cellulose synthase mutants (irx), which present a high level of resistance to R. solanacearum. We propose that inoculation with the ΔhrpB mutant strain generates a hostile environment for subsequent plant colonization by a virulent strain of R. solanacearum.

  1. Multipolar mitosis and aneuploidy after chrysotile treatment: a consequence of abscission failure and cytokinesis regression

    PubMed Central

    Cortez, Beatriz Araujo; Teixeira, Paula Rezende; Redick, Sambra; Doxsey, Stephen; Machado-Santelli, Glaucia Maria

    2016-01-01

    Chrysotile, like other types of asbestos, has been associated with mesothelioma, lung cancer and asbestosis. However, the cellular abnormalities induced by these fibers involved in cancer development have not been elucidated yet. Previous works show that chrysotile fibers induce features of cancer cells, such as aneuploidy, multinucleation and multipolar mitosis. In the present study, normal and cancer derived human cell lines were treated with chrysotile and the cellular and molecular mechanisms related to generation of aneuploid cells was elucidated. The first alteration observed was cytokinesis regression, the main cause of multinucleated cells formation and centrosome amplification. The multinucleated cells formed after cytokinesis regression were able to progress through cell cycle and generated aneuploid cells after abnormal mitosis. To understand the process of cytokinesis regression, localization of cytokinetic proteins was investigated. It was observed mislocalization of Anillin, Aurora B, Septin 9 and Alix in the intercellular bridge, and no determination of secondary constriction and abscission sites. Fiber treatment also led to overexpression of genes related to cancer, cytokinesis and cell cycle. The results show that chrysotile fibers induce cellular and molecular alterations in normal and tumor cells that have been related to cancer initiation and progression, and that tetraploidization and aneuploid cell formation are striking events after fiber internalization, which could generate a favorable context to cancer development. PMID:26788989

  2. Reed-Sternberg Cells Form by Abscission Failure in the Presence of Functional Aurora B Kinase

    PubMed Central

    Maia, André F.; Ribeiro, Susana A.; Pontes, Patrícia; Bickmore, Wendy; Earnshaw, William C.; Sambade, Clara

    2015-01-01

    Large multinucleated Reed-Sternberg cells (RS) and large mononucleated Hodgkin cells (H) are traditionally considered to be the neoplastic population in classical Hodgkin lymphoma, (cHL) and postulated to promote the disease. However, the contribution of these larger cells to the progression of cHL remains debatable. We used established cHL cell lines and cHL cellular fractions composed of small mononucleated cells only or enriched in large RS/H cells to investigate RS/H cell origin and to characterize the cells which they derive from. We confirm that the small mononucleated cells give rise to RS/H cells, and we show that the latter proliferate significantly more slowly than the small cells. By using live-cell imaging, we demonstrate that binucleated RS cells are generated by failure of abscission when a few small cells attempt to divide. Finally, our results reveal that the small mononucleated cells are chromosomally unstable, but this is unlikely to be related to a malfunctioning chromosomal passenger protein complex. We propose that the small mononucleated cells, rather than the RS/H cells, are the main drivers of cHL. PMID:25933052

  3. Analysis of Phosphorylation of the Receptor-Like Protein Kinase HAESA during Arabidopsis Floral Abscission

    PubMed Central

    Taylor, Isaiah; Wang, Ying; Seitz, Kati; Baer, John; Bennewitz, Stefan; Mooney, Brian P.; Walker, John C.

    2016-01-01

    Receptor-like protein kinases (RLKs) are the largest family of plant transmembrane signaling proteins. Here we present functional analysis of HAESA, an RLK that regulates floral organ abscission in Arabidopsis. Through in vitro and in vivo analysis of HAE phosphorylation, we provide evidence that a conserved phosphorylation site on a region of the HAE protein kinase domain known as the activation segment positively regulates HAE activity. Additional analysis has identified another putative activation segment phosphorylation site common to multiple RLKs that potentially modulates HAE activity. Comparative analysis suggests that phosphorylation of this second activation segment residue is an RLK specific adaptation that may regulate protein kinase activity and substrate specificity. A growing number of RLKs have been shown to exhibit biologically relevant dual specificity toward serine/threonine and tyrosine residues, but the mechanisms underlying dual specificity of RLKs are not well understood. We show that a phospho-mimetic mutant of both HAE activation segment residues exhibits enhanced tyrosine auto-phosphorylation in vitro, indicating phosphorylation of this residue may contribute to dual specificity of HAE. These results add to an emerging framework for understanding the mechanisms and evolution of regulation of RLK activity and substrate specificity. PMID:26784444

  4. Augmin shapes the anaphase spindle for efficient cytokinetic furrow ingression and abscission

    PubMed Central

    Uehara, Ryota; Kamasaki, Tomoko; Hiruma, Shota; Poser, Ina; Yoda, Kinya; Yajima, Junichiro; Gerlich, Daniel W.; Goshima, Gohta

    2016-01-01

    During anaphase, distinct populations of microtubules (MTs) form by either centrosome-dependent or augmin-dependent nucleation. It remains largely unknown whether these different MT populations contribute distinct functions to cytokinesis. Here we show that augmin-dependent MTs are required for the progression of both furrow ingression and abscission. Augmin depletion reduced the accumulation of anillin, a contractile ring regulator at the cell equator, yet centrosomal MTs were sufficient to mediate RhoA activation at the furrow. This defect in contractile ring organization, combined with incomplete spindle pole separation during anaphase, led to impaired furrow ingression. During the late stages of cytokinesis, astral MTs formed bundles in the intercellular bridge, but these failed to assemble a focused midbody structure and did not establish tight linkage to the plasma membrane, resulting in furrow regression. Thus augmin-dependent acentrosomal MTs and centrosomal MTs contribute to nonredundant targeting mechanisms of different cytokinesis factors, which are required for the formation of a functional contractile ring and midbody. PMID:26764096

  5. Multipolar mitosis and aneuploidy after chrysotile treatment: a consequence of abscission failure and cytokinesis regression.

    PubMed

    Cortez, Beatriz Araujo; Rezende-Teixeira, Paula; Redick, Sambra; Doxsey, Stephen; Machado-Santelli, Glaucia Maria

    2016-02-23

    Chrysotile, like other types of asbestos, has been associated with mesothelioma, lung cancer and asbestosis. However, the cellular abnormalities induced by these fibers involved in cancer development have not been elucidated yet. Previous works show that chrysotile fibers induce features of cancer cells, such as aneuploidy, multinucleation and multipolar mitosis. In the present study, normal and cancer derived human cell lines were treated with chrysotile and the cellular and molecular mechanisms related to generation of aneuploid cells was elucidated. The first alteration observed was cytokinesis regression, the main cause of multinucleated cells formation and centrosome amplification. The multinucleated cells formed after cytokinesis regression were able to progress through cell cycle and generated aneuploid cells after abnormal mitosis. To understand the process of cytokinesis regression, localization of cytokinetic proteins was investigated. It was observed mislocalization of Anillin, Aurora B, Septin 9 and Alix in the intercellular bridge, and no determination of secondary constriction and abscission sites. Fiber treatment also led to overexpression of genes related to cancer, cytokinesis and cell cycle. The results show that chrysotile fibers induce cellular and molecular alterations in normal and tumor cells that have been related to cancer initiation and progression, and that tetraploidization and aneuploid cell formation are striking events after fiber internalization, which could generate a favorable context to cancer development.

  6. Tank 241-AZ-101 and tank 241-AZ-102, airlift circulator operation vapor sampling and analysis plan

    SciTech Connect

    TEMPLETON, A.M.

    1999-06-02

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of the tank 241-AZ-101 and 241-AZ-102 airlift circulators (ALCs). The purpose of the ALC operation is to support portions of the operational test procedure (OTP) for Project W-030 (OTP-W030-001) and to perform functional test in support of Project W-151. Project W-030 is the 241-A-702 ventilation upgrade project (241-AZ-702) and Project W-151 is the 241-AZ-101 Mixer Pump Test. The functional tests will check the operability of the tank 241-AZ-101 ALCs. Process Memo's No.2E98-082 and No.2E99-001 (LMHC 1999a, LMHC 1999b) direct the operation of the ALCs and the Industrial Hygiene monitoring respectively. A series of tests will be conducted in which the ALCs in tanks 241-AZ-101 and 241-AZ-102 will be operated at different air flow rates. Vapor samples will be obtained to determine constituents that may be present in the tank headspace during ALC operation at tanks 241-AZ-101 and 241-AZ-102 as the waste is disturbed. During the testing, vapor samples will be obtained from the headspace of tanks 241-AZ-101 and 241-AZ-102 via the unused port on the standard hydrogen monitoring system (SHMS). Results will be used to provide the waste feed delivery program with environmental air permitting data for tank waste disturbing activities. Because of radiological concerns, the samples will be filtered for particulates. It is recognized that this may remove some organic compounds.

  7. 241-AZ Farm Annulus Extent of Condition Baseline Inspection

    SciTech Connect

    Engeman, Jason K.; Girardot, Crystal L.; Vazquez, Brandon J.

    2013-05-15

    This report provides the results of the comprehensive annulus visual inspection for tanks 241- AZ-101 and 241-AZ-102 performed in fiscal year 2013. The inspection established a baseline covering about 95 percent of the annulus floor for comparison with future inspections. Any changes in the condition are also included in this document.

  8. ANALYSIS RESULTS FOR BUILDING 241 702-AZ A TRAIN

    SciTech Connect

    DUNCAN JB; FRYE JM; COOKE CA; LI SW; BROCKMAN FJ

    2006-12-13

    This report presents the analyses results for three samples obtained under RPP-PLAN-28509, Sampling and Analysis Plan for Building 241 702-AZ A Train. The sampling and analysis was done in response to problem evaluation request number PER-2004-6139, 702-AZ Filter Rooms Need Radiological Cleanup Efforts.

  9. 76 FR 18378 - Amendment of Class E Airspace; Taylor, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Taylor, AZ AGENCY: Federal... Taylor Airport, Taylor, AZ, to accommodate aircraft using the CAMBO One Departure, and the Area Navigation (RNAV) standard instrument approach procedures at Taylor Airport. This will improve the safety...

  10. Antizyme (AZ) regulates intestinal cell growth independently of polyamines

    PubMed Central

    Ray, Ramesh M.; Bhattacharya, Sujoy; Bavaria, Mitul N.; Viar, Mary Jane; Johnson, Leonard R.

    2014-01-01

    Since antizyme (AZ) is known to inhibit cell proliferation and to increase apoptosis, the question arises as to whether these effects occur independently of polyamines. Intestinal epithelial cells (IEC-6) were grown in control medium and medium containing 5mM difluoromethylornithine (DFMO) to inhibit ODC, DFMO + 5μM spermidine (SPD), DFMO+ 5μM spermine (SPM), or DFMO+ 10 μM putrescine (PUT) for 4 days and various parameters of growth were measured along with AZ levels. Cell counts were significantly decreased and mean doubling times were significantly increased by DFMO. Putrescine restored growth in the presence of DFMO. However, both SPD and SPM when added with DFMO caused a much greater inhibition of growth than did DFMO alone, and both of these polyamines caused a dramatic increase in AZ. The addition of SPD or SPM to media containing DFMO + PUT significantly inhibited growth and caused a significant increase in AZ. IEC-6 cells transfected with AZ-siRNA grew more than twice as rapidly as either control cells or those incubated with DFMO, indicating that removal of AZ increases growth in cells in which polyamine synthesis is inhibited as well as in control cells. In a separate experiment the addition of SPD increased AZ levels and inhibited growth of cells incubated with DFMO by 50%. The addition of 10 mM asparagine (ASN) prevented the increase in AZ and restored growth to control levels. These results show that cell growth in the presence or absence of ODC activity and in the presence or absence of polyamines depends only on the levels of AZ. Therefore, the effects of AZ on cell growth are independent of polyamines. PMID:24930035

  11. Modification of carotenoid levels by abscission agents and expression of carotenoid biosynthetic genes in 'valencia' sweet orange.

    PubMed

    Alferez, Fernando; Pozo, Luis V; Rouseff, Russell R; Burns, Jacqueline K

    2013-03-27

    The effect of 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP) and ethephon on peel color, flavedo carotenoid gene expression, and carotenoid accumulation was investigated in mature 'Valencia' orange ( Citrus sinensis L. Osbeck) fruit flavedo at three maturation stages. Abscission agent application altered peel color. CMNP was more effective than ethephon in promoting green-to-red (a) and blue-to-yellow (b) color at the middle and late maturation stages and total carotenoid changes at all maturation stages. Altered flow of carotenoid precursors during maturation due to abscission agents was suggested by changes in phytoene desaturase (Pds) and ζ-carotene desaturase (Zds) gene expression. However, each abscission agent affected downstream expression differentially. Ethephon application increased β-carotene hydroxilase (β-Chx) transcript accumulation 12-fold as maturation advanced from the early to middle and late stages. CMNP markedly increased β- and ε-lycopene cyclase (Lcy) transcript accumulation 45- and 15-fold, respectively, at midmaturation. Patterns of carotenoid accumulation in flavedo were supported in part by gene expression changes. CMNP caused greater accumulation of total flavedo carotenoids at all maturation stages when compared with ethephon or controls. In general, CMNP treatment increased total red carotenoids more than ethephon or the control but decreased total yellow carotenoids at each maturation stage. In control fruit flavedo, total red carotenoids increased and yellow carotenoids decreased as maturation progressed. Trends in total red carotenoids during maturation were consistent with measured a values. Changes in carotenoid accumulation and expression patterns in flavedo suggest that regulation of carotenoid accumulation is under transcriptional, translational, and post-translational control.

  12. Effect of pollinator-inflicted ovule damage on floral abscission in the yucca-yucca moth mutualism: the role of mechanical and chemical factors.

    PubMed

    Marr, Deborah L; Pellmyr, Olle

    2003-07-01

    The long-term persistence of obligate mutualisms (over 40 Mya in both fig/fig wasps and yucca/yucca moths) raises the question of how one species limits exploitation by the other species, even though there is selection pressure on individuals to maximize fitness. In the case of yuccas, moths serve as the plant's only pollinator, but eggs laid by the moths before pollination hatch into larvae that consume seeds. Previous studies have shown that flowers with high egg loads are more likely to abscise. This suggests that yucca flowers can select against moths that lay many eggs per flower through selective abscission of flowers; however, it is not known how yucca moths trigger floral abscission. We tested how the moth Tegeticula yuccasella triggers floral abscission during oviposition in Yucca filamentosa by examining the effects of ovipositor insertion and egg laying on ovule viability and floral abscission. Eggs are not laid at the site of ovipositor insertion: we used this separation to test whether wounded ovules were more closely associated with the ovipositor site or an egg's location. Using a tetrazolium stain to detect injured ovules, we determined whether the number of ovipositions affected the number of wounded ovules in naturally pollinated flowers. Two wounding experiments were used to test the effect of mechanical damage on the probability of floral abscission. The types of wounds in these experiments mimicked two types of oviposition-superficial oviposition in the ovary wall and oviposition into the locular cavity-that have been observed in species of Tegeticula. The effect of moth eggs on ovule viability was experimentally tested by culturing ovules in vitro, placing moth eggs on the ovules, and measuring changes in ovule viability with a tetrazolium stain. We found that ovules were physically wounded during natural oviposition. Ovules showed a visible wounding response in moth-pollinated flowers collected 7-12 h after oviposition. Exact location of

  13. Abnormal macropore formation during double-sided gas tungsten arc welding of magnesium AZ91D alloy

    SciTech Connect

    Shen Jun You Guoqiang; Long Siyuan; Pan Fusheng

    2008-08-15

    One of the major concerns during gas tungsten arc (GTA) welding of cast magnesium alloys is the presence of large macroporosity in weldments, normally thought to occur from the presence of gas in the castings. In this study, a double-sided GTA welding process was adopted to join wrought magnesium AZ91D alloy plates. Micropores were formed in the weld zone of the first side that was welded, due to precipitation of H{sub 2} as the mushy zone freezes. When the reverse side was welded, the heat generated caused the mushy zone in the initial weld to reform. The micropores in the initial weld then coalesced and expanded to form macropores by means of gas expansion through small holes that are present at the grain boundaries in the partially melted zone. Macropores in the partially melted zone increase with increased heat input, so that when a filler metal is used the macropores are smaller in number and in size.

  14. The opposing nanoscale and macroscale effects of selected nanoparticle addition to AZ91/ZK60A hybrid magnesium alloy

    NASA Astrophysics Data System (ADS)

    Paramsothy, Muralidharan; Gupta, Manoj

    2013-09-01

    B4C and AlN nanoparticles were separately added to solidification processed AZ91/ZK60A hybrid magnesium alloy to improve tensile and compressive properties. In tension, both nanoparticles strengthened the hybrid alloy. However, only B4C nanoparticle addition significantly improved the ductility of the hybrid alloy, while AlN nanoparticle addition slightly decreased the ductility of the hybrid alloy. Comparing both nanocomposites as well as monolithic alloy, there was no significant difference in the grain size or crystallographic texture. However, it was possible that the AlN nanoparticle was more chemically reactive with the alloy matrix compared to the B4C nanoparticle. Also, it was observed that unlike AlN nanoparticle addition, B4C nanoparticle addition enabled the formation of numerous nanoscale stacking faults in the hybrid alloy matrix. Further, it was apparent that the B4C nanoparticle promoted the nanoscale precipitation of Al12Mg17 intermetallic particles (with particle coarsening thereafter), whereas the AlN nanoparticle did not alter the intermetallic precipitation characteristics in the alloy matrix. Consequently, nano/micro-particle induced high strain zone (HSZ) formation during tensile deformation was more pronounced in the AZ91/ZK60A/B4C nanocomposite compared to the AZ91/ZK60A/AlN nanocomposite, rendering the B4C nanoparticle significantly greater capability (compared to the AlN nanoparticle) in enhancing the tensile ductility of the hybrid alloy. The promotion of nanoscale precipitation of Al12Mg17 intermetallic particles (with particle coarsening thereafter) by the B4C nanoparticle also enabled the AZ91/ZK60A/B4C nanocomposite to have significantly higher compressive strength (per strain level during deformation) compared to the AZ91/ZK60A/AlN nanocomposite.

  15. Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states

    NASA Astrophysics Data System (ADS)

    Ehmann, Nadine; van de Linde, Sebastian; Alon, Amit; Ljaschenko, Dmitrij; Keung, Xi Zhen; Holm, Thorge; Rings, Annika; Diantonio, Aaron; Hallermann, Stefan; Ashery, Uri; Heckmann, Manfred; Sauer, Markus; Kittel, Robert J.

    2014-08-01

    The precise molecular architecture of synaptic active zones (AZs) gives rise to different structural and functional AZ states that fundamentally shape chemical neurotransmission. However, elucidating the nanoscopic protein arrangement at AZs is impeded by the diffraction-limited resolution of conventional light microscopy. Here we introduce new approaches to quantify endogenous protein organization at single-molecule resolution in situ with super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM). Focusing on the Drosophila neuromuscular junction (NMJ), we find that the AZ cytomatrix (CAZ) is composed of units containing ~137 Bruchpilot (Brp) proteins, three quarters of which are organized into about 15 heptameric clusters. We test for a quantitative relationship between CAZ ultrastructure and neurotransmitter release properties by engaging Drosophila mutants and electrophysiology. Our results indicate that the precise nanoscopic organization of Brp distinguishes different physiological AZ states and link functional diversification to a heretofore unrecognized neuronal gradient of the CAZ ultrastructure.

  16. Tank 241-AZ-101 and Tank 241-AZ-102 Airlift Circulator Operation Vapor Sampling and Analysis Plan

    SciTech Connect

    TEMPLETON, A.M.

    1999-12-07

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of the tank 241-AZ-101 and 241-AZ-102 airlift circulators (ALCs) and during the initial operation (''bump'') of the tank 241-AZ-101 mixer pumps. The purpose of the ALC operation is to support portions of the operational test procedure (OTP) for Project W-030 (OTP-W030-001) and to perform functional test in support of Project W-151. Project W-030 is the 241-A-702 ventilation upgrade project (241-142-702) and Project W-151 is the 241-AZ-101 Mixer Pump Test. The functional tests will check the operability of the tank 241-AZ-101 ALCs. Process Memo's No. 2E98-082 and No. 2E99-001 (LMHC 1999a, LMHC 1999b) direct the operation of the ALCs and the Industrial Hygiene monitoring respectively. A series of tests will be conducted in which the ALCs in tanks 241-AZ-101 and 241-AZ-102 will be operated at different air flow rates. Vapor samples will be obtained to determine constituents that may be present in the tank headspace during ALC operation at tanks 241-AZ-101 and 241-AZ-102 as the waste is disturbed. During the testing, vapor samples will be obtained from the headspace of tanks 241-AZ-101 and 241-AZ-102 via the unused port on the standard hydrogen monitoring system (SHMS). In addition the last two vapor samples will be collected from the headspace of tank 241-AZ-101 during the operation of the mixer pumps. Each mixer pump will be operated for approximately 5 minutes. Results will be used to provide the waste feed delivery program with environmental air permitting data for tank waste disturbing activities. Because of radiological concerns, the samples will be filtered for particulates. It is recognized that this may remove some organic compounds. The following sections provide the general methodology and procedures to be used in the preparation, retrieval

  17. Effect of cw-CO2 laser surface treatment on structure and properties of AZ91 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Iwaszko, Józef; Strzelecka, Monika

    2016-06-01

    In the study, samples of AZ91 magnesium alloy were subjected to a surface remelting treatment by means of a continuous wave (cw) CO2 laser. The scope of the investigation included both macro- and microstructural examination, hardness measurements, and wear resistance tests. The investigation has shown that remelting treatment leads to a strong refinement of structure in the surface layer and a more even distribution of phases. Fine α-phase dendrites have been observed to dominate in the remelting zone. The dendritic arm spacing in the laser treated surface was in the range of 1-2.5 μm. The structural changes triggered by remelting have contributed to an increase in the hardness and the wear resistance of AZ91 alloy. The microhardness of the remelted zone has increased to 71-93 HV0.05 for single-strip remelting and to 84-107 HV0.05 for multi-strip remelting in comparison with about ~60 HV0.05 for untreated alloy. The friction coefficient has decreased from 0.375 for material w/o treatment to 0.311 for remelted material. SEM investigations of samples after tribological tests have revealed the presence of parallel grooves proving the occurrence of microploughing and micro cutting of the material during the tribological testing. The results of the conducted investigation have indicated a beneficial influence of the cw-CO2 laser remelting treatment on the structure and properties of AZ91 alloy.

  18. 75 FR 81190 - Television Broadcasting Services; Yuma, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 73 Television Broadcasting Services; Yuma, AZ AGENCY: Federal Communications Commission. ACTION: Dismissal. SUMMARY: The Commission dismisses the petition for rulemaking filed by...

  19. RadNet Air Data From Phoenix, AZ

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Phoenix, AZ from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  20. RadNet Air Data From Tucson, AZ

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Tucson, AZ from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  1. RadNet Air Data From Yuma, AZ

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Yuma, AZ from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  2. Semi empirical hardness predictive model for AZ91 nanocomposite

    NASA Astrophysics Data System (ADS)

    Zaidi, N. H. A.; Jamaludin, S. B.; Zaidi, A. M. A.; Ahmad, K. R.

    2016-07-01

    AZ91 nanocomposite was exposed to several heat treatment processes and the effect of precipitation hardening on hardness was studied as a function of time and temperature. The investigation shows the significant of time and temperature are the main role in the precipitation hardening process of the nanocomposite. Kinetics study show a deceptive activation energy of 21 kJ/mol of the AZ91 nanocomposite. A relationship was derived to predict the maximum hardness at given time and temperature.

  3. Are we on the right track: Can our understanding of abscission in model systems promote or derail making improvements in less studied crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the world population grows and resources and climate conditions change, crop improvement continues to be one of the most important challenges for agriculturalists. The yield and quality of many crops is affected by abscission or shattering, and environmental stresses often hasten or alter the abs...

  4. Study on the microstructural evolution of AZ31 magnesium alloy in a vertical twin-roll casting process

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Hu, Xiao-Dong; Han, Bing; Deng, Xiao-Hu; Ju, Dong-Ying

    2016-02-01

    Finite element method was employed to calculate the macroflow velocity and temperature distribution of the pool domain's biting zone in twin-roll casting. Macroanalysis results were inducted as boundary conditions into microanalysis. Phase field method (PFM) was adopted to investigate the microstructure evolution. Based on the Kim-Kim-Suzuki model, the effect of metal flow velocity was coupled on the solute gradient item, and the real physical parameters of AZ31 were inducted into the numerical calculation. We used the marker and cell method in the discrete element solution of microstructural pattern prediction of AZ31 magnesium alloys. The different flow velocity values that predicted the columnar dendrite evolution were discussed in detail. Numerical simulation results were also compared with the experiment analysis. The microstructure obtained by PFM agrees with the actual pattern observed via optical microscopy.

  5. Texture Development in a Friction Stir Lap-Welded AZ31B Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Naik, B. S.; Chen, D. L.; Cao, X.; Wanjara, P.

    2014-09-01

    The present study was aimed at characterizing the microstructure, texture, hardness, and tensile properties of an AZ31B-H24 Mg alloy that was friction stir lap welded (FSLWed) at varying tool rotational rates and welding speeds. Friction stir lap welding (FSLW) resulted in the presence of recrystallized grains and an associated hardness drop in the stir zone (SZ). Microstructural investigation showed that both the AZ31B-H24 Mg base metal (BM) and SZ contained β-Mg17Al12 and Al8Mn5 second phase particles. The AZ31B-H24 BM contained a type of basal texture (0001)<110> with the (0001) plane nearly parallel to the rolled sheet surface and <110> directions aligned in the rolling direction. FSLW resulted in the formation of another type of basal texture (0001)<100> in the SZ, where the basal planes (0001) became slightly tilted toward the transverse direction, and the prismatic planes (100) and pyramidal planes (101) exhibited a 30 deg + ( n - 1) × 60 deg rotation ( n = 1, 2, 3, …) with respect to the rolled sheet normal direction, due to the shear plastic flow near the pin surface that occurred from the intense local stirring. With increasing tool rotational rate and decreasing welding speed, the maximum intensity of the basal poles (0001) in the SZ decreased due to a higher degree of dynamic recrystallization that led to a weaker or more random texture. The tool rotational rate and welding speed had a strong effect on the failure load of FSLWed joints. A combination of relatively high welding speed (20 mm/s) and low tool rotational rate (1000 rpm) was observed to be capable of achieving a high failure load. This was attributed to the relatively small recrystallized grains and high intensity of the basal poles in the SZ arising from the low heat input as well as the presence of a small hooking defect.

  6. Ultrasonic Examination of Double-Shell Tank 241-AZ-101. Examination Completed July 2007.

    SciTech Connect

    Pardini, Allan F.; Weier, Dennis R.

    2007-08-12

    AREVA NC Inc. (AREVA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic examination of selected portions of Double-Shell Tank 241-AZ-101. PNNL is responsible for preparing a report(s) that describes the results of the AREVA ultrasonic examinations. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-AZ-101 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-Plan-27202 (Jensen 2005) and summarized on page 1 of this document, are to be reported to CH2M HILL and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M HILL, all data is to be recorded on electronic media and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report(s) that describes the results of the AREVA ultrasonic examinations. The results of the examination of Tank 241-AZ-101 have been evaluated by PNNL personnel. The ultrasonic examination consisted of two vertical 15-in.-wide scan paths over the entire height of the tank and the heat-affected zone (HAZ) of five vertical welds and one horizontal weld from Riser 89. The examination also included two vertical 15-in.-wide scan paths over the entire height of the tank from Riser 90. The examination was performed to detect any wall thinning, pitting, or cracking in the primary tank wall.

  7. Caustic leaching of composite AZ-101/AZ-102 Hanford tank sludge

    SciTech Connect

    Rapko, B.M.; Wagner, M.J.

    1997-07-01

    To reduce the quantity (and hence the cost) of glass canisters needed for disposing of high-level radioactive wastes from the Hanford tank farms, pretreatment processes are needed to remove as much nonradioactive material as possible. This report describes the results of a laboratory-scale caustic leaching test performed on a composite derived from a combination of 241-AZ-101 and 241-AZ-102 Hanford Tank sludges. The goals of this FY 1996 test were to evaluate the effectiveness of caustic leaching on removing key components from the sludge and to evaluate the effectiveness of varying the free-hydroxide concentrations by incrementally increasing the free hydroxide concentration of the leach steps up to 3 {und M} free hydroxide. Particle-size analysis of the treated and untreated sludge indicated that the size and range of the sludge particles remained essentially unchanged by the caustic leaching treatment. Both before and after caustic leaching, a particle range of 0.2 {micro}m to 50 {micro}m was observed, with mean particle diameters of 8.5 to 9 {micro}m based on the volume distribution and mean particle diameters of 0.3 to 0.4 {micro}m based on the number distribution.

  8. Microstructure Refinement After the Addition of Titanium Particles in AZ31 Magnesium Alloy Resistance Spot Welds

    NASA Astrophysics Data System (ADS)

    Xiao, L.; Liu, L.; Esmaeili, S.; Zhou, Y.

    2012-02-01

    Microstructural evolution of AZ31 magnesium alloy welds without and with the addition of titanium powders during resistance spot welding was studied using optical microscopy, scanning electron microscopy, and transmission electron microscopy (TEM). The fusion zone of AZ31 magnesium alloy welds could be divided into columnar dendritic zone (CDZ) and equiaxed dendritic zone (EDZ). The well-developed CDZ in the vicinity of the fusion boundary was clearly restricted and the coarse EDZ in the central region was efficiently refined by adding titanium powders into the molten pool, compared with the as-received alloy welds. A microstructural analysis showed that these titanium particles of approximately 8 µm diameter acted as inoculants and promoted the nucleation of α-Mg grains and the formation of equiaxed dendritic grains during resistance spot welding. Tensile-shear testing was applied to evaluate the effect of titanium addition on the mechanical properties of welds. It was found that both strength and ductility of magnesium alloy welds were increased after the titanium addition. A TEM examination showed the existence of an orientation matching relationship between the added Ti particles and Mg matrix, i.e., [ {0 1bar{1}0} ]_{{Mg}} // [ { 1bar{2} 1bar{3}} ]_{{Ti}} {{and}} ( {000 2} )_{{Mg}} // ( 10bar{1}0)_{{Ti}} in some grains of Ti polycrystal particles. This local crystallographic matching could promote heterogeneous nucleation of the Mg matrix during welding. The diameter of the added Ti inoculant should be larger than 1.8 µm to make it a potent inoculant.

  9. Implications of premature needle abscission to the elemental nutrient status and nutrient retranslocation patterns of ozone injured Jeffrey pine

    SciTech Connect

    Patterson, M.T.; Rundel, P.W. )

    1993-06-01

    The foliar nutrient relations of ozone stressed Jeffrey pine growing in the southern Sierra Nevada of California was compared in trees retaining different numbers of needle cohorts. A 20% reduction in foliar nitrogen occurred in the oldest needles of both sensitive trees (retaining two years of needles) and resistant trees (retaining five years of needles) which coincided with the flush of new needles in late June. Nitrogen content of recently expanded needles on sensitive trees was 15% lower than needles of similar age on resistant trees immediately after becoming fully expanded, but was not significantly different two months after expansion. Resistant trees retranslocated higher fractions of all phloem-mobile nutrients measured (N, K, P and Mg) although the differences were small (between 3 and 9%). The smaller foliar pool of nutrients resulting from premature abscission may result in ozone sensitive trees relying more heavily on soil supplies for both short and long term nutrient requirements.

  10. Electroless Nickel Phosphorus Plating on AZ31

    NASA Astrophysics Data System (ADS)

    Shartal, Kh. M.; Kipouros, G. J.

    2009-04-01

    One of the major drawbacks to using magnesium parts in automotive applications is poor corrosion resistance, which can be improved with a nickel-boron coating placed on a nickel-phosphorus coating, which, in turn, is placed on a phosphate-permanganate conversion-coating layer produced on the magnesium alloy AZ31. This work reports on the determination of the optimum kinetic parameters for producing a coherent nickel-phosphorus coating using an electroless-procedure phosphate-permanganate conversion-coating layer and for studying the effects of the experimental variables of the electroless plating process on the phosphorus content, surface morphology, and structure of the electroless nickel-phosphorus (EN-P) coatings produced. Measurements of the plating rate as a function of experimental variables such as the compositions of the plating bath constituents, temperature, and pH were implemented using the weight-gain method; the phosphorus content of the EN-P coatings was measured using energy-dispersive spectroscopy (EDS) analysis. The surface morphology of the coating was examined using a scanning electron microscope (SEM); X-ray diffraction (XRD) was used to characterize the structure of each coating. An empirical rate law was determined for EN-P plating on a phosphate-permanganate conversion coating. It is found that the deposition rate of the EN-P coating increases by increasing the deposition temperature, the concentration of free nickel ions, and the concentration of hypophosphite ions in the plating bath. In addition, the deposition rate decreases by increasing both the plating bath pH and the concentration of citric acid in the plating bath.

  11. Nitrophenolates spray can alter boll abscission rate in cotton through enhanced peroxidase activity and increased ascorbate and phenolics levels.

    PubMed

    Djanaguiraman, M; Sheeba, J Annie; Devi, D Durga; Bangarusamy, U; Prasad, P V V

    2010-01-01

    Field studies were conducted from 2002 to 2005 to evaluate foliar spray of Atonik (a plant growth regulator (PGR) containing nitrophenolates) on cotton boll abscission rate by assessing various reactive oxygen species (ROS) contents, antioxidant content and antioxidant enzyme activity from 1 to 9 days after anthesis (DAA). The result indicated that the nitrophenolate spray reduced hydrogen peroxide (H(2)O(2)), superoxide anion (O(2)(-)) accumulation, lipid peroxidation (malondialdehyde--MDA), lipoxygenase (LOX) activity and membrane permeability relative to the control. Antioxidant enzyme activity (superoxide dismutase, SOD; ascorbate peroxidase, APX; peroxidase, POX; glutathione peroxidase, GSH-Px) was significantly increased by the nitrophenolate spray. The POX (217%) and GSH-Px (242%) activities were enhanced compared with APX (7.7%) activity at 9 DAA. Enhanced accumulation of ascorbate (245%), phenol (253%) and proline (150%) was observed in nitrophenolate-sprayed plants compared with control at 9 DAA. Because ascorbate content is increased by higher dehydroascorbate reductase (DHAR) enzyme activity, the ascorbate was able to replenish reducing equivalents to phenoxyl radicals, resulting in an increase of phenolic compounds. The increased phenolic acid content may be involved in scavenging the ROS produced in developing cotton boll. The role of DHAR and glutathione reductase (GR) in keeping higher levels of reduced ascorbate and low levels of endogenous H(2)O(2) in the developing cotton boll may be the prerequisite for boll retention. Based on the present work, we conclude that nitrophenolate-sprayed plants counteracted the deleterious effects of ROS by the peroxide/phenolics/ascorbate system, which causes reduced boll abscission and increased yield.

  12. Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid.

    PubMed

    Gu, X N; Zhou, W R; Zheng, Y F; Cheng, Y; Wei, S C; Zhong, S P; Xi, T F; Chen, L J

    2010-12-01

    Magnesium alloys have been recently developed as biodegradable implant materials, yet there has been no study concerning their corrosion fatigue properties under cyclic loading. In this study the die-cast AZ91D (A for aluminum 9%, Z for zinc 1% and D for a fourth phase) and extruded WE43 (W for yttrium 4%, E for rare earth mischmetal 3%) alloys were chosen to evaluate their fatigue and corrosion fatigue behaviors in simulated body fluid (SBF). The die-cast AZ91D alloy indicated a fatigue limit of 50MPa at 10⁷ cycles in air compared to 20MPa at 10⁶ cycles tested in SBF at 37°C. A fatigue limit of 110MPa at 10⁷ cycles in air was observed for extruded WE43 alloy compared to 40MPa at 10⁷ cycles tested in SBF at 37°C. The fatigue cracks initiated from the micropores when tested in air and from corrosion pits when tested in SBF, respectively. The overload zone of the extruded WE43 alloy exhibited a ductile fracture mode with deep dimples, in comparison to a brittle fracture mode for the die-cast AZ91D. The corrosion rate of the two experimental alloys increased under cyclic loading compared to that in the static immersion test.

  13. Fiber Laser Welded AZ31 Magnesium Alloy: The Effect of Welding Speed on Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Chowdhury, S. H.; Chen, D. L.; Bhole, S. D.; Powidajko, E.; Weckman, D. C.; Zhou, Y.

    2012-06-01

    This study was aimed at characterizing microstructural change and evaluating tensile and fatigue properties of fiber laser welded AZ31B-H24 Mg alloy with special attention to the effect of welding speed. Laser welding led to the formation of equiaxed dendrites in the fusion zone and columnar dendrites near the fusion zone boundary along with divorced eutectic Mg17Al12 particles and recrystallized grains in the heat-affected zone. The lowest hardness across the weld appeared in the fusion zone. Although the yield strength, ductility, and fatigue life decreased, the hardening capacity increased after laser welding, with a joint efficiency reaching about 90 pct. A higher welding speed resulted in a narrower fusion zone, smaller grain size, higher yield strength, and longer fatigue life, as well as a slightly lower strain-hardening capacity mainly because of the smaller grain sizes. Tensile fracture occurred in the fusion zone, whereas fatigue failure appeared essentially in between the heat-affected zone and the fusion zone. Fatigue cracks initiated from the near-surface welding defects and propagated by the formation of fatigue striations together with secondary cracks.

  14. The Effect of SiC Particle Addition During FSW on Microstructure and Mechanical Properties of AZ31 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Abbasi, M.; Abdollahzadeh, A.; Bagheri, B.; Omidvar, H.

    2015-12-01

    Welding and joining of magnesium alloys exert a profound effect on magnesium application expansion, especially in ground and air transportations where large-size, complex components are required. Due to specific physical properties of magnesium, its welding requires great control. In general, the solid-state nature of friction stir welding (FSW) process has been found to produce a low concentration of defects. In the current research, specimens from AZ31 magnesium alloy were welded together using the friction stir process with previously inserted SiC powder particles in the nugget zone. In other words, during the FSW process, the pre-placed SiC particles were stirred throughout the nugget zone of the weld. The results indicated that proper values of rotation and translation speeds led to good appearance of weld zone and suitable distribution of SiC particles producing increased weld strength. The comparison of the microstructures and mechanical properties of FS-welded AZ31 with those of FS-welded one using pre-placed SiC particles showed that the addition of SiC particles decreased the grain size and increased the strength and the formability index.

  15. AZ-101 Mixer Pump Test Qualification Test Procedures (QTP)

    SciTech Connect

    THOMAS, W.K.

    2000-01-10

    Describes the Qualification test procedure for the AZ-101 Mixer Pump Data Acquisition System (DAS). The purpose of this Qualification Test Procedure (QTP) is to confirm that the AZ-101 Mixer Pump System has been properly programmed and hardware configured correctly. This QTP will test the software setpoints for the alarms and also check the wiring configuration from the SIMcart to the HMI. An Acceptance Test Procedure (ATP), similar to this QTP will be performed to test field devices and connections from the field.

  16. Wetting and Interfacial Characteristics of Mg AZ61 Alloy/Galvanized Steel in Cold Metal Transfer Process

    NASA Astrophysics Data System (ADS)

    Lin, Qiaoli; Yang, Fan; Cao, Rui; Chen, Jianhong; Guo, Tingbiao

    2015-09-01

    The dynamic sessile drop method was used to study the wetting behavior of galvanized steel by molten Mg AZ61 alloy under cold metal transfer condition. The interfacial microstructures were also analyzed by using scanning electron microscope and energy dispersive spectrometry. The observed results showed that the wetting behavior was directly determined by the wire feed speed (or the heat input). The Al-Fe intermetallic layer and Zn-rich zone were observed both at the interface and at the close of triple line. The formations of these interfacial characteristics satisfy the thermodynamic characteristic of Mg-Al/Fe and Mg-Zn/Fe systems.

  17. Effect of preheat on TIG welding of AZ61 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Xu, Nan

    2012-04-01

    The effects of preheat treatments on the microstructures and mechanical properties of tungsten inert gas (TIG)-welded AZ61 magnesium alloy joints were studied by microstructural observations, microhardness tests and tensile tests. The results showed that the volume fraction of the lamellar β-Mg17(Al,Zn)12 intermetallic compound of in fusion zone (FZ) increased from 15% to 66% with an increase in preheat temperature. Moreover, the microhardness of the FZ and the ultimate tensile strength of the welded joints reached their maximum values when the preheat temperature was 300°C because more lamellar β-Mg17(Al,Zn)12 intermetallic compounds were distributed at the α-Mg grain boundaries and no cracks and pores formed in the FZ of the welded joint.

  18. Grain Refinement of AZ31 Magnesium Alloy Weldments by AC Pulsing Technique

    NASA Astrophysics Data System (ADS)

    Kishore Babu, N.; Cross, C. E.

    2012-11-01

    The current study has investigated the influence of alternating current pulsing on the structure and mechanical properties of AZ31 magnesium alloy gas tungsten arc (GTA) weldments. Autogenous full penetration bead-on-plate GTA welds were made under a variety of conditions including variable polarity (VP), variable polarity mixed (VPM), alternating current (AC), and alternating current pulsing (ACPC). AC pulsing resulted in significant refinement of weld metal when compared with the unpulsed conditions. AC pulsing leads to relatively finer and more equiaxed grain structure in GTA welds. In contrast, VP, VPM, and AC welding resulted in predominantly columnar grain structures. The reason for this grain refinement may be attributed to the periodic variations in temperature gradient and solidification rate associated with pulsing as well as weld pool oscillation observed in the ACPC welds. The observed grain refinement was shown to result in an appreciable increase in fusion zone hardness, tensile strength, and ductility.

