Science.gov

Sample records for abscission zone cortex

  1. A new aspect of flower abscission: involvement of a specific alkalization of the cytosol in the abscission zone cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The correlation between organ abscission and pH changes in the abscission zone (AZ) cells, visualized by the pH-sensitive and intracellularly trapped dye, 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein-acetoxymethyl (BCECF-AM) ester derivative, combined with confocal microscopy was studied. ...

  2. Microarray analysis of the abscission-related transcriptome in tomato flower abscission zone in response to auxin depletion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abscission, the separation of organs from the parent plant, results in postharvest quality loss in many fresh produce. The process is initiated by changes in the auxin gradient across the abscission zone (AZ), is triggered by ethylene and may be accelerated by postharvest stresses. Although changes ...

  3. Abscission of flowers and floral organs is closely associated with alkalization of the cytosol in abscission zone cells

    PubMed Central

    Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Riov, Joseph; Belausov, Eduard; Kochanek, Betina; Tucker, Mark L.; Meir, Shimon

    2015-01-01

    In vivo changes in the cytosolic pH of abscission zone (AZ) cells were visualized using confocal microscopic detection of the fluorescent pH-sensitive and intracellularly trapped dye, 2’,7’-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF), driven by its acetoxymethyl ester. A specific and gradual increase in the cytosolic pH of AZ cells was observed during natural abscission of flower organs in Arabidopsis thaliana and wild rocket (Diplotaxis tenuifolia), and during flower pedicel abscission induced by flower removal in tomato (Solanum lycopersicum Mill). The alkalization pattern in the first two species paralleled the acceleration or inhibition of flower organ abscission induced by ethylene or its inhibitor 1-methylcyclopropene (1-MCP), respectively. Similarly, 1-MCP pre-treatment of tomato inflorescence explants abolished the pH increase in AZ cells and pedicel abscission induced by flower removal. Examination of the pH changes in the AZ cells of Arabidopsis mutants defective in both ethylene-induced (ctr1, ein2, eto4) and ethylene-independent (ida, nev7, dab5) abscission pathways confirmed these results. The data indicate that the pH changes in the AZ cells are part of both the ethylene-sensitive and -insensitive abscission pathways, and occur concomitantly with the execution of organ abscission. pH can affect enzymatic activities and/or act as a signal for gene expression. Changes in pH during abscission could occur via regulation of transporters in AZ cells, which might affect cytosolic pH. Indeed, four genes associated with pH regulation, vacuolar H+-ATPase, putative high-affinity nitrate transporter, and two GTP-binding proteins, were specifically up-regulated in tomato flower AZ following abscission induction, and 1-MCP reduced or abolished the increased expression. PMID:25504336

  4. Abscission of flowers and floral organs is closely associated with alkalization of the cytosol in abscission zone cells.

    PubMed

    Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Riov, Joseph; Belausov, Eduard; Kochanek, Betina; Tucker, Mark L; Meir, Shimon

    2015-03-01

    In vivo changes in the cytosolic pH of abscission zone (AZ) cells were visualized using confocal microscopic detection of the fluorescent pH-sensitive and intracellularly trapped dye, 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF), driven by its acetoxymethyl ester. A specific and gradual increase in the cytosolic pH of AZ cells was observed during natural abscission of flower organs in Arabidopsis thaliana and wild rocket (Diplotaxis tenuifolia), and during flower pedicel abscission induced by flower removal in tomato (Solanum lycopersicum Mill). The alkalization pattern in the first two species paralleled the acceleration or inhibition of flower organ abscission induced by ethylene or its inhibitor 1-methylcyclopropene (1-MCP), respectively. Similarly, 1-MCP pre-treatment of tomato inflorescence explants abolished the pH increase in AZ cells and pedicel abscission induced by flower removal. Examination of the pH changes in the AZ cells of Arabidopsis mutants defective in both ethylene-induced (ctr1, ein2, eto4) and ethylene-independent (ida, nev7, dab5) abscission pathways confirmed these results. The data indicate that the pH changes in the AZ cells are part of both the ethylene-sensitive and -insensitive abscission pathways, and occur concomitantly with the execution of organ abscission. pH can affect enzymatic activities and/or act as a signal for gene expression. Changes in pH during abscission could occur via regulation of transporters in AZ cells, which might affect cytosolic pH. Indeed, four genes associated with pH regulation, vacuolar H(+)-ATPase, putative high-affinity nitrate transporter, and two GTP-binding proteins, were specifically up-regulated in tomato flower AZ following abscission induction, and 1-MCP reduced or abolished the increased expression. PMID:25504336

  5. Transcriptome Analysis of Tomato Flower Pedicel Tissues Reveals Abscission Zone-Specific Modulation of Key Meristem Activity Genes

    PubMed Central

    Sun, Xiuli; Zhang, Rongzhi; Wu, Liang; Liang, Yanchun; Mao, Long

    2013-01-01

    Tomato flower abscises at the anatomically distinct abscission zone that separates the pedicel into basal and apical portions. During abscission, cell separation occurs only at the abscission zone indicating distinctive molecular regulation in its cells. We conducted a transcriptome analysis of tomato pedicel tissues during ethylene promoted abscission. We found that the abscission zone was the most active site with the largest set of differentially expressed genes when compared with basal and apical portions. Gene Ontology analyses revealed enriched transcription regulation and hydrolase activities in the abscission zone. We also demonstrate coordinated responses of hormone and cell wall related genes. Besides, a number of ESTs representing homologs of key Arabidopsis shoot apical meristem activity genes were found to be preferentially expressed in the abscission zone, including WUSCHEL (WUS), KNAT6, LATERAL ORGAN BOUNDARIES DOMAIN PROTEIN 1(LBD1), and BELL-like homeodomain protein 1 (BLH1), as well as tomato axillary meristem genes BLIND (Bl) and LATERAL SUPPRESSOR (Ls). More interestingly, the homologs of WUS and the potential functional partner OVATE FAMILIY PROTEIN (OFP) were subsequently down regulated during abscission while Bl and AGL12 were continuously and specifically induced in the abscission zone. The expression patterns of meristem activity genes corroborate the idea that cells of the abscission zone confer meristem-like nature and coincide with the course of abscission and post-abscission cell differentiation. Our data therefore propose a possible regulatory scheme in tomato involving meristem genes that may be required not only for the abscission zone development, but also for abscission. PMID:23390523

  6. Transcriptome analysis of tomato flower pedicel tissues reveals abscission zone-specific modulation of key meristem activity genes.

    PubMed

    Wang, Xiang; Liu, Danmei; Li, Aili; Sun, Xiuli; Zhang, Rongzhi; Wu, Liang; Liang, Yanchun; Mao, Long

    2013-01-01

    Tomato flower abscises at the anatomically distinct abscission zone that separates the pedicel into basal and apical portions. During abscission, cell separation occurs only at the abscission zone indicating distinctive molecular regulation in its cells. We conducted a transcriptome analysis of tomato pedicel tissues during ethylene promoted abscission. We found that the abscission zone was the most active site with the largest set of differentially expressed genes when compared with basal and apical portions. Gene Ontology analyses revealed enriched transcription regulation and hydrolase activities in the abscission zone. We also demonstrate coordinated responses of hormone and cell wall related genes. Besides, a number of ESTs representing homologs of key Arabidopsis shoot apical meristem activity genes were found to be preferentially expressed in the abscission zone, including WUSCHEL (WUS), KNAT6, LATERAL ORGAN BOUNDARIES DOMAIN PROTEIN 1(LBD1), and BELL-like homeodomain protein 1 (BLH1), as well as tomato axillary meristem genes BLIND (Bl) and LATERAL SUPPRESSOR (Ls). More interestingly, the homologs of WUS and the potential functional partner OVATE FAMILIY PROTEIN (OFP) were subsequently down regulated during abscission while Bl and AGL12 were continuously and specifically induced in the abscission zone. The expression patterns of meristem activity genes corroborate the idea that cells of the abscission zone confer meristem-like nature and coincide with the course of abscission and post-abscission cell differentiation. Our data therefore propose a possible regulatory scheme in tomato involving meristem genes that may be required not only for the abscission zone development, but also for abscission. PMID:23390523

  7. The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis.

    PubMed

    McKim, Sarah M; Stenvik, Grethe-Elisabeth; Butenko, Melinka A; Kristiansen, Wenche; Cho, Sung Ki; Hepworth, Shelley R; Aalen, Reidunn B; Haughn, George W

    2008-04-01

    The Arabidopsis BLADE-ON-PETIOLE 1 (BOP1) and BOP2 genes encode redundant transcription factors that promote morphological asymmetry during leaf and floral development. Loss-of-function bop1 bop2 mutants display a range of developmental defects, including a loss of floral organ abscission. Abscission occurs along specialised cell files, called abscission zones (AZs) that develop at the junction between the leaving organ and main plant body. We have characterized the bop1 bop2 abscission phenotype to determine how BOP1 and BOP2 contribute to the known abscission developmental framework. Histological analysis and petal breakstrength measurements of bop1 bop2 flowers show no differentiation of floral AZs. Furthermore, vestigial cauline leaf AZs are also undifferentiated in bop1 bop2 mutants, suggesting that BOP proteins are essential to establish AZ cells in different tissues. In support of this hypothesis, BOP1/BOP2 activity is required for both premature floral organ abscission and the ectopic abscission of cauline leaves promoted by the INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) gene under the control of the constitutive CaMV 35S promoter. Expression of several abscission-related marker genes, including IDA, is relatively unperturbed in bop1 bop2 mutants, indicating that these AZ genes respond to positional cues that are independent of BOP1/BOP2 activity. We also show that BOP1 and BOP2 promote growth of nectary glands, which normally develop at the receptacle adjacent to developing AZs. Taken together, these data suggest that BOP1/BOP2 activity is required for multiple cell differentiation events in the proximal regions of inflorescence lateral organs. PMID:18339677

  8. Identification and Kinetics of Accumulation of Proteins Induced by Ethylene in Bean Abscission Zones 1

    PubMed Central

    del Campillo, Elena; Lewis, Lowell N.

    1992-01-01

    A two-dimensional gel electrophoresis system that combines a cationic polyacrylamide gel electrophoresis at pH near neutrality with sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to analyze the spectrum of basic polypeptides that accumulate in bean (Phaseolus vulgaris) abscission zones after treatment with ethylene. Results showed that, as abscission progressed, at least seven basic proteins accumulated in the abscission zone prior to the accumulation of 9.5 cellulase. Six of the seven proteins correspond to pathogenesis-related (PR) proteins. Among them, two isoforms of β-1,3-glucanase and multiple isoforms of chitinase were identified. A 22 kilodalton polypeptide that accumulated to high levels was identified as a thaumatin-like protein by analysis of its N-terminal sequence (up to 20 amino acids) and its serological relationship with heterologous thaumatin antibodies. A 15 kilodalton polypeptide serologically related to PR P1 (p14) from tomato was identified as bean PR P1 (p14)-like protein. The kinetics of accumulation of glucanases, chitinases, thaumatin-like and PR P1 (p14)-like proteins during ethylene treatment were similar and they showed that PR proteins accumulated in abscission zones prior to the increase in 9.5 cellulase. Addition of indoleacetic acid, a potent inhibitor of abscission, reduced the accumulation of these proteins to a similar extent (60%). The synchronized accumulation of this set of PR proteins, early in the abscission process, may play a role in induced resistance to possible fungal attack after a plant part is shed. The seventh protein does not correspond to any previously characterized PR protein. This new 45 kilodalton polypeptide accumulated in abscission zones on exposure to ethylene concomitantly with the increase in 9.5 cellulase. Its N-terminal sequence (up to 15 amino acids) showed some homology with the amino terminal sequence of chitinase. Polyclonal antibodies against chitinase recognized the 45

  9. Separation of abscission zone cells in detached Azolla roots depends on apoplastic pH.

    PubMed

    Fukuda, Kazuma; Yamada, Yoshiya; Miyamoto, Kensuke; Ueda, Junichi; Uheda, Eiji

    2013-01-01

    In studies on the mechanism of cell separation during abscission, little attention has been paid to the apoplastic environment. We found that the apoplastic pH surrounding abscission zone cells in detached roots of the water fern Azolla plays a major role in cell separation. Abscission zone cells of detached Azolla roots were separated rapidly in a buffer at neutral pH and slowly in a buffer at pH below 4.0. However, cell separation rarely occurred at pH 5.0-5.5. Light and electron microscopy revealed that cell separation was caused by a degradation of the middle lamella between abscission zone cells at both pH values, neutral and below 4.0. Low temperature and papain treatment inhibited cell separation. Enzyme(s) in the cell wall of the abscission zone cells might be involved in the degradation of the pectin of the middle lamella and the resultant, pH-dependent cell separation. By contrast, in Phaseolus leaf petioles, unlike Azolla roots, cell separation was slow and increased only at acidic pH. The rapid cell separation, as observed in Azolla roots at neutral pH, did not occur. Indirect immunofluorescence microscopy, using anti-pectin monoclonal antibodies, revealed that the cell wall pectins of the abscission zone cells of Azolla roots and Phaseolus leaf petioles looked similar and changed similarly during cell separation. Thus, the pH-related differences in cell separation mechanisms of Azolla and Phaseolus might not be due to differences in cell wall pectin, but to differences in cell wall-located enzymatic activities responsible for the degradation of pectic substances. A possible enzyme system is discussed. PMID:22940290

  10. Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis ZINC FINGER PROTEIN2.

    PubMed

    Cai, Suqin; Lashbrook, Coralie C

    2008-03-01

    Organ detachment requires cell separation within abscission zones (AZs). Physiological studies have established that ethylene and auxin contribute to cell separation control. Genetic analyses of abscission mutants have defined ethylene-independent detachment regulators. Functional genomic strategies leading to global understandings of abscission have awaited methods for isolating AZ cells of low abundance and very small size. Here, we couple laser capture microdissection of Arabidopsis thaliana stamen AZs and GeneChip profiling to reveal the AZ transcriptome responding to a developmental shedding cue. Analyses focus on 551 AZ genes (AZ(551)) regulated at the highest statistical significance (P < or = 0.0001) over five floral stages linking prepollination to stamen shed. AZ(551) includes mediators of ethylene and auxin signaling as well as receptor-like kinases and extracellular ligands thought to act independent of ethylene. We hypothesized that novel abscission regulators might reside in disproportionately represented Gene Ontology Consortium functional categories for cell wall modifying proteins, extracellular regulators, and nuclear-residing transcription factors. Promoter-beta-glucuronidase expression of one transcription factor candidate, ZINC FINGER PROTEIN2 (AtZFP2), was elevated in stamen, petal, and sepal AZs. Flower parts of transgenic lines overexpressing AtZFP2 exhibited asynchronous and delayed abscission. Abscission defects were accompanied by altered floral morphology limiting pollination and fertility. Hand-pollination restored transgenic fruit development but not the rapid abscission seen in wild-type plants, demonstrating that pollination does not assure normal rates of detachment. In wild-type stamen AZs, AtZFP2 is significantly up-regulated postanthesis. Phenotype data from transgene overexpression studies suggest that AtZFP2 participates in processes that directly or indirectly influence organ shed. PMID:18192438

  11. De novo Transcriptome Sequencing and Development of Abscission Zone-Specific Microarray as a New Molecular Tool for Analysis of Tomato Organ Abscission

    PubMed Central

    Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Riov, Joseph; Mugasimangalam, Raja; Kuravadi, Nagesh A.; Kochanek, Bettina; Salim, Shoshana; Tucker, Mark L.; Meir, Shimon

    2016-01-01

    Abscission of flower pedicels and leaf petioles of tomato (Solanum lycopersicum) can be induced by flower removal or leaf deblading, respectively, which leads to auxin depletion, resulting in increased sensitivity of the abscission zone (AZ) to ethylene. However, the molecular mechanisms that drive the acquisition of abscission competence and its modulation by auxin gradients are not yet known. We used RNA-Sequencing (RNA-Seq) to obtain a comprehensive transcriptome of tomato flower AZ (FAZ) and leaf AZ (LAZ) during abscission. RNA-Seq was performed on a pool of total RNA extracted from tomato FAZ and LAZ, at different abscission stages, followed by de novo assembly. The assembled clusters contained transcripts that are already known in the Solanaceae (SOL) genomics and NCBI databases, and over 8823 identified novel tomato transcripts of varying sizes. An AZ-specific microarray, encompassing the novel transcripts identified in this study and all known transcripts from the SOL genomics and NCBI databases, was constructed to study the abscission process. Multiple probes for longer genes and key AZ-specific genes, including antisense probes for all transcripts, make this array a unique tool for studying abscission with a comprehensive set of transcripts, and for mining for naturally occurring antisense transcripts. We focused on comparing the global transcriptomes generated from the FAZ and the LAZ to establish the divergences and similarities in their transcriptional networks, and particularly to characterize the processes and transcriptional regulators enriched in gene clusters that are differentially regulated in these two AZs. This study is the first attempt to analyze the global gene expression in different AZs in tomato by combining the RNA-Seq technique with oligonucleotide microarrays. Our AZ-specific microarray chip provides a cost-effective approach for expression profiling and robust analysis of multiple samples in a rapid succession. PMID:26834766

  12. De novo Transcriptome Sequencing and Development of Abscission Zone-Specific Microarray as a New Molecular Tool for Analysis of Tomato Organ Abscission.

    PubMed

    Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Riov, Joseph; Mugasimangalam, Raja; Kuravadi, Nagesh A; Kochanek, Bettina; Salim, Shoshana; Tucker, Mark L; Meir, Shimon

    2015-01-01

    Abscission of flower pedicels and leaf petioles of tomato (Solanum lycopersicum) can be induced by flower removal or leaf deblading, respectively, which leads to auxin depletion, resulting in increased sensitivity of the abscission zone (AZ) to ethylene. However, the molecular mechanisms that drive the acquisition of abscission competence and its modulation by auxin gradients are not yet known. We used RNA-Sequencing (RNA-Seq) to obtain a comprehensive transcriptome of tomato flower AZ (FAZ) and leaf AZ (LAZ) during abscission. RNA-Seq was performed on a pool of total RNA extracted from tomato FAZ and LAZ, at different abscission stages, followed by de novo assembly. The assembled clusters contained transcripts that are already known in the Solanaceae (SOL) genomics and NCBI databases, and over 8823 identified novel tomato transcripts of varying sizes. An AZ-specific microarray, encompassing the novel transcripts identified in this study and all known transcripts from the SOL genomics and NCBI databases, was constructed to study the abscission process. Multiple probes for longer genes and key AZ-specific genes, including antisense probes for all transcripts, make this array a unique tool for studying abscission with a comprehensive set of transcripts, and for mining for naturally occurring antisense transcripts. We focused on comparing the global transcriptomes generated from the FAZ and the LAZ to establish the divergences and similarities in their transcriptional networks, and particularly to characterize the processes and transcriptional regulators enriched in gene clusters that are differentially regulated in these two AZs. This study is the first attempt to analyze the global gene expression in different AZs in tomato by combining the RNA-Seq technique with oligonucleotide microarrays. Our AZ-specific microarray chip provides a cost-effective approach for expression profiling and robust analysis of multiple samples in a rapid succession. PMID:26834766

  13. Profiling gene expression in citrus fruit calyx abscission zone (AZ-C) treated with ethylene.

    PubMed

    Cheng, Chunzhen; Zhang, Lingyun; Yang, Xuelian; Zhong, Guangyan

    2015-10-01

    On-tree storage and harvesting of mature fruit account for a large proportion of cost in the production of citrus, and a reduction of the cost would not be achieved without a thorough understanding of the mechani sm of the mature fruit abscission. Genome-wide gene expression changes in ethylene-treated fruit calyx abscission zone (AZ-C) of Citrus sinensis cv. Olinda were therefore investigated using a citrus genome array representing up to 33,879 citrus transcripts. In total, 1313 and 1044 differentially regulated genes were identified in AZ-C treated with ethylene for 4 and 24 h, respectively. The results showed that mature citrus fruit abscission commenced with the activation of ethylene signal transduction pathway that led to the activation of ethylene responsive transcription factors and the subsequent transcriptional regulation of a large set of ethylene responsive genes. Significantly down-regulated genes included those of starch/sugar biosynthesis, transportation of water and growth promoting hormone synthesis and signaling, whereas significantly up-regulated genes were those involved in defense, cell wall degradation, and secondary metabolism. Our data unraveled the underlying mechanisms of some known important biochemical events occurring at AZ-C and should provide informative suggestions for future manipulation of the events to achieve a controllable abscission for mature citrus fruit. PMID:25948248

  14. Microarray Analysis of the Abscission-Related Transcriptome in the Tomato Flower Abscission Zone in Response to Auxin Depletion1[C][W][OA

    PubMed Central

    Meir, Shimon; Philosoph-Hadas, Sonia; Sundaresan, Srivignesh; Selvaraj, K.S. Vijay; Burd, Shaul; Ophir, Ron; Kochanek, Bettina; Reid, Michael S.; Jiang, Cai-Zhong; Lers, Amnon

    2010-01-01

    The abscission process is initiated by changes in the auxin gradient across the abscission zone (AZ) and is triggered by ethylene. Although changes in gene expression have been correlated with the ethylene-mediated execution of abscission, there is almost no information on the molecular and biochemical basis of the increased AZ sensitivity to ethylene. We examined transcriptome changes in the tomato (Solanum lycopersicum ‘Shiran 1335’) flower AZ during the rapid acquisition of ethylene sensitivity following flower removal, which depletes the AZ from auxin, with or without preexposure to 1-methylcyclopropene or application of indole-3-acetic acid after flower removal. Microarray analysis using the Affymetrix Tomato GeneChip revealed changes in expression, occurring prior to and during pedicel abscission, of many genes with possible regulatory functions. They included a range of auxin- and ethylene-related transcription factors, other transcription factors and regulatory genes that are transiently induced early, 2 h after flower removal, and a set of novel AZ-specific genes. All gene expressions initiated by flower removal and leading to pedicel abscission were inhibited by indole-3-acetic acid application, while 1-methylcyclopropene pretreatment inhibited only the ethylene-induced expressions, including those induced by wound-associated ethylene signals. These results confirm our hypothesis that acquisition of ethylene sensitivity in the AZ is associated with altered expression of auxin-regulated genes resulting from auxin depletion. Our results shed light on the regulatory control of abscission at the molecular level and further expand our knowledge of auxin-ethylene cross talk during the initial controlling stages of the process. PMID:20947671

  15. Comparative transcriptional survey between laser-microdissected cells from laminar abscission zone and petiolar cortical tissue during ethylene-promoted abscission in citrus leaves

    PubMed Central

    Agustí, Javier; Merelo, Paz; Cercós, Manuel; Tadeo, Francisco R; Talón, Manuel

    2009-01-01

    Background Abscission is the cell separation process by which plants are able to shed organs. It has a great impact on the yield of most crop plants. At the same time, the process itself also constitutes an excellent model to study cell separation processes, since it occurs in concrete areas known as abscission zones (AZs) which are composed of a specific cell type. However, molecular approaches are generally hampered by the limited area and cell number constituting the AZ. Therefore, detailed studies at the resolution of cell type are of great relevance in order to accurately describe the process and to identify potential candidate genes for biotechnological applications. Results Efficient protocols for the isolation of specific citrus cell types, namely laminar abscission zone (LAZ) and petiolar cortical (Pet) cells based on laser capture microdissection (LCM) and for RNA microextraction and amplification have been developed. A comparative transcriptome analysis between LAZ and Pet from citrus leaf explants subjected to an in-vitro 24 h ethylene treatment was performed utilising microarray hybridization and analysis. Our analyses of gene functional classes differentially represented in ethylene-treated LAZ revealed an activation program dominated by the expression of genes associated with protein synthesis, protein fate, cell type differentiation, development and transcription. The extensive repertoire of genes associated with cell wall biosynthesis and metabolism strongly suggests that LAZ layers activate both catabolic and anabolic wall modification pathways during the abscission program. In addition, over-representation of particular members of different transcription factor families suggests important roles for these genes in the differentiation of the effective cell separation layer within the many layers contained in the citrus LAZ. Preferential expression of stress-related and defensive genes in Pet reveals that this tissue is likely to be reprogrammed to

  16. Early gene expression events in the laminar abscission zone of abscission-promoted citrus leaves after a cycle of water stress/rehydration: involvement of CitbHLH1

    PubMed Central

    Tadeo, Francisco R.

    2012-01-01

    Leaf abscission is a common response of plants to drought stress. Some species, such as citrus, have evolved a specific behaviour in this respect, keeping their leaves attached to the plant body during water stress until this is released by irrigation or rain. This study successfully reproduced this phenomenon under controlled conditions (24h of water stress followed by 24h of rehydration) and used it to construct a suppression subtractive hybridization cDNA library enriched in genes involved in the early stages of rehydration-promoted leaf abscission after water stress. Sequencing of the library yielded 314 unigenes, which were spotted onto nylon membranes. Membrane hybridization with petiole (Pet)- and laminar abscission zone (LAZ)-enriched RNA samples corresponding to early steps in leaf abscission revealed an almost exclusive preferential gene expression programme in the LAZ. The data identified major processes such as protein metabolism, cell-wall modification, signalling, control of transcription and vesicle production, and transport as the main biological processes activated in LAZs during the early steps of rehydration-promoted leaf abscission after water stress. Based on these findings, a model for the early steps of citrus leaf abscission is proposed. In addition, it is suggested that CitbHLH1, the putative citrus orthologue of Arabidopsis BIGPETAL, may play major roles in the control of abscission-related events in citrus abscission zones. PMID:23028022

  17. Genome-wide identification of cassava R2R3 MYB family genes related to abscission zone separation after environmental-stress-induced abscission

    PubMed Central

    Liao, Wenbin; Yang, Yiling; Li, Yayun; Wang, Gan; Peng, Ming

    2016-01-01

    Cassava plants (Manihot esculenta Crantz) resist environmental stresses by shedding leaves in leaf pulvinus abscission zones (AZs), thus leading to adaptation to new environmental conditions. Little is known about the roles of cassava R2R3 MYB factors in regulating AZ separation. Herein, 166 cassava R2R3 MYB genes were identified. Evolutionary analysis indicated that the 166 R2R3 MYB genes could be divided into 11 subfamilies. Transcriptome analysis indicated that 26 R2R3 MYB genes were expressed in AZs across six time points during both ethylene- and water-deficit stress-induced leaf abscission. Comparative expression profile analysis of similar SOTA (Self Organizing Tree Algorithm) clusters demonstrated that 10 R2R3 MYB genes had similar expression patterns at six time points in response to both treatments. GO (Gene Ontology) annotation confirmed that all 10 R2R3 MYB genes participated in the responses to stress and ethylene and auxin stimuli. Analysis of the putative 10 R2R3 MYB promoter regions showed that those genes primarily contained ethylene- and stress-related cis-elements. The expression profiles of the genes acting downstream of the selected MYBs were confirmed to be involved in cassava abscission zone separation. All these results indicated that R2R3 MYB plays an important regulatory role in AZ separation. PMID:27573926

  18. Genome-wide identification of cassava R2R3 MYB family genes related to abscission zone separation after environmental-stress-induced abscission.

    PubMed

    Liao, Wenbin; Yang, Yiling; Li, Yayun; Wang, Gan; Peng, Ming

    2016-01-01

    Cassava plants (Manihot esculenta Crantz) resist environmental stresses by shedding leaves in leaf pulvinus abscission zones (AZs), thus leading to adaptation to new environmental conditions. Little is known about the roles of cassava R2R3 MYB factors in regulating AZ separation. Herein, 166 cassava R2R3 MYB genes were identified. Evolutionary analysis indicated that the 166 R2R3 MYB genes could be divided into 11 subfamilies. Transcriptome analysis indicated that 26 R2R3 MYB genes were expressed in AZs across six time points during both ethylene- and water-deficit stress-induced leaf abscission. Comparative expression profile analysis of similar SOTA (Self Organizing Tree Algorithm) clusters demonstrated that 10 R2R3 MYB genes had similar expression patterns at six time points in response to both treatments. GO (Gene Ontology) annotation confirmed that all 10 R2R3 MYB genes participated in the responses to stress and ethylene and auxin stimuli. Analysis of the putative 10 R2R3 MYB promoter regions showed that those genes primarily contained ethylene- and stress-related cis-elements. The expression profiles of the genes acting downstream of the selected MYBs were confirmed to be involved in cassava abscission zone separation. All these results indicated that R2R3 MYB plays an important regulatory role in AZ separation. PMID:27573926

  19. Cellular and Pectin Dynamics during Abscission Zone Development and Ripe Fruit Abscission of the Monocot Oil Palm.

    PubMed

    Roongsattham, Peerapat; Morcillo, Fabienne; Fooyontphanich, Kim; Jantasuriyarat, Chatchawan; Tragoonrung, Somvong; Amblard, Philippe; Collin, Myriam; Mouille, Gregory; Verdeil, Jean-Luc; Tranbarger, Timothy J

    2016-01-01

    The oil palm (Elaeis guineensis Jacq.) fruit primary abscission zone (AZ) is a multi-cell layered boundary region between the pedicel (P) and mesocarp (M) tissues. To examine the cellular processes that occur during the development and function of the AZ cell layers, we employed multiple histological and immunohistochemical methods combined with confocal, electron and Fourier-transform infrared (FT-IR) microspectroscopy approaches. During early fruit development and differentiation of the AZ, the orientation of cell divisions in the AZ was periclinal compared with anticlinal divisions in the P and M. AZ cell wall width increased earlier during development suggesting cell wall assembly occurred more rapidly in the AZ than the adjacent P and M tissues. The developing fruit AZ contain numerous intra-AZ cell layer plasmodesmata (PD), but very few inter-AZ cell layer PD. In the AZ of ripening fruit, PD were less frequent, wider, and mainly intra-AZ cell layer localized. Furthermore, DAPI staining revealed nuclei are located adjacent to PD and are remarkably aligned within AZ layer cells, and remain aligned and intact after cell separation. The polarized accumulation of ribosomes, rough endoplasmic reticulum, mitochondria, and vesicles suggested active secretion at the tip of AZ cells occurred during development which may contribute to the striated cell wall patterns in the AZ cell layers. AZ cells accumulated intracellular pectin during development, which appear to be released and/or degraded during cell separation. The signal for the JIM5 epitope, that recognizes low methylesterified and un-methylesterified homogalacturonan (HG), increased in the AZ layer cell walls prior to separation and dramatically increased on the separated AZ cell surfaces. Finally, FT-IR microspectroscopy analysis indicated a decrease in methylesterified HG occurred in AZ cell walls during separation, which may partially explain an increase in the JIM5 epitope signal. The results obtained

  20. Cellular and Pectin Dynamics during Abscission Zone Development and Ripe Fruit Abscission of the Monocot Oil Palm

    PubMed Central

    Roongsattham, Peerapat; Morcillo, Fabienne; Fooyontphanich, Kim; Jantasuriyarat, Chatchawan; Tragoonrung, Somvong; Amblard, Philippe; Collin, Myriam; Mouille, Gregory; Verdeil, Jean-Luc; Tranbarger, Timothy J.

    2016-01-01

    The oil palm (Elaeis guineensis Jacq.) fruit primary abscission zone (AZ) is a multi-cell layered boundary region between the pedicel (P) and mesocarp (M) tissues. To examine the cellular processes that occur during the development and function of the AZ cell layers, we employed multiple histological and immunohistochemical methods combined with confocal, electron and Fourier-transform infrared (FT-IR) microspectroscopy approaches. During early fruit development and differentiation of the AZ, the orientation of cell divisions in the AZ was periclinal compared with anticlinal divisions in the P and M. AZ cell wall width increased earlier during development suggesting cell wall assembly occurred more rapidly in the AZ than the adjacent P and M tissues. The developing fruit AZ contain numerous intra-AZ cell layer plasmodesmata (PD), but very few inter-AZ cell layer PD. In the AZ of ripening fruit, PD were less frequent, wider, and mainly intra-AZ cell layer localized. Furthermore, DAPI staining revealed nuclei are located adjacent to PD and are remarkably aligned within AZ layer cells, and remain aligned and intact after cell separation. The polarized accumulation of ribosomes, rough endoplasmic reticulum, mitochondria, and vesicles suggested active secretion at the tip of AZ cells occurred during development which may contribute to the striated cell wall patterns in the AZ cell layers. AZ cells accumulated intracellular pectin during development, which appear to be released and/or degraded during cell separation. The signal for the JIM5 epitope, that recognizes low methylesterified and un-methylesterified homogalacturonan (HG), increased in the AZ layer cell walls prior to separation and dramatically increased on the separated AZ cell surfaces. Finally, FT-IR microspectroscopy analysis indicated a decrease in methylesterified HG occurred in AZ cell walls during separation, which may partially explain an increase in the JIM5 epitope signal. The results obtained

  1. MACROCALYX and JOINTLESS Interact in the Transcriptional Regulation of Tomato Fruit Abscission Zone Development1[C][W

    PubMed Central

    Nakano, Toshitsugu; Kimbara, Junji; Fujisawa, Masaki; Kitagawa, Mamiko; Ihashi, Nao; Maeda, Hideo; Kasumi, Takafumi; Ito, Yasuhiro

    2012-01-01

    Abscission in plants is a crucial process used to shed organs such as leaves, flowers, and fruits when they are senescent, damaged, or mature. Abscission occurs at predetermined positions called abscission zones (AZs). Although the regulation of fruit abscission is essential for agriculture, the developmental mechanisms remain unclear. Here, we describe a novel transcription factor regulating the development of tomato (Solanum lycopersicum) pedicel AZs. We found that the development of tomato pedicel AZs requires the gene MACROCALYX (MC), which was previously identified as a sepal size regulator and encodes a MADS-box transcription factor. MC has significant sequence similarity to Arabidopsis (Arabidopsis thaliana) FRUITFULL, which is involved in the regulation of fruit dehiscent zone development. The MC protein interacted physically with another MADS-box protein, JOINTLESS, which is known as a regulator of fruit abscission; the resulting heterodimer acquired a specific DNA-binding activity. Transcriptome analyses of pedicels at the preabscission stage revealed that the expression of the genes involved in phytohormone-related functions, cell wall modifications, fatty acid metabolism, and transcription factors is regulated by MC and JOINTLESS. The regulated genes include homologs of Arabidopsis WUSCHEL, REGULATOR OF AXILLARY MERISTEMS, CUP-SHAPED COTYLEDON, and LATERAL SUPPRESSOR. These Arabidopsis genes encode well-characterized transcription factors regulating meristem maintenance, axillary meristem development, and boundary formation in plant tissues. The tomato homologs were specifically expressed in AZs but not in other pedicel tissues, suggesting that these transcription factors may play key roles in pedicel AZ development. PMID:22106095

  2. Transcriptome profiling of petal abscission zone and functional analysis of AUX/IAA family genes reveal that RhIAA16 is involved in petal shedding in rose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rose is one of the most important cut flowers among ornamental plants. Rose flower longevity is largely dependent on the timing of petal shedding occurrence. To understand the molecular mechanism underlying petal abscission in rose, we performed transcriptome profiling of the petal abscission zone d...

  3. Flavor of oranges as impacted by abscission zone formation for trees affected by huanglongbing disease and Lasiodiploida infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trees affected by Huanglongbing (HLB) exhibit excessive fruit drop, which is exacerbated by secondary infection of the abscission zone by the fungus Lasiodiplodia. ‘Hamlin’ orange trees, both healthy and affected by HLB, Candidatus Liberibacter asiaticus (CLas, determined by Polymerase chain reactio...

  4. Two abscission zones proximal to Lansium domesticum fruit: one more sensitive to exogenous ethylene than the other

    PubMed Central

    Taesakul, Prapinporn; Siriphanich, Jingtair; van Doorn, Wouter G.

    2015-01-01

    Longkong (Lansium domesticum) fruit grows in bunches and is also sold as bunches. Individual fruit can separate from the bunch both before and after commercial harvest. The fruit has two separation sites. The first is located between bracts on the stem and the fused sepals (separation zone 1: SZ1) and the second between the fused sepals and the fruit (separation zone 2: SZ2). True abscission occurred at both zones. We investigated whether the two zones were active at different stages of development and if they were differentially sensitive to ethylene. Abscission occurred in the SZ1 in very young fruit (fruit still at the ovary stage), during early fruit development (5 weeks after full bloom; WAFB), and in ripe and overripe fruit (15–17 WAFB). Abscission did not spontaneously occur in the SZ2, but by the time the fruit was fully ripe, 15 WAFB, and later, a slight mechanical force was sufficient to break this zone. In fruit bunches severed from the tree at 5, 8, and 13 WAFB, break strength (BS) in SZ1 decreased much more after exogenous ethylene treatment than that in SZ2. Ethylene induced abscission in the SZ1, but not in SZ2. At 5, 8, and 13 WAFB, treatment with 1-methylcyclopropane (1-MCP; an inhibitor of ethylene perception) had a small effect on BS in the SZ1 and no effect in the SZ2. It is concluded that abscission in the SZ1 was much more sensitive to ethylene than that in the SZ2. In intact plants SZ1 reacts to endogenous ethylene, e.g., as a result of stress, while SZ2 apparently allows animals to remove the ripe fruit from the tree with minimal force. PMID:25954290

  5. The study of a monocotyledon abscission zone using microscopic, chemical, enzymatic and solid state 13C CP/MAS NMR analyses.

    PubMed

    Henderson, J; Davies, H A; Heyes, S J; Osborne, D J

    2001-01-01

    We have investigated distinguishing features in cells of the abscission zone of a monocotyledon fruit, the oil palm Elaeis guineensis. The cell walls of the abscission zone and the subtending mesocarp and pedicel have been analysed by light and transmission electron microscopy, by chemical methods and by solid state 13C CP/MAS NMR spectroscopy. Results show that these abscission zone cells have specific characteristics which include high levels of unmethylated pectin in the walls and an inducible (x35) polygalacturonase enzyme expression. Together these findings help to explain the localised precision of cell separation events. PMID:11219806

  6. Stamen Abscission Zone Transcriptome Profiling Reveals New Candidates for Abscission Control: Enhanced Retention of Floral Organs in Transgenic Plants Overexpressing Arabidopsis ZINC FINGER PROTEIN21[C][W][OA

    PubMed Central

    Cai, Suqin; Lashbrook, Coralie C.

    2008-01-01

    Organ detachment requires cell separation within abscission zones (AZs). Physiological studies have established that ethylene and auxin contribute to cell separation control. Genetic analyses of abscission mutants have defined ethylene-independent detachment regulators. Functional genomic strategies leading to global understandings of abscission have awaited methods for isolating AZ cells of low abundance and very small size. Here, we couple laser capture microdissection of Arabidopsis thaliana stamen AZs and GeneChip profiling to reveal the AZ transcriptome responding to a developmental shedding cue. Analyses focus on 551 AZ genes (AZ551) regulated at the highest statistical significance (P ≤ 0.0001) over five floral stages linking prepollination to stamen shed. AZ551 includes mediators of ethylene and auxin signaling as well as receptor-like kinases and extracellular ligands thought to act independent of ethylene. We hypothesized that novel abscission regulators might reside in disproportionately represented Gene Ontology Consortium functional categories for cell wall modifying proteins, extracellular regulators, and nuclear-residing transcription factors. Promoter-β-glucuronidase expression of one transcription factor candidate, ZINC FINGER PROTEIN2 (AtZFP2), was elevated in stamen, petal, and sepal AZs. Flower parts of transgenic lines overexpressing AtZFP2 exhibited asynchronous and delayed abscission. Abscission defects were accompanied by altered floral morphology limiting pollination and fertility. Hand-pollination restored transgenic fruit development but not the rapid abscission seen in wild-type plants, demonstrating that pollination does not assure normal rates of detachment. In wild-type stamen AZs, AtZFP2 is significantly up-regulated postanthesis. Phenotype data from transgene overexpression studies suggest that AtZFP2 participates in processes that directly or indirectly influence organ shed. PMID:18192438

  7. De novo transcriptome sequencing and customized abscission zone-specific microarray as a new molecular tool for analysis of tomato organ abscission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abscission, which is the process of organ separation, is a highly regulated process occurring as a final stage of organ development. In the tomato (Solanum lycopersicum) system, flower and leaf abscission was induced by flower removal or leaf deblading, leading to auxin depletion which results in in...

  8. Distribution of XTH, expansin, and secondary-wall-related CesA in floral and fruit abscission zones during fruit development in tomato (Solanum lycopersicum)

    PubMed Central

    Tsuchiya, Mutsumi; Satoh, Shinobu; Iwai, Hiroaki

    2015-01-01

    After fruit development is triggered by pollination, the abscission zone (AZ) in the fruit pedicel strengthens its adhesion to keep the fruit attached. We previously reported that xyloglucan and arabinan accumulation in the AZ accompanies the shedding of unpollinated flowers. After the fruit has developed and is fully ripened, shedding occurs easily in the AZ due to lignin accumulation. Regulation of cell wall metabolism may play an important role in these processes, but it is not well understood. In the present report, we used immunohistochemistry to visualize changes in the distributions of xyloglucan and arabinan metabolism-related enzymes in the AZs of pollinated and unpollinated flowers, and in ripened fruits. During floral abscission, we observed a gradual increase in polyclonal antibody labeling of expansin in the AZ. The intensities of LM6 and LM15 labeling of arabinan and xyloglucan, respectively, also increased. However, during floral abscission, we observed a large 1 day post anthesis (DPA) peak in the polyclonal antibody labeling of XTH in the AZ, which then decreased. These results suggest that expansin and XTH play important, but different roles in the floral abscission process. During fruit abscission, unlike during floral abscission, no AZ-specific expansin and XTH were observed. Although lignification was seen in the AZ of over-ripe fruit pedicels, secondary cell wall-specific cellulose synthase signals were not observed. This suggests that cellulose metabolism-related enzymes do not play important roles in the AZ prior to fruit abscission. PMID:26029225

  9. Abscission: The Role of Aging

    PubMed Central

    Abeles, F. B.; Holm, R. E.; Gahagan, H. E.

    1967-01-01

    Excision of Phaseolus vulgaris L. c.v. Red Kidney abscission zone explants results in senescence, mobilization, and abscission. Because these processes take place at about the same time, there has been some question as to whether they are causally related or are occurring in an independent but simultaneous fashion. Data presented here suggest that the latter interpretation is correct. After abscission zone explants are isolated from the leaf an aging process is set into motion and a degradation of metabolites in the pulvinus takes place. During the aging process the explants also become increasingly sensitive to ethylene which in turn promotes cell separation. Indoleacetic acid, cytokinins, and coumarin appear to retard aging since both degradative processes and abscission are inhibited. However, ethylene increased abscission without increasing degradative processes indicating that abscission and senescence are independent processes occurring at the same time. PMID:16656662

  10. Reactive oxygen species regulate leaf pulvinus abscission zone cell separation in response to water-deficit stress in cassava

    PubMed Central

    Liao, Wenbin; Wang, Gan; Li, Yayun; Wang, Bin; Zhang, Peng; Peng, Ming

    2016-01-01

    Cassava (Manihot esculenta Crantz) plant resists water-deficit stress by shedding leaves leading to adaptive water-deficit condition. Transcriptomic, physiological, cellular, molecular, metabolic, and transgenic methods were used to study the mechanism of cassava abscission zone (AZ) cell separation under water-deficit stress. Microscopic observation indicated that AZ cell separation initiated at the later stages during water-deficit stress. Transcriptome profiling of AZ suggested that differential expression genes of AZ under stress mainly participate in reactive oxygen species (ROS) pathway. The key genes involved in hydrogen peroxide biosynthesis and metabolism showed significantly higher expression levels in AZ than non-separating tissues adjacent to the AZ under stress. Significantly higher levels of hydrogen peroxide correlated with hydrogen peroxide biosynthesis related genes and AZ cell separation was detected by microscopic observation, colorimetric detection and GC-MS analyses under stress. Co-overexpression of the ROS-scavenging proteins SOD and CAT1 in cassava decreased the levels of hydrogen peroxide in AZ under water-deficit stress. The cell separation of the pulvinus AZ also delayed in co-overexpression of the ROS-scavenging proteins SOD and CAT1 plants both in vitro and at the plant level. Together, the results indicated that ROS play an important regulatory role in the process of cassava leaf abscission under water-deficit stress. PMID:26899473

  11. Reactive oxygen species regulate leaf pulvinus abscission zone cell separation in response to water-deficit stress in cassava.

    PubMed

    Liao, Wenbin; Wang, Gan; Li, Yayun; Wang, Bin; Zhang, Peng; Peng, Ming

    2016-01-01

    Cassava (Manihot esculenta Crantz) plant resists water-deficit stress by shedding leaves leading to adaptive water-deficit condition. Transcriptomic, physiological, cellular, molecular, metabolic, and transgenic methods were used to study the mechanism of cassava abscission zone (AZ) cell separation under water-deficit stress. Microscopic observation indicated that AZ cell separation initiated at the later stages during water-deficit stress. Transcriptome profiling of AZ suggested that differential expression genes of AZ under stress mainly participate in reactive oxygen species (ROS) pathway. The key genes involved in hydrogen peroxide biosynthesis and metabolism showed significantly higher expression levels in AZ than non-separating tissues adjacent to the AZ under stress. Significantly higher levels of hydrogen peroxide correlated with hydrogen peroxide biosynthesis related genes and AZ cell separation was detected by microscopic observation, colorimetric detection and GC-MS analyses under stress. Co-overexpression of the ROS-scavenging proteins SOD and CAT1 in cassava decreased the levels of hydrogen peroxide in AZ under water-deficit stress. The cell separation of the pulvinus AZ also delayed in co-overexpression of the ROS-scavenging proteins SOD and CAT1 plants both in vitro and at the plant level. Together, the results indicated that ROS play an important regulatory role in the process of cassava leaf abscission under water-deficit stress. PMID:26899473

  12. Signaling Pathways Mediating the Induction of Apple Fruitlet Abscission1[C][W][OA

    PubMed Central

    Botton, Alessandro; Eccher, Giulia; Forcato, Claudio; Ferrarini, Alberto; Begheldo, Maura; Zermiani, Monica; Moscatello, Stefano; Battistelli, Alberto; Velasco, Riccardo; Ruperti, Benedetto; Ramina, Angelo

    2011-01-01

    Apple (Malus × domestica) represents an interesting model tree crop for studying fruit abscission. The physiological fruitlet drop occurring in this species can be easily magnified by using thinning chemicals, such as benzyladenine (BA), to obtain fruits with improved quality and marketability. Despite the economic importance of this process, the molecular determinants of apple fruitlet abscission are still unknown. In this research, BA was used to obtain fruitlet populations with different abscission potentials to be analyzed by means of a newly released 30K oligonucleotide microarray. RNAs were extracted from cortex and seed of apple fruitlets sampled over a 4-d time course, during which BA triggers fruit drop, and used for microarray hybridization. Transcriptomic profiles of persisting and abscising fruitlets were tested for statistical association with abscission potential, allowing us to identify molecular signatures strictly related to fruit destiny. A hypothetical model for apple fruitlet abscission was obtained by putting together available transcriptomic and metabolomic data. According to this model, BA treatment would establish a nutritional stress within the tree that is primarily perceived by the fruitlet cortex whose growth is blocked by resembling the ovary growth inhibition found in other species. In weaker fruits, this stress is soon visible also at the seed level, likely transduced via reactive oxygen species/sugar and hormones signaling cross talk, and followed by a block of embryogenesis and the consequent activation of the abscission zone. PMID:21037112

  13. The OCL3 promoter from Sorghum bicolor directs gene expression to abscission and nutrient-transfer zones at the bases of floral organs

    PubMed Central

    Dwivedi, Krishna K.; Roche, Dominique J.; Clemente, Tom E.; Ge, Zhengxiang; Carman, John G.

    2014-01-01

    Background and Aims During seed fill in cereals, nutrients are symplasmically unloaded to vascular parenchyma in ovules, but thereafter nutrient transport is less certain. In Zea mays, two mechanisms of nutrient passage through the chalaza and nucellus have been hypothesized, apoplasmic and symplasmic. In a recent study, nutrients first passed non-selectively to the chalazal apoplasm and were then selectively absorbed by the nucellus before being released to the endosperm apoplasm. This study reports that the promoter of OUTER CELL LAYER3 (PSbOCL3) from Sorghum bicolor (sorghum) directs gene expression to chalazal cells where the apoplasmic barrier is thought to form. The aims were to elucidate PSbOCL3 expression patterns in sorghum and relate them to processes of nutrient pathway development in kernels and to recognized functions of the homeodomain-leucine zipper (HD-Zip) IV transcription factor family to which the promoter belongs. Methods PSbOCL3 was cloned and transformed into sorghum as a promoter–GUS (β-glucuronidase) construct. Plant tissues from control and transformed plants were then stained for GUS, and kernels were cleared and characterized using differential interference contrast microscopy. Key Results A symplasmic disconnect between the chalaza and nucellus during seed fill is inferred by the combination of two phenomena: differentiation of a distinct nucellar epidermis adjacent to the chalaza, and lysis of GUS-stained chalazal cells immediately proximal to the nucellar epidermis. Compression of the GUS-stained chalazal cells during kernel maturation produced the kernel abscission zone (closing layer). Conclusions The results suggest that the HD-Zip IV transcription factor SbOCL3 regulates kernel nutrition and abscission. The latter is consistent with evidence that members of this transcription factor group regulate silique abscission and dehiscence in Arabidopsis thaliana. Collectively, the findings suggest that processes of floral organ

  14. Enhancement of RNA Synthesis, Protein Synthesis, and Abscission by Ethylene

    PubMed Central

    Abeles, F. B.; Holm, R. E.

    1966-01-01

    Ethylene stimulated RNA and protein synthesis in bean (Phaseolus vulgaris L. var. Red Kidney) abscission zone explants prior to abscission. The effect of ethylene on RNA synthesis and abscission was blocked by actinomycin D. Carbon dioxide, which inhibits the effect of ethylene on abscission, also inhibited the influence of ethylene on protein synthesis. An aging period appears to be essential before bean explants respond to ethylene. Stimulation of protein synthesis by ethylene occurred only in receptive or senescent explants. Treatment of juvenile explants with ethylene, which has no effect on abscission also has no effect on protein synthesis. Evidence in favor of a hormonal role for ethylene during abscission is discussed. PMID:16656405

  15. Core Mechanisms Regulating Developmentally Timed and Environmentally Triggered Abscission.

    PubMed

    Patharkar, O Rahul; Walker, John C

    2016-09-01

    Drought-triggered abscission is a strategy used by plants to avoid the full consequences of drought; however, it is poorly understood at the molecular genetic level. Here, we show that Arabidopsis (Arabidopsis thaliana) can be used to elucidate the pathway controlling drought-triggered leaf shedding. We further show that much of the pathway regulating developmentally timed floral organ abscission is conserved in regulating drought-triggered leaf abscission. Gene expression of HAESA (HAE) and INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) is induced in cauline leaf abscission zones when the leaves become wilted in response to limited water and HAE continues to accumulate in the leaf abscission zones through the abscission process. The genes that encode HAE/HAESA-LIKE2, IDA, NEVERSHED, and MAPK KINASE4 and 5 are all necessary for drought-induced leaf abscission. Our findings offer a molecular mechanism explaining drought-triggered leaf abscission. Furthermore, the ability to study leaf abscission in Arabidopsis opens up a new avenue to tease apart mechanisms involved in abscission that have been difficult to separate from flower development as well as for understanding the mechanistic role of water and turgor pressure in abscission. PMID:27468996

  16. The manipulation of auxin in the abscission zone cells of Arabidopsis flowers reveals that indoleacetic acid signaling is a prerequisite for organ shedding.

    PubMed

    Basu, Manojit M; González-Carranza, Zinnia H; Azam-Ali, Sayed; Tang, Shouya; Shahid, Ahmad Ali; Roberts, Jeremy A

    2013-05-01

    A number of novel strategies were employed to examine the role of indoleacetic acid (IAA) in regulating floral organ abscission in Arabidopsis (Arabidopsis thaliana). Analysis of auxin influx facilitator expression in β-glucuronidase reporter plants revealed that AUXIN RESISTANT1, LIKE AUX1, and LAX3 were specifically up-regulated at the site of floral organ shedding. Flowers from mutants where individual family members were down-regulated exhibited a reduction in the force necessary to bring about petal separation; however, the effect was not additive in double or quadruple mutants. Using the promoter of a polygalacturonase (At2g41850), active primarily in cells undergoing separation, to drive expression of the bacterial genes iaaL and iaaM, we have shown that it is possible to manipulate auxin activity specifically within the floral organ abscission zone (AZ). Analysis of petal breakstrength reveals that if IAA AZ levels are reduced, shedding takes place prematurely, while if they are enhanced, organ loss is delayed. The At2g41850 promoter was also used to transactivate the gain-of-function AXR3-1 gene in order to disrupt auxin signaling specifically within the floral organ AZ cells. Flowers from transactivated lines failed to shed their sepals, petals, and anthers during pod expansion and maturity, and these organs frequently remained attached to the plant even after silique desiccation and dehiscence had taken place. These observations support a key role for IAA in the regulation of abscission in planta and reveal, to our knowledge for the first time, a requirement for a functional IAA signaling pathway in AZ cells for organ shedding to take place. PMID:23509178

  17. Comprehensive analysis of SAUR gene family in citrus and its transcriptional correlation with fruitlet drop from abscission zone A.

    PubMed

    Xie, Rangjin; Dong, Cuicui; Ma, Yanyan; Deng, Lie; He, Shaolan; Yi, Shilai; Lv, Qiang; Zheng, Yongqiang

    2015-11-01

    Small auxin-up RNA (SAUR) gene family is large, and the members of which can be rapidly induced by auxin and encode highly unstable mRNAs. SAUR genes are involved in various developmental and physiological processes, such as leaf senescence, fruitlet abscission, and hypocotyl development. However, their modes of action in citrus remain unknown. Hereby, a systematic analysis of SAUR gene family in citrus was conducted through a genome-wide search. In this study, a total of 70 SAUR genes, referred to as CitSAURs, have been identified in citrus. The evolutionary relationship and the intro-exon organization were analyzed, revealing strong gene conservation and the expansion of particular functional genes during plant evolution. Expression analysis showed that the major of CitSAUR genes were expressed in at least one tissue and showed distinctive expression levels, indicating the SAUR gene family play important roles in the development and growth of citrus organs. However, there were more than 20 CitSAUR genes such as CitSARU36, CitSAUR37, and CitSAUR54 exhibiting very low expression level in all tissue tested. Twenty-three out of 70 CitSAUR genes were responded to indole-3-acetic acid (IAA) treatment, of which just CitSAUR19 was down-regulated. Additionally, 14 CitSAUR genes exhibited distinct changes during fruitlet abscission, however just 5 of them including CitSAUR06, CitSAUR08, CitSAUR44, CitSAUR61, and CitSAUR64 were associated with fruitlet abscission. The current study provides basic information for the citrus SAUR gene family and will pave the way for deciphering the precise role of SAURs in citrus development and growth as well as fruitlet abscission. PMID:26115718

  18. Abscission: Quantitative Measurement With a Recording Abscissor

    PubMed Central

    Craker, L. E.; Abeles, F. B.

    1969-01-01

    The construction, operation, and effectiveness of an abscission measuring instrument called an abscissor is described. The device measured the force required for a spring-opposed plunger to shear abscission zone explants and was capable of automatically recording break strength data. Examples of data obtained with the abscissor are presented to demonstrate its capability of rapidly measuring significant changes in explant break strength. PMID:16657180

  19. Early Induction of Apple Fruitlet Abscission Is Characterized by an Increase of Both Isoprene Emission and Abscisic Acid Content12[W][OA

    PubMed Central

    Giulia, Eccher; Alessandro, Botton; Mariano, Dimauro; Andrea, Boschetti; Benedetto, Ruperti; Angelo, Ramina

    2013-01-01

    Apple (Malus domestica) fruitlet abscission represents an interesting model system to study the early phases of the shedding process, during which major transcriptomic changes and metabolic rearrangements occur within the fruit. In apple, the drop of fruits at different positions within the cluster can be selectively magnified through chemical thinners, such as benzyladenine and metamitron, acting as abscission enhancers. In this study, different abscission potentials were obtained within the apple fruitlet population by means of the above-cited thinners. A metabolomic study was conducted on the volatile organic compounds emitted by abscising fruitlets, allowing for identification of isoprene as an early marker of abscission induction. A strong correlation was also observed between isoprene production and abscisic acid (ABA) levels in the fruit cortex, which were shown to increase in abscising fruitlets with respect to nonabscising ones. Transcriptomic evidence indicated that abscission-related ABA is biologically active, and its increased biosynthesis is associated with the induction of a specific ABA-responsive 9-cis-epoxycarotenoid dioxygenase gene. According to a hypothetical model, ABA may transiently cooperate with other hormones and secondary messengers in the generation of an intrafruit signal leading to the downstream activation of the abscission zone. The shedding process therefore appears to be triggered by multiple interdependent pathways, whose fine regulation, exerted within a very short temporal window by both endogenous and exogenous factors, determines the final destiny of the fruitlets. PMID:23444344

  20. The IDA Peptide Controls Abscission in Arabidopsis and Citrus.

    PubMed

    Estornell, Leandro H; Wildhagen, Mari; Pérez-Amador, Miguel A; Talón, Manuel; Tadeo, Francisco R; Butenko, Melinka A

    2015-01-01

    Organ abscission is an important process in plant development and reproduction. During abscission, changes in cellular adhesion of specialized abscission zone cells ensure the detachment of infected organs or those no longer serving a function to the plant. In addition, abscission also plays an important role in the release of ripe fruits. Different plant species display distinct patterns and timing of organ shedding, most likely adapted during evolution to their diverse life styles. However, it appears that key regulators of cell separation may have conserved function in different plant species. Here, we investigate the functional conservation of the citrus ortholog of the Arabidopsis peptide ligand INFLORESCENCE DEFICIENT IN ABSCISSION (AtIDA), controlling floral organ abscission. We discuss the possible implications of modifying the citrus IDA ortholog for citrus fruit production. PMID:26635830

  1. The IDA Peptide Controls Abscission in Arabidopsis and Citrus

    PubMed Central

    Estornell, Leandro H.; Wildhagen, Mari; Pérez-Amador, Miguel A.; Talón, Manuel; Tadeo, Francisco R.; Butenko, Melinka A.

    2015-01-01

    Organ abscission is an important process in plant development and reproduction. During abscission, changes in cellular adhesion of specialized abscission zone cells ensure the detachment of infected organs or those no longer serving a function to the plant. In addition, abscission also plays an important role in the release of ripe fruits. Different plant species display distinct patterns and timing of organ shedding, most likely adapted during evolution to their diverse life styles. However, it appears that key regulators of cell separation may have conserved function in different plant species. Here, we investigate the functional conservation of the citrus ortholog of the Arabidopsis peptide ligand INFLORESCENCE DEFICIENT IN ABSCISSION (AtIDA), controlling floral organ abscission. We discuss the possible implications of modifying the citrus IDA ortholog for citrus fruit production. PMID:26635830

  2. Identification of defense-related genes newly-associated with tomato flower abscission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current abscission model suggests the formation of a post-abscission trans-differentiation of a protective layer as the last step of the process. The present report expands the repertoire of genes activated in the tomato flower abscission zone (AZ), which are likely to be involved in defense res...

  3. The Tobacco BLADE-ON-PETIOLE2 Gene Mediates Differentiation of the Corolla Abscission Zone by Controlling Longitudinal Cell Expansion1[C][W

    PubMed Central

    Wu, Xiao-Min; Yu, Yi; Han, Li-Bo; Li, Chun-Li; Wang, Hai-Yun; Zhong, Nai-Qin; Yao, Yuan; Xia, Gui-Xian

    2012-01-01

    The BLADE-ON-PETIOLE (BOP) genes of Arabidopsis (Arabidopsis thaliana) have been shown to play an essential role in floral abscission by specializing the abscission zone (AZ) anatomy. However, the molecular and cellular mechanisms that underlie differentiation of the AZ are largely unknown. In this study, we identified a tobacco (Nicotiana tabacum) homolog of BOP (designated NtBOP2) and characterized its cellular function. In tobacco plants, the NtBOP2 gene is predominantly expressed at the base of the corolla in an ethylene-independent manner. Both antisense suppression of NtBOP genes and overexpression of NtBOP2 in tobacco plants caused a failure in corolla shedding. Histological analysis revealed that the differentiation of the corolla AZ was blocked in the transgenic flowers. This blockage was due to uncontrolled cell elongation at the region corresponding to wild-type AZ. The role of NtBOP2 in regulating cell elongation was further demonstrated in Bright Yellow 2 single cells: perturbation of NtBOP2 function by a dominant negative strategy led to the formation of abnormally elongated cells. Subcellular localization analysis showed that NtBOP2-green fluorescent protein fusion proteins were targeted to both the nucleus and cytoplasm. Yeast two-hybrid, firefly luciferase complementation imaging, and in vitro pull-down assays demonstrated that NtBOP2 proteins interacted with TGA transcription factors. Taken together, these results indicated that NtBOP2 mediated the differentiation of AZ architecture by controlling longitudinal cell growth. Furthermore, NtBOP2 may achieve this outcome through interaction with the TGA transcription factors and via an ethylene-independent signaling pathway. PMID:22492844

  4. Resolving new ultrastructural features of cytokinetic abscission with soft-X-ray cryo-tomography.

    PubMed

    Sherman, Shachar; Kirchenbuechler, David; Nachmias, Dikla; Tamir, Adi; Werner, Stephan; Elbaum, Michael; Elia, Natalie

    2016-01-01

    Mammalian cytokinetic abscission is mediated by the ESCRT membrane fission machinery. While much has been clarified on the topology and kinetics of abscission through high-resolution microscopy, key questions regarding the mechanism of abscission remain open. Here we apply cryogenic soft-X-ray tomography to elucidate new ultrastructural details in the intercellular membrane bridge connecting cells undergoing abscission. In particular, we resolve defined ring-like structures inside the midbody dark zone that have been inaccessible to EM, and identify membrane extrusions at the abscission sites. In cells at late stages of abscission we resolve a complex array of helical spirals, extending the structural information obtained by EM. Our results highlight the advantages of soft-X-ray tomography and emphasize the importance of using complementary approaches for characterizing cellular structures. Notably, by providing new structural data from intact cells we present a realistic view on the topology of abscission and suggest new mechanistic models for ESCRT mediated abscission. PMID:27282220

  5. Resolving new ultrastructural features of cytokinetic abscission with soft-X-ray cryo-tomography

    PubMed Central

    Sherman, Shachar; Kirchenbuechler, David; Nachmias, Dikla; Tamir, Adi; Werner, Stephan; Elbaum, Michael; Elia, Natalie

    2016-01-01

    Mammalian cytokinetic abscission is mediated by the ESCRT membrane fission machinery. While much has been clarified on the topology and kinetics of abscission through high-resolution microscopy, key questions regarding the mechanism of abscission remain open. Here we apply cryogenic soft-X-ray tomography to elucidate new ultrastructural details in the intercellular membrane bridge connecting cells undergoing abscission. In particular, we resolve defined ring-like structures inside the midbody dark zone that have been inaccessible to EM, and identify membrane extrusions at the abscission sites. In cells at late stages of abscission we resolve a complex array of helical spirals, extending the structural information obtained by EM. Our results highlight the advantages of soft-X-ray tomography and emphasize the importance of using complementary approaches for characterizing cellular structures. Notably, by providing new structural data from intact cells we present a realistic view on the topology of abscission and suggest new mechanistic models for ESCRT mediated abscission. PMID:27282220

  6. Breakdown of middle lamella pectin by (●) OH during rapid abscission in Azolla.

    PubMed

    Yamada, Yoshiya; Koibuchi, Mizuki; Miyamoto, Kensuke; Ueda, Junichi; Uheda, Eiji

    2015-08-01

    Azolla, a small water fern, abscises its roots and branches within 30 min upon treatment with various stresses. This study was conducted to test whether, in the rapid abscission that occurs in Azolla, breakdown of wall components of abscission zone cells by (●) OH is involved. Experimentally generated (●) OH caused the rapid separation of abscission zone cells from detached roots and the rapid shedding of roots from whole plants. Electron microscopic observations revealed that (●) OH rapidly and selectively dissolved a well-developed middle lamella between abscission zone cells and resultantly caused rapid cell separation and shedding. Treatment of abscission zones of Impatiens leaf petiole with (●) OH also accelerated the separation of abscission zone cells. However, compared with that of Azolla roots, accelerative effects in Impatiens were weak. A large amount of (●) OH was cytochemically detected in abscission zone cells both of Azolla roots and of Impatiens leaf petioles. These results suggest that (●) OH is involved in the cell separation process not only in the rapid abscission in Azolla but also in the abscission of Impatiens. However, for rapid abscission to occur, a well-developed middle lamella, a unique structure, which is sensitive to the attack of (●) OH, might be needed. PMID:25581142

  7. A KNOTTED1-LIKE HOMEOBOX protein regulates abscission in tomato by modulating the auxin pathway.

    PubMed

    Ma, Chao; Meir, Shimon; Xiao, Langtao; Tong, Jianhua; Liu, Qing; Reid, Michael S; Jiang, Cai-Zhong

    2015-03-01

    A gene encoding a KNOTTED1-LIKE HOMEOBOX PROTEIN1 (KD1) is highly expressed in both leaf and flower abscission zones. Reducing the abundance of transcripts of this gene in tomato (Solanum lycopersicum) by both virus-induced gene silencing and stable transformation with a silencing construct driven by an abscission-specific promoter resulted in a striking retardation of pedicel and petiole abscission. In contrast, Petroselinum, a semidominant KD1 mutant, showed accelerated pedicel and petiole abscission. Complementary DNA microarray and quantitative reverse transcription-polymerase chain reaction analysis indicated that regulation of abscission by KD1 was associated with changed abundance of genes related to auxin transporters and signaling components. Measurement of auxin content and activity of a DR5::β-glucuronidase auxin reporter assay showed that changes in KD1 expression modulated the auxin concentration and response gradient in the abscission zone. PMID:25560879

  8. Cortical Connections of Functional Zones in Posterior Parietal Cortex and Frontal Cortex Motor Regions in New World Monkeys

    PubMed Central

    Stepniewska, Iwona; Kaas, Jon H.

    2011-01-01

    We examined the connections of posterior parietal cortex (PPC) with motor/premotor cortex (M1/PM) and other cortical areas. Electrical stimulation (500 ms trains) delivered to microelectrode sites evoked movements of reach, defense, and grasp, from distinct zones in M1/PM and PPC, in squirrel and owl monkeys. Tracer injections into M1/PM reach, defense, and grasp zones showed dense connections with M1/PM hand/forelimb representations. The densest inputs outside of frontal cortex were from PPC zones. M1 zones were additionally connected with somatosensory hand/forelimb representations in areas 3a, 3b, and 1 and the somatosensory areas of the upper bank of the lateral sulcus (S2/PV). Injections into PPC zones showed primarily local connections and the densest inputs outside of PPC originated from M1/PM zones. The PPC reach zone also received dense inputs from cortex caudal to PPC, which likely relayed visual information. In contrast, the PPC grasp zone was densely connected with the hand/forelimb representations of areas 3a, 3b, 1, and S2/PV. Thus, the dorsal parietal–frontal network involved in reaching was preferentially connected to visual cortex, whereas the more ventral network involved in grasping received somatosensory inputs. Additional weak interlinks between dissimilar zones (e.g., PPC reach and PPC grasp) were apparent and may coordinate actions. PMID:21263034

  9. Auxin is a long-range signal that acts independently of ethylene signaling on leaf abscission in Populus

    PubMed Central

    Jin, Xu; Zimmermann, Jorma; Polle, Andrea; Fischer, Urs

    2015-01-01

    Timing of leaf abscission is an important trait for biomass production and seasonal acclimation in deciduous trees. The signaling leading to organ separation, from the external cue (decreasing photoperiod) to ethylene-regulated hydrolysis of the middle lamellae in the abscission zone, is only poorly understood. Data from annual species indicate that the formation of an auxin gradient spanning the abscission zone regulates the timing of abscission. We established an experimental system in Populus to induce leaf shedding synchronously under controlled greenhouse conditions in order to test the function of auxin in leaf abscission. Here, we show that exogenous auxin delayed abscission of dark-induced leaves over short and long distances and that a new auxin response maximum preceded the formation of an abscission zone. Several auxin transporters were down-regulated during abscission and inhibition of polar auxin transport delayed leaf shedding. Ethylene signaling was not involved in the regulation of these auxin transporters and in the formation of an abscission zone, but was required for the expression of hydrolytic enzymes associated with cell separation. Since exogenous auxin delayed abscission in absence of ethylene signaling auxin likely acts independently of ethylene signaling on cell separation. PMID:26322071

  10. Ultrastructural Localization of Polygalacturonase in Ethylene-Stimulated Abscission of Tomato Pedicel Explants

    PubMed Central

    Qi, Ming-Fang; Xu, Tao; Chen, Wei-Zhi; Li, Tian-lai

    2014-01-01

    Polygalacturonase (PG) is crucial in plant organ abscission process. This paper investigated the cellular and subcellular localization of PG in ethylene-stimulated abscission of tomato pedicel explants. Confocal laser scanning microscopy of abscission zone sections with the fluorescent probe Cy3 revealed that PG was initially accumulated in parenchyma cells in cortical and vascular tissues after 8 h of ethylene treatment and then extended throughout the abscission zone when the abscission zone separated at 24 h after ethylene treatment. At the subcellular level, transmission electron microscopy with immunogold staining showed that PG showed abundant accumulation in the cortical and vascular tissues at 8 h after ethylene treatment, and the distribution area extended to the central parenchyma cells at 16 h after ethylene treatment. In addition, PGs were observed in the distal and proximal parts of the tomato pedicel explants throughout the abscission process. The results provided a visualized distribution of PG in the pedicel abscission zone and proved that PG was closely related to abscission. PMID:24790564

  11. MOLECULAR ANALYSIS OF THE INTERACTION OF ETHYLENE AND AUXIN DURING FLOWER ABSCISSION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abscission, the separation of organs from the parent plant, results in postharvest quality loss in many ornamentals and other fresh produce. The process is initiated by changes in the auxin gradient across the abscission zone (AZ), is triggered by ethylene, and may be accelerated by postharvest stre...