  19. 19. View to the north of Riverside Avenue. AZ196(J. C. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. View to the north of Riverside Avenue. AZ-196(J. C. Gatti House) at left Part of AZ-197 (Shannon Copper Company Store) can be seen in group of buildings at right - Clifton Townsite, Confluence of Chase Creek & San Francisco River, Clifton, Greenlee County, AZ

  20. Integrin signaling via FAK-Src controls cytokinetic abscission by decelerating PLK1 degradation and subsequent recruitment of CEP55 at the midbody

    PubMed Central

    Kamranvar, Siamak A.; Gupta, Deepesh Kumar; Huang, Ying; Gupta, Rajesh Kumar; Johansson, Staffan

    2016-01-01

    Adhesion to extracellular matrix is required for cell cycle progression through the G1 phase and for the completion of cytokinesis in normal adherent cells. Cancer cells acquire the ability to proliferate anchorage-independently, a characteristic feature of malignantly transformed cells. However, the molecular mechanisms underlying this escape of the normal control mechanisms remain unclear. The current study aimed to identify adhesion-induced reactions regulating the cytokinesis of non-transformed human fibroblasts. The adhesion-dependent control of cytokinesis was found to occur at a late stage close to the abscission, during which the endosomal sorting complex required for transport (ESCRT) severs the thin intercellular bridge connecting two nascent daughter cells. CEP55, a key protein involved in the abscission process, was localized at the midbody in both adherent and non-adherent fibroblasts, but it was unable to efficiently recruit ALIX, TSG101, and consequently the ESCRT-III subunit CHMP4B was missing in the non-adherent cells. PLK1, a kinase that prevents premature recruitment of CEP55 to the midbody, disappeared from this site more rapidly in the non-adherent cells. A FAK-Src signaling pathway downstream of integrin-mediated cell adhesion was found to decelerate both PLK1 degradation and CEP55 accumulation at the midbody. These data identify the regulation of PLK1 and CEP55 as steps where integrins exert control over the cytokinetic abscission. PMID:27127172

  1. Motor activity of centromere-associated protein-E contributes to its localization at the center of the midbody to regulate cytokinetic abscission

    PubMed Central

    Ohashi, Akihiro; Ohori, Momoko; Iwai, Kenichi

    2016-01-01

    Accurate control of cytokinesis is critical for genomic stability to complete high-fidelity transmission of genetic material to the next generation. A number of proteins accumulate in the intercellular bridge (midbody) during cytokinesis, and the dynamics of these proteins are temporally and spatially orchestrated to complete the process. In this study, we demonstrated that localization of centromere-associated protein-E (CENP-E) at the midbody is involved in cytokinetic abscission. The motor activity of CENP-E and the C-terminal midbody localization domain, which includes amino acids 2659–2666 (RYFDNSSL), are involved in the anchoring of CENP-E to the center of the midbody. Furthermore, CENP-E motor activity contributes to the accumulation of protein regulator of cytokinesis 1 (PRC1) in the midbody during cytokinesis. Midbody localization of PRC1 is critical to the antiparallel microtubule structure and recruitment of other midbody-associated proteins. Therefore, CENP-E motor activity appears to play important roles in the organization of these proteins to complete cytokinetic abscission. Our findings will be helpful for understanding how each step of cytokinesis is regulated to complete cytokinetic abscission. PMID:27835888

  2. 78 FR 3877 - Radio Broadcasting Services; Peach Springs, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ... COMMISSION 47 CFR Part 73 Radio Broadcasting Services; Peach Springs, AZ AGENCY: Federal Communications... filing procedures for comments, see 47 CFR 1.415 and 1.420. List of Subjects in 47 CFR Part 73 Radio, Radio broadcasting. Federal Communications Commission. Nazifa Sawez, Assistant Chief, Audio...

  3. 75 FR 76293 - Radio Broadcasting Services; Peach Springs, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... COMMISSION 47 CFR Part 73 Radio Broadcasting Services; Peach Springs, AZ AGENCY: Federal Communications... CFR Part 73 Radio, Radio broadcasting. 0 As stated in the preamble, the Federal Communications Commission amends 47 CFR part 73 as follows: PART 73--RADIO BROADCAST SERVICES 0 1. The authority...

  4. 77 FR 10649 - Modification of Class E Airspace; Douglas, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ... controlled airspace is necessary to accommodate aircraft using VHF Omni-Directional Radio Range/Distance... International Airport, Douglas, AZ. Decommissioning of the Cochise VHF Omni-Directional Radio Range Tactical Air Navigational Aid (VORTAC) has made this action necessary for the safety and management of aircraft...

  5. 75 FR 883 - Environmental Impact Statement; Maricopa County, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... Federal Highway Administration Environmental Impact Statement; Maricopa County, AZ AGENCY: Federal Highway... public that an Environmental Impact Statement will be prepared for a proposed highway project in Maricopa... prepare an Environmental Impact Statement (EIS) on proposed operational improvements to the Interstate...

  6. Mixer pump test plan for double shell tank AZ-101

    SciTech Connect

    STAEHR, T.W.

    1999-05-12

    Mixer pump systems have been chosen as the method for retrieval of tank wastes contained in double shell tanks at Hanford. This document describes the plan for testing and demonstrating the ability of two 300 hp mixer pumps to mobilize waste in tank AZ-101. The mixer pumps, equipment and instrumentation to monitor the test were installed by Project W-151.

  7. 75 FR 57383 - Modification of Class E Airspace; Willcox, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... Class E airspace at Willcox, AZ, to accommodate aircraft using a new Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures (SIAPs) at Cochise County Airport. This will... County Airport, to accommodate IFR aircraft executing new RNAV (GPS) SIAPs at the airport. This action...

  8. Super-resolution microscopy of the synaptic active zone

    PubMed Central

    Ehmann, Nadine; Sauer, Markus; Kittel, Robert J.

    2015-01-01

    Brain function relies on accurate information transfer at chemical synapses. At the presynaptic active zone (AZ) a variety of specialized proteins are assembled to complex architectures, which set the basis for speed, precision and plasticity of synaptic transmission. Calcium channels are pivotal for the initiation of excitation-secretion coupling and, correspondingly, capture a central position at the AZ. Combining quantitative functional studies with modeling approaches has provided predictions of channel properties, numbers and even positions on the nanometer scale. However, elucidating the nanoscopic organization of the surrounding protein network requires direct ultrastructural access. Without this information, knowledge of molecular synaptic structure-function relationships remains incomplete. Recently, super-resolution microscopy (SRM) techniques have begun to enter the neurosciences. These approaches combine high spatial resolution with the molecular specificity of fluorescence microscopy. Here, we discuss how SRM can be used to obtain information on the organization of AZ proteins. PMID:25688186

  9. Safety Zones

    EPA Pesticide Factsheets

    These are established primarily to reduce the accidental spread of hazardous substances by workers or equipment from contaminated areas to clean areas. They include the exclusion (hot) zone, contamination reduction (warm) zone, and support (cold) zone.

  10. Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg-Ca, AZ31, AZ91 alloys.

    PubMed

    Gu, X N; Zheng, Y F; Chen, L J

    2009-12-01

    The electrochemical behavior of potential orthopedic Mg-Ca, AZ31 and AZ91 alloys was studied in Hank's solution, Dulbecco's Modified Eagle's Medium (DMEM) and serum-containing medium (DMEM adding 10% fetal bovine serum (DMEM+FBS)) over a 7 day immersion period. The biocorrosion of the above three alloys for various immersion time intervals was investigated by linear polarization and electrochemical impedance spectroscopy (EIS). After 7 day immersion, potentiodynamic polarization tests were carried out and the surface morphologies of experimental samples were examined by scanning electron microscopy (SEM) observation complemented by energy-disperse spectrometer (EDS) analysis. It was shown that the corrosion of magnesium alloys was influenced by the composition of the solution. The results indicated that chloride ion could reduce the corrosion resistance and the hydrocarbonate ions could induce rapid surface passivation. The adsorbed amino acid on the experimental magnesium alloys' surface increased their polarization resistance and reduced current densities. The influence of the serum protein on corrosion was found to be associated with the magnesium alloy compositions. A Mg-Ca alloy exhibited an increased corrosion rate in the presence of serum protein. An AZ31 alloy showed an increased corrosion rate in DMEM+FBS in the initial 3 day immersion and the corrosion rate decreased thereafter. An AZ91 alloy, with high Al content, showed a reduced corrosion rate with the addition of FBS into DMEM.

  11. 77 FR 75609 - Approval for Manufacturing Authority; Foreign-Trade Zone 277; Suntech Arizona, Inc. (Solar Panel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Foreign-Trade Zones Board Approval for Manufacturing Authority; Foreign-Trade Zone 277; Suntech Arizona, Inc. (Solar Panel Manufacturing); Goodyear, AZ Pursuant to its authority under the Foreign-Trade...

  12. Effects of Heat Treatment on Grain-Boundary β-Mg17Al12 and Fracture Properties of Resistance Spot-Welded AZ80 Mg Alloy

    NASA Astrophysics Data System (ADS)

    Niknejad, Seyed Tirdad; Liu, Lei; Nguyen, Tam; Lee, Mok-Young; Esmaeili, Shahrzad; Zhou, Norman Y.

    2013-08-01

    The distribution and morphology of β-Mg17Al12 intermetallic phase in resistance spot-welded AZ80 Mg alloy were investigated by means of optical microscopy, scanning electron microscopy, and X-ray diffraction. The influence of intermetallic phase on mechanical strength was studied by tensile shear testing and fractography. The results showed that continuous networks of β-Mg17Al12 formed along grain boundaries in both the nugget and heat-affected zone of the spot-welded AZ80 Mg alloy. Those continuous grain-boundary β-Mg17Al12 networks acted as effective crack propagation paths, which had negative effects on the weld strength. Post-weld solution heat treatment effectively reduced the amount of β-Mg17Al12 and broke the grain-boundary intermetallic networks in both the nugget and heat-affected zone. This significantly increased the weld strength of AZ80 Mg alloy and changed the fracture mode from nugget pull-out in the as-welded condition to through-thickness after heat treatment.

  13. Friction Stir Welded AZ31 Magnesium Alloy: Microstructure, Texture, and Tensile Properties

    NASA Astrophysics Data System (ADS)

    Chowdhury, S. H.; Chen, D. L.; Bhole, S. D.; Cao, X.; Wanjara, P.

    2013-01-01

    This study was aimed at characterizing the microstructure, texture and tensile properties of a friction stir welded AZ31B-H24 Mg alloy with varying tool rotational rates and welding speeds. Friction stir welding (FSW) resulted in the presence of recrystallized grains and the relevant drop in hardness in the stir zone (SZ). The base alloy contained a strong crystallographic texture with basal planes (0002) largely parallel to the rolling sheet surface and < {11bar{2}0} rangle directions aligned in the rolling direction (RD). After FSW the basal planes in the SZ were slightly tilted toward the TD determined from the sheet normal direction (or top surface) and also slightly inclined toward the RD determined from the transverse direction (or cross section) due to the intense shear plastic flow near the pin surface. The prismatic planes (10bar{1}0) and pyramidal planes (10bar{1}1) formed fiber textures. After FSW both the strength and ductility of the AZ31B-H24 Mg alloy decreased with a joint efficiency in-between about 75 and 82 pct due to the changes in both grain structure and texture, which also weakened the strain rate dependence of tensile properties. The welding speed and rotational rate exhibited a stronger effect on the YS than the UTS. Despite the lower ductility, strain-hardening exponent and hardening capacity, a higher YS was obtained at a higher welding speed and lower rotational rate mainly due to the smaller recrystallized grains in the SZ arising from the lower heat input.

  14. Superplastic Properties of AZ31 and AZ31-1.0Y-1.3Sr Alloy Produced by Twin-Roll Casting and Sequential Hot Rolling

    NASA Astrophysics Data System (ADS)

    Ning, Huiyan; Yu, Yandong; Lin, Kai; Wen, Lihua; Liu, Chunxiang

    2016-02-01

    Superplastic mechanical properties of the AZ31 and AZ31-1.0Y-1.3Sr magnesium alloy sheets produced by twin-roll casting and sequential hot rolling (TRC) were investigated. The AZ31-1.0Y-1.3Sr alloy sheets with the thickness of 1 mm were prepared by twin-roll casting process, which exhibited finer equiaxed grain structure. Uniaxial tensile testing and gas blow forming on AZ31 and AZ31-1.0Y-1.3Sr magnesium alloy sheets were carried out. Results show that the superplastic mechanical properties of AZ31-1.0Y-1.3Sr alloys are better than those of AZ31 alloys at 400 °C and the strain rate of 7 × 10-4/s. The addition of Y and Sr elements is helpful to improve the formability of AZ31 alloy. Grain boundary sliding plays a dominant role in superplastic forming.

  15. Characterization of mussel H2A.Z.2: a new H2A.Z variant preferentially expressed in germinal tissues from Mytilus.

    PubMed

    Rivera-Casas, Ciro; González-Romero, Rodrigo; Vizoso-Vazquez, Ángel; Cheema, Manjinder S; Cerdán, M Esperanza; Méndez, Josefina; Ausió, Juan; Eirin-Lopez, Jose M

    2016-10-01

    Histones are the fundamental constituents of the eukaryotic chromatin, facilitating the physical organization of DNA in chromosomes and participating in the regulation of its metabolism. The H2A family displays the largest number of variants among core histones, including the renowned H2A.X, macroH2A, H2A.B (Bbd), and H2A.Z. This latter variant is especially interesting because of its regulatory role and its differentiation into 2 functionally divergent variants (H2A.Z.1 and H2A.Z.2), further specializing the structure and function of vertebrate chromatin. In the present work we describe, for the first time, the presence of a second H2A.Z variant (H2A.Z.2) in the genome of a non-vertebrate animal, the mussel Mytilus. The molecular and evolutionary characterization of mussel H2A.Z.1 and H2A.Z.2 histones is consistent with their functional specialization, supported on sequence divergence at promoter and coding regions as well as on varying gene expression patterns. More precisely, the expression of H2A.Z.2 transcripts in gonadal tissue and its potential upregulation in response to genotoxic stress might be mirroring the specialization of this variant in DNA repair. Overall, the findings presented in this work complement recent reports describing the widespread presence of other histone variants across eukaryotes, supporting an ancestral origin and conserved role for histone variants in chromatin.

  16. Constitutive turnover of histone H2A.Z at yeast promoters requires the preinitiation complex

    PubMed Central

    Tramantano, Michael; Sun, Lu; Au, Christy; Labuz, Daniel; Liu, Zhimin; Chou, Mindy; Shen, Chen; Luk, Ed

    2016-01-01

    The assembly of the preinitiation complex (PIC) occurs upstream of the +1 nucleosome which, in yeast, obstructs the transcription start site and is frequently assembled with the histone variant H2A.Z. To understand the contribution of the transcription machinery in the disassembly of the +1 H2A.Z nucleosome, conditional mutants were used to block PIC assembly. A quantitative ChIP-seq approach, which allows detection of global occupancy change, was employed to measure H2A.Z occupancy. Blocking PIC assembly resulted in promoter-specific H2A.Z accumulation, indicating that the PIC is required to evict H2A.Z. By contrast, H2A.Z eviction was unaffected upon depletion of INO80, a remodeler previously reported to displace nucleosomal H2A.Z. Robust PIC-dependent H2A.Z eviction was observed at active and infrequently transcribed genes, indicating that constitutive H2A.Z turnover is a general phenomenon. Finally, sites with strong H2A.Z turnover precisely mark transcript starts, providing a new metric for identifying cryptic and alternative sites of initiation. DOI: http://dx.doi.org/10.7554/eLife.14243.001 PMID:27438412

  17. The Corrosion Protection of Magnesium Alloy AZ31B

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Mendrek, M. J.; Mitchell, M. L.; Torres, P. D.

    1997-01-01

    Corrosion rates for bare and coated Magnesium alloy AZ31B have been measured. Two coatings, Dow-23(Trademark) and Tagnite(Trademark), have been tested by electrochemical methods and their effectiveness determined. Electrochemical methods employed were the scanning reference electrode technique (SRET), the polarization resistance technique (PR) and the electrochemical impedance spectroscopy technique (EIS). In addition, general corrosion and stress corrosion methods were employed to examine the effectiveness of the above coatings in 90 percent humidity. Results from these studies are presented.

  18. Suppression of discontinuous precipitation in AZ91 by addition of Sn

    NASA Astrophysics Data System (ADS)

    Jung, I. C.; Kim, Y. K.; Cho, T. H.; Oh, S. H.; Kim, T. E.; Shon, S. W.; Kim, W. T.; Kim, D. H.

    2014-01-01

    The effect of Sn (5 wt%) addition on the aging behavior of the AZ91 alloy has been investigated in the present study. The addition of Sn effectively suppresses the discontinuous precipitation during aging treatment. The aging response of the Sn containing AZ91 alloy is far better than that of the AZ91 alloy due to much higher density of continuous precipitation in the matrix. The yield strength and total elongation to failure at the peak aged condition of the AZ91 and Sn containing AZ91 alloys are 119.4 and 161.9 MPa and 8.8 and 8.6%, respectively, indicating that 35.6% increase of yield strength can be obtained by the addition of Sn in the AZ91 alloy maintaining almost same level of ductility.

  19. Reorganization of Damaged Chromatin by the Exchange of Histone Variant H2A.Z-2

    SciTech Connect

    Nishibuchi, Ikuno; Suzuki, Hidekazu; Kinomura, Aiko; Sun, Jiying; Liu, Ning-Ang; Horikoshi, Yasunori; Shima, Hiroki; Kusakabe, Masayuki; Harata, Masahiko; Fukagawa, Tatsuo; Ikura, Tsuyoshi; Ishida, Takafumi; Nagata, Yasushi; Tashiro, Satoshi

    2014-07-15

    Purpose: The reorganization of damaged chromatin plays an important role in the regulation of the DNA damage response. A recent study revealed the presence of 2 vertebrate H2A.Z isoforms, H2A.Z-1 and H2A.Z-2. However, the roles of the vertebrate H2A.Z isoforms are still unclear. Thus, in this study we examined the roles of the vertebrate H2A.Z isoforms in chromatin reorganization after the induction of DNA double-strand breaks (DSBs). Methods and Materials: To examine the dynamics of H2A.Z isoforms at damaged sites, we constructed GM0637 cells stably expressing each of the green fluorescent protein (GFP)-labeled H2A.Z isoforms, and performed fluorescence recovery after photobleaching (FRAP) analysis and inverted FRAP analysis in combination with microirradiation. Immunofluorescence staining using an anti-RAD51 antibody was performed to study the kinetics of RAD51 foci formation after 2-Gy irradiation of wild-type (WT), H2A.Z-1- and H2A.Z-2-deficient DT40 cells. Colony-forming assays were also performed to compare the survival rates of WT, H2A.Z-1-, and H2A.Z-2-deficient DT40 cells with control, and H2A.Z-1- and H2A.Z-2-depleted U2OS cells after irradiation. Results: FRAP analysis revealed that H2A.Z-2 was incorporated into damaged chromatin just after the induction of DSBs, whereas H2A.Z-1 remained essentially unchanged. Inverted FRAP analysis showed that H2A.Z-2 was released from damaged chromatin. These findings indicated that H2A.Z-2 was exchanged at DSB sites immediately after the induction of DSBs. RAD51 focus formation after ionizing irradiation was disturbed in H2A.Z-2-deficient DT40 cells but not in H2A.Z-1-deficient cells. The survival rate of H2A.Z-2-deficient cells after irradiation was lower than those of WT and H2A.Z-1- DT40 cells. Similar to DT40 cells, H2A.Z-2-depleted U2OS cells were also radiation-sensitive compared to control and H2A.Z-1-depleted cells. Conclusions: We found that vertebrate H2A.Z-2 is involved in the regulation of the DNA

  20. Conservation of the abscission signaling peptide IDA during Angiosperm evolution: withstanding genome duplications and gain and loss of the receptors HAE/HSL2

    PubMed Central

    Stø, Ida M.; Orr, Russell J. S.; Fooyontphanich, Kim; Jin, Xu; Knutsen, Jonfinn M. B.; Fischer, Urs; Tranbarger, Timothy J.; Nordal, Inger; Aalen, Reidunn B.

    2015-01-01

    The peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), which signals through the leucine-rich repeat receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2), controls different cell separation events in Arabidopsis thaliana. We hypothesize the involvement of this signaling module in abscission processes in other plant species even though they may shed other organs than A. thaliana. As the first step toward testing this hypothesis from an evolutionarily perspective we have identified genes encoding putative orthologs of IDA and its receptors by BLAST searches of publically available protein, nucleotide and genome databases for angiosperms. Genes encoding IDA or IDA-LIKE (IDL) peptides and HSL proteins were found in all investigated species, which were selected as to represent each angiosperm order with available genomic sequences. The 12 amino acids representing the bioactive peptide in A. thaliana have virtually been unchanged throughout the evolution of the angiosperms; however, the number of IDL and HSL genes varies between different orders and species. The phylogenetic analyses suggest that IDA, HSL2, and the related HSL1 gene, were present in the species that gave rise to the angiosperms. HAE has arisen from HSL1 after a genome duplication that took place after the monocot—eudicots split. HSL1 has also independently been duplicated in the monocots, while HSL2 has been lost in gingers (Zingiberales) and grasses (Poales). IDA has been duplicated in eudicots to give rise to functionally divergent IDL peptides. We postulate that the high number of IDL homologs present in the core eudicots is a result of multiple whole genome duplications (WGD). We substantiate the involvement of IDA and HAE/HSL2 homologs in abscission by providing gene expression data of different organ separation events from various species. PMID:26579174

  1. A Jasmonate ZIM-Domain Protein NaJAZd Regulates Floral Jasmonic Acid Levels and Counteracts Flower Abscission in Nicotiana attenuata Plants

    PubMed Central

    Oh, Youngjoo; Baldwin, Ian T.; Galis, Ivan

    2013-01-01

    Jasmonic acid is an important regulator of plant growth, development and defense. The jasmonate-ZIM domain (JAZ) proteins are key regulators in jasmonate signaling ubiquitously present in flowering plants but their functional annotation remains largely incomplete. Recently, we identified 12 putative JAZ proteins in native tobacco, Nicotiana attenuata, and initiated systematic functional characterization of these proteins by reverse genetic approaches. In this report, Nicotiana attenuata plants silenced in the expression of NaJAZd (irJAZd) by RNA interference were used to characterize NaJAZd function. Although NaJAZd transcripts were strongly and transiently up-regulated in the rosette leaves by simulated herbivory treatment, we did not observe strong defense-related phenotypes, such as altered herbivore performance or the constitutive accumulation of defense-related secondary metabolites in irJAZd plants compared to wild type plants, both in the glasshouse and the native habitat of Nicotiana attenuata in the Great Basin Desert, Utah, USA. Interestingly, irJAZd plants produced fewer seed capsules than did wild type plants as a result of increased flower abscission in later stages of flower development. The early- and mid-developmental stages of irJAZd flowers had reduced levels of jasmonic acid and jasmonoyl-L-isoleucine, while fully open flowers had normal levels, but these were impaired in NaMYB305 transcript accumulations. Previously, NaMYB305-silenced plants were shown to have strong flower abscission phenotypes and contained lower NECTARIN 1 transcript levels, phenotypes which are copied in irJAZd plants. We propose that the NaJAZd protein is required to counteract flower abscission, possibly by regulating jasmonic acid and jasmonoyl-L-isoleucine levels and/or expression of NaMYB305 gene in Nicotiana attenuata flowers. This novel insight into the function of JAZ proteins in flower and seed development highlights the diversity of functions played by jasmonates

  2. Hair cells use active zones with different voltage dependence of Ca2+ influx to decompose sounds into complementary neural codes

    PubMed Central

    Ohn, Tzu-Lun; Rutherford, Mark A.; Jing, Zhizi; Jung, Sangyong; Duque-Afonso, Carlos J.; Hoch, Gerhard; Picher, Maria Magdalena; Scharinger, Anja; Strenzke, Nicola; Moser, Tobias

    2016-01-01

    For sounds of a given frequency, spiral ganglion neurons (SGNs) with different thresholds and dynamic ranges collectively encode the wide range of audible sound pressures. Heterogeneity of synapses between inner hair cells (IHCs) and SGNs is an attractive candidate mechanism for generating complementary neural codes covering the entire dynamic range. Here, we quantified active zone (AZ) properties as a function of AZ position within mouse IHCs by combining patch clamp and imaging of presynaptic Ca2+ influx and by immunohistochemistry. We report substantial AZ heterogeneity whereby the voltage of half-maximal activation of Ca2+ influx ranged over ∼20 mV. Ca2+ influx at AZs facing away from the ganglion activated at weaker depolarizations. Estimates of AZ size and Ca2+ channel number were correlated and larger when AZs faced the ganglion. Disruption of the deafness gene GIPC3 in mice shifted the activation of presynaptic Ca2+ influx to more hyperpolarized potentials and increased the spontaneous SGN discharge. Moreover, Gipc3 disruption enhanced Ca2+ influx and exocytosis in IHCs, reversed the spatial gradient of maximal Ca2+ influx in IHCs, and increased the maximal firing rate of SGNs at sound onset. We propose that IHCs diversify Ca2+ channel properties among AZs and thereby contribute to decomposing auditory information into complementary representations in SGNs. PMID:27462107

  3. Myotubularin-related proteins 3 and 4 interact with polo-like kinase 1 and centrosomal protein of 55 kDa to ensure proper abscission.

    PubMed

    St-Denis, Nicole; Gupta, Gagan D; Lin, Zhen Yuan; Gonzalez-Badillo, Beatriz; Pelletier, Laurence; Gingras, Anne-Claude

    2015-04-01

    The myotubularins are a family of phosphatases that dephosphorylate the phosphatidylinositols phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-phosphate. Several family members are mutated in disease, yet the biological functions of the majority of myotubularins remain unknown. To gain insight into the roles of the individual enzymes, we have used affinity purification coupled to mass spectrometry to identify protein-protein interactions for the myotubularins. The myotubularin interactome comprises 66 high confidence (false discovery rate ≤1%) interactions, including 18 pairwise interactions between individual myotubularins. The results reveal a number of potential signaling contexts for this family of enzymes, including an intriguing, novel role for myotubularin-related protein 3 and myotubularin-related protein 4 in the regulation of abscission, the final step of mitosis in which the membrane bridge remaining between two daughter cells is cleaved. Both depletion and overexpression of either myotubularin-related protein 3 or myotubularin-related protein 4 result in abnormal midbody morphology and cytokinesis failure. Interestingly, myotubularin-related protein 3 and myotubularin-related protein 4 do not exert their effects through lipid regulation at the midbody, but regulate abscission during early mitosis, by interacting with the mitotic kinase polo-like kinase 1, and with centrosomal protein of 55 kDa (CEP55), an important regulator of abscission. Structure-function analysis reveals that, consistent with known intramyotubularin interactions, myotubularin-related protein 3 and myotubularin-related protein 4 interact through their respective coiled coil domains. The interaction between myotubularin-related protein 3 and polo-like kinase 1 relies on the divergent, nonlipid binding Fab1, YOTB, Vac1, and EEA1 domain of myotubularin-related protein 3, and myotubularin-related protein 4 interacts with CEP55 through a short GPPXXXY motif, analogous to

  4. Tank 241-AZ-102 Privatization Push Mode Core Sampling and Analysis Plan

    SciTech Connect

    RASMUSSEN, J.H.

    2000-05-23

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AZ-102.

  5. Corrosion Susceptibilities of Magnesium Alloys AZ91, EZ33 and ZE41

    DTIC Science & Technology

    1983-06-01

    34lw/i TECHNICAL REPORT ARSCD-TR-83007 CORROSION SUSCEPTIBILITIES OF MAGNESIUFif ALLOYS AZ91 , EZ33 AND ZE41 ANTHONY GALLACCIO WILLIAM T. EBIHARA pI... AZ91 , EZ33 and ZE41 alloys Corrosion 20. ABsTrR ACT (Cotfmue a- reverisnel & /t nr-mw.e.• a idertifr by block number) An assessment was made of the...Discussion 3 Results AZ91 Panels 4 EZ33 Panels 4 ZE41 -Panels AZ91 :Housing 4 Discussion of Results 5 Conclusions 6 References 7 Distribution List 25

  6. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    SciTech Connect

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-30

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  7. Multiblock grid generation with automatic zoning

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.

    1995-01-01

    An overview will be given for multiblock grid generation with automatic zoning. We shall explore the many advantages and benefits of this exciting technology and will also see how to apply it to a number of interesting cases. The technology is available in the form of a commercial code, GridPro(registered trademark)/az3000. This code takes surface geometry definitions and patterns of points as its primary input and produces high quality grids as its output. Before we embark upon our exploration, we shall first give a brief background of the environment in which this technology fits.

  8. Quantifying soil and critical zone variability in a forested catchment through digital soil mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantifying catchment scale soil property variation yields insights into critical zone evolution and function. The objective of this study was to quantify and predict the spatial distribution of soil properties within a high elevation forested catchment in southern AZ, USA using a combined set of di...

  9. Are We on the Right Track: Can Our Understanding of Abscission in Model Systems Promote or Derail Making Improvements in Less Studied Crops?

    PubMed Central

    Patterson, Sara E.; Bolivar-Medina, Jenny L.; Falbel, Tanya G.; Hedtcke, Janet L.; Nevarez-McBride, Danielle; Maule, Andrew F.; Zalapa, Juan E.

    2016-01-01

    As the world population grows and resources and climate conditions change, crop improvement continues to be one of the most important challenges for agriculturalists. The yield and quality of many crops is affected by abscission or shattering, and environmental stresses often hasten or alter the abscission process. Understanding this process can not only lead to genetic improvement, but also changes in cultural practices and management that will contribute to higher yields, improved quality and greater sustainability. As plant scientists, we have learned significant amounts about this process through the study of model plants such as Arabidopsis, tomato, rice, and maize. While these model systems have provided significant valuable information, we are sometimes challenged to use this knowledge effectively as variables including the economic value of the crop, the uniformity of the crop, ploidy levels, flowering and crossing mechanisms, ethylene responses, cultural requirements, responses to changes in environment, and cellular and tissue specific morphological differences can significantly influence outcomes. The value of genomic resources for lesser-studied crops such as cranberries and grapes and the orphan crop fonio will also be considered. PMID:26858730

  10. 77 FR 62216 - Proposed Foreign-Trade Zone-Eloy, AZ Comment Period on New Evidence

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... evidence is open through November 13, 2012. Submissions shall be addressed to the Board's Executive...: October 5, 2012. Andrew McGilvray, Executive Secretary. [FR Doc. 2012-25166 Filed 10-11-12; 8:45...

  11. 78 FR 48303 - Establishment of Class E Airspace; Tuba City, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-08

    ... TRANSPORTATION Federal Aviation Administration 14 CFR Parts 71 Establishment of Class E Airspace; Tuba City, AZ... airspace at the Tuba City VHF Omni-Directional Radio Range Tactical Air Navigational Aid (VORTAC), Tuba City, AZ. In that rule, an error was made in the legal description for Tuba City, identifying...

  12. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks

    PubMed Central

    Zilberman, Daniel; Coleman-Derr, Devin; Ballinger, Tracy; Henikoff, Steven

    2010-01-01

    Eukaryotic chromatin is separated into functional domains differentiated by posttranslational histone modifications, histone variants, and DNA methylation1–6. Methylation is associated with repression of transcriptional initiation in plants and animals, and is frequently found in transposable elements. Proper methylation patterns are critical for eukaryotic development4,5, and aberrant methylation-induced silencing of tumor suppressor genes is a common feature of human cancer7. In contrast to methylation, the histone variant H2A.Z is preferentially deposited by the Swr1 ATPase complex near 5′ ends of genes where it promotes transcriptional competence8–20. How DNA methylation and H2A.Z influence transcription remains largely unknown. Here we show that in the plant Arabidopsis thaliana, regions of DNA methylation are quantitatively deficient in H2A.Z. Exclusion of H2A.Z is seen at sites of DNA methylation in the bodies of actively transcribed genes and in methylated transposons. Mutation of the MET1 DNA methyltransferase, which causes both losses and gains of DNA methylation4,5, engenders opposite changes in H2A.Z deposition, while mutation of the PIE1 subunit of the Swr1 complex that deposits H2A.Z17 leads to genome-wide hypermethylation. Our findings indicate that DNA methylation can influence chromatin structure and effect gene silencing by excluding H2A.Z, and that H2A.Z protects genes from DNA methylation. PMID:18815594

  13. 78 FR 32086 - Establishment of Class E Airspace; Tuba City, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... airspace at the Tuba City VHF Omni-Directional Radio Range Tactical Air Navigational Aid (VORTAC), Tuba City, AZ, to facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of Denver..., at the Tuba City VORTAC, Tuba City, AZ. This action aids in containing aircraft while in...

  14. CONCENTRATIONS OF PESTICIDE FROM DERMAL SURFACES: A COMPARISON OF NHEXAS & AZ BORDER SAMPLES

    EPA Science Inventory

    NHEXAS-AZ was a statewide survey designed to gather data on the distributions of exposure from various media. Results of intensive sampling were obtained from 179 homes. Border-AZ was a similar study focusing on homes within 40 km of the Arizona-Mexico Border; similar results...

  15. Twinning and Softening of Cast Magnesium Alloy AZ91 under Hot Compression

    NASA Astrophysics Data System (ADS)

    Junwei, Liu; Shiqiang, Lu; Xianjuan, Dong; Xuan, Xiao; Guifa, Li

    2013-11-01

    Cast magnesium alloy AZ91 is studied after uniaxial compression in the range from room temperature to 400°C. The alloy is tested for compression and its microstructure is determined. The values of the parameter of strain hardening are found. The main mechanisms of structural transformations developing under compressive deformation of alloy AZ91 at low and moderate temperatures are considered.

  16. 76 FR 2000 - Modification of Class E Airspace; Show Low, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ... Federal Aviation Administration 14 CFR Part 71 Modification of Class E Airspace; Show Low, AZ AGENCY... airspace at Show Low, AZ, to accommodate aircraft using a new Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedures at Show Low Regional Airport. This will improve...

  17. 76 FR 64041 - Proposed Amendment of Class E Airspace; Show Low, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... Federal Aviation Administration 14 CFR Part 71 Proposed Amendment of Class E Airspace; Show Low, AZ AGENCY... action proposes to modify Class E airspace at Show Low Regional Airport, Show Low, AZ. Controlled...) standard instrument approach procedures at Show Low Regional Airport. The FAA is proposing this action...

  18. 76 FR 82113 - Amendment of Class E Airspace; Show Low, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-30

    ... Federal Aviation Administration 14 CFR Part 71 Amendment of Class E Airspace; Show Low, AZ AGENCY: Federal... Show Low Regional Airport, Show Low, AZ. Controlled airspace is necessary to accommodate aircraft using... Low Regional Airport. This improves the safety and management of Instrument Flight Rules...

  19. 78 FR 25404 - Proposed Establishment of Class E Airspace; Grand Canyon, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... Range/Distance Measuring Equipment (VOR/DME) navigation aid, Grand Canyon, AZ, to facilitate vectoring... route domestic airspace extending upward from 1,200 feet above the surface at the Grand Canyon VOR/DME... airspace at the Grand Canyon VOR/DME, Grand Canyon, AZ. This proposal will be subject to an...

  20. 77 FR 2241 - Radio Broadcasting Services; Ehrenberg, First Mesa, Kachina Village, Wickenburg, and Williams, AZ...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-17

    ..., and Williams, AZ; and Application of Univision Radio License Corporation, KHOV-FM, Wickenburg, AZ... by Rocket Radio, Inc., proposes the allotment of FM Channel 287C2 at Williams, Arizona, as the... and hybrid application, filed by Univision Radio License Corporation, licensee of Station...

  1. 78 FR 3027 - Notice of Temporary Closures of Public Lands in La Paz County, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... Bureau of Land Management [LLAZC03000.L51050000.EA0000 LVRCA13SA040.241A, AZ-SRP-030-10-04 and AZ-SRP-030... Management, Interior. ACTION: Notice. SUMMARY: The Bureau of Land Management (BLM) Lake Havasu Field Office... 250'' and ``BITD 425'' events. DATES: These closures will be in effect from 2 p.m., January 11,...

  2. Arizonans on Edge...So Why Not Involved? AZ Views. Volume 2, Issue 1

    ERIC Educational Resources Information Center

    Morrison Institute for Public Policy, Arizona State University, 2009

    2009-01-01

    What a difference a year makes. In June 2008, "AZ Views" reported that "Arizonans have a strong sense of job security, despite the national economic slump and the state's budget crisis." That is no longer true, as this edition of "AZ Views" shows, and Arizona's economic situation arguably is the best example of the…

  3. Effects of thermomechanical treatments on the microstructures and mechanical properties of GTA-welded AZ31B magnesium alloy

    NASA Astrophysics Data System (ADS)

    Chu, Ya-jie; Chen, Jian; Li, Xiao-quan; Wu, Shen-qing; Yang, Zong-hui

    2012-10-01

    Thermomechanical treatments were carried out to improve the properties of AZ31B joints prepared by gas tungsten arc welding. The microstructures of the joints were studied by optical microscopy and scanning electron microscopy with energy-dispersive spectrometry. Tensile tests and hardness tests were performed to investigate the effects of thermomechanical treatments on the mechanical properties of the joints. It is found that the thermomechanical-treated joints show superior mechanical properties against the as-welded joints, and their ultimate tensile strength can reach more than 92% of the base material. This mainly attributes to the formation of fine equiaxed grains in the fusion zone. After thermomechanical treatments the dendrites are transformed to fine spherical grains, and the dendritic segregation can be effectively eliminated.

  4. Microstructure and rolling capability of modified AZ31-Ce-Gd alloys

    SciTech Connect

    Li Wenping; Zhou Hong; Lin Pengyu; Zhao Shizhe

    2009-11-15

    AZ31-Ce-Gd alloys were studied and the influence of cerium (Ce) and gadolinium (Gd) on the microstructure and rolling capability of AZ31 alloy was investigated. The results indicated that the grains of AZ31 alloy were refined with Ce and Gd addition. Ce and Gd addition resulted in the formation of Al{sub 4}Ce, Al{sub 2}Gd and Mg{sub 3}Gd. After homogenization and rolling, the Al{sub 4}Ce, Al{sub 2}Gd and Mg{sub 3}Gd still existed. The rolling capability of AZ31 alloy was improved obviously with Ce and Gd addition. However, once Gd content increased to a certain value, the rolling capability of the modified alloy declined but still better than that of AZ31 alloy.

  5. Microstructure and properties of strip cast AZ91 Mg alloy

    NASA Astrophysics Data System (ADS)

    Park, Sung S.; Park, Young S.; Kim, Nack J.

    2002-11-01

    A study has been conducted on the microstructure and mechanical properties of the strip cast AZ91 Mg alloy. The microstructure of the as-cast strip is characterized by a fine equiaxed dendritic structure. There is a variation of secondary dendrite arm spacing throughout the thickness of the strip, showing the smallest value at the wheel surface and the largest value at the center. The distribution of Mg17Al12 particles is also not uniform in the as-cast strip. The microstructure of the solution treated strip consists of fine Mg grains and Al-Mn particles in the matrix with no Mg17Al12 particles. T6 treatment of the strip results in the precipitation of Mg17Al12 particles, the volume fraction of which decreases from the wheel side to the center of the strip. The strip cast AZ91 Mg alloy has the best combination of tensile properties in the T4 condition. It is believed that the good tensile properties of the T4 treated strip are due to the presence of Al-Mn particles, which induce homogeneous deformation.

  6. High current pulsed electron beam treatment of AZ31 Mg alloy

    SciTech Connect

    Gao Bo; Hao Shengzhi; Zou Jianxin; Grosdidier, Thierry; Jiang Limin; Zhou Jiyang; Dong Chuang

    2005-11-15

    This paper reports, for the first time, an analysis of the effect of High Current Pulsed Electron Beam (HCPEB) on a Mg alloy. The AZ31 alloy was HCPEB treated in order to see the potential of this fairly recent technique in modifying its wear resistance. For the 2.5 J/cm{sup 2} beam energy density used in the present work, the evaporation mode was operative and led to the formation of a ''wavy'' surface and the absence of eruptive microcraters. The selective evaporation of Mg over Al led to an Al-rich melted surface layer and precipitation hardening from the over saturated solid solution. Due to the increase in hardness of the top surface layer, the friction coefficient values were lowered by more than 20% after the HCPEB treatments, and the wear resistance was drastically (by a factor of 6) improved. The microhardness of the HCPEB samples was also increased significantly down to a depth of about 500 {mu}m, far exceeding the heat-affected zone (about 40 {mu}m). This is due to the effect of the propagation of the shockwave associated with this HCPEB treatment.

  7. In Vitro Studies on the Degradability, Bioactivity, and Cell Differentiation of PRP/AZ31B Mg Alloys Composite Scaffold

    PubMed Central

    Zou, Jian; Xu, Hongwei; Li, Xiaolin

    2017-01-01

    In recent years, more and more methods have been developed to improve the bioactivity of the biodegradable materials in bone tissue regeneration. In present study, we used rat mesenchymal stem cells (rMSCs) to evaluate the outcomes of Mg alloys (AZ31B, Magnesium, and Aluminum) and Platelet-rich plasma (PRP)/Mg alloys on rMSCs biocompatibility and osteogenic differentiation. Water absorption experiments indicated that both bare AZ31B and PRP/AZ31B were capable of absorbing large amounts of water. But the water absorption ratio for PRP/AZ31B was significantly higher than that for bare AZ31B. The degradability experiments implied that both samples degraded at same speed. rMSCs on the surface of AZ31B distributed more and better than those on the AZ31B scaffold. In ALP activity experiment, the activity of rMSCs on the PRP/AZ31B was markedly higher than that on the AZ31B scaffolds on the 7th day and 14th day. qRT-PCR also showed that OPN and OCN were expressed in both samples. OPN and OCN expression in PRP/AZ31B sample were higher than those in bare AZ31B samples. In summary, the in vitro study implied that AZ31B combined with PRP could remarkably improve cell seeding, attachment, proliferation, and differentiation. PMID:28337451

  8. Selection of a suitable plant for phytoremediation in mining artisanal zones.

    PubMed

    Chamba, I; Gazquez, M J; Selvaraj, T; Calva, J; Toledo, J J; Armijos, C

    2016-09-01

    A study was undertaken with the aim of identifying a suitable plant for the phytoremediation of metal-polluted soil from an artisanal mining area in Ecuador. Three zones including a natural zone (NZ), abandoned zone (AZ) and intensively mined zone (IZ) were selected. Three common native plants grown in the three zones were identified and collected, including Miconia zamorensis, Axonopus compressus and Erato polymnioides. The percentage of arbuscular mycorrhizal colonization that benefits their own survival in polluted soil was analyzed in the root samples of these candidate species. Analysis of the soils and plants collected from the different zones showed that the concentrations of Pb, Zn, Cu and Cd were comparatively lower in the NZ, higher in the AZ and IZ, and highest in the AZ for all the metals. The concentration of all these metals in plant tissues was the highest in E. polymnioides. The data analysis including the metal accumulation index, bioconcentration factor and translocation factor strongly identified E. polymnioides as a hyperaccumulator plant suitable for phytoremediation.

  9. Effect of heat input on the microstructure and mechanical properties of tungsten inert gas arc butt-welded AZ61 magnesium alloy plates

    SciTech Connect

    Min Dong; Shen Jun; Lai Shiqiang; Chen Jie

    2009-12-15

    In this paper, the effects of heat input on the microstructures and mechanical properties of tungsten inert gas arc butt-welded AZ61 magnesium alloy plates were investigated by microstructural observations, microhardness tests and tensile tests. The results show that with an increase of the heat input, the grains both in the fusion zone and the heat-affected zone coarsen and the width of the heat-affected zone increased. Moreover, an increase of the heat input resulted in a decrease of the continuous {beta}-Mg{sub 17}Al{sub 12} phase and an increase of the granular {beta}-Mg{sub 17}Al{sub 12} phase in both the fusion zone and the heat-affected zone. The ultimate tensile strength of the welded joint increased with an increase of the heat input, while, too high a heat input resulted in a decrease of the ultimate tensile strength of the welded joint. In addition, the average microhardness of the heat-affected zone and fusion zone decreased sharply with an increase of the heat input and then decreased slowly at a relatively high heat input.

  10. Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31

    NASA Astrophysics Data System (ADS)

    Cui, Lan-Yue; Zeng, Rong-Chang; Zhu, Xiao-Xiao; Pang, Ting-Ting; Li, Shuo-Qi; Zhang, Fen

    2016-06-01

    Biocompatible polyelectrolyte multilayers (PEMs) and polysiloxane hybrid coatings were prepared to improve the corrosion resistance of biodegradable Mg alloy AZ31. The PEMs, which contained alternating poly(sodium 4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH), were first self-assembled on the surface of the AZ31 alloy substrate via electrostatic interactions, designated as (PAH/PSS)5/AZ31. Then, the (PAH/PSS)5/AZ31 samples were dipped into a methyltrimethoxysilane (MTMS) solution to fabricate the PMTMS films, designated as PMTMS/(PAH/PSS)5/AZ31. The surface morphologies, microstructures and chemical compositions of the films were investigated by FE-SEM, FTIR, XRD and XPS. Potentiodynamic polarization, electrochemical impedance spectroscopy and hydrogen evolution measurements demonstrated that the PMTMS/(PAH/PSS)5/AZ31 composite film significantly enhanced the corrosion resistance of the AZ31 alloy in Hank's balanced salt solution (HBSS). The PAH and PSS films effectively improved the deposition of Ca-P compounds including Ca3(PO4)2 and hydroxyapatite (HA). Moreover, the corrosion mechanism of the composite coating was discussed. These coatings could be an alternative candidate coating for biodegradable Mg alloys.

  11. Magnesium alloy AZ91 exhibits antimicrobial properties in vitro but not in vivo.

    PubMed

    Brooks, Emily K; Ahn, Richard; Tobias, Menachem E; Hansen, Lisa A; Luke-Marshall, Nicole R; Wild, Linda; Campagnari, Anthony A; Ehrensberger, Mark T

    2017-01-27

    Magnesium alloys hold great promise for developing orthopedic implants that are biocompatible, biodegradable, and mechanically similar to bone tissue. This study evaluated the in vitro and in vivo antimicrobial properties of magnesium-9%aluminum-1%zinc (AZ91) and commercially pure titanium (cpTi) against Acinetobacter baumannii (Ab307). The in vitro results showed that as compared to cpTi, incubation with AZ91 significantly reduced both the planktonic (cpTi = 3.45e8, AZ91 = 8.97e7, p < 0.001) colony forming units (CFU) and biofilm-associated (cpTi = 3.89e8, AZ91 = 1.78e7, p = 0.01) CFU of Ab307. However, in vivo results showed no significant differences in the CFU enumerated from the cpTi and AZ91 implants following a 1-week implantation in an established rodent model of Ab307 implant associated infection (cpTi = 5.23e3, AZ91 = 2.46e3, p = 0.29). It is proposed that the in vitro results were associated with an increased pH in the bacterial culture as a result of the AZ91 corrosion process. The robust in vivo buffering capacity likely diminished this corrosion associated pH antimicrobial effect. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

  12. Microstructure and Elevated Temperature Properties of Die-cast AZ91- xNd Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Wang, Limin; An, Jian; Liu, Yongbing

    2008-10-01

    The effect of Nd addition on the microstructure and mechanical properties of a die-cast AZ91 alloy was investigated in the present work. The results show that the die-cast AZ91 alloy is composed of α-Mg matrix and γ-Mg17Al12 phase. Nd addition into the AZ91 alloy leads to the formation of rare earth containing intermetallic phase. Al4Nd phase forms when Nd content is less than or equal to 1.0 wt.%. Al2Nd phase appears simultaneously when Nd content reaches to 3.0 wt.%. The size and volume fraction of γ-Mg17Al12 phase decrease, because of the newly formed Al-Nd phase. And the γ-Mg17Al12 phase distributes from reticular to dispersive. Nd addition has a little effect on the room temperature properties of the die-cast AZ91 alloy, but greatly improves the elevated temperature properties. The tensile strength of AZ91-0.5Nd and AZ91-1.0Nd alloy tested at 150 °C is even close to the room temperature strength. The AZ91-1.0Nd alloy has the optimal properties.

  13. Mineral Mapping Using AVIRIS Data at Ray Mine, AZ

    NASA Technical Reports Server (NTRS)

    McCubbin, Ian; Lang, Harold; Green, Robert O.; Roberts, Dar

    1998-01-01

    Imaging Spectroscopy enables the identification and mapping of surface mineralogy over large areas. This study focused on assessing the utility of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data for environmental impact analysis over the Environmental Protection Agency's (EPA) high priority Superfund site Ray Mine, AZ. Using the Spectral Angle Mapper (SAM) algorithm to analyze AVIRIS data makes it possible to map surface materials that are indicative of acid generating minerals. The improved performance of the AVIRIS sensor since 1996 provides data with sufficient signal to noise ratio to characterize up to 8 image endmembers. Specifically we employed SAM to map minerals associated with mine generated acid waste, namely jarositc, goethite, and hematite, in the presence of a complex mineralogical background.

  14. Fabrication and characterization of AZ91/CNT magnesium matrix composites

    NASA Astrophysics Data System (ADS)

    Park, Yong-Ha; Park, Yong-Ho; Park, Ik-Min; Oak, Jeong-jung; Kimura, Hisamichi; Cho, Kyung-Mox

    2008-12-01

    Carbon Nano Tube (CNT) reinforced AZ91 metal matrix composites (MMC) were fabricated by the squeeze infiltrated method. Properties of magnesium alloys have been improved by impurity reduction, surface treatment and alloy design, and thus the usage for the magnesium alloys has been extended recently. However there still remain barriers for the adaption of magnesium alloys for engineering materials. In this study, we report light-weight, high strength heat resistant magnesium matrix composites. Microstructural study and tensile test were performed for the squeeze infiltrated magnesium matrix composites. The wear properties were characterized and the possibility for the application to automotive power train and engine parts was investigated. It was found that the squeeze infiltration technique is a proper method to fabricate magnesium matrix composites reducing casting defects such as pores and matrix/reinforcement interface separation etc. Improved tensile and mechanical properties were obtained with CNT reinforcing magnesium alloys

  15. Microstructural stability after severe plastic deformation of AZ31 Magnesium

    NASA Astrophysics Data System (ADS)

    Young, J. P.; Askari, H.; Hovanski, Y.; Heiden, M. J.; Field, D. P.

    2014-08-01

    Friction stir processing (FSP) and equal channel angular pressing (ECAP) were used to modify the microstructure of twin roll cast (TRC) AZ31 magnesium. The influence of these processes on the microstructural properties of the material was investigated. It was found that both processes produced microstructures with an average grain size of less than 10 pm, suggesting that they have the potential for superplastic deformation. Heat treatments were performed on the TRC, ECAP and FSP materials to assess their microstructural stability. Both the ECAP and TRC material were found to be fairly stable, showing normal grain growth while the FSP material grew substantially at temperatures above 200°C. The activation energy of grain boundary motion of the TRC material was calculated to be 167 kJ/mol.

  16. Influence of deformation on precipitation in AZ80 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Wang, Li-Na; Xie, Qing-Ge; Li, Ji-Zhong; Ding, Hua; Lu, Lin-Lin

    2011-06-01

    Precipitates in the conventionally processed (solution treatment followed by aging) AZ80 alloy are coarse, cellular, and incoherent. They nucleate and grow on the basal planes of the matrix or distribute discontinuously in the alloy. Their unique morphology and undesired distribution make them ineffective for precipitation strengthening. This condition, however, can be modified by applying selected deformation and heat treatment conditions. The effect of deformation and heat treatment on the morphology and distribution of precipitates has been studied. Deformation was introduced by hot extrusion, cold rolling, or equal channel angular pressing (ECAP). The microstructures were characterized using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results showed that cold deformation improved precipitation more significantly than hot deformation, and twinning promoted precipitation more effectively than slip. When ECAP was applied, the Bc-route induced more precipitates than the A-route.

  17. Corrosion resistance of titanium ion implanted AZ91 magnesium alloy

    SciTech Connect

    Liu Chenglong; Xin Yunchang; Tian Xiubo; Zhao, J.; Chu, Paul K.

    2007-03-15

    Degradable metal alloys constitute a new class of materials for load-bearing biomedical implants. Owing to their good mechanical properties and biocompatibility, magnesium alloys are promising in degradable prosthetic implants. The objective of this study is to improve the corrosion behavior of surgical AZ91 magnesium alloy by titanium ion implantation. The surface characteristics of the ion implanted layer in the magnesium alloys are examined. The authors' results disclose that an intermixed layer is produced and the surface oxidized films are mainly composed of titanium oxide with a lesser amount of magnesium oxide. X-ray photoelectron spectroscopy reveals that the oxide has three layers. The outer layer which is 10 nm thick is mainly composed of MgO and TiO{sub 2} with some Mg(OH){sub 2}. The middle layer that is 50 nm thick comprises predominantly TiO{sub 2} and MgO with minor contributions from MgAl{sub 2}O{sub 4} and TiO. The third layer from the surface is rich in metallic Mg, Ti, Al, and Ti{sub 3}Al. The effects of Ti ion implantation on the corrosion resistance and electrochemical behavior of the magnesium alloys are investigated in simulated body fluids at 37{+-}1 deg. C using electrochemical impedance spectroscopy and open circuit potential techniques. Compared to the unimplanted AZ91 alloy, titanium ion implantation significantly shifts the open circuit potential (OCP) to a more positive potential and improves the corrosion resistance at OCP. This phenomenon can be ascribed to the more compact surface oxide film, enhanced reoxidation on the implanted surface, as well as the increased {beta}-Mg{sub 12}Al{sub 17} phase.

  18. Project W-211 Initial Tank Retrieval Systems (ITRS) Description of Operations for 241-AZ-102

    SciTech Connect

    BRIGGS, S.R.

    2000-02-25

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTs) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operation (DOO) defines the control philosophy for the waste retrieval system for Tank 241-AZ-102 (AZ-102). This DOO provides a basis for the detailed design of the Project W-211 Retrieval Control System (RCS) for AZ-102 and also establishes test criteria for the RCS.

  19. Influence of Aluminum Content on Grain Refinement and Strength of AZ31 Magnesium GTA Weld Metal

    SciTech Connect

    Babu, N. Kishore; Cross, Carl E.

    2012-06-28

    The goal is to characterize the effect of Al content on AZ31 weld metal, the grain size and strength, and examine role of Al on grain refinement. The approach is to systematically vary the aluminum content of AZ31 weld metal, Measure average grain size in weld metal, and Measure cross-weld tensile properties and hardness. Conclusions are that: (1) increased Al content in AZ31 weld metal results in grain refinement Reason: higher undercooling during solidification; (2) weld metal grain refinement resulted in increased strength & hardness Reason: grain boundary strengthening; and (3) weld metal strength can be raised to wrought base metal levels.

  20. Composite titanium nitride layers produced on the AZ91D magnesium alloy by a hybrid method including hydrothermal modification of the layer

    NASA Astrophysics Data System (ADS)

    Tacikowski, M.; Grzonka, J.; Płociński, T.; Jakieła, R.; Pisarek, M.; Wierzchoń, T.

    2015-08-01

    The microstructure and properties of the composite TiN-Ti-Al type titanium nitride surface layer with a sub-layer of titanium and aluminium produced on AZ91D magnesium alloy using a hybrid PVD method including final sealing by hydrothermal treatment were investigated. The results were analysed in terms of the microstructure-properties correlation, to approach the role of the sub-layers and the mechanisms involved in the properties improvement. The microstructure investigations indicate that the composite titanium nitride layers are tight and have nano-crystalline, diffusive character and multi zone microstructure of the type TixOy-TiN-Ti-Al-Al3Mg2-Al12Mg17. The significant corrosion resistance improvement of the AZ91D alloy obtained using the sealed composite titanium nitride layers was found to be the result of a synergistic mechanism which combined hydrothermal treatment of the layer with an action of aluminium sub-layer which is critical to make the sealing effective. The diffusive bonding via Mg-Al zone improves adhesion and the load bearing capacity of titanium nitride layers in wear conditions.

  1. PRODUCTION AND TRANSPORT OF CARBON DIOXIDE IN A CONTAMINATED VADOSE ZONE: A STABLE AND RADIOACTIVE CARBON ISOTOPE STUDY

    EPA Science Inventory

    Analyses of soil gas compositions and stable and radioactive carbon isotopes in the vadose zone above an alluvial aquifer were conducted at an organic solvent disposal site in southeast Phoenix, AZ. The study investigated the source and movement of carbon dioxide above a plume of...

  2. 75 FR 44725 - Proposed Establishment of Class E Airspace; Clifton/Morenci, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ..., AZ. To accommodate aircraft using a new Area Navigation (RNAV) Global Positioning System (GPS... action must submit with those comments a self-addressed stamped postcard on which the following...

  3. The Histone Chaperones FACT and Spt6 Restrict H2A.Z from Intragenic Locations

    PubMed Central

    Jeronimo, Célia; Watanabe, Shinya; Kaplan, Craig D.; Peterson, Craig L.; Robert, François

    2015-01-01

    SUMMARY H2A.Z is a highly conserved histone variant involved in several key nuclear processes. It is incorporated into promoters by SWR-C-related chromatin remodeling complexes, but whether it is also actively excluded from non-promoter regions is not clear. Here, we provide genomic and biochemical evidence that RNA polymerase II (RNAPII) elongation-associated histone chaperones FACT and Spt6 both contribute to restricting H2A.Z from intragenic regions. In the absence of FACT or Spt6, the lack of efficient nucleosome reassembly coupled to pervasive incorporation of H2A.Z by mislocalized SWR-C alters chromatin composition and contributes to cryptic initiation. Thus, chaperone-mediated H2A.Z confinement is crucial for restricting the chromatin signature of gene promoters, which otherwise may license or promote cryptic transcription. PMID:25959393

  4. 78 FR 34558 - Modification of Class E Airspace; Clifton/Morenci, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ..., 98057; telephone (425) 203-4537. SUPPLEMENTARY INFORMATION: History On March 26, 2013, the FAA published... airspace areas extending upward from 700 feet or more above the surface of the earth. * * * * * AWP AZ...

  5. 75 FR 49526 - Freescale Semiconductor, Inc., Technical Information Center, Tempe, AZ; Freescale Semiconductor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Employment and Training Administration Freescale Semiconductor, Inc., Technical Information Center, Tempe, AZ; Freescale Semiconductor, Inc., Technical Information Center, Woburn, MA; Amended Certification Regarding... Semiconductor, Inc., Technical Information Center, Tempe, Arizona. The notice was published in the...

  6. 78 FR 72006 - Establishment of Class D Airspace and Class E Airspace; Laguna AAF, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-02

    ... Ground), Yuma, AZ. The establishment of an air traffic control tower has made this action necessary for... control tower has made this action necessary and provides the required controlled airspace for the...

  7. Remediation System Evaluation, A-Z Automotive in West Milford, New Jersey

    EPA Pesticide Factsheets

    The A-Z Automotive site is a former gasoline retail outlet and automobile service station located on Union Valley Road between St. George Street and Lou Ann Boulevard in West Milford, Passaic County, New Jersey.

  8. 78 FR 57545 - Proposed Establishment of Class D Airspace and Class E Airspace; Laguna AAF, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    .... An informal docket may also be examined during normal business hours at the Northwest Mountain... extending upward from 700 feet or more above the surface of the earth. * * * * * AWP AZ E5 Laguna AAF,...

  9. The relationships between residual stress relaxation and texture development in AZ31 Mg alloys via the vibratory stress relief technique

    SciTech Connect

    Wang, Jia-Siang; Hsieh, Chih-Chun; Lai, Hsuan-Han; Kuo, Che-Wei; Wu, Paxon Ti-Yuan; Wu, Weite

    2015-01-15

    A systematic study of residual stress relaxation and the texture evolution of cold-rolled AZ31 Mg alloys using the vibratory stress relief technique with a simple cantilever beam vibration system was performed using a high-resolution X-ray diffractometer and a portable X-ray residual stress analyzer. The effects of vibrational stress excitation on the surface residual stress distribution and on the texture of pole figures (0002) occurring during the vibratory stress relief were examined. Compared with the effects corresponding to the same alloy under non-vibration condition, it can be observed that the uniform surface residual stress distribution and relaxation of the compressive residual stress in the stress concentration zone were observed rather than all of the residual stresses being eliminated. Furthermore, with an increase in the vibrational aging time, the compressive residual stress, texture density, and (0002) preferred orientation increased first and then decreased. It should be underlined that the vibratory stress relief process for the vibrational aging time of more than 10 min is able to weaken the strong basal textures of AZ31 Mg alloys, which is valuable for enhancement of their formability and is responsible for an almost perfect 3D-Debye–Scherrer ring. - Highlights: • 3D-Debye ring about VSR technique is not discussed in the existing literature. • A newly developed VSR method is suitable for small or thin workpieces. • The cosα method accurately and effectively determines the residual stresses. • The VSR technique is valuable for enhancement of their formability. • The texture and preferred orientation change with the vibrational aging time.

  10. System Description for Tank 241-AZ-101 Waste Retrieval Data Acquisition System

    SciTech Connect

    ROMERO, S.G.

    2000-02-14

    The proposed activity provides the description of the Data Acquisition System for Tank 241-AZ-101. This description is documented in HNF-5572, Tank 241-AZ-101 Waste Retrieval Data Acquisition System (DAS). This activity supports the planned mixer pump tests for Tank 241-AZ-101. Tank 241-AZ-101 has been selected for the first full-scale demonstration of a mixer pump system. The tank currently holds over 960,000 gallons of neutralized current acid waste, including approximately 12.7 inches of settling solids (sludge) at the bottom of the tank. As described in Addendum 4 of the FSAR (LMHC 2000a), two 300 HP mixer pumps with associated measurement and monitoring equipment have been installed in Tank 241-AZ-101. The purpose of the Tank 241-AZ-101 retrieval system Data Acquisition System (DAS) is to provide monitoring and data acquisition of key parameters in order to confirm the effectiveness of the mixer pumps utilized for suspending solids in the tank. The suspension of solids in Tank 241-AZ-101 is necessary for pretreatment of the neutralized current acid waste and eventual disposal as glass via the Hanford Waste Vitrification Plant. HNF-5572 provides a basic description of the Tank 241-AZ-101 retrieval system DAS, including the field instrumentation and application software. The DAS is provided to fulfill requirements for data collection and monitoring. This document is not an operations procedure or is it intended to describe the mixing operation. This USQ screening provides evaluation of HNF-5572 (Revision 1) including the changes as documented on ECN 654001. The changes include (1) add information on historical trending and data backup, (2) modify DAS I/O list in Appendix E to reflect actual conditions in the field, and (3) delete IP address in Appendix F per Lockheed Martin Services, Inc. request.

  11. Interaction of polyamines and mTOR signaling in the synthesis of antizyme (AZ)

    PubMed Central

    Ray, Ramesh M.; Bavaria, Mitul; Johnson, Leonard R.

    2015-01-01

    Tissue polyamine levels are largely determined by the activity of ornithine decarboxylase (ODC, EC 4.1.17), which catalyzes the conversion of ornithine to the diamine putrescine. The activity of the enzyme is primarily regulated by a negative feedback mechanism involving ODC antizyme (AZ). Our previous studies demonstrated that AZ synthesis is stimulated by the absence of amino acids, the levels of which are sensed by the mTOR complex containing TORC1, which is stimulated by amino acids and inhibited by their absence, and TORC2 the function of which is not well defined. Polyamines, which cause a +1 ribosomal frameshift during the translation of AZ mRNA are required to increase AZ synthesis in both the presence and absence of amino acids. Amino acid starvation increases TORC2 activity. We have demonstrated that mTORC2 activity is necessary for AZ synthesis in the absence of amino acids. Tuberous sclerosis protein (TSC), a negative regulator of mTOR function regulates the activities of both the TORC1 and TORC2. TSC2 knockdown increased mTORC1 activity with concomitant inhibition of mTORC2 activity eliminating AZ induction in the absence of amino acids as well as that induced by spermidine. Thus, these results clearly demonstrate that in addition to polyamines, mTORC2 activity is necessary for AZ synthesis. Moreover, our results support a role for mTORC2 in the synthesis of a specific protein, AZ, which regulates growth of intestinal epithelial cells. PMID:26093026

  12. Final results of double-shell tank 241-AZ-101 ultrasonic inspection

    SciTech Connect

    JENSEN, C.E.

    1999-08-23

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AZ-101. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AZ-101 primary tank wall and welds. The inspection found one reportable indication of thinning and no reportable pitting, corrosion, or cracking.

  13. The Influence of Novel Alloying Additions on the Performance of Magnesium Alloy AZ31B

    DTIC Science & Technology

    2013-11-01

    2009. 2 key criterion, so that potential strength increase from grain size reduction and/or solid solution strengthening would occur. Moreover, it...the following elements were selected: indium (In), bismuth (Bi), strontium (Sr), Zr, titanium (Ti), calcium (Ca), lithium (Li), yttrium (Y...addition, a relatively simple Mg alloy (AZ31B) was chosen as the baseline material. AZ31B is a solid -solution-strengthened alloy with minimal

  14. Transcriptional and post-transcriptional regulation of histone variant H2A.Z during sea urchin development.

    PubMed

    Hajdu, Mihai; Calle, Jasmine; Puno, Andrea; Haruna, Aminat; Arenas-Mena, César

    2016-12-01

    Histone variant H2A.Z promotes chromatin accessibility at transcriptional regulatory elements and is developmentally regulated in metazoans. We characterize the transcriptional and post-transcriptional regulation of H2A.Z in the purple sea urchin Strongylocentrotus purpuratus. H2A.Z depletion by antisense translation-blocking morpholino oligonucleotides during early development causes developmental collapse, in agreement with its previously demonstrated general role in transcriptional multipotency. During H2A.Z peak expression in 24-h embryos, endogenous H2A.Z 3' UTR sequences stabilize GFP mRNAs relative to those with SV40 3' UTR sequences, although the 3' UTR of H2A.Z does not determine the spatial distribution of H2A.Z transcripts during embryonic and postembryonic development. We elaborated an H2A.Z::GFP BAC reporter that reproduces embryonic H2A.Z expression. Genome-wide chromatin accessibility analysis using ATAC-seq revealed a cis-regulatory module (CRM) that, when deleted, causes a significant decline of the H2A.Z reporter expression. In addition, the mutation of a Sox transcription factor binding site motif and, more strongly, of a Myb motif cause significant decline of reporter gene expression. Our results suggest that an undetermined Myb-family transcription factor controls the transcriptional regulation of H2A.Z.

  15. Effects of Te addition on microstructure and mechanical properties of AZ91 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Cui, Shujing; Wu, Xiangwei; Liu, Rongxue; Teng, Xinying; Leng, Jinfeng; Geng, Haoran

    2017-01-01

    To improve the mechanical properties of AZ91 alloy, the effects of Te addition on the as-cast microstructure and mechanical properties of AZ91 magnesium alloy were investigated by means of optical microscope (OM), scanning electronic microscope (SEM), energy dispersive spectroscopy (EDS), x-ray diffraction (XRD) and tensile testing machine. The results show that the microstructure of Te-containing AZ91 alloys is refined with the improvement of mechanical properties of AZ91 alloys. When the addition of Te is 0.9 wt%, the grain becomes finer, with primary β-Mg17Al12 phases distributed, and new granule-like Al2Te3 phases emerge at the grain boundary with dispersive distribution. As a result, tensile strength and yield strength of as-cast AZ91 alloy are improved from 150 MPa and 80 MPa to 180 MPa and 107 MPa. The optimal tensile properties were obtained. This was attributed to the smaller grain size strengthening and new emerged hard Al2Te3 phase strengthening. The present findings provide a new way for strengthening of AZ91 alloys.

  16. Effect of Ca and Rare Earth Elements on Impression Creep Properties of AZ91 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Nami, B.; Razavi, H.; Mirdamadi, S.; Shabestari, S. G.; Miresmaeili, S. M.

    2010-08-01

    Creep properties of AZ91 magnesium alloy and AZRC91 (AZ91 + 1 wt pct RE + 1.2 wt pct Ca) alloy were investigated using the impression creep method. It was shown that the creep properties of AZ91 alloy are significantly improved by adding Ca and rare earth (RE) elements. The improvement in creep resistance is mainly attributed to the reduction in the amount and continuity of eutectic β(Mg17Al12) phase as well as the formation of new Al11RE3 and Al2Ca intermetallic compounds at interdendritic regions. It was found that the stress exponent of minimum creep rate, n, varies between 5.69 and 6 for AZ91 alloy and varies between 5.81 and 6.46 for AZRC91 alloy. Activation energies of 120.9 ± 8.9 kJ/mol and 100.6 ± 7.1 kJ/mol were obtained for AZ91 and AZRC91 alloys, respectively. It was shown that the lattice and pipe-diffusion-controlled dislocation climb are the dominant creep mechanisms for AZ91 and AZRC91 alloys, respectively. The constitutive equations, correlating the minimum creep rate with temperature and stress, were also developed for both alloys.

  17. The Origin of Fracture in the I-ECAP of AZ31B Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Gzyl, Michal; Rosochowski, Andrzej; Boczkal, Sonia; Qarni, Muhammad Jawad

    2015-11-01

    Magnesium alloys are very promising materials for weight-saving structural applications due to their low density, comparing to other metals and alloys currently used. However, they usually suffer from a limited formability at room temperature and low strength. In order to overcome those issues, processes of severe plastic deformation (SPD) can be utilized to improve mechanical properties, but processing parameters need to be selected with care to avoid fracture, very often observed for those alloys during forming. In the current work, the AZ31B magnesium alloy was subjected to SPD by incremental equal-channel angular pressing (I-ECAP) at temperatures varying from 398 K to 525 K (125 °C to 250 °C) to determine the window of allowable processing parameters. The effects of initial grain size and billet rotation scheme on the occurrence of fracture during I-ECAP were investigated. The initial grain size ranged from 1.5 to 40 µm and the I-ECAP routes tested were A, BC, and C. Microstructures of the processed billets were characterized before and after I-ECAP. It was found that a fine-grained and homogenous microstructure was required to avoid fracture at low temperatures. Strain localization arising from a stress relaxation within recrystallized regions, namely twins and fine-grained zones, was shown to be responsible for the generation of microcracks. Based on the I-ECAP experiments and available literature data for ECAP, a power law between the initial grain size and processing conditions, described by a Zener-Hollomon parameter, has been proposed. Finally, processing by various routes at 473 K (200 °C) revealed that route A was less prone to fracture than routes BC and C.

  18. Residual Stresses and Tensile Properties of Friction Stir Welded AZ31B-H24 Magnesium Alloy in Lap Configuration

    NASA Astrophysics Data System (ADS)

    Naik, Bhukya Srinivasa; Cao, Xinjin; Wanjara, Priti; Friedman, Jacob; Chen, Daolun

    2015-08-01

    AZ31B-H24 Mg alloy sheets with a thickness of 2 mm were friction stir welded in lap configuration using two tool rotational rates of 1000 and 1500 rpm and two welding speeds of 10 and 20 mm/s. The residual stresses in the longitudinal and transverse directions of the weldments were determined using X-ray diffraction. The shear tensile behavior of the lap joints was evaluated at low [233 K (-40 °C)], room [298 K (25 °C)], and elevated [453 K (180 °C)] temperatures. The failure load was highest for the lower heat input condition that was obtained at a tool rotational rate of 1000 rpm and a welding speed of 20 mm/s for all the test temperatures, due to the smaller hooking height, larger effective sheet thickness, and lower tensile residual stresses, as compared to the other two welding conditions that were conducted at a higher tool rotational rate or lower welding speed. The lap joints usually fractured on the advancing side of the top sheet near the interface between the thermo-mechanically affected zone and the stir zone. Elevated temperature testing of the weld assembled at a tool rotational rate of 1000 rpm and a welding speed of 20 mm/s led to the failure along the sheet interface in shear fracture mode due to the high integrity of the joint that exhibited large plastic deformation and higher total energy absorption.

  19. Abnormal distribution of microhardness in tungsten inert gas arc butt-welded AZ61 magnesium alloy plates

    SciTech Connect

    Xu Nan; Shen Jun; Xie Weidong; Wang Linzhi; Wang Dan; Min Dong

    2010-07-15

    In this study, the effects of heat input on the distribution of microhardness of tungsten inert gas (TIG) arc welded hot-extruded AZ61 magnesium alloy joints were investigated. The results show that with an increase of heat input, the distributions of microhardness at the top and bottom of the welded joints are different because they are determined by both the effect of grain coarsening and the effect of dispersion strengthening. With an increase of the heat input, the microhardness of the heat-affected zone (HAZ) at the top and bottom of welded joints and the fusion zone (FZ) at the bottom of welded joints decreased gradually, while the microhardness of the FZ at the top of welded joints decreased initially and then increased sharply. The reason for the abnormal distribution of microhardness of the FZ at the top of the welded joints is that this area is close to the heat source during welding and then large numbers of hard {beta}-Mg{sub 17}(Al,Zn){sub 12} particles are precipitated. Hence, in this case, the effect of dispersion strengthening dominated the microhardness.

  20. Microstructure and Mechanical Properties of Fiber-Laser-Welded and Diode-Laser-Welded AZ31 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Chowdhury, S. M.; Chen, D. L.; Bhole, S. D.; Powidajko, E.; Weckman, D. C.; Zhou, Y.

    2011-07-01

    The microstructures, tensile properties, strain hardening, and fatigue strength of fiber-laser-welded (FLW) and diode-laser-welded (DLW) AZ31B-H24 magnesium alloys were studied. Columnar dendrites near the fusion zone (FZ) boundary and equiaxed dendrites at the center of FZ, with divorced eutectic β-Mg17Al12 particles, were observed. The FLW joints had smaller dendrite cell sizes with a narrower FZ than the DLW joints. The heat-affected zone consisted of recrystallized grains. Although the DLW joints fractured at the center of FZ and exhibited lower yield strength (YS), ultimate tensile strength (UTS), and fatigue strength, the FLW joints failed at the fusion boundary and displayed only moderate reduction in the YS, UTS, and fatigue strength with a joint efficiency of ~91 pct. After welding, the strain rate sensitivity basically vanished, and the DLW joints exhibited higher strain-hardening capacity. Stage III hardening occurred after yielding in both base metal (BM) and welded samples. Dimple-like ductile fracture characteristics appeared in the BM, whereas some cleavage-like flat facets together with dimples and river marking were observed in the welded samples. Fatigue crack initiated from the specimen surface or near-surface defects, and crack propagation was characterized by the formation of fatigue striations along with secondary cracks.

  1. Strain-Controlled Low-Cycle Fatigue Behavior of Friction Stir-Welded AZ31 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Yang, J.; Ni, D. R.; Wang, D.; Xiao, B. L.; Ma, Z. Y.

    2014-04-01

    Strain-controlled low-cycle fatigue (LCF) behavior of friction stir-welded (FSW) AZ31 joints, produced at rotation rates of 800 and 3500 rpm, was studied. The joints exhibited symmetric hysteresis loops, whereas asymmetric loops were observed for the parent material (PM). The fatigue resistance of the FSW joints was slightly improved as the rotation rate increased, and both the FSW joints possessed a fatigue life similar to that of the PM at the low strain amplitude of 0.1 pct. The obtained fatigue data for the PM and FSW joints can be well described using the Coffin-Manson and Basquin's relationships. For the FSW joints, during LCF deformation, the twinning originated from the nugget zone (NZ)/thermomechanically affected zone (TMAZ) boundary and then propagated to the NZ interior. This was attributed to different textures in these regions: the center of the NZ exhibited a hard orientation, whereas a soft orientation was observed in the region around the NZ/TMAZ boundary. The fatigue cracks initiated at the bottom of the joints and propagated along the NZ/TMAZ boundary or the NZ adjacent to the NZ/TMAZ boundary.

  2. Fine particulate chemical composition and light extinction at Meadview, AZ

    SciTech Connect

    Delbert J. Eatough; Wenxuan Cui; Jeffery Hull; Robert J. Farber

    2006-12-15

    The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr daynight samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was {+-} 0.6 {mu}g/m{sup 3} organic material, {+-} 0.3 {mu}g/m{sup 3} ammonium sulfate, and {+-} 0.07 {mu}g/m{sup 3} ammonium nitrate. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides sources in the region indicate that the major anthropogenic contributors to light extinction were from the Los Angeles, CA, and Las Vegas, NV, urban areas. Mohave Power Project associated secondary sulfate was a negligible contributor to light extinction. 49 refs., 12 figs., 7 tabs.

  3. Assessment of Debris Flow Hazards, North Mountain, Phoenix, AZ

    NASA Astrophysics Data System (ADS)

    Reavis, K. J.; Wasklewicz, T. A.

    2014-12-01

    Urban sprawl in many western U.S. cities has expanded development onto alluvial fans. In the case of metropolitan Phoenix, AZ (MPA), urban sprawl has led to an exponential outward growth into surrounding mountainous areas and onto alluvial fans. Building on alluvial fans places humans at greater risk to flooding and debris flow hazards. Recent research has shown debris flows often supply large quantities of material to many alluvial fans in MPA. However, the risk of debris flows to built environments is relatively unknown. We use a 2D debris flow modeling approach, aided by high-resolution airborne LiDAR and terrestrial laser scanning (TLS) topographic data, to examine debris flow behavior in a densely populated portion of the MPA to assess the risk and vulnerability of debris flow damage to the built infrastructure. A calibrated 2D debris flow model is developed for a "known" recent debris flow at an undeveloped site in MPA. The calibrated model and two other model scenarios are applied to a populated area with historical evidence of debris flow activity. Results from the modeled scenarios show evidence of debris flow damage to houses built on the alluvial fan. Debris flow inundation is also evident on streets on the fan. We use housing values and building damage to estimate the costs assocaited with various modeled debris flow scenarios.

  4. Bioactive benzofuran derivatives: moracins A-Z in medicinal chemistry.

    PubMed

    Naik, Ravi; Harmalkar, Dipesh S; Xu, Xuezhen; Jang, Kyusic; Lee, Kyeong

    2015-01-27

    Benzofuran heterocycles are fundamental structural units in a variety of biologically active natural products as well as synthetic materials. Over the time, benzofuran derivatives have attracted many researchers due to the broad scope of their biological activity, which include anticancer, antimicrobial, immunomodulatory, antioxidant and anti-inflammatory properties. Egonol, homoegonol and moracin families are biologically active natural products containing benzofuran heterocycle as basic structural units. This paper focuses on the moracin family (moracin A to Z). Morus, a genus of flowering plants in the family Moraceae, comprises 10-16 species of deciduous trees commonly known as mulberries. The root bark, stem bark and leaves of Morus alba, M. lhou, Morus macroura are the main sources for arylbenzofuran derivatives including the moracins. A large volume of research has been carried out on moracins and their derivatives, which has shown the pharmacological importance of this benzofuran heterocyclic nucleus. In this mini-review, we attempt to highlight the importance of moracins, as they have been a major source for drug development. Herein, we also summarize the current state of the art concerning the synthesis and medicinal use of moracins A-Z.

  5. Characterization of AZ31 magnesium alloy by duplex process combining laser surface melting and plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Liu, Cancan; Liang, Jun; Zhou, Jiansong; Li, Qingbiao; Wang, Lingqian

    2016-09-01

    Top ceramic coatings were fabricated on the laser surface melting (LSM) modified AZ31 alloy by plasma electrolytic oxidation (PEO) in a phosphate electrolyte. The effect of LSM treatment on the microstructure and corrosion behavior of the bare and PEO treated AZ31 alloy was evaluated. Results showed that LSM treatment produced a homogeneous modified layer with redistributed intermetallic compounds, resulting in enhanced corrosion resistance of AZ31 alloy. The LSM treatment had no obvious influence on the surface and cross-sectional microstructures of the PEO coatings on AZ31 alloy. Besides, MgO was the main constituent for PEO coatings, regardless of LSM pretreatment. However, the long-term corrosion properties of the PEO coated AZ31 alloy with LSM pretreatment revealed large enhancement. Based on the analysis of microstructure and corrosion property, the corrosion mechanisms of the PEO and LSM-PEO coated AZ31 alloy were proposed.

  6. Electrochemical characterization and in-vitro bio-assessment of AZ31B and AZ91E alloys as biodegradable implant materials.

    PubMed

    Ur Rahman, Zia; Pompa, Luis; Haider, Waseem

    2015-08-01

    The degradation of magnesium alloys, AZ31B and AZ91E, are under review due to a their ability to degrade under physiological conditions and successively yield an oxidized biocompatible by-product which can safely be absorbed by the body. By exploiting the biodegradability of magnesium alloys, the prospects of developing an unprecedented class of implant are at hand. To do so however, the rate of corrosion of the alloys must be modified in order to better suit physiological conditions. Therefore, anodization was carried out on AZ31B and AZ91E specimens to alter the surface chemistry to reduce the corrosion rates and improve biocompatibility. Scanning electron microscopy, energy dispersive spectroscopy, atomic force microscopy and contact angle meter, were used to characterize and compare the surfaces of untreated and anodized magnesium alloys. Corrosion behavior was evaluated by electrochemical tests using potentiodynamic polarization and electrochemical impedance spectroscopy, to verify changes in corrosion rates as a result of anodization. Finally, a bio-assessment using MTS assays and fluorescent microscopy were carried out to ensure that the anodization process had no compromise on the biocompatibility of the magnesium alloys. The study indicated that the anodization process did alter the surface chemistry of the alloys, yielding slower corrosion rates, while causing no adverse effects in regards to biocompatibility.

  7. Dynamic behavior and constitutive modeling of magnesium alloys AZ91D and AZ31B under high strain rate compressive loading

    NASA Astrophysics Data System (ADS)

    Xiao, Jing; Ahmad, Iram Raza; Shu, D. W.

    2014-03-01

    The dynamic stress-strain characteristics of magnesium alloys have not been sufficiently studied experimentally. Thus, the present work investigated compressive dynamic stress-strain characteristics of two representative magnesium alloys: AZ91D and AZ31B at high strain rates and elevated temperatures. In order to use the stress-strain characteristics in numerical simulations to predict the impact response of components, the stress-strain characteristics must be modeled. The most common approach is to use accepted constitutive laws. The results from the experimental study of the response of magnesium alloys AZ91D and AZ31B under dynamic compressive loading, at different strain rates and elevated temperatures are presented here. Johnson-Cook model was used to best fit the experimental data. The material parameters required by the model were obtained and the resultant stress-strain curves of the two alloys for each testing condition were plotted. It is found that the dynamic stress-strain relationship of both magnesium alloys are strain rate and temperature dependent and can be described reasonably well at high strain rates and room temperature by Johnson-Cook model except at very low strains. This might be due to the fact that the strain rate is not strictly constant in the early stage of deformation.