  12. Primary and Secondary Abscission in Pisum sativum and Euphorbia pulcherrima-How Do They Compare and How Do They Differ?

    PubMed

    Hvoslef-Eide, Anne K; Munster, Cristel M; Mathiesen, Cecilie A; Ayeh, Kwadwo O; Melby, Tone I; Rasolomanana, Paoly; Lee, YeonKyeong

    2015-01-01

    Abscission is a highly regulated and coordinated developmental process in plants. It is important to understand the processes leading up to the event, in order to better control abscission in crop plants. This has the potential to reduce yield losses in the field and increase the ornamental value of flowers and potted plants. A reliable method of abscission induction in poinsettia (Euphorbia pulcherrima) flowers has been established to study the process in a comprehensive manner. By correctly decapitating buds of the third order, abscission can be induced in 1 week. AFLP differential display (DD) was used to search for genes regulating abscission. Through validation using qRT-PCR, more information of the genes involved during induced secondary abscission have been obtained. A study using two pea (Pisum sativum) mutants in the def (Developmental funiculus) gene, which was compared with wild type peas (tall and dwarf in both cases) was performed. The def mutant results in a deformed, abscission-less zone instead of normal primary abscission at the funiculus. RNA in situ hybridization studies using gene sequences from the poinsettia differential display, resulted in six genes differentially expressed for abscission specific genes in both poinsettia and pea. Two of these genes are associated with gene up- or down-regulation during the first 2 days after decapitation in poinsettia. Present and previous results in poinsettia (biochemically and gene expressions), enables a more detailed division of the secondary abscission phases in poinsettia than what has previously been described from primary abscission in Arabidopsis. This study compares the inducible secondary abscission in poinsettia and the non-abscising mutants/wild types in pea demonstrating primary abscission zones. The results may have wide implications on the understanding of abscission, since pea and poinsettia have been separated for 94-98 million years in evolution, hence any genes or processes in common

  13. Primary and Secondary Abscission in Pisum sativum and Euphorbia pulcherrima—How Do They Compare and How Do They Differ?

    PubMed Central

    Hvoslef-Eide, Anne K.; Munster, Cristel M.; Mathiesen, Cecilie A.; Ayeh, Kwadwo O.; Melby, Tone I.; Rasolomanana, Paoly; Lee, YeonKyeong

    2016-01-01

    Abscission is a highly regulated and coordinated developmental process in plants. It is important to understand the processes leading up to the event, in order to better control abscission in crop plants. This has the potential to reduce yield losses in the field and increase the ornamental value of flowers and potted plants. A reliable method of abscission induction in poinsettia (Euphorbia pulcherrima) flowers has been established to study the process in a comprehensive manner. By correctly decapitating buds of the third order, abscission can be induced in 1 week. AFLP differential display (DD) was used to search for genes regulating abscission. Through validation using qRT-PCR, more information of the genes involved during induced secondary abscission have been obtained. A study using two pea (Pisum sativum) mutants in the def (Developmental funiculus) gene, which was compared with wild type peas (tall and dwarf in both cases) was performed. The def mutant results in a deformed, abscission-less zone instead of normal primary abscission at the funiculus. RNA in situ hybridization studies using gene sequences from the poinsettia differential display, resulted in six genes differentially expressed for abscission specific genes in both poinsettia and pea. Two of these genes are associated with gene up- or down-regulation during the first 2 days after decapitation in poinsettia. Present and previous results in poinsettia (biochemically and gene expressions), enables a more detailed division of the secondary abscission phases in poinsettia than what has previously been described from primary abscission in Arabidopsis. This study compares the inducible secondary abscission in poinsettia and the non-abscising mutants/wild types in pea demonstrating primary abscission zones. The results may have wide implications on the understanding of abscission, since pea and poinsettia have been separated for 94–98 million years in evolution, hence any genes or processes in common

  14. Programmed Cell Death Occurs Asymmetrically during Abscission in Tomato[C][W][OA

    PubMed Central

    Bar-Dror, Tal; Dermastia, Marina; Kladnik, Aleš; Žnidarič, Magda Tušek; Novak, Maruša Pompe; Meir, Shimon; Burd, Shaul; Philosoph-Hadas, Sonia; Ori, Naomi; Sonego, Lilian; Dickman, Martin B.; Lers, Amnon

    2011-01-01

    Abscission occurs specifically in the abscission zone (AZ) tissue as a natural stage of plant development. Previously, we observed delay of tomato (Solanum lycopersicum) leaf abscission when the LX ribonuclease (LX) was inhibited. The known association between LX expression and programmed cell death (PCD) suggested involvement of PCD in abscission. In this study, hallmarks of PCD were identified in the tomato leaf and flower AZs during the late stage of abscission. These included loss of cell viability, altered nuclear morphology, DNA fragmentation, elevated levels of reactive oxygen species and enzymatic activities, and expression of PCD-associated genes. Overexpression of antiapoptotic proteins resulted in retarded abscission, indicating PCD requirement. PCD, LX, and nuclease gene expression were visualized primarily in the AZ distal tissue, demonstrating an asymmetry between the two AZ sides. Asymmetric expression was observed for genes associated with cell wall hydrolysis, leading to AZ, or associated with ethylene biosynthesis, which induces abscission. These results suggest that different abscission-related processes occur asymmetrically between the AZ proximal and distal sides. Taken together, our findings identify PCD as a key mechanism that occurs asymmetrically during normal progression of abscission and suggest an important role for LX in this PCD process. PMID:22128123

  15. A KNOTTED1-LIKE HOMEOBOX Protein Regulates Abscission in Tomato by Modulating the Auxin Pathway1[OPEN

    PubMed Central

    Ma, Chao; Meir, Shimon; Xiao, Langtao; Tong, Jianhua; Liu, Qing; Reid, Michael S.; Jiang, Cai-Zhong

    2015-01-01

    A gene encoding a KNOTTED1-LIKE HOMEOBOX PROTEIN1 (KD1) is highly expressed in both leaf and flower abscission zones. Reducing the abundance of transcripts of this gene in tomato (Solanum lycopersicum) by both virus-induced gene silencing and stable transformation with a silencing construct driven by an abscission-specific promoter resulted in a striking retardation of pedicel and petiole abscission. In contrast, Petroselinum, a semidominant KD1 mutant, showed accelerated pedicel and petiole abscission. Complementary DNA microarray and quantitative reverse transcription-polymerase chain reaction analysis indicated that regulation of abscission by KD1 was associated with changed abundance of genes related to auxin transporters and signaling components. Measurement of auxin content and activity of a DR5::β-glucuronidase auxin reporter assay showed that changes in KD1 expression modulated the auxin concentration and response gradient in the abscission zone. PMID:25560879

  16. A novel mechanism of abscission in fronds of Lemna minor L. and the effect of silver ions.

    PubMed

    Topp, C; Henke, R; Keresztes, A; Fischer, W; Eberius, M; Appenroth, K-J

    2011-05-01

    Lemna minor L. (duckweed) forms colonies through vegetative propagation because mother fronds remain connected for some time with their daughter fronds by stipes. The colony size is controlled by abscission of stipes at a specific preformed abscission zone. Application of silver ions (Ag(+) ) enhances the rate of frond abscission, thus resulting in smaller colonies. The mechanism behind this process has not yet been identified. Silver caused an abscission response that saturated after 7 h of treatment. The half-maximal effective concentration was 0.72 μm Ag(+) for the standard clone, L. minor St. Other clones of the same species show sensitivities that differ by one order of magnitude. Transmission electron microscopy revealed: (i) large numbers of vesicles close to the plasmalemma in cells adjacent to the abscission zone, which proves a vesicular type secretory activity; and (ii) a moderately electron-dense secretion accumulated in the enlarging intercellular spaces, and seemed to flow from the adjacent cells towards the abscission zone. We assume that increasing pressure causes this material to push apart the cells, thereby causing the break in the abscission zone of the stipe. This is a novel mechanism of abscission that has not previously been described. The same mechanism occurs in stipes of both control and Ag(+) -treated samples. Silver ions only accelerate the process leading to abscission of stipes, without affecting the mechanism involved. PMID:21489103

  17. Ethylene-induced differential gene expression during abscission of citrus leaves

    PubMed Central

    Merelo, Paz; Cercós, Manuel; Tadeo, Francisco R.; Talón, Manuel

    2008-01-01

    The main objective of this work was to identify and classify genes involved in the process of leaf abscission in Clementina de Nules (Citrus clementina Hort. Ex Tan.). A 7 K unigene citrus cDNA microarray containing 12 K spots was used to characterize the transcriptome of the ethylene-induced abscission process in laminar abscission zone-enriched tissues and the petiole of debladed leaf explants. In these conditions, ethylene induced 100% leaf explant abscission in 72 h while, in air-treated samples, the abscission period started later and took 240 h. Gene expression monitored during the first 36 h of ethylene treatment showed that out of the 12 672 cDNA microarray probes, ethylene differentially induced 725 probes distributed as follows: 216 (29.8%) probes in the laminar abscission zone and 509 (70.2%) in the petiole. Functional MIPS classification and manual annotation of differentially expressed genes highlighted key processes regulating the activation and progress of the cell separation that brings about abscission. These included cell-wall modification, lipid transport, protein biosynthesis and degradation, and differential activation of signal transduction and transcription control pathways. Expression data associated with the petiole indicated the occurrence of a double defensive strategy mediated by the activation of a biochemical programme including scavenging ROS, defence and PR genes, and a physical response mostly based on lignin biosynthesis and deposition. This work identifies new genes probably involved in the onset and development of the leaf abscission process and suggests a different but co-ordinated and complementary role for the laminar abscission zone and the petiole during the process of abscission. PMID:18515267

  18. The ARF, AUX/IAA and GH3 gene families in citrus: genome-wide identification and expression analysis during fruitlet drop from abscission zone A.

    PubMed

    Xie, Rangjin; Pang, Shaoping; Ma, Yanyan; Deng, Lie; He, Shaolan; Yi, Shilai; Lv, Qiang; Zheng, Yongqiang

    2015-12-01

    Completion of the whole genome sequencing of citrus enabled us to perform genome-wide identification and functional analysis of the gene families involved in agronomic traits and morphological diversity of citrus. In this study, 22 CitARF, 11 CitGH3 and 26 CitAUX/IAA genes were identified in citrus, respectively. Phylogenetic analysis revealed that all the genes of each gene family could be subdivided into three groups and showed strong evolutionary conservation. The GH3 and AUX/IAA gene families shrank and ARF gene family was highly conserved in the citrus genome after speciation from Arabidopsis thaliana. Tissue-specific expression profiles revealed that 54 genes were expressed in at least one tissue while just 5 genes including CitARF07, CitARF20, CitGH3.04, CitAUX/IAA25 and CitAUX/IAA26 with very low expression level in all tissues tested, suggesting that the CitARF, CitGH3 and CitAUX/IAA gene families played important roles in the development of citrus organs. In addition, our data found that the expression of 2 CitARF, 4 CitGH3 and 4 AUX/IAA genes was affected by IAA treatment, and 7 genes including, CitGH3.04, CitGH3.07, CitAUX/IAA03, CitAUX/IAA04, CitAUX/IAA18, CitAUX/IAA19 and CitAUX/IAA23 were related to fruitlet abscission. This study provides a foundation for future studies on elucidating the precise role of citrus ARF, GH3 and AUX/IAA genes in early steps of auxin signal transduction and open up a new opportunity to uncover the molecular mechanism underlying citrus fruitlet abscission. PMID:25982744

  19. Thalamocortical Connections of Functional Zones in Posterior Parietal Cortex and Frontal Cortex Motor Regions in New World Monkeys

    PubMed Central

    Stepniewska, Iwona; Burish, Mark J.; Kaas, Jon H.

    2010-01-01

    Posterior parietal cortex (PPC) links primate visual and motor systems and is central to visually guided action. Relating the anatomical connections of PPC to its neurophysiological functions may elucidate the organization of the parietal–frontal network. In owl and squirrel monkeys, long-duration electrical stimulation distinguished several functional zones within the PPC and motor/premotor cortex (M1/PM). Multijoint forelimb movements reminiscent of reach, defense, and grasp behaviors characterized each functional zone. In PPC, functional zones were organized parallel to the lateral sulcus. Thalamocortical connections of PPC and M1/PM zones were investigated with retrograde tracers. After several days of tracer transport, brains were processed, and labeled cells in thalamic nuclei were plotted. All PPC zones received dense inputs from the lateral posterior nucleus and the anterior pulvinar. PPC zones received additional projections from ventral lateral (VL) divisions of motor thalamus, which were also the primary source of input to M1/PM. Projections to PPC from rostral motor thalamus were sparse. Dense projections from ventral posterior (VP) nucleus of somatosensory thalamus distinguished the rostrolateral grasp zone from the other PPC zones. PPC connections with VL and VP provide links to cerebellar nuclei and the somatosensory system, respectively, that may integrate PPC functions with M1/PM. PMID:20080929

  20. A Novel Approach to Dissect the Abscission Process in Arabidopsis1[C][W][OA

    PubMed Central

    González-Carranza, Zinnia Haydee; Shahid, Ahmad Ali; Zhang, Li; Liu, Yang; Ninsuwan, Unchalee; Roberts, Jeremy Alan

    2012-01-01

    Abscission is the consequence of a specialized layer of cells undergoing a complex series of molecular and biochemical events. Analysis of the specific molecular changes associated with abscission is hampered by contamination from neighboring nonseparating tissues. Moreover, studies of abscission frequently involve the examination of events that take place in isolated segments of tissue exposed to nonphysiological concentrations of ethylene or indole-3-acetic acid for protracted periods (more than 24 h) of time. To resolve these problems, we have adopted the use of a transgenic line of Arabidopsis (Arabidopsis thaliana) where the promoter of an abscission-specific polygalacturonase gene (At2g41850/ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2) has been fused to a green fluorescent protein reporter. RNA was extracted from green fluorescent protein-tagged cells, released from abscising floral organs, and used to generate a complementary DNA library. This library was used to probe a microarray, and a population of abscission-related transcripts was studied in detail. Seven novel abscission-related genes were identified, four of which encode proteins of unknown function. Reverse transcription-polymerase chain reaction analyses and promoter fusions to the β-glucuronidase reporter gene confirmed the expression of these genes in the abscission zone and revealed other places of expression during seedling development. Three of these genes were studied further by crossing reporter lines to the abscission mutants inflorescence deficient in abscission (ida) and blade-on-petiole1 (bop1)/bop2 and an IDA-overexpressing line. Phenotypic analysis of an At3g14380 transfer DNA insertion line indicates that this gene plays a functional role in floral organ shedding. This strategy has enabled us to uncover new genes involved in abscission, and their possible contribution to the process is discussed. PMID:22992509

  1. Ethephon induced abscission in mango: physiological fruitlet responses.

    PubMed

    Hagemann, Michael H; Winterhagen, Patrick; Hegele, Martin; Wünsche, Jens N

    2015-01-01

    Fruitlet abscission of mango is typically very severe, causing considerable production losses worldwide. Consequently, a detailed physiological and molecular characterization of fruitlet abscission in mango is required to describe the onset and time-dependent course of this process. To identify the underlying key mechanisms of abscission, ethephon, an ethylene releasing substance, was applied at two concentrations (600 and 7200 ppm) during the midseason drop stage of mango. The abscission process is triggered by ethylene diffusing to the abscission zone where it binds to specific receptors and thereby activating several key physiological responses at the cellular level. The treatments reduced significantly the capacity of polar auxin transport through the pedicel at 1 day after treatment and thereafter when compared to untreated pedicels. The transcript levels of the ethylene receptor genes MiETR1 and MiERS1 were significantly upregulated in the pedicel and pericarp at 1, 2, and 3 days after the ethephon application with 7200 ppm, except for MiETR1 in the pedicel, when compared to untreated fruitlet. In contrast, ethephon applications with 600 ppm did not affect expression levels of MiETR1 in the pedicel and of MiERS1 in the pericarp; however, MiETR1 in the pericarp at day 2 and MiERS1 in the pedicel at days 2 and 3 were significantly upregulated over the controls. Moreover, two novel short versions of the MiERS1 were identified and detected more often in the pedicel of treated than untreated fruitlets at all sampling times. Sucrose concentration in the fruitlet pericarp was significantly reduced to the control at 2 days after both ethephon treatments. In conclusion, it is postulated that the ethephon-induced abscission process commences with a reduction of the polar auxin transport capacity in the pedicel, followed by an upregulation of ethylene receptors and finally a decrease of the sucrose concentration in the fruitlets. PMID:26442021

  2. Ethephon induced abscission in mango: physiological fruitlet responses

    PubMed Central

    Hagemann, Michael H.; Winterhagen, Patrick; Hegele, Martin; Wünsche, Jens N.

    2015-01-01

    Fruitlet abscission of mango is typically very severe, causing considerable production losses worldwide. Consequently, a detailed physiological and molecular characterization of fruitlet abscission in mango is required to describe the onset and time-dependent course of this process. To identify the underlying key mechanisms of abscission, ethephon, an ethylene releasing substance, was applied at two concentrations (600 and 7200 ppm) during the midseason drop stage of mango. The abscission process is triggered by ethylene diffusing to the abscission zone where it binds to specific receptors and thereby activating several key physiological responses at the cellular level. The treatments reduced significantly the capacity of polar auxin transport through the pedicel at 1 day after treatment and thereafter when compared to untreated pedicels. The transcript levels of the ethylene receptor genes MiETR1 and MiERS1 were significantly upregulated in the pedicel and pericarp at 1, 2, and 3 days after the ethephon application with 7200 ppm, except for MiETR1 in the pedicel, when compared to untreated fruitlet. In contrast, ethephon applications with 600 ppm did not affect expression levels of MiETR1 in the pedicel and of MiERS1 in the pericarp; however, MiETR1 in the pericarp at day 2 and MiERS1 in the pedicel at days 2 and 3 were significantly upregulated over the controls. Moreover, two novel short versions of the MiERS1 were identified and detected more often in the pedicel of treated than untreated fruitlets at all sampling times. Sucrose concentration in the fruitlet pericarp was significantly reduced to the control at 2 days after both ethephon treatments. In conclusion, it is postulated that the ethephon-induced abscission process commences with a reduction of the polar auxin transport capacity in the pedicel, followed by an upregulation of ethylene receptors and finally a decrease of the sucrose concentration in the fruitlets. PMID:26442021

  3. Auxin involvement in tepal senescence and abscission in Lilium: a tale of two lilies.

    PubMed

    Lombardi, Lara; Arrom, Laia; Mariotti, Lorenzo; Battelli, Riccardo; Picciarelli, Piero; Kille, Peter; Stead, Tony; Munné-Bosch, Sergi; Rogers, Hilary J

    2015-02-01

    Petal wilting and/or abscission terminates the life of the flower. However, how wilting and abscission are coordinated is not fully understood. There is wide variation in the extent to which petals wilt before abscission, even between cultivars of the same species. For example, tepals of Lilium longiflorum wilt substantially, while those of the closely related Lilium longiflorum×Asiatic hybrid (L.A.) abscise turgid. Furthermore, close comparison of petal death in these two Lilium genotypes shows that there is a dramatic fall in fresh weight/dry weight accompanied by a sharp increase in ion leakage in late senescent L. longiflorum tepals, neither of which occur in Lilium L.A. Despite these differences, a putative abscission zone was identified in both lilies, but while the detachment force was reduced to zero in Lilium L.A., wilting of the fused tepals in L. longiflorum occurred before abscission was complete. Abscission is often negatively regulated by auxin, and the possible role of auxin in regulating tepal abscission relative to wilting was tested in the two lilies. There was a dramatic increase in auxin levels with senescence in L. longiflorum but not in Lilium L.A. Fifty auxin-related genes were expressed in early senescent L. longiflorum tepals including 12 ARF-related genes. In Arabidopsis, several ARF genes are involved in the regulation of abscission. Expression of a homologous transcript to Arabidopsis ARF7/19 was 8-fold higher during senescence in L. longiflorum compared with abscising Lilium L.A., suggesting a conserved role for auxin-regulated abscission in monocotyledonous ethylene-insensitive flowers. PMID:25422499

  4. Auxin involvement in tepal senescence and abscission in Lilium: a tale of two lilies

    PubMed Central

    Lombardi, Lara; Arrom, Laia; Mariotti, Lorenzo; Battelli, Riccardo; Picciarelli, Piero; Kille, Peter; Stead, Tony; Munné-Bosch, Sergi; Rogers, Hilary J.

    2015-01-01

    Petal wilting and/or abscission terminates the life of the flower. However, how wilting and abscission are coordinated is not fully understood. There is wide variation in the extent to which petals wilt before abscission, even between cultivars of the same species. For example, tepals of Lilium longiflorum wilt substantially, while those of the closely related Lilium longiflorum×Asiatic hybrid (L.A.) abscise turgid. Furthermore, close comparison of petal death in these two Lilium genotypes shows that there is a dramatic fall in fresh weight/dry weight accompanied by a sharp increase in ion leakage in late senescent L. longiflorum tepals, neither of which occur in Lilium L.A. Despite these differences, a putative abscission zone was identified in both lilies, but while the detachment force was reduced to zero in Lilium L.A., wilting of the fused tepals in L. longiflorum occurred before abscission was complete. Abscission is often negatively regulated by auxin, and the possible role of auxin in regulating tepal abscission relative to wilting was tested in the two lilies. There was a dramatic increase in auxin levels with senescence in L. longiflorum but not in Lilium L.A. Fifty auxin-related genes were expressed in early senescent L. longiflorum tepals including 12 ARF-related genes. In Arabidopsis, several ARF genes are involved in the regulation of abscission. Expression of a homologous transcript to Arabidopsis ARF7/19 was 8-fold higher during senescence in L. longiflorum compared with abscising Lilium L.A., suggesting a conserved role for auxin-regulated abscission in monocotyledonous ethylene-insensitive flowers. PMID:25422499

  5. Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones

    PubMed Central

    Herculano-Houzel, Suzana; Watson, Charles; Paxinos, George

    2013-01-01

    How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005) to analyze the distribution of neurons across the entire isocortex of the mouse, divided into 18 functional areas defined anatomically. We find that the number of neurons underneath a surface area (the N/A ratio) varies 4.5-fold across functional areas and neuronal density varies 3.2-fold. The face area of S1 contains the most neurons, followed by motor cortex and the primary visual cortex. Remarkably, while the distribution of neurons across functional areas does not accompany the distribution of surface area, it mirrors closely the distribution of cortical volumes—with the exception of the visual areas, which hold more neurons than expected for their volume. Across the non-visual cortex, the volume of individual functional areas is a shared linear function of their number of neurons, while in the visual areas, neuronal densities are much higher than in all other areas. In contrast, the 18 functional areas cluster into three different zones according to the relationship between the N/A ratio and cortical thickness and neuronal density: these three clusters can be called visual, sensory, and, possibly, associative. These findings are remarkably similar to those in the human cerebral cortex (Ribeiro et al., 2013) and suggest that, like the human cerebral cortex, the mouse cerebral cortex comprises two zones that differ in how neurons form the cortical volume, and three zones that differ in how neurons are distributed underneath the cortical surface, possibly in relation to local differences in connectivity through the white matter. Our results suggest that beyond the developmental divide into visual and non-visual cortex, functional areas initially share a common distribution of neurons along the parenchyma that become delimited into functional areas according to the pattern of connectivity established later

  6. Functional zones in the auditory cortex of the echolocating bat, Myotis lucifugus.

    PubMed

    Wong, D; Shannon, S L

    1988-06-21

    Neurophysiological mapping experiments in the auditory cortex of the frequency-modulated bat, Myotis lucifugus, reveal 3 functional subregions: a tonotopic zone located dorsally, a delay-sensitive zone more ventrally, and an intermediate zone of major overlap. The unique finding of an overlapping cortical region representing both spectral and time-delay information of echoes is intriguing in view of a recent behavioral study suggesting the convergence of such echo cues in auditory perception. (Simmons et al., Soc. Neurosci. Abstr., 13 [1987] 870). PMID:3401773

  7. The origins of thalamic inputs to grasp zones in frontal cortex of macaque monkeys.

    PubMed

    Gharbawie, Omar A; Stepniewska, Iwona; Kaas, Jon H

    2016-07-01

    The hand representation in primary motor cortex (M1) is instrumental to manual dexterity in primates. In Old World monkeys, rostral and caudal aspects of the hand representation are located in the precentral gyrus and the anterior bank of the central sulcus, respectively. We previously reported the organization of the cortico-cortical connections of the grasp zone in rostral M1. Here we describe the organization of thalamocortical connections that were labeled from the same tracer injections. Thalamocortical connections of a grasp zone in ventral premotor cortex (PMv) and the M1 orofacial representation are included for direct comparison. The M1 grasp zone was primarily connected with ventral lateral divisions of motor thalamus. The largest proportion of inputs originated in the posterior division (VLp) followed by the medial and the anterior divisions. Thalamic inputs to the M1 grasp zone originated in more lateral aspects of VLp as compared to the origins of thalamic inputs to the M1 orofacial representation. Inputs to M1 from thalamic divisions connected with cerebellum constituted three fold the density of inputs from divisions connected with basal ganglia, whereas the ratio of inputs was more balanced for the grasp zone in PMv. Privileged access of the cerebellothalamic pathway to the grasp zone in rostral M1 is consistent with the connection patterns previously reported for the precentral gyrus. Thus, cerebellar nuclei are likely more involved than basal ganglia nuclei with the contributions of rostral M1 to manual dexterity. PMID:26254903

  8. Reactive oxygen species in leaf abscission signaling

    PubMed Central

    Sakamoto, Masaru; Munemura, Ikuko; Tomita, Reiko

    2008-01-01

    Reactive oxygen species (ROS) are produced in response to many environmental stresses, such as UV, chilling, salt and pathogen attack. These stresses also accompany leaf abscission in some plants, however, the relationship between these stresses and abscission is poorly understood. In our recent report, we developed an in vitro abscission system that reproduces stress-induced pepper leaf abscission in planta. Using this system, we demonstrated that continuous production of hydrogen peroxide (H2O2) is involved in leaf abscission signaling. Continuous H2O2 production is required to induce expression of the cell wall-degrading enzyme, cellulase and functions downstream of ethylene in abscission signaling. Furthermore, enhanced production of H2O2 occurs at the execution phase of abscission, suggesting that H2O2 also plays a role in the cell-wall degradation process. These data suggest that H2O2 has several roles in leaf abscission signaling. Here, we propose a model for these roles. PMID:19704438

  9. Abscission: Role of Abscisic Acid

    PubMed Central

    Cracker, L. E.; Abeles, F. B.

    1969-01-01

    The effect of abscisic acid on cotton (Gossypium hirsutum L. cv. Acala 4-42) and bean (Phaseolus vulgaris L. cv. Red Kidney) explants was 2-fold. It increased ethylene production from the explants, which was found to account for some of its ability to accelerate abscission. Absci is acid also increased the activity of cellulase. Increased synthesis of cellulase was not du to an increase in aging of the explants but rather was an effect of abscisic acid on the processes that lead to cellulase synthesis or activity. PMID:16657181

  10. Transcriptome Analysis of Soybean Leaf Abscission Identifies Transcriptional Regulators of Organ Polarity and Cell Fate

    PubMed Central

    Kim, Joonyup; Yang, Jinyoung; Yang, Ronghui; Sicher, Richard C.; Chang, Caren; Tucker, Mark L.

    2016-01-01

    Abscission, organ separation, is a developmental process that is modulated by endogenous and environmental factors. To better understand the molecular events underlying the progression of abscission in soybean, an agriculturally important legume, we performed RNA sequencing (RNA-seq) of RNA isolated from the leaf abscission zones (LAZ) and petioles (Non-AZ, NAZ) after treating stem/petiole explants with ethylene for 0, 12, 24, 48, and 72 h. As expected, expression of several families of cell wall modifying enzymes and many pathogenesis-related (PR) genes specifically increased in the LAZ as abscission progressed. Here, we focus on the 5,206 soybean genes we identified as encoding transcription factors (TFs). Of the 5,206 TFs, 1,088 were differentially up- or down-regulated more than eight-fold in the LAZ over time, and, within this group, 188 of the TFs were differentially regulated more than eight-fold in the LAZ relative to the NAZ. These 188 abscission-specific TFs include several TFs containing domains for homeobox, MYB, Zinc finger, bHLH, AP2, NAC, WRKY, YABBY, and auxin-related motifs. To discover the connectivity among the TFs and highlight developmental processes that support organ separation, the 188 abscission-specific TFs were then clustered based on a >four-fold up- or down-regulation in two consecutive time points (i.e., 0 and 12 h, 12 and 24 h, 24 and 48 h, or 48 and 72 h). By requiring a sustained change in expression over two consecutive time intervals and not just one or several time intervals, we could better tie changes in TFs to a particular process or phase of abscission. The greatest number of TFs clustered into the 0 and 12 h group. Transcriptional network analysis for these abscission-specific TFs indicated that most of these TFs are known as key determinants in the maintenance of organ polarity, lateral organ growth, and cell fate. The abscission-specific expression of these TFs prior to the onset of abscission and their functional

  11. Genome-wide digital transcript analysis of putative fruitlet abscission related genes regulated by ethephon in litchi

    PubMed Central

    Li, Caiqin; Wang, Yan; Ying, Peiyuan; Ma, Wuqiang; Li, Jianguo

    2015-01-01

    The high level of physiological fruitlet abscission in litchi (Litchi chinensis Sonn.) causes severe yield loss. Cell separation occurs at the fruit abscission zone (FAZ) and can be triggered by ethylene. However, a deep knowledge of the molecular events occurring in the FAZ is still unknown. Here, genome-wide digital transcript abundance (DTA) analysis of putative fruit abscission related genes regulated by ethephon in litchi were studied. More than 81 million high quality reads from seven ethephon treated and untreated control libraries were obtained by high-throughput sequencing. Through DTA profile analysis in combination with Gene Ontology and KEGG pathway enrichment analyses, a total of 2730 statistically significant candidate genes were involved in the ethephon-promoted litchi fruitlet abscission. Of these, there were 1867 early-responsive genes whose expressions were up- or down-regulated from 0 to 1 d after treatment. The most affected genes included those related to ethylene biosynthesis and signaling, auxin transport and signaling, transcription factors (TFs), protein ubiquitination, ROS response, calcium signal transduction, and cell wall modification. These genes could be clustered into four groups and 13 subgroups according to their similar expression patterns. qRT-PCR displayed the expression pattern of 41 selected candidate genes, which proved the accuracy of our DTA data. Ethephon treatment significantly increased fruit abscission and ethylene production of fruitlet. The possible molecular events to control the ethephon-promoted litchi fruitlet abscission were prompted out. The increased ethylene evolution in fruitlet would suppress the synthesis and polar transport of auxin and trigger abscission signaling. To the best of our knowledge, it is the first time to monitor the gene expression profile occurring in the FAZ-enriched pedicel during litchi fruit abscission induced by ethephon on the genome-wide level. This study will contribute to a better

  12. Genome-wide digital transcript analysis of putative fruitlet abscission related genes regulated by ethephon in litchi.

    PubMed

    Li, Caiqin; Wang, Yan; Ying, Peiyuan; Ma, Wuqiang; Li, Jianguo

    2015-01-01

    The high level of physiological fruitlet abscission in litchi (Litchi chinensis Sonn.) causes severe yield loss. Cell separation occurs at the fruit abscission zone (FAZ) and can be triggered by ethylene. However, a deep knowledge of the molecular events occurring in the FAZ is still unknown. Here, genome-wide digital transcript abundance (DTA) analysis of putative fruit abscission related genes regulated by ethephon in litchi were studied. More than 81 million high quality reads from seven ethephon treated and untreated control libraries were obtained by high-throughput sequencing. Through DTA profile analysis in combination with Gene Ontology and KEGG pathway enrichment analyses, a total of 2730 statistically significant candidate genes were involved in the ethephon-promoted litchi fruitlet abscission. Of these, there were 1867 early-responsive genes whose expressions were up- or down-regulated from 0 to 1 d after treatment. The most affected genes included those related to ethylene biosynthesis and signaling, auxin transport and signaling, transcription factors (TFs), protein ubiquitination, ROS response, calcium signal transduction, and cell wall modification. These genes could be clustered into four groups and 13 subgroups according to their similar expression patterns. qRT-PCR displayed the expression pattern of 41 selected candidate genes, which proved the accuracy of our DTA data. Ethephon treatment significantly increased fruit abscission and ethylene production of fruitlet. The possible molecular events to control the ethephon-promoted litchi fruitlet abscission were prompted out. The increased ethylene evolution in fruitlet would suppress the synthesis and polar transport of auxin and trigger abscission signaling. To the best of our knowledge, it is the first time to monitor the gene expression profile occurring in the FAZ-enriched pedicel during litchi fruit abscission induced by ethephon on the genome-wide level. This study will contribute to a better

  13. Ethylene, Plant Senescence and Abscission 1

    PubMed Central

    Burg, Stanley P.

    1968-01-01

    Evidence supporting the hypothesis that ethylene is involved in the control of senescence and abscission is reviewed. The data indicate that ethylene causes abscission in vivo by inhibiting auxin synthesis and transport or enhancing auxin destruction, thus lowering the diffusible auxin level. Studies with isolated leaves and explants suggest that the gas also may influence abscission by accelerating senescence and through an action on plant cell walls. Freshly prepared explants produce ethylene at a rate which must be high enough to maximally affect the tissue and this may explain why these explants (stage I) cannot respond to applied ethylene. PMID:16657016

  14. WD Repeat-containing Protein 5 (WDR5) Localizes to the Midbody and Regulates Abscission*

    PubMed Central

    Bailey, Jeffrey K.; Fields, Alexander T.; Cheng, Kaijian; Lee, Albert; Wagenaar, Eric; Lagrois, Remy; Schmidt, Bailey; Xia, Bin; Ma, Dzwokai

    2015-01-01

    Cytokinesis partitions the cytoplasm of a parent cell into two daughter cells and is essential for the completion of cell division. The final step of cytokinesis in animal cells is abscission, which is a process leading to the physical separation of two daughter cells. Abscission requires membrane traffic and microtubule disassembly at a specific midbody region called the secondary ingression. Here, we report that WD repeat-containing protein 5 (WDR5), a core subunit of COMPASS/MLL family histone H3 lysine 4 methyltransferase (H3K4MT) complexes, resides at the midbody and associates with a subset of midbody regulatory proteins, including PRC1 and CYK4/MKLP1. Knockdown of WDR5 impairs abscission and increases the incidence of multinucleated cells. Further investigation revealed that the abscission delay is primarily due to slower formation of secondary ingressions in WDR5 knockdown cells. Consistent with these defects, midbody microtubules in WDR5 knockdown cells also display enhanced resistance to depolymerization by nocodazole. Recruitment of WDR5 to the midbody dark zone appears to require integrity of the WDR5 central arginine-binding cavity, as mutations that disrupt histone H3 and MLL1 binding to this pocket also abolish the midbody localization of WDR5. Taken together, these data suggest that WDR5 is specifically targeted to the midbody in the absence of chromatin and that it promotes abscission, perhaps by facilitating midbody microtubule disassembly. PMID:25666610

  15. A knotted1-like homeobox protein regulates abscission in tomato by modulating the auxin pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    KD1, a gene encoding a KNOTTED1-LIKE HOMEOBOX transcription factor is known to be involved, in tomato, in ontogeny of the compound leaf. KD1 is also highly expressed in both leaf and flower abscission zones. Reducing abundance of transcripts of this gene in tomato, using both virus induced gene sile...

  16. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission.

    PubMed

    Santiago, Julia; Brandt, Benjamin; Wildhagen, Mari; Hohmann, Ulrich; Hothorn, Ludwig A; Butenko, Melinka A; Hothorn, Michael

    2016-01-01

    Plants constantly renew during their life cycle and thus require to shed senescent and damaged organs. Floral abscission is controlled by the leucine-rich repeat receptor kinase (LRR-RK) HAESA and the peptide hormone IDA. It is unknown how expression of IDA in the abscission zone leads to HAESA activation. Here we show that IDA is sensed directly by the HAESA ectodomain. Crystal structures of HAESA in complex with IDA reveal a hormone binding pocket that accommodates an active dodecamer peptide. A central hydroxyproline residue anchors IDA to the receptor. The HAESA co-receptor SERK1, a positive regulator of the floral abscission pathway, allows for high-affinity sensing of the peptide hormone by binding to an Arg-His-Asn motif in IDA. This sequence pattern is conserved among diverse plant peptides, suggesting that plant peptide hormone receptors may share a common ligand binding mode and activation mechanism. PMID:27058169

  17. The legume NOOT-BOP-COCH-LIKE genes are conserved regulators of abscission, a major agronomical trait in cultivated crops.

    PubMed

    Couzigou, Jean-Malo; Magne, Kevin; Mondy, Samuel; Cosson, Viviane; Clements, Jonathan; Ratet, Pascal

    2016-01-01

    Plants are able to lose organs selectively through a process called abscission. This process relies on the differentiation of specialized territories at the junction between organs and the plant body that are called abscission zones (AZ). Several genes control the formation or functioning of these AZ. We have characterized BLADE-ON-PETIOLE (BOP) orthologues from several legume plants and studied their roles in the abscission process using a mutant approach. Here, we show that the Medicago truncatula NODULE ROOT (NOOT), the Pisum sativum COCHLEATA (COCH) and their orthologue in Lotus japonicus are strictly necessary for the abscission of not only petals, but also leaflets, leaves and fruits. We also showed that the expression pattern of the M. truncatula pNOOT::GUS fusion is associated with functional and vestigial AZs when expressed in Arabidopsis. In addition, we show that the stip mutant from Lupinus angustifolius, defective in stipule formation and leaf abscission, is mutated in a BOP orthologue. In conclusion, this study shows that this clade of proteins plays an important conserved role in promoting abscission of all aerial organs studied so far. PMID:26390061

  18. Understanding the Physiology of Postharvest Needle Abscission in Balsam Fir

    PubMed Central

    Lada, Rajasekaran R.; MacDonald, Mason T.

    2015-01-01

    Balsam fir (Abies balsamea) trees are commonly used as a specialty horticultural species for Christmas trees and associated greenery in eastern Canada and United States. Postharvest needle abscission has always been a problem, but is becoming an even bigger challenge in recent years presumably due to increased autumn temperatures and earlier harvesting practices. An increased understanding of postharvest abscission physiology in balsam fir may benefit the Christmas tree industry while simultaneously advancing our knowledge in senescence and abscission of conifers in general. Our paper describes the dynamics of needle abscission in balsam fir while identifying key factors that modify abscission patterns. Concepts such as genotypic abscission resistance, nutrition, environmental factors, and postharvest changes in water conductance and hormone evolution are discussed as they relate to our understanding of the balsam fir abscission physiology. Our paper ultimately proposes a pathway for needle abscission via ethylene and also suggests other potential alternative pathways based on our current understanding. PMID:26635863

  19. Roles of Ethylene Production and Ethylene Receptor Expression in Regulating Apple Fruitlet Abscission.

    PubMed

    Eccher, Giulia; Begheldo, Maura; Boschetti, Andrea; Ruperti, Benedetto; Botton, Alessandro

    2015-09-01

    Apple (Malus × domestica) is increasingly being considered an interesting model species for studying early fruit development, during which an extremely relevant phenomenon, fruitlet abscission, may occur as a response to both endogenous and/or exogenous cues. Several studies were carried out shedding light on the main physiological and molecular events leading to the selective release of lateral fruitlets within a corymb, either occurring naturally or as a result of a thinning treatment. Several studies pointed out a clear association between a rise of ethylene biosynthetic levels in the fruitlet and its tendency to abscise. A direct mechanistic link, however, has not yet been established between this gaseous hormone and the generation of the abscission signal within the fruit. In this work, the role of ethylene during the very early stages of abscission induction was investigated in fruitlet populations with different abscission potentials due either to the natural correlative inhibitions determining the so-called physiological fruit drop or to a well-tested thinning treatment performed with the cytokinin benzyladenine. A crucial role was ascribed to the ratio between the ethylene produced by the cortex and the expression of ethylene receptor genes in the seed. This ratio would determine the final probability to abscise. A working model has been proposed consistent with the differential distribution of four receptor transcripts within the seed, which resembles a spatially progressive cell-specific immune-like mechanism evolved by apple to protect the embryo from harmful ethylene. PMID:25888617

  20. Roles of Ethylene Production and Ethylene Receptor Expression in Regulating Apple Fruitlet Abscission1[OPEN

    PubMed Central

    Eccher, Giulia; Begheldo, Maura; Boschetti, Andrea; Ruperti, Benedetto; Botton, Alessandro

    2015-01-01

    Apple (Malus × domestica) is increasingly being considered an interesting model species for studying early fruit development, during which an extremely relevant phenomenon, fruitlet abscission, may occur as a response to both endogenous and/or exogenous cues. Several studies were carried out shedding light on the main physiological and molecular events leading to the selective release of lateral fruitlets within a corymb, either occurring naturally or as a result of a thinning treatment. Several studies pointed out a clear association between a rise of ethylene biosynthetic levels in the fruitlet and its tendency to abscise. A direct mechanistic link, however, has not yet been established between this gaseous hormone and the generation of the abscission signal within the fruit. In this work, the role of ethylene during the very early stages of abscission induction was investigated in fruitlet populations with different abscission potentials due either to the natural correlative inhibitions determining the so-called physiological fruit drop or to a well-tested thinning treatment performed with the cytokinin benzyladenine. A crucial role was ascribed to the ratio between the ethylene produced by the cortex and the expression of ethylene receptor genes in the seed. This ratio would determine the final probability to abscise. A working model has been proposed consistent with the differential distribution of four receptor transcripts within the seed, which resembles a spatially progressive cell-specific immune-like mechanism evolved by apple to protect the embryo from harmful ethylene. PMID:25888617

  1. Burst of reactive oxygen species in pedicel-mediated fruit abscission after carbohydrate supply was cut off in longan (Dimocarpus longan)

    PubMed Central

    Yang, Ziqin; Zhong, Xiumei; Fan, Yan; Wang, Huicong; Li, Jianguo; Huang, Xuming

    2015-01-01

    Cutting off carbohydrate supply to longan (Dimocarpus longan Lour.) fruit by girdling and defoliation or by detachment induced 100% abscission within a few days. We used these treatments to study the involvement of reactive oxygen species (ROS) in fruit abscission. Girdling plus defoliation decreased sugar concentrations in the fruit and pedicel and depleted starch grains in the chloroplasts in the cells of abscission zone. Prior to the occurrence of intensive fruit abscission, there was a burst in ROS in the pedicel, which peaked at 1 day after treatment (DAT), when H2O2 in the abscission zone was found to be chiefly located along the plasma membrane (PM). H2O2 was found exclusively in the cell walls 2 DAT, almost disappeared 3 DAT, and reappeared in the mitochondria and cell walls 4 DAT. Signs of cell death such as cytoplasm breakdown were apparent from 3 DAT. The burst of ROS coincided with a sharp increase in the activity of PM-bound NADPH oxidase in the pedicel. At the same time, activities of antioxidant enzymes including superoxide dismutase (SOD), catalase, and peroxidase (POD) were all increased by the treatment and maintained higher than those in the control. Accompanying the reduction in H2O2 abundance, there was a sharp decrease in PM-bound NADPH oxidase activity after 1 DAT in the treated fruit. H2O2 scavenger dimethylthiourea (DMTU, 1 g L–1) significantly inhibited fruit abscission in detached fruit clusters and suppressed the increase in cellulase activity in the abscission zone. These results suggest that fruit abscission induced by carbohydrate stress is mediated by ROS. Roles of ROS in regulating fruit abscission were discussed in relation to its subcellular distribution. PMID:26074931

  2. Burst of reactive oxygen species in pedicel-mediated fruit abscission after carbohydrate supply was cut off in longan (Dimocarpus longan).

    PubMed

    Yang, Ziqin; Zhong, Xiumei; Fan, Yan; Wang, Huicong; Li, Jianguo; Huang, Xuming

    2015-01-01

    Cutting off carbohydrate supply to longan (Dimocarpus longan Lour.) fruit by girdling and defoliation or by detachment induced 100% abscission within a few days. We used these treatments to study the involvement of reactive oxygen species (ROS) in fruit abscission. Girdling plus defoliation decreased sugar concentrations in the fruit and pedicel and depleted starch grains in the chloroplasts in the cells of abscission zone. Prior to the occurrence of intensive fruit abscission, there was a burst in ROS in the pedicel, which peaked at 1 day after treatment (DAT), when H2O2 in the abscission zone was found to be chiefly located along the plasma membrane (PM). H2O2 was found exclusively in the cell walls 2 DAT, almost disappeared 3 DAT, and reappeared in the mitochondria and cell walls 4 DAT. Signs of cell death such as cytoplasm breakdown were apparent from 3 DAT. The burst of ROS coincided with a sharp increase in the activity of PM-bound NADPH oxidase in the pedicel. At the same time, activities of antioxidant enzymes including superoxide dismutase (SOD), catalase, and peroxidase (POD) were all increased by the treatment and maintained higher than those in the control. Accompanying the reduction in H2O2 abundance, there was a sharp decrease in PM-bound NADPH oxidase activity after 1 DAT in the treated fruit. H2O2 scavenger dimethylthiourea (DMTU, 1 g L(-1)) significantly inhibited fruit abscission in detached fruit clusters and suppressed the increase in cellulase activity in the abscission zone. These results suggest that fruit abscission induced by carbohydrate stress is mediated by ROS. Roles of ROS in regulating fruit abscission were discussed in relation to its subcellular distribution. PMID:26074931

  3. Evolutionary origin of Tbr2-expressing precursor cells and the subventricular zone in the developing cortex.

    PubMed

    Martínez-Cerdeño, Verónica; Cunningham, Christopher L; Camacho, Jasmin; Keiter, Janet A; Ariza, Jeanelle; Lovern, Matthew; Noctor, Stephen C

    2016-02-15

    The subventricular zone (SVZ) is greatly expanded in primates with gyrencephalic cortices and is thought to be absent from vertebrates with three-layered, lissencephalic cortices, such as the turtle. Recent work in rodents has shown that Tbr2-expressing neural precursor cells in the SVZ produce excitatory neurons for each cortical layer in the neocortex. Many excitatory neurons are generated through a two-step process in which Pax6-expressing radial glial cells divide in the VZ to produce Tbr2-expressing intermediate progenitor cells, which divide in the SVZ to produce cortical neurons. We investigated the evolutionary origin of SVZ neural precursor cells in the prenatal cerebral cortex by testing for the presence and distribution of Tbr2-expressing cells in the prenatal cortex of reptilian and avian species. We found that mitotic Tbr2(+) cells are present in the prenatal cortex of lizard, turtle, chicken, and dove. Furthermore, Tbr2(+) cells are organized into a distinct SVZ in the dorsal ventricular ridge (DVR) of turtle forebrain and in the cortices of chicken and dove. Our results are consistent with the concept that Tbr2(+) neural precursor cells were present in the common ancestor of mammals and reptiles. Our data also suggest that the organizing principle guiding the assembly of Tbr2(+) cells into an anatomically distinct SVZ, both developmentally and evolutionarily, may be shared across vertebrates. Finally, our results indicate that Tbr2 expression can be used to test for the presence of a distinct SVZ and to define the boundaries of the SVZ in developing cortices. PMID:26267763

  4. Recovery from retinal lesions: molecular plasticity mechanisms in visual cortex far beyond the deprived zone.

    PubMed

    Hu, Tjing-Tjing; Van den Bergh, Gert; Thorrez, Lieven; Heylen, Kevin; Eysel, Ulf T; Arckens, Lutgarde

    2011-12-01

    In cats with central retinal lesions, deprivation of the lesion projection zone (LPZ) in primary visual cortex (area 17) induces remapping of the cortical topography. Recovery of visually driven cortical activity in the LPZ involves distinct changes in protein expression. Recent observations, about molecular activity changes throughout area 17, challenge the view that its remote nondeprived parts would not be involved in this recovery process. We here investigated the dynamics of the protein expression pattern of remote nondeprived area 17 triggered by central retinal lesions to explore to what extent far peripheral area 17 would contribute to the topographic map reorganization inside the visual cortex. Using functional proteomics, we identified 40 proteins specifically differentially expressed between far peripheral area 17 of control and experimental animals 14 days to 8 months postlesion. Our results demonstrate that far peripheral area 17 is implicated in the functional adaptation to the visual deprivation, involving a meshwork of interacting proteins, operating in diverse pathways. In particular, endocytosis/exocytosis processes appeared to be essential via their intimate correlation with long-term potentiation and neurite outgrowth mechanisms. PMID:21571696

  5. NEVERSHED and INFLORESCENCE DEFICIENT IN ABSCISSION are differentially required for cell expansion and cell separation during floral organ abscission in Arabidopsis thaliana.

    PubMed

    Liu, Bin; Butenko, Melinka A; Shi, Chun-Lin; Bolivar, Jenny L; Winge, Per; Stenvik, Grethe-Elisabeth; Vie, Ane Kjersti; Leslie, Michelle E; Brembu, Tore; Kristiansen, Wenche; Bones, Atle M; Patterson, Sara E; Liljegren, Sarah J; Aalen, Reidunn B

    2013-12-01

    Floral organ shedding is a cell separation event preceded by cell-wall loosening and generally accompanied by cell expansion. Mutations in NEVERSHED (NEV) or INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) block floral organ abscission in Arabidopsis thaliana. NEV encodes an ADP-ribosylation factor GTPase-activating protein, and cells of nev mutant flowers display membrane-trafficking defects. IDA encodes a secreted peptide that signals through the receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2). Analyses of single and double mutants revealed unique features of the nev and ida phenotypes. Cell-wall loosening was delayed in ida flowers. In contrast, nev and nev ida mutants displayed ectopic enlargement of abscission zone (AZ) cells, indicating that cell expansion alone is not sufficient to trigger organ loss. These results suggest that NEV initially prevents precocious cell expansion but is later integral for cell separation. IDA is involved primarily in the final cell separation step. A mutation in KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1), a suppressor of the ida mutant, could not rescue the abscission defects of nev mutant flowers, indicating that NEV-dependent activity downstream of KNAT1 is required. Transcriptional profiling of mutant AZs identified gene clusters regulated by IDA-HAE/HSL2. Several genes were more strongly downregulated in nev-7 compared with ida and hae hsl2 mutants, consistent with the rapid inhibition of organ loosening in nev mutants, and the overlapping roles of NEV and IDA in cell separation. A model of the crosstalk between the IDA signalling pathway and NEV-mediated membrane traffic during floral organ abscission is presented. PMID:23963677

  6. Environmental factors in the physiology of abscission.

    PubMed

    Addicott, F T

    1968-09-01

    This paper reviews the physiological effects of the principal environmental factors which can influence the process of leaf abscission. The factors include temperature, light, water, gases, mineral elements, soil conditions, and parasitic organisms. These factors influence a variety of internal physiological conditions and processes which in turn may either accelerate or retard the process of abscission. The most important internal factors include A) sugar, pectin, cellulose, and other carbohydrates; B) energy-yielding respiration; C) enzymic reactions; D) amino acids, purines, and other nitrogenous substances; E) levels of plant hormones; and F) the molecular biological pathway. The current information is consistent with the hypothesis that the environmental factors act in leaf abscission via direct or indirect influences on the synthesis or reaction rate of enzymes. PMID:16657013

  7. Effect of Ethylene on Flower Abscission: a Survey

    PubMed Central

    VAN DOORN, WOUTER G.

    2002-01-01

    The effect of ethylene on flower abscission was investigated in monocotyledons and eudicotyledons, in about 300 species from 50 families. In all species studied except Cymbidium, flower abscission was highly sensitive to ethylene. Flower fall was not consistent among the species in any family studied. It also showed no relationship with petal senescence or abscission, nor with petal colour changes or flower closure. Results suggest that flower abscission is generally mediated by endogenous ethylene, but that some exceptional ethylene‐insensitive abscission occurs in the Orchidaceae. PMID:12102524

  8. The Transcription Factor AtDOF4.7 Is Involved in Ethylene- and IDA-Mediated Organ Abscission in Arabidopsis

    PubMed Central

    Wang, Gao-Qi; Wei, Peng-Cheng; Tan, Feng; Yu, Man; Zhang, Xiao-Yan; Chen, Qi-Jun; Wang, Xue-Chen

    2016-01-01

    Organ abscission is an important plant developmental process that occurs in response to environmental stress or pathogens. In Arabidopsis, ligand signals, such as ethylene or INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), can regulate organ abscission. Previously, we reported that overexpression of AtDOF4.7, a transcription factor gene, directly suppresses the expression of the abscission-related gene ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 2 (ADPG2), resulting in a deficiency of floral organ abscission. However, the relationship between AtDOF4.7 and abscission pathways still needs to be investigated. In this study, we showed that ethylene regulates the expression of AtDOF4.7, and the peptide ligand, IDA negatively regulates AtDOF4.7 at the transcriptional level. Genetic evidence indicates that AtDOF4.7 and IDA are involved in a common pathway, and a MAPK cascade can phosphorylate AtDOF4.7 in vitro. Further in vivo data suggest that AtDOF4.7 protein levels may be regulated by this phosphorylation. Collectively, our results indicate that ethylene regulates AtDOF4.7 that is involved in the IDA-mediated floral organ abscission pathway. PMID:27379143

  9. The Transcription Factor AtDOF4.7 Is Involved in Ethylene- and IDA-Mediated Organ Abscission in Arabidopsis.

    PubMed

    Wang, Gao-Qi; Wei, Peng-Cheng; Tan, Feng; Yu, Man; Zhang, Xiao-Yan; Chen, Qi-Jun; Wang, Xue-Chen

    2016-01-01

    Organ abscission is an important plant developmental process that occurs in response to environmental stress or pathogens. In Arabidopsis, ligand signals, such as ethylene or INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), can regulate organ abscission. Previously, we reported that overexpression of AtDOF4.7, a transcription factor gene, directly suppresses the expression of the abscission-related gene ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 2 (ADPG2), resulting in a deficiency of floral organ abscission. However, the relationship between AtDOF4.7 and abscission pathways still needs to be investigated. In this study, we showed that ethylene regulates the expression of AtDOF4.7, and the peptide ligand, IDA negatively regulates AtDOF4.7 at the transcriptional level. Genetic evidence indicates that AtDOF4.7 and IDA are involved in a common pathway, and a MAPK cascade can phosphorylate AtDOF4.7 in vitro. Further in vivo data suggest that AtDOF4.7 protein levels may be regulated by this phosphorylation. Collectively, our results indicate that ethylene regulates AtDOF4.7 that is involved in the IDA-mediated floral organ abscission pathway. PMID:27379143

  10. Controlled free radical attack in the apoplast: a hypothesis for roles of O, N and S species in regulatory and polysaccharide cleavage events during rapid abscission by Azolla.

    PubMed

    Cohen, Michael F; Gurung, Sushma; Fukuto, Jon M; Yamasaki, Hideo

    2014-03-01

    Shedding of organs by abscission is a key terminal step in plant development and stress responses. Cell wall (CW) loosening at the abscission zone can occur through a combination chain breakage of apoplastic polysaccharides and tension release of cellulose microfibrils. Two distinctly regulated abscission cleavage events are amenable to study in small water ferns of the genus Azolla; one is a rapid abscission induced by environmental stimuli such as heat or chemicals, and the other is an ethylene-induced process occurring more slowly through the action of hydrolytic enzymes. Although free radicals are suggested to be involved in the induction of rapid root abscission, its mechanism is not fully understood. The apoplast contains peroxidases, metal-binding proteins and phenolic compounds that potentially generate free radicals from H2O2 to cleave polysaccharides in the CW and middle lamella. Effects of various thiol-reactive agents implicate the action of apoplastic peroxidases having accessible cysteine thiols in rapid abscission. The Ca(2+) dependency of rapid abscission may reflect the stabilization Ca(2+) confers to peroxidase structure and binding to pectin. To spur further investigation, we present a hypothetical model for small signaling molecules H2O2 and NO and their derivatives in regulating, via modification of putative protein thiols, free radical attack of apoplastic polysaccharides. PMID:24467903

  11. Controlled free radical attack in the apoplast: A hypothesis for roles of O, N and S species in regulatory and polysaccharide cleavage events during rapid abscission by Azolla

    PubMed Central

    Cohen, Michael F.; Gurung, Sushma; Fukuto, Jon M.; Yamasaki, Hideo

    2014-01-01

    Shedding of organs by abscission is a key terminal step in plant development and stress responses. Cell wall (CW) loosening at the abscission zone can occur through a combination chain breakage of apoplastic polysaccharides and tension release of cellulose microfibrils. Two distinctly regulated abscission cleavage events are amenable to study in small water ferns of the genus Azolla; one is a rapid abscission induced by environmental stimuli such as heat or chemicals, and the other is an ethylene-induced process occurring more slowly through the action of hydrolytic enzymes. Although free radicals are suggested to be involved in the induction of rapid root abscission, its mechanism is not fully understood. The apoplast contains peroxidases, metal-binding proteins and phenolic compounds that potentially generate free radicals from H2O2 to cleave polysaccharides in the CW and middle lamella. Effects of various thiol-reactive agents implicate the action of apoplastic peroxidases having accessible cysteine thiols in rapid abscission. The Ca2+ dependency of rapid abscission may reflect the stabilization Ca2+ confers to peroxidase structure and binding to pectin. To spur further investigation, we present a hypothetical model for small signaling molecules H2O2 and NO and their derivatives in regulating, via modification of putative protein thiols, free radical attack of apoplastic polysaccharides. PMID:24467903

  12. Four shades of detachment: Regulation of floral organ abscission

    PubMed Central

    Kim, Joonyup

    2014-01-01

    Abscission of floral organs from the main body of a plant is a dynamic process that is developmentally and environmentally regulated. In the past decade, genetic studies in Arabidopsis have identified key signaling components and revealed their interactions in the regulation of floral organ abscission. The phytohormones jasmonic acid (JA) and ethylene play critical roles in flower development and floral organ abscission. These hormones regulate the timing of floral organ abscission both independently and inter-dependently. Although significant progress has been made in understanding abscission signaling, there are still many unanswered questions. These include considering abscission in the context of reproductive development and interplay between hormones embedded in the developmental processes. This review summarizes recent advances in the identification of molecular components in Arabidopsis and discusses their relationship with reproductive development. The emerging roles of hormones in the regulation of floral organ abscission, particularly by JA and ethylene, are examined. PMID:25482787

  13. Transcriptional programs in transient embryonic zones of the cerebral cortex defined by high-resolution mRNA sequencing

    PubMed Central

    Ayoub, Albert E.; Oh, Sunghee; Xie, Yanhua; Leng, Jing; Cotney, Justin; Dominguez, Martin H.; Noonan, James P.; Rakic, Pasko

    2011-01-01

    Characterizing the genetic programs that specify development and evolution of the cerebral cortex is a central challenge in neuroscience. Stem cells in the transient embryonic ventricular and subventricular zones generate neurons that migrate across the intermediate zone to the overlying cortical plate, where they differentiate and form the neocortex. It is clear that not one but a multitude of molecular pathways are necessary to progress through each cellular milestone, yet the underlying transcriptional programs remain unknown. Here, we apply differential transcriptome analysis on microscopically isolated cell populations, to define five transcriptional programs that represent each transient embryonic zone and the progression between these zones. The five transcriptional programs contain largely uncharacterized genes in addition to transcripts necessary for stem cell maintenance, neurogenesis, migration, and differentiation. Additionally, we found intergenic transcriptionally active regions that possibly encode unique zone-specific transcripts. Finally, we present a high-resolution transcriptome map of transient zones in the embryonic mouse forebrain. PMID:21873192

  14. SILENCING POLYGALACTURONASE EXPRESSION INHIBITS TOMATO PETIOLE ABSCISSION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used Virus Induced Gene Silencing (VIGS) as a tool for functional analysis of cell-wall associated genes that have been suggested to be involved in leaf abscission. Tobacco rattle virus (TRV) is an effective vector for VIGS in tomato (Lycopersicon esculentum). Silencing was more efficient when ...

  15. Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato

    NASA Astrophysics Data System (ADS)

    Xie, Qiaoli; Hu, Zongli; Zhu, Zhiguo; Dong, Tingting; Zhao, Zhiping; Cui, Baolu; Chen, Guoping

    2014-03-01

    MADS-domain proteins are important transcription factors involved in many biological processes of plants. In our study, a tomato MADS-box gene, SlFYFL, was isolated. SlFYFL is expressed in all tissues of tomato and significantly higher in mature leave, fruit of different stages, AZ (abscission zone) and sepal. Delayed leaf senescence and fruit ripening, increased storability and longer sepals were observed in 35S:FYFL tomato. The accumulation of carotenoid was reduced, and ethylene content, ethylene biosynthetic and responsive genes were down-regulated in 35S:FYFL fruits. Abscission zone (AZ) did not form normally and abscission zone development related genes were declined in AZs of 35S:FYFL plants. Yeast two-hybrid assay revealed that SlFYFL protein could interact with SlMADS-RIN, SlMADS1 and SlJOINTLESS, respectively. These results suggest that overexpression of SlFYFL regulate fruit ripening and development of AZ via interactions with the ripening and abscission zone-related MADS box proteins.

  16. Dissociable influences of primary auditory cortex and the posterior auditory field on neuronal responses in the dorsal zone of auditory cortex

    PubMed Central

    Kok, Melanie A.; Stolzberg, Daniel; Brown, Trecia A.

    2014-01-01

    Current models of hierarchical processing in auditory cortex have been based principally on anatomical connectivity while functional interactions between individual regions have remained largely unexplored. Previous cortical deactivation studies in the cat have addressed functional reciprocal connectivity between primary auditory cortex (A1) and other hierarchically lower level fields. The present study sought to assess the functional contribution of inputs along multiple stages of the current hierarchical model to a higher order area, the dorsal zone (DZ) of auditory cortex, in the anaesthetized cat. Cryoloops were placed over A1 and posterior auditory field (PAF). Multiunit neuronal responses to noise burst and tonal stimuli were recorded in DZ during cortical deactivation of each field individually and in concert. Deactivation of A1 suppressed peak neuronal responses in DZ regardless of stimulus and resulted in increased minimum thresholds and reduced absolute bandwidths for tone frequency receptive fields in DZ. PAF deactivation had less robust effects on DZ firing rates and receptive fields compared with A1 deactivation, and combined A1/PAF cooling was largely driven by the effects of A1 deactivation at the population level. These results provide physiological support for the current anatomically based model of both serial and parallel processing schemes in auditory cortical hierarchical organization. PMID:25339709

  17. Dissociable influences of primary auditory cortex and the posterior auditory field on neuronal responses in the dorsal zone of auditory cortex.

    PubMed

    Kok, Melanie A; Stolzberg, Daniel; Brown, Trecia A; Lomber, Stephen G

    2015-01-15

    Current models of hierarchical processing in auditory cortex have been based principally on anatomical connectivity while functional interactions between individual regions have remained largely unexplored. Previous cortical deactivation studies in the cat have addressed functional reciprocal connectivity between primary auditory cortex (A1) and other hierarchically lower level fields. The present study sought to assess the functional contribution of inputs along multiple stages of the current hierarchical model to a higher order area, the dorsal zone (DZ) of auditory cortex, in the anaesthetized cat. Cryoloops were placed over A1 and posterior auditory field (PAF). Multiunit neuronal responses to noise burst and tonal stimuli were recorded in DZ during cortical deactivation of each field individually and in concert. Deactivation of A1 suppressed peak neuronal responses in DZ regardless of stimulus and resulted in increased minimum thresholds and reduced absolute bandwidths for tone frequency receptive fields in DZ. PAF deactivation had less robust effects on DZ firing rates and receptive fields compared with A1 deactivation, and combined A1/PAF cooling was largely driven by the effects of A1 deactivation at the population level. These results provide physiological support for the current anatomically based model of both serial and parallel processing schemes in auditory cortical hierarchical organization. PMID:25339709

  18. Abscission: Orchestration of vesicle transport, ESCRTs and kinase surveillance

    PubMed Central

    Chen, Chun-Ting; Hehnly, Heidi; Doxsey, Stephen J.

    2014-01-01

    Preface During the final stage of cell division, the future daughter cells are physically separated in a process called abscission. This process requires coordination of a number of molecular machines that mediate a complex series of events to culminate in the final separation of daughter cells. Abscission is coordinated with other cellular processes (for example, nuclear pore reassembly) through mitotic kinases that act as master regulators to ensure proper progression of abscission. PMID:22781903

  19. Role of RNA and Protein Synthesis in Abscission

    PubMed Central

    Abeles, F. B.

    1968-01-01

    The cell separation aspect of abscission is thought to involve the action of specific cell wall degrading enzymes. Enzymes represent synthesis which in turn is preceded by the synthesis of specific RNA molecules, and it follows that inhibition of either of these processes would also block abscission. Since abscission is a localized phenomenon usually involving 2 or 3 cell layers, RNA and protein synthesis should also be localized. Manipulations of plant material which either accelerate or retard abscission may be due to the regulation of RNA and protein synthesis. This paper is a review of literature concerned with these and related questions. Images PMID:16657020

  20. An improved fruit transcriptome and the identification of the candidate genes involved in fruit abscission induced by carbohydrate stress in litchi

    PubMed Central

    Li, Caiqin; Wang, Yan; Huang, Xuming; Li, Jiang; Wang, Huicong; Li, Jianguo

    2015-01-01

    Massive young fruit abscission usually causes low and unstable yield in litchi (Litchi chinensis Sonn.), an important fruit crop cultivated in tropical and subtropical areas. However, the molecular mechanism of fruit drop has not been fully characterized. This study aimed at identification of molecular components involved in fruitlet abscission in litchi, for which reference genome is not available at present. An improved de novo transcriptome assembly was firstly achieved by using an optimized assembly software, Trinity. Using improved transcriptome assembly as reference, digital transcript abundance (DTA) profiling was performed to screen and identify candidate genes involved in fruit abscission induced by girdling plus defoliation (GPD), a treatment significantly decreased the soluble sugar contents causing carbohydrate stress to fruit. Our results showed that the increasing fruit abscission rate after GPD treatment was associated with higher ethylene production and lower glucose levels in fruit. A total of 2,771 differentially expressed genes were identified as GPD-responsive genes, 857 of which were defined by GO and KEGG enrichment analyses as the candidate genes involved in fruit abscission process. These genes were involved in diverse metabolic processes and pathways, including carbohydrate metabolism, plant hormone synthesis, and signaling, transcription factor activity and cell wall modification that were rapidly induced in the early stages (within 2 days after treatment). qRT-PCR was used to explore the expression pattern of 15 selected candidate genes in the abscission zone, pericarp, and seed, which confirmed the accuracy of our DTA data. More detailed information for different functional categories was also analyzed. This study profiled the gene expression related to fruit abscission induced by carbohydrate stress at whole transcriptome level and thus provided a better understanding of the regulatory mechanism of young fruit abscission in litchi. PMID

  1. Bimodal effect of hydrogen peroxide and oxidative events in nitrite-induced rapid root abscission by the water fern Azolla pinnata.