  8. Devolatilization or melting of carbonates at Meteor Crater, AZ?

    NASA Astrophysics Data System (ADS)

    Hörz, F.; Archer, P. D.; Niles, P. B.; Zolensky, M. E.; Evans, M.

    2015-06-01

    We have investigated the carbonates in the impact melts and in a monolithic clast of highly shocked Coconino sandstone of Meteor Crater, AZ to evaluate whether melting or devolatilization is the dominant response of carbonates during high-speed meteorite impact. Both melt- and clast-carbonates are calcites that have identical crystal habits and that contain anomalously high SiO2 and Al2O3. Also, both calcite occurrences lack any meteoritic contamination, such as Fe or Ni, which is otherwise abundantly observed in all other impact melts and their crystallization products at Meteor Crater. The carbon and oxygen isotope systematics for both calcite deposits suggest a low temperature environment (<100 °C) for their precipitation from an aqueous solution, consistent with caliche. We furthermore subjected bulk melt beads to thermogravimetric analysis and monitored the evolving volatiles with a quadrupole mass spectrometer. CO2 yields were <5 wt%, with typical values in the 2 wt% range; also total CO2 loss is positively correlated with H2O loss, an indication that most of these volatiles derive from the secondary calcite. Also, transparent glasses, considered the most pristine impact melts, yield 100 wt% element totals by EMPA, suggesting complete loss of CO2. The target dolomite decomposed into MgO, CaO, and CO2; the CO2 escaped and the CaO and MgO combined with SiO2 from coexisting quartz and FeO from the impactor to produce the dominant impact melt at Meteor Crater. Although confined to Meteor Crater, these findings are in stark contrast to Osinski et al. (2008) who proposed that melting of carbonates, rather than devolatilization, is the dominant process during hypervelocity impact into carbonate-bearing targets, including Meteor Crater.

  9. Fine particulate chemical composition and light extinction at Meadview, AZ.

    PubMed

    Eatough, Delbert J; Cui, Wenxuan; Hull, Jeffery; Farber, Robert J

    2006-12-01

    The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr day-night samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was +/- 0.6 microg/m3 organic material, +/- 0.3 microg/m3 ammonium sulfate, and +/- 0.07 microg/m3 ammonium nitrate. Data were also available on fine particulate crustal material, fine and coarse particulate mass from the Interagency Monitoring of Protected Visual Environments sampling system, and relative humidity (RH), light absorption, particle scattering, and light extinction measurements from Project MOHAVE. An extinction budget was obtained using mass scattering coefficients estimated from particle size distribution data. Literature data were used to estimate the change in the mass scattering coefficients for the measured species as a function of RH and for the absorption of light by elemental carbon. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. During periods of highest light extinction, contributions from fine particulate organic material, sulfate, and light-absorbing carbon dominated the extinction of light by particles. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides

  10. Near-field/altered-zone models report

    SciTech Connect

    Hardin, E. L., LLNL

    1998-03-01

    lithophysal units. These units are made up of moderately to densely welded, devitrified, fractured tuff. The rock's chemical composition is comparable to that of typical granite, but has textural features and mineralogical characteristics of large-scale, silicic volcanism. Because the repository horizon will be approximately 300 m below the ground surface and 200 m above the water table, the repository will be partially saturated. The welded tuff matrix in the host units is highly impermeable, but water and gas flow readily through fractures. The degree of fracturing in these units is highly variable, and the hydrologic significance of fracturing is an important aspect of site investigation. This report describes the characterization and modeling of a region around the potential repository--the altered zone--a region in which the temperature will be increased significantly by waste-generated heat. Numerical simulation has shown that, depending on the boundary conditions, rock properties, and repository design features incorporated in the models, the altered zone (AZ) may extend from the water table to the ground surface. This report also describes models of the near field, the region comprising the repository emplacement drifts and the surrounding rock, which are critical to the performance of engineered components. Investigations of near-field and altered-zone (NF/AZ) processes support the design of underground repository facilities and engineered barriers and also provide constraint data for probabilistic calculations of waste-isolation performance (i.e., performance assessment). The approach to investigation, which is an iterative process involving hypothesis testing and experimentation, has relied on conceptualizing engineered barriers and on performance analysis. This report is a collection, emphasizing conceptual and numerical models, of the recent results contributed from studies of NF/AZ processes and of quantitative measures of NF/AZ performance. The selection and

  11. Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters.

    PubMed

    Choi, Kyuha; Zhao, Xiaohui; Kelly, Krystyna A; Venn, Oliver; Higgins, James D; Yelina, Nataliya E; Hardcastle, Thomas J; Ziolkowski, Piotr A; Copenhaver, Gregory P; Franklin, F Chris H; McVean, Gil; Henderson, Ian R

    2013-11-01

    PRDM9 directs human meiotic crossover hot spots to intergenic sequence motifs, whereas budding yeast hot spots overlap regions of low nucleosome density (LND) in gene promoters. To investigate hot spots in plants, which lack PRDM9, we used coalescent analysis of genetic variation in Arabidopsis thaliana. Crossovers increased toward gene promoters and terminators, and hot spots were associated with active chromatin modifications, including H2A.Z, histone H3 Lys4 trimethylation (H3K4me3), LND and low DNA methylation. Hot spot-enriched A-rich and CTT-repeat DNA motifs occurred upstream and downstream, respectively, of transcriptional start sites. Crossovers were asymmetric around promoters and were most frequent over CTT-repeat motifs and H2A.Z nucleosomes. Pollen typing, segregation and cytogenetic analysis showed decreased numbers of crossovers in the arp6 H2A.Z deposition mutant at multiple scales. During meiosis, H2A.Z forms overlapping chromosomal foci with the DMC1 and RAD51 recombinases. As arp6 reduced the number of DMC1 or RAD51 foci, H2A.Z may promote the formation or processing of meiotic DNA double-strand breaks. We propose that gene chromatin ancestrally designates hot spots within eukaryotes and PRDM9 is a derived state within vertebrates.

  12. Planar techniques for fabricating X-ray diffraction gratings and zone plates

    NASA Technical Reports Server (NTRS)

    Smith, H. I.; Anderson, E. H.; Hawryluk, A. M.; Schattenburg, M. L.

    1984-01-01

    The state of current planar techniques in the fabrication of Fresnel zone plates and diffraction gratings is reviewed. Among the fabrication techniques described are multilayer resist techniques; scanning electron beam lithography; and holographic lithography. Consideration is also given to: X-ray lithography; ion beam lithography; and electroplating. SEM photographs of the undercut profiles obtained in a type AZ 135OB photoresistor by holographic lithography are provided.

  13. Formation of intermetallic compound coating on magnesium AZ91 cast alloy

    NASA Astrophysics Data System (ADS)

    Zhu, Tianping; Gao, Wei

    2009-08-01

    This study describes an intermetallic compound coating formed on AZ91 Mg cast alloy. The Al sputtered on AZ91 cast alloy reacted with substrate during a short period of heat treatment at 435°C, resulting in the formation of a continuous intermetallic compound layer. The short period treatment has the advantage of minimizing the negative effect on the microstructure of substrate and the mechanical properties, comparing with the reported diffusion coatings. DSC measurement and examination on the cross-section of Al sputtered samples show that local melting occurred along the Al/substrate interface at the temperature range between 430~435°C. The formation mechanism of intermetallic compound coating is proposed in terms of the local melting at Al/substrate interface. The salt water immersion test showed significant improvement in corrosion resistance of the intermetallic compound coated AZ91 cast alloy compared with the as-cast alloys.

  14. Ultrasonic Spot Welding of AZ31B to Galvanized Mild Steel

    SciTech Connect

    Pan, Dr. Tsung-Yu; Franklin, Teresa; Pan, Professor Jwo; Brown, Elliot; Santella, Michael L

    2010-01-01

    Ultrasonic spot welds were made between sheets of 0.8-mm-thick hot-dip-galvanized mild steel and 1.6-mm-thick AZ31B-H24. Lap-shear strengths of 3.0-4.2 kN were achieved with weld times of 0.3-1.2 s. Failure to achieve strong bonding of joints where the Zn coating was removed from the steel surface indicate that Zn is essential to the bonding mechanism. Microstructure characterization and microchemical analysis indicated temperatures at the AZ31-steel interfaces reached at least 344 C in less than 0.3 s. The elevated temperature conditions promoted annealing of the AZ31-H24 metal and chemical reactions between it and the Zn coating.

  15. Electrodeposition of high corrosion resistance Cu/Ni-P coating on AZ91D magnesium alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Shan; Cao, Fahe; Chang, Linrong; Zheng, JunJun; Zhang, Zhao; Zhang, Jianqing; Cao, Chunan

    2011-08-01

    High corrosion resistance Cu/Ni-P coatings were electrodeposited on AZ91D magnesium alloy via suitable pretreatments, such as one-step acid pickling-activation, once zinc immersion and environment-friendly electroplated copper as the protective under-layer, which made Ni-P deposit on AZ91D Mg alloy in acid plating baths successfully. The pH value and current density for Ni-P electrodeposition were optimized to obtain high corrosion resistance. With increasing the phosphorous content of the Ni-P coatings, the deposits were found to gradually transform to amorphous structure and the corrosion resistance increased synchronously. The anticorrosion ability of AZ91D Mg alloy was greatly improved by the amorphous Ni-P deposits, which was investigated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The corrosion current density ( Icorr) of the coated Mg alloy substrate is about two orders of magnitude less than that of the uncoated.

  16. Effect of microstructure on the zinc phosphate conversion coatings on magnesium alloy AZ91

    NASA Astrophysics Data System (ADS)

    Van Phuong, Nguyen; Moon, Sungmo; Chang, Doyon; Lee, Kyu Hwan

    2013-01-01

    The effect of the microstructure, particularly of β-Mg17Al12 phase, on the formation and growth of zinc phosphate conversion coatings on magnesium alloy AZ91 (AZ91) was studied. The zinc phosphate coatings were formed on AZ91 with different microstructures produced by heat treatment. The effect of the microstructure on the zinc phosphate coatings were examined using optical microscope (OM), X-ray diffraction (XRD), coatings weight and etching weight balances, scanning electron microscopy (SEM) and salt immersion test. Results showed that as-cast AZ91 contained a high volume fraction of the β-Mg17Al12 phase and it was dissolved into α-Mg phase during heat treatment at 400 °C. The β-phase became center for hydrogen evolution during phosphating reaction (cathodic sites). The decreased volume fraction of the β-phase caused decreasing both coatings weight and etching weight of the phosphating process. However, it increased the crystal size of the coatings and improved corrosion resistance of AZ91 by immersing in 0.5 M NaCl solution. Results also showed that the structure of the zinc phosphate conversion on AZ91 consisted of two layers: an outer crystal Zn3(PO4)2·4H2O (hopeite) and an inner which was mainly composed of MgZn2(PO4)2 and Mg3(PO4)2. A mechanism for the formation of two layers of the coatings was also proposed in this study.

  17. Corrosion and mechanical performance of AZ91 exposed to simulated inflammatory conditions.

    PubMed

    Brooks, Emily K; Der, Stephanie; Ehrensberger, Mark T

    2016-03-01

    Magnesium (Mg) and its alloys, including Mg-9%Al-1%Zn (AZ91), are biodegradable metals with potential use as temporary orthopedic implants. Invasive orthopedic procedures can provoke an inflammatory response that produces hydrogen peroxide (H2O2) and an acidic environment near the implant. This study assessed the influence of inflammation on both the corrosion and mechanical properties of AZ91. The AZ91 samples in the inflammatory protocol were immersed for three days in a complex biologically relevant electrolyte (AMEM culture media) that contained serum proteins (FBS), 150 mM of H2O2, and was titrated to a pH of 5. The control protocol immersed AZ91 samples in the same biologically relevant electrolyte (AMEM & FBS) but without H2O2 and the acid titration. After 3 days all samples were switched into fresh AMEM & FBS for an additional 3-day immersion. During the initial immersion, inflammatory protocol samples showed increased corrosion rate determined by mass loss testing, increased Mg and Al ion released to solution, and a completely corroded surface morphology as compared to the control protocol. Although corrosion in both protocols slowed once the test electrolyte solution was replaced at 3 days, the samples originally exposed to the simulated inflammatory conditions continued to display enhanced corrosion rates as compared to the control protocol. These lingering effects may indicate the initial inflammatory corrosion processes modified components of the surface oxide and corrosion film or initiated aggressive localized processes that subsequently left the interface more vulnerable to continued enhanced corrosion. The electrochemical properties of the interfaces were also evaluated by EIS, which found that the corrosion characteristics of the AZ91 samples were potentially influenced by the role of intermediate adsorption layer processes. The increased corrosion observed for the inflammatory protocol did not affect the flexural mechanical properties of the AZ91

  18. Using paired U-Pb and Hf isotopes to characterize the Yavapai - Mojave province boundary in Grand Canyon, AZ

    NASA Astrophysics Data System (ADS)

    Holland, M. E.; Karlstrom, K. E.; Doe, M. F.; Gehrels, G. E.; Pecha, M.; Shufeldt, O. P.

    2013-12-01

    Two distinct Proterozoic provinces of southwest Laurentia, the Mojave and Yavapai, are discriminated in terms of their age, isotopic composition, and metamorphic grade. The crystalline basement rocks of the Mojave province preserve an evolved isotopic signature (Nd, Pb, Hf) that suggests Archean crustal material is detected in all isotopic systems, but the origin and tectonic significance of this Archean component, and the nature and location of province boundaries, are debated. Previous models include: 1) subducted Archean detritus as the source of the evolved isotopic signature of the Mojave, 2) a wide isotopically mixed (Pb) zone resulting from rifting and hybridization of older crust, and 3) a distributed tectonic suture centered at the Crystal shear zone in Grand Canyon. U-Pb and Hf isotopic analysis of zircons separated from igneous and metasedimentary lithologies along a transect in Grand Canyon provide new insight into the Mojave province's evolved isotopic composition, and the nature of the Mojave - Yavapai boundary. Comparison of the Hf isotopic composition of zircons separated from 1.75 - 1.71 Ga granodiorite plutons west of river mile 96-98 (Crystal shear zone) characteristically contain Paleoproterozoic grains that yield Archean (2.5 - 3.3 Ga) Hf model ages, as well as xenocrystic Archean grains. In contrast, 1.75 - 1.71 Ga plutons in eastern Grand Canyon have Hf model ages of 1.7 - 1.8 Ga suggesting they were dominantly derived from juvenile 1.7 - 1.8 Ga crust. Vishnu Schist metaturbidites are exposed across the entire Grand Canyon transect and have a uniform bimodal zircon population (~1.85 and 2.48 Ga peaks), with only 13% juvenile 1.75 Ga grains; Hf signatures also are uniform across the transect. These data suggest that: 1) the Mojave province contains a heterogeneous older lower crust containing 1.85 and 2.5 Ga domains, 2) Yavapai crust is dominantly juvenile east of the Crystal shear zone and in central AZ, and 3) juxtaposition of Mojave

  19. Draft Genome Sequence of the Sulfolobales Archaeon AZ1, Obtained through Metagenomic Analysis of a Mexican Hot Spring

    PubMed Central

    Martínez-Romero, Esperanza

    2014-01-01

    The Sulfolobales archaea have been found inhabiting acidic hot springs all over the world. Here, we report the 1.798-Mbp draft genome sequence of the thermoacidophilic Sulfolobales archaeon AZ1, reconstructed from the metagenome of a Mexican hot spring. Sequence-based comparisons revealed that the Sulfolobales archaeon AZ1 represents a novel candidate genus. PMID:24604657

  20. H2A.Z.1 mono-ubiquitylation antagonizes BRD2 to maintain poised chromatin in ESCs

    PubMed Central

    Surface, Lauren E.; Fields, Paul A.; Subramanian, Vidya; Behmer, Russell; Udeshi, Namrata; Peach, Sally E.; Jaffe, Jacob D.; Boyer, Laurie A.

    2016-01-01

    SUMMARY Histone variant H2A.Z occupies the promoters of active and poised, bivalent genes in ESCs to regulate developmental programs, yet how it contributes to these contrasting states is poorly understood. Here, we investigate the function of H2A.Z.1 mono-ubiquitylation (H2A.Z.1ub) by mutation of the PRC1 target residues (H2A.Z.1K3R3). We show that H2A.Z.1K3R3 is properly incorporated at target promoters in murine ESCs (mESCs), however, loss of mono-ubiquitylation leads to de-repression of bivalent genes, loss of Polycomb binding, and to faulty lineage commitment. Using quantitative proteomics, we find that tandem bromodomain proteins, including the BET family member Brd2, are enriched in H2A.Z.1 chromatin. We further show that Brd2 is gained at de-repressed promoters in H2A.Z.1K3R3 mESCs whereas Brd2 inhibition restores gene silencing at these sites. Together, our study reveals an antagonistic relationship between H2A.Z.1ub and Brd2 to regulate the transcriptional balance at bivalent genes to enable proper execution of developmental programs. PMID:26804911

  1. Differential deposition of H2A.Z in rice seedling tissue during the day-night cycle.

    PubMed

    Zhang, Kang; Xu, Wenying; Wang, Chunchao; Yi, Xin; Su, Zhen

    2017-03-04

    Chromatin structure has an important role in modulating gene expression. The incorporation of histone variants into the nucleosome leads to important changes in the chromatin structure. The histone variant H2A.Z is highly conserved between different species of fungi, animals, and plants. However, dynamic changes to H2A.Z in rice have not been reported during the day-night cycle. In this study, we generated genome wide maps of H2A.Z for day and night time in harvested seedling tissues by combining chromatin immunoprecipitation and high-throughput sequencing. The analysis results for the H2A.Z data sets detected 7099 genes with higher depositions of H2A.Z in seedling tissues harvested at night compared with seedling tissues harvested during the day, whereas 4597 genes had higher H2A.Z depositions in seedlings harvested during the day. The gene expression profiles data suggested that H2A.Z probably negatively regulated gene expression during the day-night cycle and was involved in many important biologic processes. In general, our results indicated that H2A.Z may play an important role in plant responses to the diurnal oscillation process.

  2. 14 CFR Appendix to Subpart U of... - Special Flight Rules in the Vicinity of the Grand Canyon National Park, AZ

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Grand Canyon National Park, AZ Appendix to Subpart U of Part 93 Aeronautics and Space FEDERAL AVIATION... TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ Pt. 93, Subpt. U, App. Appendix to Subpart U of Part 93—Special Flight Rules in the Vicinity of the Grand Canyon National Park,...

  3. 14 CFR Appendix to Subpart U of... - Special Flight Rules in the Vicinity of the Grand Canyon National Park, AZ

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Grand Canyon National Park, AZ Appendix to Subpart U of Part 93 Aeronautics and Space FEDERAL AVIATION... TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ Pt. 93, Subpt. U, App. Appendix to Subpart U of Part 93—Special Flight Rules in the Vicinity of the Grand Canyon National Park,...

  4. 14 CFR Appendix to Subpart U of... - Special Flight Rules in the Vicinity of the Grand Canyon National Park, AZ

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Grand Canyon National Park, AZ Appendix to Subpart U of Part 93 Aeronautics and Space FEDERAL AVIATION... TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ Pt. 93, Subpt. U, App. Appendix to Subpart U of Part 93—Special Flight Rules in the Vicinity of the Grand Canyon National Park,...

  5. 14 CFR Appendix to Subpart U of... - Special Flight Rules in the Vicinity of the Grand Canyon National Park, AZ

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Grand Canyon National Park, AZ Appendix to Subpart U of Part 93 Aeronautics and Space FEDERAL AVIATION... TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ Pt. 93, Subpt. U, App. Appendix to Subpart U of Part 93—Special Flight Rules in the Vicinity of the Grand Canyon National Park,...

  6. 14 CFR Appendix to Subpart U of... - Special Flight Rules in the Vicinity of the Grand Canyon National Park, AZ

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Grand Canyon National Park, AZ Appendix to Subpart U of Part 93 Aeronautics and Space FEDERAL AVIATION... TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ Pt. 93, Subpt. U, App. Appendix to Subpart U of Part 93—Special Flight Rules in the Vicinity of the Grand Canyon National Park,...

  7. 77 FR 63873 - Johnson Controls, Inc. Including On-Site Leased Workers of Valley Staffing and AZ Quality Hudson...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ... certification to include workers leased from AZ Quality working on-site at the Hudson, Wisconsin location of... Employment and Training Administration Johnson Controls, Inc. Including On-Site Leased Workers of Valley Staffing and AZ Quality Hudson, Wisconsin; Amended Certification Regarding Eligibility To Apply for...

  8. Assessing the ecosystem service potential of Tucson AZ's urban forest

    NASA Astrophysics Data System (ADS)

    Pavao-Zuckerman, M.

    2011-12-01

    Urbanization is arguably one of the most dramatic forms of landscape change, and an important anthropogenic influence on the structure and function of ecosystems. Cities have obvious impacts on local ecologies and environments, such as shifts in species diversity and alteration of local microclimates. While scientists are now familiar with many of these localized impacts of urbanization, cities and suburban areas contribute to 10-15 % of surface land cover in the conterminous U.S., pointing to the potential, yet poorly understood, contribution of cities to regional, national, and global carbon (C) and energy budgets. As cities continue to expand urban ecologists place more emphasis on understanding the functions of urban ecosystems and the ecosystem services (e.g. habitat, air, and water quality) that cities provide. While studies demonstrate that the urban environment alters the structure and function of remnant patches of native ecosystems relative to their non-urban counterparts, the ability of restoration, planning, and design to improve the provision of ecosystem services is a new approach within ecology. One strategy involves green urban design, or using ecological principles for planning or reinvigorating certain ecological processes, in cities. Increasing the amount of vegetative cover can reduce this effect by reinforcing ecosystem services in cities, including shading of surfaces, promotion of cooling through evapotranspiration, and the sequestration of atmospheric CO2 in plant tissues and soils. However, the on-the-ground reality of such strategies is relatively unknown. A pilot study is being conducted in Tucson, AZ to investigate the impact of increasing the cover of trees in the urban landscape on local microclimates and the urban heat island. Trees (Velvet Mesquite, Chilean Mesquite, and Desert Willow) were planted in two neighborhoods in Tucson in 1990. We are collecting data during the summer 2011 monsoon (DBH, crown volume, and hemispherical

  9. Molecular Machines Regulating the Release Probability of Synaptic Vesicles at the Active Zone

    PubMed Central

    Körber, Christoph; Kuner, Thomas

    2016-01-01

    The fusion of synaptic vesicles (SVs) with the plasma membrane of the active zone (AZ) upon arrival of an action potential (AP) at the presynaptic compartment is a tightly regulated probabilistic process crucial for information transfer. The probability of a SV to release its transmitter content in response to an AP, termed release probability (Pr), is highly diverse both at the level of entire synapses and individual SVs at a given synapse. Differences in Pr exist between different types of synapses, between synapses of the same type, synapses originating from the same axon and even between different SV subpopulations within the same presynaptic terminal. The Pr of SVs at the AZ is set by a complex interplay of different presynaptic properties including the availability of release-ready SVs, the location of the SVs relative to the voltage-gated calcium channels (VGCCs) at the AZ, the magnitude of calcium influx upon arrival of the AP, the buffering of calcium ions as well as the identity and sensitivity of the calcium sensor. These properties are not only interconnected, but can also be regulated dynamically to match the requirements of activity patterns mediated by the synapse. Here, we review recent advances in identifying molecules and molecular machines taking part in the determination of vesicular Pr at the AZ. PMID:26973506

  10. Effect of Process Parameters on Microstructure and Micro-hardness of AZ91/Al2O3 Surface Composite Produced by FSP

    NASA Astrophysics Data System (ADS)

    Faraji, Ghader; Dastani, Omid; Mousavi, S. Ali Asghar Akbari

    2011-12-01

    In this article, the effects of three different sizes of Al2O3 particles in the friction stir processing on grain size, cluster size, microstructure, and micro-hardness of as-cast magnesium alloy AZ91 were investigated. Moreover, the effects of two types of tool geometries and number of passes on the mentioned parameters were considered. Effect of mentioned parameters on microstructure, grain refinement, and micro-hardness profile in the friction stirred zone of the specimens was compared by as-cast received form and also friction stir processed (FSPed) specimens without particles. Microstructural characterization of the materials revealed reasonably uniform distribution of Al2O3 reinforcement and significant grain refinement. Hardness studies revealed that the incorporation of nano- and micro-size Al2O3 particulates in magnesium matrix led to a simultaneous increase in hardness.

  11. The Role of Friction Stir Welding on the Microstructure and Mechanical Properties of AZ31B-H24 Mg alloy

    SciTech Connect

    Darzi, Kh.; Saeid, T.

    2011-12-26

    In this study, an attempt was made to join AZ31B magnesium alloy by friction stir welding (FSW) process. A single tool with cylindrical screw threaded pin was used to investigate the effect of welding parameters on microstructure and mechanical properties of stir zone (SZ). Several welds were made at different rotational ({omega}) and traverse ({upsilon}) speeds, while the {omega}/{upsilon} ratios were kept constant. The optical and scanning electron microscopy were used to study the variation of microstructure across the welds. Moreover, micro-hardness and tensile tests were carried out to evaluate the mechanical properties of joints. It was found that {omega} plays more significant role on the resulted grain structure than {upsilon}, and at a constant {omega}/{upsilon} ratio, decreasing rotational speed decreased the size of grains, and hence, improved the hardness value and the tensile strength of the SZ.

  12. 65 FR 56870 - AZ3, Inc., d/b/a/ BCBG Max Azria, Provisional Acceptance of a Settlement Agreement and Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2000-09-20

    ... COMMISSION AZ3, Inc., d/b/a/ BCBG Max Azria, Provisional Acceptance of a Settlement Agreement and Order...-accepted Settlement Agreement with AZ3, Inc., d/b/a BCBG Max Azria, containing a civil penalty of $75,000..., Secretary. Consumer Product Safety Commission In the Matter of AZ3, Inc., d/b/a BCBG Max Azria;...

  13. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101 & 241AZ-102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    SciTech Connect

    DUNCAN JB; HUBER HJ

    2011-04-21

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-l0-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FBSR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-5.2.1-2010-001, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using

  14. Promoting flowering, lateral shoot outgrowth, leaf development, and flower abscission in tobacco plants overexpressing cotton FLOWERING LOCUS T (FT)-like gene GhFT1

    PubMed Central

    Li, Chao; Zhang, Yannan; Zhang, Kun; Guo, Danli; Cui, Baiming; Wang, Xiyin; Huang, Xianzhong

    2015-01-01

    FLOWERING LOCUS T (FT) encodes a mobile signal protein, recognized as major component of florigen, which has a central position in regulating flowering, and also plays important roles in various physiological aspects. A mode is recently emerging for the balance of indeterminate and determinate growth, which is controlled by the ratio of FT-like and TERMINAL FLOWER 1 (TFL1)-like gene activities, and has a strong influence on the floral transition and plant architecture. Orthologs of GhFT1 was previously isolated and characterized from Gossypium hirsutum. We demonstrated that ectopic overexpression of GhFT1 in tobacco, other than promoting flowering, promoted lateral shoot outgrowth at the base, induced more axillary bud at the axillae of rosette leaves, altered leaf morphology, increased chlorophyll content, had higher rate of photosynthesis and caused flowers abscission. Analysis of gene expression suggested that flower identity genes were significantly upregulated in transgenic plants. Further analysis of tobacco FT paralogs indicated that NtFT4, acting as flower inducer, was upregulated, whereas NtFT2 and NtFT3 as flower inhibitors were upregulated in transgenic plants under long-day conditions, but downregulated under short-day conditions. Our data suggests that sufficient level of transgenic cotton FT might disturb the balance of the endogenous tobacco FT paralogs of inducers and repressors and resulted in altered phenotype in transgenic tobacco, emphasizing the expanding roles of FT in regulating shoot architecture by advancing determine growth. Manipulating the ratio for indeterminate and determinate growth factors throughout FT-like and TFL1-like gene activity holds promise to improve plant architecture and enhance crop yield. PMID:26136765

  15. Promoting flowering, lateral shoot outgrowth, leaf development, and flower abscission in tobacco plants overexpressing cotton FLOWERING LOCUS T (FT)-like gene GhFT1.

    PubMed

    Li, Chao; Zhang, Yannan; Zhang, Kun; Guo, Danli; Cui, Baiming; Wang, Xiyin; Huang, Xianzhong

    2015-01-01

    FLOWERING LOCUS T (FT) encodes a mobile signal protein, recognized as major component of florigen, which has a central position in regulating flowering, and also plays important roles in various physiological aspects. A mode is recently emerging for the balance of indeterminate and determinate growth, which is controlled by the ratio of FT-like and TERMINAL FLOWER 1 (TFL1)-like gene activities, and has a strong influence on the floral transition and plant architecture. Orthologs of GhFT1 was previously isolated and characterized from Gossypium hirsutum. We demonstrated that ectopic overexpression of GhFT1 in tobacco, other than promoting flowering, promoted lateral shoot outgrowth at the base, induced more axillary bud at the axillae of rosette leaves, altered leaf morphology, increased chlorophyll content, had higher rate of photosynthesis and caused flowers abscission. Analysis of gene expression suggested that flower identity genes were significantly upregulated in transgenic plants. Further analysis of tobacco FT paralogs indicated that NtFT4, acting as flower inducer, was upregulated, whereas NtFT2 and NtFT3 as flower inhibitors were upregulated in transgenic plants under long-day conditions, but downregulated under short-day conditions. Our data suggests that sufficient level of transgenic cotton FT might disturb the balance of the endogenous tobacco FT paralogs of inducers and repressors and resulted in altered phenotype in transgenic tobacco, emphasizing the expanding roles of FT in regulating shoot architecture by advancing determine growth. Manipulating the ratio for indeterminate and determinate growth factors throughout FT-like and TFL1-like gene activity holds promise to improve plant architecture and enhance crop yield.

  16. 76 FR 3570 - Proposed Amendment of Class E Airspace; Taylor, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ...This action proposes to modify Class E airspace at Taylor Airport, Taylor, AZ. Controlled airspace is necessary to accommodate aircraft using the CAMBO One Departure Area Navigation (RNAV) out of Taylor Airport. The FAA is proposing this action to enhance the safety and management of aircraft operations at Taylor Airport, Taylor,...

  17. Tank 241-AZ-102 SuperLig 639 Technetium Ion Exchange Eluate Evaporation Study

    SciTech Connect

    King, W.D.

    2001-02-15

    As part of the Hanford River Protection Project (RPP), the Savannah River Technology Center (SRTC) has conducted tests on the pretreatment and vitrification of a radioactive waste sample from Hanford Tank 241-AZ-102. The original, AZ-102 sample which was received at SRTC was characterized and filtered to remove entrained solids.1 The sample was then passed sequentially through ion exchange columns containing SuperLig{reg_sign} 644 and 639 resins for the removal of cesium and technetium ions (Tc removed as pertechnetate, TcO{sub 4}{sup {minus}}), respectively.2 The cesium and technetium absorbed to the resins was then eluted to give separate eluate solutions containing relatively high concentrations of Cs{sup +} and TcO{sub 4}{sup {minus}}. According to the current plant design, the decontaminated Tank 241-AZ-102 sample and the eluate solutions will be subjected to separate evaporation and vitrification processes to give low- and high-activity waste glasses, respectively. This report describes evaporation testing of the Tc eluate solution derived from ion exchange processing of the Tank 241-AZ-102 sample with SuperLig 639 resin.

  18. 75 FR 5115 - Temporary Concession Contract for Lake Mead National Recreation Area, AZ/NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... concession contract for Lake Mead National Recreation Area. SUMMARY: Pursuant to 36 CFR 51.24, public notice... National Park Service Temporary Concession Contract for Lake Mead National Recreation Area, AZ/NV AGENCY... the conduct of certain visitor services within Lake Mead National Recreation Area, Arizona and...

  19. 76 FR 42155 - Arizona Disaster #AZ-00017 Declaration of Economic Injury

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... ADMINISTRATION Arizona Disaster AZ-00017 Declaration of Economic Injury AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Economic Injury Disaster Loan (EIDL) declaration for the State of Arizona, dated 07/11/2011. Incident: Wallow Fire. Incident Period: 05/29/2011...

  20. Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy.

    PubMed

    Ren, Yufu; Zhou, Huan; Nabiyouni, Maryam; Bhaduri, Sarit B

    2015-04-01

    Due to their unique biodegradability, magnesium alloys have been recognized as suitable metallic implant materials for degradable bone implants and bioresorbable cardiovascular stents. However, the extremely high degradation rate of magnesium alloys in physiological environment has restricted its practical application. This paper reports the use of a novel microwave assisted coating technology to improve the in vitro corrosion resistance and biocompatibility of Mg alloy AZ31. Results indicate that a dense calcium deficient hydroxyapatite (CDHA) layer was uniformly coated on a AZ31 substrate in less than 10min. Weight loss measurement and SEM were used to evaluate corrosion behaviors in vitro of coated samples and of non-coated samples. It was seen that CDHA coatings remarkably reduced the mass loss of AZ31 alloy after 7days of immersion in SBF. In addition, the prompt precipitation of bone-like apatite layer on the sample surface during immersion demonstrated a good bioactivity of the CDHA coatings. Proliferation of osteoblast cells was promoted in 5days of incubation, which indicated that the CDHA coatings could improve the cytocompatibility of the AZ31 alloy. All the results suggest that the CDHA coatings, serving as a protective layer, can enhance the corrosion resistance and biological response of magnesium alloys. Furthermore, this microwave assisted coating technology could be a promising method for rapid surface modification of biomedical materials.

  1. Effect of cryogenic thermocycling treatment on the structure and properties of magnesium alloy AZ91

    NASA Astrophysics Data System (ADS)

    Yong, Jiang; Ding, Chen; Qiong, Jiang

    2012-03-01

    The effect of cryogenic thermocycling treatment on the microstructure, mechanical and cryogenic properties of alloy Mg - 9% Al - 0.9% Zn (AZ91) is studied. Thermocycling in the cryogenic range causes a change in the content and distribution of particles of segregations, which is responsible for improvement of the mechanical properties and corrosion resistance of the alloy.

  2. 78 FR 40381 - Establishment of Class E Airspace; Grand Canyon, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... Canyon VHF Omni-Directional Radio Range/Distance Measuring Equipment (VOR/DME) navigation aid, Grand..., at the Grand Canyon VOR/DME navigation aid, Grand Canyon, AZ, to accommodate IFR aircraft under... within the scope of that authority as it establishes controlled airspace at the Grand Canyon...

  3. Study on fused/cast AZS refractories for deployment in vitrification of radioactive waste effluents

    NASA Astrophysics Data System (ADS)

    Sengupta, Pranesh; Mishra, R. K.; Soudamini, N.; Sen, D.; Mazumder, S.; Kaushik, C. P.; Ajithkumar, T. G.; Banerjee, K.

    2015-12-01

    'Fused/cast Al2O3-ZrO2-SiO2 (FC-AZS)' is being considered as 'glass contact refractory' within ceramic melters, to be used for nuclear waste immobilization. Microstructural analyses reveal random distributions of baddeleyite (ZrO2) within aluminosilicate (Al2SiO5) matrix. 27Al and 29Si NMR data suggest that within aluminosilicate matrix Al occurs in both 4- and 6-fold co-ordinations whereas Si prefers a 4-fold environment. Polydispersity of pores has been studied with small-angle neutron scattering (SANS) technique. Corrosion rates of FC-AZS within 6 M HNO3, simulated wastes (500 h exposure), and borosilicate melt (975 °C, 800 h exposure) are found to be 0.38 × 103 μmy-1, 0.13 × 103 μmy-1 and 4.75 × 103 μmy-1 respectively. A comparison of chemical interaction data clearly suggests that FC-AZS exhibits better chemical durability than AZC refractory (Al2O3-ZrO2-Cr2O3, also used for similar purpose). Thermal cycling studies indicate that FC-AZS retains structural integrity (including compressive strength and density) even up to 20 cycles.

  4. Validation of Airborne Visible-Infrared Imaging Spectrometer Data at Ray Mine, AZ

    NASA Technical Reports Server (NTRS)

    Lang, H.; Baloga, S.

    1999-01-01

    We validate 1997 Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) reflectance spectra covering 0.4 meu - 2.4 meu from a stable, flat mineralogically characterized man-made target at Ray Mine, AZ, the site for an EPA/NASA assessment of the utility of remote sensing for monitoring acid drainage from an active open pit mine.

  5. 78 FR 65370 - Notice of Inventory Completion: Pima County Office of the Medical Examiner, Tucson, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    .... ADDRESSES: Dr. Bruce Anderson, Forensic Anthropologist, PCOME, Tucson, AZ 85714, telephone (520) 243-8600... Office for forensic analysis. The Pinal County Medical Examiner, Dr Rebecca Hsu, transferred the remains to the Pima County Office of the Medical Examiner for examination by a forensic anthropologist....

  6. 78 FR 63869 - Change of Using Agency for Restricted Areas R-2309 and R-2312, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... Federal Aviation Administration 14 CFR Part 73 RIN 2120-AA66 Change of Using Agency for Restricted Areas R-2309 and R-2312, AZ AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action updates the name of the using agency for Restricted Areas R-2309 and R-2312 located...

  7. Dry Sliding Wear Behavior of Fly Ash Cenosphere/AZ91D Mg Alloy Composites

    NASA Astrophysics Data System (ADS)

    Yu, S. R.; Huang, Z. Q.

    2014-10-01

    Fly ash cenosphere/AZ91D Mg alloy (FAC/AZ91D) composites were prepared using stir casting method. The effects of the applied load, the wearing time, and the diameter and the content of fly ash cenosphere on the wear behavior of the composites were investigated under dry sliding condition. The results showed the wear resistance of FAC/AZ91D composites is generally better than that of AZ91D Mg alloy. The mass fraction and diameter of FAC have important effects on the wear resistance of the composites, and the wear resistance of the composites is excellent when the mass fraction and diameter of FAC are moderate. When the mass fraction and diameter of FAC are more than the critical values, the wear resistance of the composites lowers again. The wear resistance of the composites decreases with the increase in the applied load. The relationship between the worn mass loss and the applied load is nonlinear. When the applied load is smaller, the worn mass loss of the composites increases rapidly with the increase of the applied load. These research results show that the composites have broad application prospects under dry sliding wear condition, and they can provide guidance for the selection of the raw materials, the structure design, and the application conditions of the composites.

  8. 78 FR 78298 - Proposed Establishment of Class E Airspace; Phoenix, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ...This action proposes to establish Class E airspace at the Phoenix VHF Omni-Directional Radio Range Tactical Air Navigation Aid (VORTAC), Phoenix, AZ, to facilitate vectoring of Instrument Flight Rules (IFR) aircraft under control of Albuquerque Air Route Traffic Control Center (ARTCC). The FAA is proposing this action to enhance the safety and management of aircraft operations within the......

  9. 75 FR 11939 - DNS Electronics, Chandler, AZ; Notice of Termination of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration DNS Electronics, Chandler, AZ; Notice of Termination of Investigation... a petition filed on May 27, 2009, by three workers on behalf of workers of DNS Electronics,...

  10. Influence of urban form on landscape pattern and connectivity in metropolitan regions: a comparative case study of Phoenix, AZ, USA, and Izmir, Turkey.

    PubMed

    Park, Sohyun; Hepcan, Çiğdem C; Hepcan, Şerif; Cook, Edward A

    2014-10-01

    Although ecological connectivity conservation in urban areas has recently been recognized as an important issue, less is known about its relationship to urban form and landscape pattern. This study investigates how urban morphology influences regional ecosystem pattern and landscape connectivity. Two metropolitan landscapes, Phoenix, AZ, USA, and Izmir, Turkey, were compared, both of which are fast-growing regions in their national context. A wide range of variables were considered for identifying natural and urban properties. The natural characteristics include typology of urban ecosystems, urban to natural cover ratio, dominant habitat type, urban biodiversity, landscape context, and connectivity conservation efforts. Urban parameters examine urban form, urban extent, urban cover proportion, growth rate, populations, urban gradient, major drivers of urbanization, urban density, and mode/approach of urban development. Twelve landscape metrics were measured and compared across the natural patches. Results show that there is little difference in landscape connectivity in the rural zones of Phoenix and Izmir, although Phoenix has slightly higher connectivity values. The connectivity variance in urbanized areas, however, is significantly dependent on the region. For example, Phoenix urban zones have substantially lower connectivity than either urban or suburban zones in Izmir. Findings demonstrate that small and compact urban settlements with more dense populations are more likely to conserve landscape connectivity compared to multiple-concentric but amalgamated urban form spreading all over the landscape (aka urban sprawl).

  11. Characterization of the first core sample of neutralized current acid waste from double-shell tank 101-AZ

    SciTech Connect

    Peterson, M E; Scheele, R D; Tingey, J M

    1989-09-01

    In FY 1989, Westinghouse Hanford Company (WHC) successfully obtained four core samples (totaling seven segments) of neutralized current acid waste (NCAW) from double-shell tanks (DSTs) 101-AZ and 102-AZ. A segment was a 19-in.-long and 1-in.-diameter cylindrical sample of waste. A core sample consisted of enough 19-in.-long segments to obtain the waste of interest. Three core samples were obtained from DST 101-AZ and one core sample from DST 102-AZ. Two DST 101-AZ core samples consisted of two segments per core, and the third core sample consisted of only one segment. The third core consisted of the solids from the bottom of the tank and was used to determine the relative abrasiveness of this NCAW. The DST 102-AZ core sample consisted of two segments. The core samples were transported to the Pacific Northwest Laboratory (PNL), where the waste was extruded from its sampler and extensively characterized. A characterization plan was followed that simulated the processing of the NCAW samples through retrieval, pretreatment and vitrification process steps. Physical, rheological, chemical and radiochemical properties were measured throughout the process steps. The characterization of the first core sample from DST 101-AZ was completed, and the results are provided in this report. The results for the other core characterizations will be reported in future reports. 3 refs., 13 figs., 10 tabs.