    PubMed

    Cohen, Michael F; Gurung, Sushma; Birarda, Giovanni; Holman, Hoi-Ying N; Yamasaki, Hideo

    2015-01-01

    In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM NaNO2, and 10 mM H2O2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H2O2, dramatically stimulated root abscission of A. pinnata in response to nitrite, especially for plants previously cultivated in medium containing 5 mM KNO3 compared to plants cultivated under N2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. We hypothesize that metabolic products of nitrite and NO react with H2O2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission. PMID:26217368

  2. Bimodal effect of hydrogen peroxide and oxidative events in nitrite-induced rapid root abscission by the water fern Azolla pinnata

    PubMed Central

    Cohen, Michael F.; Gurung, Sushma; Birarda, Giovanni; Holman, Hoi-Ying N.; Yamasaki, Hideo

    2015-01-01

    In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM NaNO2, and 10 mM H2O2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H2O2, dramatically stimulated root abscission of A. pinnata in response to nitrite, especially for plants previously cultivated in medium containing 5 mM KNO3 compared to plants cultivated under N2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. We hypothesize that metabolic products of nitrite and NO react with H2O2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission. PMID:26217368

  3. Bimodal effect of hydrogen peroxide and oxidative events in nitrite-induced rapid root abscission by the water fern Azolla pinnata

    DOE PAGESBeta

    Cohen, Michael F.; Gurung, Sushma; Birarda, Giovanni; Holman, Hoi-Ying N.; Yamasaki, Hideo

    2015-07-09

    In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM NaNO2, and 10 mM H2O2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H2O2, dramatically stimulated root abscission of A. pinnata in response to nitrite, especially for plants previously cultivated inmore » medium containing 5 mM KNO3 compared to plants cultivated under N2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. Lastly, we hypothesize that metabolic products of nitrite and NO react with H2O2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission.« less

  4. Bimodal effect of hydrogen peroxide and oxidative events in nitrite-induced rapid root abscission by the water fern Azolla pinnata

    SciTech Connect

    Cohen, Michael F.; Gurung, Sushma; Birarda, Giovanni; Holman, Hoi-Ying N.; Yamasaki, Hideo

    2015-07-09

    In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM NaNO2, and 10 mM H2O2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H2O2, dramatically stimulated root abscission of A. pinnata in response to nitrite, especially for plants previously cultivated in medium containing 5 mM KNO3 compared to plants cultivated under N2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. Lastly, we hypothesize that metabolic products of nitrite and NO react with H2O2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission.

  5. Examination of the Abscission-Associated Transcriptomes for Soybean, Tomato, and Arabidopsis Highlights the Conserved Biosynthesis of an Extensible Extracellular Matrix and Boundary Layer.

    PubMed

    Kim, Joonyup; Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Yang, Ronghui; Meir, Shimon; Tucker, Mark L

    2015-01-01

    Abscission zone (AZ) development and the progression of abscission (detachment of plant organs) have been roughly separated into four stages: first, AZ differentiation; second, competence to respond to abscission signals; third, activation of abscission; and fourth, formation of a protective layer and post-abscission trans-differentiation. Stage three, activation of abscission, is when changes in the cell wall and extracellular matrix occur to support successful organ separation. Most abscission research has focused on gene expression for enzymes that disassemble the cell wall within the AZ and changes in phytohormones and other signaling events that regulate their expression. Here, transcriptome data for soybean, tomato and Arabidopsis were examined and compared with a focus not only on genes associated with disassembly of the cell wall but also on gene expression linked to the biosynthesis of a new extracellular matrix. AZ-specific up-regulation of genes associated with cell wall disassembly including cellulases (beta-1,4-endoglucanases, CELs), polygalacturonases (PGs), and expansins (EXPs) were much as expected; however, curiously, changes in expression of xyloglucan endotransglucosylase/hydrolases (XTHs) were not AZ-specific in soybean. Unexpectedly, we identified an early increase in the expression of genes underlying the synthesis of a waxy-like cuticle. Based on the expression data, we propose that the early up-regulation of an abundance of small pathogenesis-related (PR) genes is more closely linked to structural changes in the extracellular matrix of separating cells than an enzymatic role in pathogen resistance. Furthermore, these observations led us to propose that, in addition to cell wall loosening enzymes, abscission requires (or is enhanced by) biosynthesis and secretion of small proteins (15-25 kDa) and waxes that form an extensible extracellular matrix and boundary layer on the surface of separating cells. The synthesis of the boundary layer

  6. Examination of the Abscission-Associated Transcriptomes for Soybean, Tomato, and Arabidopsis Highlights the Conserved Biosynthesis of an Extensible Extracellular Matrix and Boundary Layer

    PubMed Central

    Kim, Joonyup; Sundaresan, Srivignesh; Philosoph-Hadas, Sonia; Yang, Ronghui; Meir, Shimon; Tucker, Mark L.

    2015-01-01

    Abscission zone (AZ) development and the progression of abscission (detachment of plant organs) have been roughly separated into four stages: first, AZ differentiation; second, competence to respond to abscission signals; third, activation of abscission; and fourth, formation of a protective layer and post-abscission trans-differentiation. Stage three, activation of abscission, is when changes in the cell wall and extracellular matrix occur to support successful organ separation. Most abscission research has focused on gene expression for enzymes that disassemble the cell wall within the AZ and changes in phytohormones and other signaling events that regulate their expression. Here, transcriptome data for soybean, tomato and Arabidopsis were examined and compared with a focus not only on genes associated with disassembly of the cell wall but also on gene expression linked to the biosynthesis of a new extracellular matrix. AZ-specific up-regulation of genes associated with cell wall disassembly including cellulases (beta-1,4-endoglucanases, CELs), polygalacturonases (PGs), and expansins (EXPs) were much as expected; however, curiously, changes in expression of xyloglucan endotransglucosylase/hydrolases (XTHs) were not AZ-specific in soybean. Unexpectedly, we identified an early increase in the expression of genes underlying the synthesis of a waxy-like cuticle. Based on the expression data, we propose that the early up-regulation of an abundance of small pathogenesis-related (PR) genes is more closely linked to structural changes in the extracellular matrix of separating cells than an enzymatic role in pathogen resistance. Furthermore, these observations led us to propose that, in addition to cell wall loosening enzymes, abscission requires (or is enhanced by) biosynthesis and secretion of small proteins (15–25 kDa) and waxes that form an extensible extracellular matrix and boundary layer on the surface of separating cells. The synthesis of the boundary layer

  7. Fruit abscission by Physalis species as defense against frugivory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit abscission as a response to herbivory is well-documented in many plant species, but its effect on further damage by mobile herbivores that survive fruit abscission is relatively unstudied. Physalis plants abscise fruit containing feeding larvae of their main frugivore, Heliothis subflexa Guen...

  8. Ethephon As a Potential Abscission Agent for Table Grapes: Effects on Pre-Harvest Abscission, Fruit Quality, and Residue.

    PubMed

    Ferrara, Giuseppe; Mazzeo, Andrea; Matarrese, Angela M S; Pacucci, Carmela; Trani, Antonio; Fidelibus, Matthew W; Gambacorta, Giuseppe

    2016-01-01

    Some plant growth regulators, including ethephon, can stimulate abscission of mature grape berries. The stimulation of grape berry abscission reduces fruit detachment force (FDF) and promotes the development of a dry stem scar, both of which could facilitate the production of high quality stemless fresh-cut table grapes. The objective of this research was to determine how two potential abscission treatments, 1445 and 2890 mg/L ethephon, affected FDF, pre-harvest abscission, fruit quality, and ethephon residue of Thompson Seedless and Crimson Seedless grapes. Both ethephon treatments strongly induced abscission of Thompson Seedless berries causing >90% pre-harvest abscission. Lower ethephon rates, a shorter post-harvest interval, or berry retention systems such as nets, would be needed to prevent excessive pre-harvest losses. The treatments also slightly affected Thompson Seedless berry skin color, with treated fruit being darker, less uniform in color, and with a more yellow hue than non-treated fruit. Ethephon residues on Thompson Seedless grapes treated with the lower concentration of ethephon were below legal limits at harvest. Ethephon treatments also promoted abscission of Crimson Seedless berries, but pre-harvest abscission was much lower (≅49%) in Crimson Seedless compared to Thompson Seedless. Treated fruits were slightly darker than non-treated fruits, but ethephon did not affect SSC, acidity, or firmness of Crimson Seedless, and ethephon residues were below legal limits. PMID:27303407

  9. Ethephon As a Potential Abscission Agent for Table Grapes: Effects on Pre-Harvest Abscission, Fruit Quality, and Residue

    PubMed Central

    Ferrara, Giuseppe; Mazzeo, Andrea; Matarrese, Angela M. S.; Pacucci, Carmela; Trani, Antonio; Fidelibus, Matthew W.; Gambacorta, Giuseppe

    2016-01-01

    Some plant growth regulators, including ethephon, can stimulate abscission of mature grape berries. The stimulation of grape berry abscission reduces fruit detachment force (FDF) and promotes the development of a dry stem scar, both of which could facilitate the production of high quality stemless fresh-cut table grapes. The objective of this research was to determine how two potential abscission treatments, 1445 and 2890 mg/L ethephon, affected FDF, pre-harvest abscission, fruit quality, and ethephon residue of Thompson Seedless and Crimson Seedless grapes. Both ethephon treatments strongly induced abscission of Thompson Seedless berries causing >90% pre-harvest abscission. Lower ethephon rates, a shorter post-harvest interval, or berry retention systems such as nets, would be needed to prevent excessive pre-harvest losses. The treatments also slightly affected Thompson Seedless berry skin color, with treated fruit being darker, less uniform in color, and with a more yellow hue than non-treated fruit. Ethephon residues on Thompson Seedless grapes treated with the lower concentration of ethephon were below legal limits at harvest. Ethephon treatments also promoted abscission of Crimson Seedless berries, but pre-harvest abscission was much lower (≅49%) in Crimson Seedless compared to Thompson Seedless. Treated fruits were slightly darker than non-treated fruits, but ethephon did not affect SSC, acidity, or firmness of Crimson Seedless, and ethephon residues were below legal limits. PMID:27303407

  10. Expression of a unique 56-kDa polypeptide by neurons in the subplate zone of the developing cerebral cortex.

    PubMed Central

    Naegele, J R; Barnstable, C J; Wahle, P R

    1991-01-01

    In the mammalian cerebral cortex, neurons destined for layers 2-6 are generated only after the period of genesis for a group of transient neurons that populate the subplate and marginal zones. Although a number of molecular markers for the subplate zone exist, most are also expressed by other cell populations in the cortical plate. To begin to study molecular properties of the subplate, we generated monoclonal antibodies against homogenates of cat cortical subplate zone. One monoclonal antibody, termed subplate 1 (SP1), recognized a polypeptide of 56 kDa. This antigen was strongly expressed within the subplate neurons only during a 3-week period beginning at birth and extending until 3 weeks after birth. From postnatal day 1, the number of SP1-immunoreactive neurons below the visual cortex increased until the end of second postnatal week and then declined thereafter. This period coincides with the period when a majority of the subplate neurons undergo naturally occurring cell death. The antigen was not expressed by subplate neurons surviving in the adult white matter. At the peak of antigen expression, 14% or less of the immunoreactive neurons also coexpressed gamma-aminobutyric acid, somatostatin, or neuropeptide Y. Biochemical and immunocytochemical properties of the SP1 antigen were also compared with the Alz-50 antigen (A68), a marker for dying neurons. On Western blots, SP1- and Alz-50-reactive polypeptides were selectively enriched in cytosolic fractions of kitten cerebral cortex, but each marker recognized different molecular weight polypeptides. In tissue sections many subplate, cortical plate, and layer 1 neurons were Alz-50 immunoreactive. In contrast, a rarer subpopulation of neurons restricted to the subplate was labeled by SP1. We propose that the SP1 antigen is a protein expressed within dying cortical subplate neurons, at the commencement of cell death. Images PMID:1703294

  11. The Phytotoxin Coronatine Induces Abscission-Related Gene Expression and Boll Ripening during Defoliation of Cotton

    PubMed Central

    Tian, Xiaoli; Duan, Liusheng; Zhang, Mingcai; Tan, Weiming; Xu, Dongyong; Li, Zhaohu

    2014-01-01

    Defoliants can increase machine harvest efficiency of cotton (Gossypium hirusutum L.), prevent lodging and reduce the time from defoliation to harvest. Coronatine (COR) is a chlorosis-inducing non-host-specific phytotoxin that induces leaf and/or fruit abscission in some crops. The present study investigates how COR might induce cotton leaf abscission by modulating genes involved in cell wall hydrolases and ACC (ethylene precursor) in various cotton tissues. The effects of COR on cotton boll ripening, seedcotton yield, and seed development were also studied. After 14 d of treatment with COR, cells within the leaf abscission zone (AZ) showed marked differentiation. Elevated transcripts of GhCEL1, GhPG and GhACS were observed in the AZs treated with COR and Thidiazuron (TDZ). The relative expression of GhCEL1 and GhACS in TDZ treated plants was approximately twice that in plants treated with COR for 12 h. However, only GhACS expression increased in leaf blade and petiole. There was a continuous increase in the activity of hydrolytic enzymes such as cellulase (CEL) and polygalacturonase (PG), and ACC accumulation in AZs following COR and TDZ treatments, but there was greater increase in ACC activity of COR treated boll crust, indicating that COR had greater ripening effect than TDZ. Coronatine significantly enhanced boll opening without affecting boll weight, lint percentage and seed quality. Therefore, COR can be a potential cotton defoliant with different physiological mechanism of action from the currently used TDZ. PMID:24845465

  12. The phytotoxin coronatine induces abscission-related gene expression and boll ripening during defoliation of cotton.

    PubMed

    Du, Mingwei; Li, Yi; Tian, Xiaoli; Duan, Liusheng; Zhang, Mingcai; Tan, Weiming; Xu, Dongyong; Li, Zhaohu

    2014-01-01

    Defoliants can increase machine harvest efficiency of cotton (Gossypium hirusutum L.), prevent lodging and reduce the time from defoliation to harvest. Coronatine (COR) is a chlorosis-inducing non-host-specific phytotoxin that induces leaf and/or fruit abscission in some crops. The present study investigates how COR might induce cotton leaf abscission by modulating genes involved in cell wall hydrolases and ACC (ethylene precursor) in various cotton tissues. The effects of COR on cotton boll ripening, seedcotton yield, and seed development were also studied. After 14 d of treatment with COR, cells within the leaf abscission zone (AZ) showed marked differentiation. Elevated transcripts of GhCEL1, GhPG and GhACS were observed in the AZs treated with COR and Thidiazuron (TDZ). The relative expression of GhCEL1 and GhACS in TDZ treated plants was approximately twice that in plants treated with COR for 12 h. However, only GhACS expression increased in leaf blade and petiole. There was a continuous increase in the activity of hydrolytic enzymes such as cellulase (CEL) and polygalacturonase (PG), and ACC accumulation in AZs following COR and TDZ treatments, but there was greater increase in ACC activity of COR treated boll crust, indicating that COR had greater ripening effect than TDZ. Coronatine significantly enhanced boll opening without affecting boll weight, lint percentage and seed quality. Therefore, COR can be a potential cotton defoliant with different physiological mechanism of action from the currently used TDZ. PMID:24845465

  13. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission

    PubMed Central

    Santiago, Julia; Brandt, Benjamin; Wildhagen, Mari; Hohmann, Ulrich; Hothorn, Ludwig A; Butenko, Melinka A; Hothorn, Michael

    2016-01-01

    Plants constantly renew during their life cycle and thus require to shed senescent and damaged organs. Floral abscission is controlled by the leucine-rich repeat receptor kinase (LRR-RK) HAESA and the peptide hormone IDA. It is unknown how expression of IDA in the abscission zone leads to HAESA activation. Here we show that IDA is sensed directly by the HAESA ectodomain. Crystal structures of HAESA in complex with IDA reveal a hormone binding pocket that accommodates an active dodecamer peptide. A central hydroxyproline residue anchors IDA to the receptor. The HAESA co-receptor SERK1, a positive regulator of the floral abscission pathway, allows for high-affinity sensing of the peptide hormone by binding to an Arg-His-Asn motif in IDA. This sequence pattern is conserved among diverse plant peptides, suggesting that plant peptide hormone receptors may share a common ligand binding mode and activation mechanism. DOI: http://dx.doi.org/10.7554/eLife.15075.001 PMID:27058169

  14. Filamin A mediated Big2 dependent endocytosis: From apical abscission to periventricular heterotopia.

    PubMed

    Sheen, Volney L

    2014-01-01

    Periventricular heterotopia (PH) is one of the most common malformations of cortical development (MCD). Nodules along the lateral ventricles of the brain, disruption of the ventricular lining, and a reduced brain size are hallmarks of this disorder. PH results in a disruption of the neuroependyma, inhibition of neural proliferation and differentiation, and altered neuronal migration. Human mutations in the genes encoding the actin-binding Filamin A (FLNA) and the vesicle trafficking Brefeldin A-associated guanine exchange factor 2 (BIG2 is encoded by the ARFGEF2 gene) proteins are implicated in PH formation. Recent studies have shown that the transition from proliferating neural progenitors to post-mitotic neurons relies on apical abscission along the neuroepithelium. This mechanism involves an actin dependent contraction of the apical portion of a neural progenitor along the ventricular lining to complete abscission. Actin also maintains stability of various cell adhesion molecules along the neuroependyma. Loss of cadherin directs disassembly of the primary cilium, which transduces sonic-hedgehog (Shh) signaling. Shh signaling is required for continued proliferation. In this context, apical abscission regulates neuronal progenitor exit and migration from the ventricular zone by detachment from the neuroependyma, relies on adhesion molecules that maintain the integrity of the neuroepithelial lining, and directs neural proliferation. Each of these processes is disrupted in PH, suggesting that genes causal for this MCD, may fundamentally mediate apical abscission in cortical development. Here we discuss several recent reports that demonstrate a coordinated role for actin and vesicle trafficking in modulating neural development along the neurepithelium, and potentially the neural stem cell to neuronal transition. PMID:25097827

  15. Principal Slip Zones in Limestone: Natural and Experimental Examples of `Clast-Cortex Grains' and Implications for the Seismic Cycle

    NASA Astrophysics Data System (ADS)

    Smith, S. A.; Billi, A.; di Toro, G.; Niemeijer, A. R.

    2010-12-01

    Many earthquakes in central Italy (e.g L’Aquila Mw 6.3, 6 April 2009), and in other areas worldwide, nucleate within and rupture through limestones. During individual earthquakes a majority of fault displacement is accommodated by thin principal slip zones (PSZs). At present, however, there are no reliable microstructural or geochemical indicators of seismic slip in carbonate rocks. We present detailed field and microstructural observations of the PSZs of seismically active normal faults that cut limestones in central Italy, and compare these PSZs to experiments on layers of simulated calcite gouge using a recently-installed high velocity rotary shear apparatus at INGV, Rome. Geological constraints indicate that the natural PSZs are exhumed from <3km depth, where ambient temperatures are <100°C. SEM and XRD observations suggest that the PSZs are composed of c. 100% calcite. The PSZs contain a 2-10mm thick, texturally-distinct ultracataclasite layer immediately adjacent to the slip surface. The ultracataclasite is itself internally zoned; 200-300μm thick ultracataclastic sub-layers record extreme localization of slip, and some of the sub-layers contain microstructural evidence for fluidization. 100-200μm thick, syn-tectonic calcite veins suggest fluid involvement in faulting. Peculiar rounded grains up to 3mm in diameter consisting of a central (often angular) clast wrapped by a laminated outer cortex of ultra-fine grained calcite are found in the ultracataclasite. The cortex can display concentric or lensoid internal laminations and appears to have developed by progressive accretion of matrix material. These ‘clast-cortex grains’ closely resemble: 1) accretionary lapilli in pyroclastic deposits; 2) ‘armoured’ grains found in the basal detachments of mega-landslides, and; 3) ‘clay-clast aggregates’ produced in saturated high-velocity friction experiments and found in some natural clay-bearing faults. We suggest that localized fluidization of

  16. Chilling-induced leaf abscission of Ixora coccinea plants. III. Enhancement by high light via increased oxidative processes.

    PubMed

    Michaeli, Rina; Philosoph-Hadas, Sonia; Riov, Joseph; Shahak, Yosepha; Ratner, Kira; Meir, Shimon

    2001-11-01

    The role of increased oxidation induced by successive stresses of chilling and high light in the induction of leaf abscission was studied in Ixora coccinea plants in relation to auxin metabolism and oxidative processes. Exposure of plants following dark chilling (7 degrees C for 3 days) to high light (500-700 &mgr;mol m-2 s-1 photosynthetically active radiation) for 5 h at 20-25 degrees C enhanced chilling-induced leaf abscission. This abscission was inhibited by pretreatment with the antioxidant butylated hydroxyanisole, alpha-naphthaleneacetic acid or the ethylene action inhibitor, 1-methylcyclopropene. The oxidative processes initiated during the low light period following the dark chilling period, such as indoleacetic acid (IAA) decarboxylation and lipid peroxidation, were further enhanced by subsequent exposure to high light. Photoinhibition, expressed by the reduction of the chlorophyll fluorescence parameter Fv/Fm, was evident following exposure to high light, irrespective of the temperature of the pretreatment, but this reduction persisted only in chilled plants. This suggests that oxidative processes generated during and after the chilling period might have inhibited the recovery from photoinhibition. The chilling stress under darkness induced a 60% reduction in superoxide dismutase (SOD) activity and significant increases (130-600%) in the activities of several other antioxidative enzymes. These data suggest that the chilling-induced reduction in SOD activity may well be responsible for the increase in the oxidative stress induced by the subsequent light treatment, as expressed by the increased enzymatic activities. Taken together, this study provides further support for the involvement of oxidative processes in the events occurring in tissues exposed to sequential chilling and light stresses, leading to reduction in free IAA content in the abscission zone and to leaf abscission. PMID:12060278

  17. Polyamine-Induced Rapid Root Abscission in Azolla pinnata.

    PubMed

    Gurung, Sushma; Cohen, Michael F; Fukuto, Jon; Yamasaki, Hideo

    2012-01-01

    Floating ferns of the genus Azolla detach their roots under stress conditions, a unique adaptive response termed rapid root abscission. We found that Azolla pinnata plants exhibited dose-dependent rapid root abscission in response to the polyamines spermidine and spermine after a substantial time lag (>20 min). The duration of the time lag decreased in response to high pH and high temperature whereas high light intensity increased the time lag and markedly lowered the rate of abscission. The oxidation products of polyamines, 1,3-diaminopropane, β-alanine and hydrogen peroxide all failed to initiate root abscission, and hydroxyethyl hydrazine, an inhibitor of polyamine oxidase, did not inhibit spermine-induced root abscission. Exposure of A. pinnata to the polyamines did not result in detectable release of NO and did not affect nitrite-dependent NO production. The finding of polyamine-induced rapid root abscission provides a facile assay for further study of the mode of action of polyamines in plant stress responses. PMID:22997568

  18. Parasagittal zones in the cerebellar cortex differ in excitability, information processing, and synaptic plasticity.

    PubMed

    Ebner, Timothy J; Wang, Xinming; Gao, Wangcai; Cramer, Samuel W; Chen, Gang

    2012-06-01

    At the molecular and circuitry levels, the cerebellum exhibits a striking parasagittal zonation as exemplified by the spatial distribution of molecules expressed on Purkinje cells and the topography of the afferent and efferent projections. The physiology and function of the zonation is less clear. Activity-dependent optical imaging has proven a useful tool to examine the physiological properties of the parasagittal zonation in the intact animal. Recent findings show that zebrin II-positive and zebrin II-negative zones differ markedly in their responses to parallel fiber inputs. These findings suggest that cerebellar cortical excitability, information processing, and synaptic plasticity depend on the intrinsic properties of different parasagittal zones. PMID:22249913

  19. Molecular changes occurring during acquisition of abscission competence following auxin depletion in Mirabilis jalapa.

    PubMed

    Meir, Shimon; Hunter, Donald A; Chen, Jen-Chih; Halaly, Vita; Reid, Michael S

    2006-08-01

    To understand how auxin regulates sensitivity of abscission zone (AZ) tissues to ethylene, we used a polymerase chain reaction-based subtractive approach to identify gene transcripts in Mirabilis jalapa AZs that changed in abundance during the time the zones became competent to abscise in response to exogenous ethylene. Transcript expression was then examined in leaf and stem AZs over the period they became ethylene competent following indole-3-acetic acid (IAA) depletion either by leaf deblading, treatment with the IAA transport inhibitor naphthylphthalamic acid, or cutting the stem above a node (decapitation). Transcripts down-regulated by deblading/decapitation included Mj-Aux/IAA1 and Mj-Aux/IAA2, encoding Aux/IAA proteins, and three other transcripts showing highest identity to a polygalacturonase inhibitor protein, a beta-expansin, and a beta-tubulin. Application of IAA to the cut end of petioles or stumps inhibited abscission, and prevented the decline in the levels of transcripts in both AZs. Transcripts up-regulated in the AZ following deblading/decapitation or treatment with naphthylphthalamic acid were isolated from plants pretreated with 1-methylcyclopropene before deblading to help select against ethylene-induced genes. Some of the up-regulated transcripts showed identity to proteins associated with ethylene or stress responses, while others did not show homology to known sequences. Sucrose infiltration of stem stumps enhanced abscission following ethylene treatment and also enhanced the induction of some of the up-regulated genes. Our results demonstrate a correlation between acquisition of competence to respond to ethylene in both leaf and stem AZs, and decline in abundance of auxin regulatory gene transcripts. PMID:16778017

  20. Molecular Changes Occurring during Acquisition of Abscission Competence following Auxin Depletion in Mirabilis jalapa1[W

    PubMed Central

    Meir, Shimon; Hunter, Donald A.; Chen, Jen-Chih; Halaly, Vita; Reid, Michael S.

    2006-01-01

    To understand how auxin regulates sensitivity of abscission zone (AZ) tissues to ethylene, we used a polymerase chain reaction-based subtractive approach to identify gene transcripts in Mirabilis jalapa AZs that changed in abundance during the time the zones became competent to abscise in response to exogenous ethylene. Transcript expression was then examined in leaf and stem AZs over the period they became ethylene competent following indole-3-acetic acid (IAA) depletion either by leaf deblading, treatment with the IAA transport inhibitor naphthylphthalamic acid, or cutting the stem above a node (decapitation). Transcripts down-regulated by deblading/decapitation included Mj-Aux/IAA1 and Mj-Aux/IAA2, encoding Aux/IAA proteins, and three other transcripts showing highest identity to a polygalacturonase inhibitor protein, a β-expansin, and a β-tubulin. Application of IAA to the cut end of petioles or stumps inhibited abscission, and prevented the decline in the levels of transcripts in both AZs. Transcripts up-regulated in the AZ following deblading/decapitation or treatment with naphthylphthalamic acid were isolated from plants pretreated with 1-methylcyclopropene before deblading to help select against ethylene-induced genes. Some of the up-regulated transcripts showed identity to proteins associated with ethylene or stress responses, while others did not show homology to known sequences. Sucrose infiltration of stem stumps enhanced abscission following ethylene treatment and also enhanced the induction of some of the up-regulated genes. Our results demonstrate a correlation between acquisition of competence to respond to ethylene in both leaf and stem AZs, and decline in abundance of auxin regulatory gene transcripts. PMID:16778017

  1. Transcriptome analysis of soybean leaf abscission identifies transcriptional regulators of organ polarity and cell fate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abscission, organ detachment, is a developmental process that is modulated by environmental factors. To understand the molecular events underlying the progression of abscission in soybean, we induced abscission in 21 day-old soybean by treating leaf explants with ethylene. RNA-seq was completed for ...

  2. Organ abscission: exit strategies require signals and moving traffic.

    PubMed

    Liljegren, Sarah J

    2012-12-01

    Flowers are frequently programmed to release their outer organs after pollination. Managing the timing and extent of cell separation during abscission is crucial, as premature shedding could interfere with reproduction and the structural integrity of neighboring tissues would be affected by uninhibited loss of cellular adhesion. In Arabidopsis flowers, the framework of the cell signaling, membrane traffic and transcriptional networks responsible for organ abscission is now emerging. A proposed ligand-receptor system consisting of a secreted peptide and a pair of redundant receptor-like kinases switches on a mitogen-activated protein kinase cascade that leads to cell separation. A homeodomain transcription factor acting downstream of the ligand-receptor module may inhibit cell expansion and separation by restricting the expression of other closely related transcription factors. Three additional receptor-like kinases may inhibit abscission by reducing the pool of receptors at the cell surface available to be ligand-activated. A G-protein regulator is required to direct the movement of key molecules required for abscission. Expression of a polygalaturonase active during organ abscission is modulated by a zinc finger transcription factor. PMID:23047135

  3. CGGBP1 is a nuclear and midbody protein regulating abscission

    SciTech Connect

    Singh, Umashankar Westermark, Bengt

    2011-01-15

    Abscission marks the completion of cell division and its failure is associated with delayed cytokinesis and even tetraploidization. Aberrant abscission and consequential ploidy changes can underlie various diseases including cancer. Midbody, a transient structure formed in the intercellular bridge during telophase, contains several proteins including Aurora kinase B (AURKB), which participate in abscission. We report here an unexpected expression pattern and function of the transcription repressor protein CGG triplet repeat-binding protein 1 (CGGBP1), in normal human fibroblasts. We show that CGGBP1, a chromatin-associated protein, trans-localizes to spindle midzone and midbodies in a manner similar to that of AURKB. CGGBP1 depletion resulted in a cell cycle block at G2, characterized by failure of cells to undergo mitosis and also reduced entry into S phase. Consistent with its presence in the midbodies, live microscopy showed that CGGBP1 deficiency caused mitotic failure at abscission resulting in tetraploidy, which could be rescued by CGGBP1 overexpression. These results show that CGGBP1 is a bona fide midbody protein required for normal abscission and mitosis in general.

  4. Deer predation on leaf miners via leaf abscission

    NASA Astrophysics Data System (ADS)

    Yamazaki, Kazuo; Sugiura, Shinji

    2008-03-01

    The evergreen oak Quercus gilva Blume sheds leaves containing mines of the leaf miner Stigmella sp. (Lepidoptera: Nepticulidae) earlier than leaves with no mines in early spring in Nara, central Japan. The eclosion rates of the leaf miner in abscised and retained leaves were compared in the laboratory to clarify the effects of leaf abscission on leaf miner survival in the absence of deer. The leaf miner eclosed successfully from both fallen leaves and leaves retained on trees. However, sika deer ( Cervus nippon centralis Kishida) feed on the fallen mined leaves. Field observations showed that deer consume many fallen leaves under Q. gilva trees, suggesting considerable mortality of leaf miners due to deer predation via leaf abscission. This is a previously unreported relationship between a leaf miner and a mammalian herbivore via leaf abscission.

  5. Incisive Imaging and Computation for Cellular Mysteries: Lessons from Abscission

    PubMed Central

    Elia, Natalie; Ott, Carolyn; Lippincott-Schwartz, Jennifer

    2014-01-01

    The final cleavage event that terminates cell division, abscission of the small, dense intercellular bridge, has been particularly challenging to resolve. Here, we describe imaging innovations that helped answer long-standing questions about the mechanism of abscission. We further explain how computational modeling of high-resolution data was employed to test hypotheses and generate additional insights. We present the model that emerges from application of these complimentary approaches. Similar experimental strategies will undoubtedly reveal exciting details about other underresolved cellular structures. PMID:24315094

  6. ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins.

    PubMed

    Caballe, Anna; Wenzel, Dawn M; Agromayor, Monica; Alam, Steven L; Skalicky, Jack J; Kloc, Magdalena; Carlton, Jeremy G; Labrador, Leticia; Sundquist, Wesley I; Martin-Serrano, Juan

    2015-01-01

    The endosomal sorting complexes required for transport (ESCRT) machinery mediates the physical separation between daughter cells during cytokinetic abscission. This process is regulated by the abscission checkpoint, a genome protection mechanism that relies on Aurora B and the ESCRT-III subunit CHMP4C to delay abscission in response to chromosome missegregation. In this study, we show that Unc-51-like kinase 3 (ULK3) phosphorylates and binds ESCRT-III subunits via tandem MIT domains, and thereby, delays abscission in response to lagging chromosomes, nuclear pore defects, and tension forces at the midbody. Our structural and biochemical studies reveal an unusually tight interaction between ULK3 and IST1, an ESCRT-III subunit required for abscission. We also demonstrate that IST1 phosphorylation by ULK3 is an essential signal required to sustain the abscission checkpoint and that ULK3 and CHMP4C are functionally linked components of the timer that controls abscission in multiple physiological situations. PMID:26011858

  7. Sequential cell wall transformations in response to the induction of a pedicel abscission event in Euphorbia pulcherrima (poinsettia).

    PubMed

    Lee, Yeonkyeong; Derbyshire, Paul; Knox, J Paul; Hvoslef-Eide, Anne Kathrine

    2008-06-01

    Alterations in the detection of cell wall polysaccharides during an induced abscission event in the pedicel of Euphorbia pulcherrima (poinsettia) have been determined using monoclonal antibodies and Fourier transform infrared (FT-IR) microspectroscopy. Concurrent with the appearance of a morphologically distinct abscission zone (AZ) on day 5 after induction, a reduction in the detection of the LM5 (1-->4)-beta-D-galactan and LM6 (1-->5)-alpha-L-arabinan epitopes in AZ cell walls was observed. Prior to AZ activation, a loss of the (1-->4)-beta-D-galactan and (1-->5)-alpha-L-arabinan epitopes was detected in cell walls distal to the AZ, i.e. in the to-be-shed organ. The earliest detected change, on day 2 after induction, was a specific loss of the LM5 (1-->4)-beta-D-galactan epitope from epidermal cells distal to the region where the AZ would form. Such alteration in the cell walls was an early, pre-AZ activation event. An AZ-associated de-esterification of homogalacturonan (HG) was detected in the AZ and distal area on day 7 after induction. The FT-IR analysis indicated that lignin and xylan were abundant in the AZ and that lower levels of cellulose, arabinose and pectin were present. Xylan and xyloglucan epitopes were detected in the cell walls of both the AZ and also the primary cell walls of the distal region at a late stage of the abscission process, on day 7 after induction. These observations indicate that the induction of an abscission event results in a temporal sequence of cell wall modifications involving the spatially regulated loss, appearance and/or remodelling of distinct sets of cell wall polymers. PMID:18298669

  8. Expression analysis of the BFN1 nuclease gene promoter during senescence, abscission, and programmed cell death-related processes

    PubMed Central

    Farage-Barhom, Sarit; Burd, Shaul; Sonego, Lilian; Perl-Treves, Rafael; Lers, Amnon

    2008-01-01

    Little is known about the biological role of nucleases induced during plant senescence and programmed cell death (PCD). Arabidopsis BFN1 has been identified as a senescence-associated type I nuclease, whose protein sequence shares high homology with some other senescence- or PCD-associated plant nucleases. To learn about BFN1 regulation, its expression pattern was analysed. A 2.3 kb portion of the 5′ promoter sequence of BFN1 was cloned and its ability to activate the GUS reporter gene was examined. Transgenic Arabidopsis and tomato plants harbouring this chimeric construct were analysed for GUS expression. In both, the BFN1 promoter was able specifically to direct GUS expression in senescent leaves, differentiating xylem and the abscission zone of flowers. Thus, at least part of the regulation of BFN1 is mediated at the transcriptional level, and the regulatory elements are recognized in the two different plants. In tomato, specific expression was observed in the leaf and the fruit abscission zones. The BFN1 promoter was also active in other tissues, including developing anthers and seeds, and in floral organs after fertilization. PCD has been implicated in all of these processes, suggesting that in addition to senescence, BFN1 is involved in PCD associated with different development processes in Arabidopsis. PMID:18603613

  9. Abscission Is Regulated by the ESCRT-III Protein Shrub in Drosophila Germline Stem Cells

    PubMed Central

    Matias, Neuza Reis; Mathieu, Juliette; Huynh, Jean-René

    2015-01-01

    Abscission is the final event of cytokinesis that leads to the physical separation of the two daughter cells. Recent technical advances have allowed a better understanding of the cellular and molecular events leading to abscission in isolated yeast or mammalian cells. However, how abscission is regulated in different cell types or in a developing organism remains poorly understood. Here, we characterized the function of the ESCRT-III protein Shrub during cytokinesis in germ cells undergoing a series of complete and incomplete divisions. We found that Shrub is required for complete abscission, and that levels of Shrub are critical for proper timing of abscission. Loss or gain of Shrub delays abscission in germline stem cells (GSCs), and leads to the formation of stem-cysts, where daughter cells share the same cytoplasm as the mother stem cell and cannot differentiate. In addition, our results indicate a negative regulation of Shrub by the Aurora B kinase during GSC abscission. Finally, we found that Lethal giant discs (lgd), known to be required for Shrub function in the endosomal pathway, also regulates the duration of abscission in GSCs. PMID:25647097

  10. Natural Variation in Fruit Abscission-Related Traits in Apple (Malus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abscission or retention of ripening fruit is a major component of seed dispersal strategies and also has important implications for horticultural production. Abscission-related traits have generally not been targeted in breeding efforts, and their genetic bases remain mostly unknown. We evaluated ...

  11. ALIX and ESCRT-III Coordinately Control Cytokinetic Abscission during Germline Stem Cell Division In Vivo

    PubMed Central

    Eikenes, Åsmund H.; Malerød, Lene; Christensen, Anette Lie; Steen, Chloé B.; Mathieu, Juliette; Nezis, Ioannis P.; Liestøl, Knut; Huynh, Jean-René; Stenmark, Harald; Haglund, Kaisa

    2015-01-01

    Abscission is the final step of cytokinesis that involves the cleavage of the intercellular bridge connecting the two daughter cells. Recent studies have given novel insight into the spatiotemporal regulation and molecular mechanisms controlling abscission in cultured yeast and human cells. The mechanisms of abscission in living metazoan tissues are however not well understood. Here we show that ALIX and the ESCRT-III component Shrub are required for completion of abscission during Drosophila female germline stem cell (fGSC) division. Loss of ALIX or Shrub function in fGSCs leads to delayed abscission and the consequent formation of stem cysts in which chains of daughter cells remain interconnected to the fGSC via midbody rings and fusome. We demonstrate that ALIX and Shrub interact and that they co-localize at midbody rings and midbodies during cytokinetic abscission in fGSCs. Mechanistically, we show that the direct interaction between ALIX and Shrub is required to ensure cytokinesis completion with normal kinetics in fGSCs. We conclude that ALIX and ESCRT-III coordinately control abscission in Drosophila fGSCs and that their complex formation is required for accurate abscission timing in GSCs in vivo. PMID:25635693

  12. Abscission of pistachio flowers and fruits as affected by different pollinators.

    PubMed

    Acar, Izzet; Eti, Sinan

    2007-09-01

    This study was conducted in Ceylanpinar State Farm to determine influence of pollens of 9 different pollinators on the flower and fruit abscission of the pistachio. Comparison of pollinator effect on the abscission of flowers and fruits of 3 pistachio cultivars showed that pollens of Pistacia vera L. may increase or reduce flower and fruit abscission. Flower and fruit abscission occurred primarily during the flowering and small-fruit period, that the June and pre-harvest abscissions were low. Data collected for 3 consecutive years revealed that 83.4 to 88.2% of the flowers and fruits of Kirmizi pistachio cultivar abscised mainly during an initial 50 days after Full Blooming (FB). Siirt cultivar abscised during an initial 35 days after FB with a rate of 82.1 to 90.9%. Abscission rate of Ohadi cultivar were 84.5 to 88.6% that occurred during an initial 50 days after FB period. Males noted as 12 and 13 resulted the highest abscission in Siirt cultivar. Results demonstrated that pollinators affect flower and fruit abscission in pistachio. PMID:19090200

  13. ATR and a Chk1-Aurora B pathway coordinate postmitotic genome surveillance with cytokinetic abscission

    PubMed Central

    Mackay, Douglas R.; Ullman, Katharine S.

    2015-01-01

    Aurora B regulates cytokinesis timing and plays a central role in the abscission checkpoint. Cellular events monitored by this checkpoint are beginning to be elucidated, yet signaling pathways upstream of Aurora B in this context remain poorly understood. Here we reveal a new connection between postmitotic genome surveillance and cytokinetic abscission. Underreplicated DNA lesions are known to be transmitted through mitosis and protected in newly formed nuclei by recruitment of 53BP1 and other proteins until repair takes place. We find that this genome surveillance initiates before completion of cytokinesis. Elevating replication stress increases this postmitotic process and delays cytokinetic abscission by keeping the abscission checkpoint active. We further find that ATR activity in midbody-stage cells links postmitotic genome surveillance to abscission timing and that Chk1 integrates this and other signals upstream of Aurora B to regulate when the final step in the physical separation of daughter cells occurs. PMID:25904336

  14. ATR and a Chk1-Aurora B pathway coordinate postmitotic genome surveillance with cytokinetic abscission.

    PubMed

    Mackay, Douglas R; Ullman, Katharine S

    2015-06-15

    Aurora B regulates cytokinesis timing and plays a central role in the abscission checkpoint. Cellular events monitored by this checkpoint are beginning to be elucidated, yet signaling pathways upstream of Aurora B in this context remain poorly understood. Here we reveal a new connection between postmitotic genome surveillance and cytokinetic abscission. Underreplicated DNA lesions are known to be transmitted through mitosis and protected in newly formed nuclei by recruitment of 53BP1 and other proteins until repair takes place. We find that this genome surveillance initiates before completion of cytokinesis. Elevating replication stress increases this postmitotic process and delays cytokinetic abscission by keeping the abscission checkpoint active. We further find that ATR activity in midbody-stage cells links postmitotic genome surveillance to abscission timing and that Chk1 integrates this and other signals upstream of Aurora B to regulate when the final step in the physical separation of daughter cells occurs. PMID:25904336

  15. ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins

    PubMed Central

    Caballe, Anna; Wenzel, Dawn M; Agromayor, Monica; Alam, Steven L; Skalicky, Jack J; Kloc, Magdalena; Carlton, Jeremy G; Labrador, Leticia; Sundquist, Wesley I; Martin-Serrano, Juan

    2015-01-01

    The endosomal sorting complexes required for transport (ESCRT) machinery mediates the physical separation between daughter cells during cytokinetic abscission. This process is regulated by the abscission checkpoint, a genome protection mechanism that relies on Aurora B and the ESCRT-III subunit CHMP4C to delay abscission in response to chromosome missegregation. In this study, we show that Unc-51-like kinase 3 (ULK3) phosphorylates and binds ESCRT-III subunits via tandem MIT domains, and thereby, delays abscission in response to lagging chromosomes, nuclear pore defects, and tension forces at the midbody. Our structural and biochemical studies reveal an unusually tight interaction between ULK3 and IST1, an ESCRT-III subunit required for abscission. We also demonstrate that IST1 phosphorylation by ULK3 is an essential signal required to sustain the abscission checkpoint and that ULK3 and CHMP4C are functionally linked components of the timer that controls abscission in multiple physiological situations. DOI: http://dx.doi.org/10.7554/eLife.06547.001 PMID:26011858

  16. Cross-talk between environmental stresses and plant metabolism during reproductive organ abscission

    PubMed Central

    Sawicki, Mélodie; Aït Barka, Essaïd; Clément, Christophe; Vaillant-Gaveau, Nathalie; Jacquard, Cédric

    2015-01-01

    In plants, flowering is a crucial process for reproductive success and continuity of the species through time. Fruit production requires the perfect development of reproductive structures. Abscission, a natural process, can occur to facilitate shedding of no longer needed, infected, or damaged organs. If stress occurs during flower development, abscission can intervene at flower level, leading to reduced yield. Flower abscission is a highly regulated developmental process simultaneously influenced and activated in response to exogenous (changing environmental conditions, interactions with microorganisms) and endogenous (physiological modifications) stimuli. During climate change, plant communities will be more susceptible to environmental stresses, leading to increased flower and fruit abscission, and consequently a decrease in fruit yield. Understanding the impacts of stress on the reproductive phase is therefore critical for managing future agricultural productivity. Here, current knowledge on flower/fruit abscission is summarized by focusing specifically on effects of environmental stresses leading to this process in woody plants. Many of these stresses impair hormonal balance and/or carbohydrate metabolism, but the exact mechanisms are far from completely known. Hormones are the abscission effectors and the auxin/ethylene balance is of particular importance. The carbohydrate pathway is the result of complex regulatory processes involving the balance between photosynthesis and mobilization of reserves. Hormones and carbohydrates together participate in complex signal transduction systems, especially in response to stress. The available data are discussed in relation to reproductive organ development and the process of abscission. PMID:25711702

  17. Cross-talk between environmental stresses and plant metabolism during reproductive organ abscission.

    PubMed

    Sawicki, Mélodie; Aït Barka, Essaïd; Clément, Christophe; Vaillant-Gaveau, Nathalie; Jacquard, Cédric

    2015-04-01

    In plants, flowering is a crucial process for reproductive success and continuity of the species through time. Fruit production requires the perfect development of reproductive structures. Abscission, a natural process, can occur to facilitate shedding of no longer needed, infected, or damaged organs. If stress occurs during flower development, abscission can intervene at flower level, leading to reduced yield. Flower abscission is a highly regulated developmental process simultaneously influenced and activated in response to exogenous (changing environmental conditions, interactions with microorganisms) and endogenous (physiological modifications) stimuli. During climate change, plant communities will be more susceptible to environmental stresses, leading to increased flower and fruit abscission, and consequently a decrease in fruit yield. Understanding the impacts of stress on the reproductive phase is therefore critical for managing future agricultural productivity. Here, current knowledge on flower/fruit abscission is summarized by focusing specifically on effects of environmental stresses leading to this process in woody plants. Many of these stresses impair hormonal balance and/or carbohydrate metabolism, but the exact mechanisms are far from completely known. Hormones are the abscission effectors and the auxin/ethylene balance is of particular importance. The carbohydrate pathway is the result of complex regulatory processes involving the balance between photosynthesis and mobilization of reserves. Hormones and carbohydrates together participate in complex signal transduction systems, especially in response to stress. The available data are discussed in relation to reproductive organ development and the process of abscission. PMID:25711702

  18. Eph-mediated tyrosine phosphorylation of citron kinase controls abscission.

    PubMed

    Jungas, Thomas; Perchey, Renaud T; Fawal, Mohamad; Callot, Caroline; Froment, Carine; Burlet-Schiltz, Odile; Besson, Arnaud; Davy, Alice

    2016-08-29

    Cytokinesis is the last step of cell division, culminating in the physical separation of daughter cells at the end of mitosis. Cytokinesis is a tightly regulated process that until recently was mostly viewed as a cell-autonomous event. Here, we investigated the role of Ephrin/Eph signaling, a well-known local cell-to-cell communication pathway, in cell division. We show that activation of Eph signaling in vitro leads to multinucleation and polyploidy, and we demonstrate that this is caused by alteration of the ultimate step of cytokinesis, abscission. Control of abscission requires Eph kinase activity, and Src and citron kinase (CitK) are downstream effectors in the Eph-induced signal transduction cascade. CitK is phosphorylated on tyrosines in neural progenitors in vivo, and Src kinase directly phosphorylates CitK. We have identified the specific tyrosine residues of CitK that are phosphorylated and show that tyrosine phosphorylation of CitK impairs cytokinesis. Finally, we show that, similar to CitK, Ephrin/Eph signaling controls neuronal ploidy in the developing neocortex. Our study indicates that CitK integrates intracellular and extracellular signals provided by the local environment to coordinate completion of cytokinesis. PMID:27551053

  19. Ethylene Production and Leaflet Abscission in Mèlia azédarach L. 1

    PubMed Central

    Morgan, Page W.; Durham, James I.

    1980-01-01

    Ethylene production or content was compared to leaflet abscission in detached, compound leaves of Mèlia azédarach L. In late autumn, when abscission was progressing from basal leaves upward, the oldest leaves both produced ethylene at the highest rates and abscised their leaflets first. When C2H4 levels were measured in intercellular air removed immediately after leaves were harvested, C2H4 levels were also highest in basal leaves and declined progressively in more apical leaves. Levels as high as 1.8 microliters C2H4 liter−1 air were observed. Earlier in the season groups of leaves demonstrated a pattern of sequential initiation of abscission from base to apex, but the peak rates of C2H4 production followed an opposite trend, being highest in the youngest leaves. Peak rates of C2H4 production occurred after the initiation of leaflet abscission and presumably are related to either the auxin content or a climacteric-like, autocatalytic phase of C2H4 production not directly involved in the initiation of abscission. In these experiments, the early abscission of the older leaflets reflects their greater sensitivity to C2H4, presumably due to lower auxin content. C2H4 production rates in all experiments, with rare exceptions, exceeded 3 microliters per kilogram fresh weight per hour at least 24 hours before leaflet abscission reached 10%. This achieving of a threshold internal C2H4 level is viewed as an initiating event in leaflet abscission. Hypobaric conditions, to facilitate the escape of endogenous C2H4, delayed abscission compared to controls, and termination of hypobaric exposure allowed a normal progression of abscission as well as normal C2H4 synthesis rates. All of the data indicate that C2H4 initiates leaflet abscission in intact but detached leaves of Mèlia azédarach L. The seasonal patterns observed suggest that C2H4, in concert with those hormones which govern sensitivity to C2H4, regulate autumn leaf fall in this species. PMID:16661401

  20. Post-pruning shoot growth increases fruit abscission and reduces stem carbohydrates and yield in macadamia

    PubMed Central

    McFadyen, Lisa M.; Robertson, David; Sedgley, Margaret; Kristiansen, Paul; Olesen, Trevor

    2011-01-01

    Background and Aims There is good evidence for deciduous trees that competition for carbohydrates from shoot growth accentuates early fruit abscission and reduces yield but the effect for evergreen trees is not well defined. Here, whole-tree tip-pruning at anthesis is used to examine the effect of post-pruning shoot development on fruit abscission in the evergreen subtropical tree macadamia (Macadamia integrifolia, M. integrifolia × tetraphylla). Partial-tree tip-pruning is also used to test the localization of the effect. Methods In the first experiment (2005/2006), all branches on trees were tip-pruned at anthesis, some trees were allowed to re-shoot (R treatment) and shoots were removed from others (NR treatment). Fruit set and stem total non-structural carbohydrates (TNSC) over time, and yield were measured. In the second experiment (2006/2007), upper branches of trees were tip-pruned at anthesis, some trees were allowed to re-shoot (R) and shoots were removed from others (NR). Fruit set and yield were measured separately for upper (pruned) and lower (unpruned) branches. Key Results In the first experiment, R trees set far fewer fruit and had lower yield than NR trees. TNSC fell and rose in all treatments but the decline in R trees occurred earlier than in NR trees and coincided with early shoot growth and the increase in fruit abscission relative to the other treatments. In the second experiment, fruit abscission on upper branches of R trees increased relative to the other treatments but there was little difference in fruit abscission between treatments on lower branches. Conclusions This study is the first to demonstrate an increase in fruit abscission in an evergreen tree in response to pruning. The effect appeared to be related to competition for carbohydrates between post-pruning shoot growth and fruit development and was local, with shoot growth on pruned branches having no effect on fruit abscission on unpruned branches. PMID:21325025

  1. Adventitious roots, leaf abscission and nutrient status of flooded Gmelina and Tectona seedlings.

    PubMed

    Osundina, M A; Osonubi, O

    1989-12-01

    When flooded, seedlings of Gmelina arborea Roxb. produced more adventitious roots, had lower foliar Mn concentrations and lost fewer leaves than seedlings of Tectona grandis L.f. Severing the adventitious roots produced by flooded Gmelina seedlings increased leaf Mn concentration and leaf abscission and reduced whole-plant dry matter production. Flooded Gmelina cuttings, which do not produce adventitious roots, abscised few leaves until foliar concentrations of Mn and Fe had risen substantially above those of unflooded cuttings, at which time most leaves were shed. The results indicate that the development of adventitious roots in flooded seedlings of Gmelina suppressed uptake of Mn thereby minimizing leaf abscission. PMID:14972970

  2. Ligand-induced receptor-like kinase complex regulates floral organ abscission in Arabidopsis

    PubMed Central

    Meng, Xiangzong; Zhou, Jinggeng; Tang, Jiao; Li, Bo; de Oliveira, Marcos V. V.; Chai, Jijie; He, Ping; Shan, Libo

    2016-01-01

    SUMMARY Abscission is a developmental process that enables plants to shed unwanted organs. In Arabidopsis, the floral organ abscission is regulated by a signaling pathway consisting of the peptide ligand IDA, the receptor-like kinases (RLKs) HAE and HSL2, and a downstream MAP kinase (MAPK) cascade. However, little is known about the molecular link between ligand-receptor pairs and intracellular signaling. Here, we report that the SERK family RLKs function redundantly in regulating floral organ abscission downstream of IDA and upstream of the MAPK cascade. IDA induces heterodimerization of HAE/HSL2 and SERKs, which transphosphorylate each other. The SERK3 residues mediating its interaction with the immune receptor FLS2 and the brassinosteroid receptor BRI1 are also required for IDA-induced HAE/HSL2-SERK3 interaction, suggesting SERKs serve as co-receptors of HAE/HSL2 in perceiving IDA. Thus, our study reveals the signaling activation mechanism in floral organ abscission by IDA-induced HAE/HSL2-SERK complex formation accompanied by transphosphorylation. PMID:26854226

  3. Flower bud abscission triggered by the author in the Asiatic hybrid lilies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is not well documented which organ may trigger the onset of tepal or petal senescence and/or flower bud abscission. Asiatic hybrid L. × elegans Thunb., ‘Red Carpet’ lily flowers were selected as a model to study this relationship because the various floral organs can be easily dissected and col...

  4. Ethylene and flower longevity in Alstroemeria: relationship between tepal senescence, abscission and ethylene biosynthesis.

    PubMed

    Wagstaff, Carol; Chanasut, Usawadee; Harren, Frans J M; Laarhoven, Luc-Jan; Thomas, Brian; Rogers, Hilary J; Stead, Anthony D

    2005-03-01

    Senescence of floral organs is broadly divided into two groups: those that exhibit sensitivity to exogenous ethylene and those that do not. Endogenous ethylene production from the former group is via a well-characterized biochemical pathway and is either due to developmental or pollination-induced senescence. Many flowers from the order Liliales are characterized as ethylene-insensitive since they do not appear to produce endogenous ethylene, or respond to exogenous ethylene treatments, however, the majority of cases studied are wilting flowers, rather than those where life is terminated by perianth abscission. The role of ethylene in the senescence and abscission of Alstroemeria peruviana cv. Rebecca and cv. Samora tepals was previously unclear, with silver treatments recommended for delaying leaf rather than flower senescence. In the present paper the effects of exogenous ethylene, 2-chloroethylphosphonic acid (CEPA) and silver thiosulphate (STS) treatments on tepal senescence and abscission have been investigated. Results indicate that sensitivity to ethylene develops several days after flower opening such that STS only has a limited ability to delay tepal abscission. Detachment force measurements indicate that cell separation events are initiated after anthesis. Endogenous ethylene production was measured using laser photoacoustics and showed that Alstroemeria senesce independently of ethylene production, but that an extremely small amount of ethylene (0.15 nl flower(-1) h(-1)) is produced immediately prior to abscission. Investigation of the expression of genes involved in ethylene biosysnthesis by semi-quantitative RT-PCR indicated that transcriptional regulation is likely to be at the level of ACC oxidase, and that the timing of ACC oxidase gene expression is coincident with development of sensitivity to exogenous ethylene. PMID:15689338

  5. Survival and arm abscission are linked to regional heterothermy in an intertidal sea star.

    PubMed

    Pincebourde, Sylvain; Sanford, Eric; Helmuth, Brian

    2013-06-15

    Body temperature is a more pertinent variable to physiological stress than ambient air temperature. Modeling and empirical studies on the impacts of climate change on ectotherms usually assume that body temperature within organisms is uniform. However, many ectotherms show significant within-body temperature heterogeneity. The relationship between regional heterothermy and the response of ectotherms to sublethal and lethal conditions remains underexplored. We quantified within-body thermal heterogeneity in an intertidal sea star (Pisaster ochraceus) during aerial exposure at low tide to examine the lethal and sublethal effects of temperatures of different body regions. In manipulative experiments, we measured the temperature of the arms and central disc, as well as survival and arm abscission under extreme aerial conditions. Survival was related strongly to central disc temperature. Arms were generally warmer than the central disc in individuals that survived aerial heating, but we found the reverse in those that died. When the central disc reached sublethal temperatures of 31-35°C, arms reached temperatures of 33-39°C, inducing arm abscission. The absolute temperature of individual arms was a poor predictor of arm abscission, but the arms lost were consistently the hottest at the within-individual scale. Therefore, the vital region of this sea star may remain below the lethal threshold under extreme conditions, possibly through water movement from the arms to the central disc and/or evaporative cooling, but at the cost of increased risk of arm abscission. Initiation of arm abscission seems to reflect a whole-organism response while death occurs as a result of stress acting directly on central disc tissues. PMID:23720798

  6. Light inhibits gravity-regulated peg formation and asymmetric mRNA accumulation of auxin-inducible CsIAA1 in the cortex of the transition zone in cucumber seedlings

    NASA Astrophysics Data System (ADS)

    Fujii, Nobuharu; Saito, Yuko; Miyazawa, Yutaka; Takahashi, Hideyuki

    When cucumber seedlings are grown horizontally, a specialized protuberance, termed the peg, develops on the lower side of the transition zone between the hypocotyl and the root. Gravimorphogenesis regulates the lateral positioning of the peg in the transition zone and it has been suggested that auxin plays an important role in peg formation in cucumber seedlings. Here, we found that light inhibited auxin-regulated peg formation. In the transition zone of horizontally positioned cucumber seedlings grown in the dark, we detected an asymmetric accumulation of mRNA from the auxin-inducible gene CsIAA1 in the epidermis and cortex. However, in seedlings grown under illumination, this asymmetry was greatly reduced. In dark- and light-grown seedlings, application of 10 -3 M indole-3-acetic acid induced peg formation on both the lower and upper sides of the transition zone. These results suggest that light inhibits peg formation via modification of auxin distribution and/or levels in the transition zone of cucumber seedlings.

  7. Unconditioned oromotor taste reactivity elicited by sucrose and quinine is unaffected by extensive bilateral damage to the gustatory zone of the insular cortex in rats.

    PubMed

    King, Camille Tessitore; Hashimoto, Koji; Blonde, Ginger D; Spector, Alan C

    2015-03-01

    Rats display stereotypical oromotor and somatic responses to small volumes of intraorally infused taste solutions. These behaviors, known as taste reactivity, are categorized by their association with ingestion or rejection and are thought to reflect the palatability of the stimulus. Because supracollicular decerebrate rats display normal taste reactivity responses, it would appear that forebrain structures are not necessary for generating them. However, because moving the plane of transection rostrally, or damaging or manipulating specific ventral forebrain sites disrupts normal taste reactivity behavior, lesions of the gustatory cortex, a region that has been suggested to be involved with palatability processing, may do the same. In the current study, rats received two injections of either ibotenic acid (N=12) or vehicle (N=8), targeting the conventionally defined gustatory cortex in each hemisphere, and were implanted with intraoral cannulae. Following recovery, their responses to intraoral infusions (0.23ml in 1min) of dH2O, sucrose (1.0M and 0.1M), and quinine hydrochloride (3mM and 0.3mM) were video recorded. Analysis of brains with sufficient bilateral lesions (N=10) revealed that, on average, approximately 94% of the gustatory cortex was destroyed. These extensive bilateral lesions had no significant effect on taste reactivity; the numbers of ingestive and aversive responses to sucrose and quinine were similar between groups. Though these findings do not rule out involvement of the gustatory cortex in palatability processing, they make evident that the region of insular cortex destroyed is not necessary for the normal expression of unconditioned affective behavioral responses to taste stimuli. PMID:25536305

  8. Transcriptomic Signatures in Seeds of Apple (Malus domestica L. Borkh) during Fruitlet Abscission

    PubMed Central

    Ferrero, Sergio; Carretero-Paulet, Lorenzo; Mendes, Marta Adelina; Botton, Alessandro; Eccher, Giulia; Masiero, Simona; Colombo, Lucia

    2015-01-01

    Abscission is the regulated process of detachment of an organ from a plant. In apple the abscission of fruits occurs during their early development to control the fruit load depending on the nutritional state of the plant. In order to control production and obtain fruits with optimal market qualities, the horticultural procedure of thinning is performed to further reduce the number of fruitlets. In this study we have conducted a transcriptomic profiling of seeds from two different types of fruitlets, according to size and position in the fruit cluster. Transcriptomic profiles of central and lateral fruit seeds were obtained by RNAseq. Comparative analysis was performed by the functional categorization of differentially expressed genes by means of Gene Ontology (GO) annotation of the apple genome. Our results revealed the overexpression of genes involved in responses to stress, hormone biosynthesis and also the response and/or transport of auxin and ethylene. A smaller set of genes, mainly related to ion transport and homeostasis, were found to be down-regulated. The transcriptome characterization described in this manuscript contributes to unravelling the molecular mechanisms and pathways involved in the physiological abscission of apple fruits and suggests a role for seeds in this process. PMID:25781174

  9. Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways.

    PubMed

    Domingos, Sara; Scafidi, Pietro; Cardoso, Vania; Leitao, Antonio E; Di Lorenzo, Rosario; Oliveira, Cristina M; Goulao, Luis F

    2015-01-01

    Understanding abscission is both a biological and an agronomic challenge. Flower abscission induced independently by shade and gibberellic acid (GAc) sprays was monitored in grapevine (Vitis vinifera L.) growing under a soilless greenhouse system during two seasonal growing conditions, in an early and late production cycle. Physiological and metabolic changes triggered by each of the two distinct stimuli were determined. Environmental conditions exerted a significant effect on fruit set as showed by the higher natural drop rate recorded in the late production cycle with respect to the early cycle. Shade and GAc treatments increased the percentage of flower drop compared to the control, and at a similar degree, during the late production cycle. The reduction of leaf gas exchanges under shade conditions was not observed in GAc treated vines. The metabolic profile assessed in samples collected during the late cycle differently affected primary and secondary metabolisms and showed that most of the treatment-resulting variations occurred in opposite trends in inflorescences unbalanced in either hormonal or energy deficit abscission-inducing signals. Particularly concerning carbohydrates metabolism, sucrose, glucose, tricarboxylic acid metabolites and intermediates of the raffinose family oligosaccharides pathway were lower in shaded and higher in GAc samples. Altered oxidative stress remediation mechanisms and indolacetic acid (IAA) concentration were identified as abscission signatures common to both stimuli. According to the global analysis performed, we report that grape flower abscission mechanisms triggered by GAc application and C-starvation are not based on the same metabolic pathways. PMID:26157448

  10. Flower abscission in Vitis vinifera L. triggered by gibberellic acid and shade discloses differences in the underlying metabolic pathways

    PubMed Central

    Domingos, Sara; Scafidi, Pietro; Cardoso, Vania; Leitao, Antonio E.; Di Lorenzo, Rosario; Oliveira, Cristina M.; Goulao, Luis F.

    2015-01-01

    Understanding abscission is both a biological and an agronomic challenge. Flower abscission induced independently by shade and gibberellic acid (GAc) sprays was monitored in grapevine (Vitis vinifera L.) growing under a soilless greenhouse system during two seasonal growing conditions, in an early and late production cycle. Physiological and metabolic changes triggered by each of the two distinct stimuli were determined. Environmental conditions exerted a significant effect on fruit set as showed by the higher natural drop rate recorded in the late production cycle with respect to the early cycle. Shade and GAc treatments increased the percentage of flower drop compared to the control, and at a similar degree, during the late production cycle. The reduction of leaf gas exchanges under shade conditions was not observed in GAc treated vines. The metabolic profile assessed in samples collected during the late cycle differently affected primary and secondary metabolisms and showed that most of the treatment-resulting variations occurred in opposite trends in inflorescences unbalanced in either hormonal or energy deficit abscission-inducing signals. Particularly concerning carbohydrates metabolism, sucrose, glucose, tricarboxylic acid metabolites and intermediates of the raffinose family oligosaccharides pathway were lower in shaded and higher in GAc samples. Altered oxidative stress remediation mechanisms and indolacetic acid (IAA) concentration were identified as abscission signatures common to both stimuli. According to the global analysis performed, we report that grape flower abscission mechanisms triggered by GAc application and C-starvation are not based on the same metabolic pathways. PMID:26157448

  11. Expression analysis in soybean of IDA-like, HAESA-like and other key regulatory proteins during leaf abscission and cyst nematode infected roots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stimulatory and inhibitory role of ethylene and auxin, respectively, in leaf abscission is well documented. More recently, IDA peptides and their putative interacting receptor like kinase partner, HAESA, were shown to be essential components in Arabidopsis floral organ abscission. It was propo...

  12. Clks 1, 2 and 4 prevent chromatin breakage by regulating the Aurora B-dependent abscission checkpoint

    PubMed Central

    Petsalaki, Eleni; Zachos, George

    2016-01-01

    When chromatin is trapped at the intercellular bridge, cells delay completion of cytokinesis (abscission) to prevent chromosome breakage. Here we show that inhibition of Cdc-like kinases (Clks) 1, 2 or 4 accelerates midbody resolution in normally segregating cells and correlates with premature abscission, chromatin breakage and generation of DNA damage in cytokinesis with trapped chromatin. Clk1, Clk2 and Clk4 localize to the midbody in an interdependent manner, associate with Aurora B kinase and are required for Aurora B–serine 331 (S331) phosphorylation and complete Aurora B activation in late cytokinesis. Phosphorylated Aurora B–S331 localizes to the midbody centre and is required for phosphorylation and optimal localization of the abscission protein Chmp4c. In addition, expression of phosphomimetic mutants Aurora B–S331E or Chmp4c-S210D delays midbody disassembly and prevents chromatin breakage in Clk-deficient cells. We propose that Clks 1, 2 and 4 impose the abscission checkpoint by phosphorylating Aurora B–S331 at the midbody. PMID:27126587

  13. The vertebrate-specific Kinesin-6, Kif20b, is required for normal cytokinesis of polarized cortical stem cells and cerebral cortex size

    PubMed Central

    Janisch, Kerstin M.; Vock, Vita M.; Fleming, Michael S.; Shrestha, Ayushma; Grimsley-Myers, Cynthia M.; Rasoul, Bareza A.; Neale, Sarah A.; Cupp, Timothy D.; Kinchen, Jason M.; Liem, Karel F.; Dwyer, Noelle D.

    2013-01-01

    Mammalian neuroepithelial stem cells divide using a polarized form of cytokinesis, which is not well understood. The cytokinetic furrow cleaves the cell by ingressing from basal to apical, forming the midbody at the apical membrane. The midbody mediates abscission by recruiting many factors, including the Kinesin-6 family member Kif20b. In developing embryos, Kif20b mRNA is most highly expressed in neural stem/progenitor cells. A loss-of-function mutant in Kif20b, magoo, was found in a forward genetic screen. magoo has a small cerebral cortex, with reduced production of progenitors and neurons, but preserved layering. In contrast to other microcephalic mouse mutants, mitosis and cleavage furrows of cortical stem cells appear normal in magoo. However, apical midbodies show changes in number, shape and positioning relative to the apical membrane. Interestingly, the disruption of abscission does not appear to result in binucleate cells, but in apoptosis. Thus, Kif20b is required for proper midbody organization and abscission in polarized cortical stem cells and has a crucial role in the regulation of cerebral cortex growth. PMID:24173802

  14. Pollination increases ethylene production in Lilium hybrida cv. Brindisi flowers but does not affect the time to tepal senescence or tepal abscission.

    PubMed

    Pacifici, Silvia; Prisa, Domenico; Burchi, Gianluca; van Doorn, Wouter G

    2014-09-01

    In many species, pollination induces a rapid increase in ethylene production, which induces early petal senescence, petal abscission, or flower closure. Cross-pollination in Lilium hybrida cv. Brindisi resulted in a small increase in flower ethylene production. In intact plants and in isolated flowers, pollination had no effect on the time to tepal senescence or tepal abscission. When applied to closed buds of unpollinated flowers, exogenous ethylene slightly hastened the time to tepal senescence and abscission. However, exogenous ethylene had no effect when the flowers had just opened, i.e. at the time of pollination. Experiments with silver thiosulphate, which blocks the ethylene receptor, indicated that endogenous ethylene had a slight effect on the regulation of tepal senescence and tepal abscission, although only at the time the tepals were still inside buds and not in open flowers. Low ethylene-sensitivity after anthesis therefore explains why pollination had no effect on the processes studied. PMID:25462085

  15. Differential Behavior within a Grapevine Cluster: Decreased Ethylene-Related Gene Expression Dependent on Auxin Transport Is Correlated with Low Abscission of First Developed Berries

    PubMed Central

    Godoy, Francisca; Delrot, Serge; Arce-Johnson, Patricio

    2014-01-01

    In grapevine, fruit abscission is known to occur within the first two to three weeks after flowering, but the reason why some berries in a cluster persist and others abscise is not yet understood. Ethylene sensitivity modulates abscission in several fruit species, based on a mechanism where continuous polar auxin transport across the pedicel results in a decrease in ethylene perception, which prevents abscission. In grapevine, flowering takes about four to seven days in a single cluster, thus while some flowers are developing into berries, others are just starting to open. So, in this work it was assessed whether uneven flowering accounted for differences in berry abscission dependent on polar auxin transport and ethylene-related gene expression. For this, flowers that opened in a cluster were tagged daily, which allowed to separately analyze berries, regarding their ability to persist. It was found that berries derived from flowers that opened the day that flowering started – named as “first berries” – had lower abscission rate than berries derived from flowers that opened during the following days – named as “late berries”. Use of radiolabeled auxin showed that “first berries” had higher polar auxin transport, correlated with lower ethylene content and lower ethylene-related transcript abundance than “late berries”. When “first berries” were treated with a polar auxin transport inhibitor they showed higher ethylene-related transcript abundance and were more prone to abscise than control berries. This study provides new insights on fruit abscission control. Our results indicate that polar auxin transport sustains the ability of “first berries” to persist in the cluster during grapevine abscission and also suggest that this could be associated with changes in ethylene-related gene expression. PMID:25365421

  16. The insular cortex: a review.

    PubMed

    Nieuwenhuys, Rudolf

    2012-01-01

    The human insular cortex forms a distinct, but entirely hidden lobe, situated in the depth of the Sylvian fissure. Here, we first review the recent literature on the connectivity and the functions of this structure. It appears that this small lobe, taking up less than 2% of the total cortical surface area, receives afferents from some sensory thalamic nuclei, is (mostly reciprocally) connected with the amygdala and with many limbic and association cortical areas, and is implicated in an astonishingly large number of widely different functions, ranging from pain perception and speech production to the processing of social emotions. Next, we embark on a long, adventurous journey through the voluminous literature on the structural organization of the insular cortex. This journey yielded the following take-home messages: (1) The meticulous, but mostly neglected publications of Rose (1928) and Brockhaus (1940) are still invaluable for our understanding of the architecture of the mammalian insular cortex. (2) The relation of the insular cortex to the adjacent claustrum is neither ontogenetical nor functional, but purely topographical. (3) The insular cortex has passed through a spectacular progressive differentiation during hominoid evolution, but the assumption of Craig (2009) that the human anterior insula has no homologue in the rhesus monkey is untenable. (4) The concept of Mesulam and Mufson (1985), that the primate insula is essentially composed of three concentrically arranged zones, agranular, dysgranular, and granular, is presumably correct, but there is at present much confusion concerning the more detailed architecture of the anterior insular cortex. (5) The large spindle-shaped cells in the fifth layer of the insular cortex, currently known as von Economo neurons (VENs), are not only confined to large-brained mammals, such as whales, elephants, apes, and humans, but also occur in monkeys and prosimians, as well as in the pygmy hippopotamus, the Atlantic

  17. Multipolar mitosis and aneuploidy after chrysotile treatment: a consequence of abscission failure and cytokinesis regression

    PubMed Central

    Cortez, Beatriz Araujo; Teixeira, Paula Rezende; Redick, Sambra; Doxsey, Stephen; Machado-Santelli, Glaucia Maria

    2016-01-01

    Chrysotile, like other types of asbestos, has been associated with mesothelioma, lung cancer and asbestosis. However, the cellular abnormalities induced by these fibers involved in cancer development have not been elucidated yet. Previous works show that chrysotile fibers induce features of cancer cells, such as aneuploidy, multinucleation and multipolar mitosis. In the present study, normal and cancer derived human cell lines were treated with chrysotile and the cellular and molecular mechanisms related to generation of aneuploid cells was elucidated. The first alteration observed was cytokinesis regression, the main cause of multinucleated cells formation and centrosome amplification. The multinucleated cells formed after cytokinesis regression were able to progress through cell cycle and generated aneuploid cells after abnormal mitosis. To understand the process of cytokinesis regression, localization of cytokinetic proteins was investigated. It was observed mislocalization of Anillin, Aurora B, Septin 9 and Alix in the intercellular bridge, and no determination of secondary constriction and abscission sites. Fiber treatment also led to overexpression of genes related to cancer, cytokinesis and cell cycle. The results show that chrysotile fibers induce cellular and molecular alterations in normal and tumor cells that have been related to cancer initiation and progression, and that tetraploidization and aneuploid cell formation are striking events after fiber internalization, which could generate a favorable context to cancer development. PMID:26788989

  18. Augmin shapes the anaphase spindle for efficient cytokinetic furrow ingression and abscission.

    PubMed

    Uehara, Ryota; Kamasaki, Tomoko; Hiruma, Shota; Poser, Ina; Yoda, Kinya; Yajima, Junichiro; Gerlich, Daniel W; Goshima, Gohta

    2016-03-01

    During anaphase, distinct populations of microtubules (MTs) form by either centrosome-dependent or augmin-dependent nucleation. It remains largely unknown whether these different MT populations contribute distinct functions to cytokinesis. Here we show that augmin-dependent MTs are required for the progression of both furrow ingression and abscission. Augmin depletion reduced the accumulation of anillin, a contractile ring regulator at the cell equator, yet centrosomal MTs were sufficient to mediate RhoA activation at the furrow. This defect in contractile ring organization, combined with incomplete spindle pole separation during anaphase, led to impaired furrow ingression. During the late stages of cytokinesis, astral MTs formed bundles in the intercellular bridge, but these failed to assemble a focused midbody structure and did not establish tight linkage to the plasma membrane, resulting in furrow regression. Thus augmin-dependent acentrosomal MTs and centrosomal MTs contribute to nonredundant targeting mechanisms of different cytokinesis factors, which are required for the formation of a functional contractile ring and midbody. PMID:26764096

  19. Analysis of Phosphorylation of the Receptor-Like Protein Kinase HAESA during Arabidopsis Floral Abscission

    PubMed Central

    Taylor, Isaiah; Wang, Ying; Seitz, Kati; Baer, John; Bennewitz, Stefan; Mooney, Brian P.; Walker, John C.

    2016-01-01

    Receptor-like protein kinases (RLKs) are the largest family of plant transmembrane signaling proteins. Here we present functional analysis of HAESA, an RLK that regulates floral organ abscission in Arabidopsis. Through in vitro and in vivo analysis of HAE phosphorylation, we provide evidence that a conserved phosphorylation site on a region of the HAE protein kinase domain known as the activation segment positively regulates HAE activity. Additional analysis has identified another putative activation segment phosphorylation site common to multiple RLKs that potentially modulates HAE activity. Comparative analysis suggests that phosphorylation of this second activation segment residue is an RLK specific adaptation that may regulate protein kinase activity and substrate specificity. A growing number of RLKs have been shown to exhibit biologically relevant dual specificity toward serine/threonine and tyrosine residues, but the mechanisms underlying dual specificity of RLKs are not well understood. We show that a phospho-mimetic mutant of both HAE activation segment residues exhibits enhanced tyrosine auto-phosphorylation in vitro, indicating phosphorylation of this residue may contribute to dual specificity of HAE. These results add to an emerging framework for understanding the mechanisms and evolution of regulation of RLK activity and substrate specificity. PMID:26784444

  20. Augmin shapes the anaphase spindle for efficient cytokinetic furrow ingression and abscission

    PubMed Central

    Uehara, Ryota; Kamasaki, Tomoko; Hiruma, Shota; Poser, Ina; Yoda, Kinya; Yajima, Junichiro; Gerlich, Daniel W.; Goshima, Gohta

    2016-01-01

    During anaphase, distinct populations of microtubules (MTs) form by either centrosome-dependent or augmin-dependent nucleation. It remains largely unknown whether these different MT populations contribute distinct functions to cytokinesis. Here we show that augmin-dependent MTs are required for the progression of both furrow ingression and abscission. Augmin depletion reduced the accumulation of anillin, a contractile ring regulator at the cell equator, yet centrosomal MTs were sufficient to mediate RhoA activation at the furrow. This defect in contractile ring organization, combined with incomplete spindle pole separation during anaphase, led to impaired furrow ingression. During the late stages of cytokinesis, astral MTs formed bundles in the intercellular bridge, but these failed to assemble a focused midbody structure and did not establish tight linkage to the plasma membrane, resulting in furrow regression. Thus augmin-dependent acentrosomal MTs and centrosomal MTs contribute to nonredundant targeting mechanisms of different cytokinesis factors, which are required for the formation of a functional contractile ring and midbody. PMID:26764096

  1. Involvement of abscisic acid in correlative control of flower abscission in soybean

    SciTech Connect

    Yarrow, G.L.

    1985-01-01

    Studies were carried out in three parts: (1) analysis of endogenous abscisic acid (ABA) in abscising and non-abscising flowers, (2) partitioning of radio-labelled ABA and photoassimilates within the soybean raceme, and (3) shading experiments, wherein endogenous levels, metabolism and partitioning of ABA were determined. Endogenous concentrations of ABA failed to show any consistent relationship to abscission of soybean flowers. Partitioning of radiolabelled ABA and photoassimilates displayed consistently higher sink strengths (% DPM) for both /sup 3/H-ABA and /sup 14/C-photoassimilates for non-abscising flowers than for abscising flowers within control racemes. Shading flowers with aluminum foil, 48 hrs prior to sampling, resulted in lowered endogenous ABA concentrations at 12, 17 and 22 days after anthesis (DAA), but not at 0 or 4 DAA. No differences were found in the catabolism of /sup 3/H-ABA between shaded (abscising) and non-shaded (non-abscising) flowers. Reduced partitioning of ABA and photoassimilates to shaded flowers resulted when shades were applied at 0, 4, 12, and 17 DAA, but not at 22 DAA.

  2. Beclin-1 knockdown shows abscission failure but not autophagy defect during oocyte meiotic maturation.

    PubMed

    You, Seung Yeop; Park, Yong Seok; Jeon, Hyuk-Joon; Cho, Dong-Hyung; Jeon, Hong Bae; Kim, Sung Hyun; Chang, Jong Wook; Kim, Jae-Sung; Oh, Jeong Su

    2016-06-17

    Cytokinesis is the final step in cell division that results in the separation of a parent cell into daughter cells. Unlike somatic cells that undergo symmetric division, meiotic division is highly asymmetric, allowing the preservation of maternal resources for embryo development. Beclin-1/BECN1, the mammalian homolog of yeast Atg6, is a key molecule of autophagy. As part of a class III phosphatidylinositol 3-kinase (PI3K-III) complex, BECN1 initiates autophagosome formation by coordinating membrane trafficking. However, emerging evidence suggests that BECN1 regulates chromosome segregation and cytokinesis during mitosis. Thus, we investigated the function of BECN1 during oocyte meiotic maturation. BECN1 was widely distributed during meiotic maturation forming small vesicles. Interestingly, BECN1 is also detected at the midbody ring during cytokinesis. Depletion of BECN1 impaired the cytokinetic abscission, perturbing the recruitment of ZFYVE26 at the midbody. Similar phenotypes were observed when PI3K-III activity was inhibited. However, inhibition of autophagy by depleting Atg14L did not disturb meiotic maturation. Therefore, our results not only demonstrate that BECN1 as a PI3K-III component is essential for cytokinesis, but also suggest that BECN1 is not associated with autophagy pathway in mouse oocytes. PMID:27149384

  3. Multipolar mitosis and aneuploidy after chrysotile treatment: a consequence of abscission failure and cytokinesis regression.

    PubMed

    Cortez, Beatriz Araujo; Rezende-Teixeira, Paula; Redick, Sambra; Doxsey, Stephen; Machado-Santelli, Glaucia Maria

    2016-02-23

    Chrysotile, like other types of asbestos, has been associated with mesothelioma, lung cancer and asbestosis. However, the cellular abnormalities induced by these fibers involved in cancer development have not been elucidated yet. Previous works show that chrysotile fibers induce features of cancer cells, such as aneuploidy, multinucleation and multipolar mitosis. In the present study, normal and cancer derived human cell lines were treated with chrysotile and the cellular and molecular mechanisms related to generation of aneuploid cells was elucidated. The first alteration observed was cytokinesis regression, the main cause of multinucleated cells formation and centrosome amplification. The multinucleated cells formed after cytokinesis regression were able to progress through cell cycle and generated aneuploid cells after abnormal mitosis. To understand the process of cytokinesis regression, localization of cytokinetic proteins was investigated. It was observed mislocalization of Anillin, Aurora B, Septin 9 and Alix in the intercellular bridge, and no determination of secondary constriction and abscission sites. Fiber treatment also led to overexpression of genes related to cancer, cytokinesis and cell cycle. The results show that chrysotile fibers induce cellular and molecular alterations in normal and tumor cells that have been related to cancer initiation and progression, and that tetraploidization and aneuploid cell formation are striking events after fiber internalization, which could generate a favorable context to cancer development. PMID:26788989

  4. Modification of carotenoid levels by abscission agents and expression of carotenoid biosynthetic genes in 'valencia' sweet orange.

    PubMed

    Alferez, Fernando; Pozo, Luis V; Rouseff, Russell R; Burns, Jacqueline K

    2013-03-27

    The effect of 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP) and ethephon on peel color, flavedo carotenoid gene expression, and carotenoid accumulation was investigated in mature 'Valencia' orange ( Citrus sinensis L. Osbeck) fruit flavedo at three maturation stages. Abscission agent application altered peel color. CMNP was more effective than ethephon in promoting green-to-red (a) and blue-to-yellow (b) color at the middle and late maturation stages and total carotenoid changes at all maturation stages. Altered flow of carotenoid precursors during maturation due to abscission agents was suggested by changes in phytoene desaturase (Pds) and ζ-carotene desaturase (Zds) gene expression. However, each abscission agent affected downstream expression differentially. Ethephon application increased β-carotene hydroxilase (β-Chx) transcript accumulation 12-fold as maturation advanced from the early to middle and late stages. CMNP markedly increased β- and ε-lycopene cyclase (Lcy) transcript accumulation 45- and 15-fold, respectively, at midmaturation. Patterns of carotenoid accumulation in flavedo were supported in part by gene expression changes. CMNP caused greater accumulation of total flavedo carotenoids at all maturation stages when compared with ethephon or controls. In general, CMNP treatment increased total red carotenoids more than ethephon or the control but decreased total yellow carotenoids at each maturation stage. In control fruit flavedo, total red carotenoids increased and yellow carotenoids decreased as maturation progressed. Trends in total red carotenoids during maturation were consistent with measured a values. Changes in carotenoid accumulation and expression patterns in flavedo suggest that regulation of carotenoid accumulation is under transcriptional, translational, and post-translational control. PMID:23451824

  5. Distinct roles of Rho1, Cdc42, and Cyk3 in septum formation and abscission during yeast cytokinesis

    PubMed Central

    Onishi, Masayuki; Ko, Nolan; Nishihama, Ryuichi

    2013-01-01

    In yeast and animal cytokinesis, the small guanosine triphosphatase (GTPase) Rho1/RhoA has an established role in formation of the contractile actomyosin ring, but its role, if any, during cleavage-furrow ingression and abscission is poorly understood. Through genetic screens in yeast, we found that either activation of Rho1 or inactivation of another small GTPase, Cdc42, promoted secondary septum (SS) formation, which appeared to be responsible for abscission. Consistent with this hypothesis, a dominant-negative Rho1 inhibited SS formation but not cleavage-furrow ingression or the concomitant actomyosin ring constriction. Moreover, Rho1 is temporarily inactivated during cleavage-furrow ingression; this inactivation requires the protein Cyk3, which binds Rho1-guanosine diphosphate via its catalytically inactive transglutaminase-like domain. Thus, unlike the active transglutaminases that activate RhoA, the multidomain protein Cyk3 appears to inhibit activation of Rho1 (and thus SS formation), while simultaneously promoting cleavage-furrow ingression through primary septum formation. This work suggests a general role for the catalytically inactive transglutaminases of fungi and animals, some of which have previously been implicated in cytokinesis. PMID:23878277

  6. Are we on the right track: Can our understanding of abscission in model systems promote or derail making improvements in less studied crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the world population grows and resources and climate conditions change, crop improvement continues to be one of the most important challenges for agriculturalists. The yield and quality of many crops is affected by abscission or shattering, and environmental stresses often hasten or alter the abs...

  7. Neurons in the medial cortex give rise to Timm-positive boutons in the cerebral cortex of lizards.

    PubMed

    Lopez-Garcia, C; Martinez-Guijarro, F J

    1988-11-01

    The origin of Timm-positive presynaptic boutons in the cerebral cortex of the lizard, Podarcis hispanica, was investigated by injections of horseradish peroxidase (HRP)-saponine in Timm-positive areas, i.e. the dorsal and dorsomedial cortices. A broad retrograde labelling of cell somata in the medial cortex was found. Injections of HRP-saponine in the medial cortex resulted in broad anterograde labelling of boutons located in the Timm-positive zones. A double-labelling of the HRP labelled boutons was obtained by using the Neo-Timm or the sulphide-osmium methods. The present results suggest that neurons of the medial cortex send axons that terminate in Timm-positive boutons in the cerebral cortex of lizards. PMID:2461786

  8. Local production of astrocytes in the cerebral cortex.

    PubMed

    Ge, W-P; Jia, J-M

    2016-05-26

    Astrocytes are the largest glial population in the mammalian brain. Astrocytes in the cerebral cortex are reportedly generated from four sources, namely radial glia, progenitors in the subventricular zone (SVZ progenitors), locally proliferating glia, and NG2 glia; it remains an open question, however, as to what extent these four cell types contribute to the substantial increase in astrocytes that occurs postnatally in the cerebral cortex. Here we summarize all possible sources of astrocytes and discuss their roles in this postnatal increase. In particular, we focus on astrocytes derived from local proliferation within the cortex. PMID:26343293

  9. Implications of premature needle abscission to the elemental nutrient status and nutrient retranslocation patterns of ozone injured Jeffrey pine

    SciTech Connect

    Patterson, M.T.; Rundel, P.W. )

    1993-06-01

    The foliar nutrient relations of ozone stressed Jeffrey pine growing in the southern Sierra Nevada of California was compared in trees retaining different numbers of needle cohorts. A 20% reduction in foliar nitrogen occurred in the oldest needles of both sensitive trees (retaining two years of needles) and resistant trees (retaining five years of needles) which coincided with the flush of new needles in late June. Nitrogen content of recently expanded needles on sensitive trees was 15% lower than needles of similar age on resistant trees immediately after becoming fully expanded, but was not significantly different two months after expansion. Resistant trees retranslocated higher fractions of all phloem-mobile nutrients measured (N, K, P and Mg) although the differences were small (between 3 and 9%). The smaller foliar pool of nutrients resulting from premature abscission may result in ozone sensitive trees relying more heavily on soil supplies for both short and long term nutrient requirements.

  10. Resistance to Inhibitors of Cholinesterase (Ric)-8A and Gαi Contribute to Cytokinesis Abscission by Controlling Vacuolar Protein-Sorting (Vps)34 Activity

    PubMed Central

    Boularan, Cedric; Kamenyeva, Olena; Cho, Hyeseon; Kehrl, John H.

    2014-01-01

    Resistance to inhibitors of cholinesterase (Ric)-8A is a guanine nucleotide exchange factor for Gαi, Gαq, and Gα12/13, which is implicated in cell signaling and as a molecular chaperone required for the initial association of nascent Gα subunits with cellular membranes. Ric-8A, Gαi subunits, and their regulators are localized at the midbody prior to abscission and linked to the final stages of cell division. Here, we identify a molecular mechanism by which Ric-8A affects cytokinesis and abscission by controlling Vps34 activity. We showed that Ric-8A protein expression is post-transcriptionally controlled during the cell cycle reaching its maximum levels at mitosis. A FRET biosensor created to measure conformational changes in Ric-8A by FLIM (Fluorescence Lifetime Imaging Microscopy) revealed that Ric-8A was in a close-state during mitosis and particularly so at cytokinesis. Lowering Ric-8A expression delayed the abscission time of dividing cells, which correlated with increased intercellular bridge length and multinucleation. During cytokinesis, Ric-8A co-localized with Vps34 at the midbody along with Gαi and LGN, where these proteins functioned to regulate Vps34 phosphatidylinositol 3-kinase activity. PMID:24466196

  11. A common miRNA160-based mechanism regulates ovary patterning, floral organ abscission and lamina outgrowth in tomato.

    PubMed

    Damodharan, Subha; Zhao, Dazhong; Arazi, Tzahi

    2016-06-01

    Plant microRNAs play vital roles in auxin signaling via the negative regulation of auxin response factors (ARFs). Studies have shown that targeting of ARF10/16/17 by miR160 is indispensable for various aspects of development, but its functions in the model crop tomato (Solanum lycopersicum) are unknown. Here we knocked down miR160 (sly-miR160) using a short tandem target mimic (STTM160), and investigated its roles in tomato development. Northern blot analysis showed that miR160 is abundant in developing ovaries. In line with this, its down-regulation perturbed ovary patterning as indicated by the excessive elongation of the proximal ends of mutant ovaries and thinning of the placenta. Following fertilization, these morphological changes led to formation of elongated, pear-shaped fruits reminiscent of those of the tomato ovate mutant. In addition, STTM160-expressing plants displayed abnormal floral organ abscission, and produced leaves, sepals and petals with diminished blades, indicating a requirement for sly-miR160 for these auxin-mediated processes. We found that sly-miR160 depletion was always associated with the up-regulation of SlARF10A, SlARF10B and SlARF17, of which the expression of SlARF10A increased the most. Despite the sly-miR160 legitimate site of SlARF16A, its mRNA levels did not change in response to sly-miR160 down-regulation, suggesting that it may be regulated by a mechanism other than mRNA cleavage. SlARF10A and SlARF17 were previously suggested to function as inhibiting ARFs. We propose that by adjusting the expression of a group of ARF repressors, of which SlARF10A is a primary target, sly-miR160 regulates auxin-mediated ovary patterning as well as floral organ abscission and lateral organ lamina outgrowth. PMID:26800988

  12. Cognition without Cortex.

    PubMed

    Güntürkün, Onur; Bugnyar, Thomas

    2016-04-01

    Assumptions on the neural basis of cognition usually focus on cortical mechanisms. Birds have no cortex, but recent studies in parrots and corvids show that their cognitive skills are on par with primates. These cognitive findings are accompanied by neurobiological discoveries that reveal avian and mammalian forebrains are homologous, and show similarities in connectivity and function down to the cellular level. But because birds have a large pallium, but no cortex, a specific cortical architecture cannot be a requirement for advanced cognitive skills. During the long parallel evolution of mammals and birds, several neural mechanisms for cognition and complex behaviors may have converged despite an overall forebrain organization that is otherwise vastly different. PMID:26944218

  13. CX-516 Cortex pharmaceuticals.

    PubMed

    Danysz, Wojciech

    2002-07-01

    CX-516 is one of a series of AMPA modulators under development by Cortex, in collaboration with Shire and Servier, for the potential treatment of Alzheimer's disease (AD), schizophrenia and mild cognitive impairment (MCI) [234221]. By June 2001, CX-516 was in phase II trials for both schizophrenia and attention deficit hyperactivity disorder (ADHD) [412513]. A phase II trial in fragile X syndrome and autism was expected to start in May 2002 [449861]. In October 2001, Cortex was awarded a Phase II SBIR grant of $769,818 from the National Institutes of Mental Health to investigate the therapeutic potential of AMPAkines in schizophrenia. This award was to support a phase IIb study of CX-516 as a combination therapy in schizophrenia patients concomitantly treated with olanzapine. The trial was to enroll 80 patients and employ a randomized, double-blind, placebo-controlled design in which the placebo group was to receive olanzapine plus placebo and the active group was to receive olanzapine plus CX-516 [425982]. In April 2000, Shire and Cortex signed an option agreement in which Shire was to evaluate CX-516for the treatment of ADHD. Under the terms of the agreement, Shire would undertake a double-blind, placebo-controlled evaluation of CX-516 involving ADHD patients. If the study proved effective, Shire would have the right to convert its option into an exclusive worldwide license for the AMPAkines for ADHD under a development and licensing agreement. Should Shire elect to execute this agreement, Shire would bear all future developmental costs [363618]. By February 2002, Cortex and Servier had revealed their intention to begin enrolment for an international study of an AMPAkine compound as a potential treatment for MCI in the near future. Assuming enrollment proceeded as anticipated, results were expected during the second quarter of 2003 [439301]. By May 2002, phase II trials were underway [450134]. In March 2002, Cortex was awarded extended funding under the

  14. The syncytial nature of epithelial cells in the thymic cortex.

    PubMed Central

    Kendall, M D

    1986-01-01

    The epithelial cells of the cortex of human and rodent thymus glands were examined by light and electron microscopy, and the intracellular membrane potentials measured from the subcapsular, cortical and medullary regions. In the human thymus cortex, there is a highly correlated age-independent relationship (r = 0.78) between the distance in micron from one adjacent Type 2/3 epithelial nucleus to another, and the number of thymocytes between them. In rodent glands that had undergone some degree of involution due to hypoxia simulating an altitude of 17 000 feet or following the injection of phenylhydrazine, Type 2/3 epithelial cells were often found to be bi- or multinucleated. Electrophysiological studies of 10 mouse thymus lobes using 0.2 micron tipped electrodes showed that there were highly significant differences (P less than 0.0001) between the intracellular membrane potentials of the subcapsular zone, the cortex and the medulla. When dyes were injected intracellularly (through 0.5 micron tipped electrodes) into individual epithelial cells, methylene blue remained within the cytoplasm, but procion yellow passed in 30 minutes into the nuclei of all the epithelial cells of the cortex but not those of the subcapsular zone, nor the medulla. This indicates that the cortex must be a functional syncytium and it differs in this respect from the rest of the gland. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 PMID:3319999

  15. Conservation of the abscission signaling peptide IDA during Angiosperm evolution: withstanding genome duplications and gain and loss of the receptors HAE/HSL2

    PubMed Central

    Stø, Ida M.; Orr, Russell J. S.; Fooyontphanich, Kim; Jin, Xu; Knutsen, Jonfinn M. B.; Fischer, Urs; Tranbarger, Timothy J.; Nordal, Inger; Aalen, Reidunn B.

    2015-01-01

    The peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), which signals through the leucine-rich repeat receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2), controls different cell separation events in Arabidopsis thaliana. We hypothesize the involvement of this signaling module in abscission processes in other plant species even though they may shed other organs than A. thaliana. As the first step toward testing this hypothesis from an evolutionarily perspective we have identified genes encoding putative orthologs of IDA and its receptors by BLAST searches of publically available protein, nucleotide and genome databases for angiosperms. Genes encoding IDA or IDA-LIKE (IDL) peptides and HSL proteins were found in all investigated species, which were selected as to represent each angiosperm order with available genomic sequences. The 12 amino acids representing the bioactive peptide in A. thaliana have virtually been unchanged throughout the evolution of the angiosperms; however, the number of IDL and HSL genes varies between different orders and species. The phylogenetic analyses suggest that IDA, HSL2, and the related HSL1 gene, were present in the species that gave rise to the angiosperms. HAE has arisen from HSL1 after a genome duplication that took place after the monocot—eudicots split. HSL1 has also independently been duplicated in the monocots, while HSL2 has been lost in gingers (Zingiberales) and grasses (Poales). IDA has been duplicated in eudicots to give rise to functionally divergent IDL peptides. We postulate that the high number of IDL homologs present in the core eudicots is a result of multiple whole genome duplications (WGD). We substantiate the involvement of IDA and HAE/HSL2 homologs in abscission by providing gene expression data of different organ separation events from various species. PMID:26579174

  16. Myotubularin-related Proteins 3 and 4 Interact with Polo-like Kinase 1 and Centrosomal Protein of 55 kDa to Ensure Proper Abscission*

    PubMed Central

    St-Denis, Nicole; Gupta, Gagan D.; Lin, Zhen Yuan; Gonzalez-Badillo, Beatriz; Pelletier, Laurence; Gingras, Anne-Claude

    2015-01-01

    The myotubularins are a family of phosphatases that dephosphorylate the phosphatidylinositols phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-phosphate. Several family members are mutated in disease, yet the biological functions of the majority of myotubularins remain unknown. To gain insight into the roles of the individual enzymes, we have used affinity purification coupled to mass spectrometry to identify protein–protein interactions for the myotubularins. The myotubularin interactome comprises 66 high confidence (false discovery rate ≤1%) interactions, including 18 pairwise interactions between individual myotubularins. The results reveal a number of potential signaling contexts for this family of enzymes, including an intriguing, novel role for myotubularin-related protein 3 and myotubularin-related protein 4 in the regulation of abscission, the final step of mitosis in which the membrane bridge remaining between two daughter cells is cleaved. Both depletion and overexpression of either myotubularin-related protein 3 or myotubularin-related protein 4 result in abnormal midbody morphology and cytokinesis failure. Interestingly, myotubularin-related protein 3 and myotubularin-related protein 4 do not exert their effects through lipid regulation at the midbody, but regulate abscission during early mitosis, by interacting with the mitotic kinase polo-like kinase 1, and with centrosomal protein of 55 kDa (CEP55), an important regulator of abscission. Structure-function analysis reveals that, consistent with known intramyotubularin interactions, myotubularin-related protein 3 and myotubularin-related protein 4 interact through their respective coiled coil domains. The interaction between myotubularin-related protein 3 and polo-like kinase 1 relies on the divergent, nonlipid binding Fab1, YOTB, Vac1, and EEA1 domain of myotubularin-related protein 3, and myotubularin-related protein 4 interacts with CEP55 through a short GPPXXXY motif, analogous to

  17. Neurocontrol in sensory cortex

    NASA Astrophysics Data System (ADS)

    Ritt, Jason; Nandi, Anirban; Schroeder, Joseph; Ching, Shinung

    Technology to control neural ensembles is rapidly advancing, but many important challenges remain in applications, such as design of controls (e.g. stimulation patterns) with specificity comparable to natural sensory encoding. We use the rodent whisker tactile system as a model for active touch, in which sensory information is acquired in a closed loop between feedforward encoding of sensory information and feedback guidance of sensing motions. Motivated by this system, we present optimal control strategies that are tailored for underactuation (a large ratio of neurons or degrees of freedom to stimulation channels) and limited observability (absence of direct measurement of the system state), common in available stimulation technologies for freely behaving animals. Using a control framework, we have begun to elucidate the feedback effect of sensory cortex activity on sensing in behaving animals. For example, by optogenetically perturbing primary sensory cortex (SI) activity at varied timing relative to individual whisker motions, we find that SI modulates future sensing behavior within 15 msec, on a whisk by whisk basis, changing the flow of incoming sensory information based on past experience. J.T.R. and S.C. hold Career Awards at the Scientific Interface from the Burroughs Wellcome Fund.

  18. The embryo MADS domain factor AGL15 acts postembryonically. Inhibition of perianth senescence and abscission via constitutive expression.

    PubMed

    Fernandez, D E; Heck, G R; Perry, S E; Patterson, S E; Bleecker, A B; Fang, S C

    2000-02-01

    AGL15 (AGAMOUS-like 15), a member of the MADS domain family of regulatory factors, accumulates preferentially throughout the early stages of the plant life cycle. In this study, we investigated the expression pattern and possible roles of postembryonic accumulation of AGL15. Using a combination of reporter genes, RNA gel blot analysis, and immunochemistry, we found that the AGL15 protein accumulates transiently in the shoot apex in young Arabidopsis and Brassica seedlings and that promoter activity is associated with the shoot apex and the base of leaf petioles throughout the vegetative phase. During the reproductive phase, AGL15 accumulates transiently in floral buds. When AGL15 was expressed in Arabidopsis under the control of a strong constitutive promoter, we noted a striking increase in the longevity of the sepals and petals as well as delays in a selected set of age-dependent developmental processes, including the transition to flowering and fruit maturation. Although ethylene has been implicated in many of these same processes, the effects of AGL15 could be clearly distinguished from the effects of the ethylene resistant1-1 mutation, which confers dominant insensitivity to ethylene. By comparing the petal breakstrength (the force needed to remove petals) for flowers of different ages, we determined that ectopic AGL15 had a novel effect: the breakstrength of petals initially declined, as occurs in the wild type, but was then maintained at an intermediate value over a prolonged period. Abscission-associated gene expression and structural changes were also altered in the presence of ectopic AGL15. PMID:10662856

  19. Word Recognition in Auditory Cortex

    ERIC Educational Resources Information Center

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  20. Are We on the Right Track: Can Our Understanding of Abscission in Model Systems Promote or Derail Making Improvements in Less Studied Crops?

    PubMed Central

    Patterson, Sara E.; Bolivar-Medina, Jenny L.; Falbel, Tanya G.; Hedtcke, Janet L.; Nevarez-McBride, Danielle; Maule, Andrew F.; Zalapa, Juan E.

    2016-01-01

    As the world population grows and resources and climate conditions change, crop improvement continues to be one of the most important challenges for agriculturalists. The yield and quality of many crops is affected by abscission or shattering, and environmental stresses often hasten or alter the abscission process. Understanding this process can not only lead to genetic improvement, but also changes in cultural practices and management that will contribute to higher yields, improved quality and greater sustainability. As plant scientists, we have learned significant amounts about this process through the study of model plants such as Arabidopsis, tomato, rice, and maize. While these model systems have provided significant valuable information, we are sometimes challenged to use this knowledge effectively as variables including the economic value of the crop, the uniformity of the crop, ploidy levels, flowering and crossing mechanisms, ethylene responses, cultural requirements, responses to changes in environment, and cellular and tissue specific morphological differences can significantly influence outcomes. The value of genomic resources for lesser-studied crops such as cranberries and grapes and the orphan crop fonio will also be considered. PMID:26858730

  1. Are We on the Right Track: Can Our Understanding of Abscission in Model Systems Promote or Derail Making Improvements in Less Studied Crops?

    PubMed

    Patterson, Sara E; Bolivar-Medina, Jenny L; Falbel, Tanya G; Hedtcke, Janet L; Nevarez-McBride, Danielle; Maule, Andrew F; Zalapa, Juan E

    2015-01-01

    As the world population grows and resources and climate conditions change, crop improvement continues to be one of the most important challenges for agriculturalists. The yield and quality of many crops is affected by abscission or shattering, and environmental stresses often hasten or alter the abscission process. Understanding this process can not only lead to genetic improvement, but also changes in cultural practices and management that will contribute to higher yields, improved quality and greater sustainability. As plant scientists, we have learned significant amounts about this process through the study of model plants such as Arabidopsis, tomato, rice, and maize. While these model systems have provided significant valuable information, we are sometimes challenged to use this knowledge effectively as variables including the economic value of the crop, the uniformity of the crop, ploidy levels, flowering and crossing mechanisms, ethylene responses, cultural requirements, responses to changes in environment, and cellular and tissue specific morphological differences can significantly influence outcomes. The value of genomic resources for lesser-studied crops such as cranberries and grapes and the orphan crop fonio will also be considered. PMID:26858730

  2. Early GABAergic circuitry in the cerebral cortex.

    PubMed

    Luhmann, Heiko J; Kirischuk, Sergei; Sinning, Anne; Kilb, Werner

    2014-06-01

    In the cerebral cortex GABAergic signaling plays an important role in regulating early developmental processes, for example, neurogenesis, migration and differentiation. Transient cell populations, namely Cajal-Retzius in the marginal zone and thalamic input receiving subplate neurons, are integrated as active elements in transitory GABAergic circuits. Although immature pyramidal neurons receive GABAergic synaptic inputs already at fetal stages, they are integrated into functional GABAergic circuits only several days later. In consequence, GABAergic synaptic transmission has only a minor influence on spontaneous network activity during early corticogenesis. Concurrent with the gradual developmental shift of GABA action from excitatory to inhibitory and the maturation of cortical synaptic connections, GABA becomes more important in synchronizing neuronal network activity. PMID:24434608

  3. Maps of the Auditory Cortex.

    PubMed

    Brewer, Alyssa A; Barton, Brian

    2016-07-01

    One of the fundamental properties of the mammalian brain is that sensory regions of cortex are formed of multiple, functionally specialized cortical field maps (CFMs). Each CFM comprises two orthogonal topographical representations, reflecting two essential aspects of sensory space. In auditory cortex, auditory field maps (AFMs) are defined by the combination of tonotopic gradients, representing the spectral aspects of sound (i.e., tones), with orthogonal periodotopic gradients, representing the temporal aspects of sound (i.e., period or temporal envelope). Converging evidence from cytoarchitectural and neuroimaging measurements underlies the definition of 11 AFMs across core and belt regions of human auditory cortex, with likely homology to those of macaque. On a macrostructural level, AFMs are grouped into cloverleaf clusters, an organizational structure also seen in visual cortex. Future research can now use these AFMs to investigate specific stages of auditory processing, key for understanding behaviors such as speech perception and multimodal sensory integration. PMID:27145914

  4. MRI volumetry of prefrontal cortex

    NASA Astrophysics Data System (ADS)

    Sheline, Yvette I.; Black, Kevin J.; Lin, Daniel Y.; Pimmel, Joseph; Wang, Po; Haller, John W.; Csernansky, John G.; Gado, Mokhtar; Walkup, Ronald K.; Brunsden, Barry S.; Vannier, Michael W.

    1995-05-01

    Prefrontal cortex volumetry by brain magnetic resonance (MR) is required to estimate changes postulated to occur in certain psychiatric and neurologic disorders. A semiautomated method with quantitative characterization of its performance is sought to reliably distinguish small prefrontal cortex volume changes within individuals and between groups. Stereological methods were tested by a blinded comparison of measurements applied to 3D MR scans obtained using an MPRAGE protocol. Fixed grid stereologic methods were used to estimate prefrontal cortex volumes on a graphic workstation, after the images are scaled from 16 to 8 bits using a histogram method. In addition images were resliced into coronal sections perpendicular to the bicommissural plane. Prefrontal cortex volumes were defined as all sections of the frontal lobe anterior to the anterior commissure. Ventricular volumes were excluded. Stereological measurement yielded high repeatability and precision, and was time efficient for the raters. The coefficient of error was cortex boundaries on 3D images was critical to obtaining accurate measurements. MR prefrontal cortex volumetry by stereology can yield accurate and repeatable measurements. Small frontal lobe volume reductions in patients with brain disorders such as depression and schizophrenia can be efficiently assessed using this method.

  5. Functional Zonation of the Adult Mammalian Adrenal Cortex

    PubMed Central

    Vinson, Gavin P.

    2016-01-01

    The standard model of adrenocortical zonation holds that the three main zones, glomerulosa, fasciculata, and reticularis each have a distinct function, producing mineralocorticoids (in fact just aldosterone), glucocorticoids, and androgens respectively. Moreover, each zone has its specific mechanism of regulation, though ACTH has actions throughout. Finally, the cells of the cortex originate from a stem cell population in the outer cortex or capsule, and migrate centripetally, changing their phenotype as they progress through the zones. Recent progress in understanding the development of the gland and the distribution of steroidogenic enzymes, trophic hormone receptors, and other factors suggests that this model needs refinement. Firstly, proliferation can take place throughout the gland, and although the stem cells are certainly located in the periphery, zonal replenishment can take place within zones. Perhaps more importantly, neither the distribution of enzymes nor receptors suggest that the individual zones are necessarily autonomous in their production of steroid. This is particularly true of the glomerulosa, which does not seem to have the full suite of enzymes required for aldosterone biosynthesis. Nor, in the rat anyway, does it express MC2R to account for the response of aldosterone to ACTH. It is known that in development, recruitment of stem cells is stimulated by signals from within the glomerulosa. Furthermore, throughout the cortex local regulatory factors, including cytokines, catecholamines and the tissue renin-angiotensin system, modify and refine the effects of the systemic trophic factors. In these and other ways it more and more appears that the functions of the gland should be viewed as an integrated whole, greater than the sum of its component parts. PMID:27378832

  6. Within-tree and temporal distribution of Pezothrips kellyanus (Thysanoptera: Thripidae) nymphs in citrus canopies and their influence on premature fruit abscission.

    PubMed

    Planes, Laura; Catalan, Jose; Urbaneja, Alberto; Tena, Alejandro

    2014-06-01

    Pezothrips kellyanus (Bagnall) (Thysanoptera: Thripidae) has recently become a pest of citrus whose nymphs feed on the surface of young fruitlets. This feeding habit causes patches or rings of tissue scar around the apex as fruit mature. Currently, little is known about the distribution of P. kellyanus nymphs. Further knowledge would allow the development of an appropriate sampling protocol and targeted pesticide application. In our first experiment, the abundance of first- and second-generation P. kellyanus nymphs was surveyed in a citrus orchard at different times of day to characterize their spatial and temporal distributions. The distribution of damaged fruit was also measured at harvest. Our results showed that P. kellyanus nymphs tended to be present in the upper half of the canopy and mainly damaged the fruit located in this area of the canopy. However, P. kellyanus nymphs were uniformly distributed among the four cardinal directions of the canopy and throughout the day. Consequently, cardinal direction and time of the day seem to be less important when developing a sampling plan or in improving targeting or timing of insecticidal spray applications. In our second experiment, we tracked the presence of P. kellyanus nymphs in labeled fruit daily. These data were used to determine how many days the nymphs occupied a fruit and to relate occupancy and premature fruit abscission. The nymphs of P. kellyanus remained on the same fruit for only 1 d. The rate of fruit abscission in June was significantly higher in fruit occupied by first-generation P. kellyanus nymphs than in nonoccupied fruit. PMID:24874156

  7. Cortical connectivity maps reveal anatomically distinct areas in the parietal cortex of the rat

    PubMed Central

    Wilber, Aaron A.; Clark, Benjamin J.; Demecha, Alexis J.; Mesina, Lilia; Vos, Jessica M.; McNaughton, Bruce L.

    2015-01-01

    A central feature of theories of spatial navigation involves the representation of spatial relationships between objects in complex environments. The parietal cortex has long been linked to the processing of spatial visual information and recent evidence from single unit recording in rodents suggests a role for this region in encoding egocentric and world-centered frames. The rat parietal cortex can be subdivided into four distinct rostral-caudal and medial-lateral regions, which includes a zone previously characterized as secondary visual cortex. At present, very little is known regarding the relative connectivity of these parietal subdivisions. Thus, we set out to map the connectivity of the entire anterior-posterior and medial-lateral span of this region. To do this we used anterograde and retrograde tracers in conjunction with open source neuronal segmentation and tracer detection tools to generate whole brain connectivity maps of parietal inputs and outputs. Our present results show that inputs to the parietal cortex varied significantly along the medial-lateral, but not the rostral-caudal axis. Specifically, retrosplenial connectivity is greater medially, but connectivity with visual cortex, though generally sparse, is more significant laterally. Finally, based on connection density, the connectivity between parietal cortex and hippocampus is indirect and likely achieved largely via dysgranular retrosplenial cortex. Thus, similar to primates, the parietal cortex of rats exhibits a difference in connectivity along the medial-lateral axis, which may represent functionally distinct areas. PMID:25601828

  8. Spindle neurons of the human anterior cingulate cortex

    NASA Technical Reports Server (NTRS)

    Nimchinsky, E. A.; Vogt, B. A.; Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The human anterior cingulate cortex is distinguished by the presence of an unusual cell type, a large spindle neuron in layer Vb. This cell has been noted numerous times in the historical literature but has not been studied with modern neuroanatomic techniques. For instance, details regarding the neuronal class to which these cells belong and regarding their precise distribution along both ventrodorsal and anteroposterior axes of the cingulate gyrus are still lacking. In the present study, morphological features and the anatomic distribution of this cell type were studied using computer-assisted mapping and immunocytochemical techniques. Spindle neurons are restricted to the subfields of the anterior cingulate cortex (Brodmann's area 24), exhibiting a greater density in anterior portions of this area than in posterior portions, and tapering off in the transition zone between anterior and posterior cingulate cortex. Furthermore, a majority of the spindle cells at any level is located in subarea 24b on the gyral surface. Immunocytochemical analysis revealed that the neurofilament protein triple was present in a large percentage of these neurons and that they did not contain calcium-binding proteins. Injections of the carbocyanine dye DiI into the cingulum bundle revealed that these cells are projection neurons. Finally, spindle cells were consistently affected in Alzheimer's disease cases, with an overall loss of about 60%. Taken together, these observations indicate that the spindle cells of the human cingulate cortex represent a morphological subpopulation of pyramidal neurons whose restricted distribution may be associated with functionally distinct areas.

  9. Beta Oscillation Dynamics in Extrastriate Cortex after Removal of Primary Visual Cortex

    PubMed Central

    Schmiedt, Joscha T.; Maier, Alexander; Fries, Pascal; Saunders, Richard C.; Leopold, David A.

    2014-01-01

    The local field potential (LFP) in visual cortex is typically characterized by the following spectral pattern: before the onset of a visual stimulus, low-frequency oscillations (beta, 12–20 Hz) dominate, whereas during the presentation of a stimulus these oscillations diminish and are replaced by fluctuations at higher frequencies (gamma, >30 Hz). The origin of beta oscillations in vivo remains unclear, as is the basis of their suppression during visual stimulation. Here we investigate the contribution of ascending input from primary visual cortex (V1) to beta oscillation dynamics in extrastriate visual area V4 of behaving monkeys. We recorded LFP activity in V4 before and after resecting a portion of V1. After the surgery, the visually induced gamma LFP activity in the lesion projection zone of V4 was markedly reduced, consistent with previously reported spiking responses (Schmid et al., 2013). In the beta LFP range, the lesion had minimal effect on the normal pattern of spontaneous oscillations. However, the lesion led to a surprising and permanent reversal of the normal beta suppression during visual stimulation, with visual stimuli eliciting beta magnitude increases up to 50%, particularly in response to moving stimuli. This reversed beta activity pattern was specific to stimulus locations affected by the V1 lesion. Our results shed light on the mechanisms of beta activity in extrastriate visual cortex: The preserved spontaneous oscillations point to a generation mechanism independent of the geniculostriate pathway, whereas the positive beta responses support the contribution of visual information to V4 via direct thalamo-extrastriate projections. PMID:25164679

  10. Motor cortex stimulation for neuropathic pain.

    PubMed

    Lazorthes, Y; Sol, J C; Fowo, S; Roux, F E; Verdié, J C

    2007-01-01

    Since the initial publication of Tsubokawa in 1991, epidural motor cortex stimulation (MCS) is increasingly reported as an effective surgical option for the treatment of refractory neuropathic pain although its mechanism of action remains poorly understood. The authors review the extensive literature published over the last 15 years on central and neuropathic pain. Optimal patient selection remains difficult and the value of pharmacological tests or transcranial magnetic stimulation in predicting the efficacy of MCS has not been established. Pre-operative functional magnetic resonance imaging (fMRI), 3-dimensional volume MRI, neuronavigation and intra-operative neurophysiological monitoring have contributed to improvements in the technique for identifying the precise location of the targeted motor cortical area and the correct placement of the electrode array. MCS should be considered as the treatment of choice in post-stroke pain, thalamic pain or facial anesthesia dolorosa. In brachial plexus avulsion pain, it is preferable to propose initially dorsal root entry zone (DREZ)-tomy; MCS may be offered after DREZotomy has failed to control the pain. In our experience, the results of MCS on phantom limb pain are promising. In general, the efficacy of MCS depends on: a) the accurate placement of the stimulation electrode over the appropriate area of the motor cortex, and b) on sophisticated programming of the stimulation parameters. A better understanding of the MCS mechanism of action will probably make it possible to adjust better the stimulation parameters. The conclusions of multicentered randomised studies, now in progress, will be very useful and are likely to promote further research and clinical applications in this field. PMID:17691287

  11. The role of the epidermis and cortex in gravitropic curvature of maize roots

    NASA Technical Reports Server (NTRS)

    Bjorkman, T.; Cleland, R. E.

    1988-01-01

    In order to determine the role of the epidermis and cortex in gravitropic curvature of seedling roots of maize (Zea mays L. cv. Merit), the cortex on the two opposite flanks was removed from the meristem through the growing zone; gravitropic curvature was measured with the roots oriented horizontally with the cut flanks either on the upper and lower side, or on the lateral sides as a wound control. Curvature was slower in both these treatments (53 degrees in 5 h) than in intact roots (82 degrees), but there was no difference between the two orientations in extent and rate of curvature, nor in the latent time, showing that epidermis and cortex were not the site of action of the growth-regulating signal. The amount of cortex removed made no difference in the extent of curvature. Curvature was eliminated when the endodermis was damaged, raising the possibility that the endodermis or the stele-cortex interface controls gravitropic curvature in roots. The elongation rate of roots from which just the epidermis had been peeled was reduced by 0.01 mM auxin (indole-3-acetic acid) from 0.42 to 0.27 mm h-1, contradicting the hypothesis that only the epidermis responds to changes in auxin activity during gravistimulation. These observations indicate that gravitropic curvature in maize roots is not driven by differential cortical cell enlargement, and that movement of growth regulator(s) from the tip to the elongating zone is unlikely to occur in the cortex.

  12. Basidiomycete yeasts in the cortex of ascomycete macrolichens.

    PubMed

    Spribille, Toby; Tuovinen, Veera; Resl, Philipp; Vanderpool, Dan; Wolinski, Heimo; Aime, M Catherine; Schneider, Kevin; Stabentheiner, Edith; Toome-Heller, Merje; Thor, Göran; Mayrhofer, Helmut; Johannesson, Hanna; McCutcheon, John P

    2016-07-29

    For over 140 years, lichens have been regarded as a symbiosis between a single fungus, usually an ascomycete, and a photosynthesizing partner. Other fungi have long been known to occur as occasional parasites or endophytes, but the one lichen-one fungus paradigm has seldom been questioned. Here we show that many common lichens are composed of the known ascomycete, the photosynthesizing partner, and, unexpectedly, specific basidiomycete yeasts. These yeasts are embedded in the cortex, and their abundance correlates with previously unexplained variations in phenotype. Basidiomycete lineages maintain close associations with specific lichen species over large geographical distances and have been found on six continents. The structurally important lichen cortex, long treated as a zone of differentiated ascomycete cells, appears to consistently contain two unrelated fungi. PMID:27445309

  13. Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex.

    PubMed

    Coffman, Keith A; Dum, Richard P; Strick, Peter L

    2011-09-20

    The cerebellum has a medial, cortico-nuclear zone consisting of the cerebellar vermis and the fastigial nucleus. Functionally, this zone is concerned with whole-body posture and locomotion. The vermis classically is thought to be included within the "spinocerebellum" and to receive somatic sensory input from ascending spinal pathways. In contrast, the lateral zone of the cerebellum is included in the "cerebro-cerebellum" because it is densely interconnected with the cerebral cortex. Here we report the surprising result that a portion of the vermis receives dense input from the cerebral cortex. We injected rabies virus into lobules VB-VIIIB of the vermis and used retrograde transneuronal transport of the virus to define disynaptic inputs to it. We found that large numbers of neurons in the primary motor cortex and in several motor areas on the medial wall of the hemisphere project to the vermis. Thus, our results challenge the classical view of the vermis and indicate that it no longer should be considered as entirely isolated from the cerebral cortex. Instead, lobules VB-VIIIB represent a site where the cortical motor areas can influence descending control systems involved in the regulation of whole-body posture and locomotion. We argue that the projection from the cerebral cortex to the vermis is part of the neural substrate for anticipatory postural adjustments and speculate that dysfunction of this system may underlie some forms of dystonia. PMID:21911381

  14. Distinct development of the cerebral cortex in platypus and echidna.

    PubMed

    Ashwell, Ken W S; Hardman, Craig D

    2012-01-01

    Both lineages of the modern monotremes have distinctive features in the cerebral cortex, but the developmental mechanisms that produce such different adult cortical architecture remain unknown. Similarly, nothing is known about the differences and/or similarities between monotreme and therian cortical development. We have used material from the Hill embryological collection to try to answer key questions concerning cortical development in monotremes. Our findings indicate that gyrencephaly begins to emerge in the echidna brain shortly before birth (crown-rump length 12.5 mm), whereas the cortex of the platypus remains lissencephalic throughout development. The cortices of both monotremes are very immature at the time of hatching, much like that seen in marsupials, and both have a subventricular zone (SubV) within both the striatum and pallium during post-hatching development. It is particularly striking that in the platypus, this region has an extension from the palliostriatal angle beneath the developing trigeminoreceptive part of the somatosensory cortex of the lateral cortex. The putative SubV beneath the trigeminal part of S1 appears to accommodate at least two distinct types of cell and many mitotic figures and (particularly in the platypus) appears to be traversed by large numbers of thalamocortical axons as these grow in. The association with putative thalamocortical fibres suggests that this region may also serve functions similar to the subplate zone of Eutheria. These findings suggest that cortical development in each monotreme follows distinct paths from at least the time of birth, consistent with a long period of independent and divergent cortical evolution. PMID:22143038

  15. The Functions of the Orbitofrontal Cortex

    ERIC Educational Resources Information Center

    Rolls, Edmund T.

    2004-01-01

    The orbitofrontal cortex contains the secondary taste cortex, in which the reward value of taste is represented. It also contains the secondary and tertiary olfactory cortical areas, in which information about the identity and also about the reward value of odours is represented. The orbitofrontal cortex also receives information about the sight…

  16. Mapping auditory cortex in the La Plata dolphin (Pontoporia blainvillei).

    PubMed

    Fung, Christian; Schleicher, A; Kowalski, T; Oelschläger, H H A

    2005-09-15

    This study deals with the mapping of the primary and secondary auditory cortex. Due to their important role in echolocation they were the first areas to be examined [P.J. Morgane, M.S. Jacobs, in: R.J. Harrison (Ed.), Functional Anatomy of Marine Mammals, Comparative Anatomy of the Cetacean Nervous System, vol. 1, Academic Press, London, 1972, pp. 117-144]. We analysed the brain of a La Plata dolphin (Pontoporia blainvillei), which had been fixed in formaldehyde, embedded in paraffin, cut in sections of 20mum thickness and stained with cresyl violet. The experimental approach being impossible, we used cytoarchitectonic variations in the neocortex. Former electrophysiological data [T.F. Ladygina, A.Y. Supin, Localization of the projectional sensory areas in the cortex of the porpoise Tursiops truncates, Zh. Evol. Biokhim. Fiziol. 13 (1978) 712-718] [Sokolov, T.F. Ladygina, A.Y. Supin, Location of sensory zones in cerebral cortex of dolphin, Dokl. Biol. Sci., Russian Original 202 (1-6) (1972)] provided the framework for the exact determination of borders between functional cortical areas. We used a stereological observer-independent procedure based on changes in volume density of cell bodies throughout the neocortex [A. Schleicher, et al., Stereological approach to human cortical architecture: Identification and delineation of cortical areas, J. Chem. Neuroanat. 20 (2000) 31-47]. Due to the computer program's high sensitivity to changes in volume density it was possible to analyse the poorly laminated dolphin cortex. The 3D-reconstruction of the auditory cortex was processed using the AMIRA 3.0 Graphics software package comparing the main primary gyri in the histological sections with those in coronal magnetic resonance imaging scans of another intact Pontoporia brain. PMID:16144613

  17. Touch activates human auditory cortex.

    PubMed

    Schürmann, Martin; Caetano, Gina; Hlushchuk, Yevhen; Jousmäki, Veikko; Hari, Riitta

    2006-05-01

    Vibrotactile stimuli can facilitate hearing, both in hearing-impaired and in normally hearing people. Accordingly, the sounds of hands exploring a surface contribute to the explorer's haptic percepts. As a possible brain basis of such phenomena, functional brain imaging has identified activations specific to audiotactile interaction in secondary somatosensory cortex, auditory belt area, and posterior parietal cortex, depending on the quality and relative salience of the stimuli. We studied 13 subjects with non-invasive functional magnetic resonance imaging (fMRI) to search for auditory brain areas that would be activated by touch. Vibration bursts of 200 Hz were delivered to the subjects' fingers and palm and tactile pressure pulses to their fingertips. Noise bursts served to identify auditory cortex. Vibrotactile-auditory co-activation, addressed with minimal smoothing to obtain a conservative estimate, was found in an 85-mm3 region in the posterior auditory belt area. This co-activation could be related to facilitated hearing at the behavioral level, reflecting the analysis of sound-like temporal patterns in vibration. However, even tactile pulses (without any vibration) activated parts of the posterior auditory belt area, which therefore might subserve processing of audiotactile events that arise during dynamic contact between hands and environment. PMID:16488157

  18. Preparatory Activity and Connectivity in Dorsal Anterior Cingulate Cortex for Cognitive Control

    PubMed Central

    Schulz, Kurt P.; Bédard, Anne-Claude V.; Czarnecki, Rosa; Fan, Jin

    2011-01-01

    Dorsal anterior cingulate cortex (dACC) is composed of functionally distinct subregions that may contribute to the top-down control of response selection and preparation. Multiple motor areas have been identified in dACC, including an anterior zone implicated in conflict monitoring and a caudal zone involved in movement execution. This study tested the involvement of a third cingulate area, the posterior zone of dACC, in the top-down control of response selection and preparation. Sixteen healthy young adults were scanned with event-related functional magnetic resonance imaging while performing a cued go/no-go task that was designed to minimize response conflicts. The activation and functional connectivity of dACC were tested with standard convolution models and psychophysiological interaction analyses, respectively. Ready cues that informed the direction of the impending response triggered preparatory neural activity in the posterior zone of dACC and strengthened functional connectivity with the anterior and caudal zones of dACC, as well as perigenual anterior cingulate cortex, frontal operculum, dorsolateral prefrontal cortex, sensory association cortices, and extra-pyramidal motor areas. The preparatory cues activated dACC above and beyond the general arousing effects common to cues despite negligible conflict in the go/no-go task. The integration of cognitive, sensorimotor, and incentive signals in dACC places the region in an ideal position to select and prepare appropriate behavioral responses to achieve higher-level goals. PMID:21515388

  19. Multimap formation in visual cortex

    PubMed Central

    Jain, Rishabh; Millin, Rachel; Mel, Bartlett W.

    2015-01-01

    An extrastriate visual area such as V2 or V4 contains neurons selective for a multitude of complex shapes, all sharing a common topographic organization. Simultaneously developing multiple interdigitated maps—hereafter a “multimap”—is challenging in that neurons must compete to generate a diversity of response types locally, while cooperating with their dispersed same-type neighbors to achieve uniform visual field coverage for their response type at all orientations, scales, etc. Previously proposed map development schemes have relied on smooth spatial interaction functions to establish both topography and columnar organization, but by locally homogenizing cells' response properties, local smoothing mechanisms effectively rule out multimap formation. We found in computer simulations that the key requirements for multimap development are that neurons are enabled for plasticity only within highly active regions of cortex designated “learning eligibility regions” (LERs), but within an LER, each cell's learning rate is determined only by its activity level with no dependence on location. We show that a hybrid developmental rule that combines spatial and activity-dependent learning criteria in this way successfully produces multimaps when the input stream contains multiple distinct feature types, or in the degenerate case of a single feature type, produces a V1-like map with “salt-and-pepper” structure. Our results support the hypothesis that cortical maps containing a fine mixture of different response types, whether in monkey extrastriate cortex, mouse V1 or elsewhere in the cortex, rather than signaling a breakdown of map formation mechanisms at the fine scale, are a product of a generic cortical developmental scheme designed to map cells with a diversity of response properties across a shared topographic space. PMID:26641946

  20. Finding prefrontal cortex in the rat.

    PubMed

    Leonard, Christiana M

    2016-08-15

    The prefrontal cortex of the rat. I. Cortical projection of the mediodorsal nucleus. II. Efferent connections The cortical projection field of the mediodorsal nucleus of the thalamus (MD) was identified in the rat using the Fink-Heimer silver technique for tracing degenerating fibers. Small stereotaxic lesions confined to MD were followed by terminal degeneration in the dorsal bank of the rhinal sulcus (sulcal cortex) and the medial wall of the hemisphere anterior and dorsal to the genu of the corpus callosum (medial cortex). No degenerating fibers were traced to the convexity of the hemisphere. The cortical formation receiving a projection from MD is of a relatively undifferentiated type which had been previously classified as juxtallocortex. A study of the efferent fiber connections of the rat׳s MD-projection cortex demonstrated some similarities to those of monkey prefrontal cortex. A substantial projection to the pretectal area and deep layers of the superior colliculus originates in medial cortex, a connection previously reported for caudal prefrontal (area 8) cortex in the monkey. Sulcal cortex projects to basal olfactory structures and lateral hypothalamus, as does orbital frontal cortex in the monkey. The rat׳s MD-projection cortex differs from that in the monkey in that it lacks a granular layer and appears to have no prominent direct associations with temporal and juxtahippocampal areas. Furthermore, retrograde degeneration does not appear in the rat thalamus after damage to MD-projection areas, suggesting that the striatum or thalamus receives a proportionally larger share of the MD-projection in this animal than it does in the monkey. Comparative behavioral investigations are in progress to investigate functional differences between granular prefrontal cortex in the primate and the relatively primitive MD-projection cortex in the rat. © 1969. This article is part of a Special Issue entitled SI:50th Anniversary Issue. PMID:26867704

  1. Orientation selectivity, preference, and continuity in monkey striate cortex.

    PubMed

    Blasdel, G G

    1992-08-01

    Maps of orientation preference and selectivity, inferred from differential images of orientation (Blasdel, 1992), reveal linear organizations in patches, 0.5-1.0 mm across, where orientation selectivities are high, and where preferred orientations rotate linearly along one axis while remaining constant along the other. Most of these linear zones lie between the centers of adjacent ocular dominance columns, with their short iso-orientation slabs oriented perpendicular, in regions enjoying the greatest binocular overlap. These two-dimensional linear zones are segregated by one- and zero-dimensional discontinuities that are particularly abundant in the centers of ocular dominance columns, and that are also correlated with cytochrome oxidase-rich zones within them. Discontinuities smaller than 90 degrees extend in one dimension, as fractures, while discontinuities greater than 90 degrees are confined to points, in the form of singularities, that are generated when orientation preferences rotate continuously through +/- 180 degrees along circular paths. The continuous rotations through 180 degrees imply that direction preferences are not organized laterally in striate cortex. And they also ensure that preferences for all orientations converge at each singularity, with perpendicular orientations represented uniquely close together on opposite sides. The periodic interspersing of linear zones and singularities suggests that orientation preferences are organized by at least two competing schemes. They are optimized for linearity, along with selectivity and binocularity, in the linear zones, and they are optimized for density near singularities. Since upper-layer neurons are likely to have similarly sized dendritic fields in all regions (Lund and Yoshioka, 1991), those in the linear zones should receive precise information about narrowly constrained orientations, while those near singularities should receive coarse information about all orientations--very different inputs

  2. Promoting flowering, lateral shoot outgrowth, leaf development, and flower abscission in tobacco plants overexpressing cotton FLOWERING LOCUS T (FT)-like gene GhFT1

    PubMed Central

    Li, Chao; Zhang, Yannan; Zhang, Kun; Guo, Danli; Cui, Baiming; Wang, Xiyin; Huang, Xianzhong

    2015-01-01

    FLOWERING LOCUS T (FT) encodes a mobile signal protein, recognized as major component of florigen, which has a central position in regulating flowering, and also plays important roles in various physiological aspects. A mode is recently emerging for the balance of indeterminate and determinate growth, which is controlled by the ratio of FT-like and TERMINAL FLOWER 1 (TFL1)-like gene activities, and has a strong influence on the floral transition and plant architecture. Orthologs of GhFT1 was previously isolated and characterized from Gossypium hirsutum. We demonstrated that ectopic overexpression of GhFT1 in tobacco, other than promoting flowering, promoted lateral shoot outgrowth at the base, induced more axillary bud at the axillae of rosette leaves, altered leaf morphology, increased chlorophyll content, had higher rate of photosynthesis and caused flowers abscission. Analysis of gene expression suggested that flower identity genes were significantly upregulated in transgenic plants. Further analysis of tobacco FT paralogs indicated that NtFT4, acting as flower inducer, was upregulated, whereas NtFT2 and NtFT3 as flower inhibitors were upregulated in transgenic plants under long-day conditions, but downregulated under short-day conditions. Our data suggests that sufficient level of transgenic cotton FT might disturb the balance of the endogenous tobacco FT paralogs of inducers and repressors and resulted in altered phenotype in transgenic tobacco, emphasizing the expanding roles of FT in regulating shoot architecture by advancing determine growth. Manipulating the ratio for indeterminate and determinate growth factors throughout FT-like and TFL1-like gene activity holds promise to improve plant architecture and enhance crop yield. PMID:26136765

  3. Subspecialization in the human posterior medial cortex

    PubMed Central

    Bzdok, Danilo; Heeger, Adrian; Langner, Robert; Laird, Angela R.; Fox, Peter T.; Palomero-Gallagher, Nicola; Vogt, Brent A.; Zilles, Karl; Eickhoff, Simon B.

    2014-01-01

    The posterior medial cortex (PMC) is particularly poorly understood. Its neural activity changes have been related to highly disparate mental processes. We therefore investigated PMC properties with a data-driven exploratory approach. First, we subdivided the PMC by whole-brain coactivation profiles. Second, functional connectivity of the ensuing PMC regions was compared by task-constrained meta-analytic coactivation mapping (MACM) and task-unconstrained resting-state correlations (RSFC). Third, PMC regions were functionally described by forward/reverse functional inference. A precuneal cluster was mostly connected to the intraparietal sulcus, frontal eye fields, and right temporo-parietal junction; associated with attention and motor tasks. A ventral posterior cingulate cortex (PCC) cluster was mostly connected to the ventromedial prefrontal cortex and middle left inferior parietal cortex (IPC); associated with facial appraisal and language tasks. A dorsal PCC cluster was mostly connected to the dorsomedial prefrontal cortex, anterior/posterior IPC, posterior midcingulate cortex, and left dorsolateral prefrontal cortex; associated with delay discounting. A cluster in the retrosplenial cortex was mostly connected to the anterior thalamus and hippocampus. Furthermore, all PMC clusters were congruently coupled with the default mode network according to task-constrained but not task-unconstrained connectivity. We thus identified distinct regions in the PMC and characterized their neural networks and functional implications. PMID:25462801

  4. Mapping Prefrontal Cortex Functions in Human Infancy

    ERIC Educational Resources Information Center

    Grossmann, Tobias

    2013-01-01

    It has long been thought that the prefrontal cortex, as the seat of most higher brain functions, is functionally silent during most of infancy. This review highlights recent work concerned with the precise mapping (localization) of brain activation in human infants, providing evidence that prefrontal cortex exhibits functional activation much…

  5. Useful signals from motor cortex

    PubMed Central

    Schwartz, Andrew B

    2007-01-01

    Historically, the motor cortical function has been explained as a funnel to muscle activation. This invokes the idea that motor cortical neurons, or ‘upper motoneurons’, directly cause muscle contraction just like spinal motoneurons. Thus, the motor cortex and muscle activity are inextricably entwined like a puppet master and his marionette. Recently, this concept has been challenged by current experimentation showing that many behavioural aspects of action are represented in motor cortical activity. Although this activity may still be related to muscle activation, the relation between the two is likely to be indirect and complex, whereas the relation between cortical activity and kinematic parameters is simple and robust. These findings show how to extract useful signals that help explain the underlying process that generates behaviour and to harness these signals for potentially therapeutic applications. PMID:17255162

  6. Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice.

    PubMed

    Wu, Kong-Yan; Zuo, Guo-Long; Li, Xiao-Feng; Ye, Qing; Deng, Yong-Qiang; Huang, Xing-Yao; Cao, Wu-Chun; Qin, Cheng-Feng; Luo, Zhen-Ge

    2016-06-01

    The recent Zika virus (ZIKV) epidemic in Latin America coincided with a marked increase in microcephaly in newborns. However, the causal link between maternal ZIKV infection and malformation of the fetal brain has not been firmly established. Here we show a vertical transmission of ZIKV in mice and a marked effect on fetal brain development. We found that intraperitoneal (i.p.) injection of a contemporary ZIKV strain in pregnant mice led to the infection of radial glia cells (RGs) of dorsal ventricular zone of the fetuses, the primary neural progenitors responsible for cortex development, and caused a marked reduction of these cortex founder cells in the fetuses. Interestingly, the infected fetal mice exhibited a reduced cavity of lateral ventricles and a discernable decrease in surface areas of the cortex. This study thus supports the conclusion that vertically transmitted ZIKV affects fetal brain development and provides a valuable animal model for the evaluation of potential therapeutic or preventative strategies. PMID:27174054

  7. Mouse barrel cortex functionally compensates for deprivation produced by neonatal lesion of whisker follicles.

    PubMed

    Melzer, P; Crane, A M; Smith, C B

    1993-12-01

    In the murine somatosensory pathway, the metabolic whisker map in barrel cortex derived with the autoradiographic deoxyglucose method is spatially in register with the morphological whisker map represented by the barrels. The barrel cortex of adult mice, in which we had removed three whisker follicles from the middle row of whiskers shortly after birth, contained a disorganized zone surrounded by enlarged barrels with partially disrupted borders. With the fully quantitative autoradiographic deoxyglucose method, we investigated in barrel cortex of such mice the magnitude and the pattern of metabolic responses evoked by the deflection of whiskers. Most remarkably, the simultaneous deflection of six whiskers neighbouring the lesion activated not only the territory of the corresponding barrels, but also the unspecifiable area intercalated between the clearly identified barrels. This metabolic whisker map, unpredictable from the morphological 'barrel' map, may reflect a functional compensation for the deficit in input. PMID:8124517

  8. Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice

    PubMed Central

    Wu, Kong-Yan; Zuo, Guo-Long; Li, Xiao-Feng; Ye, Qing; Deng, Yong-Qiang; Huang, Xing-Yao; Cao, Wu-Chun; Qin, Cheng-Feng; Luo, Zhen-Ge

    2016-01-01

    The recent Zika virus (ZIKV) epidemic in Latin America coincided with a marked increase in microcephaly in newborns. However, the causal link between maternal ZIKV infection and malformation of the fetal brain has not been firmly established. Here we show a vertical transmission of ZIKV in mice and a marked effect on fetal brain development. We found that intraperitoneal (i.p.) injection of a contemporary ZIKV strain in pregnant mice led to the infection of radial glia cells (RGs) of dorsal ventricular zone of the fetuses, the primary neural progenitors responsible for cortex development, and caused a marked reduction of these cortex founder cells in the fetuses. Interestingly, the infected fetal mice exhibited a reduced cavity of lateral ventricles and a discernable decrease in surface areas of the cortex. This study thus supports the conclusion that vertically transmitted ZIKV affects fetal brain development and provides a valuable animal model for the evaluation of potential therapeutic or preventative strategies. PMID:27174054

  9. A Major Human White Matter Pathway Between Dorsal and Ventral Visual Cortex.

    PubMed

    Takemura, Hiromasa; Rokem, Ariel; Winawer, Jonathan; Yeatman, Jason D; Wandell, Brian A; Pestilli, Franco

    2016-05-01

    Human visual cortex comprises many visual field maps organized into clusters. A standard organization separates visual maps into 2 distinct clusters within ventral and dorsal cortex. We combined fMRI, diffusion MRI, and fiber tractography to identify a major white matter pathway, the vertical occipital fasciculus (VOF), connecting maps within the dorsal and ventral visual cortex. We use a model-based method to assess the statistical evidence supporting several aspects of the VOF wiring pattern. There is strong evidence supporting the hypothesis that dorsal and ventral visual maps communicate through the VOF. The cortical projection zones of the VOF suggest that human ventral (hV4/VO-1) and dorsal (V3A/B) maps exchange substantial information. The VOF appears to be crucial for transmitting signals between regions that encode object properties including form, identity, and color and regions that map spatial information. PMID:25828567

  10. Converging structural and functional connectivity of orbitofrontal, dorsolateral prefrontal, and posterior parietal cortex in the human striatum.