  12. Mechanical and Wear Properties of Sb- and Y-Added Mg-9Al-1Zn (AZ91) Alloy

    NASA Astrophysics Data System (ADS)

    Boby, Arun; Srinivasan, A.; Pillai, U. T. S.; Pai, B. C.

    2015-09-01

    This paper studies the effect of Sb and Y additions on the microstructure and mechanical properties of the AZ91 alloy. The results indicate that the Sb and Y additions lead to the formation of Mg3Sb2 and Al2Y phases. These phases modify the morphology of the β-Mg17Al12 phase, and hence refine the microstructure. The effects of Sb and Y additions on the aging behavior have also been investigated. Aging of the AZ91 alloy results in the formation of continuous and discontinuous types of precipitates. Whereas Sb and Y additions to AZ91 alloy suppresses the formation of discontinuous precipitate. The paper also reports the mechanical properties of as-cast and aged Sb-added AZ91-xY alloys for room and high temperatures. The optimum tensile properties are obtained with the alloy having the combined addition of 0.5 wt pct Sb and 0.6 wt pct Y. The fracture surface of AZ91-0.5Sb-0.6Y alloy reveals more quasi-cleavage type of failure with a cleavage fracture than the base alloy. At HT, the AZ91-0.5Sb-0.6Y alloy displays more cleavage facets connected with tearing ridges and shallow dimples than AZ91 alloy. Furthermore, it observed the improvement in wear resistance through the addition of Y. The worn surface reveals abrasion, oxidation, delamination, and plastic deformation wear mechanisms.

  13. Electrophoretic Deposition of 3YSZ Coating on AZ91D Alloy Using Al and Ni-P Interlayers

    NASA Astrophysics Data System (ADS)

    Shahriari, A.; Aghajani, H.

    2016-10-01

    Electrophoretic deposition was used in order to apply the zirconia stabilized by 3 mol% Y2O3 onto the surface of the magnesium alloy AZ91D. Two different interlayers which were including aluminum layer and Ni-P layer were prepared between the AZ91D surface and YSZ coating and the effect of them on the quality of YSZ coating was investigated. The surface morphologies of the coatings were studied by scanning electron microscopy, and their compositions were determined by x-ray diffraction. The corrosion resistance of the coatings was evaluated by electrochemical impedance spectroscopy in 3.5% NaCl neutral solution. Also, the stability of coating was investigated by the Rockwell C indentation test. The results showed that the YSZ coating applied onto different interlayers on AZ91D improves the corrosion resistance of this alloy due to increase in charge-transfer resistance of the AZ91D surface. Also, the aluminum interlayer has a favorable effect on the densification of the coating by formation of aluminum oxide. Furthermore, the corrosion resistance of AZ91D that coated by YSZ and aluminum layer was improved compared to that of coated AZ91D with YSZ and Ni-P layer. The presence of interlayers can make the stability of the YSZ coating improved on the surface of AZ91D.

  14. Oncogenic potential of histone-variant H2A.Z.1 and its regulatory role in cell cycle and epithelial-mesenchymal transition in liver cancer

    PubMed Central

    Eun, Jung Woo; Shen, Qingyu; Kim, Hyung Seok; Shin, Woo Chan; Ahn, Young Min; Park, Won Sang; Lee, Jung Young; Nam, Suk Woo

    2016-01-01

    H2A.Z is a highly conserved H2A variant, and two distinct H2A.Z isoforms, H2A.Z.1 and H2A.Z.2, have been identified as products of two non-allelic genes, H2AFZ and H2AFV. H2A.Z has been reported to be overexpressed in breast, prostate and bladder cancers, but most studies did not clearly distinguish between isoforms. One recent study reported a unique role for the H2A.Z isoform H2A.Z.2 as a driver of malignant melanoma. Here we first report that H2A.Z.1 plays a pivotal role in the liver tumorigenesis by selectively regulating key molecules in cell cycle and epithelial-mesenchymal transition (EMT). H2AFZ expression was significantly overexpressed in a large cohort of hepatocellular carcinoma (HCC) patients, and high expression of H2AFZ was significantly associated with their poor prognosis. H2A.Z.1 overexpression was demonstrated in a subset of human HCC and cell lines. H2A.Z.1 knockdown suppressed HCC cell growth by transcriptional deregulation of cell cycle proteins and caused apoptotic cell death of HCC cells. We also observed that H2A.Z.1 knockdown reduced the metastatic potential of HCC cells by selectively modulating epithelial-mesenchymal transition regulatory proteins such as E-cadherin and fibronectin. In addition, H2A.Z.1 knockdown reduced the in vivo tumor growth rate in a mouse xenograft model. In conclusion, our findings suggest the oncogenic potential of H2A.Z.1 in liver tumorigenesis and that it plays established role in accelerating cell cycle transition and EMT during hepatocarcinogenesis. This makes H2A.Z.1 a promising target in liver cancer therapy. PMID:26863632

  15. Respiratory Syncytial Virus Inhibitor AZ-27 Differentially Inhibits Different Polymerase Activities at the Promoter

    PubMed Central

    Noton, Sarah L.; Nagendra, Kartikeya; Dunn, Ewan F.; Mawhorter, Michael E.; Yu, Qin

    2015-01-01

    ABSTRACT Respiratory syncytial virus (RSV) is the leading cause of pediatric respiratory disease. RSV has an RNA-dependent RNA polymerase that transcribes and replicates the viral negative-sense RNA genome. The large polymerase subunit (L) has multiple enzymatic activities, having the capability to synthesize RNA and add and methylate a cap on each of the viral mRNAs. Previous studies (H. Xiong et al., Bioorg Med Chem Lett, 23:6789–6793, 2013, http://dx.doi.org/10.1016/j.bmcl.2013.10.018; C. L. Tiong-Yip et al., Antimicrob Agents Chemother, 58:3867–3873, 2014, http://dx.doi.org/10.1128/AAC.02540-14) had identified a small-molecule inhibitor, AZ-27, that targets the L protein. In this study, we examined the effect of AZ-27 on different aspects of RSV polymerase activity. AZ-27 was found to inhibit equally both mRNA transcription and genome replication in cell-based minigenome assays, indicating that it inhibits a step common to both of these RNA synthesis processes. Analysis in an in vitro transcription run-on assay, containing RSV nucleocapsids, showed that AZ-27 inhibits synthesis of transcripts from the 3′ end of the genome to a greater extent than those from the 5′ end, indicating that it inhibits transcription initiation. Consistent with this finding, experiments that assayed polymerase activity on the promoter showed that AZ-27 inhibited transcription and replication initiation. The RSV polymerase also can utilize the promoter sequence to perform a back-priming reaction. Interestingly, addition of AZ-27 had no effect on the addition of up to three nucleotides by back-priming but inhibited further extension of the back-primed RNA. These data provide new information regarding the mechanism of inhibition by AZ-27. They also suggest that the RSV polymerase adopts different conformations to perform its different activities at the promoter. IMPORTANCE Currently, there are no effective antiviral drugs to treat RSV infection. The RSV polymerase is an

  16. 77 FR 34934 - Foreign-Trade Zone 139-Sierra Vista, AZ; Application for Reorganization Under Alternative Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ...) by the Sierra Vista Economic Development Foundation, Inc., grantee of FTZ 139, requesting authority... for FTZ designation. The proposed service area is within and adjacent to the Naco U.S. Customs and... requested at this time. In accordance with the Board's regulations, Christopher Kemp of the FTZ Staff...

  17. 77 FR 75144 - Foreign-Trade Zone 277-Western Maricopa County, AZ; Application for Expansion; (New Magnet Site...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ...; (New Magnet Site) Under Alternative Site Framework An application has been submitted to the Foreign...) adopted by the Board (15 CFR Sec. 400.2(c)) to include two additional new magnet sites in western Maricopa... following magnet sites: Site 1 (230.25 acres)--within the 416-acre Airport Gateway at Goodyear...

  18. 76 FR 70957 - Foreign-Trade Zone 277-Western Maricopa County, AZ; Application for Manufacturing Authority, Sub...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    .../year) is located at 4295 N. Cotton Lane within the Palm Valley 303 Industrial Park in Goodyear, Arizona... of the finished products) include: Oils, greases, paints, varnishes, caulking, sealants,...

  19. Regulation of histone H2A.Z expression is mediated by sirtuin 1 in prostate cancer.

    PubMed

    Baptista, Tiago; Graça, Inês; Sousa, Elsa J; Oliveira, Ana I; Costa, Natália R; Costa-Pinheiro, Pedro; Amado, Francisco; Henrique, Rui; Jerónimo, Carmen

    2013-10-01

    Histone variants seem to play a major role in gene expression regulation. In prostate cancer, H2A.Z and its acetylated form are implicated in oncogenes' upregulation. SIRT1, which may act either as tumor suppressor or oncogene, reduces H2A.Z levels in cardiomyocytes, via proteasome-mediated degradation, and this mechanism might be impaired in prostate cancer cells due to sirtuin 1 downregulation. Thus, we aimed to characterize the mechanisms underlying H2A.Z and SIRT1 deregulation in prostate carcinogenesis and how they interact. We found that H2AFZ and SIRT1 were up- and downregulated, respectively, at transcript level in primary prostate cancer and high-grade prostatic intraepithelial neoplasia compared to normal prostatic tissues. Induced SIRT1 overexpression in prostate cancer cell lines resulted in almost complete absence of H2A.Z. Inhibition of mTOR had a modest effect on H2A.Z levels, but proteasome inhibition prevented the marked reduction of H2A.Z due to sirtuin 1 overexpression. Prostate cancer cells exposed to epigenetic modifying drugs trichostatin A, alone or combined with 5-aza-2'-deoxycytidine, increased H2AFZ transcript, although with a concomitant decrease in protein levels. Conversely, SIRT1 transcript and protein levels increased after exposure. ChIP revealed an increase of activation marks within the TSS region for both genes. Remarkably, inhibition of sirtuin 1 with nicotinamide, increased H2A.Z levels, whereas activation of sirtuin 1 by resveratrol led to an abrupt decrease in H2A.Z. Finally, protein-ligation assay showed that exposure to epigenetic modifying drugs fostered the interaction between sirtuin 1 and H2A.Z. We concluded that sirtuin 1 and H2A.Z deregulation in prostate cancer are reciprocally related. Epigenetic mechanisms, mostly histone post-translational modifications, are likely involved and impair sirtuin 1-mediated downregulation of H2A.Z via proteasome-mediated degradation. Epigenetic modifying drugs in conjunction with

  20. Regulation of histone H2A.Z expression is mediated by sirtuin 1 in prostate cancer

    PubMed Central

    Baptista, Tiago; Graça, Inês; Sousa, Elsa J.; Oliveira, Ana I.; Costa, Natália R.; Costa-Pinheiro, Pedro; Amado, Francisco; Henrique, Rui; Jerónimo, Carmen

    2013-01-01

    Histone variants seem to play a major role in gene expression regulation. In prostate cancer, H2A.Z and its acetylated form are implicated in oncogenes' upregulation. SIRT1, which may act either as tumor suppressor or oncogene, reduces H2A.Z levels in cardiomyocytes, via proteasome-mediated degradation, and this mechanism might be impaired in prostate cancer cells due to sirtuin 1 downregulation. Thus, we aimed to characterize the mechanisms underlying H2A.Z and SIRT1 deregulation in prostate carcinogenesis and how they interact. We found that H2AFZ and SIRT1 were up- and downregulated, respectively, at transcript level in primary prostate cancer and high-grade prostatic intraepithelial neoplasia compared to normal prostatic tissues. Induced SIRT1 overexpression in prostate cancer cell lines resulted in almost complete absence of H2A.Z. Inhibition of mTOR had a modest effect on H2A.Z levels, but proteasome inhibition prevented the marked reduction of H2A.Z due to sirtuin 1 overexpression. Prostate cancer cells exposed to epigenetic modifying drugs trichostatin A, alone or combined with 5-aza-2'-deoxycytidine, increased H2AFZ transcript, although with a concomitant decrease in protein levels. Conversely, SIRT1 transcript and protein levels increased after exposure. ChIP revealed an increase of activation marks within the TSS region for both genes. Remarkably, inhibition of sirtuin 1 with nicotinamide, increased H2A.Z levels, whereas activation of sirtuin 1 by resveratrol led to an abrupt decrease in H2A.Z. Finally, protein-ligation assay showed that exposure to epigenetic modifying drugs fostered the interaction between sirtuin 1 and H2A.Z. We concluded that sirtuin 1 and H2A.Z deregulation in prostate cancer are reciprocally related. Epigenetic mechanisms, mostly histone post-translational modifications, are likely involved and impair sirtuin 1-mediated downregulation of H2A.Z via proteasome-mediated degradation. Epigenetic modifying drugs in conjunction with

  1. Distribution of xylem hydraulic resistance in fruiting truss of tomato influenced by water stress.

    PubMed

    Van Ieperen, W; Volkov, V S; Van Meeteren, U

    2003-01-01

    In this study xylem hydraulic resistances of peduncles (truss stalk), pedicels (fruit stalk) and the future abscission zone (AZ) halfway along the pedicel of tomato (Lycopersicon esculentum L.) plants were directly measured at different stages of fruit development, in plants grown under two levels of water availability in the root environment. The xylem hydraulic connection between shoot and fruits has previously been investigated, but contradictory conclusions were drawn about the presence of a flow resistance barrier in the pedicel. These conclusions were all based on indirect functional measurements and anatomical observations of water-conducting tissue in the pedicel. In the present study, by far the largest resistances were measured in the AZ where most individual vessels ended. Plants grown at low water availability in the root environment had xylem with higher hydraulic resistances in the peduncle and pedicel segments on both sides of the AZ, while the largest increase in hydraulic resistance was measured in the AZ. During fruit development hydraulic resistances in peduncle and pedicel segments decreased on both sides of the AZ, but tended to increase in the AZ. The overall xylem hydraulic resistance between the shoot and fruit tended to increase with fruit development because of the dominating role of the hydraulic resistance in the AZ. It is discussed whether the xylem hydraulic resistance in the AZ of tomato pedicels in response to water stress and during fruit development contributes to the hydraulic isolation of fruits from diurnal cycles of water stress in the shoot.

  2. Surface characterization and cytocompatibility evaluation of silanized magnesium alloy AZ91 for biomedical applications.

    PubMed

    Witecka, Agnieszka; Yamamoto, Akiko; Dybiec, Henryk; Swieszkowski, Wojciech

    2012-12-01

    Mg alloys with high Al contents have superior corrosion resistance in aqueous environments, but poor cytocompatibility compared to that of pure Mg. We have silanized the cast AZ91 alloy to improve its cytocompatibility using five different silanes: ethyltriethoxysilane (S1), 3-aminopropyltriethoxysilane (S2), 3-isocyanatopyltriethoxysilane (S3), phenyltriethoxysilane (S4) and octadecyltriethoxysilane (S5). The surface hydrophilicity/hydrophobicity was evaluated by water contact angle measurements. X-ray photoelectron analysis was performed to investigate the changes in surface states and chemical composition. All silane reagents increased adsorption of the albumin to the modified surface. In vitro cytocompatibility evaluation revealed that silanization improved cell growth on AZ91 modified by silane S1. Measurement of the concentration of Mg(2+) ions released during the cell culture indicated that silanization does not affect substrate degradation.

  3. An organic chromium-free conversion coating on AZ91D magnesium alloy

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoming; Li, Guangyu; Lian, Jianshe; Jiang, Qing

    2008-12-01

    Traditional conversion coatings on magnesium alloys are usually immersed in a solution containing hexavalent chromium compounds. However, the replacement treatments have been proposed by the present environmental driving to eliminate hexavalent chromium. In this work, a tannic acid based conversion coating on AZ91D magnesium alloy was obtained by treatment in a solution containing tannic acid and ammonium metavanadate. SEM, XPS and IR were used to determine the morphology and structure of the conversion coatings. Continuous and uniform conversion coating was deposited on AZ91D alloy and the main components of the coatings were Al 2O 3, MgF 2 and penta-hydroxy benzamide-magnesium complex. The formation mechanism of the coating was discussed. Polarization measurement and salt spray test showed that the corrosion resistance of the conversion coating was much higher than that of traditional chromate conversion coating.

  4. Surface characterization and cytocompatibility evaluation of silanized magnesium alloy AZ91 for biomedical applications

    PubMed Central

    Witecka, Agnieszka; Yamamoto, Akiko; Dybiec, Henryk; Swieszkowski, Wojciech

    2012-01-01

    Mg alloys with high Al contents have superior corrosion resistance in aqueous environments, but poor cytocompatibility compared to that of pure Mg. We have silanized the cast AZ91 alloy to improve its cytocompatibility using five different silanes: ethyltriethoxysilane (S1), 3-aminopropyltriethoxysilane (S2), 3-isocyanatopyltriethoxysilane (S3), phenyltriethoxysilane (S4) and octadecyltriethoxysilane (S5). The surface hydrophilicity/hydrophobicity was evaluated by water contact angle measurements. X-ray photoelectron analysis was performed to investigate the changes in surface states and chemical composition. All silane reagents increased adsorption of the albumin to the modified surface. In vitro cytocompatibility evaluation revealed that silanization improved cell growth on AZ91 modified by silane S1. Measurement of the concentration of Mg2+ ions released during the cell culture indicated that silanization does not affect substrate degradation. PMID:27877541

  5. Study on hydrogen removal of AZ91 alloys using ultrasonic argon degassing process.

    PubMed

    Liu, Xuan; Zhang, Zhiqiang; Hu, Wenyi; Le, Qichi; Bao, Lei; Cui, Jianzhong; Jiang, Jiajia

    2015-09-01

    Argon degassing, ultrasonic degassing and a novel ultrasonic argon degassing treatment were applied for the hydrogen removal of AZ91 magnesium alloy. The hydrogen concentration, microstructures and mechanical properties have also been investigated. AZ91 alloys contains a high hydrogen concentration. The mechanical properties of the as-cast alloy are much improved using degassing process, which should be mainly attributed to the hydrogen removal. Among the three degassing process, the ultrasonic argon treatment is a high efficient process both for hydrogen removal and microstructure refining. One hand, ultrasonic wave could break up the purged argon bubble to improve the degassing efficiency of these bubbles. On the other hand, ultrasound could also generate many cavitation bubbles in the melt, which should account for the microstructure refinement. The ultrasonic argon treatment involves dynamics between the ascending argon bubbles and ultrasonic effects, such as cavitation and streaming, etc.

  6. Evaluation of AY/AZ tank farm ventilation system during aging waste retrieval operations

    SciTech Connect

    Wong, J.J.; Waters, E.D.

    1995-01-01

    Waste Management is currently planning to demonstrate mobilization of radioactive waste sludges in Tank 101-AZ beginning in October 1991. The retrieval system being designed will utilize mixer pumps that generate high-velocity, high-volume submerged liquid jets to mobilize settled solids. There is concern that these jets may also generate radioactive aerosols, some of which may be carried into the tank Ventilation system. The purpose of this study is to determine if the current AY/AZ ventilation system or the proposed ventilation system upgrade (Project W-030) will provide adequate deentrainment of liquid and solid aerosols during mixer pump operations, or if the radioactive aerosols will overload the HEPA filters.

  7. Thermal stress analysis of fused-cast AZS refractories during production; Part 1: Industrial study

    SciTech Connect

    Cockcroft, S.L.; Brimacombe, J.K. . Centre for Metallurgical Process Engineering); Walrod, D.G.; Myles, T.A. . Monofrax-S Plant)

    1994-06-01

    A study has been conducted to understand and prevent the formation of cracks in alumina-zirconia-silica (AZS) refractory blocks during solidification processing. A fundamental approach has been taken, centered on the development of a three-dimensional mathematical model to predict heat flow and stress generation in fused-cast AZS refractory blocks. In the first part of a two-part study, the voidless'' casting process has been carefully examined in an industrial setting. From a survey of the distribution, frequency of occurrence, and fracture surface morphology of cracks, an attempt was made to link the crack types found in the study to process variables. In-mold temperature data collected for a single casting throughout the normal cooling period have been used to validate the heat-flow model which is described in Part 2. The stress analysis, cause of the different cracks, and remedial action are also presented in Part 2.

  8. Surface characterization and cytocompatibility evaluation of silanized magnesium alloy AZ91 for biomedical applications

    NASA Astrophysics Data System (ADS)

    Witecka, Agnieszka; Yamamoto, Akiko; Dybiec, Henryk; Swieszkowski, Wojciech

    2012-12-01

    Mg alloys with high Al contents have superior corrosion resistance in aqueous environments, but poor cytocompatibility compared to that of pure Mg. We have silanized the cast AZ91 alloy to improve its cytocompatibility using five different silanes: ethyltriethoxysilane (S1), 3-aminopropyltriethoxysilane (S2), 3-isocyanatopyltriethoxysilane (S3), phenyltriethoxysilane (S4) and octadecyltriethoxysilane (S5). The surface hydrophilicity/hydrophobicity was evaluated by water contact angle measurements. X-ray photoelectron analysis was performed to investigate the changes in surface states and chemical composition. All silane reagents increased adsorption of the albumin to the modified surface. In vitro cytocompatibility evaluation revealed that silanization improved cell growth on AZ91 modified by silane S1. Measurement of the concentration of Mg2+ ions released during the cell culture indicated that silanization does not affect substrate degradation.

  9. Project W-314 specific test and evaluation plan for AZ tank farm upgrades

    SciTech Connect

    Hays, W.H.

    1998-08-12

    The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made by the addition of the SN-631 transfer line from the AZ-O1A pit to the AZ-02A pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system`s performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation P1 an (TEP). Testing includes Validations and Verifications (e.g., Commercial Grade Item Dedication activities, etc), Factory Tests and Inspections (FTIs), installation tests and inspections, Construction Tests and Inspections (CTIs), Acceptance Test Procedures (ATPs), Pre-Operational Test Procedures (POTPs), and Operational Test Procedures (OTPs). The STEP will be utilized in conjunction with the TEP for verification and validation.

  10. A new prozostrodontian cynodont (Therapsida) from the Late Triassic Riograndia Assemblage Zone (Santa Maria Supersequence) of Southern Brazil.

    PubMed

    Soares, Marina B; Martinelli, Agustín G; De Oliveira, Téo V

    2014-12-01

    We report here on a new prozostrodontian cynodont, Botucaraitherium belarminoi gen. et sp. nov., from the Late Triassic Riograndia Assemblage Zone (AZ) of the Candelária Sequence (Santa Maria Supersequence), collected in the Botucaraí Hill Site, Candelária Municipality, state of Rio Grande do Sul, Brazil. The new taxon is based on a single specimen (holotype MMACR-PV-003-T) which includes the left lower jaw, without postdentary bones, bearing the root of the last incisor, canine and four postcanines plus one partial crown inside the dentary, not erupted, and two maxillary fragments, one with a broken canine and another with one postcanine. The features of the lower jaw and lower/upper postcanines resemble those of the prozostrodontians Prozostrodon brasiliensis from the older Hyperodapedon AZ and Brasilodon quadrangularis and Brasilitherium riograndensis from the same Riograndia AZ. The inclusion of Botucaraitherium within a broad phylogenetic analysis, positioned it as a more derived taxon than tritylodontids, being the sister-taxon of Brasilodon, Brasilitherium plus Mammaliaformes. Although the new taxon is based on few cranial elements, it represents a additional faunal component of the Triassic Riograndia AZ of southern Brazil, in which small-sized derived non-mammaliaform cynodonts, closely related to the origin of mammaliaforms, were ecologically well succeed and taxonomically diverse.

  11. A high affinity RIM-binding protein/Aplip1 interaction prevents the formation of ectopic axonal active zones

    PubMed Central

    Siebert, Matthias; Böhme, Mathias A; Driller, Jan H; Babikir, Husam; Mampell, Malou M; Rey, Ulises; Ramesh, Niraja; Matkovic, Tanja; Holton, Nicole; Reddy-Alla, Suneel; Göttfert, Fabian; Kamin, Dirk; Quentin, Christine; Klinedinst, Susan; Andlauer, Till FM; Hell, Stefan W; Collins, Catherine A; Wahl, Markus C; Loll, Bernhard; Sigrist, Stephan J

    2015-01-01

    Synaptic vesicles (SVs) fuse at active zones (AZs) covered by a protein scaffold, at Drosophila synapses comprised of ELKS family member Bruchpilot (BRP) and RIM-binding protein (RBP). We here demonstrate axonal co-transport of BRP and RBP using intravital live imaging, with both proteins co-accumulating in axonal aggregates of several transport mutants. RBP, via its C-terminal Src-homology 3 (SH3) domains, binds Aplip1/JIP1, a transport adaptor involved in kinesin-dependent SV transport. We show in atomic detail that RBP C-terminal SH3 domains bind a proline-rich (PxxP) motif of Aplip1/JIP1 with submicromolar affinity. Pointmutating this PxxP motif provoked formation of ectopic AZ-like structures at axonal membranes. Direct interactions between AZ proteins and transport adaptors seem to provide complex avidity and shield synaptic interaction surfaces of pre-assembled scaffold protein transport complexes, thus, favouring physiological synaptic AZ assembly over premature assembly at axonal membranes. DOI: http://dx.doi.org/10.7554/eLife.06935.001 PMID:26274777

  12. Spermidine Suppresses Age-Associated Memory Impairment by Preventing Adverse Increase of Presynaptic Active Zone Size and Release

    PubMed Central

    Gupta, Varun K.; Pech, Ulrike; Fulterer, Andreas; Ender, Anatoli; Mauermann, Stephan F.; Andlauer, Till F. M.; Beuschel, Christine; Thriene, Kerstin; Quentin, Christine; Schwärzel, Martin; Mielke, Thorsten; Madeo, Frank; Dengjel, Joern; Fiala, André; Sigrist, Stephan J.

    2016-01-01

    Memories are assumed to be formed by sets of synapses changing their structural or functional performance. The efficacy of forming new memories declines with advancing age, but the synaptic changes underlying age-induced memory impairment remain poorly understood. Recently, we found spermidine feeding to specifically suppress age-dependent impairments in forming olfactory memories, providing a mean to search for synaptic changes involved in age-dependent memory impairment. Here, we show that a specific synaptic compartment, the presynaptic active zone (AZ), increases the size of its ultrastructural elaboration and releases significantly more synaptic vesicles with advancing age. These age-induced AZ changes, however, were fully suppressed by spermidine feeding. A genetically enforced enlargement of AZ scaffolds (four gene-copies of BRP) impaired memory formation in young animals. Thus, in the Drosophila nervous system, aging AZs seem to steer towards the upper limit of their operational range, limiting synaptic plasticity and contributing to impairment of memory formation. Spermidine feeding suppresses age-dependent memory impairment by counteracting these age-dependent changes directly at the synapse. PMID:27684064

  13. Effect of Aging on the Microstructure and Mechanical Properties of Magnesium Alloy AZ31

    NASA Astrophysics Data System (ADS)

    Kerenciler, H.; Gündüz, S.; Erden, M. Akif; Türkmen, M.; Karabulut, H.

    2016-07-01

    The structure and mechanical properties of magnesium alloy AZ31 are studied after conventional and deformation aging under conditions corresponding to the thermal cycle of polymerization in paint coating of cars. The aging is conducted after 3-h solution treatment at 400°C, water quenching, and aging at 180°C for from 10 min to 6 h. Some of the specimens are deformed by 0.5% right after the solution treatment and then aged by the same regime.

  14. Torsional and axial damping properties of the AZ31B-F magnesium alloy

    NASA Astrophysics Data System (ADS)

    Anes, V.; Lage, Y. E.; Vieira, M.; Maia, N. M. M.; Freitas, M.; Reis, L.

    2016-10-01

    Damping properties for the AZ31B-F magnesium alloy were evaluated for pure axial and pure shear loading conditions at room temperature. Hysteretic damping results were measured through stress-strain controlled tests. Moreover, the magnesium alloy viscous damping was measured with frequency response functions and free vibration decay, both results were obtained by experiments. The axial and shear damping ratio (ASDR) has been identified and described, specifically for free vibration conditions.

  15. AzTEC 1.1 mm OBSERVATIONS OF THE MBM12 MOLECULAR CLOUD

    SciTech Connect

    Kim, M. J.; Kim, S.; Youn, S.; Kang, Y.-W.; Yun, M. S.; Wilson, G. W.; Aretxaga, I.; Hughes, D. H.; Humphrey, A.; Williams, J. P.; Austermann, J. E.; Perera, T. A.; Mauskopf, P. D.; Magnani, L.

    2012-02-10

    We present 1.1 mm observations of the dust continuum emission from the MBM12 high-latitude molecular cloud observed with the Astronomical Thermal Emission Camera (AzTEC) mounted on the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. We surveyed 6.34 deg{sup 2} centered on MBM12, making this the largest area that has ever been surveyed in this region with submillimeter and millimeter telescopes. Eight secure individual sources were detected with a signal-to-noise ratio of over 4.4. These eight AzTEC sources can be considered to be real astronomical objects compared to the other candidates based on calculations of the false detection rate. The distribution of the detected 1.1 mm sources or compact 1.1 mm peaks is spatially anti-correlated with that of the 100 {mu}m emission and the {sup 12}CO emission. We detected the 1.1 mm dust continuum emitting sources associated with two classical T Tauri stars, LkH{alpha}262 and LkH{alpha}264. Observations of spectral energy distributions (SEDs) indicate that LkH{alpha}262 is likely to be Class II (pre-main-sequence star), but there are also indications that it could be a late Class I (protostar). A flared disk and a bipolar cavity in the models of Class I sources lead to more complicated SEDs. From the present AzTEC observations of the MBM12 region, it appears that other sources detected with AzTEC are likely to be extragalactic and located behind MBM12. Some of these have radio counterparts and their star formation rates are derived from a fit of the SEDs to the photometric evolution of galaxies in which the effects of a dusty interstellar medium have been included.

  16. Best Practices Case Study: John Wesley Miller Companies - Armory Park Del Sol, Tucson, AZ

    SciTech Connect

    2009-10-01

    Case study of John Wesley Miller Companies, who built two net zero energy homes plus 97 other solar homes in Tucson, AZ. Masonry block walls with rigid foam exterior sheathing, rigid foam over the roof deck plus R-38 in the attic, ducts in conditioned space, 4.2 kW and 5.7 kW photovoltaics and solar water heating yielded HERS scores of 0 on the two homes.

  17. Test plan: Laboratory-scale testing of the first core sample from Tank 102-AZ

    SciTech Connect

    Morrey, E.V.

    1996-03-01

    The overall objectives of the Radioactive Process/Product Laboratory Testing (RPPLT), WBS 1.2.2.05.05, are to confirm that simulated HWVP feed and glass are representative of actual radioactive HWVP feed and glass and to provide radioactive leaching and glass composition data to WFQ. This study will provide data from one additional NCAW core sample (102-AZ Core 1) for these purposes.

  18. Effect of ECAP on microstructure and mechanical properties of cast AZ91 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Chung, C. W.; Ding, R. G.; Chiu, Y. L.; Gao, W.

    2010-07-01

    An as-cast AZ91 magnesium alloy was processed by Equal Channel Angular Pressing (ECAP) at 320°C. The microstructure and mechanical properties were studied. It has been found that ECAP refines both the grains and precipitates, thus modifies the strength and ductility of the processed alloy. After the first pass of ECAP, the yield stress improves significantly from 71 MPa to 140 MPa.

  19. Effect of Surface Modification on Cumulative Tensile Ductility of AZ31 Magnesium Sheet

    NASA Astrophysics Data System (ADS)

    Habibnejad-korayem, Mahdi; Jain, Mukesh K.; Mishra, Raja K.

    2016-12-01

    Wire brushing and annealing (WBA) process was developed, optimized and utilized to modify the surface layer microstructure of AZ31 automotive magnesium sheet material. The process was carried out using softer brass wire brushes to mitigate the effect of wire brushing on surface quality and damage. The influence of modified surface grain structure and crystallographic texture was studied by continuous uniaxial tension test as well as by a newly proposed multi-step uniaxial stretching and annealing (MUSA) process to assess cumulative uniaxial tensile ductility of AZ31 sheet. A rotational speed of 2800 revolutions per minute for the wire brush with a near-zero depth of cut followed by annealing at 473 K (200 °C) for 60 minutes resulted in acceptable surface quality with a refined grain layer of depth 30 μm, and a modified crystallographic texture on the surface. Material flow behavior, grain microstructure, and texture evolution of WBA-processed material during subsequent MUSA process were analyzed to assess the role of wire brushing in enhancing the MUSA response of AZ31 sheet. Original fully annealed AZ31 sheet (in the non-WBA condition) was also subjected to identical MUSA process for comparison purposes. The results showed improvement in terminal uniaxial tensile ductility of WBA-MUSA-processed material compared to Standard-MUSA material. The ductility improvement is attributed to non-basal texture development and re-distribution of the texture, as well as to grain refinement within the highly deformed surface layer from the combination of WBA and MUSA processes.

  20. Comparison of simulants to actual neutralized current acid waste: process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    SciTech Connect

    Morrey, E.V.; Tingey, J.M.; Elliott, M.L.

    1996-10-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs were established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste was performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property ,models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions.

  1. Comparison of simulants to actual neutralized current acid waste: Process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    SciTech Connect

    Morrey, E.V.; Tingey, J.M.

    1996-04-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs have been established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste is being performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions.

  2. Flow behaviour of magnesium alloy AZ31B processed by equal-channel angular pressing

    NASA Astrophysics Data System (ADS)

    Arun, M. S.; Chakkingal, U.

    2014-08-01

    Magnesium alloys are characterised by their low density, high specific strength and stiffness. But, the potential application of Mg is limited by its low room-temperature ductility & formability. Formability can be improved by developing an ultrafine grained (UFG) structure. Equal channel angular pressing (ECAP) is a well known process that can be used to develop an ultrafine grained microstructure. The aim of this study was to investigate the flow behaviour of AZ31B magnesium alloy after ECAP. The specimen was subjected to three passes of ECAP with a die angle of 120° using processing route Bc. The processing temperature was 523 K for the first pass and 423 K for the subsequent two passes. The microstructure characterisation was done. Compression tests of ECAPed and annealed specimens were carried out at strain rates of 0.01 - 1s-1 and deformation temperatures of 200 - 300°C using computer servo-controlled Gleeble-3800 system. The value of activation energy Q and the empirical materials constants of A and n were determined. The equations relating flow stress and Zener-Hollomon parameter were proposed. In the case annealed AZ31, the activation energy was determined to be 154 kJ/mol, which was slightly higher than the activation energy of 144 kJ/mol for ECAPed AZ31.

  3. Synthesis of dittmarite/Mg(OH)2 composite coating on AZ31 using hydrothermal treatment

    NASA Astrophysics Data System (ADS)

    Zhao, Qing; Mahmood, Waqas; Zhu, Yanying

    2016-03-01

    In this work, we have used hydrothermal method for the synthesis of dittmarite/Mg(OH)2 composite (DMC) layer on AZ31 alloy of magnesium. The synthesized coating was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectroscopy (EDS). In a test immersion into the Hank's mixture for 31 days, the synthesized coating inhibited corrosion of AZ31 significantly and the amorphous calcium apatite precursor deposited on the coating surface. In another tape test, we noticed strong adhesion between the coating and substrate that eventually concludes that the synthesized coating is hydrophilic and a promising candidate to be used in the absorbable implant materials. Besides, the cytotoxicity of the AZ31 alloy with DMC coating, grown under different conditions on L-929 cells in vitro was examined indirectly through the growth inhibition method (MTT assay). The cytotoxicity of the deposited coating lie between 0 ∼ 1 that indicates it as a promising biomaterial.

  4. Providing plastic zone extrusion

    DOEpatents

    Manchiraju, Venkata Kiran; Feng, Zhili; David, Stan A.; Yu, Zhenzhen

    2017-04-11

    Plastic zone extrusion may be provided. First, a compressor may generate frictional heat in stock to place the stock in a plastic zone of the stock. Then, a conveyer may receive the stock in its plastic zone from the compressor and transport the stock in its plastic zone from the compressor. Next, a die may receive the stock in its plastic zone from the conveyer and extrude the stock to form a wire.

  5. H2A.Z Acidic Patch Couples Chromatin Dynamics to Regulation of Gene Expression Programs during ESC Differentiation

    PubMed Central

    Subramanian, Vidya; Mazumder, Aprotim; Surface, Lauren E.; Butty, Vincent L.; Fields, Paul A.; Alwan, Allison; Torrey, Lillian; Thai, Kevin K.; Levine, Stuart S.; Bathe, Mark; Boyer, Laurie A.

    2013-01-01

    The histone H2A variant H2A.Z is essential for embryonic development and for proper control of developmental gene expression programs in embryonic stem cells (ESCs). Divergent regions of amino acid sequence of H2A.Z likely determine its functional specialization compared to core histone H2A. For example, H2A.Z contains three divergent residues in the essential C-terminal acidic patch that reside on the surface of the histone octamer as an uninterrupted acidic patch domain; however, we know little about how these residues contribute to chromatin structure and function. Here, we show that the divergent amino acids Gly92, Asp97, and Ser98 in the H2A.Z C-terminal acidic patch (H2A.ZAP3) are critical for lineage commitment during ESC differentiation. H2A.Z is enriched at most H3K4me3 promoters in ESCs including poised, bivalent promoters that harbor both activating and repressive marks, H3K4me3 and H3K27me3 respectively. We found that while H2A.ZAP3 interacted with its deposition complex and displayed a highly similar distribution pattern compared to wild-type H2A.Z, its enrichment levels were reduced at target promoters. Further analysis revealed that H2A.ZAP3 was less tightly associated with chromatin, suggesting that the mutant is more dynamic. Notably, bivalent genes in H2A.ZAP3 ESCs displayed significant changes in expression compared to active genes. Moreover, bivalent genes in H2A.ZAP3 ESCs gained H3.3, a variant associated with higher nucleosome turnover, compared to wild-type H2A.Z. We next performed single cell imaging to measure H2A.Z dynamics. We found that H2A.ZAP3 displayed higher mobility in chromatin compared to wild-type H2A.Z by fluorescent recovery after photobleaching (FRAP). Moreover, ESCs treated with the transcriptional inhibitor flavopiridol resulted in a decrease in the H2A.ZAP3 mobile fraction and an increase in its occupancy at target genes indicating that the mutant can be properly incorporated into chromatin. Collectively, our work suggests

  6. H2A.Z acidic patch couples chromatin dynamics to regulation of gene expression programs during ESC differentiation.

    PubMed

    Subramanian, Vidya; Mazumder, Aprotim; Surface, Lauren E; Butty, Vincent L; Fields, Paul A; Alwan, Allison; Torrey, Lillian; Thai, Kevin K; Levine, Stuart S; Bathe, Mark; Boyer, Laurie A

    2013-01-01

    The histone H2A variant H2A.Z is essential for embryonic development and for proper control of developmental gene expression programs in embryonic stem cells (ESCs). Divergent regions of amino acid sequence of H2A.Z likely determine its functional specialization compared to core histone H2A. For example, H2A.Z contains three divergent residues in the essential C-terminal acidic patch that reside on the surface of the histone octamer as an uninterrupted acidic patch domain; however, we know little about how these residues contribute to chromatin structure and function. Here, we show that the divergent amino acids Gly92, Asp97, and Ser98 in the H2A.Z C-terminal acidic patch (H2A.Z(AP3)) are critical for lineage commitment during ESC differentiation. H2A.Z is enriched at most H3K4me3 promoters in ESCs including poised, bivalent promoters that harbor both activating and repressive marks, H3K4me3 and H3K27me3 respectively. We found that while H2A.Z(AP3) interacted with its deposition complex and displayed a highly similar distribution pattern compared to wild-type H2A.Z, its enrichment levels were reduced at target promoters. Further analysis revealed that H2A.Z(AP3) was less tightly associated with chromatin, suggesting that the mutant is more dynamic. Notably, bivalent genes in H2A.Z(AP3) ESCs displayed significant changes in expression compared to active genes. Moreover, bivalent genes in H2A.Z(AP3) ESCs gained H3.3, a variant associated with higher nucleosome turnover, compared to wild-type H2A.Z. We next performed single cell imaging to measure H2A.Z dynamics. We found that H2A.Z(AP3) displayed higher mobility in chromatin compared to wild-type H2A.Z by fluorescent recovery after photobleaching (FRAP). Moreover, ESCs treated with the transcriptional inhibitor flavopiridol resulted in a decrease in the H2A.Z(AP3) mobile fraction and an increase in its occupancy at target genes indicating that the mutant can be properly incorporated into chromatin. Collectively, our

  7. The Daptocephalus Assemblage Zone (Lopingian), South Africa: A proposed biostratigraphy based on a new compilation of stratigraphic ranges

    NASA Astrophysics Data System (ADS)

    Viglietti, Pia A.; Smith, Roger M. H.; Angielczyk, Kenneth D.; Kammerer, Christian F.; Fröbisch, Jörg; Rubidge, Bruce S.