    PubMed

    Jarbo, Kevin; Verstynen, Timothy D

    2015-03-01

    Modification of spatial attention via reinforcement learning (Lee and Shomstein, 2013) requires the integration of reward, attention, and executive processes. Corticostriatal pathways are an ideal neural substrate for this integration because these projections exhibit a globally parallel (Alexander et al., 1986), but locally overlapping (Haber, 2003), topographical organization. Here we explore whether there are unique striatal regions that exhibit convergent anatomical connections from orbitofrontal cortex, dorsolateral prefrontal cortex, and posterior parietal cortex. Deterministic fiber tractography on diffusion spectrum imaging data from neurologically healthy adults (N = 60) was used to map frontostriatal and parietostriatal projections. In general, projections from cortex were organized according to both a medial-lateral and a rostral-caudal gradient along the striatal nuclei. Within rostral aspects of the striatum, we identified two bilateral convergence zones (one in the caudate nucleus and another in the putamen) that consisted of voxels with unique projections from orbitofrontal cortex, dorsolateral prefrontal cortex, and parietal regions. The distributed cortical connectivity of these striatal convergence zones was confirmed with follow-up functional connectivity analysis from resting state fMRI data, in which a high percentage of structurally connected voxels also showed significant functional connectivity. The specificity of this convergent architecture to these regions of the rostral striatum was validated against control analysis of connectivity within the motor putamen. These results delineate a neurologically plausible network of converging corticostriatal projections that may support the integration of reward, executive control, and spatial attention that occurs during spatial reinforcement learning. PMID:25740516

  11. Converging Structural and Functional Connectivity of Orbitofrontal, Dorsolateral Prefrontal, and Posterior Parietal Cortex in the Human Striatum

    PubMed Central

    Jarbo, Kevin

    2015-01-01

    Modification of spatial attention via reinforcement learning (Lee and Shomstein, 2013) requires the integration of reward, attention, and executive processes. Corticostriatal pathways are an ideal neural substrate for this integration because these projections exhibit a globally parallel (Alexander et al., 1986), but locally overlapping (Haber, 2003), topographical organization. Here we explore whether there are unique striatal regions that exhibit convergent anatomical connections from orbitofrontal cortex, dorsolateral prefrontal cortex, and posterior parietal cortex. Deterministic fiber tractography on diffusion spectrum imaging data from neurologically healthy adults (N = 60) was used to map frontostriatal and parietostriatal projections. In general, projections from cortex were organized according to both a medial–lateral and a rostral–caudal gradient along the striatal nuclei. Within rostral aspects of the striatum, we identified two bilateral convergence zones (one in the caudate nucleus and another in the putamen) that consisted of voxels with unique projections from orbitofrontal cortex, dorsolateral prefrontal cortex, and parietal regions. The distributed cortical connectivity of these striatal convergence zones was confirmed with follow-up functional connectivity analysis from resting state fMRI data, in which a high percentage of structurally connected voxels also showed significant functional connectivity. The specificity of this convergent architecture to these regions of the rostral striatum was validated against control analysis of connectivity within the motor putamen. These results delineate a neurologically plausible network of converging corticostriatal projections that may support the integration of reward, executive control, and spatial attention that occurs during spatial reinforcement learning. PMID:25740516

  12. Cortico-cortical activity between the primary and supplementary motor cortex: An intraoperative near-infrared spectroscopy study

    PubMed Central

    Fukuda, Masafumi; Takao, Tetsuro; Hiraishi, Tetsuya; Aoki, Hiroshi; Ogura, Ryosuke; Sato, Yosuke; Fujii, Yukihiko

    2015-01-01

    Background: The supplementary motor area (SMA) makes multiple reciprocal connections to many areas of the cerebral cortices, such as the primary motor cortex (PMC), anterior cingulate cortex, and various regions in the parietal somatosensory cortex. In patients with SMA seizures, epileptic discharges from the SMA rapidly propagate to the PMC. We sought to determine whether near-infrared spectroscopy (NIRS) is able to intraoperatively display hemodynamic changes in epileptic network activities between the SMA and the PMC. Case Descriptions: In a 60-year-old male with SMA seizures, we intraoperatively delivered a 500 Hz, 5-train stimulation to the medial cortical surface and measured the resulting hemodynamic changes in the PMC by calculating the oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) concentration changes during stimulation. No hemodynamic changes in the lateral cortex were observed during stimulation of the medial surface corresponding to the foot motor areas. In contrast, both HbO2 and HbR increased in the lateral cortex corresponding to the hand motor areas when the seizure onset zone was stimulated. In the premotor cortex and the lateral cortex corresponding to the trunk motor areas, hemodynamic changes showed a pattern of increased HbO2 with decreased HbR. Conclusions: This is the first reported study using intraoperative NIRS to characterize the epileptic network activities between the SMA and PMC. Our intraoperative NIRS procedure may thus be useful in monitoring the activities of cortico-cortical neural pathways such as the language system. PMID:25883836

  13. Vocalization Induced CFos Expression in Marmoset Cortex

    PubMed Central

    Miller, Cory T.; DiMauro, Audrey; Pistorio, Ashley; Hendry, Stewart; Wang, Xiaoqin

    2010-01-01

    All non-human primates communicate with conspecifics using vocalizations, a system involving both the production and perception of species-specific vocal signals. Much of the work on the neural basis of primate vocal communication in cortex has focused on the sensory processing of vocalizations, while relatively little data are available for vocal production. Earlier physiological studies in squirrel monkeys had shed doubts on the involvement of primate cortex in vocal behaviors. The aim of the present study was to identify areas of common marmoset (Callithrix jacchus) cortex that are potentially involved in vocal communication. In this study, we quantified cFos expression in three areas of marmoset cortex – frontal, temporal (auditory), and medial temporal – under various vocal conditions. Specifically, we examined cFos expression in these cortical areas during the sensory, motor (vocal production), and sensory–motor components of vocal communication. Our results showed an increase in cFos expression in ventrolateral prefrontal cortex as well as the medial and lateral belt areas of auditory cortex in the vocal perception condition. In contrast, subjects in the vocal production condition resulted in increased cFos expression only in dorsal premotor cortex. During the sensory–motor condition (antiphonal calling), subjects exhibited cFos expression in each of the above areas, as well as increased expression in perirhinal cortex. Overall, these results suggest that various cortical areas outside primary auditory cortex are involved in primate vocal communication. These findings pave the way for further physiological studies of the neural basis of primate vocal communication. PMID:21179582

  14. A volumetric comparison of the insular cortex and its subregions in primates

    PubMed Central

    Bauernfeind, Amy L.; de Sousa, Alexandra A.; Avasthi, Tanvi; Dobson, Seth D.; Raghanti, Mary Ann; Lewandowski, Albert H.; Zilles, Karl; Semendeferi, Katerina; Allman, John M.; (Bud) Craig, Arthur D.; Hof, Patrick R.; Sherwood, Chet C.

    2013-01-01

    The neuronal composition of the insula in primates displays a gradient, transitioning from granular neocortex in the posterior-dorsal insula to agranular neocortex in the anterior-ventral insula with an intermediate zone of dysgranularity. Additionally, apes and humans exhibit a distinctive subdomain in the agranular insula, the frontoinsular cortex (FI), defined by the presence of clusters of von Economo neurons (VENs). Studies in humans indicate that the ventral anterior insula, including agranular insular cortex and FI, is involved in social awareness, and that the posterodorsal insula, including granular and dysgranular cortices, produces an internal representation of the body’s homeostatic state. We examined the volumes of these cytoarchitectural areas of insular cortex in 30 primate species, including the volume of FI in apes and humans. Results indicate that the whole insula scales hyperallometrically (exponent = 1.13) relative to total brain mass, and the agranular insula (including FI) scales against total brain mass with even greater positive allometry (exponent = 1.23), providing a potential neural basis for enhancement of social cognition in association with increased brain size. The relative volumes of the subdivisions of the insular cortex, after controlling for total brain volume, are not correlated with species typical social group size. Although its size is predicted by primate-wide allometric scaling patterns, we found that the absolute volume of the left and right agranular insula and left FI are among the most differentially expanded of the human cerebral cortex compared to our closest living relative, the chimpanzee. PMID:23466178

  15. Experience-dependent gene expression in adult visual cortex.

    PubMed

    Chen, Jiabin; Yamahachi, Homare; Gilbert, Charles D

    2010-03-01

    Experience-dependent plasticity of the adult visual cortex underlies perceptual learning and recovery of function following central nervous system lesions. To reveal the signal transduction cascades involved in adult cortical plasticity, we utilized a model of remapping of cortical topography following binocular retinal lesions. In this model, the lesion projection zone (LPZ) of primary visual cortex (V1) recovers visually driven activity by the sprouting of horizontal axonal connections originating from the cells in the surrounding region. To explore the molecular mechanism underlying this process, we used gene microarrays from an expression library prepared from Macaque V1. By microarray analysis of gene expression levels in the LPZ and the surrounding region, and subsequent confirmation with Quantitative Real-Time polymerase chain reaction and in situ hybridization, the participation of a number of genes was observed, including the Rho GTPase family. Its role in regulation of cytoskeleton assembly provides a possible link between the alteration of neural activity and cortical functional reorganization. PMID:19571270

  16. The piriform, perirhinal, and entorhinal cortex in seizure generation

    PubMed Central

    Vismer, Marta S.; Forcelli, Patrick A.; Skopin, Mark D.; Gale, Karen; Koubeissi, Mohamad Z.

    2015-01-01

    Understanding neural network behavior is essential to shed light on epileptogenesis and seizure propagation. The interconnectivity and plasticity of mammalian limbic and neocortical brain regions provide the substrate for the hypersynchrony and hyperexcitability associated with seizure activity. Recurrent unprovoked seizures are the hallmark of epilepsy, and limbic epilepsy is the most common type of medically-intractable focal epilepsy in adolescents and adults that necessitates surgical evaluation. In this review, we describe the role and relationships among the piriform (PIRC), perirhinal (PRC), and entorhinal cortex (ERC) in seizure-generation and epilepsy. The inherent function, anatomy, and histological composition of these cortical regions are discussed. In addition, the neurotransmitters, intrinsic and extrinsic connections, and the interaction of these regions are described. Furthermore, we provide evidence based on clinical research and animal models that suggest that these cortical regions may act as key seizure-trigger zones and, even, epileptogenesis. PMID:26074779

  17. The human entorhinal cortex: a cytoarchitectonic analysis.

    PubMed

    Insausti, R; Tuñón, T; Sobreviela, T; Insausti, A M; Gonzalo, L M

    1995-05-01

    The entorhinal cortex of man is in the medial aspect of the temporal lobe. As in other mammalian species, it constitutes an essential component of the hippocampal formation and the route through which the neocortex interacts with the hippocampus. The importance of knowing its architecture in detail arises from the possibility of extrapolating it to experimental findings, notably in the nonhuman primate. We have investigated the cytoarchitectonic features of the human entorhinal cortex by using as a base our previous study (D.G. Amaral, R. Insausti, and W.M. Cowan [1987] J. Comp. Neurol. 264:326-355) of the nonhuman primate entorhinal cortex. We prepared serial sections of the temporal lobe from 35 normal brains. Thionin- and myelin-stained series were made of all cases. Sections spaced 500 microns apart through the full rostrocaudal extent of the entorhinal cortex were analyzed. The human entorhinal cortex is made up of six layers, of which layer IV does not appear throughout all subfields of the entorhinal cortex. The overall appearance resembles that of the adjacent neocortex in lateral and caudal portions. In harmony with general structural principles in the nonhuman primate entorhinal cortex, our analysis supports the partitioning of the human entorhinal cortex into eight different subfields. (1) The olfactory subfield (EO), the rostralmost field, is little laminated. (2) The lateral rostral subfield (ELr), laterally located, merges with the laterally adjacent perirhinal cortex. (3) The rostral subfield (ER) is between EO and ELr, with better differentiation of layers II and III than EO. (4) The medial intermediate subfield (EMI) is located at the medial border. (5) The intermediate field (EI) is a lateral continuation of EMI; lamina dissecans (layer IV) can be best appreciated in this field. (6) The lateral caudal subfield (ELc) laterally borders on EI as a continuation of ELr. (7) The caudal subfield (EC) lies caudal to the beginning of the hippocampal

  18. Medial perirhinal cortex disambiguates confusable objects

    PubMed Central

    Tyler, Lorraine K.; Monsch, Andreas U.; Taylor, Kirsten I.

    2012-01-01

    Our brain disambiguates the objects in our cluttered visual world seemingly effortlessly, enabling us to understand their significance and to act appropriately. The role of anteromedial temporal structures in this process, particularly the perirhinal cortex, is highly controversial. In some accounts, the perirhinal cortex is necessary for differentiating between perceptually and semantically confusable objects. Other models claim that the perirhinal cortex neither disambiguates perceptually confusable objects nor plays a unique role in semantic processing. One major hurdle to resolving this central debate is the fact that brain damage in human patients typically encompasses large portions of the anteromedial temporal lobe, such that the identification of individual substructures and precise neuroanatomical locus of the functional impairments has been difficult. We tested these competing accounts in patients with Alzheimer’s disease with varying degrees of atrophy in anteromedial structures, including the perirhinal cortex. To assess the functional contribution of each anteromedial temporal region separately, we used a detailed region of interest approach. From each participant, we obtained magnetic resonance imaging scans and behavioural data from a picture naming task that contrasted naming performance with living and non-living things as a way of manipulating perceptual and semantic confusability; living things are more similar to one another than non-living things, which have more distinctive features. We manually traced neuroanatomical regions of interest on native-space cortical surface reconstructions to obtain mean thickness estimates for the lateral and medial perirhinal cortex and entorhinal cortex. Mean cortical thickness in each region of interest, and hippocampal volume, were submitted to regression analyses predicting naming performance. Importantly, atrophy of the medial perirhinal cortex, but not lateral perirhinal cortex, entorhinal cortex or

  19. A layered network model of sensory cortex

    SciTech Connect

    Travis, B.J.

    1986-01-01

    An integrated computational approach to modeling sensory systems which couples realistic layered neural models of sensory cortex and midbrain nuclei to detailed models of the sense organs (e.g., retina or cochlea) is described. The approach is applied to the auditory system. Through an exercise of the model, it is shown that spatial location of sounds may be a natural consequence of the way cochlear response is mapped onto the cortex. 31 refs., 23 figs., 3 tabs.

  20. The Role of Human Parietal Cortex in Attention Networks

    ERIC Educational Resources Information Center

    Han, Shihui; Jiang, Yi; Gu, Hua; Rao, Hengyi; Mao, Lihua; Cui, Yong; Zhai, Renyou

    2004-01-01

    The parietal cortex has been proposed as part of the neural network for guiding spatial attention. However, it is unclear to what degree the parietal cortex contributes to the attentional modulations of activities of the visual cortex and the engagement of the frontal cortex in the attention network. We recorded behavioural performance and…

  1. Magnetic source imaging in posterior cortex epilepsies.

    PubMed

    Badier, Jean-Michel; Bartolomei, Fabrice; Chauvel, Patrick; Bénar, Christian-George; Gavaret, Martine

    2015-01-01

    Posterior cortex epilepsies (PCE) are characterized by less satisfying postoperative results than temporal lobe epilepsies and are thus challenging for non-invasive presurgical investigations. The objective of this study was to evaluate the performance of magnetic source imaging (MSI) in PCE, validating the results by the SEEG (stereoelectroencephalography) definition of irritative and epileptogenic zones (IZ and EZ). Fourteen PCE surgery candidates were investigated using MSI and SEEG. LCMV (Linearly Constrained Minimum Variance) and MUSIC algorithms were used. IZ was quantified using a semi-automatic detection of interictal spikes. EZ was quantified using the epileptogenicity index (EI) method that accounts for both the propensity of a brain area to generate rapid discharges and the time for this area to get involved in the seizure. EI values range from 0 (no epileptogenicity) to 1 (maximal epileptogenicity). Levels of concordance between MSI and IZ, MSI and EZ were determined as follows: A = localized on MSI and SEEG for the site of value 1 (IZ and EZ quantification), B = localized on MSI and SEEG for a part of the IZ or a structure involved in the EZ (without the maximal value 1), C = localized on MSI and not SEEG, D = localized on SEEG and not MSI, E = localized on MSI and SEEG, discordant for site. Five PCE cases were characterized by focal IZ, nine by distributed IZ between several distant brain areas. MSI allowed to determinate IZ in 4/5 focal IZ cases. In case of distributed IZ, levels of concordance were A (2 cases), B (4 cases) and D (3 cases). In most distributed cases, MSI allowed to localize only a part of the IZ. Medial temporal involvement in the IZ was frequent (9/12 cases) and not evidenced by MSI. The brain area that demonstrated the maximal value of EI was shown by MSI in four out of five (80 %) focal IZ cases, in two out of nine (22 %) distributed cases. MSI results depend on IZ characteristics. A distributed IZ organization

  2. Zone separator for multiple zone vessels

    DOEpatents

    Jones, John B.

    1983-02-01

    A solids-gas contact vessel, having two vertically disposed distinct reaction zones, includes a dynamic seal passing solids from an upper to a lower zone and maintaining a gas seal against the transfer of the separate treating gases from one zone to the other, and including a stream of sealing fluid at the seal.

  3. Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkey

    SciTech Connect

    Humphrey, A.L.; Hendrickson, A.E.

    1983-02-01

    The authors have used 2-deoxy-D-(/sup 14/C)glucose (2-DG) autoradiography and cytochrome oxidase histochemistry to examine background and stimulus-induced patterns of metabolic activity in monkey striate cortex. In squirrel monkeys (Saimiri sciureus) that binocularly or monocularly viewed diffuse white light or binocularly viewed bars of many orientations and spatial frequencies, 2-DG consumption was not uniform across the cortex but consisted of regularly spaced radial zones of high uptake. The cytochrome oxidase stain in these animals also revealed patches of high metabolism which coincided with the 2-DG patches. Squirrel monkeys binocularly viewing vertical stripes showed parallel bands of increased 2-DG uptake in the cortex, while the cytochrome label in these animals remained patchy. In macaque (Macaca nemestrina) monkeys, binocular stimulation with many orientations and spatial frequencies produced radial zones of high 2-DG uptake. When viewed tangentially, these zones formed a dots-in-rows pattern with a spacing of 350 X 500 microns; cytochrome oxidase staining produced an identical pattern. Macaca differed from Saimiri in that monocular stimulation labeled alternate rows. These results indicate that there are radial zones of high background metabolism across squirrel and macaque monkey striate cortex. In Saimiri these zones do not appear to be related to an eye dominance system, while in Macaca they do. The presence of these zones of high metabolism may complicate the interpretation of 2-DG autoradiographs that result from specific visual stimuli.

  4. Neuronal Migration Dynamics in the Developing Ferret Cortex

    PubMed Central

    Gertz, Caitlyn C.

    2015-01-01

    During mammalian neocortical development, newborn excitatory and inhibitory neurons must migrate over long distances to reach their final positions within the cortical plate. In the lissencephalic rodent brain, pyramidal neurons are born in the ventricular and subventricular zones of the pallium and migrate along radial glia fibers to reach the appropriate cortical layer. Although much less is known about neuronal migration in species with a gyrencephalic cortex, retroviral studies in the ferret and primate suggest that, unlike the rodent, pyramidal neurons do not follow strict radial pathways and instead can disperse horizontally. However, the means by which pyramidal neurons laterally disperse remain unknown. In this study, we identified a viral labeling technique for visualizing neuronal migration in the ferret, a gyrencephalic carnivore, and found that migration was predominantly radial at early postnatal ages. In contrast, neurons displayed more tortuous migration routes with a decreased frequency of cortical plate-directed migration at later stages of neurogenesis concomitant with the start of brain folding. This was accompanied by neurons migrating sequentially along several different radial glial fibers, suggesting a mode by which pyramidal neurons may laterally disperse in a folded cortex. These findings provide insight into the migratory behavior of neurons in gyrencephalic species and provide a framework for using nonrodent model systems for studying neuronal migration disorders. SIGNIFICANCE STATEMENT Elucidating neuronal migration dynamics in the gyrencephalic, or folded, cortex is important for understanding neurodevelopmental disorders. Similar to the rodent, we found that neuronal migration was predominantly radial at early postnatal ages in the gyrencephalic ferret cortex. Interestingly, ferret neurons displayed more tortuous migration routes and a decreased frequency of radial migration at later ages coincident with the start of cortical folding

  5. Retrosplenial cortex in the rhesus monkey: a cytoarchitectonic and Golgi study.

    PubMed

    Vogt, B A

    1976-09-01

    The laminar and cellular structure of retrosplenial cortex in the rhesus monkey was studied with Nissl stained and rapid Golgi impregnated tissue and the results were used to evaluate morphological features of a cortical transition zone. The granular layer of retrosplenial granular cortex is composed primarily of small, density packed, star pyramidal cells. These cells branch within the granular layer itself, while the apical dendrite enters layer I where it branches infrequently or not at all. This cell type is similar to the star pyramid first described by Lorente de No except in its areal and laminar distribution. Cytoarchitectonic observations of retrosplenial agranular cortex show, that, although this area is relatively "agranular" in comparison to other cortical areas, it does possess an incipient layer II and layer IV. These layers are composed mainly of small and medium sized pyramidal cells, but many non-pyramidal cell types were found in these and other layers in this area in rapid Golgi preparations. Stellate cells with beaded or smooth, lightly spinous dendrites were found throughout layer I-IV, while fusiform cells with smooth or very lightly spinous dendrites appear in layers III-VI. Areas surrounding retrosplenial cortex in the posterior cingulate region were also evaluated in Nissl and Golgi preparations including the indusium griseum, subiculum (dorsal to the corpus callosum) and area 23. The laminar and cellular constitutents of retrosplenial cortex were then evaluated in the context of cortical architectonic transition. The transition from one cellular layer in the indusium griseum to five cellular layers in area 23 is made by the addition of layers II, III, IV and VI in retrosplenial cortex to the one ganglionic layer of the indusium griseum and subiculum. Besides the addition and subdivision of layers in retrosplenial cortex, two aspects of cell morphology were found to change in this region. First, the structure of pyramidal cells

  6. Auditory connections and functions of prefrontal cortex

    PubMed Central

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  7. Propagating waves in visual cortex: a large-scale model of turtle visual cortex.

    PubMed

    Nenadic, Zoran; Ghosh, Bijoy K; Ulinski, Philip

    2003-01-01

    This article describes a large-scale model of turtle visual cortex that simulates the propagating waves of activity seen in real turtle cortex. The cortex model contains 744 multicompartment models of pyramidal cells, stellate cells, and horizontal cells. Input is provided by an array of 201 geniculate neurons modeled as single compartments with spike-generating mechanisms and axons modeled as delay lines. Diffuse retinal flashes or presentation of spots of light to the retina are simulated by activating groups of geniculate neurons. The model is limited in that it does not have a retina to provide realistic input to the geniculate, and the cortex and does not incorporate all of the biophysical details of real cortical neurons. However, the model does reproduce the fundamental features of planar propagating waves. Activation of geniculate neurons produces a wave of activity that originates at the rostrolateral pole of the cortex at the point where a high density of geniculate afferents enter the cortex. Waves propagate across the cortex with velocities of 4 microm/ms to 70 microm/ms and occasionally reflect from the caudolateral border of the cortex. PMID:12567015

  8. A fibronectin-like molecule is present in the developing cat cerebral cortex and is correlated with subplate neurons

    PubMed Central

    1988-01-01

    The subplate is a transient zone of the developing cerebral cortex through which postmitotic neurons migrate and growing axons elongate en route to their adult positions within the cortical plate. To learn more about the cellular interactions that occur in this zone, we have examined whether fibronectins (FNs), a family of molecules known to promote migration and elongation in other systems, are present during the fetal and postnatal development of the cat's cerebral cortex. Three different anti-FN antisera recognized a single broad band with an apparent molecular mass of 200-250 kD in antigen-transfer analyses (reducing conditions) of plasma-depleted (perfused) whole fetal brain or synaptosome preparations, indicating that FNs are present at these ages. This band can be detected as early as 1 mo before birth at embryonic day 39. Immunohistochemical examination of the developing cerebral cortex from animals between embryonic day 46 and postnatal day 7 using any of the three antisera revealed that FN-like immunoreactivity is restricted to the subplate and the marginal zones, and is not found in the cortical plate. As these zones mature into their adult counterparts (the white matter and layer 1 of the cerebral cortex), immunostaining gradually disappears and is not detectable by postnatal day 70. Previous studies have shown that the subplate and marginal zones contain a special, transient population of neurons (Chun, J. J. M., M. J. Nakamura, and C. J. Shatz. 1987. Nature (Lond.). 325:617-620). The FN-like immunostaining in the subplate and marginal zone is closely associated with these neurons, and some of the immunostaining delineates them. Moreover, the postnatal disappearance of FN-like immunostaining from the subplate is correlated spatially and temporally with the disappearance of the subplate neurons. When subplate neurons are killed by neurotoxins, FN-like immunostaining is depleted in the lesioned area. These observations show that an FN-like molecule is

  9. [Numerical taxonomy of corlor in Phellodendron Cortex].

    PubMed

    Jin, Yan; Huang, Lu-qi; Yuan, Yuan; Zhang, Shan-shan; Jin, Shi-yuan

    2015-10-01

    Through the investigation of Phellodendron Cortex on the market, and 28 batches of samples were collected. By using spectrophotometer the color values of outer surface, inner surface and cross - section of these samples were measured. These measured color data was translated into 3D structure diagram by using the Lab color space tool. The level difference value, the mean value and the threshold value were calculated based the measured color data of these different batches of samples. All 28 groups measured data was analyzed using the methods of Ward linkage and average Euclidean distance. At the same time, we invited Professor Jin Shiyuan, the "Chinese medicine master", to identify, quality-evaluate and grade these 28 batches of Phellodendron Cortex samples base on the traditional experience, then compared the traditional empirical results with the spectrophotometer measurement results. The result showed that, the Phellodendron Cortex could be divided into Phellodendri Amurensis Cortex and Phellodendri Chinensis Cortex by color numerical clustering, and classified according to quality. The classification result has a high degree of consistency with the traditional experience. PMID:26975099

  10. Creating Concepts from Converging Features in Human Cortex.

    PubMed

    Coutanche, Marc N; Thompson-Schill, Sharon L

    2015-09-01

    To make sense of the world around us, our brain must remember the overlapping features of millions of objects. Crucially, it must also represent each object's unique feature-convergence. Some theories propose that an integration area (or "convergence zone") binds together separate features. We report an investigation of our knowledge of objects' features and identity, and the link between them. We used functional magnetic resonance imaging to record neural activity, as humans attempted to detect a cued fruit or vegetable in visual noise. Crucially, we analyzed brain activity before a fruit or vegetable was present, allowing us to interrogate top-down activity. We found that pattern-classification algorithms could be used to decode the detection target's identity in the left anterior temporal lobe (ATL), its shape in lateral occipital cortex, and its color in right V4. A novel decoding-dependency analysis revealed that identity information in left ATL was specifically predicted by the temporal convergence of shape and color codes in early visual regions. People with stronger feature-and-identity dependencies had more similar top-down and bottom-up activity patterns. These results fulfill three key requirements for a neural convergence zone: a convergence result (object identity), ingredients (color and shape), and the link between them. PMID:24692512

  11. Sexual differentiation of mammalian frontal cortex

    SciTech Connect

    Maggi, A.; Zucchi, I.

    1987-03-23

    The pattern of distribution of the progesterone binding sites was examined in selected nuclei of the brain of male and female rat. In female rats the frontal cortex resulted to be the region with the highest concentration of /sup 3/H R5020 biding sites. However, in male rats the same region showed very little progestin binding activity. When female rats were androgenized via neonatal exposure to testosterone, the progestin binding activity of the frontal cortex became similar to that observed in male rats. The present investigation indicates that sexual differentiation of the rat brain may include also brain regions not clearly involved in sex related functions like the frontal cortex. 30 references, 2 figures, 1 table.

  12. The Age of Human Cerebral Cortex Neurons

    SciTech Connect

    Bhardwaj, R D; Curtis, M A; Spalding, K L; Buchholz, B A; Fink, D; Bjork-Eriksson, T; Nordborg, C; Gage, F H; Druid, H; Eriksson, P S; Frisen, J

    2006-04-06

    The traditional static view of the adult mammalian brain has been challenged by the realization of continuous generation of neurons from stem cells. Based mainly on studies in experimental animals, adult neurogenesis may contribute to recovery after brain insults and decreased neurogenesis has been implicated in the pathogenesis of neurological and psychiatric diseases in man. The extent of neurogenesis in the adult human brain has, however, been difficult to establish. We have taken advantage of the integration of {sup 14}C, generated by nuclear bomb tests during the Cold War, in DNA to establish the age of neurons in the major areas of the human cerebral cortex. Together with the analysis of the cortex from patients who received BrdU, which integrates in the DNA of dividing cells, our results demonstrate that whereas non-neuronal cells turn over, neurons in the human cerebral cortex are not generated postnatally at detectable levels, but are as old as the individual.

  13. Cortex commands the performance of skilled movement.

    PubMed

    Guo, Jian-Zhong; Graves, Austin R; Guo, Wendy W; Zheng, Jihong; Lee, Allen; Rodríguez-González, Juan; Li, Nuo; Macklin, John J; Phillips, James W; Mensh, Brett D; Branson, Kristin; Hantman, Adam W

    2015-01-01

    Mammalian cerebral cortex is accepted as being critical for voluntary motor control, but what functions depend on cortex is still unclear. Here we used rapid, reversible optogenetic inhibition to test the role of cortex during a head-fixed task in which mice reach, grab, and eat a food pellet. Sudden cortical inhibition blocked initiation or froze execution of this skilled prehension behavior, but left untrained forelimb movements unaffected. Unexpectedly, kinematically normal prehension occurred immediately after cortical inhibition, even during rest periods lacking cue and pellet. This 'rebound' prehension was only evoked in trained and food-deprived animals, suggesting that a motivation-gated motor engram sufficient to evoke prehension is activated at inhibition's end. These results demonstrate the necessity and sufficiency of cortical activity for enacting a learned skill. PMID:26633811

  14. How might the motor cortex individuate movements?

    PubMed

    Schieber, M H

    1990-11-01

    The ability to individuate movements--that is, the ability to move one or more body parts independently of the movement or posture of other contiguous body parts--imparts an increasing flexibility to the motor repertoire of higher mammals. The movements used in walking, grasping, or eating contrast greatly with the phylogenetically more recent movements of the same body parts used, respectively, in dancing, playing a musical instrument, or talking. The movements used in the latter functions depend critically on the primary motor cortex (area 4). With advances in our understanding of the output organization of the motor cortex (reviewed recently by Roger Lemon), which have been based largely on studies of the hand area in primates, we can now consider more fully certain problems inherent in moving body parts individually, and some ways in which the motor cortex might accomplish this feat. PMID:1701575

  15. Cortex commands the performance of skilled movement

    PubMed Central

    Guo, Jian-Zhong; Graves, Austin R; Guo, Wendy W; Zheng, Jihong; Lee, Allen; Rodríguez-González, Juan; Li, Nuo; Macklin, John J; Phillips, James W; Mensh, Brett D; Branson, Kristin; Hantman, Adam W

    2015-01-01

    Mammalian cerebral cortex is accepted as being critical for voluntary motor control, but what functions depend on cortex is still unclear. Here we used rapid, reversible optogenetic inhibition to test the role of cortex during a head-fixed task in which mice reach, grab, and eat a food pellet. Sudden cortical inhibition blocked initiation or froze execution of this skilled prehension behavior, but left untrained forelimb movements unaffected. Unexpectedly, kinematically normal prehension occurred immediately after cortical inhibition, even during rest periods lacking cue and pellet. This ‘rebound’ prehension was only evoked in trained and food-deprived animals, suggesting that a motivation-gated motor engram sufficient to evoke prehension is activated at inhibition’s end. These results demonstrate the necessity and sufficiency of cortical activity for enacting a learned skill. DOI: http://dx.doi.org/10.7554/eLife.10774.001 PMID:26633811

  16. Spatial updating in human parietal cortex

    NASA Technical Reports Server (NTRS)

    Merriam, Elisha P.; Genovese, Christopher R.; Colby, Carol L.

    2003-01-01

    Single neurons in monkey parietal cortex update visual information in conjunction with eye movements. This remapping of stimulus representations is thought to contribute to spatial constancy. We hypothesized that a similar process occurs in human parietal cortex and that we could visualize it with functional MRI. We scanned subjects during a task that involved remapping of visual signals across hemifields. We observed an initial response in the hemisphere contralateral to the visual stimulus, followed by a remapped response in the hemisphere ipsilateral to the stimulus. We ruled out the possibility that this remapped response resulted from either eye movements or visual stimuli alone. Our results demonstrate that updating of visual information occurs in human parietal cortex.

  17. Vadose zone microbiology

    SciTech Connect

    Kieft, Thomas L.; Brockman, Fred J.

    2001-01-17

    The vadose zone is defined as the portion of the terrestrial subsurface that extends from the land surface downward to the water table. As such, it comprises the surface soil (the rooting zone), the underlying subsoil, and the capillary fringe that directly overlies the water table. The unsaturated zone between the rooting zone and the capillary fringe is termed the "intermediate zone" (Chapelle, 1993). The vadose zone has also been defined as the unsaturated zone, since the sediment pores and/or rock fractures are generally not completely water filled, but instead contain both water and air. The latter characteristic results in the term "zone of aeration" to describe the vadose zone. The terms "vadose zone," "unsaturated zone", and "zone of aeration" are nearly synonymous, except that the vadose zone may contain regions of perched water that are actually saturated. The term "subsoil" has also been used for studies of shallow areas of the subsurface immediately below the rooting zone. This review focuses almost exclusively on the unsaturated region beneath the soil layer since there is already an extensive body of literature on surface soil microbial communities and process, e.g., Paul and Clark (1989), Metting (1993), Richter and Markowitz, (1995), and Sylvia et al. (1998); whereas the deeper strata of the unsaturated zone have only recently come under scrutiny for their microbiological properties.

  18. Progenitor genealogy in the developing cerebral cortex.

    PubMed

    Laguesse, Sophie; Peyre, Elise; Nguyen, Laurent

    2015-01-01

    The mammalian cerebral cortex is characterized by a complex histological organization that reflects the spatio-temporal stratifications of related stem and neural progenitor cells, which are responsible for the generation of distinct glial and neuronal subtypes during development. Some work has been done to shed light on the existing filiations between these progenitors as well as their respective contribution to cortical neurogenesis. The aim of the present review is to summarize the current views of progenitor hierarchy and relationship in the developing cortex and to further discuss future research directions that would help us to understand the molecular and cellular regulating mechanisms involved in cerebral corticogenesis. PMID:25141969

  19. Immunohistochemical Markers of Neural Progenitor Cells in the Early Embryonic Human Cerebral Cortex

    PubMed Central

    Vinci, L.; Ravarino, A.; Fanos, V.; Naccarato, A.G.; Senes, G.; Gerosa, C.; Bevilacqua, G.; Faa, G.; Ambu, R.

    2016-01-01

    The development of the human central nervous system represents a delicate moment of embryogenesis. The purpose of this study was to analyze the expression of multiple immunohistochemical markers in the stem/progenitor cells in the human cerebral cortex during the early phases of development. To this end, samples from cerebral cortex were obtained from 4 human embryos of 11 weeks of gestation. Each sample was formalin-fixed, paraffin embedded and immunostained with several markers including GFAP, WT1, Nestin, Vimentin, CD117, S100B, Sox2, PAX2, PAX5, Tβ4, Neurofilament, CD44, CD133, Synaptophysin and Cyclin D1. Our study shows the ability of the different immunohistochemical markers to evidence different zones of the developing human cerebral cortex, allowing the identification of the multiple stages of differentiation of neuronal and glial precursors. Three important markers of radial glial cells are evidenced in this early gestational age: Vimentin, Nestin and WT1. Sox2 was expressed by the stem/progenitor cells of the ventricular zone, whereas the postmitotic neurons of the cortical plate were immunostained by PAX2 and NSE. Future studies are needed to test other important stem/progenitor cells markers and to better analyze differences in the immunohistochemical expression of these markers during gestation. PMID:26972711

  20. Both Myosin-10 isoforms are required for radial neuronal migration in the developing cerebral cortex.

    PubMed

    Ju, Xing-Da; Guo, Ye; Wang, Nan-Nan; Huang, Ying; Lai, Ming-Ming; Zhai, Yan-Hua; Guo, Yu-Guang; Zhang, Jian-Hua; Cao, Rang-Juan; Yu, Hua-Li; Cui, Lei; Li, Yu-Ting; Wang, Xing-Zhi; Ding, Yu-Qiang; Zhu, Xiao-Juan

    2014-05-01

    During embryonic development of the mammalian cerebral cortex, postmitotic cortical neurons migrate radially from the ventricular zone to the cortical plate. Proper migration involves the correct orientation of migrating neurons and the transition from a multipolar to a mature bipolar morphology. Herein, we report that the 2 isoforms of Myosin-10 (Myo10) play distinct roles in the regulation of radial migration in the mouse cortex. We show that the full-length Myo10 (fMyo10) isoform is located in deeper layers of the cortex and is involved in establishing proper migration orientation. We also demonstrate that fMyo10-dependent orientation of radial migration is mediated at least in part by the netrin-1 receptor deleted in colorectal cancer. Moreover, we show that the headless Myo10 (hMyo10) isoform is required for the transition from multipolar to bipolar morphologies in the intermediate zone. Our study reveals divergent functions for the 2 Myo10 isoforms in controlling both the direction of migration and neuronal morphogenesis during radial cortical neuronal migration. PMID:23300110

  1. Elastic instabilities in a layered cerebral cortex: A revised axonal tension model for cortex folding

    NASA Astrophysics Data System (ADS)

    Schwarz, J. M.

    Despite decades of research, there is still no consensus regarding the mechanism(s) driving cerebral cortex folding. Two different mechanisms--axonal tension based on efficient wiring of the neurons and differential growth-induced buckling--are the prevailing hypotheses, though quantitative comparison with data raises issues with both of them. I will present a model for the elasticity of the cerebral cortex as a layered material with bending energy along the layers and elastic energy between them. The cortex is also subjected to axons pulling from the underlying white matter. Above a critical threshold force, a 'flat' cortex configuration becomes unstable and periodic undulations emerge, i.e. a buckling instability occurs, to presumably initiate folds in the cortex. This model builds on the original axonal tension model for cortex folding based on the efficient wiring of neurons but with no buckling mechanism and allows one to understand why small mice brains exhibit no folds, while larger human brains do. Finally, an estimate of the bending rigidity constant for the cortex can be made based on the critical wavelength to quantitatively test this revised axonal tensional model. This work was done in collaboration with Oksana Manyuhina and David Mayett.

  2. Developmental Outcomes after Early Prefrontal Cortex Damage

    ERIC Educational Resources Information Center

    Eslinger, Paul J.; Flaherty-Craig, Claire V.; Benton, Arthur L.

    2004-01-01

    The neuropsychological bases of cognitive, social, and moral development are minimally understood, with a seemingly wide chasm between developmental theories and brain maturation models. As one approach to bridging ideas in these areas, we review 10 cases of early prefrontal cortex damage from the clinical literature, highlighting overall clinical…

  3. Motor Cortex Reorganization across the Lifespan

    ERIC Educational Resources Information Center

    Plowman, Emily K.; Kleim, Jeffrey A.

    2010-01-01

    The brain is a highly dynamic structure with the capacity for profound structural and functional change. Such neural plasticity has been well characterized within motor cortex and is believed to represent one of the neural mechanisms for acquiring and modifying motor behaviors. A number of behavioral and neural signals have been identified that…

  4. The Piriform Cortex and Human Focal Epilepsy

    PubMed Central

    Vaughan, David N.; Jackson, Graeme D.

    2014-01-01

    It is surprising that the piriform cortex, when compared to the hippocampus, has been given relatively little significance in human epilepsy. Like the hippocampus, it has a phylogenetically preserved three-layered cortex that is vulnerable to excitotoxic injury, has broad connections to both limbic and cortical areas, and is highly epileptogenic – being critical to the kindling process. The well-known phenomenon of early olfactory auras in temporal lobe epilepsy highlights its clinical relevance in human beings. Perhaps because it is anatomically indistinct and difficult to approach surgically, as it clasps the middle cerebral artery, it has, until now, been understandably neglected. In this review, we emphasize how its unique anatomical and functional properties, as primary olfactory cortex, predispose it to involvement in focal epilepsy. From recent convergent findings in human neuroimaging, clinical epileptology, and experimental animal models, we make the case that the piriform cortex is likely to play a facilitating and amplifying role in human focal epileptogenesis, and may influence progression to epileptic intractability. PMID:25538678

  5. Microglia in the Cerebral Cortex in Autism

    ERIC Educational Resources Information Center

    Tetreault, Nicole A.; Hakeem, Atiya Y.; Jiang, Sue; Williams, Brian A.; Allman, Elizabeth; Wold, Barbara J.; Allman, John M.

    2012-01-01

    We immunocytochemically identified microglia in fronto-insular (FI) and visual cortex (VC) in autopsy brains of well-phenotyped subjects with autism and matched controls, and stereologically quantified the microglial densities. Densities were determined blind to phenotype using an optical fractionator probe. In FI, individuals with autism had…

  6. Excitatory neuronal connectivity in the barrel cortex

    PubMed Central

    Feldmeyer, Dirk

    2012-01-01

    Neocortical areas are believed to be organized into vertical modules, the cortical columns, and the horizontal layers 1–6. In the somatosensory barrel cortex these columns are defined by the readily discernible barrel structure in layer 4. Information processing in the neocortex occurs along vertical and horizontal axes, thereby linking individual barrel-related columns via axons running through the different cortical layers of the barrel cortex. Long-range signaling occurs within the neocortical layers but also through axons projecting through the white matter to other neocortical areas and subcortical brain regions. Because of the ease of identification of barrel-related columns, the rodent barrel cortex has become a prototypical system to study the interactions between different neuronal connections within a sensory cortical area and between this area and other cortical as well subcortical regions. Such interactions will be discussed specifically for the feed-forward and feedback loops between the somatosensory and the somatomotor cortices as well as the different thalamic nuclei. In addition, recent advances concerning the morphological characteristics of excitatory neurons and their impact on the synaptic connectivity patterns and signaling properties of neuronal microcircuits in the whisker-related somatosensory cortex will be reviewed. In this context, their relationship between the structural properties of barrel-related columns and their function as a module in vertical synaptic signaling in the whisker-related cortical areas will be discussed. PMID:22798946

  7. The insular cortex: a comparative perspective.

    PubMed

    Butti, Camilla; Hof, Patrick R

    2010-06-01

    The human insular cortex is involved in a variety of viscerosensory, visceromotor, and interoceptive functions, and plays a role in complex processes such as emotions, music, and language. Across mammals, the insula has considerable morphologic variability. We review the structure and connectivity of the insula in laboratory animals (mouse, domestic cat, macaque monkey), and we present original data on the morphology and cytoarchitecture of insular cortex in less common species including a large carnivore (the Atlantic walrus, Odobenus rosmarus), two artiodactyls (the pigmy hippopotamus, Hexaprotodon liberiensis, and the Western bongo, Tragelaphus eurycerus), two cetaceans (the beluga whale, Delphinapterus leucas, and the minke whale, Balaenoptera acutorostrata), and a sirenian (the Florida manatee, Trichechus manatus latirostris). The insula shows substantial variability in shape, extent, and gyral and sulcal patterns, as well as differences in laminar organization, cellular specialization, and structural association with the claustrum. Our observations reveal that the insular cortex is extremely variable among mammals. These differences could be related to the role exerted by specific and selective pressures on cortical structure during evolution. We conclude that it is not possible to identify a general model of organization for the mammalian insular cortex. PMID:20512368

  8. Cerebral cortex structure in prodromal Huntington disease.

    PubMed

    Nopoulos, Peggy C; Aylward, Elizabeth H; Ross, Christopher A; Johnson, Hans J; Magnotta, Vincent A; Juhl, Andrew R; Pierson, Ronald K; Mills, James; Langbehn, Douglas R; Paulsen, Jane S

    2010-12-01

    Neuroimaging studies of subjects who are gene-expanded for Huntington Disease, but not yet diagnosed (termed prodromal HD), report that the cortex is "spared," despite the decrement in striatal and cerebral white-matter volume. Measurement of whole-cortex volume can mask more subtle, but potentially clinically relevant regional changes in volume, thinning, or surface area. The current study addressed this limitation by evaluating cortical morphology of 523 prodromal HD subjects. Participants included 693 individuals enrolled in the PREDICT-HD protocol. Of these participants, 523 carried the HD gene mutation (prodromal HD group); the remaining 170 were non gene-expanded and served as the comparison group. Based on age and CAG repeat length, gene-expanded subjects were categorized as "Far from onset," "Midway to onset," "Near onset," and "already diagnosed." MRI scans were processed using FreeSurfer. Cortical volume, thickness, and surface area were not significantly different between the Far from onset group and controls. However, beginning in the Midway to onset group, the cortex showed significant volume decrement, affecting most the posterior and superior cerebral regions. This pattern progressed when evaluating the groups further into the disease process. Areas that remained mostly unaffected included ventral and medial regions of the frontal and temporal cortex. Morphologic changes were mostly in thinning as surface area did not substantially change in most regions. Early in the course of HD, the cortex shows changes that are manifest as cortical thinning and are most robust in the posterior and superior regions of the cerebrum. PMID:20688164

  9. Cerebral Cortex Structure in Prodromal Huntington Disease

    PubMed Central

    Nopoulos, Peggy C.; Aylward, Elizabeth H.; Ross, Christopher A.; Johnson, Hans J.; Magnotta, Vincent A.; Juhl, Andrew R.; Pierson, Ronald K.; Mills, James; Langbehn, Douglas R.; Paulsen, Jane S.

    2010-01-01

    Neuroimaging studies of subjects who are gene-expanded for Huntington Disease, but not yet diagnosed (termed prodromal HD), report that the cortex is “spared,” despite the decrement in striatal and cerebral white-matter volume. Measurement of whole-cortex volume can mask more subtle, but potentially clinically relevant regional changes in volume, thinning, or surface area. The current study addressed this limitation by evaluating cortical morphology of 523 prodromal HD subjects. Participants included 693 individuals enrolled in the PREDICT-HD protocol. Of these participants, 523 carried the HD gene mutation (prodromal HD group); the remaining 170 were non gene-expanded and served as the comparison group. Based on age and CAG repeat length, gene-expanded subjects were categorized as “Far from onset,” “Midway to onset,” “Near onset,” and “already diagnosed.” MRI scans were processed using FreeSurfer. Cortical volume, thickness, and surface area were not significantly different between the Far from onset group and controls. However, beginning in the Midway to onset group, the cortex showed significant volume decrement, affecting most the posterior and superior cerebral regions. This pattern progressed when evaluating the groups further into the disease process. Areas that remained mostly unaffected included ventral and medial regions of the frontal and temporal cortex. Morphologic changes were mostly in thinning as surface area did not substantially change in most regions. Early in the course of HD, the cortex shows changes that are manifest as cortical thinning and are most robust in the posterior and superior regions of the cerebrum. PMID:20688164

  10. Short-latency projections to the cat cerebral cortex from skin and muscle afferents in the contralateral forelimb

    PubMed Central

    Oscarsson, O.; Rosén, I.

    1966-01-01

    1. The potentials evoked in the first sensorimotor area on stimulation of muscle and skin nerves in the contralateral forelimb were recorded in preparations with either the dorsal funiculus (DF) or the spinocervical tract (SCT) interrupted. 2. The short-latency, surface-positive potentials in these preparations are mediated by the remaining path, either the DF or SCT. 3. Cutaneous afferents project through both paths to two discrete areas which correspond to the classical sensory and motor cortices (Fig. 10 A and B). The projection areas are not identical: the DF path seems to activate most effectively the sensory cortex; and the SCT path, most effectively the motor cortex. 4. The potentials evoked from cutaneous nerves have a similar latency in the two areas. On stimulation of the superficial radial nerve the latency was about 4·5 msec in preparations with intact DF, and about 5·3 msec in preparations with intact SCT. 5. High threshold muscle afferents project to the same areas as the cutaneous afferents. 6. Group I muscle afferents project, exclusively through the DF path, to an area distinct from the two cutaneous projection areas (Fig. 10C). It occupies a caudal part of the motor cortex and an intermediate zone between the sensory and motor cortices. 7. The projection areas are compared with the recent cytoarchitectonic map of Hassler & Muhs-Clement (1964) (Fig. 10D). 8. It is suggested that the afferent projections to the motor cortex and the intermediate zone are used in the integration of movements elicited from the cortex. The general similarity in the organization of afferent paths to the motor cortex and the cerebellum is pointed out. PMID:5937410

  11. Cholecystokinin from the entorhinal cortex enables neural plasticity in the auditory cortex

    PubMed Central

    Li, Xiao; Yu, Kai; Zhang, Zicong; Sun, Wenjian; Yang, Zhou; Feng, Jingyu; Chen, Xi; Liu, Chun-Hua; Wang, Haitao; Guo, Yi Ping; He, Jufang

    2014-01-01

    Patients with damage to the medial temporal lobe show deficits in forming new declarative memories but can still recall older memories, suggesting that the medial temporal lobe is necessary for encoding memories in the neocortex. Here, we found that cortical projection neurons in the perirhinal and entorhinal cortices were mostly immunopositive for cholecystokinin (CCK). Local infusion of CCK in the auditory cortex of anesthetized rats induced plastic changes that enabled cortical neurons to potentiate their responses or to start responding to an auditory stimulus that was paired with a tone that robustly triggered action potentials. CCK infusion also enabled auditory neurons to start responding to a light stimulus that was paired with a noise burst. In vivo intracellular recordings in the auditory cortex showed that synaptic strength was potentiated after two pairings of presynaptic and postsynaptic activity in the presence of CCK. Infusion of a CCKB antagonist in the auditory cortex prevented the formation of a visuo-auditory association in awake rats. Finally, activation of the entorhinal cortex potentiated neuronal responses in the auditory cortex, which was suppressed by infusion of a CCKB antagonist. Together, these findings suggest that the medial temporal lobe influences neocortical plasticity via CCK-positive cortical projection neurons in the entorhinal cortex. PMID:24343575

  12. Cell Counts in Cerebral Cortex of an Autistic Patient.

    ERIC Educational Resources Information Center

    Coleman, Paul D.; And Others

    1985-01-01

    Numbers of neurons and glia were counted in the cerebral cortex of one case of autism and two age- and sex-matched controls. Cell counts were made in primary auditory cortex, Broca's speech area, and auditory association cortex. No consistent differences in cell density were found between brains of autistic and control patients. (Author/CL)

  13. [Overlapping of optical answers for cross-like figures and oriented bars in the cats primary visual cortex].

    PubMed

    Ivanov, R S; Liamzin, D R; Bondar', I V; Kulikov, M A; Shevelev, I A

    2010-01-01

    For the first time by the optical method the population activity of neurons in cat primary visual cortex was observed simultaneously for detectors participating in analysis of first-order (orientation) and second-order (line intersection) features. The maps for cross-like figures and oriented single bars were compared. The comparative analysis allowed us to estimate the degree of overlapping of the activated regions and parts of cortex that were free from overlap. Overlapping zones provided the evidence for the fact that neuronal detectors for line intersections are located in the same neuronal columns as neurons detecting orientations. Differences were observed between maps for vertically oriented and oblique crosses. Those differences were pronounced not only in topography but also in degree of overlapping of activity zones. This may evidence on different contribution of neurons detecting basic and intermediate orientations. PMID:20469587

  14. Early postnatal migration and development of layer II pyramidal neurons in the rodent cingulate/retrosplenial cortex.

    PubMed

    Zgraggen, Eloisa; Boitard, Michael; Roman, Inge; Kanemitsu, Michiko; Potter, Gael; Salmon, Patrick; Vutskits, Laszlo; Dayer, Alexandre G; Kiss, Jozsef Z

    2012-01-01

    The cingulate and retrosplenial regions are major components of the dorsomedial (dm) limbic cortex and have been implicated in a range of cognitive functions such as emotion, attention, and spatial memory. While the structure and connectivity of these cortices are well characterized, little is known about their development. Notably, the timing and mode of migration that govern the appropriate positioning of late-born neurons remain unknown. Here, we analyzed migratory events during the early postnatal period from ventricular/subventricular zone (VZ/SVZ) to the cerebral cortex by transducing neuronal precursors in the VZ/SVZ of newborn rats/mice with Tomato/green fluorescent protein-encoding lentivectors. We have identified a pool of postmitotic pyramidal precursors in the dm part of the neonatal VZ/SVZ that migrate into the medial limbic cortex during the first postnatal week. Time-lapse imaging demonstrates that these cells migrate on radial glial fibers by locomotion and display morphological and behavioral changes as they travel through the white matter and enter into the cortical gray matter. In the granular retrosplenial cortex, these cells give rise to a Satb2+ pyramidal subtype and develop dendritic bundles in layer I. Our observations provide the first insight into the patterns and dynamics of cell migration into the medial limbic cortex. PMID:21625013

  15. Dab2IP Regulates Neuronal Positioning, Rap1 Activity and Integrin Signaling in the Developing Cortex.

    PubMed

    Qiao, Shuhong; Homayouni, Ramin

    2015-01-01

    Dab2IP (DOC-2/DAB2 interacting protein) is a GTPase-activating protein which is involved in various aspects of brain development in addition to its roles in tumor formation and apoptosis in other systems. In this study, we carefully examined the expression profile of Dab2IP and investigated its physiological role during brain development using a Dab2IP-knockdown (KD) mouse model created by retroviral insertion of a LacZ-encoding gene-trapping cassette. LacZ staining revealed that Dab2IP is expressed in the ventricular zone as well as the cortical plate and the intermediate zone. Immunohistochemical analysis showed that Dab2IP protein is localized in the leading process and proximal cytoplasmic regions of migrating neurons in the intermediate zone. Bromodeoxyuridine birth dating experiments in combination with immunohistochemical analysis using layer-specific markers showed that Dab2IP is important for proper positioning of a subset of layer II-IV neurons in the developing cortex. Notably, neuronal migration was not completely disrupted in the cerebral cortex of Dab2IP-KD mice and disruption of migration was not strictly layer specific. Previously, we found that Dab2IP regulates multipolar transition in cortical neurons. Others have shown that Rap1 regulates the transition from multipolar to bipolar morphology in migrating postmitotic neurons through N-cadherin signaling and somal translocation in the superficial layer of the cortical plate through integrin signaling. Therefore, we examined whether Rap1 and integrin signaling were affected in Dab2IP-KD brains. We found that Dab2IP-KD resulted in higher levels of activated Rap1 and integrin in the developing cortex. Taken together, our results suggest that Dab2IP plays an important role in the migration and positioning of a subpopulation of later-born (layers II-IV) neurons, likely through the regulation of Rap1 and integrin signaling. PMID:25721469

  16. Uptake of trimethoprim by renal cortex.

    PubMed

    Cacini, W; Myre, S A

    1985-10-01

    The purpose of this study was to examine the mechanisms involved in the uptake of the urinary antibacterial drug trimethoprim by incubated slices of rat renal cortex. Concentration-dependent studies of the uptake process demonstrated that a saturable component was involved. The results of inhibitor studies as well as the time-course pattern support the conclusion that at least two processes are involved in the uptake of trimethoprim. These include active transport via the organic cation system, accounting for about 40% of the total uptake, and a second component that continues to operate under conditions of inhibited cellular metabolism. Chromatographic examination of post-incubation bathing medium and slice extracts failed to demonstrate renal cortex metabolism of trimethoprim. PMID:4052093

  17. Anterior Insular Cortex and Emotional Awareness

    PubMed Central

    Gu, Xiaosi; Hof, Patrick R.; Friston, Karl J.; Fan, Jin

    2014-01-01

    This paper reviews the foundation for a role of the human anterior insular cortex (AIC) in emotional awareness, defined as the conscious experience of emotions. We first introduce the neuroanatomical features of AIC and existing findings on emotional awareness. Using empathy, the awareness and understanding of other people’s emotional states, as a test case, we then present evidence to demonstrate: 1) AIC and anterior cingulate cortex (ACC) are commonly coactivated as revealed by a meta-analysis, 2) AIC is functionally dissociable from ACC, 3) AIC integrates stimulus-driven and top-down information, and 4) AIC is necessary for emotional awareness. We propose a model in which AIC serves two major functions: integrating bottom-up interoceptive signals with top-down predictions to generate a current awareness state and providing descending predictions to visceral systems that provide a point of reference for autonomic reflexes. We argue that AIC is critical and necessary for emotional awareness. PMID:23749500

  18. Mitochondrial structure in the rat adrenal cortex.

    PubMed Central

    Merry, B J

    1975-01-01

    Two distinct classes of mitochondria are described in the normal adrenal cortex of the Sprague Dawley CFY rat. Polyaminar mitochondria were frequently observed in the zona fasciculata and zona reticularis, particularly after ACTH stimulation of the cortex resulting from cold-stress exposure. It is uncertain whether such organelles are degenerating forms, or whether they have a specific functional role related to steroidogenesis in the normal cortical cell. In both normal and stressed adrenal cortices, protrusions of the outer membrane of mitochondria were evident, and were often seen penetrating lipid droplets. It is suggested that these protrusions may have some significance in the transport of cholesterol from the lipid droplet to the inner mitochondrial memrane 'desmolase complex', thus facilitating side-chain cleavage of cholesterol to pregnenolone. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:166969

  19. Anterior insular cortex and emotional awareness.

    PubMed

    Gu, Xiaosi; Hof, Patrick R; Friston, Karl J; Fan, Jin

    2013-10-15

    This paper reviews the foundation for a role of the human anterior insular cortex (AIC) in emotional awareness, defined as the conscious experience of emotions. We first introduce the neuroanatomical features of AIC and existing findings on emotional awareness. Using empathy, the awareness and understanding of other people's emotional states, as a test case, we then present evidence to demonstrate: 1) AIC and anterior cingulate cortex (ACC) are commonly coactivated as revealed by a meta-analysis, 2) AIC is functionally dissociable from ACC, 3) AIC integrates stimulus-driven and top-down information, and 4) AIC is necessary for emotional awareness. We propose a model in which AIC serves two major functions: integrating bottom-up interoceptive signals with top-down predictions to generate a current awareness state and providing descending predictions to visceral systems that provide a point of reference for autonomic reflexes. We argue that AIC is critical and necessary for emotional awareness. PMID:23749500

  20. Reconstructing speech from human auditory cortex.

    PubMed

    Pasley, Brian N; David, Stephen V; Mesgarani, Nima; Flinker, Adeen; Shamma, Shihab A; Crone, Nathan E; Knight, Robert T; Chang, Edward F

    2012-01-01

    How the human auditory system extracts perceptually relevant acoustic features of speech is unknown. To address this question, we used intracranial recordings from nonprimary auditory cortex in the human superior temporal gyrus to determine what acoustic information in speech sounds can be reconstructed from population neural activity. We found that slow and intermediate temporal fluctuations, such as those corresponding to syllable rate, were accurately reconstructed using a linear model based on the auditory spectrogram. However, reconstruction of fast temporal fluctuations, such as syllable onsets and offsets, required a nonlinear sound representation based on temporal modulation energy. Reconstruction accuracy was highest within the range of spectro-temporal fluctuations that have been found to be critical for speech intelligibility. The decoded speech representations allowed readout and identification of individual words directly from brain activity during single trial sound presentations. These findings reveal neural encoding mechanisms of speech acoustic parameters in higher order human auditory cortex. PMID:22303281

  1. Reconstructing Speech from Human Auditory Cortex

    PubMed Central

    Pasley, Brian N.; David, Stephen V.; Mesgarani, Nima; Flinker, Adeen; Shamma, Shihab A.; Crone, Nathan E.; Knight, Robert T.; Chang, Edward F.