    2016-01-01

    The Dicynodon Assemblage Zone (DiAZ) of South Africa's Karoo Basin is one of the eight biostratigraphic zones of the Beaufort Group. It spans the uppermost Permian strata (Balfour, Teekloof, and Normandien formations) and traditionally has been considered to terminate with the disappearance of Dicynodon lacerticeps at the Permo-Triassic Boundary. We demonstrate that the three index fossils currently used to define the Dicynodon Assemblage Zone (Dicynodon lacerticeps, Theriognathus microps, and Procynosuchus delaharpeae) have first appearance datums (FADs) below its traditionally recognized lower boundary and have ranges mostly restricted to the lower portion of the biozone, well below the Permo-Triassic Boundary. We propose re-establishing Daptocephalus leoniceps as an index fossil for this stratigraphic interval, and reinstating the name Daptocephalus Assemblage Zone (DaAZ) for this unit. Furthermore, the FAD of Lystrosaurus maccaigi in the uppermost reaches of the biozone calls for the establishment of a two-fold subdivision of the current Dicynodon Assemblage Zone. The biostratigraphic utility of Da. leoniceps and other South African dicynodontoids outside of the Karoo Basin is limited due to basinal endemism at the species level and varying temporal ranges of dicynodontoids globally. Therefore, we recommend their use only for correlation within the Karoo Basin at this time. Revision of the stratigraphic ranges of all late Permian tetrapods does not reveal a significant change in faunal diversity between the lower and upper DaAZ. However, the last appearance datums of the abundant taxa Di. lacerticeps, T. microps, P. delaharpeae, and Diictodon feliceps occur below the three extinction phases associated with the end-Permian mass extinction event. Due to northward attenuation of the strata, however, the stratigraphic position of the extinction phases may need to be reconsidered.

  8. Combined effect of pulse electron beam treatment and thin hydroxyapatite film on mechanical features of biodegradable AZ31 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Surmeneva, M. A.; Tyurin, A. I.; Teresov, A. D.; Koval, N. N.; Pirozhkova, T. S.; Shuvarin, I. A.; Surmenev, R. A.

    2015-11-01

    The morphology, elemental, phase composition, nanohardness, and Young's modulus of the hydroxyapatite (HA) coating deposited via radio frequency (RF) magnetron sputtering onto the AZ31 surface were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and nanoindentationtechniques. The calcium phosphate (Ca/P) molar ratio of the HA coating deposited via RF-magnetron sputtering onto AZ31 substrates according to EDX was 1.57+0.03. The SEM experiments revealed significant differences in the morphology of the HA film deposited on untreated and treated with the pulsed electron beam (PEB) AZ31 substrate. Nanoindentation studies demonstrated significant differences in the mechanical responses of the HA film deposited on the initial and PEB-modified AZ31 substrates. The nanoindentation hardness and the Young's modulus of the HA film on the magnesium alloy modified using the PEB treatment were higher than that of the HA layer on the untreated substrate. Moreover, the HA film fabricated onto the PEB-treated surface was more resistant to plastic deformation than the same film on the untreated AZ31 surface.

  9. 2003 AZ84: Size, shape, albedo and first detection of topographic features

    NASA Astrophysics Data System (ADS)

    Dias-Oliveira, Alex; Sicardy, Bruno; Ortiz, Jose-Luis; Braga-Ribas, Felipe; Vieira-Martins, Roberto; BENEDETTI Rossi, Gustavo; camargo, julio; Assafin, Marcelo; Gomes-Júnior, Altair; Baug, Tapas; Chandrasekhar, Thyagarajan; Duffard, Rene; Ergang, Zhao; Ganesh Ganesh, Shashikiran; Ikari, Yasukazu; Irawati, Puji; Jain, Rajmal; Liying, Zhu; Richichi, Andrea; Shengbang, Qian; Behrend, Raoul; Benkhaldoun, Zouhair; Brosch, Noah; Daassou, Ahmed; Gal-Yam's, Avishay; Garcia-Lozano, Rubén; Gillon, Michael; Jehin, Emmanuel; Kaspi, Shai; Klotz, Alain; Lecacheux, Jean; Mahasena, Putra; Manfroid, Jean; Manulis, Ilan; Maury, Alain; Mohan, Vijay; Morales, Nicolas; Rinner, Claudine; Roques, françoise; Sharma, Amar; Sposetti, Stefano; Tanga, Paolo; Thirouin, Audrey; Vachier, Frederic; Widemann, Thomas

    2016-10-01

    We analyze two multi-chord stellar occultations by the Trans-Neptunian Object (TNO) 2003 AZ84 observed on February 3, 2012 and November 15, 2014.They provide different elliptical limb fits that are consistent to within their respective error bars, but could also suggest a possible precession of the object (assumed here to be a Maclaurin spheroid). The derived equatorial radius and oblateness are Re = 393 ± 7 km and ɛ = 0.057 in 2014 and Re = 414 ± 13 km and ɛ = 0.165 in 2012, respectively. Those results are consistent with single-chord events observed in January 2011 and December 2013. The figures above provide geometric visual albedos of pV(2014) = 0.112 ± 0.008 and pV(2012) = 0.114 ± 0.020. Using the Maclaurin assumption, combined with possible rotational periods of 6.67 h and 10.56 h, we estimate density upper limits of 1.89 ± 0.16g/cm3 and 0.77 ± 0.07g/cm3 for the two dates, respectively.The 2014 event provides (for the first time during a TNO occultation) a grazing chord with a gradual disappearance of the star behind 2003AZ84's limb that lasts for more than 10 seconds. We rule out the possibility of a localized dust concentration as it would imply very high optical depth for that cloud. We favor a local topographic feature (chasm) with minimum width and depth of 22 ± 2.5 km and 7 ± 2.0 km, respectively. Features with similar depths are in fact observed on Pluto's main satellite, Charon, which has a radius of about 605 km, comparable to that of 2003AZ84.

  10. Low-Cycle Fatigue Behavior of Die-Cast Mg Alloys AZ91 and AM60

    NASA Astrophysics Data System (ADS)

    Rettberg, Luke H.; Jordon, J. Brian; Horstemeyer, Mark F.; Jones, J. Wayne

    2012-07-01

    The influence of microstructure and artificial aging response (T6) on the low-cycle fatigue behavior of super vacuum die-cast (SVDC) AZ91 and AM60 has been investigated. Fatigue lifetimes were determined from the total strain-controlled fatigue tests for strain amplitudes of 0.2 pct, 0.4 pct, 0.6 pct, 0.8 pct, and 1.0 pct under fully reversed loading at a frequency of 5 Hz. Cyclic stress-strain behavior was determined using an incremental step test (IST) and compared with the more traditional constant amplitude test. Two locations in a prototype casting were investigated to examine the role of microstructure and porosity on fatigue behavior. At all total strain amplitudes microstructure refinement had a negligible impact on fatigue life because of significant levels of porosity. AM60 showed an improvement in fatigue life at higher strain amplitudes when compared with AZ91 because of higher ductility. T6 heat treatment had no impact on fatigue life. Cyclic stress-strain behavior obtained via the incremental step test varied from constant amplitude test results due to load history effects. The constant amplitude test is believed to be the more accurate test method. In general, larger initiation pores led to shorter fatigue life. The fatigue life of AZ91 was more sensitive to initiation pore size and pore location than AM60 at the lowest tested strain amplitude of 0.2 pct. Fatigue crack paths did not favor any specific phase, interdentritic structure or eutectic structure. A multistage fatigue (MSF) model showed good correlation to the experimental strain-life results. The MSF model reinforced the dominant role of inclusion (pore) size on the scatter in fatigue life.

  11. Molecular cloaking of H2A.Z on mortal DNA chromosomes during nonrandom segregation.

    PubMed

    Huh, Yang Hoon; Sherley, James L

    2011-10-01

    Although nonrandom sister chromatid segregation is a singular property of distributed stem cells (DSCs) that are responsible for renewing and repairing mature vertebrate tissues, both its cellular function and its molecular mechanism remain unknown. This situation persists in part because of the lack of facile methods for detecting and quantifying nonrandom segregating cells and for identifying chromosomes with immortal DNA strands, the cellular molecules that signify nonrandom segregation. During nonrandom segregation, at each mitosis, asymmetrically self-renewing DSCs continuously cosegregate to themselves the set of chromosomes that contain immortal DNA strands, which are the oldest DNA strands. Here, we report the discovery of a molecular asymmetry between segregating sets of immortal chromosomes and opposed mortal chromosomes (i.e., containing the younger set of DNA template strands) that constitutes a new convenient biomarker for detection of cells undergoing nonrandom segregation and direct delineation of chromosomes that bear immortal DNA strands. In both cells engineered with DSC-specific properties and ex vivo-expanded mouse hair follicle stem cells, the histone H2A variant H2A.Z shows specific immunodetection on immortal DNA chromosomes. Cell fixation analyses indicate that H2A.Z is present on mortal chromosomes as well but is cloaked from immunodetection, and the cloaking entity is acid labile. The H2A.Z chromosomal asymmetry produced by molecular cloaking provides a first direct assay for nonrandom segregation and for chromosomes with immortal DNA strands. It also seems likely to manifest an important aspect of the underlying mechanism(s) responsible for nonrandom sister chromatid segregation in DSCs.

  12. Evaluation of 241-AZ tank farm supporting phase 1 privatization waste feed delivery

    SciTech Connect

    CARLSON, A.B.

    1998-11-19

    This evaluation is one in a series of evaluations determining the process needs and assessing the adequacy of existing and planned equipment in meeting those needs at various double-shell tank farms in support of Phase 1 privatization. A number of tank-to-tank transfers and waste preparation activities are needed to process and feed waste to the private contractor in support of Phase 1 privatization. The scope of this evaluation is limited to process needs associated with 241-AZ tank farm during the Phase 1 privatization.

  13. Transmission electron microscopy investigations of AZ91 alloy deformed by equal-channel angular pressing.

    PubMed

    Braszczyńska-Malik, K N; Lityńska, L; Baliga, W

    2006-10-01

    The microstructure of transverse and longitudinal sections of a commercial AZ91 alloy processed by equal-channel angular pressing was examined by transmission electron microscopy. A high dislocation density and large number of deformation twins were observed in the investigated material. The {102}(matrix) // {012}(twin) twinning system was determined by selection area diffraction patterns obtained from the twin and matrix. Transmission electron microscopy analyses also revealed that the twins interacted with each other and pile-ups of dislocations occurred near the twin boundary.

  14. A study on the boss forming process of AZ31 Mg alloy sheet

    NASA Astrophysics Data System (ADS)

    Park, Ji Eon; Kim, Hyung Rae; Ahn, Sang Ho; Chang, Young Won

    2009-06-01

    A series of boss forming tests has been carried out using an AZ31 Mg alloy sheet at 250 °C, 300 °C, and 350 °C with various lubrication conditions to obtain optimum process conditions. The Mg alloy sheet had a homogeneous distribution of very fine sized grains. Surface defects generated during boss forming process could be reduced by changing the friction conditions, as prescribed by FEM analysis using the DEFORM 2D program. The modified boss forming process, lubricating only on the front side, was found to be successful in manufacturing the boss without defects.

  15. Mechanical properties and structure of AZ61 magnesium alloy processed by equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Hilšer, O.; Rusz, S.; Tański, T.; Snopiński, P.; Džugan, J.; Kraus, M.

    2017-02-01

    An equal channel angular pressing (ECAP) procedure has been developed to produce a fine-grained AZ61 magnesium alloy. The results show that the microstructure can be effectively refined with increasing equivalent strain during ECAP. For increasing ECAP process efficiency was conventional tool as a helix in the horizontal part of channel built. This fine-grained alloy has an excellent strength accompanied by reasonable good tensile ductility. The success of the development of this ECAP procedure can offer a good opportunity for the development of magnesium alloys with good mechanical properties.

  16. In vitro corrosion of pure magnesium and AZ91 alloy—the influence of thin electrolyte layer thickness

    PubMed Central

    Zeng, Rong-Chang; Qi, Wei-Chen; Zhang, Fen; Li, Shuo-Qi

    2016-01-01

    In vivo degradation predication faces a huge challenge via in vitro corrosion test due to the difficulty for mimicking the complicated microenvironment with various influencing factors. A thin electrolyte layer (TEL) cell for in vitro corrosion of pure magnesium and AZ91 alloy was presented to stimulate the in vivo corrosion in the micro-environment built by the interface of the implant and its neighboring tissue. The results demonstrated that the in vivo corrosion of pure Mg and the AZ91 alloy was suppressed under TEL condition. The AZ91 alloy was more sensitive than pure Mg to the inhibition of corrosion under a TEL thickness of less than 200 µm. The TEL thickness limited the distribution of current, and thus localized corrosion was more preferred to occur under TEL condition than in bulk solution. The TEL cell might be an appropriate approach to simulating the in vivo degradation of magnesium and its alloys. PMID:26816655

  17. In vitro corrosion of pure magnesium and AZ91 alloy-the influence of thin electrolyte layer thickness.

    PubMed

    Zeng, Rong-Chang; Qi, Wei-Chen; Zhang, Fen; Li, Shuo-Qi

    2016-03-01

    In vivo degradation predication faces a huge challenge via in vitro corrosion test due to the difficulty for mimicking the complicated microenvironment with various influencing factors. A thin electrolyte layer (TEL) cell for in vitro corrosion of pure magnesium and AZ91 alloy was presented to stimulate the in vivo corrosion in the micro-environment built by the interface of the implant and its neighboring tissue. The results demonstrated that the in vivo corrosion of pure Mg and the AZ91 alloy was suppressed under TEL condition. The AZ91 alloy was more sensitive than pure Mg to the inhibition of corrosion under a TEL thickness of less than 200 µm. The TEL thickness limited the distribution of current, and thus localized corrosion was more preferred to occur under TEL condition than in bulk solution. The TEL cell might be an appropriate approach to simulating the in vivo degradation of magnesium and its alloys.

  18. 77 FR 19610 - Marc Knapp, Inmate #-06450-015, FCI Safford, P.O. Box 9000, Safford, AZ 85548; Order Denying...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE Bureau of Industry and Security Marc Knapp, Inmate --06450-015, FCI Safford, P.O. Box 9000, Safford, AZ....O. Box 9000, Safford, AZ 85548, and when acting for or on behalf of Knapp, his...

  19. Feasibility of Formation of AZS (Alumina-Zirconia-Silica) Refractory Products with Different Composition to the Commercial Product Through X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Guzmán, A. M.; Rodríguez, P.

    The AZS refractory materials with different composition to the commercial product were obtained, and the feasibility of formation of these products was studied taking like departure point the free energy of their formation. The AZS refractories were obtained by a traditional method of producing ceramic materials, the process of sintering.

  20. Laser surface modification of AZ31B Mg alloy for bio-wettability.

    PubMed

    Ho, Yee-Hsien; Vora, Hitesh D; Dahotre, Narendra B

    2015-02-01

    Magnesium alloys are the potential degradable materials for load-bearing implant application due to their comparable mechanical properties to human bone, excellent bioactivity, and in vivo non-toxicity. However, for a successful load-bearing implant, the surface of bio-implant must allow protein absorption and layer formation under physiological environment that can assist the cell/osteoblast growth. In this regard, surface wettability of bio-implant plays a key role to dictate the quantity of protein absorption. In light of this, the main objective of the present study was to produce favorable bio-wettability condition of AZ31B Mg alloy bio-implant surface via laser surface modification technique under various laser processing conditions. In the present efforts, the influence of laser surface modification on AZ31B Mg alloy surface on resultant bio-wettability was investigated via contact-angle measurements and the co-relationships among microstructure (grain size), surface roughness, surface energy, and surface chemical composition were established. In addition, the laser surface modification technique was simulated by computational (thermal) model to facilitate the prediction of temperature and its resultant cooling/solidification rates under various laser processing conditions for correlating with their corresponding composition and phase evolution. These predicted thermal properties were later used to correlate with the corresponding microstructure, chemical composition, and phase evolution via experimental analyses (X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy).

  1. Characterization and formability of continuous-cast AZ31B magnesium alloy sheets

    SciTech Connect

    Rohatgi, Aashish; Herling, Darrell R; Nyberg, Eric A

    2009-09-24

    The goal of this work is to understand the inter-relationship between the initial properties of continuous-cast magnesium alloy (AZ31B) sheets and their subsequent formability and post-formed mechanical performance for use in cost-effective, lightweight, automotive body panels. As-received sheets, provided by the Automotive Metals Division (AMD-602) team, were characterized by surface roughness measurements using mechanical profilometry. The arithmetic mean deviation of profile (Ra) and the maximum two-point height of profile (Ry) of the as-received sheets ranged from ~0.2-2 μm and ~2-15 μm, respectively. Several commercial lubricants were evaluated by thermal analysis and the liquid phase of the lubricants was found to evaporate/decompose upon heating leaving behind a solid residue upon heating to temperatures exceeding ~125-150°C. Elevated temperature bending-under-tension (BUT) friction tests were conducted at 350°C and the coefficient-of-friction values ranged from a minimum of ~0.1 (for tungsten disulfide lubricant) to ~0.7 when no lubricant was used. These results, in conjunction with those from the forming trials conducted by the AMD-602 team, will be eventually used to determine the role of sheet-die friction in determining the formability of AZ31B sheets.

  2. Microstructural and textural evolution of AZ61 magnesium alloy sheet during bidirectional cyclic bending

    SciTech Connect

    Huo, Qinghuan; Yang, Xuyue Ma, Jijun; Sun, Huan; Qin, Jia; Jiang, Yupei

    2013-05-15

    In this work, the microstructural and textural evolution in the sheets of AZ61 magnesium alloy was studied by means of bidirectional cyclic bending for 8 passes at 623 K. The bended samples were examined by optical microscopy and electron backscatter diffraction analysis. The results showed that a gradient structure with fine grains about 3 μm in the regions near two surfaces and, in contrast, coarse grains in the middle of the sheet were formed. The evident grain refinement was attributed to twin-assisted dynamic recrystallization and continuous dynamic recrystallization induced by kink bands. The texture intensity was clearly reduced, resulting in a negative gradient distribution, with the texture intensity decreases from the center of the sheet to two surfaces. The weakened texture greatly facilitated the reduction of the yield strength. A higher fracture elongation and a slightly improved ultimate tensile strength were achieved concurrently. - Highlights: • The AZ61 Mg alloy is deformed at 623 K by bidirectional cyclic bending. • A symmetric gradient distribution of fine grains along the thickness is formed. • The basal texture in the regions near two surfaces is weakened significantly.

  3. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    NASA Astrophysics Data System (ADS)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2013-11-01

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF2 conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  4. Characterization of fold defects in AZ91D and AE42 magnesium alloy permanent mold castings

    SciTech Connect

    Bichler, L.; Ravindran, C.

    2010-03-15

    Casting premium-quality magnesium alloy components for aerospace and automotive applications poses unique challenges. Magnesium alloys are known to freeze rapidly prior to filling a casting cavity, resulting in misruns and cold shuts. In addition, melt oxidation, solute segregation and turbulent metal flow during casting contribute to the formation of fold defects. In this research, formation of fold defects in AZ91D and AE42 magnesium alloys cast via the permanent mold casting process was investigated. Computer simulations of the casting process predicted the development of a turbulent metal flow in a critical casting region with abrupt geometrical transitions. SEM and light optical microscopy examinations revealed the presence of folds in this region for both alloys. However, each alloy exhibited a unique mechanism responsible for fold formation. In the AZ91D alloy, melt oxidation and velocity gradients in the critical casting region prevented fusion of merging metal front streams. In the AE42 alloy, limited solubility of rare-earth intermetallic compounds in the {alpha}-Mg phase resulted in segregation of Al{sub 2}RE particles at the leading edge of a metal front and created microstructural inhomogeneity across the fold.

  5. A cross-shear deformation for optimizing the strength and ductility of AZ31 magnesium alloys

    PubMed Central

    Hamad, Kotiba; Ko, Young Gun

    2016-01-01

    Magnesium alloys have recently attracted great interest due their lightweight and high specific strength. However, because of their hexagonal close-packed structure, they have few active slip systems, resulting in poor ductility and high mechanical anisotropy at room temperature. In the present work, we used a cross-shear deformation imposed by a differential speed rolling (DSR) technique to improve the room temperature strength and ductility of AZ31 magnesium alloy sheets. To introduce the cross-shear deformation, the sheets were rotated 180° around their longitudinal axis between the adjacent passes of DSR. The sheets of the AZ31 alloy subjected to the cross-shear deformation showed a uniform fine microstructure (1.2 ± 0.1 μm) with weak basal textures. The fabricated sheets showed a simultaneous high ultimate tensile strength and elongation-to-failure, i.e., ~333 MPa and ~21%, respectively. These were explained based on the structural features evolved due to the cross-shear deformation by DSR. The high strength was attributed to the uniform fine microstructure, whereas the high ductility was explained based on the basal texture weakening. PMID:27406685

  6. Project W-151 Tank 101-AZ Waste Retrieval System Year 2000 Compliance Assessment Project Plan

    SciTech Connect

    BUSSELL, J.H.

    1999-08-02

    This assessment describes the potential Year 2000 (Y2K) problems and describes the methods for achieving Y2K compliance for Project W-151, Tank 101-AZ Waste Retrieval System. The purpose of this assessment is to give an overview of the project. This document will not be updated and any dates contained in this document are estimates and may change. Two mixer pumps and instrumentation have been or are planned to be installed in waste tank 101-AZ to demonstrate solids mobilization. The information and experience gained during this process test will provide data for comparison with sludge mobilization prediction models and provide indication of the effects of mixer pump operation on an Aging Waste Facility tank. A limited description of system dates, functions, interfaces, potential Y2K problems, and date resolutions is presented. The project is presently on hold, and definitive design and procurement have been completed. This assessment will describe the methods, protocols, and practices to ensure that equipment and systems do not have Y2K problems.

  7. Effect of aging time and temperature on the aging behavior in Sn containing AZ91 alloy

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Kyun; Oh, Seung Hyun; Kim, Kang Cheol; Kim, Won Tae; Kim, Do Hyang

    2017-03-01

    Effects of aging temperature and time on the aging behavior in AZ91 alloy and Sn containing AZ91 alloy (AZT915) have been investigated in the present study. The mode of precipitation, i.e. discontinuous and continuous precipitation in both alloys is strongly affected by the aging temperature. At low aging temperature of 403 K, only discontinuous precipitation occurs at the grain boundaries, whereas at high aging temperatures of 573 and 623 K only continuous precipitation occurs inside the grains. At intermediate temperature range (443 or 498 K) both discontinuous and continuous precipitation reactions occur. In AZT915, the Mg2Sn particles at the grain boundary effectively reduce the available nucleation sites for discontinuous β precipitates, and slow down the movement of the grain boundary, resulting in suppression of discontinuous precipitation. In addition, increased local lattice strain by the presence of Sn in the α-Mg solid solution matrix accelerates the nucleation of the continuous precipitates at the early stage of aging treatment. Therefore, significantly higher peak hardness can be obtained within a shorter aging time in AZT915.

  8. Effect of aging time and temperature on the aging behavior in Sn containing AZ91 alloy

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Kyun; Oh, Seung Hyun; Kim, Kang Cheol; Kim, Won Tae; Kim, Do Hyang

    2017-02-01

    Effects of aging temperature and time on the aging behavior in AZ91 alloy and Sn containing AZ91 alloy (AZT915) have been investigated in the present study. The mode of precipitation, i.e. discontinuous and continuous precipitation in both alloys is strongly affected by the aging temperature. At low aging temperature of 403 K, only discontinuous precipitation occurs at the grain boundaries, whereas at high aging temperatures of 573 and 623 K only continuous precipitation occurs inside the grains. At intermediate temperature range (443 or 498 K) both discontinuous and continuous precipitation reactions occur. In AZT915, the Mg2Sn particles at the grain boundary effectively reduce the available nucleation sites for discontinuous β precipitates, and slow down the movement of the grain boundary, resulting in suppression of discontinuous precipitation. In addition, increased local lattice strain by the presence of Sn in the α-Mg solid solution matrix accelerates the nucleation of the continuous precipitates at the early stage of aging treatment. Therefore, significantly higher peak hardness can be obtained within a shorter aging time in AZT915.

  9. Identification of an advanced constitutive model of Magnesium alloy AZ31B

    SciTech Connect

    Liu, Z. G.; Massoni, E.

    2011-05-04

    The main aim of this paper is to study the flow behavior of the AZ31B magnesium alloy by means of tensile tests performed in extended ranges of temperature and strain rates. The flow stress-strain curves analyzed by power law type constitutive equation can only fit well with experimental curves at the work-hardening stage. A new mathematical model is studied to describe the softening behavior of material based on tensile experiments. The relative parameters are obtained by fitting the equation with the experimental data. The genetic algorithm has been used to obtain the global optimal fitting parameters. The comparison between the fitted and experimental data proves the effectiveness of the model. The results indicate that this model leads to a better simulation of the flow stress during the softening stage than that of the power law equation. Based on this model, the deep drawing process has been simulated with the commercial finite element code FORGE registered. The punch load and thickness distribution of AZ31 sheet have been studied. The study of the results is helpful to the application of the stamping technology for the magnesium alloy sheet.

  10. Thermal Microstructural Stability of AZ31 Magnesium after Severe Plastic Deformation

    SciTech Connect

    Young, John P.; Askari, Hesam A.; Hovanski, Yuri; Heiden, Michael J.; Field, David P.

    2015-03-01

    Both equal channel angular pressing and friction stir processing have the ability to refine the grain size of twin roll cast AZ31 magnesium and potentially improve its superplastic properties. This work used isochronal and isothermal heat treatments to investigate the microstructural stability of twin roll cast, equal channel angular pressed and friction stir processed AZ31 magnesium. For both heat treatment conditions, it was found that the twin roll casted and equal channel angular pressed materials were more stable than the friction stir processed material. Calculations of the grain growth kinetics showed that severe plastic deformation processing decreased the activation energy for grain boundary motion with the equal channel angular pressed material having the greatest Q value of the severely plastically deformed materials and that increasing the tool travel speed of the friction stir processed material improved microstructural stability. The Hollomon-Jaffe parameter was found to be an accurate means of identifying the annealing conditions that will result in substantial grain growth and loss of potential superplastic properties in the severely plastically deformed materials. In addition, Humphreys’s model of cellular microstructural stability accurately predicted the relative microstructural stability of the severely plastically deformed materials and with some modification, closely predicted the maximum grain size ratio achieved by the severely plastically deformed materials.

  11. Geologie study off gravels of the Agua Fria River, Phoenix, AZ

    USGS Publications Warehouse

    Langer, W.H.; Dewitt, E.; Adams, D.T.; O'Briens, T.

    2010-01-01

    The annual consumption of sand and gravel aggregate in 2006 in the Phoenix, AZ metropolitan area was about 76 Mt (84 million st) (USGS, 2009), or about 18 t (20 st) per capita. Quaternary alluvial deposits in the modern stream channel of the Agua Fria River west of Phoenix are mined and processed to provide some of this aggregate to the greater Phoenix area. The Agua Fria drainage basin (Fig. 1) is characterized by rugged mountains with high elevations and steep stream gradients in the north, and by broad alluvial filled basins separated by elongated faultblock mountain ranges in the south. The Agua Fria River, the basin’s main drainage, flows south from Prescott, AZ and west of Phoenix to the Gila River. The Waddel Dam impounds Lake Pleasant and greatly limits the flow of the Agua Fria River south of the lake. The southern portion of the watershed, south of Lake Pleasant, opens out into a broad valley where the river flows through urban and agricultural lands to its confluence with the Gila River, a tributary of the Colorado River.

  12. Forming Analysis of AZ31 Magnesium Alloy Sheets by Means of a Multistep Inverse Approach

    SciTech Connect

    Nguyen, Ba Nghiep; Bapanapalli, Satish K.

    2009-04-01

    This paper applies a multi-step inverse approach to predict the forming of AZ31 magnesium alloy sheets. An in-house finite element code named “INAPH”, which implements the inverse approach formulation by Guo et al. (Int. J. Numer. Methods Eng., 30, 1385-1401), has been used for the forming analysis. This inverse approach uses the deformation theory of plasticity and assumes that the deformation is independent of the loading history. Failure during forming is predicted by a stress-based criterion or a forming limit diagram-based criterion. The INAPH predictions have been compared with experimental results of Takuda et al (Journal of Materials Processing Technology, 89-90:135-140) and incremental analysis using ABAQUS. The multi-step inverse analysis has been shown to very quickly and fairly accurately predict stress, plastic strain, thickness distributions and failure locations on deeply drawn parts made of AZ31 magnesium alloy. The capability of INAPH to predict the formability of magnesium alloys has also been demonstrated at various temperatures. As magnesium alloys possess very limited formability at room temperature, and their formability becomes better at higher temperatures (> 100oC), the inverse analysis constitutes an efficient and valuable tool to predict forming of magnesium alloy parts as a function of temperature. In addition, other processing and design parameters such as the initial dimensions, final desired shape, blank holder forces, and friction can be quickly adjusted to assess the forming feasibility.

  13. Thermal stability of bimodal microstructure in magnesium alloy AZ91 processed by ECAP

    SciTech Connect

    Pantělejev, Libor

    2015-09-15

    The changes in microstructure of equal channel angular pressing (ECAP) processed magnesium alloy AZ91 during thermal exposure were studied in this paper. The microstructure stability was investigated by means of electron backscatter diffraction (EBSD), which allowed to measure the changes in grain size, mutual ratio of low-angle boundaries (LABs) to high-angle ones (HABs) and local lattice distortion evaluated by the kernel average misorientation (KAM) parameter. It was found experimentally that the threshold temperature at which significant grain coarsening takes place is 350 °C. No modification to mean grain diameter occurs below this temperature, nonetheless, some changes in LAB and HAB fraction, as well as in local lattice distortion, can be observed. - Highlights: • Thermal stability of bimodal UFG AZ91 alloy was assessed by means of EBSD. • Threshold temperature for pronounced grain coarsening was found at 350 °C. • Below 350 °C increase in LAB fraction and local lattice distortion takes place. • Local lattice distortion (LLD) can be well described using KAM approach. • LLD is influenced by coarsening and precipitation of Mg{sub 17}Al{sub 12} particles.

  14. Surface composite nanostructures of AZ91 magnesium alloy induced by high current pulsed electron beam treatment

    NASA Astrophysics Data System (ADS)

    Li, M. C.; Hao, S. Z.; Wen, H.; Huang, R. F.

    2014-06-01

    High current pulsed electron beam (HCPEB) treatment was conducted on an AZ91 cast magnesium alloy with accelerating voltage 27 kV, energy density 3 J/cm2 and pulse duration 2.5 μs. The surface microstructure was characterized by optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS), and transmission electron microscope (TEM). The surface corrosion property was tested with electrochemical method in 3.5 wt.% NaCl solution. It is found that after 1 pulse of HCPEB treatment, the initial eutectic α phase and Mg17Al12 particles started to dissolve in the surface modified layer of depth ∼15 μm. When using 15 HCPEB pulses, the Al content in surface layer increased noticeably, and the phase structure was modified as composite nanostructures consisted of nano-grained Mg3.1Al0.9 domains surrounded by network of Mg17Al12 phase. The HCPEB treated samples showed an improved corrosion resistance with cathodic current density decreased by two orders of magnitude as compared to the initial AZ91 alloy.

  15. Chemical nature of phytic acid conversion coating on AZ61 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Pan, Fusheng; Yang, Xu; Zhang, Dingfei

    2009-07-01

    Phytic acid (PA) conversion coating on AZ61 magnesium alloy was prepared by the method of deposition. The influences of pH, time and PA concentration on the formation process, microstructure and properties of the conversion coating were investigated. Scanning electron microscopy (SEM) was used to observe the microstructure. The chemical nature of conversion coating was investigated by energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) techniques. The corrosion resistance was examined by means of potentiodynamic polarization method. The adhesive ability was tested by score experiments. The results showed that the growth and microstructure of the conversion coatings were all obviously affected by pH, time and PA concentration. In 0.5 mg/ml PA solution with a pH of 5, an optimization conversion coating formed after 20 min immersion time by deposition of PA on AZ61 magnesium alloy surface through chelating with Al 3+. It made the corrosion potential Ecorr of sample shifted positively about 171 mV than that of the untreated sample, and the adhesive ability reached to Grade 1 (in accordance with GB/T 9286).

  16. Effect of microporosity on tensile properties of as-cast AZ91D magnesium alloy

    NASA Astrophysics Data System (ADS)

    Lee, Choong Do

    2002-05-01

    In the present study, the effect of microporosity on the tensile properties of as-cast AZ91D magnesium alloy was investigated through experimental observation and numerical prediction. The test specimens were fabricated by die-casting and gravity-casting. For gravity-casting, the inoculation and use of various metallic moulds were applied to obtain a wide range of microporosity. The deficiency of the interdendritic feeding of the liquid phase acted as a dominant mechanism on the formation of the micropores in the Mg-Al-alloys, rather than the evolution of hydrogen gas. Although tensile strength and elongation has a nonlinear and very intensive dependence upon microporosity, the yield strength appeared to have a linear relationship with microporosity. However, it was possible to quantitatively estimate the linear contribution of microporosity on the individual tensile property for a range of microporosity, which was below about 1%. The numerical prediction suggests that the effect of microporosity on fractured strength and elongation decreased as the strain hardening exponent increased. Furthermore, the shape and distribution of micropores may play a more dominant role than local plastic deformation on the tensile behavior of AZ91D alloy.

  17. Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation.

    PubMed

    Fintová, Stanislava; Kunz, Ludvík

    2015-02-01

    Fatigue properties of cast AZ91 magnesium alloy processed by severe plastic deformation were investigated and compared with the properties of the initial cast state. The severe plastic deformation was carried out by equal channel angular pressing (ECAP). The ECAP treatment resulted in a bimodal structure. The bimodality consists in a coexistence of fine grained areas with higher content of Mg17Al12 particles and areas exhibiting larger grains and lower density of Mg17Al12 particles. Improvement of the basic mechanical properties of AZ91 (yield stress, tensile strength and ductility) by ECAP was significant. Also the improvement of the fatigue life in the low-cycle fatigue region was substantial. However the improvement of the fatigue strength in the high-cycle fatigue region was found to be negligible. The endurance limit based on 10(7) cycles for the cast alloy was 80 MPa and for the alloy processed by ECAP 85 MPa. The cyclic plastic response in both states was qualitatively similar; initial softening was followed by a long cyclic hardening. Fatigue cracks in cast alloy initiate in cyclic slip bands which were formed in areas of solid solution. In the case of severe plastic deformed material with bimodal structure two substantially different mechanisms of crack initiation were observed. Crack initiation in slip bands was a preferred process in the areas with large grains whereas the grain boundaries cracking was a characteristic mechanism in the fine grained regions.

  18. ELKS1 localizes the synaptic vesicle priming protein bMunc13-2 to a specific subset of active zones.

    PubMed

    Kawabe, Hiroshi; Mitkovski, Miso; Kaeser, Pascal S; Hirrlinger, Johannes; Opazo, Felipe; Nestvogel, Dennis; Kalla, Stefan; Fejtova, Anna; Verrier, Sophie E; Bungers, Simon R; Cooper, Benjamin H; Varoqueaux, Frederique; Wang, Yun; Nehring, Ralf B; Gundelfinger, Eckart D; Rosenmund, Christian; Rizzoli, Silvio O; Südhof, Thomas C; Rhee, Jeong-Seop; Brose, Nils

    2017-03-06

    Presynaptic active zones (AZs) are unique subcellular structures at neuronal synapses, which contain a network of specific proteins that control synaptic vesicle (SV) tethering, priming, and fusion. Munc13s are core AZ proteins with an essential function in SV priming. In hippocampal neurons, two different Munc13s-Munc13-1 and bMunc13-2-mediate opposite forms of presynaptic short-term plasticity and thus differentially affect neuronal network characteristics. We found that most presynapses of cortical and hippocampal neurons contain only Munc13-1, whereas ∼10% contain both Munc13-1 and bMunc13-2. Whereas the presynaptic recruitment and activation of Munc13-1 depends on Rab3-interacting proteins (RIMs), we demonstrate here that bMunc13-2 is recruited to synapses by the AZ protein ELKS1, but not ELKS2, and that this recruitment determines basal SV priming and short-term plasticity. Thus, synapse-specific interactions of different Munc13 isoforms with ELKS1 or RIMs are key determinants of the molecular and functional heterogeneity of presynaptic AZs.

  19. SAFETY ANALYSIS FOR TANK 241-AZ-101 MIXER PUMP PROCESS TEST

    SciTech Connect

    HAMMOND DM; HARRIS JP; MOUETTE P

    1997-06-09

    This document contains the completed safety analysis which establishes the safety envelope for performing the mixer pump process test in Tank 241-AZ-101. This process test is described in TF-210-OTP-001. All equipment necessary for the mixer pump test has been installed by Project W-151. The purpose of this document is to describe and analyze the mixer pump test for Aging Waste Facility (AWF) Tank 241-AZ-101 and to address the 'yes/maybe' responses marked for evaluation questions identified in Unreviewed Safety Question Evaluation (USQE) TF-94-0266. The scope of this document is limited to the performance of the mixer pump test for Tank 241-AZ-101. Unreviewed Safety Question Determination (USQD) TF-96-0018 verified that the installation of two mixer pumps into Tank 241-AZ-101 was within the current Tank Waste Remediation System (TWRS) Authorization Basis. USQDs TF-96-0461, TF-96-0448, and TF-96-0805 verified that the installation of the in-tank video camera, thermocouples, and Ultrasonic Interface Level Analyzer (URSILLA), respectively, were within the current TWRS Authorization Basis. USQD TF-96-1041 verified that the checkout testing of the installed equipment was within the current TWRS Authorization Basis. Installation of the pumps and equipment has been completed. An evaluation of safety considerations associated with operation of the mixer pumps for the mixer pump test is provided in this document. This document augments the existing AWF authorization basis as defined in the Interim Safety Basis (Stahl 1997), and as such, will use the existing Interim Operational Safety Requirements (IOSRs) of Heubach 1996 to adequately control the mixer pump test. The hazard and accident analysis is limited to the scope and impact of the mixer pump test, and therefore does not address hazards already addressed by the current AWF authorization basis. This document does not evaluate removal of the mixer pumps. Safety considerations for removal of the pumps will be addressed by

  20. New Madrid Seismic Zone

    DTIC Science & Technology

    2007-11-02

    NEW MADRID SEISMIC ZONE BY COLONEL J.DAVID NORWOOD United States Army DISTRIBUTION STATEMENT A...mCTBB l USAWC STRATEGY RESEARCH PROJECT New Madrid Seismic Zone by J. David Norwood, COL, USA Michael A. Pearson, COL, USA Project Advisor The...ABSTRACT AUTHOR: J. David Norwood, Colonel, U.S. Army TITLE: New Madrid Seismic Zone FORMAT: Strategy Research Project DATE: 22 April 1998 . PAGES:

  1. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA, USEPA DEMONSTRATION PROJECT AT RIMROCK, AZ, SIX-MONTH EVALUATION REPORT

    EPA Science Inventory

    This report documents the activities performed during and the results obtained from the first six months of the arsenic removal treatment technology demonstration project at Rimrock, AZ. The objectives of the project are to evaluate the effectiveness of AdEdge Arsenic Package Uni...

  2. Arsenic Removal from Drinking Water by Adsorptive Media USEPA Demonstration Project at Rimrock AZ Final Performance Evaluation Report

    EPA Science Inventory

    This report documents the activities performed during and the results obtained from the arsenic removal treatment technology demonstration project at the Arizona Water Company (AWC) facility in Rimrock, AZ. The objectives of the project were to evaluate: 1) the effectiveness of ...

  3. 78 FR 53477 - Notice of Relocation of the Bureau of Land Management's San Pedro Project Office in Sierra Vista, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... Bureau of Land Management Notice of Relocation of the Bureau of Land Management's San Pedro Project Office in Sierra Vista, AZ AGENCY: Bureau of Land Management, Interior. ACTION: Notice. SUMMARY: This notice announces the relocation of the Bureau of Land Management's (BLM) San Pedro Project Office...

  4. 78 FR 34403 - Notice of Availability of the Record of Decision for the Quartzsite Solar Energy Project, AZ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... Plan (RMP) for the Quartzsite Solar Energy Project (QSEP). The Acting Assistant Secretary for Land and...) at the following Web site: http://www.blm.gov/az/st/en/prog/energy/solar/quartzsite_solar_energy.html...: Quartzsite Solar Energy LLC, a subsidiary of Solar Reserve LLC, proposes to build the QSEP, a...

  5. 76 FR 15936 - Designation for the Owensboro, KY; Bloomington, IL; Iowa Falls, IA; Casa Grande, AZ; Fargo, ND...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE Grain Inspection, Packers and Stockyards Administration Designation for the Owensboro, KY; Bloomington, IL; Iowa Falls, IA; Casa Grande, AZ; Fargo, ND; Grand Forks, ND; and Plainview, TX Areas...

  6. Forming-Limit Diagrams for Magnesium AZ31B and ZEK100 Alloy Sheets at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Antoniswamy, Aravindha R.; Carpenter, Alexander J.; Carter, Jon T.; Hector, Louis G.; Taleff, Eric M.

    2013-11-01

    Modern design and manufacturing methodologies for magnesium (Mg) sheet panels require formability data for use in computer-aided design and computer-aided engineering tools. To meet this need, forming-limit diagrams (FLDs) for AZ31B and ZEK100 wrought Mg alloy sheets were developed at elevated temperatures for strain rates of 10-3 and 10-2 s-1. The elevated temperatures investigated range from 250 to 450 °C for AZ31B and 300 to 450 °C for ZEK100. The FLDs were generated using data from uniaxial tension, biaxial bulge, and plane-strain bulge tests, all carried out until specimen rupture. The unique aspect of this study is that data from materials with consistent processing histories were produced using consistent testing techniques across all test conditions. The ZEK100 alloy reaches greater major true strains at rupture, by up to 60%, than the AZ31B alloy for all strain paths at all temperatures and strain rates examined. Formability limits decrease only slightly with a decrease in temperature, less than 30% decrease for AZ31B and less than 35% decrease for ZEK100 as the temperature decreases from 450 to 300 °C. This suggests that forming processes at 250-300 °C are potentially viable for manufacturing complex Mg components.

  7. Effect of TiN nano-coating on the interface microstructure of carbon fibres-AZ91 alloy composite

    NASA Astrophysics Data System (ADS)

    Olszówka-Myalska, A.; Botor-Probierz, A.

    2012-03-01

    Magnesium matrix composites reinforced with carbon fibres, Cf, without surface modification and coated with TiN nanolayer, (Cf)TiN, were investigated. AZ91 magnesium alloy and carbon fibres of T300B (Toray) PAN type were chosen as components. In the experiment infiltration in vacuum as a method of component consolidation and chemical vapour deposition (CVD) for carbon fibres surface modification were applied. Structural investigations were performed in the Hitachi 3200S field-emission scanning electron microscope (FE-SEM) and on a FEI Tecnai G2 FEG high-resolution transmission electron microscope (TEM) equipped with energy-dispersive X-ray spectrometer (EDS) and high angle annular dark field (HAADF) detectors. SEM observations revealed that at the interface of AZ91-Cf composite destructive phases were formed. An application of TiN nano-coating as a surface modification ensured proper wettability of carbon fibres by liquid metal and protection against the destructive products formation. The microstructure of AZ91-(Cf)TiN composite interface was multilayered. TEM investigation revealed a continuous layer of mixed alumina and magnesia just at the carbon surface, followed by a layer with a dominant concentration of titanium, enriched with Al, O, Mg and C and subsequently a layer of nano-sized Al12Mg17 crystals in the magnesium matrix. Therefore, an applied TiN nano-coating can be classified as an active barrier in AZ91-Cf system.

  8. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    SciTech Connect

    Y Onishi; KP Recknagle; BE Wells

    2000-08-09

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m{sup 3}) of supernatant liquid and 95,000 gallons (360 m{sup 3}) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom.

  9. 14 CFR Special Federal Aviation... - 2-Special Flight Rules in the Vicinity of the Grand Canyon National Park, AZ

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the Grand Canyon National Park, AZ Federal Special Federal Aviation Regulation No. 50 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 50-2 Special Federal Aviation...

  10. Electrochemical Investigations of Polycaprolactone-Coated AZ31 Mg Alloy in Earle's Balance Salt Solution and Conventional Simulated Body Fluid

    NASA Astrophysics Data System (ADS)

    Wilke, Benjamin M.; Zhang, Lei

    2016-06-01

    Polycaprolactone (PCL) coating has been shown to increase the corrosion resistance of magnesium alloys when exposed to a simulated body fluid. A PCL dip coating was applied to AZ31 Mg alloy. Samples were immersed in both Earle's Balance Salt Solution (EBSS) and conventional simulated body fluids (c-SBF) up to 14 days. Microscopic morphology, electrochemical impedance spectroscopy, and potentiodynamic polarization tests were performed to evaluate the corrosion behavior changes of PCL coatings against immersion times in EBSS and c-SBF as compared to the uncoated AZ31 substrate. PCL-coated samples demonstrated improved corrosion resistance compared to bare AZ31 in both EBSS and c-SBF, indicating that the PCL coating exhibited good corrosion protection of AZ31 in simulated body fluid. Samples immersed in EBSS showed significantly higher electrochemical impedance values and slower corrosion progression as compared to the samples in c-SBF, because of the decreased chloride content and CO2 buffering mechanism of the EBSS.

  11. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA USEPA DEMONSTRATION PROJECT AT VALLEY VISTA, AZ SIX-MONTH EVALUATION REPORT

    EPA Science Inventory

    This report documents the activities performed and the results obtained from the first six months of the EPA arsenic removal technology demonstration project at the Arizona Water Company (AWC) facility in Sedona, AZ, commonly referred to as Valley Vista. The main objective of the...

  12. ARSENIC REMOVAL FROM DRINKING WATER BY ADSORPTIVE MEDIA. USEPA DEMONSTRATION PROJECT AT VALLEY VISTA, AZ FINAL PERFORMANCE EVALUATION REPORT

    EPA Science Inventory

    This report documents the activities performed during and the results obtained from the arsenic removal treatment technology demonstration project at an Arizona Water Company (AWC) facility in Sedona, AZ, commonly referred to as Valley Vista. The objectives of the project were t...

  13. Friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: Microstructure studies and mechanical characterizations

    SciTech Connect

    Mohammadi, J.; Behnamian, Y.; Mostafaei, A.; Izadi, H.; Saeid, T.; Kokabi, A.H.; Gerlich, A.P.

    2015-03-15

    Friction stir welding is an efficient manufacturing method for joining dissimilar alloys, which can dramatically reduce grain sizes and offer high mechanical joint efficiency. Lap FSW joints between dissimilar AZ31B and Al 6061 alloy sheets were made at various tool rotation and travel speeds. Rotation and travel speeds varied between 560–1400 r/min and 16–40 mm/min respectively, where the ratio between these parameters was such that nearly constant pitch distances were applied during welding. X-ray diffraction pattern (XRD), optical microscopy images (OM), electron probe microanalysis (EPMA) and scanning electron microscopy equipped with an energy-dispersive X-ray spectroscopy (SEM-EDS) were used to investigate the microstructures of the joints welded. Intermetallic phases including Al{sub 12}Mg{sub 17} (γ) and Al{sub 3}Mg{sub 2} (β) were detected in the weld zone (WZ). For different tool rotation speeds, the morphology of the microstructure in the stir zone changed significantly with travel speed. Lap shear tensile test results indicated that by simultaneously increasing the tool rotation and travel speeds to 1400 r/min and 40 mm/min, the joint tensile strength and ductility reached a maximum. Microhardness measurements and tensile stress–strain curves indicated that mechanical properties were affected by FSW parameters and mainly depended on the formation of intermetallic compounds in the weld zone. In addition, a debonding failure mode in the Al/Mg dissimilar weld nugget was investigated by SEM and surface fracture studies indicated that the presence of intermetallic compounds in the weld zone controlled the failure mode. XRD analysis of the fracture surface indicated the presence of brittle intermetallic compounds including Al{sub 12}Mg{sub 17} (γ) and Al{sub 3}Mg{sub 2} (β). - Highlights: • Dissimilar Al/Mg joint was obtained by lap friction stir welding technique. • Effect of rotation and travel speeds on the formation of intermetallic

  14. Marginal Zone Lymphoma

    MedlinePlus

    ... zone lymphomas are a group of indolent (slow-growing) NHL B-cell lymphomas, which account for approximately 12 percent of all B-cell lymphomas. The median age for diagnosis is 65 years old. There are three types of marginal zone lymphoma: ...

  15. Urban Terrain Zone Characteristics

    DTIC Science & Technology

    1987-09-01

    function . An example of the interaction of some of these can result in an exposed surface of decorative brick veneer on a framed stracture . Or, a...Classification System for HOUT Studies . . . . . . . . .- ..- . . . . . . 14 2. Urban Terrain Zones Function /Morphology Relationship...By Function --All Cities Aggregated . . . . . . . . . . . . . . . . . . . 69 6. Building Types: Major Terrain Zones . . . . ...... 103 7. Urban Terrain

  16. Coastal zone management

    NASA Technical Reports Server (NTRS)

    Tilton, E. L., III

    1975-01-01

    A panel of federal and state representatives concerned with coastal zone affairs discussed their problems in this area. In addition, several demonstrations of the application of remote sensing technology to coastal zone management were described. These demonstrations were performed by several agencies in a variety of geographical areas.

  17. Float Zone Workshop

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1980-01-01

    A summary of the Analytical Float Zone Experiment System (AFZES) concept is presented. The types of experiments considered for such a facility are discussed. Reports from various industrial producers and users of float zone material are presented. Special emphasis is placed on state-of-the-art developments in low gravity manufacturing and their applications to space processing.

  18. Subduction of fracture zones

    NASA Astrophysics Data System (ADS)

    Constantin Manea, Vlad; Gerya, Taras; Manea, Marina; Zhu, Guizhi; Leeman, William

    2013-04-01

    Since Wilson proposed in 1965 the existence of a new class of faults on the ocean floor, namely transform faults, the geodynamic effects and importance of fracture zone subduction is still little studied. It is known that oceanic plates are characterized by numerous fracture zones, and some of them have the potential to transport into subduction zones large volumes of water-rich serpentinite, providing a fertile water source for magma generated in subduction-related arc volcanoes. In most previous geodynamic studies, subducting plates are considered to be homogeneous, and there is no clear indication how the subduction of a fracture zone influences the melting pattern in the mantle wedge and the slab-derived fluids distribution in the subarc mantle. Here we show that subduction of serpentinized fracture zones plays a significant role in distribution of melt and fluids in the mantle wedge above the slab. Using high-resolution tree-dimensional coupled petrological-termomechanical simulations of subduction, we show that fluids, including melts and water, vary dramatically in the region where a serpentinized fracture zone enters into subduction. Our models show that substantial hydration and partial melting tend to concentrate where fracture zones are being subducted, creating favorable conditions for partially molten hydrous plumes to develop. These results are consistent with the along-arc variability in magma source compositions and processes in several regions, as the Aleutian Arc, the Cascades, the Southern Mexican Volcanic Arc, and the Andean Southern Volcanic Zone.

  19. Investigating Aquatic Dead Zones

    ERIC Educational Resources Information Center

    Testa, Jeremy; Gurbisz, Cassie; Murray, Laura; Gray, William; Bosch, Jennifer; Burrell, Chris; Kemp, Michael

    2010-01-01

    This article features two engaging high school activities that include current scientific information, data, and authentic case studies. The activities address the physical, biological, and chemical processes that are associated with oxygen-depleted areas, or "dead zones," in aquatic systems. Students can explore these dead zones through both…

  20. Microgravity silicon zoning investigation

    NASA Technical Reports Server (NTRS)

    Kern, E. L.; Gill, G. L., Jr.

    1983-01-01

    A resistance heated zoner, suitable for early zoning experiments with silicon, was designed and put into operation. The initial power usage and size was designed for an shown to be compatible with payload carriers contemplated for the Shuttle. This equipment will be used in the definition and development of flight experiments and apparatus for float zoning silicon and other materials in microgravity.

  1. Development and validation of the Pediatric AzBio sentence lists

    PubMed Central

    Spahr, Anthony J.; Dorman, Michael F.; Litvak, Leonid M.; Cook, Sarah; Loiselle, Louise M.; DeJong, Melissa D.; Hedley-Williams, Andrea; Sunderhaus, Linsey S.; Hayes, Catherine A.; Gifford, René H.

    2014-01-01

    Objectives The goal of this study was to create and validate a new set of sentence lists that could be used to evaluate the speech perception abilities of listeners with hearing loss in cases where adult materials are inappropriate due to difficulty level or content. Our intention was to generate a large number of sentence lists with an equivalent level of difficulty for the evaluation of performance over time and across conditions. Design The original Pediatric-AzBio sentence corpus included 450 sentences recorded from one female talker. All sentences included in the corpus were successfully repeated by kindergarten and first grade students with normal hearing. The mean intelligibility of each sentence was estimated by processing each sentence through a cochlear implant simulation and calculating the mean percent correct score achieved by 15 normal-hearing listeners. After sorting sentences by mean percent correct scores, 320 sentences were assigned to 16 lists of equivalent difficulty. List equivalency was then validated by presenting all sentence lists, in a novel random order, to adults and children with hearing loss. A final-validation stage examined single-list comparisons from adult and pediatric listeners tested in research or clinical settings. Results The results of the simulation study allowed for the creation of 16 lists of 20 sentences. The average intelligibility of each list ranged from 78.4% to 78.7%. List equivalency was then validated, when the results of 16 adult cochlear implant users and 9 pediatric hearing aid and cochlear implant users revealed no significant differences across lists. The binomial distribution model was used to account for the inherent variability observed in the lists. This model was also used to generate 95% confidence intervals for one and two list comparisons. A retrospective analysis of 361 instances from 78 adult cochlear implant users and 48 instances from 36 pediatric cochlear implant users revealed that the 95

  2. Sedimentological characteristics of the surficial deposits of the Jal Az-Zor area, Kuwait

    NASA Astrophysics Data System (ADS)

    Al-Bakri, D.; Kittaneh, W.; Shublaq, W.

    1988-10-01

    The purpose of this article is to discuss the nature and characteristics of the surface geology of the Jal Az-Zor escarpment and the adjacent area, to better understand the sedimentology of desert landforms, and the main factors controlling depositional and diagenetic processes active in this environment. The oldest outcrops along the face of the escarpment are the sand and sandstone sequences of the Mutla and Jal Az-Zor Formations of the Kuwait Group (Neogene). Gravelly deposits of the upper member of the Kuwait Group, Dibdibba Formation (Pleistocene) are restricted to a few hillocks and ridges in the summit area of the escarpment. The Neogene deposits in most of the study area are overlain by a veneer of unconsolidated Holocene sediments. These were classified, according to their morphological setting and field occurrence, into: coastal deposits (intertidal mud, sabkha deposits, and sand dunes) and inland deposits (sand drifts, slope deposits, wadi fills, residual deposits and playa deposits). Wind-born quartzitic sand is the most common Holocene sediment in the study area indicating the dominance of the aeolian processes. Gypsum and carbonate present as cementing materials or in the form of gypcrete and calcrete, respectively, are characteristic sedimentological features of the pre-Holocene deposits. Gypcrete and gypsum cement are abundant in the upper section of the escarpment and decreases downward, whereas the carbonate (calcrete) shows a reverse pattern, i.e., it becomes more dominant in the lower section of the escarpment. The source of sulphate ions in the groundwater that is responsible for the development of gypcrete is believed to be the evaporites in the lower section of the Neogene sequence. The source of ions for the formation of calcrete and calcite cement is less understood due to the lack of significant primary carbonates in the near-surface deposits. It is believed that the nature and distribution of the chemically precipitated material (gypsum

  3. 75 FR 3859 - Safety Zone; Baltimore Captain of Port Zone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Baltimore Captain of Port Zone AGENCY... establishing a temporary safety zone in all navigable waters of the Captain of the Port Baltimore zone. The... authorized by the Captain of the Port Baltimore, or his designated representative. This safety zone...

  4. Fabrication of microfluidic chips using lithographic patterning and adhesive bonding of the thick negative photoresist AZ 125 nXT

    NASA Astrophysics Data System (ADS)

    Knoll, Thorsten; Bergmann, Andreas; Nußbaum, Dominic

    2015-05-01

    In this work, for the first time the negative photoresist AZ 125 nXT was used for the fabrication of a microfluidic chip. Usually, fabrication of microfluidic devices on the basis of silicon or glass substrates is done by using the epoxy-based negative photoresist SU-8 or other thick film polymer materials. The suitability of SU-8 for various microfluidic applications has been shown in the fields of bioanalytic devices, lab-on-chip systems or microreaction technology. However, processing is always a very challenging task with regard to the adaptation of process parameters to the individual design and required functionality. Now, the AZ 125 nXT allows for the fabrication of structures in a wide thickness range with only one type of viscosity. In contrast to SU-8, the AZ 125 nXT is fully cross-linked during UV exposure and does not require a time-consuming post-exposure bake. 90 μm deep microfluidic channels were defined by lithographic patterning of AZ 125 nXT. Sealing of the open microfluidic channels was performed by a manual adhesive bonding process at a temperature of 100 °C. The fluidic function was successfully tested with flow rates up to 20 ml/min by means of a microfluidic edge connector. Long term stability and chemical resistance of the fabricated microfluidic channels will be investigated in the near future. The presented work shows the potential of AZ 125 nXT as a possible alternative to SU-8 for the fabrication of microfluidic chips.

  5. Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant.

    PubMed

    Jang, Yongseok; Tan, Zongqing; Jurey, Chris; Collins, Boyce; Badve, Aditya; Dong, Zhongyun; Park, Chanhee; Kim, Cheol Sang; Sankar, Jagannathan; Yun, Yeoheung

    2014-12-01

    This study was conducted to identify the differences between corrosion rates, corrosion types, and corrosion products in different physiological environments for AZ31 magnesium alloy and plasma electrolytic oxidation (PEO) treated AZ31 magnesium alloy. In vitro and in vivo tests were performed in Hank's Balanced Salt Solution (HBSS) and mice for 12 weeks, respectively. The corrosion rates of both AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy were calculated based on DC polarization curves, volume of hydrogen evolution, and the thickness of corrosion products formed on the surface. Micro X-ray computed tomography (Micro-CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) were used to analyze morphological and chemical characterizations of corrosion products. The results show that there is more severe localized corrosion after in vitro test in HBSS; however, the thicknesses of corrosion products formed on the surface for AZ31 magnesium alloy and PEO treated AZ31 magnesium alloy in vivo were about 40% thicker than the thickness of corrosion products generated in vitro. The ratio of Ca and P (Ca/P) in the corrosion products also differed. The Ca deficient region and higher content of Al in corrosion product than AZ31 magnesium alloy were identified after in vivo test in contrast with the result of in vitro test.

  6. Fatigue and material characteristics of a hot-formed AZ31 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Suh, Chang-Min; Hor, Kwang-Ho; Nahm, Seung-Hoon; Suh, Min-Soo

    2015-03-01

    Magnesium alloys are known to be hard-forming materials at room temperature owing to their material structure. This study analyzes the optimal temperature conditions of warm-forming and the forming process by using a high-pressure laminating test and FM analysis, respectively. The effect of temperatures on the fatigue limit was examined from the collected specimens by analyzing the material properties after the fatigue test. The material formed at a temperature of 230°C shows occasional defects, but the best forming quality was obtained at 270°C. The optimal temperature for the forming process was found to be 250°C considering the material quality and thermal efficiency. The overall fatigue life of specimens decreases with an increase in the processing temperature. The fatigue limit of AZ31 formed at 250°C was approximately 100 MPa after 106 cycles.

  7. Microstructure and Texture Evolution During the Alternate Extrusion of an AZ31 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Li, Feng; Jiang, Hong Wei; Liu, Yang

    2017-01-01

    In this study, a new extrusion process, alternate extrusion (AE), is proposed. We evaluated the reliability and superiority of this process in practical applications by conducting a simulation using the finite element method, which confirmed the experimental results. The microstructure characteristics of an AZ31 magnesium alloy produced by conventional extrusion (CE) and AE were investigated by electron backscattered diffraction and optical microscopy, and the effects of the microstructures on the mechanical properties were studied across the extruded specimens. The main advantage of AE is that the load is reduced to less than half that in the CE process; this results from the reduced cross-section of the split punches. Additionally, the grain size with AE is more refined than with CE because of the additional shear force, which improves the mechanical properties of the alloys. Furthermore, AE can also weaken the intensity of the basal plane texture.

  8. Damage and Failure Analysis of AZ31 Alloy Sheet in Warm Stamping Processes

    NASA Astrophysics Data System (ADS)

    Zhao, P. J.; Chen, Z. H.; Dong, C. F.

    2016-07-01

    In this study, a combined experimental-numerical investigation on the failure of AZ31 Mg alloy sheet in the warm stamping process was carried out based on modified GTN damage model which integrated Yld2000 anisotropic yield criterion. The constitutive equations of material were implemented into a VUMAT subroutine for solver ABAQUS/Explicit and applied to the formability analysis of mobile phone shell. The morphology near the crack area was observed using SEM, and the anisotropic damage evolution at various temperatures was simulated. The distributions of plastic strain, damage evolution, thickness, and fracture initiation obtained from FE simulation were analyzed. The corresponding forming limit diagrams were worked out, and the comparison with the experimental data showed a good agreement.

  9. Fatigue behaviour of friction stir processed AZ91 magnesium alloy produced by high pressure die casting

    SciTech Connect

    Cavaliere, P. . E-mail: pasquale.cavaliere@unile.it; De Marco, P.P.

    2007-03-15

    The room temperature fatigue properties of AZ91 magnesium alloy produced by high pressure die casting (HPDC) as cast, heat treated, friction stir processed (FSP) and FSP and heat treated were studied. The fatigue properties of the material were evaluated for the HPDC magnesium alloy in the as-received state and after a solution treatment at 415 deg. C for 2 h and an ageing treatment at 220 deg. C for 4 h. The heat treatment resulted in a significant increase in the fatigue properties of the HPDC material, while no significance influence of heat treatment was recorded in the FSP condition. The morphology of fracture surfaces was examined by employing a field emission gun scanning electron microscope (FEGSEM)

  10. Effects of Microstructure and Processing Methods on Creep Behavior of AZ91 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Shahbeigi Roodposhti, Peiman; Sarkar, Apu; Murty, Korukonda L.; Scattergood, Ronald O.

    2016-09-01

    This review sheds light on the creep properties of AZ91 magnesium alloys with a major emphasis on the influence of microstructure on the creep resistance and underlying creep deformation mechanism based on stress exponent and activation energy. Effects of processing routes such as steel mold casting, die casting, and thixoforming are considered. Roles of a wide range of additional alloying elements such as Si, Sb, Bi, Ca, Sn, REs, and combined addition of them on the microstructure modification were investigated. The reaction between these elements and the Mg or Al in the matrix develops some thermally stable intermetallic phases which improves the creep resistance at elevated temperatures, however does not influence the creep mechanism.

  11. Initiation of fatigue cracks in AZ91 Mg alloy processed by ECAP

    NASA Astrophysics Data System (ADS)

    Fintová, S.; Kunz, L.

    2014-08-01

    Mechanism of fatigue crack initiation was investigated in ultrafine-grained (UFG) magnesium alloy AZ91 processed by equal channel angular pressing (ECAP). Fatigue behaviour of UFG material was compared to the behaviour of material in an initial as-cast state. Focused ion beam technique (FIB) was applied to reveal the surface relief and early fatigue cracks. Two substantially different mechanisms of crack initiation were observed in UFG structure, which can be characterized as bimodal even after 6 ECAP passes by route Bc. The bimodality consists in a coexistence of very fine grained areas with higher content of Mg17Al12 particles and areas exhibiting somewhat larger grains and lower density of particles. The fatigue cracks which initiate in areas of larger grains are related to the cyclic slip bands; this initiation mechanism is similar to that observed in cast alloy. The second initiation mechanism is related to the grain boundary cracking which takes place predominantly in the fine grained areas.

  12. Investigation of interfacial interaction between uncoated and coated carbon fibres and the magnesium alloy AZ91.

    PubMed

    Dorner-Reisel, A; Nishida, Y; Klemm, V; Nestler, K; Marx, G; Müller, E

    2002-10-01

    Unidirectionally reinforced metal-matrix composites with a fibre volume content between 63 and 68% were processed by squeeze casting using T800 H carbon fibres and the magnesium alloy AZ91. The surface of the fibres was prepared by thermal desizing of the fibres or by deposition of a pyrolytic carbon (pyC) coating. Different interfacial conditions could be identified by transmission electron microscopy (TEM) and the single-fibre push-in test. TEM confirmed the formation of needle-like phases at the fibre surface or, for coated fibres, within the pyrolytic carbon coating. During loading by the Vickers type indenter an intense response was observed for composites of coated fibres and the magnesium alloy. This could by caused by stick-slip effects within the pyrolytic carbon coating.

  13. Process Influences on Laser-beam Melting of the Magnesium Alloy AZ91

    NASA Astrophysics Data System (ADS)

    Schmid, Dominik; Renza, Johanna; Zaeh, Michael F.; Glasschroeder, Johannes

    Magnesium's great lightweight potential and high biocompatibility render laser-beam melting of this metal increasingly interesting. Despite recent research activities in this field, the properties thereby achieved are still inadequate for industrial or medical use. Low surface quality caused by powder sintered to parts' boundaries is one of the main problems. This effect is discussed theoretically and examined on single tracks of the magnesium alloy AZ91. Welding-penetration depth and width was measured on a magnesium plate with and without a powder layer. For the derivation of suitable process parameters, structures with incrementally increasing hatch distances were built and microscopically analyzed. The influence on defect percentage and hardness of the parts was determined based on specimens manufactured with different layer thicknesses. The influence of the oxygen content on solids was analyzed by varying the process atmosphere.

  14. Tribological properties of heat-treated electroless Ni-P coatings on AZ91 alloy

    NASA Astrophysics Data System (ADS)

    Novák, M.; Vojtěch, D.; Novák, P.; Vítů, T.

    2011-09-01

    Influence of heat treatment regime on adhesion and wear resistance of Ni-P electroless coating on AZ91 magnesium alloy is investigated in this work. The pretreated substrate was plated using a bath containing nickel sulphate, sodium hypophosphite and sodium acetate as main constituents. The coated samples were heat treated at 400-450 °C for 1-8 h. Adhesion of coating was estimated from the scratch test with an initial load of 8.80 N. Wear resistance was studied using the pin-on-disc method. It was found that there is no significant dependence of the coating wear resistance on heat treatment regime, as the formation of Al-Ni intermetallic sub-layers that reduce coating adhesion is limited to regions where Al17Mg12 phase is present in the substrate. Moreover, the coating shows good sliding properties due to the formation of oxide glazes in the wear track.

  15. Optimization of Wear Behavior of Magnesium Alloy AZ91 Hybrid Composites Using Taguchi Experimental Design

    NASA Astrophysics Data System (ADS)

    Girish, B. M.; Satish, B. M.; Sarapure, Sadanand; Basawaraj

    2016-06-01

    In the present paper, the statistical investigation on wear behavior of magnesium alloy (AZ91) hybrid metal matrix composites using Taguchi technique has been reported. The composites were reinforced with SiC and graphite particles of average size 37 μm. The specimens were processed by stir casting route. Dry sliding wear of the hybrid composites were tested on a pin-on-disk tribometer under dry conditions at different normal loads (20, 40, and 60 N), sliding speeds (1.047, 1.57, and 2.09 m/s), and composition (1, 2, and 3 wt pct of each of SiC and graphite). The design of experiments approach using Taguchi technique was employed to statistically analyze the wear behavior of hybrid composites. Signal-to-noise ratio and analysis of variance were used to investigate the influence of the parameters on the wear rate.

  16. Laser beam welding of AZ31B-H24 magnesium alloy.

    SciTech Connect

    Leong, K. H.

    1998-09-29

    The laser beam weldability of AZ31B magnesium alloy was examined with high power CW CO{sub 2} and pulsed Nd:YAG lasers. The low viscosity and surface tension of the melt pool make magnesium more difficult to weld than steel. Welding parameters necessary to obtain good welds were determined for both CW CO{sub 2} and pulsed Nd:YAG lasers. The weldability of the magnesium alloy was significantly better with the Nd:YAG laser. The cause of this improvement was attributed to the higher absorption of the Nd:YAG beam. A lower threshold beam irradiance was required for welding, and a more stable weldpool was obtained.

  17. Simulation of cylindrical cup drawing of AZ31 sheet metal with crystal plasticity finite element method

    NASA Astrophysics Data System (ADS)

    Tang, Weiqin; Li, Dayong; Zhang, Shaorui; Peng, Yinghong

    2013-12-01

    As a light-weight structural material, magnesium alloys show good potential in improving the fuel efficiency of vehicles and reducing CO2 emissions. However, it is well known that polycrystalline Mg alloys develop pronounced crystallographic texture and plastic anisotropy during rolling, which leads to earing phenomenon during deep drawing of the rolled sheets. It is vital to predict this phenomenon accurately for application of magnesium sheet metals. In the present study, a crystal plasticity model for AZ31 magnesium alloy that incorporates both slip and twinning is established. Then the crystal plasticity model is implemented in the commercial finite element software ABAQUS/Explicit through secondary development interface (VUMAT). Finally, the stamping process of a cylindrical cup is simulated using the developed crystal plasticity finite element model, and the predicting method is verified by comparing with experimental results from both earing profile and deformation texture.

  18. Evaluation of cracking in the 241-AZ tank farm ventilation line at the Hanford Site

    SciTech Connect

    ANANTATMULA, R.P.

    1999-10-20

    In the period from April to October of 1988, a series of welding operations on the outside of the AZ Tank Farm ventilation line piping at the Hanford Site produced unexpected and repeated cracking of the austenitic stainless steel base metal and of a seam weld in the pipe. The ventilation line is fabricated from type 304L stainless steel pipe of 24 inch diameter and 0.25 inch wall thickness. The pipe was wrapped in polyethylene bubble wrap and buried approximately 12 feet below grade. Except for the time period between 1980 and 1987, impressed current cathodic protection has been applied to the pipe since its installation in 1974. The paper describes the history of the cracking of the pipe, the probable cracking mechanisms, and the recommended future action for repair/replacement of the pipe.

  19. Tank 241-AZ-101 prototype corrosion probe four month status report

    SciTech Connect

    Edgemon, G.L., Westinghouse Hanford

    1996-12-12

    High-level nuclear wastes at the Hanford Site are stored underground in carbon steel double-shell and single-shell tanks. The installation of a prototype corrosion monitoring system into double-shell tank 241-AZ-101 was completed in August, 1996. The system monitors fluctuations in corrosion current and potential (electrochemical noise) occurring on three electrode arrays immersed in the waste liquid and in the vapor space above the waste. The system also supports the use of Tafel and linear polarization resistance testing. By monitoring and analyzing the data from these techniques, changes in the corrosive characteristics of the waste have been rapidly detected and correlated with operational changes in the tank.

  20. High Incidence of Preharvest Colonization of Huanglongbing-Symptomatic Citrus sinensis Fruit by Lasiodiplodia theobromae (Diplodia natalensis) and Exacerbation of Postharvest Fruit Decay by That Fungus

    PubMed Central

    Zhao, Wei; Bai, Jinhe; McCollum, Greg

    2014-01-01

    Huanglongbing (HLB), presumably caused by the bacterium “Candidatus Liberibacter asiaticus,” is a devastating citrus disease associated with excessive preharvest fruit drop. Lasiodiplodia theobromae (diplodia) is the causal organism of citrus stem end rot (SER). The pathogen infects citrus fruit under the calyx abscission zone (AZ-C) and is associated with cell wall hydrolytic enzymes similar to plant enzymes involved in abscission. By means of DNA sequencing, diplodia was found in “Ca. Liberibacter asiaticus”-positive juice from HLB-symptomatic fruit (S) but not in “Ca. Liberibacter asiaticus”-negative juice. Therefore, the incidence of diplodia in fruit tissues, the impact on HLB-related postharvest decay, and the implications for HLB-related preharvest fruit drop were investigated in Hamlin and Valencia oranges. Quantitative PCR results (qPCR) revealed a significantly (P < 0.001) greater incidence of diplodia in the AZ-C of HLB-symptomatic (S; “Ca. Liberibacter asiaticus” threshold cycle [CT] of <30) than in the AZ-C of in asymptomatic (AS; “Ca. Liberibacter asiaticus” CT of ≥30) fruit. In agreement with the qPCR results, 2 weeks after exposure to ethylene, the incidences of SER in S fruit were 66.7% (Hamlin) and 58.7% (Valencia), whereas for AS fruit the decay rates were 6.7% (Hamlin) and 5.3% (Valencia). Diplodia colonization of S fruit AZ-C was observed by scanning electron microscopy and confirmed by PCR test and morphology of conidia in isolates from the AZ-C after surface sterilization. Diplodia CT values were negatively correlated with ethylene production (R = −0.838 for Hamlin; R = −0.858 for Valencia) in S fruit, and positively correlated with fruit detachment force (R = 0.855 for Hamlin; R = 0.850 for Valencia), suggesting that diplodia colonization in AZ-C may exacerbate HLB-associated preharvest fruit drop. PMID:25344245

  1. Archaeological studies at Drill Hole U20az Pahute Mesa, Nye county, Nevada. [Contains bibliography

    SciTech Connect

    Simmons, A.H.; Hemphill, M.L.; Henton, G.H.; Lockett, C.L.; Nials, F.L.; Pippin, L.C.; Walsh, L.

    1991-07-01

    During the summer of 1987, the Quaternary Sciences Center (formerly Social Science Center) of the Desert Research Institute (DRI), University of Nevada System, conducted data recovery investigations at five archaeological sites located near Drill Hole U20az on the Nevada Test Site in southern Nevada. These sites were among 12 recorded earlier during an archaeological survey of the drill hole conducted as part of the environmental compliance activities of the Department of Energy (DOE). The five sites discussed in this report were considered eligible for the National Register of Historic Places and were in danger of being adversely impacted by construction activities or by effects of the proposed underground nuclear test. Avoidance of these sites was not a feasible alternative; thus DRI undertook a data recovery program to mitigate expected adverse impacts. DRI's research plan included controlled surface collections and excavation of the five sites in question, and had the concurrence of the Nevada Division of Historic Preservation and Archaeology and the Advisory Council of Historic Preservation. Of the five sites investigated, the largest and most complex, 26Ny5207, consists of at least three discrete artifact concentrations. Sites 26Ny5211 and 26Ny5215, both yielded considerable assemblages. Site 26Ny5206 is very small and probably is linked to 26Ny5207. Site 26Ny5205 contained a limited artifact assemblage. All of the sites were open-air occurrences, and, with one exception contained no or limited subsurface cultural deposits. Only two radiocarbon dates were obtained, both from 26Ny5207 and both relatively recent. While the investigations reported in the volume mitigate most of the adverse impacts from DOE activities at Drill Hole U20az, significant archaeological sites may still exist in the general vicinity. Should the DOE conduct further activities in the region, additional cultural resource investigations may be required. 132 refs., 71 figs., 44 tabs.

  2. Software configuration management plan, 241-AY and 241-AZ tank farm MICON automation system

    SciTech Connect

    Hill, L.F.

    1997-10-30

    This document establishes a Computer Software Configuration Management Plan (CSCM) for controlling software for the MICON Distributed Control System (DCS) located at the 241-AY and 241-AZ Aging Waste Tank Farm facilities in the 200 East Area. The MICON DCS software controls and monitors the instrumentation and equipment associated with plant systems and processes. A CSCM identifies and defines the configuration items in a system (section 3.1), controls the release and change of these items throughout the system life cycle (section 3.2), records and reports the status of configuration items and change requests (section 3.3), and verifies the completeness and correctness of the items (section 3.4). All software development before initial release, or before software is baselined, is considered developmental. This plan does not apply to developmental software. This plan applies to software that has been baselined and released. The MICON software will monitor and control the related instrumentation and equipment of the 241-AY and 241-AZ Tank Farm ventilation systems. Eventually, this software may also assume the monitoring and control of the tank sludge washing equipment and other systems as they are brought on line. This plan applies to the System Cognizant Manager and MICON Cognizant Engineer (who is also referred to herein as the system administrator) responsible for the software/hardware and administration of the MICON system. This document also applies to any other organizations within Tank Farms which are currently active on the system including system cognizant engineers, nuclear operators, technicians, and control room supervisors.

  3. Heat Treatment of AZ91D Mg-Al-Zn Alloy: Microstructural Evolution and Dynamic Response

    NASA Astrophysics Data System (ADS)

    Luong, Dung D.; Shunmugasamy, Vasanth Chakravarthy; Cox, James; Gupta, Nikhil; Rohatgi, Pradeep K.

    2013-11-01

    Magnesium alloys are attracting great interest from the automotive industry because of the potential for weight reduction. An AZ91D cast alloy was studied in the current work to understand the effect of heat treatment on the microstructure and dynamic compressive properties. The selected heat treatments include solution treatment (T4) and solution treatment followed by aging (T6). The as-cast alloy microstructure consists of intermetallic β-phase (Mg17Al12) precipitates surrounded by α + β lamellar eutectic in α-Mg solid solution. The AZ91D-T4 specimens showed small β-phase precipitates along the grain boundaries and regions of eutectic mixture. The T6 heat treatment causes the β-phase platelets in the α + β eutectic to grow and develop into β-precipitates. The difference in the phase morphology reflects into the mechanical properties. The Vickers hardness of the T6 heat-treated specimens was 3.6% higher than the as-cast alloy. The compressive yield strengths of T4 and T6 treated specimens were 1.3% and 43.1% higher than those of as-cast specimens. The high strain rate compression testing resulted in increase in the strength with strain rate for the T4 and T6 specimens. A maximum increase of 42% was observed in T6 specimen tested at a strain rate of 4,000/s in comparison to the quasi-static compression. Under high strain rate compression testing, the T6 heat-treated specimens showed failure of the β-precipitates resulting in increased energy absorption in comparison to the quasi-static compression.

  4. Overexpression of synapsin Ia in the rat calyx of Held accelerates short-term plasticity and decreases synaptic vesicle volume and active zone area

    PubMed Central

    Vasileva, Mariya; Renden, Robert; Horstmann, Heinz; Gitler, Daniel; Kuner, Thomas

    2013-01-01

    Synapsins are synaptic vesicle (SV) proteins organizing a component of the reserve pool of vesicles at most central nervous system synapses. Alternative splicing of the three mammalian genes results in multiple isoforms that may differentially contribute to the organization and maintenance of the SV pools. To address this, we first characterized the expression pattern of synapsin isoforms in the rat calyx of Held. At postnatal day 16, synapsins Ia, Ib, IIb and IIIa were present, while IIa—known to sustain repetitive transmission in glutamatergic terminals—was not detectable. To test if the synapsin I isoforms could mediate IIa-like effect, and if this depends on the presence of the E-domain, we overexpressed either synapsin Ia or synapsin Ib in the rat calyx of Held via recombinant adeno-associated virus-mediated gene transfer. Although the size and overall structure of the perturbed calyces remained unchanged, short-term depression and recovery from depression were accelerated upon overexpression of synapsin I isoforms. Using electron microscopic three-dimensional reconstructions we found a redistribution of SV clusters proximal to the active zones (AZ) alongside with a decrease of both AZ area and SV volume. The number of SVs at individual AZs was strongly reduced. Hence, our data indicate that the amount of synapsin Ia expressed in the calyx regulates the rate and extent of short-term synaptic plasticity by affecting vesicle recruitment to the AZ. Finally, our study reveals a novel contribution of synapsin Ia to define the surface area of AZs. PMID:24391547

  5. Fault zone hydrogeology

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (< 1 km) introduces permeability heterogeneity and anisotropy, which has an important impact on processes such as regional groundwater flow, hydrocarbon migration, and hydrothermal fluid circulation. Fault zones have the capacity to be hydraulic conduits connecting shallow and deep geological environments, but simultaneously the fault cores of many faults often form effective barriers to flow. The direct evaluation of the impact of faults to fluid flow patterns remains a challenge and requires a multidisciplinary research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and

  6. Anomalous zones (domal)

    SciTech Connect

    Kupfer, D.H. )

    1990-09-01

    Each zone contains several anomalous salt properties (anomalous features). Zones cannot be characterized by any single property Zones are highly variable, lenticular, and discontinuous in detail; however, once established, they commonly have a predictable trend. The individual anomalous features can occur alone (locally in pairs) over areas of various sizes and shapes. These alone occurrences are not anomalous zones. Anomalous zones may be of any origin, and origin is not part of the definition. Typical origins include: primary (sedimentary), external sheath zone, separating two spines of salt, or caused by toroidal flow. The major importance of an anomalous zone is that it consists of various anomalous features distributed discontinuously along the zone. Thus, if three or more anomalous properties are observed together, one should look for others. The anomalous zones observed in the Gulf Coast thus far are vertical, linear, and semicontinuous. Most are reasonably straight, but some bend sharply, end abruptly, or coalesce. Textures in salt involve grain size, color (white to dark gray), grain shape, or grain distribution of the salt. Typical anomalous textures are coarse-grain, poikiloblastic, and friability. A change in color is commonplace and seldom anomalous. Structural anomalous features, broadly defined, account for most of the rest of the anomalous features. Not uncommonly they cause mining problems. Among the structural anomalous features: INCLUSIONS: Sediments, hydrocarbons, brine, gases. Common gases are air (as N{sub 2}), CH-compounds, CO{sub 2}, and H{sub 2}S. STRUCTURES: Sheared salt, undue stabbing or jointing, voids (crystal-lined pockets), permeability, increased porosity COMPOSITION: High anhydrite content, visible anhydrite as grains or boudins, very black salt = disseminated impurities such as clay.

  7. SAS-mediated acetylation of histone H4 Lys 16 is required for H2A.Z incorporation at subtelomeric regions in Saccharomyces cerevisiae

    PubMed Central

    Shia, Wei-Jong; Li, Bing; Workman, Jerry L.

    2006-01-01

    The yeast SAS (Something About Silencing) complex and the histone variant H2A.Z have both previously been linked to an antisilencing function at the subtelomeric regions. SAS is an H4 Lys 16-specific histone acetyltransferase complex. Here we demonstrate that the H4 Lys 16 acetylation by SAS is required for efficient H2A.Z incorporation near telomeres. The presence of H4 Lys 16 acetylation and H2A.Z synergistically prevent the ectopic propagation of heterochromatin. Overall, our data suggest a novel antisilencing mechanism near telomeres. PMID:16980580

  8. 16. UPPER PASSENGER LOADING ZONE, NOTE LOADING ZONE BELOW WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. UPPER PASSENGER LOADING ZONE, NOTE LOADING ZONE BELOW WITH TURN STILES - Jefferson National Expansion Memorial Arch, Mississippi River between Washington & Poplar Streets, Saint Louis, Independent City, MO

  9. Buffer Zone Fact Sheets

    EPA Pesticide Factsheets

    New requirements for buffer zones and sign posting contribute to soil fumigant mitigation and protection for workers and bystanders. The buffer provides distance between the pesticide application site and bystanders, reducing exposure risk.

  10. Microgravity silicon zoning investigation

    NASA Technical Reports Server (NTRS)

    Kern, E. L.; Gill, G. L., Jr.