    2012-01-01

    How the human auditory system extracts perceptually relevant acoustic features of speech is unknown. To address this question, we used intracranial recordings from nonprimary auditory cortex in the human superior temporal gyrus to determine what acoustic information in speech sounds can be reconstructed from population neural activity. We found that slow and intermediate temporal fluctuations, such as those corresponding to syllable rate, were accurately reconstructed using a linear model based on the auditory spectrogram. However, reconstruction of fast temporal fluctuations, such as syllable onsets and offsets, required a nonlinear sound representation based on temporal modulation energy. Reconstruction accuracy was highest within the range of spectro-temporal fluctuations that have been found to be critical for speech intelligibility. The decoded speech representations allowed readout and identification of individual words directly from brain activity during single trial sound presentations. These findings reveal neural encoding mechanisms of speech acoustic parameters in higher order human auditory cortex. PMID:22303281

  2. Speed cells in the medial entorhinal cortex.

    PubMed

    Kropff, Emilio; Carmichael, James E; Moser, May-Britt; Moser, Edvard I

    2015-07-23

    Grid cells in the medial entorhinal cortex have spatial firing fields that repeat periodically in a hexagonal pattern. When animals move, activity is translated between grid cells in accordance with the animal's displacement in the environment. For this translation to occur, grid cells must have continuous access to information about instantaneous running speed. However, a powerful entorhinal speed signal has not been identified. Here we show that running speed is represented in the firing rate of a ubiquitous but functionally dedicated population of entorhinal neurons distinct from other cell populations of the local circuit, such as grid, head-direction and border cells. These 'speed cells' are characterized by a context-invariant positive, linear response to running speed, and share with grid cells a prospective bias of ∼50-80 ms. Our observations point to speed cells as a key component of the dynamic representation of self-location in the medial entorhinal cortex. PMID:26176924

  3. The role of prefrontal cortex in psychopathy

    PubMed Central

    Koenigs, Michael

    2014-01-01

    Psychopathy is a personality disorder characterized by remorseless and impulsive antisocial behavior. Given the significant societal costs of the recidivistic criminal activity associated with the disorder, there is a pressing need for more effective treatment strategies, and hence, a better understanding of the psychobiological mechanisms underlying the disorder. The prefrontal cortex (PFC) is likely to play an important role in psychopathy. In particular, the ventromedial and anterior cingulate sectors of PFC are theorized to mediate a number of social and affective decision-making functions that appear to be disrupted in psychopathy. This article provides a critical summary of human neuroimaging data implicating prefrontal dysfunction in psychopathy. A growing body of evidence associates psychopathy with structural and functional abnormalities in ventromedial PFC and anterior cingulate cortex. Although this burgeoning field still faces a number of methodological challenges and outstanding questions that will need to be resolved by future studies, the research to date has established a link between psychopathy and PFC. PMID:22752782

  4. Specificity and randomness in the visual cortex

    PubMed Central

    Ohki, Kenichi; Reid, R. Clay

    2009-01-01

    Summary Research on the functional anatomy of visual cortical circuit has recently zoomed in from the macroscopic level to the microscopic. High-resolution functional imaging has revealed that the functional architecture of orientation maps in higher mammals is built with single-cell precision. In contrast, orientation selectivity in rodents is dispersed on visual cortex in a salt-and-pepper fashion, despite highly tuned visual responses. Recent studies of synaptic physiology indicate that there are disjoint subnetworks of interconnected cells in the rodent visual cortex. These intermingled subnetworks, described in vitro, may relate to the intermingled ensembles of cells tuned to different orientations, described in vivo. This hypothesis may soon be tested with new anatomic techniques that promise to reveal detailed wiring diagrams in cortical circuits. PMID:17720489

  5. Glycine metabolism in rat kidney cortex slices.

    PubMed

    Rowsell, E V; Al-Naama, M M; Rowsell, K V

    1982-04-15

    When rat kidney cortex slices were incubated with glycine or [1-14C]glycine, after correcting for metabolite changes with control slices, product formation and glycine utilization fitted the requirements of the equation: 2 Glycine leads to ammonia + CO2 + serine. Evidence is presented that degradation via glyoxylate, by oxidation or transamination, is unlikely to have any significant role in kidney glycine catabolism. It is concluded that glycine metabolism in rat kidney is largely via glycine cleavage closely coupled with serine formation. 1-C decarboxylation and urea formation with glycine in rat hepatocyte suspensions were somewhat greater than decarboxylation or ammonia formation in kidney slices, showing that in the rat, potentially, the liver is quantitatively the more important organ in glycine catabolism. There was no evidence of ammonia formation from glycine with rat brain cortex, heart, spleen or diaphragm and 1-C decarboxylation was very weak. PMID:6810880

  6. Social Distance Evaluation in Human Parietal Cortex

    PubMed Central

    Yamakawa, Yoshinori; Kanai, Ryota; Matsumura, Michikazu; Naito, Eiichi

    2009-01-01

    Across cultures, social relationships are often thought of, described, and acted out in terms of physical space (e.g. “close friends” “high lord”). Does this cognitive mapping of social concepts arise from shared brain resources for processing social and physical relationships? Using fMRI, we found that the tasks of evaluating social compatibility and of evaluating physical distances engage a common brain substrate in the parietal cortex. The present study shows the possibility of an analytic brain mechanism to process and represent complex networks of social relationships. Given parietal cortex's known role in constructing egocentric maps of physical space, our present findings may help to explain the linguistic, psychological and behavioural links between social and physical space. PMID:19204791

  7. Pathomechanisms of atrophy in insular cortex in Alzheimer's disease.

    PubMed

    Moon, Yeonsil; Moon, Won-Jin; Han, Seol-Heui

    2015-08-01

    The insular cortex is associated with neuropsychiatric symptoms, changes in cardiovascular and autonomic control, and mortality in Alzheimer's dementia. However, the insular cortex does not provide information on the contribution of the other cortices to cognitive decline. We hypothesized that the factors that affect to atrophy in insular cortex are different from other cortical regions. A total of 42 patients with probable Alzheimer's dementia were included in the analyses. The manual drawing of regions of interest was used to detect insular cortex located in the deep gray matter and to avoid coatrophy. Covariates, which could affect to the atrophy of the cerebral cortex, were selected based on previous studies. Any of the demographic factors, vascular risk factors, and the severity scales of dementia was not associated with any insular volume ratio. We suggest that the pathomechanisms of atrophy in insular cortex are different from those of other cortex regions in Alzheimer's disease. PMID:25596207

  8. The left parietal cortex and motor attention.

    PubMed

    Rushworth, M F; Nixon, P D; Renowden, S; Wade, D T; Passingham, R E

    1997-09-01

    The posterior parietal cortex, particularly in the right hemisphere, is crucially important for covert orienting; lesions impair the ability to disengage the focus of covert orienting attention from one potential saccade target to another (Posner, M. I. et al., Journal of Neuroscience, 1984, 4, 1863-1874). We have developed a task where precues allow subjects to covertly prepare subsequent cued hand movements, as opposed to an orienting or eye movement. We refer to this process as motor attention to distinguish it from orienting attention. Nine subjects with lesions that included the left parietal cortex and nine subjects with lesions including the right parietal cortex were compared with control subjects on the task. The left hemisphere subjects showed the same ability as controls to engage attention to a movement when they were forewarned by a valid precue. The left hemisphere subjects, however, were impaired in their ability to disengage the focus of motor attention from one movement to another when the precue was incorrect. The results support the existence of two distinct attentional systems allied to the orienting and limb motor systems. Damage to either system causes analogous problems in disengaging from one orienting/movement target to another. The left parietal cortex, particularly the supramarginal gyrus, is associated with motor attention. All the left hemisphere subjects had ideomotor apraxia and had particular problems performing sequences of movements. We suggest that the well documented left hemisphere and apraxic impairment in movement sequencing is the consequence of a difficulty in shifting the focus of motor attention from one movement in a sequence to the next. PMID:9364496

  9. Cone inputs to murine striate cortex

    PubMed Central

    Ekesten, Björn; Gouras, Peter

    2008-01-01

    Background We have recorded responses from single neurons in murine visual cortex to determine the effectiveness of the input from the two murine cone photoreceptor mechanisms and whether there is any unique selectivity for cone inputs at this higher region of the visual system that would support the possibility of colour vision in mice. Each eye was stimulated by diffuse light, either 370 (strong stimulus for the ultra-violet (UV) cone opsin) or 505 nm (exclusively stimulating the middle wavelength sensitive (M) cone opsin), obtained from light emitting diodes (LEDs) in the presence of a strong adapting light that suppressed the responses of rods. Results Single cells responded to these diffuse stimuli in all areas of striate cortex. Two types of responsive cells were encountered. One type (135/323 – 42%) had little to no spontaneous activity and responded at either the on and/or the off phase of the light stimulus with a few impulses often of relatively large amplitude. A second type (166/323 – 51%) had spontaneous activity and responded tonically to light stimuli with impulses often of small amplitude. Most of the cells responded similarly to both spectral stimuli. A few (18/323 – 6%) responded strongly or exclusively to one or the other spectral stimulus and rarely in a spectrally opponent manner. Conclusion Most cells in murine striate cortex receive excitatory inputs from both UV- and M-cones. A small fraction shows either strong selectivity for one or the other cone mechanism and occasionally cone opponent responses. Cells that could underlie chromatic contrast detection are present but extremely rare in murine striate cortex. PMID:19014590

  10. Determination of pyrethroid pesticides in cinnamomi cortex.

    PubMed

    Tagami, Takaomi; Kajimura, Keiji; Nomura, Chie; Taguchi, Shuzo; Iwagami, Syozo

    2009-01-01

    In Japan, maximum residue levels (MRL) have been set for eight pesticides (alpha-BHC, beta-BHC, gamma-BHC, delta-BHC (BHCs), p,p'-DDE, o,p'-DDT, p,p'-DDD, p,p'-DDT (DDTs)) in 14 crude drugs (below 0.2 ppm as total of BHCs, below 0.2 ppm as total of DDTs). There are fears that pesticides present in crude drugs for which MRL are set will be changed from BHCs and DDTs to other pesticides with MRL setting as the turning point. There are few surveys of pyrethroid pesticide in crude drugs distributed in Japan. The actual situation of pyrethroid pesticides in crude drugs distributed in Japan after setting MRL is not unclear and should be clarified. Although a method to analyze permethrin, cypermethrin and fenvalerate in 11 crude drugs was reported, it is not adequate because the recovery rates of permethrin, cypermethrin and fenvalerate from Cinnamomi cortex were very low and the method, including liquid-liquid partition is difficult. In this study, we developed a method using solid-phase extraction to analyze permethrin, cypermethrin and fenvalerate in Cinnamomi cortex with acceptable recovery rates. The sample solution was determined by gas chromatography/mass spectrometry with negative chemical ionization. The recovery rates of permethrin, cypermethrin and fenvalerate from Cinnamomi cortex were between 87.9 and 90.7%. Five samples of Cinnamomi cortex were analyzed according to the proposed method. No samples contained permethrin, cypermethrin and fenvalerate over detection limits. The proposed method could analyze permethrin, cypermethrin and fenvalerate in all crude drugs for which MRL are set. PMID:19122445

  11. Disparity processing in primary visual cortex.

    PubMed

    Henriksen, Sid; Tanabe, Seiji; Cumming, Bruce

    2016-06-19

    The first step in binocular stereopsis is to match features on the left retina with the correct features on the right retina, discarding 'false' matches. The physiological processing of these signals starts in the primary visual cortex, where the binocular energy model has been a powerful framework for understanding the underlying computation. For this reason, it is often used when thinking about how binocular matching might be performed beyond striate cortex. But this step depends critically on the accuracy of the model, and real V1 neurons show several properties that suggest they may be less sensitive to false matches than the energy model predicts. Several recent studies provide empirical support for an extended version of the energy model, in which the same principles are used, but the responses of single neurons are described as the sum of several subunits, each of which follows the principles of the energy model. These studies have significantly improved our understanding of the role played by striate cortex in the stereo correspondence problem.This article is part of the themed issue 'Vision in our three-dimensional world'. PMID:27269598

  12. Tonotopic mapping of human auditory cortex.

    PubMed

    Saenz, Melissa; Langers, Dave R M

    2014-01-01

    Since the early days of functional magnetic resonance imaging (fMRI), retinotopic mapping emerged as a powerful and widely-accepted tool, allowing the identification of individual visual cortical fields and furthering the study of visual processing. In contrast, tonotopic mapping in auditory cortex proved more challenging primarily because of the smaller size of auditory cortical fields. The spatial resolution capabilities of fMRI have since advanced, and recent reports from our labs and several others demonstrate the reliability of tonotopic mapping in human auditory cortex. Here we review the wide range of stimulus procedures and analysis methods that have been used to successfully map tonotopy in human auditory cortex. We point out that recent studies provide a remarkably consistent view of human tonotopic organisation, although the interpretation of the maps continues to vary. In particular, there remains controversy over the exact orientation of the primary gradients with respect to Heschl's gyrus, which leads to different predictions about the location of human A1, R, and surrounding fields. We discuss the development of this debate and argue that literature is converging towards an interpretation that core fields A1 and R fold across the rostral and caudal banks of Heschl's gyrus, with tonotopic gradients laid out in a distinctive V-shaped manner. This suggests an organisation that is largely homologous with non-human primates. This article is part of a Special Issue entitled Human Auditory Neuroimaging. PMID:23916753

  13. The human cerebral cortex flattens during adolescence.

    PubMed

    Alemán-Gómez, Yasser; Janssen, Joost; Schnack, Hugo; Balaban, Evan; Pina-Camacho, Laura; Alfaro-Almagro, Fidel; Castro-Fornieles, Josefina; Otero, Soraya; Baeza, Immaculada; Moreno, Dolores; Bargalló, Nuria; Parellada, Mara; Arango, Celso; Desco, Manuel

    2013-09-18

    The human cerebral cortex appears to shrink during adolescence. To delineate the dynamic morphological changes involved in this process, 52 healthy male and female adolescents (11-17 years old) were neuroimaged twice using magnetic resonance imaging, approximately 2 years apart. Using a novel morphometric analysis procedure combining the FreeSurfer and BrainVisa image software suites, we quantified global and lobar change in cortical thickness, outer surface area, the gyrification index, the average Euclidean distance between opposing sides of the white matter surface (gyral white matter thickness), the convex ("exposed") part of the outer cortical surface (hull surface area), sulcal length, depth, and width. We found that the cortical surface flattens during adolescence. Flattening was strongest in the frontal and occipital cortices, in which significant sulcal widening and decreased sulcal depth co-occurred. Globally, sulcal widening was associated with cortical thinning and, for the frontal cortex, with loss of surface area. For the other cortical lobes, thinning was related to gyral white matter expansion. The overall flattening of the macrostructural three-dimensional architecture of the human cortex during adolescence thus involves changes in gray matter and effects of the maturation of white matter. PMID:24048830

  14. Functional subregions of the human entorhinal cortex

    PubMed Central

    Maass, Anne; Berron, David; Libby, Laura A; Ranganath, Charan; Düzel, Emrah

    2015-01-01

    The entorhinal cortex (EC) is the primary site of interactions between the neocortex and hippocampus. Studies in rodents and nonhuman primates suggest that EC can be divided into subregions that connect differentially with perirhinal cortex (PRC) vs parahippocampal cortex (PHC) and with hippocampal subfields along the proximo-distal axis. Here, we used high-resolution functional magnetic resonance imaging at 7 Tesla to identify functional subdivisions of the human EC. In two independent datasets, PRC showed preferential intrinsic functional connectivity with anterior-lateral EC and PHC with posterior-medial EC. These EC subregions, in turn, exhibited differential connectivity with proximal and distal subiculum. In contrast, connectivity of PRC and PHC with subiculum followed not only a proximal-distal but also an anterior-posterior gradient. Our data provide the first evidence that the human EC can be divided into functional subdivisions whose functional connectivity closely parallels the known anatomical connectivity patterns of the rodent and nonhuman primate EC. DOI: http://dx.doi.org/10.7554/eLife.06426.001 PMID:26052749

  15. Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkey

    SciTech Connect

    Humphrey, A.L.; Hendrickson, A.E.

    1983-02-01

    We have used 2-deoxy-D-(/sup 14/C)glucose (2-DG) autoradiography and cytochrome oxidase histochemistry to examine background and stimulus-induced patterns of metabolic activity in monkey striate cortex. In squirrel monkeys (Saimiri sciureus) that binocularly or monocularly viewed diffuse white light or binocularly viewed bars of many orientations and spatial frequencies, 2-DG consumption was not uniform across the cortex but consisted of regularly spaced radial zones of high uptake. The zones extended through all laminae except IVc beta and, when viewed tangentially, formed separate patches 500 microns apart. The cytochrome oxidase stain in these animals also revealed patches of high metabolism which coincided with the 2-DG patches. Squirrel monkeys binocularly viewing vertical stripes showed parallel bands of increased 2-DG uptake in the cortex, while the cytochrome label in these animals remained patchy. When monkeys were kept in the dark during 2-DG exposure, 2-DG-labeled patches were not seen but cytochrome oxidase-positive patches remained. In macaque (Macaca nemestrina) monkeys, binocular stimulation with many orientations and spatial frequencies produced radial zones of high 2-DG uptake in layers I to IVa and VI. When viewed tangentially, these zones formed a dots-in-rows pattern with a spacing of 350 X 500 microns; cytochrome oxidase staining produced an identical pattern. Macaca differed from Saimiri in that monocular stimulation labeled alternate rows. These results indicate that there are radial zones of high background metabolism across squirrel and macaque monkey striate cortex. In Saimiri these zones do not appear to be related to an eye dominance system, while in Macaca they do. The presence of these zones of high metabolism may complicate the interpretation of 2-DG autoradiographs that result from specific visual stimuli.

  16. Occipital cortex of blind individuals is functionally coupled with executive control areas of frontal cortex.

    PubMed

    Deen, Ben; Saxe, Rebecca; Bedny, Marina

    2015-08-01

    In congenital blindness, the occipital cortex responds to a range of nonvisual inputs, including tactile, auditory, and linguistic stimuli. Are these changes in functional responses to stimuli accompanied by altered interactions with nonvisual functional networks? To answer this question, we introduce a data-driven method that searches across cortex for functional connectivity differences across groups. Replicating prior work, we find increased fronto-occipital functional connectivity in congenitally blind relative to blindfolded sighted participants. We demonstrate that this heightened connectivity extends over most of occipital cortex but is specific to a subset of regions in the inferior, dorsal, and medial frontal lobe. To assess the functional profile of these frontal areas, we used an n-back working memory task and a sentence comprehension task. We find that, among prefrontal areas with overconnectivity to occipital cortex, one left inferior frontal region responds to language over music. By contrast, the majority of these regions responded to working memory load but not language. These results suggest that in blindness occipital cortex interacts more with working memory systems and raise new questions about the function and mechanism of occipital plasticity. PMID:25803598

  17. Role of intermediate progenitor cells in cerebral cortex development.

    PubMed

    Pontious, Adria; Kowalczyk, Tom; Englund, Chris; Hevner, Robert F

    2008-01-01

    Intermediate progenitor cells (IPCs) are a type of neurogenic transient amplifying cells in the developing cerebral cortex. IPCs divide symmetrically at basal (abventricular) positions in the neuroepithelium to produce pairs of new neurons or, in amplifying divisions, pairs of new IPCs. In contrast, radial unit progenitors (neuroepithelial cells and radial glia) divide at the apical (ventricular) surface and produce only single neurons or single IPCs by asymmetric division, or self-amplify by symmetric division. Histologically, IPCs are most prominent during the middle and late stages of neurogenesis, when they accumulate in the subventricular zone, a progenitor compartment linked to the genesis of upper neocortical layers (II-IV). Nevertheless, IPCs are present throughout cortical neurogenesis and produce neurons for all layers. In mice, changes in the abundance of IPCs caused by mutations of Pax6, Ngn2, Id4 and other genes are associated with parallel changes in cortical thickness but not surface area. In gyrencephalic brains, IPCs may play broader roles in determining not only laminar thickness, but also cortical surface area and gyral patterns. We propose that regulation of IPC genesis and amplification across developmental stages and regional subdivisions modulates laminar neurogenesis and contributes to the cytoarchitectonic differentiation of cortical areas. PMID:18075251

  18. Microtubules in the Cerebral Cortex: Role in Memory and Consciousness

    NASA Astrophysics Data System (ADS)

    Woolf, Nancy J.

    This chapter raises the question whether synaptic connections in the cerebral cortex are adequate in accounting for higher cognition, especially cognition involving multimodal processing. A recent and novel approach to brain mechanics is outlined, one that involves microtubules and microtubule-associated protein-2 (MAP2). In addition to effects on the neuronal membrane, neurotransmitters exert actions on microtubules. These neurotransmitter effects alter the MAP2 phosphorylation state and rates of microtubule polymerization and transport. It is argued that these processes are important to the physical basis of memory and consciousness. In support of this argument, MAP2 is degraded with learning in discrete cortical modules. How this relates to synaptic change related to learning is unknown. The specific proposal is advanced that learning alters microtubules in the subsynaptic zone lying beneath the synapse, and that this forms the physical basis of long-term memory storage because microtubule networks determine the synapse strength by directing contacts with actin filaments and transport of synaptic proteins. It is argued that this is more probable than memory-related physical storage in the synapse itself. Comparisons to consciousness are made and it is concluded that there is a link between microtubules, memory and consciousness.

  19. Fault damage zones

    NASA Astrophysics Data System (ADS)

    Kim, Young-Seog; Peacock, David C. P.; Sanderson, David J.

    2004-03-01

    Damage zones show very similar geometries across a wide range of scales and fault types, including strike-slip, normal and thrust faults. We use a geometric classification of damage zones into tip-, wall-, and linking-damage zones, based on their location around faults. These classes can be sub-divided in terms of fault and fracture patterns within the damage zone. A variety of damage zone structures can occur at mode II tips of strike-slip faults, including wing cracks, horsetail fractures, antithetic faults, and synthetic branch faults. Wall damage zones result from the propagation of mode II and mode III fault tips through a rock, or from damage associated with the increase in slip on a fault. Wall damage zone structures include extension fractures, antithetic faults, synthetic faults, and rotated blocks with associated triangular openings. The damage formed at the mode III tips of strike-slip faults (e.g. observed in cliff sections) are classified as wall damage zones, because the damage zone structures are distributed along a fault trace in map view. Mixed-mode tips are likely to show characteristics of both mode II and mode III tips. Linking damage zones are developed at steps between two sub-parallel faults, and the structures developed depend on whether the step is extensional or contractional. Extension fractures and pull-aparts typically develop in extensional steps, whilst solution seams, antithetic faults and synthetic faults commonly develop in contractional steps. Rotated blocks, isolated lenses or strike-slip duplexes may occur in both extensional and contractional steps. Damage zone geometries and structures are strongly controlled by the location around a fault, the slip mode at a fault tip, and by the evolutionary stage of the fault. Although other factors control the nature of damage zones (e.g. lithology, rheology and stress system), the three-dimensional fault geometry and slip mode at each tip must be considered to gain an understanding of

  20. Optical clearing based cellular-level 3D visualization of intact lymph node cortex

    PubMed Central

    Song, Eunjoo; Seo, Howon; Choe, Kibaek; Hwang, Yoonha; Ahn, Jinhyo; Ahn, Soyeon; Kim, Pilhan

    2015-01-01

    Lymph node (LN) is an important immune organ that controls adaptive immune responses against foreign pathogens and abnormal cells. To facilitate efficient immune function, LN has highly organized 3D cellular structures, vascular and lymphatic system. Unfortunately, conventional histological analysis relying on thin-sliced tissue has limitations in 3D cellular analysis due to structural disruption and tissue loss in the processes of fixation and tissue slicing. Optical sectioning confocal microscopy has been utilized to analyze 3D structure of intact LN tissue without physical tissue slicing. However, light scattering within biological tissues limits the imaging depth only to superficial portion of LN cortex. Recently, optical clearing techniques have shown enhancement of imaging depth in various biological tissues, but their efficacy for LN are remained to be investigated. In this work, we established optical clearing procedure for LN and achieved 3D volumetric visualization of the whole cortex of LN. More than 4 times improvement in imaging depth was confirmed by using LN obtained from H2B-GFP/actin-DsRed double reporter transgenic mouse. With adoptive transfer of GFP expressing B cells and DsRed expressing T cells and fluorescent vascular labeling by anti-CD31 and anti-LYVE-1 antibody conjugates, we successfully visualized major cellular-level structures such as T-cell zone, B-cell follicle and germinal center. Further, we visualized the GFP expressing metastatic melanoma cell colony, vasculature and lymphatic vessels in the LN cortex. PMID:26504662

  1. Comparing the functional representations of central and border whiskers in rat primary somatosensory cortex.

    PubMed

    Brett-Green, B A; Chen-Bee, C H; Frostig, R D

    2001-12-15

    The anatomical representations of the large facial whiskers, termed barrels, are topographically organized and highly segregated in the posteromedial barrel subfield (PMBSF) of rat layer IV primary somatosensory cortex. Although the functional representations of single whiskers are aligned with their appropriate barrels, their areal extents are rather large, spreading outward from the appropriate barrel along the tangential plane and thereby spanning multiple neighboring and non-neighboring barrels and septal regions. To date, single-whisker functional representations have been characterized primarily for whiskers whose corresponding barrels are located centrally within the PMBSF (central whiskers). Using intrinsic signal imaging verified with post-imaging single-unit recording, we demonstrate that border whiskers, whose barrels are located at the borders of the PMBSF, also evoke large activity areas that are similar in size to those of central whiskers but spread beyond the PMBSF and sometimes beyond primary somatosensory cortex into the neighboring dysgranular zones. This study indicates that the large functional representation of a single whisker is a basic functional feature of the rat whisker-to-barrel system and, combined with results from other studies, suggest that a large functional representation of a small, point-like area on the sensory epithelium may be a functional feature of primary sensory cortex in general. PMID:11739601

  2. RTTN Mutations Link Primary Cilia Function to Organization of the Human Cerebral Cortex

    PubMed Central

    Kheradmand Kia, Sima; Verbeek, Elly; Engelen, Erik; Schot, Rachel; Poot, Raymond A.; de Coo, Irenaeus F.M.; Lequin, Maarten H.; Poulton, Cathryn J.; Pourfarzad, Farzin; Grosveld, Frank G.; Brehm, António; de Wit, Marie Claire Y.; Oegema, Renske; Dobyns, William B.; Verheijen, Frans W.; Mancini, Grazia M.S.

    2012-01-01

    Polymicrogyria is a malformation of the developing cerebral cortex caused by abnormal organization and characterized by many small gyri and fusion of the outer molecular layer. We have identified autosomal-recessive mutations in RTTN, encoding Rotatin, in individuals with bilateral diffuse polymicrogyria from two separate families. Rotatin determines early embryonic axial rotation, as well as anteroposterior and dorsoventral patterning in the mouse. Human Rotatin has recently been identified as a centrosome-associated protein. The Drosophila melanogaster homolog of Rotatin, Ana3, is needed for structural integrity of centrioles and basal bodies and maintenance of sensory neurons. We show that Rotatin colocalizes with the basal bodies at the primary cilium. Cultured fibroblasts from affected individuals have structural abnormalities of the cilia and exhibit downregulation of BMP4, WNT5A, and WNT2B, which are key regulators of cortical patterning and are expressed at the cortical hem, the cortex-organizing center that gives rise to Cajal-Retzius (CR) neurons. Interestingly, we have shown that in mouse embryos, Rotatin colocalizes with CR neurons at the subpial marginal zone. Knockdown experiments in human fibroblasts and neural stem cells confirm a role for RTTN in cilia structure and function. RTTN mutations therefore link aberrant ciliary function to abnormal development and organization of the cortex in human individuals. PMID:22939636

  3. High frequency synchrony in the cerebellar cortex during goal directed movements

    PubMed Central

    Groth, Jonathan D.; Sahin, Mesut

    2015-01-01

    The cerebellum is involved in sensory-motor integration and cognitive functions. The origin and function of the field potential oscillations in the cerebellum, especially in the high frequencies, have not been explored sufficiently. The primary objective of this study was to investigate the spatio-temporal characteristics of high frequency field potentials (150–350 Hz) in the cerebellar cortex in a behavioral context. To this end, we recorded from the paramedian lobule in rats using micro electro-corticogram (μ-ECoG) electrode arrays while the animal performed a lever press task using the forelimb. The phase synchrony analysis shows that the high frequency oscillations recorded at multiple points across the paramedian cortex episodically synchronize immediately before and desynchronize during the lever press. The electrode contacts were grouped according to their temporal course of phase synchrony around the time of lever press. Contact groups presented patches with slightly stronger synchrony values in the medio-lateral direction, and did not appear to form parasagittal zones. The size and location of these patches on the cortical surface are in agreement with the sensory evoked granular layer patches originally reported by Welker's lab (Shambes et al., 1978). Spatiotemporal synchrony of high frequency field potentials has not been reported at such large-scales previously in the cerebellar cortex. PMID:26257613

  4. Antigenic compartmentation of the cerebellar cortex in an Australian marsupial, the tammar wallaby Macropus eugenii.

    PubMed

    Marzban, Hassan; Hoy, Nathan; Marotte, Lauren R; Hawkes, Richard

    2012-01-01

    The mammalian cerebellar cortex is apparently uniform in composition, but a complex heterogeneous pattern can be revealed by using biochemical markers such as zebrin II/aldolase C, which is expressed by a subset of Purkinje cells that form a highly reproducible array of transverse zones and parasagittal stripes. The architecture revealed by zebrin II expression is conserved among many taxa of birds and mammals. In this report zebrin II immunohistochemistry has been used in both section and whole-mount preparations to analyze the cerebellar architecture of the Australian tammar wallaby (Macropus eugenii). The gross appearance of the wallaby cerebellum is remarkable, with unusually elaborate cerebellar lobules with multiple sublobules and fissures. However, despite the morphological complexity, the underlying zone and stripe architecture is conserved and the typical mammalian organization is present. PMID:22907194

  5. Dynamic expression of calretinin in embryonic and early fetal human cortex

    PubMed Central

    González-Gómez, Miriam; Meyer, Gundela

    2014-01-01

    Calretinin (CR) is one of the earliest neurochemical markers in human corticogenesis. In embryos from Carnegie stages (CS) 17 to 23, calbindin (CB) and CR stain opposite poles of the incipient cortex suggesting early regionalization: CB marks the neuroepithelium of the medial boundary of the cortex with the choroid plexus (cortical hem). By contrast, CR is confined to the subventricular zone (SVZ) of the lateral and caudal ganglionic eminences at the pallial-subpallial boundary (PSB, or antihem), from where CR+/Tbr1- neurons migrate toward piriform cortex and amygdala as a component of the lateral cortical stream. At CS 19, columns of CR+ cells arise in the rostral cortex, and contribute at CS 20 to the “monolayer” of horizontal Tbr1+/CR+ and GAD+ cells in the preplate. At CS 21, the “pioneer cortical plate” appears as a radial aggregation of CR+/Tbr1+ neurons, which cover the entire future neocortex and extend the first corticofugal axons. CR expression in early human corticogenesis is thus not restricted to interneurons, but is also present in the first excitatory projection neurons of the cortex. At CS 21/22, the cortical plate is established following a lateral to medial gradient, when Tbr1+/CR- neurons settle within the pioneer cortical plate, and thus separate superficial and deep pioneer neurons. CR+ pioneer neurons disappear shortly after the formation of the cortical plate. Reelin+ Cajal-Retzius cells begin to express CR around CS21 (7/8 PCW). At CS 21–23, the CR+ SVZ at the PSB is the source of CR+ interneurons migrating into the cortical SVZ. In turn, CB+ interneurons migrate from the subpallium into the intermediate zone following the fibers of the internal capsule. Early CR+ and CB+ interneurons thus have different origins and migratory routes. CR+ cell populations in the embryonic telencephalon take part in a complex sequence of events not analyzed so far in other mammalian species, which may represent a distinctive trait of the initial

  6. Sensorimotor restriction affects complex movement topography and reachable space in the rat motor cortex

    PubMed Central

    Budri, Mirco; Lodi, Enrico; Franchi, Gianfranco

    2014-01-01

    Long-duration intracortical microstimulation (ICMS) studies with 500 ms of current pulses suggest that the forelimb area of the motor cortex is organized into several spatially distinct functional zones that organize movements into complex sequences. Here we studied how sensorimotor restriction modifies the extent of functional zones, complex movements, and reachable space representation in the rat forelimb M1. Sensorimotor restriction was achieved by means of whole-forelimb casting of 30 days duration. Long-duration ICMS was carried out 12 h and 14 days after cast removal. Evoked movements were measured using a high-resolution 3D optical system. Long-term cast caused: (i) a reduction in the number of sites where complex forelimb movement could be evoked; (ii) a shrinkage of functional zones but no change in their center of gravity; (iii) a reduction in movement with proximal/distal coactivation; (iv) a reduction in maximal velocity, trajectory and vector length of movement, but no changes in latency or duration; (v) a large restriction of reachable space. Fourteen days of forelimb freedom after casting caused: (i) a recovery of the number of sites where complex forelimb movement could be evoked; (ii) a recovery of functional zone extent and movement with proximal/distal coactivation; (iii) an increase in movement kinematics, but only partial restoration of control rat values; (iv) a slight increase in reachability parameters, but these remained far below baseline values. We pose the hypothesis that specific aspects of complex movement may be stored within parallel motor cortex re-entrant systems. PMID:25565987

  7. Placental Estrogen Suppresses Cyclin D1 Expression in the Nonhuman Primate Fetal Adrenal Cortex*

    PubMed Central

    Dumitrescu, Adina; Aberdeen, Graham W.; Pepe, Gerald J.

    2014-01-01

    We have previously shown that estrogen selectively suppresses growth of the fetal zone of the baboon fetal adrenal cortex, which produces the C19-steroid precursors, eg, dehydroepiandrosterone sulfate, which are aromatized to estrogen within the placenta. In the present study, we determined whether fetal adrenal expression of cell cycle regulators are altered by estrogen and thus provide a mechanism by which estrogen regulates fetal adrenocortical development. Cyclin D1 mRNA levels in the whole fetal adrenal were increased 50% (P < .05), and the number of cells in the fetal adrenal definitive zone expressing cyclin D1 protein was increased 2.5-fold (P < .05), whereas the total number of cells in the fetal zone and fetal serum dehydroepiandrosterone sulfate levels were elevated 2-fold (P < .05) near term in baboons in which fetal serum estradiol levels were decreased by 95% (P < .05) after maternal administration of the aromatase inhibitor letrozole and restored to normal by concomitant administration of letrozole plus estradiol throughout second half of gestation. However, fetal adrenocortical expression of cyclin D2, the cyclin-dependent kinase (Cdk)-2, Cdk4, and Cdk6, and Cdk regulatory proteins p27Kip1 and p57Kip2 were not changed by letrozole or letrozole plus estradiol administration. We suggest that estrogen controls the growth of the fetal zone of the fetal adrenal by down-regulating cyclin D1 expression and thus proliferation of progenitor cells within the definitive zone that migrate to the fetal zone. We propose that estrogen restrains growth and function of the fetal zone via cyclin D1 to maintain estrogen levels in a physiological range during primate pregnancy. PMID:25247468

  8. Apraxia, pantomime and the parietal cortex

    PubMed Central

    Niessen, E.; Fink, G.R.; Weiss, P.H.

    2014-01-01

    Apraxia, a disorder of higher motor cognition, is a frequent and outcome-relevant sequel of left hemispheric stroke. Deficient pantomiming of object use constitutes a key symptom of apraxia and is assessed when testing for apraxia. To date the neural basis of pantomime remains controversial. We here review the literature and perform a meta-analysis of the relevant structural and functional imaging (fMRI/PET) studies. Based on a systematic literature search, 10 structural and 12 functional imaging studies were selected. Structural lesion studies associated pantomiming deficits with left frontal, parietal and temporal lesions. In contrast, functional imaging studies associate pantomimes with left parietal activations, with or without concurrent frontal or temporal activations. Functional imaging studies that selectively activated parietal cortex adopted the most stringent controls. In contrast to previous suggestions, current analyses show that both lesion and functional studies support the notion of a left-hemispheric fronto-(temporal)-parietal network underlying pantomiming object use. Furthermore, our review demonstrates that the left parietal cortex plays a key role in pantomime-related processes. More specifically, stringently controlled fMRI-studies suggest that in addition to storing motor schemas, left parietal cortex is also involved in activating these motor schemas in the context of pantomiming object use. In addition to inherent differences between structural and functional imaging studies and consistent with the dedifferentiation hypothesis, the age difference between young healthy subjects (typically included in functional imaging studies) and elderly neurological patients (typically included in structural lesion studies) may well contribute to the finding of a more distributed representation of pantomiming within the motor-dominant left hemisphere in the elderly. PMID:24967158

  9. Retinotopic Organization of Human Ventral Visual Cortex

    PubMed Central

    Arcaro, Michael J.; McMains, Stephanie A.; Singer, Benjamin D.; Kastner, Sabine

    2009-01-01

    Functional magnetic resonance imaging (fMRI) studies have shown that human ventral visual cortex anterior to area hV4 contains two visual field maps, VO-1 and VO-2, that together form the VO-cluster (Brewer et al., 2005). This cluster is characterized by common functional response properties and responds preferentially to color and object stimuli. Here, we confirm the topographic and functional characteristics of the VO-cluster and describe two new visual field maps that are located anterior to VO-2 extending across the collateral sulcus into the posterior parahippocampal cortex (PHC). We refer to these visual field maps as parahippocampal areas PHC-1 and PHC-2. Each PHC map contains a topographic representation of contralateral visual space. The polar angle representation in PHC-1 extends from regions near the lower vertical meridian (that is the shared border with VO-2) to those close to the upper vertical meridian (that is the shared border with PHC-2). The polar angle representation in PHC-2 is a mirror-reversal of the PHC-1 representation. PHC-1 and PHC-2 share a foveal representation and show a strong bias towards representations of peripheral eccentricities. Both the foveal and peripheral representations of PHC-1 and PHC-2 respond more strongly to scenes than to objects or faces, with greater scene preference in PHC-2 than PHC-1. Importantly, both areas heavily overlap with the functionally defined parahippocampal place area (PPA). Our results suggest that ventral visual cortex can be subdivided on the basis of topographic criteria into a greater number of discrete maps than previously thought. PMID:19710316

  10. Inhibition by Somatostatin Interneurons in Olfactory Cortex

    PubMed Central

    Large, Adam M.; Kunz, Nicholas A.; Mielo, Samantha L.; Oswald, Anne-Marie M.

    2016-01-01

    Inhibitory circuitry plays an integral role in cortical network activity. The development of transgenic mouse lines targeting unique interneuron classes has significantly advanced our understanding of the functional roles of specific inhibitory circuits in neocortical sensory processing. In contrast, considerably less is known about the circuitry and function of interneuron classes in piriform cortex, a paleocortex responsible for olfactory processing. In this study, we sought to utilize transgenic technology to investigate inhibition mediated by somatostatin (SST) interneurons onto pyramidal cells (PCs), parvalbumin (PV) interneurons, and other interneuron classes. As a first step, we characterized the anatomical distributions and intrinsic properties of SST and PV interneurons in four transgenic lines (SST-cre, GIN, PV-cre, and G42) that are commonly interbred to investigate inhibitory connectivity. Surprisingly, the distributions SST and PV cell subtypes targeted in the GIN and G42 lines were sparse in piriform cortex compared to neocortex. Moreover, two-thirds of interneurons recorded in the SST-cre line had electrophysiological properties similar to fast spiking (FS) interneurons rather than regular (RS) or low threshold spiking (LTS) phenotypes. Nonetheless, like neocortex, we find that SST-cells broadly inhibit a number of unidentified interneuron classes including putatively identified PV cells and surprisingly, other SST cells. We also confirm that SST-cells inhibit pyramidal cell dendrites and thus, influence dendritic integration of afferent and recurrent inputs to the piriform cortex. Altogether, our findings suggest that SST interneurons play an important role in regulating both excitation and the global inhibitory network during olfactory processing. PMID:27582691

  11. Neostriatal modulation of motor cortex excitability.

    PubMed

    Ryan, L J; Sanders, D J

    1994-07-18

    The influence of the basal ganglia motor loop on motor cortex function was examined by pharmacologically altering neostriatal activity while monitoring the electrical stimulation thresholds for eliciting movements of the ipsilateral and contralateral motor cortex in ketamine anesthetized rats. Repeated unilateral intraneostriatal infusions (1-3) of the glutamate agonist, kainic acid (0.1 microliter, 75 ng), or glutamate (0.3 microliter, 1.65 micrograms) reliably increased ipsilateral but not contralateral cortical thresholds. Single infusions of kainic acid (0.3 microliter, 150 or 225 ng) elevated ipsilateral cortical thresholds for 30-45 min; with glutamate (0.3 microliter, 1.65 micrograms), the change lasted less than 10 min. Antidromically identified striatonigral projection neurons (n = 8) located approximately 500 microM from the infusion cannula, showed either increased firing (n = 4) for less than 10 min following glutamate infusion or no change from their non-firing state (n = 4). Non-antidromically activated neurons (n = 3) were all excited by the infusion, although an interval of inhibition preceded or followed the excitation in two cases. Infusions (0.3 microliter) of inhibitory agents (GABA, 31 and 310 ng; muscimol 34.2 ng; and DNQX 34.2 ng) did not alter cortical threshold, nor did saline vehicle. Lesion of the ventrolateral but not ventromedial thalamic nucleus prevented the modulation of cortical thresholds following intraneostriatal infusion of 225 ng kainic acid. Thus the neostriatal alteration of cortical thresholds indicates a modulation of cortical excitability via thalamic projections and not the outcome of competing descending cortical and neonstriatal influences converging on motorneurons. These results suggest that tonic feedforward modulation of the motor cortex and the pyramidal tract by the basal ganglia can be inhibitory. PMID:7922571

  12. Inhibition by Somatostatin Interneurons in Olfactory Cortex.

    PubMed

    Large, Adam M; Kunz, Nicholas A; Mielo, Samantha L; Oswald, Anne-Marie M

    2016-01-01

    Inhibitory circuitry plays an integral role in cortical network activity. The development of transgenic mouse lines targeting unique interneuron classes has significantly advanced our understanding of the functional roles of specific inhibitory circuits in neocortical sensory processing. In contrast, considerably less is known about the circuitry and function of interneuron classes in piriform cortex, a paleocortex responsible for olfactory processing. In this study, we sought to utilize transgenic technology to investigate inhibition mediated by somatostatin (SST) interneurons onto pyramidal cells (PCs), parvalbumin (PV) interneurons, and other interneuron classes. As a first step, we characterized the anatomical distributions and intrinsic properties of SST and PV interneurons in four transgenic lines (SST-cre, GIN, PV-cre, and G42) that are commonly interbred to investigate inhibitory connectivity. Surprisingly, the distributions SST and PV cell subtypes targeted in the GIN and G42 lines were sparse in piriform cortex compared to neocortex. Moreover, two-thirds of interneurons recorded in the SST-cre line had electrophysiological properties similar to fast spiking (FS) interneurons rather than regular (RS) or low threshold spiking (LTS) phenotypes. Nonetheless, like neocortex, we find that SST-cells broadly inhibit a number of unidentified interneuron classes including putatively identified PV cells and surprisingly, other SST cells. We also confirm that SST-cells inhibit pyramidal cell dendrites and thus, influence dendritic integration of afferent and recurrent inputs to the piriform cortex. Altogether, our findings suggest that SST interneurons play an important role in regulating both excitation and the global inhibitory network during olfactory processing. PMID:27582691

  13. Visual Working Memory in Human Cortex

    PubMed Central

    Barton, Brian; Brewer, Alyssa A.

    2016-01-01

    Visual working memory (VWM) is the ability to maintain visual information in a readily available and easily updated state. Converging evidence has revealed that VWM capacity is limited by the number of maintained objects, which is about 3 - 4 for the average human. Recent work suggests that VWM capacity is also limited by the resolution required to maintain objects, which is tied to the objects' inherent complexity. Electroencephalogram (EEG) studies using the Contralateral Delay Activity (CDA) paradigm have revealed that cortical representations of VWM are at a minimum loosely organized like the primary visual system, such that the left side of space is represented in the right hemisphere, and vice versa. Recent functional magnetic resonance imaging (fMRI) work shows that the number of objects is maintained by representations in the inferior intraparietal sulcus (IPS) along dorsal parietal cortex, whereas the resolution of these maintained objects is subserved by the superior IPS and the lateral occipital complex (LOC). These areas overlap with recently-discovered, retinotopically-organized visual field maps (VFMs) spanning the IPS (IPS-0/1/2/3/4/5), and potentially maps in lateral occipital cortex, such as LO-1/2, and/or TO-1/2 (hMT+). Other fMRI studies have implicated early VFMs in posterior occipital cortex, suggesting that visual areas V1-hV4 are recruited to represent information in VWM. Insight into whether and how these VFMs subserve VWM may illuminate the nature of VWM. In addition, understanding the nature of these maps may allow a greater investigation into individual differences among subjects and even between hemispheres within subjects. PMID:26881188

  14. Premotor and parietal cortex: corticocortical connectivity and combinatorial computations.

    PubMed

    Wise, S P; Boussaoud, D; Johnson, P B; Caminiti, R

    1997-01-01

    The dorsal premotor cortex is a functionally distinct cortical field or group of fields in the primate frontal cortex. Anatomical studies have confirmed that most parietal input to the dorsal premotor cortex originates from the superior parietal lobule. However, these projections arise not only from the dorsal aspect of area 5, as has long been known, but also from newly defined areas of posterior parietal cortex, which are directly connected with the extrastriate visual cortex. Thus, the dorsal premotor cortex receives much more direct visual input than previously accepted. It appears that this fronto-parietal network functions as a visuomotor controller-one that makes computations based on proprioceptive, visual, gaze, attentional, and other information to produce an output that reflects the selection, preparation, and execution of movements. PMID:9056706

  15. Local homogeneity of cell cycle length in developing mouse cortex

    NASA Technical Reports Server (NTRS)

    Cai, L.; Hayes, N. L.; Nowakowski, R. S.

    1997-01-01

    proliferating cells in the ventricular zone during early development of the cerebral cortex.

  16. Microgravity silicon zoning investigation

    NASA Technical Reports Server (NTRS)

    Kern, E. L.; Gill, G. L., Jr.

    1983-01-01

    A resistance heated zoner, suitable for early zoning experiments with silicon, was designed and put into operation. The initial power usage and size was designed for an shown to be compatible with payload carriers contemplated for the Shuttle. This equipment will be used in the definition and development of flight experiments and apparatus for float zoning silicon and other materials in microgravity.

  17. Float Zone Workshop

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1980-01-01

    A summary of the Analytical Float Zone Experiment System (AFZES) concept is presented. The types of experiments considered for such a facility are discussed. Reports from various industrial producers and users of float zone material are presented. Special emphasis is placed on state-of-the-art developments in low gravity manufacturing and their applications to space processing.

  18. Investigating Aquatic Dead Zones

    ERIC Educational Resources Information Center

    Testa, Jeremy; Gurbisz, Cassie; Murray, Laura; Gray, William; Bosch, Jennifer; Burrell, Chris; Kemp, Michael

    2010-01-01

    This article features two engaging high school activities that include current scientific information, data, and authentic case studies. The activities address the physical, biological, and chemical processes that are associated with oxygen-depleted areas, or "dead zones," in aquatic systems. Students can explore these dead zones through both…

  19. Coastal zone management

    NASA Technical Reports Server (NTRS)

    Tilton, E. L., III

    1975-01-01

    A panel of federal and state representatives concerned with coastal zone affairs discussed their problems in this area. In addition, several demonstrations of the application of remote sensing technology to coastal zone management were described. These demonstrations were performed by several agencies in a variety of geographical areas.

  20. NADPH-diaphorase activity and neurovascular coupling in the rat cerebral cortex.

    PubMed

    Vlasenko, O V; Maisky, V A; Maznychenko, A V; Pilyavskii, A I

    2008-01-01

    The distribution of NADPH-diaphorase-reactive (NADPH-dr) neurons and neuronal processes in the cerebral cortex and basal forebrain and their association with parenchymal vessels were studied in normal adult rats using NADPH-d histochemical protocol. The intensely stained cortical interneurons and reactive subcortically originating afferents, and stained microvessels were examined through a light microscope at law (x250) and high (x630) magnifications. NADPH-dr interneurons were concentrated in layers 2-6 of the M1 and M2 areas. However, clear predominance in their concentration (14 +/- 0.8 P < 0.05 per section) was found in layer 6. A mean number of labeled neurons in auditory (AuV), granular and agranular (GI, AIP) areas of the insular cortex was calculated to reach 12.3 +/- 0.7, 18.5 +/- 1.0 and 23.3 +/- 1.7 units per section, respectively (P < 0.05). The distinct apposition of labelled neurons to intracortical vessels was found in the M1, M2. The order of frequency of neurovascular coupling in different zones of the cerebral cortex was as following sequence: AuV (31.2%, n = 1040) > GI (18.0%, n = 640) > S1 (13.3%, n = 720) > M1 (6.3%, n = 1360). A large number of structural associations between labeled cells and vessels in the temporal and insular cortex indicate that NADPH-d-reactive interneurons can contribute to regulation of the cerebral regional blood flow in these areas. PMID:18416183

  1. Hippocampal Cajal-Retzius cells project to the entorhinal cortex: retrograde tracing and intracellular labelling studies.

    PubMed

    Ceranik, K; Deng, J; Heimrich, B; Lübke, J; Zhao, S; Förster, E; Frotscher, M

    1999-12-01

    Cajal-Retzius (CR) cells are characteristic horizontally orientated, early-generated transient neurons in the marginal zones of the neocortex and hippocampus that synthesize the extracellular matrix protein reelin. They have been implicated in the pathfinding of entorhino-hippocampal axons, but their role in this process remained unclear. Here we have studied the axonal projection of hippocampal CR cells. Following injection of the carbocyanine dye DiI into the entorhinal cortex of aldehyde-fixed rat embryos and young postnatal rats, neurons in the outer molecular layer of the dentate gyrus and stratum lacunosum-moleculare of the hippocampus proper with morphological characteristics of CR cells were retrogradely labelled. In a time course analysis, the first retrogradely labelled CR cells were observed on embryonic day 17. This projection of hippocampal CR cells to the entorhinal cortex was confirmed by retrograde tracing with Fast Blue in new-born rats and by intracellular biocytin filling of CR cells in acute slices from young postnatal rat hippocampus/entorhinal cortex and in entorhino-hippocampal slice cocultures using infrared videomicroscopy in combination with the patch-clamp technique. In double-labelling experiments CR cells were identified by their immunocytochemical staining for reelin or calretinin, and their interaction with entorhino-hippocampal axons labelled by anterograde tracers was analysed. Future studies need to investigate whether this early transient projection of hippocampal CR cells to the entorhinal cortex is used as a template by the entorhinal axons growing to their target layers in the hippocampus. PMID:10594654

  2. Cortical Interneurons Require Jnk1 to Enter and Navigate the Developing Cerebral Cortex

    PubMed Central

    Myers, Abigail K.; Meechan, Daniel W.; Adney, Danielle R.

    2014-01-01

    Proper assembly of cortical circuitry relies on the correct migration of cortical interneurons from their place of birth in the ganglionic eminences to their place of terminal differentiation in the cerebral cortex. Although molecular mechanisms mediating cortical interneuron migration have been well studied, intracellular signals directing their migration are largely unknown. Here we illustrate a novel and essential role for c-Jun N-terminal kinase (JNK) signaling in guiding the pioneering population of cortical interneurons into the mouse cerebral cortex. Migrating cortical interneurons express Jnk proteins at the entrance to the cortical rudiment and have enriched expression of Jnk1 relative to noninterneuronal cortical cells. Pharmacological blockade of JNK signaling in ex vivo slice cultures resulted in dose-dependent and highly specific disruption of interneuron migration into the nascent cortex. Time-lapse imaging revealed that JNK-inhibited cortical interneurons advanced slowly and assumed aberrant migratory trajectories while traversing the cortical entry zone. In vivo analyses of JNK-deficient embryos supported our ex vivo pharmacological data. Deficits in interneuron migration were observed in Jnk1 but not Jnk2 single nulls, and those migratory deficits were further exacerbated when homozygous loss of Jnk1 was combined with heterozygous reduction of Jnk2. Finally, genetic ablation of Jnk1 and Jnk2 from cortical interneurons significantly perturbed migration in vivo, but not in vitro, suggesting JNK activity functions to direct their guidance rather than enhance their motility. These data suggest JNK signaling, predominantly mediated by interneuron expressed Jnk1, is required for guiding migration of cortical interneurons into and within the developing cerebral cortex. PMID:24899703

  3. Quantitative analysis of somatosensory cortex development in eutherians, with a comparison with metatherians and monotremes.

    PubMed

    Ashwell, Ken W S

    2015-01-01

    Extant eutherians exhibit a wide range of adult brain sizes and degree of cortical gyrification. Quantitative analysis of parietal isocortical sections held in museum collections was used to compare the pace of somatosensory cortex development relative to body size and pallial thickness among diverse eutherian embryos, foetuses, and neonates. Analysis indicated that, for most eutherians, cortical plate aggregation begins at about 6-18 mm greatest length or about 120-320 µm pallial thickness. Expansion of the proliferative compartment occurs at a similar pace in most eutherians, but exceptionally rapidly in hominoids. Involution of the pallial proliferative zones occurs over a wide range of body sizes (42 mm to over 500 mm greatest length) or when the cerebral cortex reaches a thickness of 1.2-9.8 mm depending on the eutherian group. Many of these values overlap with those for metatherians. The findings suggest that there is less evolutionary flexibility in the timing of cortical plate aggregation than in the rate of expansion of the pallial proliferative compartment and the duration of proliferative zone activity. PMID:25884290

  4. Aberrant functional connectivity differentiates retrosplenial cortex from posterior cingulate cortex in prodromal Alzheimer's disease.

    PubMed

    Dillen, Kim N H; Jacobs, Heidi I L; Kukolja, Juraj; von Reutern, Boris; Richter, Nils; Onur, Özgür A; Dronse, Julian; Langen, Karl-Josef; Fink, Gereon R

    2016-08-01

    The posterior cingulate cortex (PCC) is a key hub of the default mode network, a resting-state network involved in episodic memory, showing functional connectivity (FC) changes in Alzheimer's disease (AD). However, PCC is a cytoarchitectonically heterogeneous region. Specifically, the retrosplenial cortex (RSC), often subsumed under the PCC, is an area functionally and microanatomically distinct from PCC. To investigate FC patterns of RSC and PCC separately, we used resting-state functional magnetic resonance imaging in healthy aging participants, patients with subjective cognitive impairment, and prodromal AD. Compared to the other 2 groups, we found higher FC from RSC to frontal cortex in subjective cognitive impairment but higher FC to occipital cortex in prodromal AD. Conversely, FC from PCC to the lingual gyrus was higher in prodromal AD. Furthermore, data indicate that RSC and PCC are characterized by differential FC patterns represented by hub-specific interactions with memory and attentions scores in prodromal AD compared to cognitively normal individuals, possibly reflecting compensatory mechanisms for RSC and neurodegenerative processes for PCC. Data thus confirm and extend previous studies suggesting that the RSC is functionally distinct from PCC. PMID:27318139

  5. Rat whisker motor cortex is subdivided into sensory-input and motor-output areas

    PubMed Central

    Smith, Jared B.; Alloway, Kevin D.

    2013-01-01

    Rodent whisking is an exploratory behavior that can be modified by sensory feedback. Consistent with this, many whisker-sensitive cortical regions project to agranular motor [motor cortex (MI)] cortex, but the relative topography of these afferent projections has not been established. Intracortical microstimulation (ICMS) evokes whisker movements that are used to map the functional organization of MI, but no study has compared the whisker-related inputs to MI with the ICMS sites that evoke whisker movements. To elucidate this relationship, anterograde tracers were placed in posterior parietal cortex (PPC) and in the primary somatosensory (SI) and secondary somatosensory (SII) cortical areas so that their labeled projections to MI could be analyzed with respect to ICMS sites that evoke whisker movements. Projections from SI and SII terminate in a narrow zone that marks the transition between the medial agranular (AGm) and lateral agranular (AGl) cortical areas, but PPC projects more medially and terminates in AGm proper. Paired recordings of MI neurons indicate that the region between AGm and AGl is highly responsive to whisker deflections, but neurons in AGm display negligible responses to whisker stimulation. By contrast, AGm microstimulation is more effective in evoking whisker movements than microstimulation of the transitional region between AGm and AGl. The AGm region was also found to contain a larger concentration of corticotectal neurons, which could convey whisker-related information to the facial nucleus. These results indicate that rat whisker MI is comprised of at least two functionally distinct subregions: a sensory processing zone in the transitional region between AGm and AGl, and a motor-output region located more medially in AGm proper. PMID:23372545

  6. Spatiotemporal distribution of tenascin-R in the developing human cerebral cortex parallels neuronal migration.

    PubMed

    El Ayachi, Ikbale; Fernandez, Carla; Baeza, Nathalie; De Paula, André Maues; Pesheva, Penka; Figarella-Branger, Dominique

    2011-08-15

    Tenascin-R is an extracellular matrix glycoprotein that is restricted to the central nervous system, where it acts as a multifunctional and versatile molecule. We report spatial and temporal distribution of tenascin-R in the developing human cerebral cortex for the first time. At 7.5 gestational weeks (GW), tenascin-R was expressed in a restricted area of the basal telencephalon. At 9.5 and 11 GW, it showed a unique double band expression pattern that delineated the boundaries of the future cortical plate. From 14 to 30 GW, tenascin-R labeling extended to the whole cortex from the deep layers toward the marginal zone with an inside-to-outside progression pattern reminiscent of neuronal migration. Moreover, tenascin-R labeling initially appeared in the form of thin, straight, or slightly tortuous intercellular processes directed toward the surface in parallel with the axis of neuronal migration. At the end of pregnancy and at adulthood, diffuse and homogeneous immunolabeling of the whole cortex thickness was observed. The striatum and thalamus were faintly positive for TNR as early as 14 GW, and this positivity intensified with brain maturation. At all developmental stages, the germinative zone, the corpus callosum, the anterior commissure, and the internal capsule appeared clearly negative for tenascin-R immunostaining whereas the adjacent parenchyma was immunopositive. Our results show that tenascin-R expression is tightly regulated in a spatiotemporal manner during brain development, especially cortical plate formation. Its pattern of expression suggests a role for tenascin-R in corticogenesis. PMID:21456020

  7. Gateways of ventral and dorsal streams in mouse visual cortex

    PubMed Central

    Wang, Quanxin; Gao, Enquan; Burkhalter, Andreas

    2011-01-01

    It is widely held that the spatial processing functions underlying rodent navigation are similar to those encoding human episodic memory (Doeller et al, 2010). Spatial and nonspatial information are provided by all senses including vision. It has been suggested that visual inputs are fed to the navigational network in cortex and hippocampus through dorsal and ventral intracortical streams (Whitlock et al, 2008), but this has not been shown directly in rodents. We have used cyto- and chemoarchitectonic markers, topographic mapping of receptive fields and pathway tracing to determine in mouse visual cortex whether the lateromedial (LM) and the anterolateral fields (AL), which are the principal targets of primary visual cortex (V1) (Wang and Burkhalter, 2007) specialized for processing nonspatial and spatial visual information (Gao et al, 2006), are distinct areas with diverse connections. We have found that the LM/AL border coincides with a change in type 2 muscarinic acetylcholine receptor (m2AChR) expression in layer 4 and with the representation of the lower visual field periphery. Our quantitative analyses further show that LM strongly projects to temporal cortex as well as the lateral entorhinal cortex, which has weak spatial selectivity (Hargreaves et al, 2005). In contrast, AL has stronger connections with posterior parietal cortex, motor cortex and the spatially selective medial entorhinal cortex (Haftig et al, 2005). These results support the notion that LM and AL are architecturally, topographically and connectionally distinct areas of extrastriate visual cortex and that they are gateways for ventral and dorsal streams. PMID:21289200

  8. Dynamic cortex stripping for vertebra evaluation

    NASA Astrophysics Data System (ADS)

    Stieger, James; Burns, Joseph E.; Yao, Jianhua; Summers, Ronald M.

    2015-03-01

    Vertebral cortex removal through cancellous bone reconstruction (CBR) algorithms on CT has been shown to enhance the detection rate of bone metastases by radiologists and reduce average reading time per case. Removal of the cortical bone provides an unobstructed view of the inside of vertebrae without any anomalous distractions. However, these algorithms rely on the assumption that the cortical bone of vertebrae can be removed without the identification of the endosteal cortical margin. We present a method for the identification of the endosteal cortical margin based on vertebral models and CT intensity information. First, triangular mesh models are created using the marching cubes algorithm. A search region is established along the normal of the surface and the image gradient is calculated at every point along the search region. The location with the greatest image gradient is selected as the corresponding point on the endosteal cortical margin. In order to analyze the strength of this method, ground truth and control models were also created. Our method was shown to have a significantly reduce the average error from 0.80 mm +/- 0.14 mm to 0.65 mm +/- 0.17 mm (p <0.0001) when compared to erosion. This method can potentially improve CBR algorithms, which improve visualization of cancellous bone lesions such as metastases, by more accurately identifying the inner wall of the vertebral cortex.

  9. Mapping tonotopy in human auditory cortex.

    PubMed

    van Dijk, Pim; Langers, Dave R M

    2013-01-01

    Tonotopy is arguably the most prominent organizational principle in the auditory pathway. Nevertheless, the layout of tonotopic maps in humans is still debated. We present neuroimaging data that robustly identify multiple tonotopic maps in the bilateral auditory cortex. In contrast with some earlier publications, tonotopic gradients were not found to be collinearly aligned along Heschl's gyrus; instead, two tonotopic maps ran diagonally across the anterior and posterior banks of Heschl's gyrus, set at a pronounced angle. On the basis of the direction of the tonotopic gradient, distinct subdivisions of the auditory cortex could be clearly demarcated that suggest homologies with the tonotopic organization in other primates. Finally, we applied our method to tinnitus patients to show that - contradictory to some pathophysiological models - tinnitus does not necessarily involve large-scale tonotopic reorganization. Overall, we expect that tonotopic mapping techniques will significantly enhance our ability to study the hierarchical functional organization of distinct auditory processing centers in the healthy and diseased human brain. PMID:23716248

  10. Retrosplenial Cortex Codes for Permanent Landmarks

    PubMed Central

    Auger, Stephen D.; Mullally, Sinéad L.; Maguire, Eleanor A.

    2012-01-01

    Landmarks are critical components of our internal representation of the environment, yet their specific properties are rarely studied, and little is known about how they are processed in the brain. Here we characterised a large set of landmarks along a range of features that included size, visual salience, navigational utility, and permanence. When human participants viewed images of these single landmarks during functional magnetic resonance imaging (fMRI), parahippocampal cortex (PHC) and retrosplenial cortex (RSC) were both engaged by landmark features, but in different ways. PHC responded to a range of landmark attributes, while RSC was engaged by only the most permanent landmarks. Furthermore, when participants were divided into good and poor navigators, the latter were significantly less reliable at identifying the most permanent landmarks, and had reduced responses in RSC and anterodorsal thalamus when viewing such landmarks. The RSC has been widely implicated in navigation but its precise role remains uncertain. Our findings suggest that a primary function of the RSC may be to process the most stable features in an environment, and this could be a prerequisite for successful navigation. PMID:22912894

  11. Probabilistic functional tractography of the human cortex.

    PubMed

    David, Olivier; Job, Anne-Sophie; De Palma, Luca; Hoffmann, Dominique; Minotti, Lorella; Kahane, Philippe

    2013-10-15

    Single-pulse direct electrical stimulation of cortical regions in patients suffering from focal drug-resistant epilepsy who are explored using intracranial electrodes induces cortico-cortical potentials that can be used to infer functional and anatomical connectivity. Here, we describe a neuroimaging framework that allows development of a new probabilistic atlas of functional tractography of the human cortex from those responses. This atlas is unique because it allows inference in vivo of the directionality and latency of cortico-cortical connectivity, which are still largely unknown at the human brain level. In this technical note, we include 1535 stimulation runs performed in 35 adult patients. We use a case of frontal lobe epilepsy to illustrate the asymmetrical connectivity between the posterior hippocampal gyrus and the orbitofrontal cortex. In addition, as a proof of concept for group studies, we study the probabilistic functional tractography between the posterior superior temporal gyrus and the inferior frontal gyrus. In the near future, the atlas database will be continuously increased, and the methods will be improved in parallel, for more accurate estimation of features of interest. Generated probabilistic maps will be freely distributed to the community because they provide critical information for further understanding and modelling of large-scale brain networks. PMID:23707583

  12. Conceptual size representation in ventral visual cortex.

    PubMed

    Gabay, Shai; Kalanthroff, Eyal; Henik, Avishai; Gronau, Nurit

    2016-01-29

    Recent findings suggest that visual objects may be mapped along the ventral occipitotemporal cortex according to their real-world size (Konkle and Oliva, 2012). It has been argued that such mapping does not reflect an abstract, conceptual size representation, but rather the visual or functional properties associated with small versus big real-world objects. To determine whether a more abstract conceptual size representation may affect visual cortical activation we used meaningless geometrical shapes, devoid of semantic or functional associations, which were associated with specific size representations by virtue of extensive training. Following training, participants underwent functional magnetic resonance imaging (fMRI) scanning while performing a conceptual size comparison task on the geometrical shapes. In addition, a size comparison task was conducted for numeral digits denoting small and big numbers. A region-of-interest analysis revealed larger blood oxygenation level dependent (BOLD) responses for conceptually 'big' than for conceptually 'small' shapes, as well as for big versus small numbers, within medial (parahippocampal place area, PPA) and lateral (occipital place area, OPA) place-selective regions. Processing of the 'big' visual shapes further elicited enhanced activation in early visual cortex, possibly reflecting top-down projections from PPA. By using arbitrary shapes and numbers we minimized visual, categorical, or functional influences on fMRI measurement, providing evidence for a possible neural mechanism underlying the representation of abstract conceptual size within the ventral visual stream. PMID:26731198

  13. Divergent Plasticity of Prefrontal Cortex Networks

    PubMed Central

    Moghaddam, Bita; Homayoun, Houman

    2010-01-01

    The ‘executive’ regions of the prefrontal cortex (PFC) such as the dorsolateral PFC (dlPFC) and its rodent equivalent medial PFC (mPFC) are thought to respond in concert with the ‘limbic’ regions of the PFC such as the orbitofrontal (OFC) cortex to orchestrate behavior that is consistent with context and expected outcome. Both groups of regions have been implicated in behavioral abnormalities associated with addiction and psychiatric disorders, in particular, schizophrenia and mood disorders. Theories about the pathophysiology of these disorders, however, incorporate abnormalities in discrete PFC regions independently of each other or assume they are one and the same and, thus, bunch them under umbrella of ‘PFC dysfunction.’ Emerging data from animal studies suggest that mPFC and OFC neurons display opposing patterns of plasticity during associative learning and in response to repeated exposure to psychostimulants. These data corroborate clinical studies reporting different patterns of activation in OFC versus dlPFC in individuals with schizophrenia or addictive disorders. These suggest that concomitant but divergent engagement of discrete PFC regions is critical for learning stimulus-outcome associations, and the execution of goal-directed behavior that is based on these associations. An atypical interplay between these regions may lead to abnormally high or low salience assigned to stimuli, resulting in symptoms that are fundamental to many psychiatric and addictive disorders, including attentional deficits, improper affective response to stimuli, and inflexible or impulsive behavior. PMID:17912252

  14. Multi-zone furnace system

    SciTech Connect

    Orbeck, G.A.

    1986-05-06

    A multi-zone furnace is described which consists of: a furnace chamber having at least one heat zone and at least one zone adjacent to the heat zone and disposed along the length of the furnace chamber; the heat zone having a hearth at a level different from the hearth level of the adjacent zone; a walking beam conveyor disposed in the furnace chamber and operative in a short stroke mode to convey a product along the hearth of the heat zone, and in a long stroke mode to convey a product from the heat zone to the adjacent zone.

  15. Fault zone hydrogeology

    NASA Astrophysics Data System (ADS)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (< 1 km) introduces permeability heterogeneity and anisotropy, which has an important impact on processes such as regional groundwater flow, hydrocarbon migration, and hydrothermal fluid circulation. Fault zones have the capacity to be hydraulic conduits connecting shallow and deep geological environments, but simultaneously the fault cores of many faults often form effective barriers to flow. The direct evaluation of the impact of faults to fluid flow patterns remains a challenge and requires a multidisciplinary research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and

  16. Localization of the cerebellar cortical zone mediating acquisition of eyeblink conditioning in rats.

    PubMed

    Steinmetz, Adam B; Freeman, John H

    2014-10-01

    Delay eyeblink conditioning is established by paired presentations of a conditioned stimulus (CS) such as a tone or light and an unconditioned stimulus (US) that elicits eyelid closure before training. The CS and US inputs converge on Purkinje cells in the cerebellar cortex. The cerebellar cortex plays a substantial role in acquisition of delay eyeblink conditioning in rabbits and rodents, but the specific area of the cortex that is necessary for acquisition in rodents has not been identified. A recent study identified an eyeblink microzone in the mouse cerebellar cortex at the base of the primary fissure (Heiney, Kim, Augustine, & Medina, 2014). There is no evidence that the cortex in this eyeblink microzone plays a role in rodent eyeblink conditioning but it is a good candidate region. Experiment 1 examined the effects of unilateral (ipsilateral to the US) lesions of lobule HVI, the lateral anterior lobe, or the base of the primary fissure on eyeblink conditioning in rats. Lesions of either the anterior lobe or lobule HVI impaired acquisition, but lesions of the base of the primary fissure produced the largest deficit. Experiment 2 used reversible inactivation with muscimol to demonstrate that inactivation of the putative eyeblink microzone severely impaired acquisition and had only a modest effect on retention of eyeblink conditioning. The findings indicate that the base of the primary fissure is the critical zone of the cerebellar cortex for acquisition of eyeblink conditioning in rats. PMID:24931828

  17. Slow GABAA mediated synaptic transmission in rat visual cortex

    PubMed Central

    Sceniak, Michael P; MacIver, M Bruce

    2008-01-01

    Background Previous reports of inhibition in the neocortex suggest that inhibition is mediated predominantly through GABAA receptors exhibiting fast kinetics. Within the hippocampus, it has been shown that GABAA responses can take the form of either fast or slow response kinetics. Our findings indicate, for the first time, that the neocortex displays synaptic responses with slow GABAA receptor mediated inhibitory postsynaptic currents (IPSCs). These IPSCs are kinetically and pharmacologically similar to responses found in the hippocampus, although the anatomical specificity of evoked responses is unique from hippocampus. Spontaneous slow GABAA IPSCs were recorded from both pyramidal and inhibitory neurons in rat visual cortex. Results GABAA slow IPSCs were significantly different from fast responses with respect to rise times and decay time constants, but not amplitudes. Spontaneously occurring GABAA slow IPSCs were nearly 100 times less frequent than fast sIPSCs and both were completely abolished by the chloride channel blocker, picrotoxin. The GABAA subunit-specific antagonist, furosemide, depressed spontaneous and evoked GABAA fast IPSCs, but not slow GABAA-mediated IPSCs. Anatomical specificity was evident using minimal stimulation: IPSCs with slow kinetics were evoked predominantly through stimulation of layer 1/2 apical dendritic zones of layer 4 pyramidal neurons and across their basal dendrites, while GABAA fast IPSCs were evoked through stimulation throughout the dendritic arborization. Many evoked IPSCs were also composed of a combination of fast and slow IPSC components. Conclusion GABAA slow IPSCs displayed durations that were approximately 4 fold longer than typical GABAA fast IPSCs, but shorter than GABAB-mediated inhibition. The anatomical and pharmacological specificity of evoked slow IPSCs suggests a unique origin of synaptic input. Incorporating GABAA slow IPSCs into computational models of cortical function will help improve our understanding of

  18. Microgravity silicon zoning investigation

    NASA Technical Reports Server (NTRS)

    Kern, E. L.; Gill, G. L., Jr.

    1985-01-01

    The flow instabilities in floating zones of silicon were investigated and methods for investigation of these instabilities in microgravity were defined. Three principal tasks were involved: (1) characterization of the float zone in small diameter rods; (2) investigation of melt flow instabilities in circular melts in silicon disks; and (3) the development of a prototype of an apparatus that could be used in near term space experiments to investigate flow instabilities in a molten zone. It is shown that in a resistance heated zoner with 4 to 7 mm diameter silicon rods that the critical Marangoni number is about 1480 compared to a predicted value of 14 indicative that viable space experiments might be performed. The prototype float zone apparatus is built and specifications are prepared for a flight zoner should a decision be reached to proceed with a space flight experimental investigation.

  19. Theory of zone radiometry

    NASA Technical Reports Server (NTRS)

    Farmer, R. C.; Audeh, B. J.

    1973-01-01

    A spectroscopic instrumentation system was developed which was used to measure temperature and concentration distributions in axisymmetric and two dimensional combusting flows. This measurement technique is known as zone radiometry.

  20. Representation of Reward Feedback in Primate Auditory Cortex

    PubMed Central

    Brosch, Michael; Selezneva, Elena; Scheich, Henning

    2011-01-01

    It is well established that auditory cortex is plastic on different time scales and that this plasticity is driven by the reinforcement that is used to motivate subjects to learn or to perform an auditory task. Motivated by these findings, we study in detail properties of neuronal firing in auditory cortex that is related to reward feedback. We recorded from the auditory cortex of two monkeys while they were performing an auditory categorization task. Monkeys listened to a sequence of tones and had to signal when the frequency of adjacent tones stepped in downward direction, irrespective of the tone frequency and step size. Correct identifications were rewarded with either a large or a small amount of water. The size of reward depended on the monkeys’ performance in the previous trial: it was large after a correct trial and small after an incorrect trial. The rewards served to maintain task performance. During task performance we found three successive periods of neuronal firing in auditory cortex that reflected (1) the reward expectancy for each trial, (2) the reward-size received, and (3) the mismatch between the expected and delivered reward. These results, together with control experiments suggest that auditory cortex receives reward feedback that could be used to adapt auditory cortex to task requirements. Additionally, the results presented here extend previous observations of non-auditory roles of auditory cortex and shows that auditory cortex is even more cognitively influenced than lately recognized. PMID:21369350

  1. Metaphorically Feeling: Comprehending Textural Metaphors Activates Somatosensory Cortex

    ERIC Educational Resources Information Center

    Lacey, Simon; Stilla, Randall; Sathian, K.

    2012-01-01

    Conceptual metaphor theory suggests that knowledge is structured around metaphorical mappings derived from physical experience. Segregated processing of object properties in sensory cortex allows testing of the hypothesis that metaphor processing recruits activity in domain-specific sensory cortex. Using functional magnetic resonance imaging…

  2. Activity in Prelimbic Cortex Subserves Fear Memory Reconsolidation over Time

    ERIC Educational Resources Information Center

    Stern, Cristina A. J.; Gazarini, Lucas; Vanvossen, Ana C.; Hames, Mayara S.; Bertoglio, Leandro J.

    2014-01-01

    The prelimbic cortex has been implicated in the consolidation of previously learned fear. Herein, we report that temporarily inactivating this medial prefrontal cortex subregion with the GABA [subscript A] agonist muscimol (4.0 nmol in 0.2 µL per hemisphere) was able to equally disrupt 1-, 7-, and 21-d-old contextual fear memories after their…

  3. Discourse Production Following Injury to the Dorsolateral Prefrontal Cortex

    ERIC Educational Resources Information Center

    Coelho, Carl; Le, Karen; Mozeiko, Jennifer; Krueger, Frank; Grafman, Jordan

    2012-01-01

    Individuals with damage to the prefrontal cortex, and the dorsolateral prefrontal cortex (DLPFC) in particular, often demonstrate difficulties with the formulation of complex language not attributable to aphasia. The present study employed a discourse analysis procedure to characterize the language of individuals with left (L) or right (R) DLPFC…

  4. Reduced Anterior Cingulate Cortex Glutamatergic Concentrations in Childhood Major Depression

    ERIC Educational Resources Information Center

    Mirza, Yousha; Tang, Jennifer; Russell, Aileen; Banerjee, S. Preeya; Bhandari, Rashmi; Ivey, Jennifer; Rose, Michelle; Moore, Gregory J.; Rosenberg, David R.

    2004-01-01

    Objective: To examine in vivo glutamatergic neurochemical alterations in the anterior cingulate cortex of children with major depressive disorder (MDD). Method: Single-voxel proton magnetic resonance spectroscopic ([.sup.1]H-MRS) examinations of the anterior cingulate cortex were conducted in 13 psychotropic-naive children and adolescents with MDD…

  5. Medial Prefrontal Cortex Lesions Abolish Contextual Control of Competing Responses

    ERIC Educational Resources Information Center

    Haddon, J. E.; Killcross, A. S.

    2005-01-01

    There is much debate as to the extent and nature of functional specialization within the different subregions of the prefrontal cortex. The current study was undertaken to investigate the effect of damage to medial prefrontal cortex subregions in the rat. Rats were trained on two biconditional discrimination tasks, one auditory and one visual, in…

  6. Olfactocentric Paralimbic Cortex Morphology in Adolescents with Bipolar Disorder

    ERIC Educational Resources Information Center

    Wang, Fei; Kalmar, Jessica H.; Womer, Fay Y.; Edmiston, Erin E.; Chepenik, Lara G.; Chen, Rachel; Spencer, Linda; Blumberg, Hilary P.

    2011-01-01

    The olfactocentric paralimbic cortex plays a critical role in the regulation of emotional and neurovegetative functions that are disrupted in core features of bipolar disorder. Adolescence is thought to be a critical period in both the maturation of the olfactocentric paralimbic cortex and in the emergence of bipolar disorder pathology. Together,…

  7. Contributions of cat posterior parietal cortex to visuospatial discrimination.

    PubMed

    Lomber, S G; Payne, B R

    2000-01-01

    The purpose of the present study was to examine the contributions made by cat posterior parietal cortex to the analyses of the relative position of objects in visual space. Two cats were trained on a landmark task in which they learned to report the position of a landmark object relative to a right or left food-reward chamber. Subsequently, three pairs of cooling loops were implanted bilaterally in contact with visuoparietal cortices forming the crown of the middle suprasylvian gyrus (MSg; architectonic area 7) and the banks of the posterior-middle suprasylvian sulcus (pMS sulcal cortex) and in contact with the ventral-posterior suprasylvian (vPS) region of visuotemporal cortex. Bilateral deactivation of pMS sulcal cortex resulted in a profound impairment for all six tested positions of the landmark, yet bilateral deactivation of neither area 7 nor vPS cortex yielded any deficits. In control tasks (visual orienting and object discrimination), there was no evidence for any degree of attentional blindness or impairment of form discrimination during bilateral deactivation of pMS cortex. Therefore, we conclude that bilateral cooling of pMS cortex, but neither area 7 nor vPS cortex, induces a specific deficit in spatial localization as examined with the landmark task. These observations have significant bearing on our understanding of visuospatial processing in cat, monkey, and human cortices. PMID:11153650

  8. Functional topography of the human entorhinal cortex

    PubMed Central

    Zaragoza Jimenez, Nestor I

    2015-01-01

    Despite extensive research on the role of the rodent medial and lateral entorhinal cortex (MEC/LEC) in spatial navigation, memory and related disease, their human homologues remain elusive. Here, we combine high-field functional magnetic resonance imaging at 7 T with novel data-driven and model-based analyses to identify corresponding subregions in humans based on the well-known global connectivity fingerprints in rodents and sensitivity to spatial and non-spatial information. We provide evidence for a functional division primarily along the anteroposterior axis. Localising the human homologue of the rodent MEC and LEC has important implications for translating studies on the hippocampo-entorhinal memory system from rodents to humans. DOI: http://dx.doi.org/10.7554/eLife.06738.001 PMID:26052748

  9. Spindle Bursts in Neonatal Rat Cerebral Cortex

    PubMed Central

    Yang, Jenq-Wei; Reyes-Puerta, Vicente; Kilb, Werner; Luhmann, Heiko J.

    2016-01-01

    Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i) the functional properties of spindle bursts, (ii) the mechanisms underlying their generation, (iii) the synchronous patterns and cortical networks associated with spindle bursts, and (iv) the physiological and pathophysiological role of spindle bursts during early cortical development. PMID:27034844

  10. Population codes in the visual cortex

    PubMed Central

    Tanabe, Seiji

    2013-01-01

    Every sensory event elicits activity in a broad population of cells that is distributed within and across cortical areas. How these neurons function together to represent the sensory environment is a major question in systems neuroscience. A number of proposals have been made, and recent advances in multi-neuronal recording have begun to allow researchers to test the predictions of these population-coding theories. In this review, I provide an introduction to some of the key concepts in population coding and describe several studies in the recent literature. The focus of this review is on sensory representation in the visual cortex and related perceptual decisions. The frameworks used to study population coding include population vectors, linear decoders, and Bayesian inference. Simple examples are provided to illustrate these concepts. Testing theories of population coding is an emerging subject in systems neuroscience, but advances in multi-neuronal recording and analysis suggest that an understanding is within reach. PMID:23542219

  11. Multiple signals in anterior cingulate cortex

    PubMed Central

    Kolling, N; Behrens, TEJ; Wittmann, MK; Rushworth, MFS

    2016-01-01

    Activity in anterior cingulate cortex (ACC) has been linked both to commitment to a course of action, even when it is associated with costs, and to exploring or searching for alternative courses of action. Here we review evidence that this is due to the presence of multiple signals in ACC reflecting the updating of beliefs and internal models of the environment and encoding aspects of choice value, including the average value of choices afforded by the environment (‘search value’). We contrast this evidence with the influential view that ACC activity is better described as reflecting task difficulty. A consideration of cortical neural network properties explains why ACC may carry such signals and also exhibit sensitivity to task difficulty. PMID:26774693

  12. Decoding subjective decisions from orbitofrontal cortex.

    PubMed

    Rich, Erin L; Wallis, Jonathan D

    2016-07-01

    When making a subjective choice, the brain must compute a value for each option and compare those values to make a decision. The orbitofrontal cortex (OFC) is critically involved in this process, but the neural mechanisms remain obscure, in part due to limitations in our ability to measure and control the internal deliberations that can alter the dynamics of the decision process. Here we tracked these dynamics by recovering temporally precise neural states from multidimensional data in OFC. During individual choices, OFC alternated between states associated with the value of two available options, with dynamics that predicted whether a subject would decide quickly or vacillate between the two alternatives. Ensembles of value-encoding neurons contributed to these states, with individual neurons shifting activity patterns as the network evaluated each option. Thus, the mechanism of subjective decision-making involves the dynamic activation of OFC states associated with each choice alternative. PMID:27273768

  13. Spindle Bursts in Neonatal Rat Cerebral Cortex.

    PubMed

    Yang, Jenq-Wei; Reyes-Puerta, Vicente; Kilb, Werner; Luhmann, Heiko J

    2016-01-01

    Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i) the functional properties of spindle bursts, (ii) the mechanisms underlying their generation, (iii) the synchronous patterns and cortical networks associated with spindle bursts, and (iv) the physiological and pathophysiological role of spindle bursts during early cortical development. PMID:27034844

  14. Patterning the cerebral cortex: traveling with morphogens.

    PubMed

    Borello, Ugo; Pierani, Alessandra

    2010-08-01

    The neocortex represents the brain structure that has been subjected to a major expansion in its relative size during the course of mammalian evolution. An exquisite coordination of appropriate growth of competent territories along multiple axes and their spatial patterning is required for regionalization of the cortical primordium and the formation of functional areas. The achievement of such a highly complex architecture relies on a precise orchestration of the proliferation of progenitors, onset of neurogenesis, spatio-temporal generation of distinct cell types and control of their migration. We will review recent work on alternative molecular mechanisms that, via the migration of signaling cells/structures, participate in coordinating growth and spatial patterning in the developing cerebral cortex. By integrating temporal and spatial parameters as well as absolute levels of signaling this novel strategy might represent a general mechanism for long-range patterning in large structures, in addition to the passive diffusion of morphogens. PMID:20542680

  15. Beyond auditory cortex: working with musical thoughts.

    PubMed

    Zatorre, Robert J

    2012-04-01

    Musical imagery is associated with neural activity in auditory cortex, but prior studies have not examined musical imagery tasks requiring mental transformations. This paper describes functional magnetic resonance imaging (fMRI) studies requiring manipulation of musical information. In one set of experiments, listeners were asked to mentally reverse a familiar tune when presented backwards. This manipulation consistently elicits neural activity in the intraparietal sulcus (IPS). Separate experiments requiring judgments about melodies that have been transposed from one musical key to another also elicit IPS activation. Conjunction analyses indicate that the same portions of the IPS are recruited in both tasks. The findings suggest that the dorsal pathway of auditory processing is involved in the manipulation and transformation of auditory information, as has also been shown for visuomotor and visuospatial tasks. As such, it provides a substrate for the creation of new mental representations that are based on manipulation of previously experienced sensory events. PMID:22524363

  16. The scaling of frontal cortex in primates and carnivores

    PubMed Central

    Bush, Eliot C.; Allman, John M.

    2004-01-01

    Size has a profound effect on the structure of the brain. Many brain structures scale allometrically, that is, their relative size changes systematically as a function of brain size. Here we use independent contrasts analysis to examine the scaling of frontal cortex in 43 species of mammals including 25 primates and 15 carnivores. We find evidence for significant differences in scaling between primates and carnivores. Primate frontal cortex hyperscales relative to the rest of neocortex and the rest of the brain. The slope of frontal cortex contrasts on rest of cortex contrasts is 1.18 (95% confidence interval, 1.06-1.30) for primates, which is significantly greater than isometric. It is also significantly greater than the carnivore value of 0.94 (95% confidence interval, 0.82-1.07). This finding supports the idea that there are substantial differences in frontal cortex structure and development between the two groups. PMID:15007170

  17. Ventromedial prefrontal cortex mediates visual attention during facial emotion recognition.

    PubMed

    Wolf, Richard C; Philippi, Carissa L; Motzkin, Julian C; Baskaya, Mustafa K; Koenigs, Michael

    2014-06-01

    The ventromedial prefrontal cortex is known to play a crucial role in regulating human social and emotional behaviour, yet the precise mechanisms by which it subserves this broad function remain unclear. Whereas previous neuropsychological studies have largely focused on the role of the ventromedial prefrontal cortex in higher-order deliberative processes related to valuation and decision-making, here we test whether ventromedial prefrontal cortex may also be critical for more basic aspects of orienting attention to socially and emotionally meaningful stimuli. Using eye tracking during a test of facial emotion recognition in a sample of lesion patients, we show that bilateral ventromedial prefrontal cortex damage impairs visual attention to the eye regions of faces, particularly for fearful faces. This finding demonstrates a heretofore unrecognized function of the ventromedial prefrontal cortex-the basic attentional process of controlling eye movements to faces expressing emotion. PMID:24691392

  18. Determining Physical Properties of the Cell Cortex.

    PubMed

    Saha, Arnab; Nishikawa, Masatoshi; Behrndt, Martin; Heisenberg, Carl-Philipp; Jülicher, Frank; Grill, Stephan W

    2016-03-29

    Actin and myosin assemble into a thin layer of a highly dynamic network underneath the membrane of eukaryotic cells. This network generates the forces that drive cell- and tissue-scale morphogenetic processes. The effective material properties of this active network determine large-scale deformations and other morphogenetic events. For example, the characteristic time of stress relaxation (the Maxwell time τM) in the actomyosin sets the timescale of large-scale deformation of the cortex. Similarly, the characteristic length of stress propagation (the hydrodynamic length λ) sets the length scale of slow deformations, and a large hydrodynamic length is a prerequisite for long-ranged cortical flows. Here we introduce a method to determine physical parameters of the actomyosin cortical layer in vivo directly from laser ablation experiments. For this we investigate the cortical response to laser ablation in the one-cell-stage Caenorhabditis elegans embryo and in the gastrulating zebrafish embryo. These responses can be interpreted using a coarse-grained physical description of the cortex in terms of a two-dimensional thin film of an active viscoelastic gel. To determine the Maxwell time τM, the hydrodynamic length λ, the ratio of active stress ζΔμ, and per-area friction γ, we evaluated the response to laser ablation in two different ways: by quantifying flow and density fields as a function of space and time, and by determining the time evolution of the shape of the ablated region. Importantly, both methods provide best-fit physical parameters that are in close agreement with each other and that are similar to previous estimates in the two systems. Our method provides an accurate and robust means for measuring physical parameters of the actomyosin cortical layer. It can be useful for investigations of actomyosin mechanics at the cellular-scale, but also for providing insights into the active mechanics processes that govern tissue-scale morphogenesis. PMID

  19. Chemical Discrimination of Cortex Phellodendri amurensis and Cortex Phellodendri chinensis by Multivariate Analysis Approach

    PubMed Central

    Sun, Hui; Wang, Huiyu; Zhang, Aihua; Yan, Guangli; Han, Ying; Li, Yuan; Wu, Xiuhong; Meng, Xiangcai; Wang, Xijun

    2016-01-01

    Background: As herbal medicines have an important position in health care systems worldwide, their current assessment, and quality control are a major bottleneck. Cortex Phellodendri chinensis (CPC) and Cortex Phellodendri amurensis (CPA) are widely used in China, however, how to identify species of CPA and CPC has become urgent. Materials and Methods: In this study, multivariate analysis approach was performed to the investigation of chemical discrimination of CPA and CPC. Results: Principal component analysis showed that two herbs could be separated clearly. The chemical markers such as berberine, palmatine, phellodendrine, magnoflorine, obacunone, and obaculactone were identified through the orthogonal partial least squared discriminant analysis, and were identified tentatively by the accurate mass of quadruple-time-of-flight mass spectrometry. A total of 29 components can be used as the chemical markers for discrimination of CPA and CPC. Of them, phellodenrine is significantly higher in CPC than that of CPA, whereas obacunone and obaculactone are significantly higher in CPA than that of CPC. Conclusion: The present study proves that multivariate analysis approach based chemical analysis greatly contributes to the investigation of CPA and CPC, and showed that the identified chemical markers as a whole should be used to discriminate the two herbal medicines, and simultaneously the results also provided chemical information for their quality assessment. SUMMARY Multivariate analysis approach was performed to the investigate the herbal medicineThe chemical markers were identified through multivariate analysis approachA total of 29 components can be used as the chemical markers. UPLC-Q/TOF-MS-based multivariate analysis method for the herbal medicine samples Abbreviations used: CPC: Cortex Phellodendri chinensis, CPA: Cortex Phellodendri amurensis, PCA: Principal component analysis, OPLS-DA: Orthogonal partial least squares discriminant analysis, BPI: Base peaks ion

  20. TMS-induced neural noise in sensory cortex interferes with short-term memory storage in prefrontal cortex

    PubMed Central

    Bancroft, Tyler D.; Hogeveen, Jeremy; Hockley, William E.; Servos, Philip

    2014-01-01

    In a previous study, Harris et al. (2002) found disruption of vibrotactile short-term memory after applying single-pulse transcranial magnetic stimulation (TMS) to primary somatosensory cortex (SI) early in the maintenance period, and suggested that this demonstrated a role for SI in vibrotactile memory storage. While such a role is compatible with recent suggestions that sensory cortex is the storage substrate for working memory, it stands in contrast to a relatively large body of evidence from human EEG and single-cell recording in primates that instead points to prefrontal cortex as the storage substrate for vibrotactile memory. In the present study, we use computational methods to demonstrate how Harris et al.'s results can be reproduced by TMS-induced activity in sensory cortex and subsequent feedforward interference with memory traces stored in prefrontal cortex, thereby reconciling discordant findings in the tactile memory literature. PMID:24634653

  1. Topography of excitatory and inhibitory connectional anatomy in monkey visual cortex

    NASA Astrophysics Data System (ADS)

    Lund, Jennifer S.; Levitt, J. B.; Wu, Quanfeng

    1994-03-01

    It is chiefly within the superficial layers of 1 - 3 of the cerebral cortex that new properties are developed from relayed afferent information. The intrinsic circuitry of these layers is uniquely structured compared to the deeper layers; each pyramidal neuron connects laterally to other pyramids at a series of offset points spaced at regular intervals around it. As seen in tangential sections of layers 1 - 3, the pyramidal neuron axon terminal fields are roughly circular in cross section, forming a `polka dot' overall pattern of terminal distribution. In regions of peak density, the diameter of the circular fields matches the width of the uninnervated regions between the terminal fields. This dimension is also that of the average lateral spread of the dendrites of single pyramidal neurons making up the connections in each visual cortical area, a dimension which varies considerably between different cortical regions. Since every point across each cortical area shows similar laterally spreading patterns of connectivity, the overall array is believed to be a continuum of offset connectional lattices. It is also presumed that each pyramidal neuron, as well as projecting to separate points, receives convergent inputs from similar arrays of offset neurons. The geometry of local circuit inhibitory neurons matches elements of these lattices; basket neuron axons in these layers spread three times the diameter of the local pyramidal neuron dendritic fields while the basket neuron dendritic field matches that of the pyramidal cell. If both basket cell and pyramidal neuron at single points are coactivated by afferent relays, the basket axon might create a surround zone of inhibition preventing other pyramidal cells in the surrounding region being active simultaneously. As the pyramid develops its connections in this inhibitory field may fore each pyramidal neuron to send its axon out beyond the local inhibitory zone to find other pyramidal cells activated by the same stimulus

  2. D1- and D2 dopaminergic receptors in the developing cerebral cortex of macaque monkey: a film autoradiographic study.

    PubMed

    Lidow, M S

    1995-03-01

    Film autoradiography was used to study the distribution of D1- and D2-dopaminergic receptors in the prefrontal association, somatosensory, primary motor and visual regions in the developing cerebral cortex of macaque monkeys. D1 receptors were labeled with [125I]SCH23982, while D2 sites were visualized with [125I]epidepride. D1- and D2-dopaminergic sites are already present in all cortical areas at embryonic day 73, the earliest age observed in this study. In contrast to the adult cortex, where D1 and D2 receptors have different distributions, during development there are substantial similarities in the laminar patterns of these sites. In particular, both D1 and D2 receptors tend to concentrate in the marginal zone and layer V of the developing cortical plate. The autoradiograms also show a high density of D1-dopaminergic sites in the transient ventricular and subventricular zones, where cortical neurons are generated. Although there is a significant rearrangement of the early laminar patterns, the adult distribution of both dopaminergic receptors in most cortical areas is achieved prenatally, soon after all cortical neurons assume their final positions. An early presence in the cerebral wall, a high density in the proliferative zones and fast maturation of the laminar distribution suggests that dopaminergic receptors may be involved in the regulation of cortical development. PMID:7777159

  3. Cdk5-mediated phosphorylation of RapGEF2 controls neuronal migration in the developing cerebral cortex.

    PubMed

    Ye, Tao; Ip, Jacque P K; Fu, Amy K Y; Ip, Nancy Y

    2014-01-01

    During cerebral cortex development, pyramidal neurons migrate through the intermediate zone and integrate into the cortical plate. These neurons undergo the multipolar-bipolar transition to initiate radial migration. While perturbation of this polarity acquisition leads to cortical malformations, how this process is initiated and regulated is largely unknown. Here we report that the specific upregulation of the Rap1 guanine nucleotide exchange factor, RapGEF2, in migrating neurons corresponds to the timing of this polarity transition. In utero electroporation and live-imaging studies reveal that RapGEF2 acts on the multipolar-bipolar transition during neuronal migration via a Rap1/N-cadherin pathway. Importantly, activation of RapGEF2 is controlled via phosphorylation by a serine/threonine kinase Cdk5, whose activity is largely restricted to the radial migration zone. Thus, the specific expression and Cdk5-dependent phosphorylation of RapGEF2 during multipolar-bipolar transition within the intermediate zone are essential for proper neuronal migration and wiring of the cerebral cortex. PMID:25189171

  4. Application of in utero electroporation of G-protein coupled receptor (GPCR) genes, for subcellular localization of hardly identifiable GPCR in mouse cerebral cortex.

    PubMed

    Kim, Nam-Ho; Kim, Seunghyuk; Hong, Jae Seung; Jeon, Sung Ho; Huh, Sung-Oh

    2014-07-01

    Lysophosphatidic acid (LPA) is a lipid growth factor that exerts diverse biological effects through its cognate receptors (LPA1-LPA6). LPA1, which is predominantly expressed in the brain, plays a pivotal role in brain development. However, the role of LPA1 in neuronal migration has not yet been fully elucidated. Here, we delivered LPA1 to mouse cerebral cortex using in utero electroporation. We demonstrated that neuronal migration in the cerebral cortex was not affected by the overexpression of LPA1. Moreover, these results can be applied to the identification of the localization of LPA1. The subcellular localization of LPA1 was endogenously present in the perinuclear area, and overexpressed LPA1 was located in the plasma membrane. Furthermore, LPA1 in developing mouse cerebral cortex was mainly expressed in the ventricular zone and the cortical plate. In summary, the overexpression of LPA1 did not affect neuronal migration, and the protein expression of LPA1 was mainly located in the ventricular zone and cortical plate within the developing mouse cerebral cortex. These studies have provided information on the role of LPA1 in brain development and on the technical advantages of in utero electroporation. PMID:25078448

  5. Forelimb training drives transient map reorganization in ipsilateral motor cortex.

    PubMed

    Pruitt, David T; Schmid, Ariel N; Danaphongse, Tanya T; Flanagan, Kate E; Morrison, Robert A; Kilgard, Michael P; Rennaker, Robert L; Hays, Seth A

    2016-10-15

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. PMID:27392641

  6. The auditory representation of speech sounds in human motor cortex

    PubMed Central

    Cheung, Connie; Hamilton, Liberty S; Johnson, Keith; Chang, Edward F

    2016-01-01

    In humans, listening to speech evokes neural responses in the motor cortex. This has been controversially interpreted as evidence that speech sounds are processed as articulatory gestures. However, it is unclear what information is actually encoded by such neural activity. We used high-density direct human cortical recordings while participants spoke and listened to speech sounds. Motor cortex neural patterns during listening were substantially different than during articulation of the same sounds. During listening, we observed neural activity in the superior and inferior regions of ventral motor cortex. During speaking, responses were distributed throughout somatotopic representations of speech articulators in motor cortex. The structure of responses in motor cortex during listening was organized along acoustic features similar to auditory cortex, rather than along articulatory features as during speaking. Motor cortex does not contain articulatory representations of perceived actions in speech, but rather, represents auditory vocal information. DOI: http://dx.doi.org/10.7554/eLife.12577.001 PMID:26943778

  7. Evidence for inhibitory deficits in the prefrontal cortex in schizophrenia

    PubMed Central

    Radhu, Natasha; Garcia Dominguez, Luis; Farzan, Faranak; Richter, Margaret A.; Semeralul, Mawahib O.; Chen, Robert; Fitzgerald, Paul B.

    2015-01-01

    Abnormal gamma-aminobutyric acid inhibitory neurotransmission is a key pathophysiological mechanism underlying schizophrenia. Transcranial magnetic stimulation can be combined with electroencephalography to index long-interval cortical inhibition, a measure of GABAergic receptor-mediated inhibitory neurotransmission from the frontal and motor cortex. In previous studies we have reported that schizophrenia is associated with inhibitory deficits in the dorsolateral prefrontal cortex compared to healthy subjects and patients with bipolar disorder. The main objective of the current study was to replicate and extend these initial findings by evaluating long-interval cortical inhibition from the dorsolateral prefrontal cortex in patients with schizophrenia compared to patients with obsessive-compulsive disorder. A total of 111 participants were assessed: 38 patients with schizophrenia (average age: 35.71 years, 25 males, 13 females), 27 patients with obsessive-compulsive disorder (average age: 36.15 years, 11 males, 16 females) and 46 healthy subjects (average age: 33.63 years, 23 females, 23 males). Long-interval cortical inhibition was measured from the dorsolateral prefrontal cortex and motor cortex through combined transcranial magnetic stimulation and electroencephalography. In the dorsolateral prefrontal cortex, long-interval cortical inhibition was significantly reduced in patients with schizophrenia compared to healthy subjects (P = 0.004) and not significantly different between patients with obsessive-compulsive disorder and healthy subjects (P = 0.5445). Long-interval cortical inhibition deficits in the dorsolateral prefrontal cortex were also significantly greater in patients with schizophrenia compared to patients with obsessive-compulsive disorder (P = 0.0465). There were no significant differences in long-interval cortical inhibition across all three groups in the motor cortex. These results demonstrate that long-interval cortical inhibition deficits in the

  8. Orbitofrontal Cortex Volume and Brain Reward Response in Obesity

    PubMed Central

    Shott, Megan E.; Cornier, Marc-Andre; Mittal, Vijay A.; Pryor, Tamara L.; Orr, Joseph M.; Brown, Mark S.; Frank, Guido K.W.

    2014-01-01

    Background/Objectives What drives overconsumption of food is poorly understood. Alterations in brain structure and function could contribute to increased food seeking. Recently brain orbitofrontal cortex volume has been implicated in dysregulated eating but little is know how brain structure relates to function. Subjects/Methods We examined obese (n=18, age=28.7.4±8.3 years) and healthy control women (n=24, age=27.4±6.3 years) using a multimodal brain imaging approach. We applied magnetic resonance and diffusion tensor imaging to study brain gray and white matter volume as well as white matter integrity, and tested whether orbitofrontal cortex volume predicts brain reward circuitry activation in a taste reinforcement-learning paradigm that has been associated with dopamine function. Results Obese individuals displayed lower gray and associated white matter volumes (p<.05 family wise error (FWE)-small volume corrected) compared to controls in the orbitofrontal cortex, striatum, and insula. White matter integrity was reduced in obese individuals in fiber tracts including the external capsule, corona radiata, sagittal stratum, and the uncinate, inferior fronto-occipital, and inferior longitudinal fasciculi. Gray matter volume of the gyrus rectus at the medial edge of the orbitofrontal cortex predicted functional taste reward-learning response in frontal cortex, insula, basal ganglia, amygdala, hypothalamus and anterior cingulate cortex in control but not obese individuals. Conclusions This study indicates a strong association between medial orbitofrontal cortex volume and taste reinforcement-learning activation in the brain in control but not in obese women. Lower brain volumes in the orbitofrontal cortex and other brain regions associated with taste reward function as well as lower integrity of connecting pathways in obesity may support a more widespread disruption of reward pathways. The medial orbitofrontal cortex is an important structure in the termination of

  9. Stream segregation in the anesthetized auditory cortex.

    PubMed

    Scholes, Chris; Palmer, Alan R; Sumner, Christian J

    2015-10-01

    Auditory stream segregation describes the way that sounds are perceptually segregated into groups or streams on the basis of perceptual attributes such as pitch or spectral content. For sequences of pure tones, segregation depends on the tones' proximity in frequency and time. In the auditory cortex (and elsewhere) responses to sequences of tones are dependent on stimulus conditions in a similar way to the perception of these stimuli. However, although highly dependent on stimulus conditions, perception is also clearly influenced by factors unrelated to the stimulus, such as attention. Exactly how 'bottom-up' sensory processes and non-sensory 'top-down' influences interact is still not clear. Here, we recorded responses to alternating tones (ABAB …) of varying frequency difference (FD) and rate of presentation (PR) in the auditory cortex of anesthetized guinea-pigs. These data complement previous studies, in that top-down processing resulting from conscious perception should be absent or at least considerably attenuated. Under anesthesia, the responses of cortical neurons to the tone sequences adapted rapidly, in a manner sensitive to both the FD and PR of the sequences. While the responses to tones at frequencies more distant from neuron best frequencies (BFs) decreased as the FD increased, the responses to tones near to BF increased, consistent with a release from adaptation, or forward suppression. Increases in PR resulted in reductions in responses to all tones, but the reduction was greater for tones further from BF. Although asymptotically adapted responses to tones showed behavior that was qualitatively consistent with perceptual stream segregation, responses reached asymptote within 2 s, and responses to all tones were very weak at high PRs (>12 tones per second). A signal-detection model, driven by the cortical population response, made decisions that were dependent on both FD and PR in ways consistent with perceptual stream segregation. This

  10. The spatiotopic 'visual' cortex of the blind

    NASA Astrophysics Data System (ADS)

    Likova, Lora

    2012-03-01

    Visual cortex activity in the blind has been shown in sensory tasks. Can it be activated in memory tasks? If so, are inherent features of its organization meaningfully employed? Our recent results in short-term blindfolded subjects imply that human primary visual cortex (V1) may operate as a modality-independent 'sketchpad' for working memory (Likova, 2010a). Interestingly, the spread of the V1 activation approximately corresponded to the spatial extent of the images in terms of their angle of projection to the subject. We now raise the questions of whether under long-term visual deprivation V1 is also employed in non-visual memory task, in particular in congenitally blind individuals, who have never had visual stimulation to guide the development of the visual area organization, and whether such spatial organization is still valid for the same paradigm that was used in blindfolded individuals. The outcome has implications for an emerging reconceptualization of the principles of brain architecture and its reorganization under sensory deprivation. Methods: We used a novel fMRI drawing paradigm in congenitally and late-onset blind, compared with sighted and blindfolded subjects in three conditions of 20s duration, separated by 20s rest-intervals, (i) Tactile Exploration: raised-line images explored and memorized; (ii) Tactile Memory Drawing: drawing the explored image from memory; (iii) Scribble: mindless drawing movements with no memory component. Results and Conclusions: V1 was strongly activated for Tactile Memory Drawing and Tactile Exploration in these totally blind subjects. Remarkably, after training, even in the memory task, the mapping of V1 activation largely corresponded to the angular projection of the tactile stimuli relative to the ego-center (i.e., the effective visual angle at the head); beyond this projective boundary, peripheral V1 signals were dramatically reduced or even suppressed. The matching extent of the activation in the congenitally blind

  11. Stream segregation in the anesthetized auditory cortex

    PubMed Central

    Scholes, Chris; Palmer, Alan R.; Sumner, Christian J.

    2015-01-01

    Auditory stream segregation describes the way that sounds are perceptually segregated into groups or streams on the basis of perceptual attributes such as pitch or spectral content. For sequences of pure tones, segregation depends on the tones' proximity in frequency and time. In the auditory cortex (and elsewhere) responses to sequences of tones are dependent on stimulus conditions in a similar way to the perception of these stimuli. However, although highly dependent on stimulus conditions, perception is also clearly influenced by factors unrelated to the stimulus, such as attention. Exactly how ‘bottom-up’ sensory processes and non-sensory ‘top-down’ influences interact is still not clear. Here, we recorded responses to alternating tones (ABAB …) of varying frequency difference (FD) and rate of presentation (PR) in the auditory cortex of anesthetized guinea-pigs. These data complement previous studies, in that top-down processing resulting from conscious perception should be absent or at least considerably attenuated. Under anesthesia, the responses of cortical neurons to the tone sequences adapted rapidly, in a manner sensitive to both the FD and PR of the sequences. While the responses to tones at frequencies more distant from neuron best frequencies (BFs) decreased as the FD increased, the responses to tones near to BF increased, consistent with a release from adaptation, or forward suppression. Increases in PR resulted in reductions in responses to all tones, but the reduction was greater for tones further from BF. Although asymptotically adapted responses to tones showed behavior that was qualitatively consistent with perceptual stream segregation, responses reached asymptote within 2 s, and responses to all tones were very weak at high PRs (>12 tones per second). A signal-detection model, driven by the cortical population response, made decisions that were dependent on both FD and PR in ways consistent with perceptual stream segregation. This

  12. A functional microcircuit for cat visual cortex.

    PubMed Central

    Douglas, R J; Martin, K A

    1991-01-01

    1. We have studied in vivo the intracellular responses of neurones in cat visual cortex to electrical pulse stimulation of the cortical afferents and have developed a microcircuit that simulates much of the experimental data. 2. Inhibition and excitation are not separable events, because individual neurones are embedded in microcircuits that contribute strong population effects. Synchronous electrical activation of the cortex inevitably set in motion a sequence of excitation and inhibition in every neurone we recorded. The temporal form of this response depends on the cortical layer in which the neurone is located. Superficial layer (layers 2+3) pyramidal neurones show a more marked polysynaptic excitatory phase than the pyramids of the deep layers (layers 5+6). 3. Excitatory effects on pyramidal neurones, particularly the superficial layer pyramids, are in general not due to monosynaptic input from thalamus, but polysynaptic input from cortical pyramids. Since the thalamic input is transient it does not provide the major, sustained excitation arriving at any cortical neurone. Instead the intracortical excitatory connections provide the major component of the excitation. 4. The polysynaptic excitatory response would be sustained well after the stimulus, were it not for the suppressive effect of intracortical inhibition induced by the pulse stimulation. 5. Intracellular recording combined with ionophoresis of gamma-aminobutyric acid (GABA) agonists and antagonists showed that intracortical inhibition is mediated by GABAA and GABAB receptors. The GABAA component occurs in the early phase of the impulse response. It is reflected in the strong hyperpolarization that follows the excitatory response and lasts about 50 ms. The GABAB component occurs in the late phase of the response, and is reflected in a sustained hyperpolarization that lasts some 200-300 ms. Both components are seen in all cortical pyramidal neurones. However, the GABAA component appears more powerful

  13. A hypothesis for the evolution of the upper layers of the neocortex through co-option of the olfactory cortex developmental program

    PubMed Central

    Luzzati, Federico

    2015-01-01

    The neocortex is unique to mammals and its evolutionary origin is still highly debated. The neocortex is generated by the dorsal pallium ventricular zone, a germinative domain that in reptiles give rise to the dorsal cortex. Whether this latter allocortical structure contains homologs of all neocortical cell types it is unclear. Recently we described a population of DCX+/Tbr1+ cells that is specifically associated with the layer II of higher order areas of both the neocortex and of the more evolutionary conserved piriform cortex. In a reptile similar cells are present in the layer II of the olfactory cortex and the DVR but not in the dorsal cortex. These data are consistent with the proposal that the reptilian dorsal cortex is homologous only to the deep layers of the neocortex while the upper layers are a mammalian innovation. Based on our observations we extended these ideas by hypothesizing that this innovation was obtained by co-opting a lateral and/or ventral pallium developmental program. Interestingly, an analysis in the Allen brain atlas revealed a striking similarity in gene expression between neocortical layers II/III and piriform cortex. We thus propose a model in which the early neocortical column originated by the superposition of the lateral olfactory and dorsal cortex. This model is consistent with the fossil record and may account not only for the topological position of the neocortex, but also for its basic cytoarchitectural and hodological features. This idea is also consistent with previous hypotheses that the peri-allocortex represents the more ancient neocortical part. The great advances in deciphering the molecular logic of the amniote pallium developmental programs will hopefully enable to directly test our hypotheses in the next future. PMID:26029038

  14. Distinct Superficial and Deep Laminar Domains of Activity in the Visual Cortex during Rest and Stimulation

    PubMed Central

    Maier, Alexander; Adams, Geoffrey K.; Aura, Christopher; Leopold, David A.

    2010-01-01

    Spatial patterns of spontaneous neural activity at rest have previously been associated with specific networks in the brain, including those pertaining to the functional architecture of the primary visual cortex (V1). However, despite the prominent anatomical differences between cortical layers, little is known about the laminar pattern of spontaneous activity in V1. We address this topic by investigating the amplitude and coherence of ongoing local field potential (LFP) signals measured from different layers in V1 of macaque monkeys during rest and upon presentation of a visual stimulus. We used a linear microelectrode array to measure LFP signals at multiple, evenly spaced positions throughout the cortical thickness. Analyzing both the mean LFP amplitudes and between-contact LFP coherences, we identified two distinct zones of activity, roughly corresponding to superficial and deep layers, divided by a sharp transition near the bottom of layer 4. The LFP signals within each laminar zone were highly coherent, whereas those between zones were not. This functional compartmentalization was found not only during rest, but also when the receptive field was stimulated during a visual task. These results demonstrate the existence of distinct superficial and deep functional domains of coherent LFP activity in V1 that may reflect the intrinsic interplay of V1 microcircuitry with cortical and subcortical targets, respectively. PMID:20802856

  15. Dike zones on Venus

    NASA Technical Reports Server (NTRS)

    Markov, M. S.; Sukhanov, A. L.

    1987-01-01

    Venusian dike zone structures were identified from Venera 15 and 16 radar images. These include: a zone of subparallel rows centered at 30 deg N, 7 deg E; a system of intersecting bands centered at 67 deg N, 284 deg E; polygonal systems in lavas covering the structural base uplift centered at 47 deg N, 200 deg E; a system of light bands in the region of the ring structure centered at 43 deg N, 13 deg E; and a dike band centered at 27 deg N, 36 deg E.

  16. METAPHORICALLY FEELING: COMPREHENDING TEXTURAL METAPHORS ACTIVATES SOMATOSENSORY CORTEX

    PubMed Central

    Lacey, Simon; Stilla, Randall; Sathian, K.

    2012-01-01

    Conceptual metaphor theory suggests that knowledge is structured around metaphorical mappings derived from physical experience. Segregated processing of object properties in sensory cortex allows testing of the hypothesis that metaphor processing recruits activity in domain-specific sensory cortex. Using functional magnetic resonance imaging (fMRI) we show that texture-selective somatosensory cortex in the parietal operculum is activated when processing sentences containing textural metaphors, compared to literal sentences matched for meaning. This finding supports the idea that comprehension of metaphors is perceptually grounded. PMID:22305051

  17. Age-related changes in the thickness of cortical zones in humans.

    PubMed

    McGinnis, Scott M; Brickhouse, Michael; Pascual, Belen; Dickerson, Bradford C

    2011-10-01

    Structural neuroimaging studies have demonstrated that all regions of the cortex are not affected equally by aging, with frontal regions appearing especially susceptible to atrophy. The "last in, first out" hypothesis posits that aging is, in a sense, the inverse of development: late-maturing regions of the brain are preferentially vulnerable to age-related loss of structural integrity. We tested this hypothesis by analyzing age-related changes in regional cortical thickness via three methods: (1) an exploratory linear regression of cortical thickness and age across the entire cortical mantle (2) an analysis of age-related differences in the thickness of zones of cortex defined by functional/cytoarchitectural affiliation (including primary sensory/motor, unimodal association, heteromodal association, and paralimbic zones), and (3) an analysis of age-related differences in the thickness of regions of cortex defined by surface area expansion in the period between birth and early adulthood. Subjects were grouped as young (aged 18-29, n = 138), middle-aged (aged 30-59, n = 80), young-old (aged 60-79, n = 60), and old-old (aged 80+, n = 38). Thinning of the cortex between young and middle-aged adults was greatest in heteromodal association cortex and regions of high postnatal surface area expansion. In contrast, thinning in old-old age was greatest in primary sensory/motor cortices and regions of low postnatal surface area expansion. In sum, these results lead us to propose a sequential "developmental-sensory" model of aging, in which developmental factors influence cortical vulnerability relatively early in the aging process, whereas later-in more advanced stages of aging-factors specific to primary sensory and motor cortices confer vulnerability. This model offers explicitly testable hypotheses and suggests the possibility that normal aging may potentially allow for multiple opportunities for intervention to promote the structural integrity of the cerebral

  18. Optogenetic dissection of medial prefrontal cortex circuitry

    PubMed Central

    Riga, Danai; Matos, Mariana R.; Glas, Annet; Smit, August B.; Spijker, Sabine; Van den Oever, Michel C.

    2014-01-01

    The medial prefrontal cortex (mPFC) is critically involved in numerous cognitive functions, including attention, inhibitory control, habit formation, working memory and long-term memory. Moreover, through its dense interconnectivity with subcortical regions (e.g., thalamus, striatum, amygdala and hippocampus), the mPFC is thought to exert top-down executive control over the processing of aversive and appetitive stimuli. Because the mPFC has been implicated in the processing of a wide range of cognitive and emotional stimuli, it is thought to function as a central hub in the brain circuitry mediating symptoms of psychiatric disorders. New optogenetics technology enables anatomical and functional dissection of mPFC circuitry with unprecedented spatial and temporal resolution. This provides important novel insights in the contribution of specific neuronal subpopulations and their connectivity to mPFC function in health and disease states. In this review, we present the current knowledge obtained with optogenetic methods concerning mPFC function and dysfunction and integrate this with findings from traditional intervention approaches used to investigate the mPFC circuitry in animal models of cognitive processing and psychiatric disorders. PMID:25538574

  19. Cortex phellodendri Extract Relaxes Airway Smooth Muscle

    PubMed Central

    Jiang, Qiu-Ju; Chen, Weiwei; Dan, Hong; Tan, Li; Zhu, He; Yang, Guangzhong; Shen, Jinhua; Peng, Yong-Bo; Zhao, Ping; Xue, Lu; Yu, Meng-Fei; Ma, Liqun; Si, Xiao-Tang; Wang, Zhuo; Dai, Jiapei; Qin, Gangjian; Zou, Chunbin; Liu, Qing-Hua

    2016-01-01

    Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM); however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component) was prepared, which completely inhibits high K+- and acetylcholine- (ACH-) induced precontraction of airway smooth muscle in tracheal rings and lung slices from control and asthmatic mice, respectively. The contraction induced by high K+ was also blocked by nifedipine, a selective blocker of L-type Ca2+ channels. The ACH-induced contraction was partially inhibited by nifedipine and pyrazole 3, an inhibitor of TRPC3 and STIM/Orai channels. Taken together, our data demonstrate that NBAECP can relax ASM by inhibiting L-type Ca2+ channels and TRPC3 and/or STIM/Orai channels, suggesting that NBAECP could be developed to a new drug for relieving bronchospasm. PMID:27239213

  20. Decoding Trajectories from Posterior Parietal Cortex Ensembles

    PubMed Central

    Mulliken, Grant H.; Musallam, Sam; Andersen, Richard A.

    2009-01-01

    High-level cognitive signals in the posterior parietal cortex (PPC) have previously been used to decode the intended endpoint of a reach, providing the first evidence that PPC can be used for direct control of a neural prosthesis (Musallam et al., 2004). Here we expand on this work by showing that PPC neural activity can be harnessed to estimate not only the endpoint but also to continuously control the trajectory of an end effector. Specifically, we trained two monkeys to use a joystick to guide a cursor on a computer screen to peripheral target locations while maintaining central ocular fixation. We found that we could accurately reconstruct the trajectory of the cursor using a relatively small ensemble of simultaneously recorded PPC neurons. Using a goal-based Kalman filter that incorporates target information into the state-space, we showed that the decoded estimate of cursor position could be significantly improved. Finally, we tested whether we could decode trajectories during closed-loop brain control sessions, in which the real-time position of the cursor was determined solely by a monkey’s neural activity in PPC. The monkey learned to perform brain control trajectories at 80% success rate(for 8 targets) after just 4–5 sessions. This improvement in behavioral performance was accompanied by a corresponding enhancement in neural tuning properties (i.e., increased tuning depth and coverage of encoding parameter space) as well as an increase in off-line decoding performance of the PPC ensemble. PMID:19036985

  1. The medial prefrontal cortex exhibits money illusion

    PubMed Central

    Weber, Bernd; Rangel, Antonio; Wibral, Matthias; Falk, Armin

    2009-01-01

    Behavioral economists have proposed that money illusion, which is a deviation from rationality in which individuals engage in nominal evaluation, can explain a wide range of important economic and social phenomena. This proposition stands in sharp contrast to the standard economic assumption of rationality that requires individuals to judge the value of money only on the basis of the bundle of goods that it can buy—its real value—and not on the basis of the actual amount of currency—its nominal value. We used fMRI to investigate whether the brain's reward circuitry exhibits money illusion. Subjects received prizes in 2 different experimental conditions that were identical in real economic terms, but differed in nominal terms. Thus, in the absence of money illusion there should be no differences in activation in reward-related brain areas. In contrast, we found that areas of the ventromedial prefrontal cortex (vmPFC), which have been previously associated with the processing of anticipatory and experienced rewards, and the valuation of goods, exhibited money illusion. We also found that the amount of money illusion exhibited by the vmPFC was correlated with the amount of money illusion exhibited in the evaluation of economic transactions. PMID:19307555

  2. Lateralization of auditory-cortex functions.

    PubMed

    Tervaniemi, Mari; Hugdahl, Kenneth

    2003-12-01

    In the present review, we summarize the most recent findings and current views about the structural and functional basis of human brain lateralization in the auditory modality. Main emphasis is given to hemodynamic and electromagnetic data of healthy adult participants with regard to music- vs. speech-sound encoding. Moreover, a selective set of behavioral dichotic-listening (DL) results and clinical findings (e.g., schizophrenia, dyslexia) are included. It is shown that human brain has a strong predisposition to process speech sounds in the left and music sounds in the right auditory cortex in the temporal lobe. Up to great extent, an auditory area located at the posterior end of the temporal lobe (called planum temporale [PT]) underlies this functional asymmetry. However, the predisposition is not bound to informational sound content but to rapid temporal information more common in speech than in music sounds. Finally, we obtain evidence for the vulnerability of the functional specialization of sound processing. These altered forms of lateralization may be caused by top-down and bottom-up effects inter- and intraindividually In other words, relatively small changes in acoustic sound features or in their familiarity may modify the degree in which the left vs. right auditory areas contribute to sound encoding. PMID:14629926

  3. Sensitivity to syntax in visual cortex

    PubMed Central

    Dikker, Suzanne; Rabagliati, Hugh; Pylkkänen, Liina

    2009-01-01

    One of the most intriguing findings on language comprehension is that violations of syntactic predictions can affect event-related potentials as early as 120 ms, in the same time-window as early sensory processing. This effect, the so-called early left-anterior negativity (ELAN), has been argued to reflect word category access and initial syntactic structure building (Friederici, 2002). In two experiments, we used magnetoencephalography to investigate whether (a) rapid word category identification relies on overt category-marking closed-class morphemes and (b) whether violations of word category predictions affect modality-specific sensory responses. Participants read sentences containing violations of word category predictions. Unexpected items varied in whether or not their word category was marked by an overt function morpheme. In Experiment 1, the amplitude of the visual evoked M100 component was increased for unexpected items, but only when word category was overtly marked by a function morpheme. Dipole modeling localized the generator of this effect to the occipital cortex. Experiment 2 replicated the main results of Experiment 1 and eliminated two non-morphology-related explanations of the M100 contrast we observed between targets containing overt category-marking and targets that lacked such morphology. Our results show that during reading, syntactically relevant cues in the input can affect activity in occipital regions at around 125 ms, a finding that may shed new light on the remarkable rapidity of language processing. PMID:19121826

  4. Inhibition in the Human Auditory Cortex

    PubMed Central

    Inui, Koji; Nakagawa, Kei; Nishihara, Makoto; Motomura, Eishi; Kakigi, Ryusuke

    2016-01-01

    Despite their indispensable roles in sensory processing, little is known about inhibitory interneurons in humans. Inhibitory postsynaptic potentials cannot be recorded non-invasively, at least in a pure form, in humans. We herein sought to clarify whether prepulse inhibition (PPI) in the auditory cortex reflected inhibition via interneurons using magnetoencephalography. An abrupt increase in sound pressure by 10 dB in a continuous sound was used to evoke the test response, and PPI was observed by inserting a weak (5 dB increase for 1 ms) prepulse. The time course of the inhibition evaluated by prepulses presented at 10–800 ms before the test stimulus showed at least two temporally distinct inhibitions peaking at approximately 20–60 and 600 ms that presumably reflected IPSPs by fast spiking, parvalbumin-positive cells and somatostatin-positive, Martinotti cells, respectively. In another experiment, we confirmed that the degree of the inhibition depended on the strength of the prepulse, but not on the amplitude of the prepulse-evoked cortical response, indicating that the prepulse-evoked excitatory response and prepulse-evoked inhibition reflected activation in two different pathways. Although many diseases such as schizophrenia may involve deficits in the inhibitory system, we do not have appropriate methods to evaluate them; therefore, the easy and non-invasive method described herein may be clinically useful. PMID:27219470

  5. Does the orbitofrontal cortex signal value?

    PubMed Central

    Schoenbaum, Geoffrey; Takahashi, Yuji; Liu, Tzu-Lan; McDannald, Michael A.

    2012-01-01

    The orbitofrontal cortex (OFC) has long been implicated in associative learning. Early work by Mishkin and Rolls showed that the OFC was critical for rapid changes in learned behavior, a role that was reflected in the encoding of associative information by orbitofrontal neurons. Over the years, new data—particularly neurophysiological data—have increasingly emphasized the OFC in signaling actual value. These signals have been reported to vary according to internal preferences and judgments and to even be completely independent of the sensory qualities of predictive cues, the actual rewards, and the responses required to obtain them. At the same time, increasingly sophisticated behavioral studies have shown that the OFC is often unnecessary for simple value-based behavior and instead seems critical when information about specific outcomes must be used to guide behavior and learning. Here, we review these data and suggest a theory that potentially reconciles these two ideas, value versus specific outcomes, and bodies of work on the OFC. PMID:22145878

  6. The perirhinal cortex and recognition memory interference

    PubMed Central

    Watson, H.C.; Lee, A. C. H.

    2013-01-01

    There has recently been an increase in interest in the effects of visual interference on memory processing, with the aim of eluciating the role of the perirhinal cortex (PRC) in recognition memory. One view argues that the PRC processes highly complex conjunctions of object features, and recent evidence from rodents suggests that these representations may be vital for buffering against the effects of pre-retrieval interference on object recognition memory. To investigate whether PRC-dependent object representations play a similar role in humans, we used functional magnetic resonance imaging to scan neurologically healthy participants while they carried out a novel interference-match-to-sample task. This paradigm was specifically designed to concurrently assess the impact of object vs. spatial interference, on recognition memory for objects or scenes, while keeping constant the amount of object and scene information presented across all trials. Activity at retrieval was examined, within an anatomically defined PRC region of interest, according to the demand for object or scene memory, following a period of object compared to spatial interference. Critically, we found greater PRC activity for object memory following object interference, compared to object memory following scene interference, and no difference between object and scene interference for scene recognition. These data demonstrate a role for the human PRC following a period of object, but not scene, interference, during object recognition memory, and emphasize the importance of representational content to mnemonic processing. PMID:23447626

  7. Concentric scheme of monkey auditory cortex

    NASA Astrophysics Data System (ADS)

    Kosaki, Hiroko; Saunders, Richard C.; Mishkin, Mortimer

    2003-04-01

    The cytoarchitecture of the rhesus monkey's auditory cortex was examined using immunocytochemical staining with parvalbumin, calbindin-D28K, and SMI32, as well as staining for cytochrome oxidase (CO). The results suggest that Kaas and Hackett's scheme of the auditory cortices can be extended to include five concentric rings surrounding an inner core. The inner core, containing areas A1 and R, is the most densely stained with parvalbumin and CO and can be separated on the basis of laminar patterns of SMI32 staining into lateral and medial subdivisions. From the inner core to the fifth (outermost) ring, parvalbumin staining gradually decreases and calbindin staining gradually increases. The first ring corresponds to Kaas and Hackett's auditory belt, and the second, to their parabelt. SMI32 staining revealed a clear border between these two. Rings 2 through 5 extend laterally into the dorsal bank of the superior temporal sulcus. The results also suggest that the rostral tip of the outermost ring adjoins the rostroventral part of the insula (area Pro) and the temporal pole, while the caudal tip adjoins the ventral part of area 7a.

  8. Perceptual Learning In The Developing Auditory Cortex

    PubMed Central

    Bao, Shaowen

    2015-01-01

    A hallmark of the developing auditory cortex is the heightened plasticity in the critical period, during which acoustic inputs can indelibly alter cortical function. However, not all sounds in the natural acoustic environment are ethologically relevant. How does the auditory system resolve relevant sounds from the acoustic environment in such an early developmental stage when most associative learning mechanisms are not yet fully functional? What can the auditory system learn from one of the most important classes of sounds—animal vocalizations? How does naturalistic acoustic experience shape cortical sound representation and perception? To answer these questions, we need to consider an unusual strategy—statistical learning—where what the system needs to learn is embedded in the sensory input. Here, I will review recent findings on how certain statistical structure of natural animal vocalizations shapes auditory cortical acoustic representations, and how cortical plasticity may underlie learned categorical sound perception. These results will be discussed in the context of human speech perception. PMID:25728188

  9. Retinal Oscillations Carry Visual Information to Cortex

    PubMed Central

    Koepsell, Kilian; Wang, Xin; Vaingankar, Vishal; Wei, Yichun; Wang, Qingbo; Rathbun, Daniel L.; Usrey, W. Martin; Hirsch, Judith A.; Sommer, Friedrich T.

    2009-01-01

    Thalamic relay cells fire action potentials that transmit information from retina to cortex. The amount of information that spike trains encode is usually estimated from the precision of spike timing with respect to the stimulus. Sensory input, however, is only one factor that influences neural activity. For example, intrinsic dynamics, such as oscillations of networks of neurons, also modulate firing pattern. Here, we asked if retinal oscillations might help to convey information to neurons downstream. Specifically, we made whole-cell recordings from relay cells to reveal retinal inputs (EPSPs) and thalamic outputs (spikes) and then analyzed these events with information theory. Our results show that thalamic spike trains operate as two multiplexed channels. One channel, which occupies a low frequency band (<30 Hz), is encoded by average firing rate with respect to the stimulus and carries information about local changes in the visual field over time. The other operates in the gamma frequency band (40–80 Hz) and is encoded by spike timing relative to retinal oscillations. At times, the second channel conveyed even more information than the first. Because retinal oscillations involve extensive networks of ganglion cells, it is likely that the second channel transmits information about global features of the visual scene. PMID:19404487

  10. Fast aurora zone analysis

    NASA Technical Reports Server (NTRS)

    Booker, Mattie

    1992-01-01

    The Flight Dynamics Facility (FDF) of the Flight Dynamics Division (FDD), of the Goddard Space Flight Center provides acquisition data to tracking stations and orbit and attitude services to scientists and mission support personnel. The following paper explains how a method was determined that found spacecraft entry and exit times of the aurora zone.

  11. Stretching the comfort zone

    NASA Astrophysics Data System (ADS)

    Gibb, Bruce C.

    2015-08-01

    Bruce C. Gibb is organizing a workshop for two groups of scientists that study a similar topic, but rarely get together. The different perspectives they bring and the unusual set up of the meeting will hopefully lead to new ideas, but, as he suggests, they will also lead to the attendees leaving their comfort zones.

  12. Zones of Peace.

    ERIC Educational Resources Information Center

    Evans, Judith L.; And Others

    1996-01-01

    Children affected by armed violence face a specific set of stressors and challenges which calls for appropriate programming. This Coordinator's Notebook focuses on how to work with children affected by organized violence in order to provide them the best possible early childhood experiences. It is divided into five sections. "Children as Zones of…

  13. Does Congenital Deafness Affect the Structural and Functional Architecture of Primary Visual Cortex?

    PubMed Central

    Smittenaar, C.R.; MacSweeney, M.; Sereno, M.I.; Schwarzkopf, D.S.

    2016-01-01

    Deafness results in greater reliance on the remaining senses. It is unknown whether the cortical architecture of the intact senses is optimized to compensate for lost input. Here we performed widefield population receptive field (pRF) mapping of primary visual cortex (V1) with functional magnetic resonance imaging (fMRI) in hearing and congenitally deaf participants, all of whom had learnt sign language after the age of 10 years. We found larger pRFs encoding the peripheral visual field of deaf compared to hearing participants. This was likely driven by larger facilitatory center zones of the pRF profile concentrated in the near and far periphery in the deaf group. pRF density was comparable between groups, indicating pRFs overlapped more in the deaf group. This could suggest that a coarse coding strategy underlies enhanced peripheral visual skills in deaf people. Cortical thickness was also decreased in V1 in the deaf group. These findings suggest deafness causes structural and functional plasticity at the earliest stages of visual cortex. PMID:27014392

  14. Autoradiographic study of the efferent connections of the entorhinal cortex in the rat

    SciTech Connect

    Wyss, J.M.

    1981-07-10

    The major findings can be summarized as follows. Whereas the projection of the lateral entorhinal area (LEA) to the dentate gyrus is broad in its longitudinal extent, the medial entorhinal area (MEA), and especially the ventral portion of this zone, projects in a more lamellar fashion. In the transverse plane the LEA preferentially projects to the inner (dorsal) blade of the dentate gyrus, while the MEA innervates both blades equally. Within the radial dimension, the entorhinal cortex projects to the dentate gyrus according to a medial to lateral gradient, with lateral portions of the LEA projecting along the pial surface and successively more medial portions of the entorhinal projecting closer to the granule cells. The commissural entorhinal to dentate projections are similar to the ipsilateral projections in location; however, they are considerably reduced in septotemporal extent and do not arise from cells in the ventral half of either LEA or the intermediate entorhinal area (IEA). The projection of the entorhinal cortex to Ammon's horn reflects the same longitudinal characteristics as the dentate projections. An alvear input which extends only to the pyramidal cells at the CA1-subicular junction was most noticeable at ventral hippocampal levels. The extrahippocampal projections arise predominantly from cells in the LEA and project forward along the angular bundle to the piriform and periamygdaloid cortices, as well as the endopiriform nucleus, the lateral, basolateral, and cortical amygdaloid nuclei, the nucleus of the lateral olfactory tract, the olfactory tubercle, the anterior olfactory nucleus, the taenia tecta, and the indusium griseum.

  15. Branching patterns for arterioles and venules of the human cerebral cortex.

    PubMed

    Cassot, Francis; Lauwers, Frederic; Lorthois, Sylvie; Puwanarajah, Prasanna; Cances-Lauwers, Valérie; Duvernoy, Henri

    2010-02-01

    Branching patterns of microvascular networks influence vascular resistance and allow control of peripheral flow distribution. The aim of this paper was to analyze these branching patterns in human cerebral cortex. Digital three-dimensional images of the microvascular network were obtained from thick sections of India ink-injected human brain by confocal laser microscopy covering a large zone of secondary cortex. A novel segmentation method was used to extract the skeletons of 228 vascular trees (152 arterioles and 76 venules) and measure the diameter at every vertex. The branching patterns (area ratios and angles of bifurcations) of nearly 10,000 bifurcations of cortical vascular trees were analyzed, establishing their statistical properties and structural variations as a function of the vessel nature (arterioles versus venules), the parent vessel topological order or the bifurcation type. We also describe their connectivity and discuss the relevance of the assumed optimal design of vascular branching to account for the complex nature of microvascular architecture. The functional implications of some of these structural variations are considered. The branching patterns established from a large database of a human organ contributes to a better understanding of the bifurcation design and provides an essential reference both for diagnosis and for a future large reconstruction of cerebral microvascular network. PMID:20005216

  16. Quantitative analysis of somatosensory cortex development in metatherians and monotremes, with comparison to the laboratory rat.

    PubMed

    Ashwell, Ken W S

    2015-01-01

    Metatherians and monotremes are born in an immature state, followed by prolonged nurturing by maternal lactation. Quantitative analysis of isocortical sections held in the collections at the Museum für Naturkunde, Berlin was used to compare the pace of somatosensory cortex development relative to body size and pallial thickness between metatherian groups, monotremes, and the laboratory rat. Analysis indicated that the pace of pallial growth in the monotremes is much lower than that in the metatherians or laboratory rat, with an estimated 8.6-fold increase in parietal cortex thickness between 10 and 100 mm body length, compared to a 10- to 20-fold increase among the metatherians and the rat. It was found that aggregation of cortical plate neurons occurs at similar embryo size in the mammals studied (around 8-14 mm body length) and a similar pallial thickness (around 200 µm), but that proliferative zone involution occurs at a much higher body size and pallial thickness in the monotremes compared to the metatherians and the laboratory rat. The observations suggest that cortical development in the monotremes is slower and subject to different regulatory signals to the therians studied. The slow pace may be related to either generally slower metabolism in monotremes or less efficient nutrient supply to the offspring due to the lack of teats. PMID:25393314

  17. A genuine layer 4 in motor cortex with prototypical synaptic circuit connectivity.

    PubMed

    Yamawaki, Naoki; Borges, Katharine; Suter, Benjamin A; Harris, Kenneth D; Shepherd, Gordon M G

    2014-01-01

    The motor cortex (M1) is classically considered an agranular area, lacking a distinct layer 4 (L4). Here, we tested the idea that M1, despite lacking a cytoarchitecturally visible L4, nevertheless possesses its equivalent in the form of excitatory neurons with input-output circuits like those of the L4 neurons in sensory areas. Consistent with this idea, we found that neurons located in a thin laminar zone at the L3/5A border in the forelimb area of mouse M1 have multiple L4-like synaptic connections: excitatory input from thalamus, largely unidirectional excitatory outputs to L2/3 pyramidal neurons, and relatively weak long-range corticocortical inputs and outputs. M1-L4 neurons were electrophysiologically diverse but morphologically uniform, with pyramidal-type dendritic arbors and locally ramifying axons, including branches extending into L2/3. Our findings therefore identify pyramidal neurons in M1 with the expected prototypical circuit properties of excitatory L4 neurons, and question the traditional assumption that motor cortex lacks this layer. PMID:25525751

  18. From the Cover: Odor maps in the olfactory cortex

    NASA Astrophysics Data System (ADS)

    Zou, Zhihua; Li, Fusheng; Buck, Linda B.

    2005-05-01

    In the olfactory system, environmental chemicals are deconstructed into neural signals and then reconstructed to form odor perceptions. Much has been learned about odor coding in the olfactory epithelium and bulb, but little is known about how odors are subsequently encoded in the cortex to yield diverse perceptions. Here, we report that the representation of odors by fixed glomeruli in the olfactory bulb is transformed in the cortex into highly distributed and multiplexed odor maps. In the mouse olfactory cortex, individual odorants are represented by subsets of sparsely distributed neurons. Different odorants elicit distinct, but partially overlapping, patterns that are strikingly similar among individuals. With increases in odorant concentration, the representations expand spatially and include additional cortical neurons. Structurally related odorants have highly related representations, suggesting an underlying logic to the mapping of odor identities in the cortex. odorant receptor | smell

  19. Cortex Matures Faster in Youths With Highest IQ

    MedlinePlus

    ... Research News From NIH Cortex Matures Faster in Youths With Highest IQ Past Issues / Summer 2006 Table ... please turn Javascript on. Photo: Getty image (StockDisc) Youths with superior IQ are distinguished by how fast ...

  20. Ventromedial prefrontal cortex mediates visual attention during facial emotion recognition

    PubMed Central

    Wolf, Richard C.; Philippi, Carissa L.; Motzkin, Julian C.; Baskaya, Mustafa K.

    2014-01-01

    The ventromedial prefrontal cortex is known to play a crucial role in regulating human social and emotional behaviour, yet the precise mechanisms by which it subserves this broad function remain unclear. Whereas previous neuropsychological studies have largely focused on the role of the ventromedial prefrontal cortex in higher-order deliberative processes related to valuation and decision-making, here we test whether ventromedial prefrontal cortex may also be critical for more basic aspects of orienting attention to socially and emotionally meaningful stimuli. Using eye tracking during a test of facial emotion recognition in a sample of lesion patients, we show that bilateral ventromedial prefrontal cortex damage impairs visual attention to the eye regions of faces, particularly for fearful faces. This finding demonstrates a heretofore unrecognized function of the ventromedial prefrontal cortex—the basic attentional process of controlling eye movements to faces expressing emotion. PMID:24691392

  1. The Laryngeal Motor Cortex: Its Organization and Connectivity

    PubMed Central

    Simonyan, Kristina

    2014-01-01

    Our ability to learn and control the motor aspects of complex laryngeal behaviors, such as speech and song, is modulated by the laryngeal motor cortex (LMC), which is situated in the area 4 of the primary motor cortex and establishes both direct and indirect connections with laryngeal motoneurons. In contrast, the LMC in monkeys is located in the area 6 of the premotor cortex, projects only indirectly to laryngeal motoneurons and its destruction has essentially no effect on production of species-specific calls. These differences in cytoarchitectonic location and connectivity may be a result of hominid evolution that led to the LMC shift from the phylogenetically “old” to “new” motor cortex in order to fulfill its paramount function, i.e., voluntary motor control of human speech and song production. PMID:24929930

  2. Reflections on agranular architecture: predictive coding in the motor cortex

    PubMed Central

    Shipp, Stewart; Adams, Rick A.; Friston, Karl J.

    2013-01-01

    The agranular architecture of motor cortex lacks a functional interpretation. Here, we consider a ‘predictive coding’ account of this unique feature based on asymmetries in hierarchical cortical connections. In sensory cortex, layer 4 (the granular layer) is the target of ascending pathways. We theorise that the operation of predictive coding in the motor system (a process termed ‘active inference’) provides a principled rationale for the apparent recession of the ascending pathway in motor cortex. The extension of this theory to interlaminar circuitry also accounts for a sub-class of ‘mirror neuron’ in motor cortex – whose activity is suppressed when observing an action –explaining how predictive coding can gate hierarchical processing to switch between perception and action. PMID:24157198

  3. Robust neuronal dynamics in premotor cortex during motor planning.

    PubMed

    Li, Nuo; Daie, Kayvon; Svoboda, Karel; Druckmann, Shaul

    2016-04-28

    Neural activity maintains representations that bridge past and future events, often over many seconds. Network models can produce persistent and ramping activity, but the positive feedback that is critical for these slow dynamics can cause sensitivity to perturbations. Here we use electrophysiology and optogenetic perturbations in the mouse premotor cortex to probe the robustness of persistent neural representations during motor planning. We show that preparatory activity is remarkably robust to large-scale unilateral silencing: detailed neural dynamics that drive specific future movements were quickly and selectively restored by the network. Selectivity did not recover after bilateral silencing of the premotor cortex. Perturbations to one hemisphere are thus corrected by information from the other hemisphere. Corpus callosum bisections demonstrated that premotor cortex hemispheres can maintain preparatory activity independently. Redundancy across selectively coupled modules, as we observed in the premotor cortex, is a hallmark of robust control systems. Network models incorporating these principles show robustness that is consistent with data. PMID:27074502

  4. The onset of visual experience gates auditory cortex critical periods

    PubMed Central

    Mowery, Todd M.; Kotak, Vibhakar C.; Sanes, Dan H.

    2016-01-01

    Sensory systems influence one another during development and deprivation can lead to cross-modal plasticity. As auditory function begins before vision, we investigate the effect of manipulating visual experience during auditory cortex critical periods (CPs) by assessing the influence of early, normal and delayed eyelid opening on hearing loss-induced changes to membrane and inhibitory synaptic properties. Early eyelid opening closes the auditory cortex CPs precociously and dark rearing prevents this effect. In contrast, delayed eyelid opening extends the auditory cortex CPs by several additional days. The CP for recovery from hearing loss is also closed prematurely by early eyelid opening and extended by delayed eyelid opening. Furthermore, when coupled with transient hearing loss that animals normally fully recover from, very early visual experience leads to inhibitory deficits that persist into adulthood. Finally, we demonstrate a functional projection from the visual to auditory cortex that could mediate these effects. PMID:26786281

  5. Cortex Matures Faster in Youths With Highest IQ

    MedlinePlus

    ... NIH Cortex Matures Faster in Youths With Highest IQ Past Issues / Summer 2006 Table of Contents For ... on. Photo: Getty image (StockDisc) Youths with superior IQ are distinguished by how fast the thinking part ...

  6. Left auditory cortex specialization for vertical harmonic structure of chords.

    PubMed

    Passynkova, Natalia; Sander, Kerstin; Scheich, Henning

    2005-12-01

    The representation of consonant and dissonant chords in the auditory cortex was investigated using low-noise functional magnetic resonance imaging and different experimental paradigms to separate the effects of vertical harmony from those of other musical features. The results revealed higher activation by consonant compared with dissonant chords in the left posterior auditory cortex, suggesting contributions of mechanisms of encoding the acoustical chord structure rather than mechanisms based on sequential integration of chords. PMID:16597802

  7. Specialized cortical subnetworks differentially connect frontal cortex to parahippocampal areas.

    PubMed

    Hirai, Yasuharu; Morishima, Mieko; Karube, Fuyuki; Kawaguchi, Yasuo

    2012-02-01

    How information is manipulated and segregated within local circuits in the frontal cortex remains mysterious, in part because of inadequate knowledge regarding the connectivity of diverse pyramidal cell subtypes. The frontal cortex participates in the formation and retrieval of declarative memories through projections to the perirhinal cortex, and in procedural learning through projections to the striatum/pontine nuclei. In rat frontal cortex, we identified two pyramidal cell subtypes selectively projecting to distinct subregions of perirhinal cortex (PRC). PRC-projecting cells in upper layer 2/3 (L2/3) of the frontal cortex projected to perirhinal area 35, while neurons in L5 innervated perirhinal area 36. L2/3 PRC-projecting cells partially overlapped with those projecting to the basolateral amygdala. L5 PRC-projecting cells partially overlapped with crossed corticostriatal cells, but were distinct from neighboring corticothalamic (CTh)/corticopontine cells. L5 PRC-projecting and CTh cells were different in their electrophysiological properties and dendritic/axonal morphologies. Within the frontal cortex, L2/3 PRC-projecting cells innervated L5 PRC-projecting and CTh cells with similar probabilities, but received feedback excitation only from PRC-projecting cells. These data suggest that specific neuron subtypes in different cortical layers are reciprocally excited via interlaminar loops. Thus, two interacting output channels send information from the frontal cortex to different hierarchical stages of the parahippocampal network, areas 35 and 36, with additional collaterals selectively targeting the amygdala or basal ganglia, respectively. Combined with the hierarchical connectivity of PRC-projecting and CTh cells, these observations demonstrate an exquisite diversification of frontal projection neurons selectively connected according to their participation in distinct memory subsystems. PMID:22302828

  8. Auditory Cortex Basal Activity Modulates Cochlear Responses in Chinchillas

    PubMed Central

    León, Alex; Elgueda, Diego; Silva, María A.; Hamamé, Carlos M.; Delano, Paul H.