    1985-01-01

    The flow instabilities in floating zones of silicon were investigated and methods for investigation of these instabilities in microgravity were defined. Three principal tasks were involved: (1) characterization of the float zone in small diameter rods; (2) investigation of melt flow instabilities in circular melts in silicon disks; and (3) the development of a prototype of an apparatus that could be used in near term space experiments to investigate flow instabilities in a molten zone. It is shown that in a resistance heated zoner with 4 to 7 mm diameter silicon rods that the critical Marangoni number is about 1480 compared to a predicted value of 14 indicative that viable space experiments might be performed. The prototype float zone apparatus is built and specifications are prepared for a flight zoner should a decision be reached to proceed with a space flight experimental investigation.

  11. Cascadia Subduction Zone

    USGS Publications Warehouse

    Frankel, Arthur D.; Petersen, Mark D.

    2008-01-01

    The geometry and recurrence times of large earthquakes associated with the Cascadia Subduction Zone (CSZ) were discussed and debated at a March 28-29, 2006 Pacific Northwest workshop for the USGS National Seismic Hazard Maps. The CSZ is modeled from Cape Mendocino in California to Vancouver Island in British Columbia. We include the same geometry and weighting scheme as was used in the 2002 model (Frankel and others, 2002) based on thermal constraints (Fig. 1; Fluck and others, 1997 and a reexamination by Wang et al., 2003, Fig. 11, eastern edge of intermediate shading). This scheme includes four possibilities for the lower (eastern) limit of seismic rupture: the base of elastic zone (weight 0.1), the base of transition zone (weight 0.2), the midpoint of the transition zone (weight 0.2), and a model with a long north-south segment at 123.8? W in the southern and central portions of the CSZ, with a dogleg to the northwest in the northern portion of the zone (weight 0.5). The latter model was derived from the approximate average longitude of the contour of the 30 km depth of the CSZ as modeled by Fluck et al. (1997). A global study of the maximum depth of thrust earthquakes on subduction zones by Tichelaar and Ruff (1993) indicated maximum depths of about 40 km for most of the subduction zones studied, although the Mexican subduction zone had a maximum depth of about 25 km (R. LaForge, pers. comm., 2006). The recent inversion of GPS data by McCaffrey et al. (2007) shows a significant amount of coupling (a coupling factor of 0.2-0.3) as far east as 123.8? West in some portions of the CSZ. Both of these lines of evidence lend support to the model with a north-south segment at 123.8? W.

  12. Dentin Caries Zones

    PubMed Central

    Pugach, M.K.; Strother, J.; Darling, C.L.; Fried, D.; Gansky, S.A.; Marshall, S.J.; Marshall, G.W.

    2009-01-01

    Caries Detector staining reveals 4 zones in dentin containing caries lesions, but characteristics of each zone are not well-defined. We therefore investigated the physical and microstructural properties of carious dentin in the 4 different zones to determine important differences revealed by Caries Detector staining. Six arrested dentin caries lesions and 2 normal controls were Caries-Detector-stained, each zone (pink, light pink, transparent, apparently normal) being analyzed by atomic force microscopy (AFM) imaging for microstructure, by AFM nano-indentation for mechanical properties, and by transverse digital microradiography (TMR) for mineral content. Microstructure changes, and nanomechanical properties and mineral content significantly decreased across zones. Hydrated elastic modulus and mineral content from normal dentin to pink Caries-Detector-stained dentin ranged from 19.5 [10.6-25.3] GPa to 1.6 [0.0-5.0] GPa and from 42.9 [39.8-44.6] vol% to 12.4 [9.1-14.2] vol%, respectively. Even the most demineralized pink zone contained considerable residual mineral. PMID:19131321

  13. The histone variant H2A.Z is dynamically expressed in the developing mouse placenta and in differentiating trophoblast stem cells.

    PubMed

    Kafer, Georgia R; Carlton, Peter M; Lehnert, Sigrid A

    2015-11-01

    The histone variant H2A.Z is important in establishing new chromatin environments necessary for permitting changes in gene expression and thus differentiation in mouse embryonic stem (mES) cells. In this study we show that H2A.Z is highly expressed in the early mouse placenta, and is specifically limited to progenitor-like trophoblast cells. Using in vitro models, we revealed distinct differences in H2A.Z abundance between undifferentiated, differentiating and differentiated mouse trophoblast stem (mTS) cells. Our work supports the hypothesis that in addition to roles in differentiating mES cells, H2A.Z is also involved in the differentiation of extra-embryonic tissues.

  14. In vitro and in vivo metabolism of 14C-AZ11, a novel inhibitor of bacterial DNA gyrase/type II topoisomerase.

    PubMed

    Guo, Jian; Joubran, Camil; Luzietti, Ricardo A; Zhou, Fei; Basarab, Gregory S; Vishwanathan, Karthick

    2015-02-01

    1. (2R,4S,4aS)-11-Fluoro-2,4-dimethyl-8-((S)-4-methyl-2-oxooxazolidin-3-yl)-2,4,4a,6-tetrahydro-1H,1'H-spiro [isoxazolo[4,5-g][1,4]oxazino[4,3-a]quinoline-5,5'-pyrimidine]-2',4',6'(3'H)-trione (AZ11) is a novel mode-of-inhibition bacterial topoisomerase inhibitor that entered preclinical development for the treatment of Gram-positive bacteria infection. 2. The in vitro biotransformation studies of AZ11 using mouse, rat, dog and human hepatocytes showed low-intrinsic clearance in all species attributed to microsomal metabolism. 3. After a single intravenous administration of [14C]AZ11 in bile duct cannulated rats, the mean percentage of dose recovered in rat urine, bile and feces was approximately 18, 36 and 42%, respectively. Unchanged AZ11 recovered in rat urine and bile was less than 9% of the dose, indicating that AZ11 underwent extensive metabolism in rats. 4. The most abundant in vivo metabolite detected in urine and bile was M1 formed via ring opening on the piperidine and morpholine rings accounting for 20% of the administered dose. The major fecal metabolite was M5, which accounted for approximately 32% of administered dose. M5 was not formed when AZ11 incubated with rat intestinal microsomes and cytosol but was formed when incubated with fresh rat feces, suggesting that unchanged AZ11 was directly excreted into gut lumen where M5 formed as an intestinal microflora-mediated product. This process could have significant impact on bioavailability or exposure of AZ11 in rat.

  15. Effects of Extrusion-Shear Process Conditions on the Microstructures and Mechanical Properties of AZ31 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Hu, H. J.; Li, Y. Y.; Wang, X.; Zhang, D. F.; Yang, M. B.

    2016-11-01

    In this paper, the effects of extrusion-shear (ES) on the microstructures and mechanical properties of AZ31 magnesium alloy has been studied, which has been achieved by conducting a lot of experiments and tests, including ES process, direct extrusion with different billet temperatures, microstructure analysis, hardness test, tensile & compression tests. The results show that the ES-processed rods has higher strengths (yield strength and tensile strength) than the direct extrusion ones with the same billet temperature, which contributed to their lower averaged grain size obtained from microstructure analysis according to Hall-Petch relation. Besides, the hardness of ES-processed AZ31 magnesium alloy decreases with the increasing of billet temperature. By comparing the two processes, it can be seen that the ES process could refine the microstructure and improve the mechanical properties of magnesium alloy.

  16. Thermal stress analysis of fused-cast AZS refractories during production; Part 2: Development of thermo-elastic stress model

    SciTech Connect

    Cockcroft, S.L.; Brimacombe, J.K. . Centre for Metallurgical Process Engineering); Walrod, D.G.; Myles, T.A. . Monofrax-S Plant)

    1994-06-01

    Mathematical models of heat flow and thermo-elastic stress, based on the finite-element method, have been developed and utilized to analyze the voidless,'' fused-cast, AZS, solidification process. The results of the mathematical analysis, in conjunction with information obtained in a comprehensive industrial study, presented in Part 1 of this paper, describe the mechanisms for the formation of the various crack types found in the fused-cast product. Thermal stresses are generated early in the solidification process by rapid cooling of the refractory surface as it contacts the initially cool mold and later in conjunction with the tetragonal-to-monoclinic phase transformation which occurs in the zirconia component of the AZS refractory. Applying this model, castings were made using a revised mold design. Preliminary results indicate these castings to be free of objectionable transverse cracks.

  17. Microstructural Analysis of Severe Plastic Deformed Twin Roll Cast AZ31 for the Optimization of Superplastic Properties

    SciTech Connect

    Young, John P.; Askari, Hesam A.; Heiden, Michael J.; Hovanski, Yuri; Field, David P.; Zbib, Hussein M.

    2013-07-08

    In recent years magnesium alloys have attracted significant attention as potential candidates to replace many of the heavier metals used in some automotive applications. However, the limited formability of magnesium and its alloys at room temperature has driven interest in the superplastic forming magnesium as an alternative shaping method. Severe plastic deformation techniques have become a well studied method of refining the grain size and modifying the microstructural characteristics of many magnesium alloys to achieve greater superplastic properties. In this study twin roll cast (TRC) AZ31 magnesium alloy was subjected to equal channel angular pressing (ECAP) and friction stir welding (FSW). The influence of these severe plastic deformation processes on the grain size, texture and grain boundary character distribution was investigated to identify the optimum severe plastic deformation process for the superplastic forming of AZ31.

  18. PHYSICAL CHARACTERIZATION OF VITREOUS STATE LABORATORY AY102/C106 AND AZ102 HIGH LEVEL WASTE MELTER FEED SIMULANTS (U)

    SciTech Connect

    Hansen, E

    2005-03-31

    The objective of this task is to characterize and report specified physical properties and pH of simulant high level waste (HLW) melter feeds (MF) processed through the scaled melters at Vitreous State Laboratories (VSL). The HLW MF simulants characterized are VSL AZ102 straight hydroxide melter feed, VSL AZ102 straight hydroxide rheology adjusted melter feed, VSL AY102/C106 straight hydroxide melter feed, VSL AY102/C106 straight hydroxide rheology adjusted melter feed, and Savannah River National Laboratory (SRNL) AY102/C106 precipitated hydroxide processed sludge blended with glass former chemicals at VSL to make melter feed. The physical properties and pH were characterized using the methods stated in the Waste Treatment Plant (WTP) characterization procedure (Ref. 7).

  19. A Crystalline Plasticity Finite Element Method for Simulation of the Plastic Deformation of AZ31 Magnesium Alloys

    SciTech Connect

    Li Dayong; Peng Yinghong; Zhang Shaorui; Tang Weiqin; Huang Shiyao

    2010-06-15

    In this paper, a constitutive framework based on a crystalline plasticity model is employed to simulate the plastic deformation of AZ31 magnesium alloy, which posses the hexagonal close packed (HCP) crystal structure. Dislocation slip and mechanical twinning are taken into account in the model. The successive integration method is used to determine the active slip systems, and the contribution of twinning to the grain reorientation is treated by the PTR method. The FE model is introduced into ABAQUS/Explicit through a user material subroutine (VUMAT). Three deformation processes of AZ31 magnesium alloy, including tension, compression and a stamping process, are simulated with the present method. The simulation results are compared with experiment and those presented in the literature.

  20. A Crystalline Plasticity Finite Element Method for Simulation of the Plastic Deformation of AZ31 Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Li, Dayong; Zhang, Shaorui; Tang, Weiqin; Huang, Shiyao; Peng, Yinghong

    2010-06-01

    In this paper, a constitutive framework based on a crystalline plasticity model is employed to simulate the plastic deformation of AZ31 magnesium alloy, which posses the hexagonal close packed (HCP) crystal structure. Dislocation slip and mechanical twinning are taken into account in the model. The successive integration method is used to determine the active slip systems, and the contribution of twinning to the grain reorientation is treated by the PTR method. The FE model is introduced into ABAQUS/Explicit through a user material subroutine (VUMAT). Three deformation processes of AZ31 magnesium alloy, including tension, compression and a stamping process, are simulated with the present method. The simulation results are compared with experiment and those presented in the literature.

  1. The Lysobacter capsici AZ78 Genome Has a Gene Pool Enabling it to Interact Successfully with Phytopathogenic Microorganisms and Environmental Factors

    PubMed Central

    Puopolo, Gerardo; Tomada, Selena; Sonego, Paolo; Moretto, Marco; Engelen, Kristof; Perazzolli, Michele; Pertot, Ilaria

    2016-01-01

    Lysobacter capsici AZ78 has considerable potential for biocontrol of phytopathogenic microorganisms. However, lack of information about genetic cues regarding its biological characteristics may slow down its exploitation as a biofungicide. In order to obtain a comprehensive overview of genetic features, the L. capsici AZ78 genome was sequenced, annotated and compared with the phylogenetically related pathogens Stenotrophomonas malthophilia K729a and Xanthomonas campestris pv. campestris ATCC 33913. Whole genome comparison, supported by functional analysis, indicated that L. capsici AZ78 has a larger number of genes responsible for interaction with phytopathogens and environmental stress than S. malthophilia K729a and X. c. pv. campestris ATCC 33913. Genes involved in the production of antibiotics, lytic enzymes and siderophores were specific for L. capsici AZ78, as well as genes involved in resistance to antibiotics, environmental stressors, fungicides and heavy metals. The L. capsici AZ78 genome did not encompass genes involved in infection of humans and plants included in the S. malthophilia K729a and X. c. pv. campestris ATCC 33913 genomes, respectively. The L. capsici AZ78 genome provides a genetic framework for detailed analysis of other L. capsici members and the development of novel biofungicides based on this bacterial strain. PMID:26903975

  2. Pea Broth Enhances the Biocontrol Efficacy of Lysobacter capsici AZ78 by Triggering Cell Motility Associated with Biogenesis of Type IV Pilus

    PubMed Central

    Tomada, Selena; Puopolo, Gerardo; Perazzolli, Michele; Musetti, Rita; Loi, Nazia; Pertot, Ilaria

    2016-01-01

    Bacterial cells can display different types of motility, due to the presence of external appendages such as flagella and type IV pili. To date, little information on the mechanisms involved in the motility of the Lysobacter species has been available. Recently, L. capsici AZ78, a biocontrol agent of phytopathogenic oomycetes, showed the ability to move on jellified pea broth. Pea broth medium improved also the biocontrol activity of L. capsici AZ78 against Plasmopara viticola under greenhouse conditions. Noteworthy, the quantity of pea residues remaining on grapevine leaves fostered cell motility in L. capsici AZ78. Based on these results, this unusual motility related to the composition of the growth medium was investigated in bacterial strains belonging to several Lysobacter species. The six L. capsici strains tested developed dendrite-like colonies when grown on jellified pea broth, while the development of dendrite-like colonies was not recorded in the media commonly used in motility assays. To determine the presence of genes responsible for biogenesis of the flagellum and type IV pili, the genome of L. capsici AZ78 was mined. Genes encoding structural components and regulatory factors of type IV pili were upregulated in L. capsici AZ78 cells grown on the above-mentioned medium, as compared with the other tested media. These results provide new insight into the motility mechanism of L. capsici members and the role of type IV pili and pea compounds on the epiphytic fitness and biocontrol features of L. capsici AZ78. PMID:27507963

  3. Modeling hyporheic zone processes

    USGS Publications Warehouse

    Runkel, Robert L.; McKnight, Diane M.; Rajaram, Harihar

    2003-01-01

    Stream biogeochemistry is influenced by the physical and chemical processes that occur in the surrounding watershed. These processes include the mass loading of solutes from terrestrial and atmospheric sources, the physical transport of solutes within the watershed, and the transformation of solutes due to biogeochemical reactions. Research over the last two decades has identified the hyporheic zone as an important part of the stream system in which these processes occur. The hyporheic zone may be loosely defined as the porous areas of the stream bed and stream bank in which stream water mixes with shallow groundwater. Exchange of water and solutes between the stream proper and the hyporheic zone has many biogeochemical implications, due to differences in the chemical composition of surface and groundwater. For example, surface waters are typically oxidized environments with relatively high dissolved oxygen concentrations. In contrast, reducing conditions are often present in groundwater systems leading to low dissolved oxygen concentrations. Further, microbial oxidation of organic materials in groundwater leads to supersaturated concentrations of dissolved carbon dioxide relative to the atmosphere. Differences in surface and groundwater pH and temperature are also common. The hyporheic zone is therefore a mixing zone in which there are gradients in the concentrations of dissolved gasses, the concentrations of oxidized and reduced species, pH, and temperature. These gradients lead to biogeochemical reactions that ultimately affect stream water quality. Due to the complexity of these natural systems, modeling techniques are frequently employed to quantify process dynamics.

  4. Effect of hot working on the damping capacity and mechanical properties of AZ31 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Lee, K.; Kang, C.; Kim, K.

    2015-04-01

    Magnesium alloys have received much attention for their lightweight and other excellent properties, such as low density, high specific strength, and good castability, for use in several industrial and commercial applications. However, both magnesium and its alloys show limited room-temperature formability owing to the limited number of slip systems associated with their hexagonal close-packed crystal structure. It is well known that crystallographic texture plays an important role in both plastic deformation and macroscopic anisotropy of magnesium alloys. Many authors have concentrated on improving the room- temperature formability of Mg alloys. However, despite having a lot of excellent properties in magnesium alloy, the study for various properties of magnesium alloy have not been clarified enough yet. Mg alloys are known to have a good damping capacity compared to other known metals and their alloys. Also, the damping properties of metals are generally recognized to be dependent on microstructural factors such as grain size and texture. However, there are very few studies on the relationship between the damping capacity and texture of Magnesium alloys. Therefore, in this study, specimens of the AZ31 magnesium alloy, were processed by hot working, and their texture and damping property investigated. A 60 mm × 60 mm × 40 mm rectangular plate was cut out by machining an ingot of AZ31 magnesium alloy (Mg-3Al-1Zn in mass%), and rolling was carried out at 673 K to a rolling reduction of 30%. Then, heat treatment was carried out at temperatures in the range of 573-723 K for durations in the range of 30-180 min. The samples were immediately quenched in oil after heat treatment to prevent any change in the microstructure. Texture was evaluated on the compression planes by the Schulz reflection method using nickel-filtered Cu Kα radiation. Electron backscatter diffraction measurements were conducted to observe the spatial distribution of various orientations. Specimens

  5. Iron Phosphate Glass for Vitrifying Hanford AZ102 LAW in Joule Heated and Cold Crucible Induction Melters

    SciTech Connect

    Day, Delbert E.; Brow, R. K.; Ray, C. S.; Kim, Cheol-Woon; Reis, Signo T.; Vienna, John D.; Peeler, David K.; Johnson, Fabienne; Hansen, E. K.; Sevigny, Gary J.; Soelberg, Nicolas R.; Pegg, Ian L.; Gan, Hao

    2012-01-05

    An iron phosphate composition for vitrifying a high sulfate (~17 wt%) and high alkali (~80 wt%) low activity Hanford waste, known as AZ102 LAW, has been developed for processing in a Joule Heated Melter (JHM) or a Cold Crucible Induction Melter (CCIM). This composition produced a glass waste form, designated as MS26AZ102F-2, with a waste loading of 26 wt% of the AZ102 which corresponded to a total alkali and sulfate (SO3) content of 21 and 4.2 wt%, respectively. A slurry (7M Na) of MS26AZ102F-2 simulant was melted continuously at temperatures between 1030 and 1090°C for 10 days in a small JHM at PNNL and for 7 days in a CCIM at INL. The as-cast glasses produced in both melters and in trial laboratory experiments along with their CCC-treated counterparts met the DOE LAW requirements for the Product Consistency Test (PCT) and the Vapor Hydration Test (VHT). These glass waste forms retained up to 77 % of the SO3 (3.3 wt%), 100% of the Cesium, and 33 to 44% of the rhenium, surrogate for Tc-99, all of which either exceeded or were comparable to the retention limit for these species in borosilicate glass nuclear waste form. Analyses of commercial K-3 refractory lining and the Inconel 693 metal electrodes used in JHM indicated only minimum corrosion of these components by the iron phosphate glass. This is the first time that an iron phosphate composition (slurry feed) was melted continuously in the JHM and CCIM, thereby, demonstrating that iron phosphate glasses can be used as alternative hosts for vitrifying nuclear waste.

  6. Comparison Study II: Double Star Measurements Made Using an Equatorial Mounted Refractor and an Alt-Az Mounted Reflector

    NASA Astrophysics Data System (ADS)

    Frey, Thomas G.; Coombs, Lee C.

    2012-07-01

    Eight double stars with separations between 13 and 48 arc seconds were studied. Their separations and position angles were measured using an equatorial mounted refractor and and alt-az mounted reflector. A 2x Barlow lens was used along with a Celestron Micro Guide eyepiece to magnify the separation. Comparison of the possible effect of magnitude difference on the separation and position angle measurements was investigated.

  7. THE REDSHIFT AND NATURE OF AzTEC/COSMOS 1: A STARBURST GALAXY AT z = 4.6

    SciTech Connect

    Smolcic, V.; Capak, P.; Blain, A. W.; Salvato, M.; Masters, D.; Moric, I.; Riechers, D. A.; Ilbert, O.; Aretxaga, I.; Hughes, D.; Schinnerer, E.; Sheth, K.; Aravena, M.; Aussel, H.; Aguirre, J.; Berta, S.; Carilli, C. L.; Civano, F.; Fazio, G.; Huang, J.

    2011-04-20

    Based on broadband/narrowband photometry and Keck DEIMOS spectroscopy, we report a redshift of z = 4.64{sup +0.06}{sub -0.08} for AzTEC/COSMOS 1, the brightest submillimeter galaxy (SMG) in the AzTEC/COSMOS field. In addition to the COSMOS-survey X-ray to radio data, we report observations of the source with Herschel/PACS (100, 160 {mu}m), CSO/SHARC II (350 {mu}m), and CARMA and PdBI (3 mm). We do not detect CO(5 {yields} 4) line emission in the covered redshift ranges, 4.56-4.76 (PdBI/CARMA) and 4.94-5.02 (CARMA). If the line is within this bandwidth, this sets 3{sigma} upper limits on the gas mass to {approx}<8 x 10{sup 9} M{sub sun} and {approx}<5 x 10{sup 10} M{sub sun}, respectively (assuming similar conditions as observed in z {approx} 2 SMGs). This could be explained by a low CO-excitation in the source. Our analysis of the UV-IR spectral energy distribution of AzTEC 1 shows that it is an extremely young ({approx}<50 Myr), massive (M{sub *} {approx} 10{sup 11} M{sub sun}), but compact ({approx}<2 kpc) galaxy, forming stars at a rate of {approx}1300 M{sub sun} yr{sup -1}. Our results imply that AzTEC 1 is forming stars in a 'gravitationally bound' regime in which gravity prohibits the formation of a superwind, leading to matter accumulation within the galaxy and further generations of star formation.

  8. In vitro and in vivo studies of biodegradable fine grained AZ31 magnesium alloy produced by equal channel angular pressing.

    PubMed

    Ratna Sunil, B; Sampath Kumar, T S; Chakkingal, Uday; Nandakumar, V; Doble, Mukesh; Devi Prasad, V; Raghunath, M

    2016-02-01

    The objective of the present work is to investigate the role of different grain sizes produced by equal channel angular pressing (ECAP) on the degradation behavior of magnesium alloy using in vitro and in vivo studies. Commercially available AZ31 magnesium alloy was selected and processed by ECAP at 300°C for up to four passes using route Bc. Grain refinement from a starting size of 46μm to a grain size distribution of 1-5μm was successfully achieved after the 4th pass. Wettability of ECAPed samples assessed by contact angle measurements was found to increase due to the fine grain structure. In vitro degradation and bioactivity of the samples studied by immersing in super saturated simulated body fluid (SBF 5×) showed rapid mineralization within 24h due to the increased wettability in fine grained AZ31 Mg alloy. Corrosion behavior of the samples assessed by weight loss and electrochemical tests conducted in SBF 5× clearly showed the prominent role of enhanced mineral deposition on ECAPed AZ31 Mg in controlling the abnormal degradation. Cytotoxicity studies by MTT colorimetric assay showed that all the samples are viable. Additionally, cell adhesion was excellent for ECAPed samples particularly for the 3rd and 4th pass samples. In vivo experiments conducted using New Zealand White rabbits clearly showed lower degradation rate for ECAPed sample compared with annealed AZ31 Mg alloy and all the samples showed biocompatibility and no health abnormalities were noticed in the animals after 60days of in vivo studies. These results suggest that the grain size plays an important role in degradation management of magnesium alloys and ECAP technique can be adopted to achieve fine grain structures for developing degradable magnesium alloys for biomedical applications.

  9. In vitro degradation, hemolysis, and cytocompatibility of PEO/PLLA composite coating on biodegradable AZ31 alloy.

    PubMed

    Wei, Zhongling; Tian, Peng; Liu, Xuanyong; Zhou, Bangxin

    2015-02-01

    Magnesium and its alloys have large potential as degradable and absorbable biomaterials because of their mechanical properties and biocompatibility. However, their corrosion resistance is usually inadequate especially in physiological environment, which limits their broad applications in biomedical areas. In this work, plasma electrolytic oxidized/poly(l-lactide) (PEO/PLLA) composite coating was successfully fabricated on biodegradable AZ31 alloy by combing PEO process and sealing with PLLA. The microstructure, elemental composition, and phase composition of the PEO/PLLA composite coating were investigated. The in vitro degradation of the PEO/PLLA composite coating in simulated body fluid (SBF) was also systematically evaluated. The results revealed that the PEO/PLLA composite coating improved the corrosion resistance of AZ31 alloy significantly. The corrosion potential shifted from -1.663V to more positive position -1.317 V and the corrosion current density was reduced with six-order of magnitude. The Mg(2+) ions, hydrogen release, and pH value change of solution caused by degradation were all decreased significantly. Moreover, the PEO process played a critical role in sustaining the integrity of the implant in long-term service. The result of hemolysis test showed that the PEO/PLLA composite coating vested AZ31 alloy a low hemolysis ratio (0.806 ± 0.771)%, which is much lower than the safe value of 5% according to ISO 10993-4. For the cytocompatibility test, compared with bare AZ31 alloy and PEO coating, MC3T3-E1 cells showed much better adhesion and proliferation on the PEO/PLLA composite coating with nearly 4-fold increase of cells after 7-day cultivation, indicating that the PEO/PLLA composite coating has good biocompatibility for biomedical applications.

  10. Microstructural effects on the spall properties of ECAE and SWAP magnesium alloys: AZ31B-4E and AMX602

    NASA Astrophysics Data System (ADS)

    Williams, C. L.; Farbaniec, L.; Kecskes, L.; Bradley, J.

    2017-01-01

    The effects of microstructure on the spall properties of two magnesium alloys fabricated via Equal-Channel Angular Extrusion (ECAE) and Spinning Water Atomization Process (SWAP) were investigated. The Hugoniot Elastic Limit (HEL) for both AZ31B-4E and AMX602 magnesium alloys were found to be approximately 0.181±0.003 GPa and 0.187±0.012 GPa, respectively. The spall strengths extracted from the free surface velocity profiles were found to decrease by approximately 4% for AZ31B-4E between 1.7 GPa to 4.6 GPa shock stress. Although this reduction in spall strength may lie within the experimental error, the microstructure of the post-shocked magnesium alloy show that manganese intermetallic inclusions in the AZ31B-4E magnesium were perhaps responsible for the reduction in spall strength as a function of shock stress. On the contrary, the spall strength for AMX602 was found to be random for the same shock stress range studied. This random behavior of the AMX602 was likely due to the incomplete sintering during mechanical processing. The fracture surfaces of both materials were dominated by nanovoids and the AMX602 fracture surface was found to be striated. A more in-depth study is needed to better understand the spall behavior of both materials.

  11. Influence of Tension-Compression Asymmetry on the Mechanical Behavior of AZ31B Magnesium Alloy Sheets in Bending

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Beeh, Elmar; Friedrich, Horst E.

    2016-03-01

    Magnesium alloys are promising materials for lightweight design in the automotive industry due to their high strength-to-mass ratio. This study aims to study the influence of tension-compression asymmetry on the radius of curvature and energy absorption capacity of AZ31B-O magnesium alloy sheets in bending. The mechanical properties were characterized using tension, compression, and three-point bending tests. The material exhibits significant tension-compression asymmetry in terms of strength and strain hardening rate due to extension twinning in compression. The compressive yield strength is much lower than the tensile yield strength, while the strain hardening rate is much higher in compression. Furthermore, the tension-compression asymmetry in terms of r value (Lankford value) was also observed. The r value in tension is much higher than that in compression. The bending results indicate that the AZ31B-O sheet can outperform steel and aluminum sheets in terms of specific energy absorption in bending mainly due to its low density. In addition, the AZ31B-O sheet was deformed with a larger radius of curvature than the steel and aluminum sheets, which brings a benefit to energy absorption capacity. Finally, finite element simulation for three-point bending was performed using LS-DYNA and the results confirmed that the larger radius of curvature of a magnesium specimen is mainly attributed to the high strain hardening rate in compression.

  12. The fluoride coated AZ31B magnesium alloy improves corrosion resistance and stimulates bone formation in rabbit model.

    PubMed

    Sun, Wei; Zhang, Guangdao; Tan, Lili; Yang, Ke; Ai, Hongjun

    2016-06-01

    This study aimed to evaluate the effect of fluorine coated Mg alloy and clarify its mechanism in bone formation. We implanted the fluorine coated AZ31B Mg alloy screw (group F) in rabbit mandibular and femur in vivo. Untreated AZ31B Mg alloy screw (group A) and titanium screw (group T) were used as control. Then, scanning electron microscopy, the spectral energy distribution analysis, hard and decalcified bone tissues staining were performed. Immunohistochemistry was employed to examine the protein expressions of bone morphogenetic protein 2 (BMP-2) and collagen type I in the vicinity of the implant. Compared with the group A, the degradation of the alloy was reduced, the rates of Mg corrosion and Mg ion release were slowed down, and the depositions of calcium and phosphate increased in the group F in the early stage of implantation. Histological results showed that fluorine coated Mg alloy had well osteogenic activity and biocompatibility. Moreover, fluoride coating obviously up-regulated the expressions of collagen type I and BMP-2. This study confirmed that the fluorine coating might improve the corrosion resistance of AZ31B Mg alloy and promote bone formation by up-regulated the expressions of collagen type I and BMP-2.

  13. Producing Nanocomposite Layer on the Surface of As-Cast AZ91 Magnesium Alloy by Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Asadi, P.; Besharati Givi, M. K.; Faraji, G.

    Friction stir processing (FSP) is an effective tool to produce a surface composite layer with enhanced mechanical properties and modified microstructure of as-cast and sheet metals. In the present work, the mechanical and microstructural properties of as-cast AZ91 magnesium alloy were enhanced by FSP and an AZ91/SiC surface nanocomposite layer has been produced using 30 nm SiC particles. Effect of the FSP pass number on the microstructure, grain size, microhardness, and powder distributing pattern of the surface developed has been investigated. The developed surface nanocomposite layer presents a higher hardness, an ultra fine grain size and a better homogeneity. Results show that, increasing the number of FSP passes enhances distribution of nano-sized SiC particles in the AZ91 matrix, decreases the grain size, and increases the hardness significantly. Also, changing of the tool rotating direction results much uniform distribution of the SiC particles, finer grains, and a little higher hardness.

  14. Laser surface forming of AlCoCrCuFeNi particle reinforced AZ91D matrix composites

    NASA Astrophysics Data System (ADS)

    Meng, Guanghui; Yue, T. M.; Lin, Xin; Yang, Haiou; Xie, Hui; Ding, Xu

    2015-07-01

    Traditionally, the laser melt injection (LMI) technique can only be used for forming ceramic particles reinforced metal matrix composites (MMCs) for enhancing surface properties of lightweight engineering materials. In this research, the LMI method was employed to form metal particles reinforced MMCs on AZ91D instead. This was viable because of the unique properties of the AlCoCrCuFeNi high-entropy alloy (HEA) metal particles used. The large difference in melting point between the HEA and the substrate material (AZ91D), and the limited reaction and the lack of fusion between the HEA and Mg have made it possible that a metal particles reinforced AZ91D composite material was produced. The reason of limited reaction was considered mainly due to the relatively high mixing enthalpy between the HEA constituent elements and Mg. Although there was some melting occurred at the particles surface with some solute segregation found in the vicinity close to the surface, intermetallic compounds were not observed. With regard to the wear resistance of the MMCs, it was found that when the volume fraction of the reinforcement phase, i.e. the HEA particles, reached about 0.4, the wear volume loss of the coating was only one-seventh of that of the substrate material.

  15. Influence of shot peening on corrosion properties of biocompatible magnesium alloy AZ31 coated by dicalcium phosphate dihydrate (DCPD).

    PubMed

    Mhaede, Mansour; Pastorek, Filip; Hadzima, Branislav

    2014-06-01

    Magnesium alloys are promising materials for biomedical applications because of many outstanding properties like biodegradation, bioactivity and their specific density and Young's modulus are closer to bone than the commonly used metallic implant materials. Unfortunately their fatigue properties and low corrosion resistance negatively influenced their application possibilities in the field of biomedicine. These problems could be diminished through appropriate surface treatments. This study evaluates the influence of a surface pre-treatment by shot peening and shot peening+coating on the corrosion properties of magnesium alloy AZ31. The dicalcium phosphate dihydrate coating (DCPD) was electrochemically deposited in a solution containing 0.1M Ca(NO3)2, 0.06M NH4H2PO4 and 10mL/L of H2O2. The effect of shot peening on the surface properties of magnesium alloy was evaluated by microhardness and surface roughness measurements. The influence of the shot peening and dicalcium phosphate dihydrate layer on the electrochemical characteristics of AZ31 magnesium alloy was evaluated by potentiodynamic measurements and electrochemical impedance spectroscopy in 0.9% NaCl solution at a temperature of 22±1°C. The obtained results were analyzed by the Tafel-extrapolation method and equivalent circuit method. The results showed that the application of shot peening process followed by DCPD coating improves the properties of the AZ31 surface from corrosion and mechanical point of view.

  16. Synthesis and properties of hydroxyapatite-containing coating on AZ31 magnesium alloy by micro-arc oxidation

    NASA Astrophysics Data System (ADS)

    Tang, Hui; Han, Yu; Wu, Tao; Tao, Wei; Jian, Xian; Wu, Yunfeng; Xu, Fangjun

    2017-04-01

    In this study, hydroxyapatite-containing coatings were prepared by microarc oxidation on AZ31 magnesium alloy surface to improve its biodegradation performance. Five applied voltages were chosen to prepare the MAO coatings. The results demonstrate that the number of micropores in the films increases but their dimensions decrease after higher voltage is applied. As the surface roughness of the MAO coatings increases with the applied voltage, the wettability of the coatings improves continuously. The MAO coatings were mainly composed of magnesium oxide (MgO) and hydroxyapatite. The amount of hydroxyapatite phase increased with increasing voltage that was applied. The bonding strength became slightly weaker after a higher voltage was applied. But the bonding strengths of all the coatings were consistently higher than 37 MPa, which met the requirement of implant biomaterials. All coatings exhibited higher corrosion resistances and lower hydrogen evolution rate than the bare AZ31 Mg substrate, implying that the degradation rate of the AZ31 Mg alloy was enhanced by the hydroxyapatite-containing coatings. The results indicate that the present treatment of applying hydroxyapatite-containing coatings is a promising technique for the degradable Mg-based biomaterials for orthopedic applications.

  17. Electrophoretic painting on AZ31 Mg alloy pretreated in cerium conversion coating solutions prepared in ethanol-water mixtures

    NASA Astrophysics Data System (ADS)

    Van Phuong, Nguyen; Fazal, Basit Raza; Moon, Sungmo

    2017-01-01

    Electrophoretic painting (E-paint) was prepared on AZ31 Mg alloy samples pretreated in cerium conversion coating (CeCC) solutions with various ratios of ethanol and water mixture and its characteristics, adhesion and corrosion resistance were investigated. It was found that CeCC formed on AZ31 Mg alloy in a CeCC solution without ethanol was partly cracked structure and mainly consisted of Mg(OH)2/MgO, which exhibited weak adhesion with E-painting layer after water immersion test, and low corrosion resistance, as indicated by rapid formation of blisters and paint delamination during salt spray test. The addition of ethanol promoted the growth of a fine nano-crystalline CeO2 layer over the entire substrate surface. The E-paint on AZ31 pretreated in the CeCC solutions with addition of ethanol showed also improved corrosion resistance, as represented by the delayed time for paint delamination and blister formation. The E-paint layers on the CeCC layers formed in solutions containing 50-80 vol% ethanol showed stronger adhesion and better corrosion resistance than those formed on the samples treated in a non-ethanol containing CeCC solution.

  18. Microstructure formation mechanism and properties of AZ61 alloy processed by melt treatment with vibrating cooling slope and semisolid rolling

    NASA Astrophysics Data System (ADS)

    Zhao, Zhan Yong; Guan, Ren Guo; Wang, Xiang; Li, Yang; Dong, Lei; Lee, Chong Soo; Liu, Chun Ming

    2013-09-01

    A melt treatment with a vibrating cooling slope and a semisolid rolling process to produce an AZ61 alloy strip was proposed. The microstructure formation mechanism and the properties of the AZ61 alloy produced by the proposed process were investigated. Due to the high cooling rate and stirring action caused by the vibration cooling slope, the nucleation rate was greatly improved, which caused the formation of fine spherical or rosette primary grains. During the rolling process, the solid fraction increased from the entrance to the exit of the roll gap, and under the shearing action of the roller, the distribution of solute in the melt was homogenous, and the primary grains grew further. When the casting temperature was 680 °C, a strip with a cross section of 4 mm×160 mm was produced and a homogeneous microstructure was obtained. The ultimate tensile strength of the AZ61 alloy strip produced by the proposed method reached 242 MPa, and the corresponding elongation to failure was 4%, which were better than those achieved in previous similar studies.

  19. H2A.Z and H3.3 histone variants affect nucleosome structure: biochemical and biophysical studies.

    PubMed

    Thakar, Amit; Gupta, Pooja; Ishibashi, Toyotaka; Finn, Ron; Silva-Moreno, Begonia; Uchiyama, Susumu; Fukui, Kiichi; Tomschik, Miroslav; Ausio, Juan; Zlatanova, Jordanka

    2009-11-24

    Histone variants play important roles in regulation of chromatin structure and function. To understand the structural role played by histone variants H2A.Z and H3.3, both of which are implicated in transcription regulation, we conducted extensive biochemical and biophysical analysis on mononucleosomes reconstituted from either random-sequence DNA derived from native nucleosomes or a defined DNA nucleosome positioning sequence and recombinant human histones. Using established electrophoretic and sedimentation analysis methods, we compared the properties of nucleosomes containing canonical histones and histone variants H2A.Z and H3.3 (in isolation or in combination). We find only subtle differences in the compaction and stability of the particles. Interestingly, both H2A.Z and H3.3 affect nucleosome positioning, either creating new positions or altering the relative occupancy of the existing nucleosome position space. On the other hand, only H2A.Z-containing nucleosomes exhibit altered linker histone binding. These properties could be physiologically significant as nucleosome positions and linker histone binding partly determine factor binding accessibility.

  20. Early Science with the Large Millimeter Telescope: CO and [C II] Emission in the z = 4.3 AzTEC J095942.9+022938 (COSMOS AzTEC-1)

    NASA Astrophysics Data System (ADS)

    Yun, Min S.; Aretxaga, I.; Gurwell, M. A.; Hughes, D. H.; Montaña, A.; Narayanan, G.; Rosa-González, D.; Sánchez-Argüelles, D.; Schloerb, F. P.; Snell, R. L.; Vega, O.; Wilson, G. W.; Zeballos, M.; Chavez, M.; Cybulski, R.; Díaz-Santos, T.; De La Luz, V.; Erickson, N.; Ferrusca, D.; Gim, H. B.; Heyer, M. H.; Iono, D.; Pope, A.; Rogstad, S. M.; Scott, K. S.; Souccar, K.; Terlevich, E.; Terlevich, R.; Wilner, D.; Zavala, J. A.

    2015-12-01

    Measuring redshifted CO line emission is an unambiguous method for obtaining an accurate redshift and total cold gas content of optically faint, dusty starburst systems. Here, we report the first successful spectroscopic redshift determination of AzTEC J095942.9+022938 (`COSMOS AzTEC-1'), the brightest 1.1 mm continuum source found in the AzTEC/James Clerk Maxwell Telescope survey (Scott et al.), through a clear detection of the redshifted CO (4-3) and CO (5-4) lines using the Redshift Search Receiver on the Large Millimeter Telescope. The CO redshift of z = 4.3420 ± 0.0004 is confirmed by the detection of the redshifted 158 μm [C II] line using the Submillimeter Array. The new redshift and Herschel photometry yield LFIR = (1.1 ± 0.1) × 1013 L⊙ and SFR ≈ 1300 M⊙ yr-1. Its molecular gas mass derived using the ultraluminous infrared galaxy conversion factor is 1.4 ± 0.2 × 1011M⊙ while the total interstellar medium mass derived from the 1.1 mm dust continuum is 3.7 ± 0.7 × 1011M⊙ assuming Td = 35 K. Our dynamical mass analysis suggests that the compact gas disc (r ≈ 1.1 kpc, inferred from dust continuum and spectral energy distribution analysis) has to be nearly face-on, providing a natural explanation for the uncommonly bright, compact stellar light seen by the HST. The [C II] line luminosity L_[C II]= 7.8± 1.1 × 10^9 L_{⊙} is remarkably high, but it is only 0.04 per cent of the total IR luminosity. AzTEC COSMOS-1 and other high redshift sources with a spatially resolved size extend the tight trend seen between [C II]/FIR ratio and ΣFIR among IR-bright galaxies reported by Díaz-Santos et al. by more than an order of magnitude, supporting the explanation that the higher intensity of the IR radiation field is responsible for the `[C II] deficiency' seen among luminous starburst galaxies.