    2012-01-01

    Background The auditory efferent system has unique neuroanatomical pathways that connect the cerebral cortex with sensory receptor cells. Pyramidal neurons located in layers V and VI of the primary auditory cortex constitute descending projections to the thalamus, inferior colliculus, and even directly to the superior olivary complex and to the cochlear nucleus. Efferent pathways are connected to the cochlear receptor by the olivocochlear system, which innervates outer hair cells and auditory nerve fibers. The functional role of the cortico-olivocochlear efferent system remains debated. We hypothesized that auditory cortex basal activity modulates cochlear and auditory-nerve afferent responses through the efferent system. Methodology/Principal Findings Cochlear microphonics (CM), auditory-nerve compound action potentials (CAP) and auditory cortex evoked potentials (ACEP) were recorded in twenty anesthetized chinchillas, before, during and after auditory cortex deactivation by two methods: lidocaine microinjections or cortical cooling with cryoloops. Auditory cortex deactivation induced a transient reduction in ACEP amplitudes in fifteen animals (deactivation experiments) and a permanent reduction in five chinchillas (lesion experiments). We found significant changes in the amplitude of CM in both types of experiments, being the most common effect a CM decrease found in fifteen animals. Concomitantly to CM amplitude changes, we found CAP increases in seven chinchillas and CAP reductions in thirteen animals. Although ACEP amplitudes were completely recovered after ninety minutes in deactivation experiments, only partial recovery was observed in the magnitudes of cochlear responses. Conclusions/Significance These results show that blocking ongoing auditory cortex activity modulates CM and CAP responses, demonstrating that cortico-olivocochlear circuits regulate auditory nerve and cochlear responses through a basal efferent tone. The diversity of the obtained effects

  9. Reduced structural connectivity in ventral visual cortex in congenital prosopagnosia.

    PubMed

    Thomas, Cibu; Avidan, Galia; Humphreys, Kate; Jung, Kwan-jin; Gao, Fuqiang; Behrmann, Marlene

    2009-01-01

    Using diffusion tensor imaging and tractography, we found that a disruption in structural connectivity in ventral occipito-temporal cortex may be the neurobiological basis for the lifelong impairment in face recognition that is experienced by individuals who suffer from congenital prosopagnosia. Our findings suggest that white-matter fibers in ventral occipito-temporal cortex support the integrated function of a distributed cortical network that subserves normal face processing. PMID:19029889

  10. Synaptic potentials evoked by convergent somatosensory and corticocortical inputs in raccoon somatosensory cortex: substrates for plasticity.

    PubMed

    Smits, E; Gordon, D C; Witte, S; Rasmusson, D D; Zarzecki, P

    1991-09-01

    1. "Unmasking" of weak synaptic connections has been suggested as a mechanism for the early changes in cortical topographic maps that follow alterations of sensory activity. For such a mechanism to operate, convergent sensory inputs must already exist in the normal cortex. 2. We tested for topographic and cross-modality convergence in primary somatosensory cortex of raccoon. The representation of glabrous skin of forepaw digits was chosen because, even though it is dominated by inputs from the glabrous skin of a single digit, it nevertheless comes to respond to stimulation of other digits when, e.g., a digit is removed. 3. Intracellular recordings were made from 109 neurons in the representation of glabrous skin of digit 4. Neurons were tested for somatosensory inputs with electrical and natural stimulation of digits. 4. Excitatory postsynaptic potentials (EPSPs) were evoked in 100% of the neurons (109/109) by electrical stimulation of glabrous skin of digit 4, and in 79% (31 of 39) by vibrotactile stimulation. 5. Glabrous skin of digit 4 was not the sole source of somatosensory inputs. A minority of neurons generated EPSPs after electrical stimulation of hairy skin of digit 4 (10 of 98 neurons, 10%). Electrical stimulation of digits 3 or 5 evoked EPSPs in 22 of 103 neurons (21%). Natural stimulation (vibrotactile or hair bending) was also effective in most of these latter cases (digit 3, 6/7; digit 5, 9/10). 6. Intracortical microstimulation of the "heterogeneous zone" was used to test for corticocortical connections to neurons in the glabrous zone.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1753280

  11. Auditory Cortex Is Required for Fear Potentiation of Gap Detection

    PubMed Central

    Weible, Aldis P.; Liu, Christine; Niell, Cristopher M.

    2014-01-01

    Auditory cortex is necessary for the perceptual detection of brief gaps in noise, but is not necessary for many other auditory tasks such as frequency discrimination, prepulse inhibition of startle responses, or fear conditioning with pure tones. It remains unclear why auditory cortex should be necessary for some auditory tasks but not others. One possibility is that auditory cortex is causally involved in gap detection and other forms of temporal processing in order to associate meaning with temporally structured sounds. This predicts that auditory cortex should be necessary for associating meaning with gaps. To test this prediction, we developed a fear conditioning paradigm for mice based on gap detection. We found that pairing a 10 or 100 ms gap with an aversive stimulus caused a robust enhancement of gap detection measured 6 h later, which we refer to as fear potentiation of gap detection. Optogenetic suppression of auditory cortex during pairing abolished this fear potentiation, indicating that auditory cortex is critically involved in associating temporally structured sounds with emotionally salient events. PMID:25392510

  12. Neurodynamics of the prefrontal cortex during conditional visuomotor associations.

    PubMed

    Loh, Marco; Pasupathy, Anitha; Miller, Earl K; Deco, Gustavo

    2008-03-01

    The prefrontal cortex is believed to be important for cognitive control, working memory, and learning. It is known to play an important role in the learning and execution of conditional visuomotor associations, a cognitive task in which stimuli have to be associated with actions by trial-and-error learning. In our modeling study, we sought to integrate several hypotheses on the function of the prefrontal cortex using a computational model, and compare the results to experimental data. We constructed a module of prefrontal cortex neurons exposed to two different inputs, which we envision to originate from the inferotemporal cortex and the basal ganglia. We found that working memory properties do not describe the dominant dynamics in the prefrontal cortex, but the activation seems to be transient, probably progressing along a pathway from sensory to motor areas. During the presentation of the cue, the dynamics of the prefrontal cortex is bistable, yielding a distinct activation for correct and error trails. We find that a linear change in network parameters relates to the changes in neural activity in consecutive correct trials during learning, which is important evidence for the underlying learning mechanisms. PMID:18004947

  13. Dissociation in prefrontal cortex of affective and attentional shifts.

    PubMed

    Dias, R; Robbins, T W; Roberts, A C

    1996-03-01

    The prefrontal cortex is implicated in such human characteristics as volition, planning, abstract reasoning and affect. Frontal-lobe damage can cause disinhibition such that the behaviour of a subject is guided by previously acquired responses that are inappropriate to the current situation. Here we demonstrate that disinhibition, or a loss of inhibitory control, can be selective for particular cognitive functions and that different regions of the prefrontal cortex provide inhibitory control in different aspects of cognitive processing. Thus, whereas damage to the lateral prefrontal cortex (Brodmann's area 9) in monkeys causes a loss of inhibitory control in attentional selection, damage to the orbito-frontal cortex in monkeys causes a loss of inhibitory control in 'affective' processing, thereby impairing the ability to alter behaviour in response to fluctuations in the emotional significance of stimuli. These findings not only support the view that the prefrontal cortex has multiple functions, but also provide evidence for the distribution of different cognitive functions within specific regions of prefrontal cortex. PMID:8598908

  14. The Role of Cingulate Cortex in Vicarious Pain

    PubMed Central

    Yesudas, Esther H.; Lee, Tatia M. C.

    2015-01-01

    Vicarious pain is defined as the observation of individuals in pain. There is growing neuroimaging evidence suggesting that the cingulate cortex plays a significant role in self-experienced pain processing. Yet, very few studies have directly tested the distinct functions of the cingulate cortex for vicarious pain. In this review, one EEG and eighteen neuroimaging studies reporting cingulate cortex activity during pain observation were discussed. The data indicate that there is overlapping neural activity in the cingulate cortex during self- and vicarious pain. Such activity may contribute to shared neural pain representations that permit inference of the affective state of individuals in pain, facilitating empathy. However, the exact location of neuronal populations in which activity overlaps or differs for self- and observed pain processing requires further confirmation. This review also discusses evidence suggesting differential functions of the cingulate cortex in cognitive, affective, and motor processing during empathy induction. While affective processing in the cingulate cortex during pain observation has been explored relatively more often, its attention and motor roles remain underresearched. Shedding light on the neural correlates of vicarious pain and corresponding empathy in healthy populations can provide neurobiological markers and intervention targets for empathic deficits found in various clinical disorders. PMID:25815331

  15. Mechanisms of spatial attention control in frontal and parietal cortex.

    PubMed

    Szczepanski, Sara M; Konen, Christina S; Kastner, Sabine

    2010-01-01

    Theories of spatial attentional control have been largely based upon studies of patients suffering from visuospatial neglect, resulting from circumscribed lesions of frontal and posterior parietal cortex. In the intact brain, the control of spatial attention has been related to a distributed frontoparietal attention network. Little is known about the nature of the control mechanisms exerted by this network. Here, we used a novel region-of-interest approach to relate activations of the attention network to recently described topographic areas in frontal cortex [frontal eye field (FEF), PreCC/IFS (precentral cortex/inferior frontal sulcus)] and parietal cortex [intraparietal sulcus areas (IPS1-IPS5) and an area in the superior parietal lobule (SPL1)] to examine their spatial attention signals. We found that attention signals in most topographic areas were spatially specific, with stronger responses when attention was directed to the contralateral than to the ipsilateral visual field. Importantly, two hemispheric asymmetries were found. First, a region in only right, but not left SPL1 carried spatial attention signals. Second, left FEF and left posterior parietal cortex (IPS1/2) generated stronger contralateral biasing signals than their counterparts in the right hemisphere. These findings are the first to characterize spatial attention signals in topographic frontal and parietal cortex and provide a neural basis in support of an interhemispheric competition account of spatial attentional control. PMID:20053897

  16. Spatial processing in the auditory cortex of the macaque monkey

    NASA Astrophysics Data System (ADS)

    Recanzone, Gregg H.

    2000-10-01

    The patterns of cortico-cortical and cortico-thalamic connections of auditory cortical areas in the rhesus monkey have led to the hypothesis that acoustic information is processed in series and in parallel in the primate auditory cortex. Recent physiological experiments in the behaving monkey indicate that the response properties of neurons in different cortical areas are both functionally distinct from each other, which is indicative of parallel processing, and functionally similar to each other, which is indicative of serial processing. Thus, auditory cortical processing may be similar to the serial and parallel "what" and "where" processing by the primate visual cortex. If "where" information is serially processed in the primate auditory cortex, neurons in cortical areas along this pathway should have progressively better spatial tuning properties. This prediction is supported by recent experiments that have shown that neurons in the caudomedial field have better spatial tuning properties than neurons in the primary auditory cortex. Neurons in the caudomedial field are also better than primary auditory cortex neurons at predicting the sound localization ability across different stimulus frequencies and bandwidths in both azimuth and elevation. These data support the hypothesis that the primate auditory cortex processes acoustic information in a serial and parallel manner and suggest that this may be a general cortical mechanism for sensory perception.

  17. The role of cingulate cortex in vicarious pain.

    PubMed

    Yesudas, Esther H; Lee, Tatia M C

    2015-01-01

    Vicarious pain is defined as the observation of individuals in pain. There is growing neuroimaging evidence suggesting that the cingulate cortex plays a significant role in self-experienced pain processing. Yet, very few studies have directly tested the distinct functions of the cingulate cortex for vicarious pain. In this review, one EEG and eighteen neuroimaging studies reporting cingulate cortex activity during pain observation were discussed. The data indicate that there is overlapping neural activity in the cingulate cortex during self- and vicarious pain. Such activity may contribute to shared neural pain representations that permit inference of the affective state of individuals in pain, facilitating empathy. However, the exact location of neuronal populations in which activity overlaps or differs for self- and observed pain processing requires further confirmation. This review also discusses evidence suggesting differential functions of the cingulate cortex in cognitive, affective, and motor processing during empathy induction. While affective processing in the cingulate cortex during pain observation has been explored relatively more often, its attention and motor roles remain underresearched. Shedding light on the neural correlates of vicarious pain and corresponding empathy in healthy populations can provide neurobiological markers and intervention targets for empathic deficits found in various clinical disorders. PMID:25815331

  18. The multisensory function of the human primary visual cortex.

    PubMed

    Murray, Micah M; Thelen, Antonia; Thut, Gregor; Romei, Vincenzo; Martuzzi, Roberto; Matusz, Pawel J

    2016-03-01

    It has been nearly 10 years since Ghazanfar and Schroeder (2006) proposed that the neocortex is essentially multisensory in nature. However, it is only recently that sufficient and hard evidence that supports this proposal has accrued. We review evidence that activity within the human primary visual cortex plays an active role in multisensory processes and directly impacts behavioural outcome. This evidence emerges from a full pallet of human brain imaging and brain mapping methods with which multisensory processes are quantitatively assessed by taking advantage of particular strengths of each technique as well as advances in signal analyses. Several general conclusions about multisensory processes in primary visual cortex of humans are supported relatively solidly. First, haemodynamic methods (fMRI/PET) show that there is both convergence and integration occurring within primary visual cortex. Second, primary visual cortex is involved in multisensory processes during early post-stimulus stages (as revealed by EEG/ERP/ERFs as well as TMS). Third, multisensory effects in primary visual cortex directly impact behaviour and perception, as revealed by correlational (EEG/ERPs/ERFs) as well as more causal measures (TMS/tACS). While the provocative claim of Ghazanfar and Schroeder (2006) that the whole of neocortex is multisensory in function has yet to be demonstrated, this can now be considered established in the case of the human primary visual cortex. PMID:26275965

  19. What does spatial alternation tell us about retrosplenial cortex function?

    PubMed Central

    Nelson, Andrew J. D.; Powell, Anna L.; Holmes, Joshua D.; Vann, Seralynne D.; Aggleton, John P.

    2015-01-01

    The retrosplenial cortex supports navigation, but there are good reasons to suppose that the retrosplenial cortex has a very different role in spatial memory from that of the hippocampus and anterior thalamic nuclei. For example, retrosplenial lesions appear to have little or no effect on standard tests of spatial alternation. To examine these differences, the current study sought to determine whether the retrosplenial cortex is important for just one spatial cue type (e.g., allocentric, directional or intra-maze cues) or whether the retrosplenial cortex helps the animal switch between competing spatial strategies or competing cue types. Using T-maze alternation, retrosplenial lesion rats were challenged with situations in which the available spatial information between the sample and test phases was changed, so taxing the interaction between different cue types. Clear lesion deficits emerged when intra- and extra-maze cues were placed in conflict (by rotating the maze between the sample and choice phases), or when the animals were tested in the dark in a double-maze. Finally, temporary inactivation of the retrosplenial cortex by muscimol infusions resulted in a striking deficit on standard T-maze alternation, indicating that, over time, other sites may be able to compensate for the loss of the retrosplenial cortex. This pattern of results is consistent with the impoverished use of both allocentric and directional information, exacerbated by an impaired ability to switch between different cue types. PMID:26042009

  20. [Study on quantitative methods of cleistocalycis operculati cortex].

    PubMed

    Chen, Li-Si; Ou, Jia-Ju; Li, Shu-Yuan; Lu, Song-Gui

    2014-08-01

    Cleistocalycis Operculati Cortex is the dry bark of Cleistocalyx operculatus. It is the raw material of Compound Hibiscuse which is external sterilization antipruritic drugs. The quality standard of Cleistocalycis Operculati Cortex in Guangdong Province "standard for the traditional Chinese medicine" (second volumes) only contains TLC identification. It is unable to effectively monitor and control the quality of Cleistocalycis Operculati Cortex. A reversed-phase HPLC method was established for the determination of 3, 3'-O-dimethylellagic acid from Cleistocalycis Operculati Cortex and the content was calculated by external standard method for the first time. Under the selected chromatographic conditions, the target components between peaks to achieve effective separation. 3,3'-O- dimethylellagic acid standard solution at the concentration of 1.00 - 25.0 mg x L(-1) showed a good linear relationship. The standard curve was Y = 77.33X + 7.904, r = 0.999 5. The average recovery was 101.0%, RSD was 1.3%. The HPLC method for the determination of 3,3'-O-dimethylellagic acid in Cleistocalycis Operculati Cortex is accurate and reliable. It can provide a strong technical support for monitoring the quality of Cleistocalycis Operculati Cortex. PMID:25509300

  1. Behavior Modulates Effective Connectivity between Cortex and Striatum

    PubMed Central

    Nakhnikian, Alexander; Rebec, George V.; Grasse, Leslie M.; Dwiel, Lucas L.; Shimono, Masanori; Beggs, John M.

    2014-01-01

    It has been notoriously difficult to understand interactions in the basal ganglia because of multiple recurrent loops. Another complication is that activity there is strongly dependent on behavior, suggesting that directional interactions, or effective connections, can dynamically change. A simplifying approach would be to examine just the direct, monosynaptic projections from cortex to striatum and contrast this with the polysynaptic feedback connections from striatum to cortex. Previous work by others on effective connectivity in this pathway indicated that activity in cortex could be used to predict activity in striatum, but that striatal activity could not predict cortical activity. However, this work was conducted in anesthetized or seizing animals, making it impossible to know how free behavior might influence effective connectivity. To address this issue, we applied Granger causality to local field potential signals from cortex and striatum in freely behaving rats. Consistent with previous results, we found that effective connectivity was largely unidirectional, from cortex to striatum, during anesthetized and resting states. Interestingly, we found that effective connectivity became bidirectional during free behaviors. These results are the first to our knowledge to show that striatal influence on cortex can be as strong as cortical influence on striatum. In addition, these findings highlight how behavioral states can affect basal ganglia interactions. Finally, we suggest that this approach may be useful for studies of Parkinson's or Huntington's diseases, in which effective connectivity may change during movement. PMID:24618981

  2. Time-frequency analysis of single pulse electrical stimulation to assist delineation of epileptogenic cortex.

    PubMed

    van 't Klooster, Maryse A; Zijlmans, Maeike; Leijten, Frans S S; Ferrier, Cyrille H; van Putten, Michel J A M; Huiskamp, Geertjan J M

    2011-10-01

    Epilepsy surgery depends on reliable pre-surgical markers of epileptogenic tissue. The current gold standard is the seizure onset zone in ictal, i.e. chronic, electrocorticography recordings. Single pulse electrical stimulation can evoke epileptic, spike-like responses in areas of seizure onset also recorded by electrocorticography. Recently, spontaneous pathological high-frequency oscillations (80-520 Hz) have been observed in the electrocorticogram that are related to epileptic spikes, but seem more specific for epileptogenic cortex. We wanted to see whether a quantitative electroencephalography analysis using time-frequency information including the higher frequency range could be applied to evoked responses by single pulse electrical stimulation, to enhance its specificity and clinical use. Electrocorticography data were recorded at a 2048-Hz sampling rate from 13 patients. Single pulse electrical stimulation (10 stimuli, 1 ms, 8 mA, 0.2 Hz) was performed stimulating pairs of adjacent electrodes. A time-frequency analysis based on Morlet wavelet transformation was performed in a [-1 s : 1 s] time interval around the stimulus and a frequency range of 10-520 Hz. Significant (P = 0.05) changes in power spectra averaged for 10 epochs were computed, resulting in event-related spectral perturbation images. In these images, time-frequency analysis of single pulse-evoked responses, in the range of 10-80 Hz for spikes, 80-250 Hz for ripples and 250-520 Hz for fast ripples, were scored by two observers independently. Sensitivity, specificity and predictive value of time-frequency single pulse-evoked responses in the three frequency ranges were compared with seizure onset zone and post-surgical outcome. In all patients, evoked responses included spikes, ripples and fast ripples. For the seizure onset zone, the median sensitivity of time-frequency single pulse-evoked responses decreased from 100% for spikes to 67% for fast ripples and the median specificity increased from

  3. Preferential encoding of visual categories in parietal cortex compared with prefrontal cortex.

    PubMed

    Swaminathan, Sruthi K; Freedman, David J

    2012-02-01

    The ability to recognize the behavioral relevance, or category membership, of sensory stimuli is critical for interpreting the meaning of events in our environment. Neurophysiological studies of visual categorization have found categorical representations of stimuli in prefrontal cortex (PFC), an area that is closely associated with cognitive and executive functions. Recent studies have also identified neuronal category signals in parietal areas that are typically associated with visual-spatial processing. It has been proposed that category-related signals in parietal cortex and other visual areas may result from 'top-down' feedback from PFC. We directly compared neuronal activity in the lateral intraparietal (LIP) area and PFC in monkeys performing a visual motion categorization task. We found that LIP showed stronger, more reliable and shorter latency category signals than PFC. These findings suggest that LIP is strongly involved in visual categorization and argue against the idea that parietal category signals arise as a result of feedback from PFC during this task. PMID:22246435

  4. Epileptiform synchronization in the cingulate cortex

    PubMed Central

    Panuccio, Gabriella; Curia, Giulia; Colosimo, Alfredo; Cruccu, Giorgio; Avoli, Massimo

    2016-01-01

    Summary Purpose The anterior cingulate cortex (ACC)— which plays a role in pain, emotions and behavior— can generate epileptic seizures. To date, little is known on the neuronal mechanisms leading to epileptiform synchronization in this structure. Therefore, we investigated the role of excitatory and inhibitory synaptic transmission in epileptiform activity in this cortical area. In addition, since the ACC presents with a high density of opioid receptors, we studied the effect of opioid agonism on epileptiform synchronization in this brain region. Methods We used field and intracellular recordings in conjunction with pharmacological manipulations to characterize the epileptiform activity generated by the rat ACC in a brain slice preparation. Results Bath-application of the convulsant 4- aminopyridine (4AP, 50 μM) induced both brief and prolonged periods of epileptiform synchronization resembling interictal- and ictal-like discharges, respectively. Interictal events could occur more frequently before the onset of ictal activity that was contributed by N-methyl-D-aspartate (NMDA) receptors. Mu-opioid receptor activation abolished 4AP-induced ictal events and markedly reduced the occurrence of the pharmacologically isolated GABAergic synchronous potentials. Ictal discharges were replaced by interictal events during GABAergic antagonism; this GABA-independent activity was influenced by subsequent mu-opioid agonist application. Conclusions Our results indicate that both glutamatergic and GABAergic signaling contribute to epileptiform synchronization leading to the generation of electrographic ictal events in the ACC. In addition, mu-opioid receptors appear to modulate both excitatory and inhibitory mechanisms, thus influencing epileptiform synchronization in the ACC. PMID:19178556

  5. Frontal cortex mediates unconsciously triggered inhibitory control.

    PubMed

    van Gaal, Simon; Ridderinkhof, K Richard; Fahrenfort, Johannes J; Scholte, H Steven; Lamme, Victor A F

    2008-08-01

    To further our understanding of the function of conscious experience we need to know which cognitive processes require awareness and which do not. Here, we show that an unconscious stimulus can trigger inhibitory control processes, commonly ascribed to conscious control mechanisms. We combined the metacontrast masking paradigm and the Go/No-Go paradigm to study whether unconscious No-Go signals can actively trigger high-level inhibitory control processes, strongly associated with the prefrontal cortex (PFC). Behaviorally, unconscious No-Go signals sometimes triggered response inhibition to the level of complete response termination and yielded a slow down in the speed of responses that were not inhibited. Electroencephalographic recordings showed that unconscious No-Go signals elicit two neural events: (1) an early occipital event and (2) a frontocentral event somewhat later in time. The first neural event represents the visual encoding of the unconscious No-Go stimulus, and is also present in a control experiment where the masked stimulus has no behavioral relevance. The second event is unique to the Go/No-Go experiment, and shows the subsequent implementation of inhibitory control in the PFC. The size of the frontal activity pattern correlated highly with the impact of unconscious No-Go signals on subsequent behavior. We conclude that unconscious stimuli can influence whether a task will be performed or interrupted, and thus exert a form of cognitive control. These findings challenge traditional views concerning the proposed relationship between awareness and cognitive control and stretch the alleged limits and depth of unconscious information processing. PMID:18685030

  6. Encoding frequency contrast in primate auditory cortex

    PubMed Central

    Scott, Brian H.; Semple, Malcolm N.

    2014-01-01

    Changes in amplitude and frequency jointly determine much of the communicative significance of complex acoustic signals, including human speech. We have previously described responses of neurons in the core auditory cortex of awake rhesus macaques to sinusoidal amplitude modulation (SAM) signals. Here we report a complementary study of sinusoidal frequency modulation (SFM) in the same neurons. Responses to SFM were analogous to SAM responses in that changes in multiple parameters defining SFM stimuli (e.g., modulation frequency, modulation depth, carrier frequency) were robustly encoded in the temporal dynamics of the spike trains. For example, changes in the carrier frequency produced highly reproducible changes in shapes of the modulation period histogram, consistent with the notion that the instantaneous probability of discharge mirrors the moment-by-moment spectrum at low modulation rates. The upper limit for phase locking was similar across SAM and SFM within neurons, suggesting shared biophysical constraints on temporal processing. Using spike train classification methods, we found that neural thresholds for modulation depth discrimination are typically far lower than would be predicted from frequency tuning to static tones. This “dynamic hyperacuity” suggests a substantial central enhancement of the neural representation of frequency changes relative to the auditory periphery. Spike timing information was superior to average rate information when discriminating among SFM signals, and even when discriminating among static tones varying in frequency. This finding held even when differences in total spike count across stimuli were normalized, indicating both the primacy and generality of temporal response dynamics in cortical auditory processing. PMID:24598525

  7. Signaling Interactions in the Adrenal Cortex

    PubMed Central

    Spät, András; Hunyady, László; Szanda, Gergő

    2016-01-01

    The major physiological stimuli of aldosterone secretion are angiotensin II (AII) and extracellular K+, whereas cortisol production is primarily regulated by corticotropin (ACTH) in fasciculata cells. AII triggers Ca2+ release from internal stores that is followed by store-operated and voltage-dependent Ca2+ entry, whereas K+-evoked depolarization activates voltage-dependent Ca2+ channels. ACTH acts primarily through the formation of cAMP and subsequent protein phosphorylation by protein kinase A. Both Ca2+ and cAMP facilitate the transfer of cholesterol to mitochondrial inner membrane. The cytosolic Ca2+ signal is transferred into the mitochondrial matrix and enhances pyridine nucleotide reduction. Increased formation of NADH results in increased ATP production, whereas that of NADPH supports steroid production. In reality, the control of adrenocortical function is a lot more sophisticated with second messengers crosstalking and mutually modifying each other’s pathways. Cytosolic Ca2+ and cGMP are both capable of modifying cAMP metabolism, while cAMP may enhance Ca2+ release and voltage-activated Ca2+ channel activity. Besides, mitochondrial Ca2+ signal brings about cAMP formation within the organelle and this further enhances aldosterone production. Maintained aldosterone and cortisol secretion are optimized by the concurrent actions of Ca2+ and cAMP, as exemplified by the apparent synergism of Ca2+ influx (inducing cAMP formation) and Ca2+ release during response to AII. Thus, cross-actions of parallel signal transducing pathways are not mere intracellular curiosities but rather substantial phenomena, which fine-tune the biological response. Our review focuses on these functionally relevant interactions between the Ca2+ and the cyclic nucleotide signal transducing pathways hitherto described in the adrenal cortex. PMID:26973596

  8. Twin Convergence Zones

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's QuikSCAT satellite has confirmed a 30-year old largely unproven theory that there are two areas near the equator where the winds converge year after year and drive ocean circulation south of the equator. By analyzing winds, QuikSCAT has found a year-round southern and northern Intertropical Convergence Zone. This find is important to climate modelers and weather forecasters because it provides more detail on how the oceans and atmosphere interact near the equator. The Intertropical Convergence Zone (ITCZ) is the region that circles the Earth near the equator, where the trade winds of both the Northern and Southern Hemispheres come together. North of the equator, strong sun and warm water of the equator heats the air in the ITCZ, drawing air in from north and south and causing the air to rise. As the air rises it cools, releasing the accumulated moisture in an almost perpetual series of thunderstorms. Satellite data, however, has confirmed that there is an ITCZ north of the equator and a parallel ITCZ south of the equator. Variation in the location of the ITCZ is important to people around the world because it affects the north-south atmospheric circulation, which redistributes energy. It drastically affects rainfall in many equatorial nations, resulting in the wet and dry seasons of the tropics rather than the cold and warm seasons of higher latitudes. Longer term changes in the ITCZ can result in severe droughts or flooding in nearby areas. 'The double ITCZ is usually only identified in the Pacific and Atlantic Oceans on a limited and seasonal basis,' said Timothy Liu, of NASA's Jet Propulsion Laboratory and California Institute of Technology, Pasadena, Calif., and lead researcher on the project. In the eastern Pacific Ocean, the southern ITCZ is usually seen springtime. In the western Atlantic Ocean, the southern ITCZ was recently clearly identified only in the summertime. However, QuikSCAT's wind data has seen the southern ITCZ in all seasons across the

  9. MEG reveals a fast pathway from somatosensory cortex to occipital areas via posterior parietal cortex in a blind subject

    PubMed Central

    Ioannides, Andreas A.; Liu, Lichan; Poghosyan, Vahe; Saridis, George A.; Gjedde, Albert; Ptito, Maurice; Kupers, Ron

    2013-01-01

    Cross-modal activity in visual cortex of blind subjects has been reported during performance of variety of non-visual tasks. A key unanswered question is through which pathways non-visual inputs are funneled to the visual cortex. Here we used tomographic analysis of single trial magnetoencephalography (MEG) data recorded from one congenitally blind and two sighted subjects after stimulation of the left and right median nerves at three intensities: below sensory threshold, above sensory threshold and above motor threshold; the last sufficient to produce thumb twitching. We identified reproducible brain responses in the primary somatosensory (S1) and motor (M1) cortices at around 20 ms post-stimulus, which were very similar in sighted and blind subjects. Time-frequency analysis revealed strong 45–70 Hz activity at latencies of 20–50 ms in S1 and M1, and posterior parietal cortex Brodmann areas (BA) 7 and 40, which compared to lower frequencies, were substantially more pronounced in the blind than the sighted subjects. Critically, at frequencies from α-band up to 100 Hz we found clear, strong, and widespread responses in the visual cortex of the blind subject, which increased with the intensity of the somatosensory stimuli. Time-delayed mutual information (MI) revealed that in blind subject the stimulus information is funneled from the early somatosensory to visual cortex through posterior parietal BA 7 and 40, projecting first to visual areas V5 and V3, and eventually V1. The flow of information through this pathway occurred in stages characterized by convergence of activations into specific cortical regions. In sighted subjects, no linked activity was found that led from the somatosensory to the visual cortex through any of the studied brain regions. These results provide the first evidence from MEG that in blind subjects, tactile information is routed from primary somatosensory to occipital cortex via the posterior parietal cortex. PMID:23935576

  10. Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat.

    PubMed Central

    Martin, K A; Whitteridge, D

    1984-01-01

    We have studied the neuronal circuitry and structure-function relationships of single neurones in the striate visual cortex of the cat using a combination of electrophysiological and anatomical techniques. Glass micropipettes filled with horseradish peroxidase were used to record extracellularly from single neurones. After studying the receptive field properties, the afferent inputs of the neurones were studied by determining their latency of response to electrical stimulation at different positions along the optic pathway. Some cells were thus classified as receiving a mono- or polysynaptic input from afferents of the lateral geniculate nucleus (l.g.n.), via X- or Y-like retinal ganglion cells. Two striking correlations were found between dendritic morphology and receptive field type. All spiny stellate cells, and all star pyramidal cells in layer 4A, had receptive fields with spatially separate on and off subfields (S-type receptive fields). All the identified afferent input to these, the major cell types in layer 4, was monosynaptic from X- or Y-like afferents. Neurones receiving monosynaptic X- or Y-like input were not strictly segregated in layer 4 and the lower portion of layer 3. Nevertheless the X- and Y-like l.g.n. fibres did not converge on any of the single neurones so far studied. Monosynaptic input from the l.g.n. afferents was not restricted to cells lying within layers 4 and 6, the main termination zones of the l.g.n. afferents, but was also received by cells lying in layers 3 and 5. The projection pattern of cells receiving monosynaptic input differed widely, depending on the laminar location of the cell soma. This suggests the presence of a number of divergent paths within the striate cortex. Cells receiving indirect input from the l.g.n. afferents were located mainly within layers 2, 3 and 5. Most pyramidal cells in layer 3 had axons projecting out of the striate cortex, while many axons of the layer 5 pyramids did not. The layer 5 cells showed

  11. Differential Modification of Cortical and Thalamic Projections to Cat Primary Auditory Cortex Following Early- and Late-Onset Deafness.

    PubMed

    Chabot, Nicole; Butler, Blake E; Lomber, Stephen G

    2015-10-15

    Following sensory deprivation, primary somatosensory and visual cortices undergo crossmodal plasticity, which subserves the remaining modalities. However, controversy remains regarding the neuroplastic potential of primary auditory cortex (A1). To examine this, we identified cortical and thalamic projections to A1 in hearing cats and those with early- and late-onset deafness. Following early deafness, inputs from second auditory cortex (A2) are amplified, whereas the number originating in the dorsal zone (DZ) decreases. In addition, inputs from the dorsal medial geniculate nucleus (dMGN) increase, whereas those from the ventral division (vMGN) are reduced. In late-deaf cats, projections from the anterior auditory field (AAF) are amplified, whereas those from the DZ decrease. Additionally, in a subset of early- and late-deaf cats, area 17 and the lateral posterior nucleus (LP) of the visual thalamus project concurrently to A1. These results demonstrate that patterns of projections to A1 are modified following deafness, with statistically significant changes occurring within the auditory thalamus and some cortical areas. Moreover, we provide anatomical evidence for small-scale crossmodal changes in projections to A1 that differ between early- and late-onset deaf animals, suggesting that potential crossmodal activation of primary auditory cortex differs depending on the age of deafness onset. PMID:25879955

  12. Vadose zone water fluxmeter

    DOEpatents

    Faybishenko, Boris A.

    2005-10-25

    A Vadose Zone Water Fluxmeter (WFM) or Direct Measurement WFM provides direct measurement of unsaturated water flow in the vadose zone. The fluxmeter is a cylindrical device that fits in a borehole or can be installed near the surface, or in pits, or in pile structures. The fluxmeter is primarily a combination of tensiometers and a porous element or plate in a water cell that is used for water injection or extraction under field conditions. The same water pressure measured outside and inside of the soil sheltered by the lower cylinder of the fluxmeter indicates that the water flux through the lower cylinder is similar to the water flux in the surrounding soil. The fluxmeter provides direct measurement of the water flow rate in the unsaturated soils and then determines the water flux, i.e. the water flow rate per unit area.

  13. Trojans in habitable zones.

    PubMed

    Schwarz, Richard; Pilat-Lohinger, Elke; Dvorak, Rudolf; Erdi, Balint; Sándor, Zsolt

    2005-10-01

    With the aid of numerical experiments we examined the dynamical stability of fictitious terrestrial planets in 1:1 mean motion resonance with Jovian-like planets of extrasolar planetary systems. In our stability study of the so-called "Trojan" planets in the habitable zone, we used the restricted three-body problem with different mass ratios of the primary bodies. The application of the three-body problem showed that even massive Trojan planets can be stable in the 1:1 mean motion resonance. From the 117 extrasolar planetary systems only 11 systems were found with one giant planet in the habitable zone. Out of this sample set we chose four planetary systems--HD17051, HD27442, HD28185, and HD108874--for further investigation. To study the orbital behavior of the stable zone in the different systems, we used direct numerical computations (Lie Integration Method) that allowed us to determine the escape times and the maximum eccentricity of the fictitious "Trojan planets." PMID:16225431

  14. Radiant zone heated particulate filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2011-12-27

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  15. Renewable liquid reflecting zone plate

    DOEpatents

    Toor, Arthur; Ryutov, Dmitri D.

    2003-12-09

    A renewable liquid reflecting zone plate. Electrodes are operatively connected to a dielectric liquid in a circular or other arrangement to produce a reflecting zone plate. A system for renewing the liquid uses a penetrable substrate.

  16. Microstimulation of visual cortex to restore vision.

    PubMed

    Tehovnik, Edward J; Slocum, Warren M; Smirnakis, Stelios M; Tolias, Andreas S

    2009-01-01

    This review argues that one reason why a functional visuo-cortical prosthetic device has not been developed to restore even minimal vision to blind individuals is because there is no animal model to guide the design and development of such a device. Over the past 8 years we have been conducting electrical microstimulation experiments on alert behaving monkeys with the aim of better understanding how electrical stimulation of the striate cortex (area V1) affects oculo- and skeleto-motor behaviors. Based on this work and upon review of the literature, we arrive at several conclusions: (1) As with the development of the cochlear implant, the development of a visuo-cortical prosthesis can be accelerated by using animals to test the perceptual effects of microstimulating V1 in intact and blind monkeys. (2) Although a saccade-based paradigm is very convenient for studying the effectiveness of delivering stimulation to V1 to elicit saccadic eye movements, it is less ideal for probing the volitional state of monkeys, as they perceive electrically induced phosphenes. (3) Electrical stimulation of V1 can delay visually guided saccades generated to a punctate target positioned in the receptive field of the stimulated neurons. We call the region of visual space affected by the stimulation a delay field. The study of delay fields has proven to be an efficient way to study the size and shape of phosphenes generated by stimulation of macaque V1. (4) An alternative approach to ascertain what monkeys see during electrical stimulation of V1 is to have them signal the detection of current with a lever press. Monkeys can readily detect currents of 1-2 microA delivered to V1. In order to evoke featured phosphenes currents of under 5 microA will be necessary. (5) Partially lesioning the retinae of monkeys is superior to completely lesioning the retinae when determining how blindness affects phosphene induction. We finish by proposing a future experimental paradigm designed to determine

  17. Cultivating the cortex in German neuroanatomy.

    PubMed

    Hagner, M

    2001-12-01

    The cerebral localization of mental functions is one of the centerpieces of modern brain research. Though the localization paradigm in its cultural and social interwovenness has been characterized as successful in the last third of the nineteenth century by a variety of historians of the neurosciences, there is also general agreement that localization came under threat around 1900. Besides the so-called holistic protest against the localization of mental functions, the neuroanatomical approach itself was challenged by experimental psychology, psychiatric nosology, and psychoanalysis. This story underestimates the fact that anatomically-based localization remained powerful in response to these multiple challenges. This meant a neuroanatomical revision of tools, concepts, and practices. But this meant also a shift in the cultivation of the cortex from a more philosophical agenda to rather concrete political claims. More specifically, the idea of the cortext as the noblest part of man was supplemented by suggestions concerning its "Höherzüchtung." I will analyze this re-orientation and radicalization in two steps. First, I briefly discuss the anatomical and philosophical account of Theodor Meynert and then turn to Paul Flechsig who in the late nineteenth century inscribed the ability to create culture and civilization into the cortext. Second, I focus on the neuroanatomists Oskar and Cécile Vogt, who began their careers around 1900 and expanded the cultivation of the cortext. Even before World War I, they proclaimed a "cerebral hygiene." Consequently, the Vogts linked their innovative neuroanatomical researches with the rising field of genetics, racial hygiene, and eugenics. In the early Weimar Republic, the Vogts openly supported socialist ideas and were engaged in establishing an Institute for Brain Research in Soviet Moscow, where Lenin's brain was analyzed. By the end of the Weimar Republic, the rhetoric of the Vogts was bluntly authoritarian. Based on a few

  18. Dental Occlusal Changes Induce Motor Cortex Neuroplasticity.

    PubMed

    Avivi-Arber, L; Lee, J-C; Sessle, B J

    2015-12-01

    Modification to the dental occlusion may alter oral sensorimotor functions. Restorative treatments aim to restore sensorimotor functions; however, it is unclear why some patients fail to adapt to the restoration and remain with sensorimotor complaints. The face primary motor cortex (face-M1) is involved in the generation and control of orofacial movements. Altered sensory inputs or motor function can induce face-M1 neuroplasticity. We took advantage of the continuous eruption of the incisors in Sprague-Dawley rats and used intracortical microstimulation (ICMS) to map the jaw and tongue motor representations in face-M1. Specifically, we tested the hypothesis that multiple trimming of the right mandibular incisor, to keep it out of occlusal contacts for 7 d, and subsequent incisor eruption and restoration of occlusal contacts, can alter the ICMS-defined features of jaw and tongue motor representations (i.e., neuroplasticity). On days 1, 3, 5, and 7, the trim and trim-recovered groups had 1 to 2 mm of incisal trimming of the incisor; a sham trim group had buccal surface trimming with no occlusal changes; and a naive group had no treatment. Systematic mapping was performed on day 8 in the naive, trim, and sham trim groups and on day 14 in the trim-recovered group. In the trim group, the tongue onset latency was shorter in the left face-M1 than in the right face-M1 (P < .001). In the trim-recovered group, the number of tongue sites and jaw/tongue overlapping sites was greater in the left face-M1 than in the right face-M1 (P = 0.0032, 0.0016, respectively), and the center of gravity was deeper in the left than in the right face-M1 (P = 0.026). Therefore, incisor trimming and subsequent restoration of occlusal contacts induced face-M1 neuroplasticity, reflected in significant disparities between the left and right face-M1 in some ICMS-defined features of the tongue motor representations. Such neuroplasticity may reflect or contribute to subjects' ability to adapt their

  19. Habitable zones and UV habitable zones around host stars

    NASA Astrophysics Data System (ADS)

    Guo, Jianpo; Zhang, Fenghui; Zhang, Xianfei; Han, Zhanwen

    2010-01-01

    Ultraviolet radiation is a double-edged sword to life. If it is too strong, the terrestrial biological systems will be damaged. And if it is too weak, the synthesis of many biochemical compounds cannot go along. We try to obtain the continuous ultraviolet habitable zones, and compare the ultraviolet habitable zones with the habitable zones of host stars. Using the boundary ultraviolet radiation of ultraviolet habitable zone, we calculate the ultraviolet habitable zones of host stars with masses from 0.08 to 4.00 M ⊙. For the host stars with effective temperatures lower than 4,600 K, the ultraviolet habitable zones are closer than the habitable zones. For the host stars with effective temperatures higher than 7,137 K, the ultraviolet habitable zones are farther than the habitable zones. For a hot subdwarf as a host star, the distance of the ultraviolet habitable zone is about ten times more than that of the habitable zone, which is not suitable for the existence of life.

  20. Spatiotemporal dynamics of excitation in rat insular cortex: intrinsic corticocortical circuit regulates caudal-rostro excitatory propagation from the insular to frontal cortex.

    PubMed

    Fujita, S; Adachi, K; Koshikawa, N; Kobayashi, M

    2010-01-13

    The insular cortex (IC), composing unique anatomical connections, receives multi-modal sensory inputs including visceral, gustatory and somatosensory information from sensory thalamic nuclei. Axonal projections from the limbic structures, which have a profound influence on induction of epileptic activity, also converge onto the IC. However, functional connectivity underlying the physiological and pathological roles characteristic to the IC still remains unclear. The present study sought to elucidate the spatiotemporal dynamics of excitatory propagation and their cellular mechanisms in the IC using optical recording in urethane-anesthetized rats. Repetitive electrical stimulations of the IC at 50 Hz demonstrated characteristic patterns of excitatory propagation depending on the stimulation sites. Stimulation of the granular zone of the IC (GI) and other surrounding cortices such as the motor/primary sensory/secondary sensory cortices evoked round-shaped excitatory propagations, which often extended over the borders of adjacent areas, whereas excitation of the agranular and dysgranular zones in the IC (AI and DI, respectively) spread along the rostrocaudal axis parallel to the rhinal fissure. Stimulation of AI/DI often evoked excitation in the dorsolateral orbital cortex, which exhibited spatially discontinuous topography of excitatory propagation in the IC. Pharmacological manipulations using 6,7-dinitroquinoxaline-2,3(1H,4H)-dione (DNQX), a non-NMDA receptor antagonist, D-2-amino-5-phosphonovaleric acid (D-APV), an NMDA receptor antagonist, and bicuculline methiodide, a GABA(A) receptor antagonist, indicate that excitatory propagation was primarily regulated by non-NMDA and GABA(A) receptors. Microinjection of lidocaine or incision of the supragranular layers of the rostrocaudally middle part of excitatory regions suppressed excitation in the remote regions from the stimulation site, suggesting that the excitatory propagation in the IC is largely mediated by

  1. rTMS of the Left Dorsolateral Prefrontal Cortex Modulates Dopamine Release in the Ipsilateral Anterior Cingulate Cortex and Orbitofrontal Cortex

    PubMed Central

    Cho, Sang Soo; Strafella, Antonio P.

    2009-01-01

    Background Brain dopamine is implicated in the regulation of movement, attention, reward and learning and plays an important role in Parkinson's disease, schizophrenia and drug addiction. Animal experiments have demonstrated that brain stimulation is able to induce significant dopaminergic changes in extrastriatal areas. Given the up-growing interest of non-invasive brain stimulation as potential tool for treatment of neurological and psychiatric disorders, it would be critical to investigate dopaminergic functional interactions in the prefrontal cortex and more in particular the effect of dorsolateral prefrontal cortex (DLPFC) (areas 9/46) stimulation on prefrontal dopamine (DA). Methodology/Principal Findings Healthy volunteers were studied with a high-affinity DA D2-receptor radioligand, [11C]FLB 457-PET following 10 Hz repetitive transcranial magnetic stimulation (rTMS) of the left and right DLPFC. rTMS on the left DLPFC induced a significant reduction in [11C]FLB 457 binding potential (BP) in the ipsilateral subgenual anterior cingulate cortex (ACC) (BA 25/12), pregenual ACC (BA 32) and medial orbitofrontal cortex (BA 11). There were no significant changes in [11C]FLB 457 BP following right DLPFC rTMS. Conclusions/Significance To our knowledge, this is the first study to provide evidence of extrastriatal DA modulation following acute rTMS of DLPFC with its effect limited to the specific areas of medial prefrontal cortex. [11C]FLB 457-PET combined with rTMS may allow to explore the neurochemical functions of specific cortical neural networks and help to identify the neurobiological effects of TMS for the treatment of different neurological and psychiatric diseases. PMID:19696930

  2. Time-varying covariance of neural activities recorded in striatum and frontal cortex as monkeys perform sequential-saccade tasks.

    PubMed

    Fujii, N; Graybiel, A M

    2005-06-21

    Cortico-basal ganglia circuits are key parts of the brain's habit system, but little is yet known about how these forebrain pathways function as ingrained habits are performed. We simultaneously recorded spike and local field potential (LFP) activity from regions of the frontal cortex and basal ganglia implicated in visuo-oculomotor control as highly trained macaque monkeys performed sequences of visually guided saccades. The tasks were repetitive, required no new learning, and could be performed nearly automatically. Our findings demonstrate striking differences between the relative timing of striatal and cortical activity during performance of the tasks. At the onset of the visual cues, LFPs in the prefrontal cortex and the oculomotor zone of the striatum showed near-synchronous activation. During the period of sequential-saccade performance, however, peak LFP activity occurred 100-300 msec later in the striatum than in the prefrontal cortex. Peak prefrontal activity tended to be peri-saccadic, whereas peak striatal activity tended to be post-saccadic. This temporal offset was also apparent in pairs of simultaneously recorded prefrontal and striatal neurons. In triple-site recordings, the LFP activity recorded in the supplementary eye field shared temporal characteristics of both the prefrontal and the striatal patterns. The near simultaneity of prefrontal and striatal peak responses at cue onsets, but temporal lag of striatal activity in the movement periods, suggests that the striatum may integrate corollary discharge or confirmatory response signals during sequential task performance. These timing relationships may be signatures of the normal functioning of striatal and frontal cortex during repetitive performance of learned behaviors. PMID:15956185

  3. Time-varying covariance of neural activities recorded in striatum and frontal cortex as monkeys perform sequential-saccade tasks

    PubMed Central

    Fujii, N.; Graybiel, A. M.

    2005-01-01

    Cortico-basal ganglia circuits are key parts of the brain's habit system, but little is yet known about how these forebrain pathways function as ingrained habits are performed. We simultaneously recorded spike and local field potential (LFP) activity from regions of the frontal cortex and basal ganglia implicated in visuo-oculomotor control as highly trained macaque monkeys performed sequences of visually guided saccades. The tasks were repetitive, required no new learning, and could be performed nearly automatically. Our findings demonstrate striking differences between the relative timing of striatal and cortical activity during performance of the tasks. At the onset of the visual cues, LFPs in the prefrontal cortex and the oculomotor zone of the striatum showed near-synchronous activation. During the period of sequential-saccade performance, however, peak LFP activity occurred 100–300 msec later in the striatum than in the prefrontal cortex. Peak prefrontal activity tended to be peri-saccadic, whereas peak striatal activity tended to be post-saccadic. This temporal offset was also apparent in pairs of simultaneously recorded prefrontal and striatal neurons. In triple-site recordings, the LFP activity recorded in the supplementary eye field shared temporal characteristics of both the prefrontal and the striatal patterns. The near simultaneity of prefrontal and striatal peak responses at cue onsets, but temporal lag of striatal activity in the movement periods, suggests that the striatum may integrate corollary discharge or confirmatory response signals during sequential task performance. These timing relationships may be signatures of the normal functioning of striatal and frontal cortex during repetitive performance of learned behaviors. PMID:15956185

  4. Mindfulness training modulates value signals in ventromedial prefrontal cortex through input from insular cortex

    PubMed Central

    Kirk, Ulrich; Gu, Xiaosi; Harvey, Ann H.; Fonagy, Peter; Montague, P. Read

    2014-01-01

    Neuroimaging research has demonstrated that ventromedial prefrontal cortex (vmPFC) encodes value signals that can be modulated by top-down cognitive input such as semantic knowledge, price incentives, and monetary favors suggesting that such biases may have an identified biological basis. It has been hypothesized that mindfulness training (MT) provides one path for gaining control over such top-down influences; yet, there have been no direct tests of this hypothesis. Here, we probe the behavioral and neural effects of MT on value signals in vmPFC in a randomized longitudinal design of 8 weeks of MT on an initially naïve subject cohort. The impact of this within-subject training was assessed using two paradigms: one that employed primary rewards (fruit juice) in a simple conditioning task and another that used a well-validated art-viewing paradigm to test bias of monetary favors on preference. We show that MT behaviorally censors the top-down bias of monetary favors through a measurable influence on value signals in vmPFC. MT also modulates value signals in vmPFC to primary reward delivery. Using a separate cohort of subjects we show that 8 weeks of active control training (ACT) generates the same behavioral impact also through an effect on signals in the vmPFC. Importantly, functional connectivity analyses show that value signals in vmPFC are coupled with bilateral posterior insula in the MT groups in both paradigms, but not in the ACT groups. These results suggest that MT integrates interoceptive input from insular cortex in the context of value computations of both primary and secondary rewards. PMID:24956066

  5. Adaptive Processes in Thalamus and Cortex Revealed by Silencing of Primary Visual Cortex during Contrast Adaptation.

    PubMed

    King, Jillian L; Lowe, Matthew P; Stover, Kurt R; Wong, Aimee A; Crowder, Nathan A

    2016-05-23

    Visual adaptation illusions indicate that our perception is influenced not only by the current stimulus but also by what we have seen in the recent past. Adaptation to stimulus contrast (the relative luminance created by edges or contours in a scene) induces the perception of the stimulus fading away and increases the contrast detection threshold in psychophysical tests [1, 2]. Neural correlates of contrast adaptation have been described throughout the visual system including the retina [3], dorsal lateral geniculate nucleus (dLGN) [4, 5], primary visual cortex (V1) [6], and parietal cortex [7]. The apparent ubiquity of adaptation at all stages raises the question of how this process cascades across brain regions [8]. Focusing on V1, adaptation could be inherited from pre-cortical stages, arise from synaptic depression at the thalamo-cortical synapse [9], or develop locally, but what is the weighting of these contributions? Because contrast adaptation in mouse V1 is similar to classical animal models [10, 11], we took advantage of the optogenetic tools available in mice to disentangle the processes contributing to adaptation in V1. We disrupted cortical adaptation by optogenetically silencing V1 and found that adaptation measured in V1 now resembled that observed in dLGN. Thus, the majority of adaptation seen in V1 neurons arises through local activity-dependent processes, with smaller contributions from dLGN inheritance and synaptic depression at the thalamo-cortical synapse. Furthermore, modeling indicates that divisive scaling of the weakly adapted dLGN input can predict some of the emerging features of V1 adaptation. PMID:27112300

  6. The orbitofrontal cortex: novelty, deviation from expectation, and memory.

    PubMed

    Petrides, Michael

    2007-12-01

    The orbitofrontal cortex is strongly connected with limbic areas of the medial temporal lobe that are critically involved in the establishment of declarative memories (entorhinal and perirhinal cortex and the hippocampal region) as well as the amygdala and the hypothalamus that are involved in emotional and motivational states. The present article reviews evidence regarding the role of the orbitofrontal cortex in the processing of novel information, breaches of expectation, and memory. Functional neuroimaging evidence is provided that there is a difference between the anterior and posterior orbitofrontal cortex in such processing. Exposure to novel information gives rise to a selective increase of activity in the granular anterior part of the orbitofrontal cortex (area 11) and this activity increases when subjects attempt to encode this information in memory. If the stimuli violate expectations (e.g., inspection of graffiti-like stimuli in the context of other regular stimuli) or are unpleasant (i.e., exposure to the sounds of car crashes), there is increased response in the posteromedial agranular/dysgranular area 13 of the orbitofrontal region. The anatomic data provide a framework within which to understand these functional neuroimaging findings. PMID:17872393

  7. Long-Term Synaptic Plasticity in Rat Barrel Cortex.

    PubMed

    Han, Yong; Huang, Ming-De; Sun, Man-Li; Duan, Shumin; Yu, Yan-Qin

    2015-09-01

    Rats generate sweeping whisker movements in order to explore their environments and identify objects. In somatosensory pathways, neuronal activity is modulated by the frequency of whisker vibration. However, the potential role of rhythmic neuronal activity in the cerebral processing of sensory signals and its mechanism remain unclear. Here, we showed that rhythmic vibrissal stimulation with short duration in anesthetized rats resulted in an increase or decrease in the amplitude of somatosensory-evoked potentials (SEPs) in the contralateral barrel cortex. The plastic change of the SEPs was frequency dependent and long lasting. The long-lasting enhancement of the vibrissa-to-cortex evoked response was side- but not barrel-specific. Local application of dl-2-amino-5-phosphonopentanoic acid into the barrel cortex revealed that this vibrissa-to-cortex long-term plasticity in adult rats was N-methyl-d-aspartate receptor-dependent. Most interestingly, whisker trimming through postnatal day (P)1-7 but not P29-35 impaired the long-term plasticity induced by 100 Hz vibrissal stimulation. The short period of rhythmic vibrissal stimulation did not induce long-lasting plasticity of field potentials in the thalamus. In conclusion, our results suggest that natural rhythmic whisker activity modifies sensory information processing in cerebral cortex, providing further insight into sensory perception. PMID:24735674

  8. Changes in Cerebral Cortex of Children Treated for Medulloblastoma

    SciTech Connect

    Liu, Arthur K. . E-mail: aliu1@partners.org; Marcus, Karen J.; Fischl, Bruce; Grant, P. Ellen; Young Poussaint, Tina; Rivkin, Michael J.; Davis, Peter; Tarbell, Nancy J.; Yock, Torunn I.

    2007-07-15

    Purpose: Children with medulloblastoma undergo surgery, radiotherapy, and chemotherapy. After treatment, these children have numerous structural abnormalities. Using high-resolution magnetic resonance imaging, we measured the thickness of the cerebral cortex in a group of medulloblastoma patients and a group of normally developing children. Methods and Materials: We obtained magnetic resonance imaging scans and measured the cortical thickness in 9 children after treatment of medulloblastoma. The measurements from these children were compared with the measurements from age- and gender-matched normally developing children previously scanned. For additional comparison, the pattern of thickness change was compared with the cortical thickness maps from a larger group of 65 normally developing children. Results: In the left hemisphere, relatively thinner cortex was found in the perirolandic region and the parieto-occipital lobe. In the right hemisphere, relatively thinner cortex was found in the parietal lobe, posterior superior temporal gyrus, and lateral temporal lobe. These regions of cortical thinning overlapped with the regions of cortex that undergo normal age-related thinning. Conclusion: The spatial distribution of cortical thinning suggested that the areas of cortex that are undergoing development are more sensitive to the effects of treatment of medulloblastoma. Such quantitative methods may improve our understanding of the biologic effects that treatment has on the cerebral development and their neuropsychological implications.

  9. Infralimbic cortex activation and motivated arousal induce histamine release

    PubMed Central

    Forray, María Inés; Torrealba, Fernando

    2015-01-01

    Appetitive behaviours occur in a state of behavioural and physiological activation that allows the optimal performance of these goal-directed behaviours. Here, we tested the hypothesis that histamine neurons under the command of the infralimbic cortex are important to provide behavioural activation. Extracellular histamine and serotonin were measured by microdialysis of the medial prefrontal cortex in behaving rats in parallel with a picrotoxin microinjection into the infralimbic cortex. The injection aroused the rats behaviourally, increased histamine release and decreased serotonin levels. Inhibition of the infralimbic cortex with muscimol produced the opposite effects on neurotransmitter release. The behavioural activation induced by motivating hungry rats with caged food was paralleled by an immediate histamine release, whereas awakening induced by tapping their microdialysis bowl increased serotonin, but not histamine levels. In conclusion, picrotoxin injection into the infralimbic cortex produces behavioural activation together with histamine release; in a similar manner, induction of an appetitive state produced histamine release, likely related to increased behavioural activation characteristic of an appetitive behaviour. PMID:25746330

  10. Responses of primate frontal cortex neurons during natural vocal communication

    PubMed Central

    Thomas, A. Wren; Nummela, Samuel U.; de la Mothe, Lisa A.

    2015-01-01

    The role of primate frontal cortex in vocal communication and its significance in language evolution have a controversial history. While evidence indicates that vocalization processing occurs in ventrolateral prefrontal cortex neurons, vocal-motor activity has been conjectured to be primarily subcortical and suggestive of a distinctly different neural architecture from humans. Direct evidence of neural activity during natural vocal communication is limited, as previous studies were performed in chair-restrained animals. Here we recorded the activity of single neurons across multiple regions of prefrontal and premotor cortex while freely moving marmosets engaged in a natural vocal behavior known as antiphonal calling. Our aim was to test whether neurons in marmoset frontal cortex exhibited responses during vocal-signal processing and/or vocal-motor production in the context of active, natural communication. We observed motor-related changes in single neuron activity during vocal production, but relatively weak sensory responses for vocalization processing during this natural behavior. Vocal-motor responses occurred both prior to and during call production and were typically coupled to the timing of each vocalization pulse. Despite the relatively weak sensory responses a population classifier was able to distinguish between neural activity that occurred during presentations of vocalization stimuli that elicited an antiphonal response and those that did not. These findings are suggestive of the role that nonhuman primate frontal cortex neurons play in natural communication and provide an important foundation for more explicit tests of the functional contributions of these neocortical areas during vocal behaviors. PMID:26084912

  11. Deficits in prospective memory following damage to the prefrontal cortex.

    PubMed

    Umeda, Satoshi; Kurosaki, Yoshiko; Terasawa, Yuri; Kato, Motoichiro; Miyahara, Yasuyuki

    2011-07-01

    Neuropsychological investigations of prospective memory (PM), representing memory of future intentions or plans, have evolved over the past two decades. The broadly accepted divisions involved in PM consist of a prospective memory component (PMC), a process for remembering to remember, and a retrospective memory component, a process for remembering the content of the intended action. Previous functional neuroimaging studies have provided some evidence that the rostral prefrontal cortex (BA10) is one of areas that is critical for prospective remembering. However, the question of whether damage to part of the prefrontal cortex affects attenuated performance for PMC remains unresolved. In this study, 74 participants with traumatic brain injury (TBI) including focal damage to frontal or temporal lobe areas were administered thirteen standard neuropsychological tests and the PM task. To identify influential areas contributing to PM performance, discriminant function analysis was conducted. The results indicated that the following three areas are highly contributory to PM performance: the right dorsolateral prefrontal cortex; the right ventromedial prefrontal cortex; and the left dorsomedial prefrontal cortex. Comparing differences in neuropsychological test scores showed that orientation scores were significantly higher in the greater PM performance group, suggesting that PMC represents an integrated memory function associated with awareness of current status. These data contribute to our understanding of the neural substrates and functional characteristics of the PMC. PMID:21477605

  12. Immature cortex lesions alter retinotopic maps and interhemispheric connections.

    PubMed

    Restrepo, C Ernesto; Manger, Paul R; Spenger, Christian; Innocenti, Giorgio M

    2003-07-01

    Unilateral lesions of the occipital visual areas performed on postnatal day 5 (P5) in the ferret are not compensated by the appearance, in the lesioned hemisphere, of visual responses at ectopic locations. Instead, when parts of the visual areas are spared, they show abnormal retinotopic organizations; furthermore, callosal connections are abnormally distributed in relation to the retinotopic maps. Lesions that completely eliminate the visual areas including the posterior parietal cortex cause the appearance of abnormal callosal connections from the primary somatosensory cortex on the lesion side to the contralateral, intact, posterior parietal cortex. The occipital visual areas (17, 18, 19, and 21) of the intact hemisphere show a normal retinotopy but lose callosal connections in territories homotopic to the lesions. These findings clarify the nature and limits of structural developmental plasticity in the visual cortex. Early in life, certain regions of cortex have been irreversibly allocated to the visual areas, but two properties defining the areas, that is, retinotopy and connections, remain modifiable. The findings might be relevant for understanding the consequences of early-onset visual cortical lesions in humans. PMID:12838520

  13. Saturated Zone Colloid Transport

    SciTech Connect

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation

  14. Liquid zone seal

    DOEpatents

    Klebanoff, Leonard E.

    2001-01-01

    A seal assembly that provides a means for establishing multiple pressure zones within a system. The seal assembly combines a plate extending from the inner wall of a housing or inner enclosure that intersects with and is immersed in the fluid contained in a well formed in a tray contained within the enclosure. The fluid is a low vapor pressure oil, chemically inert and oxidation resistant. The use of a fluid as the sealing component provides a seal that is self-healing and mechanically robust not subject to normal mechanical wear, breakage, and formation of cracks or pinholes and decouples external mechanical vibrations from internal structural members.

  15. Early effects of low doses of ionizing radiation on the fetal cerebral cortex in rats

    SciTech Connect

    Norton, S.; Kimler, B.F. )

    1990-11-01

    Pregnant rats were exposed to gamma radiation from a 137Cs irradiator on gestational Day 15. Fetuses that received 0.25, 0.5, 0.75, or 1.0 Gy were examined 24 h after irradiation for changes in the cells of the cerebral mantle of the developing brain. The extent of changes following 0.5 Gy was studied at 3, 6, 12, or 24 h after exposure. Cortical thickness of the cerebral mantle was not significantly altered. The number of pyknotic cells, number of macrophages, nuclear area, and number of mitotic cells were altered in a dose-related way. The number of pyknotic cells was significantly increased at all doses. A positive correlation between the number of pyknotic cells and the number of macrophages developed with time. At 3 h after irradiation about 60% of pyknotic cells were found in the subventricular zone and about 25% in the intermediate zone and cortical plate. The number of such cells in the upper layers of the cortex steadily increased up to 24 h, at which time about 70% of pyknotic cells were in these two layers. The relationship of the movement of pyknotic cells to migration of postmitotic neuroblasts is discussed.

  16. Spatial clustering of tuning in mouse primary visual cortex.

    PubMed

    Ringach, Dario L; Mineault, Patrick J; Tring, Elaine; Olivas, Nicholas D; Garcia-Junco-Clemente, Pablo; Trachtenberg, Joshua T

    2016-01-01

    The primary visual cortex of higher mammals is organized into two-dimensional maps, where the preference of cells for stimulus parameters is arranged regularly on the cortical surface. In contrast, the preference of neurons in the rodent appears to be arranged randomly, in what is termed a salt-and-pepper map. Here we revisited the spatial organization of receptive fields in mouse primary visual cortex by measuring the tuning of pyramidal neurons in the joint orientation and spatial frequency domain. We found that the similarity of tuning decreases as a function of cortical distance, revealing a weak but statistically significant spatial clustering. Clustering was also observed across different cortical depths, consistent with a columnar organization. Thus, the mouse visual cortex is not strictly a salt-and-pepper map. At least on a local scale, it resembles a degraded version of the organization seen in higher mammals, hinting at a possible common origin. PMID:27481398

  17. Capturing the temporal evolution of choice across prefrontal cortex.

    PubMed

    Hunt, Laurence T; Behrens, Timothy E J; Hosokawa, Takayuki; Wallis, Jonathan D; Kennerley, Steven W

    2015-01-01

    Activity in prefrontal cortex (PFC) has been richly described using economic models of choice. Yet such descriptions fail to capture the dynamics of decision formation. Describing dynamic neural processes has proven challenging due to the problem of indexing the internal state of PFC and its trial-by-trial variation. Using primate neurophysiology and human magnetoencephalography, we here recover a single-trial index of PFC internal states from multiple simultaneously recorded PFC subregions. This index can explain the origins of neural representations of economic variables in PFC. It describes the relationship between neural dynamics and behaviour in both human and monkey PFC, directly bridging between human neuroimaging data and underlying neuronal activity. Moreover, it reveals a functionally dissociable interaction between orbitofrontal cortex, anterior cingulate cortex and dorsolateral PFC in guiding cost-benefit decisions. We cast our observations in terms of a recurrent neural network model of choice, providing formal links to mechanistic dynamical accounts of decision-making. PMID:26653139

  18. Neural coding in barrel cortex during whisker-guided locomotion.

    PubMed

    Sofroniew, Nicholas James; Vlasov, Yurii A; Andrew Hires, Samuel; Freeman, Jeremy; Svoboda, Karel

    2015-01-01

    Animals seek out relevant information by moving through a dynamic world, but sensory systems are usually studied under highly constrained and passive conditions that may not probe important dimensions of the neural code. Here, we explored neural coding in the barrel cortex of head-fixed mice that tracked walls with their whiskers in tactile virtual reality. Optogenetic manipulations revealed that barrel cortex plays a role in wall-tracking. Closed-loop optogenetic control of layer 4 neurons can substitute for whisker-object contact to guide behavior resembling wall tracking. We measured neural activity using two-photon calcium imaging and extracellular recordings. Neurons were tuned to the distance between the animal snout and the contralateral wall, with monotonic, unimodal, and multimodal tuning curves. This rich representation of object location in the barrel cortex could not be predicted based on simple stimulus-response relationships involving individual whiskers and likely emerges within cortical circuits. PMID:26701910

  19. Orbitofrontal cortex encodes willingness to pay in everyday economic transactions.

    PubMed

    Plassmann, Hilke; O'Doherty, John; Rangel, Antonio

    2007-09-12

    An essential component of every economic transaction is a willingness-to-pay (WTP) computation in which buyers calculate the maximum amount of financial resources that they are willing to give up in exchange for the object being sold. Despite its pervasiveness, little is known about how the brain makes this computation. We investigated the neural basis of the WTP computation by scanning hungry subjects' brains using functional magnetic resonance imaging while they placed real bids for the right to eat different foods. We found that activity in the medial orbitofrontal cortex and in the dorsolateral prefrontal cortex encodes subjects' WTP for the items. Our results support the hypothesis that the medial orbitofrontal cortex encodes the value of goals in decision making. PMID:17855612

  20. Optogenetic Assessment of Horizontal Interactions in Primary Visual Cortex

    PubMed Central

    Huang, Xiaoying; Elyada, Yishai M.; Bosking, William H.; Walker, Theo

    2014-01-01

    Columnar organization of orientation selectivity and clustered horizontal connections linking orientation columns are two of the distinctive organizational features of primary visual cortex in many mammalian species. However, the functional role of these connections has been harder to characterize. Here we examine the extent and nature of horizontal interactions in V1 of the tree shrew using optical imaging of intrinsic signals, optogenetic stimulation, and multi-unit recording. Surprisingly, we find the effects of optogenetic stimulation depend primarily on distance and not on the specific orientation domains or axes in the cortex, which are stimulated. In addition, across a wide range of variation in both visual and optogenetic stimulation we find linear addition of the two inputs. These results emphasize that the cortex provides a rich substrate for functional interactions that are not limited to the orientation-specific interactions predicted by the monosynaptic distribution of horizontal connections. PMID:24695715

  1. Adaptation to sensory input tunes visual cortex to criticality

    NASA Astrophysics Data System (ADS)

    Shew, Woodrow L.; Clawson, Wesley P.; Pobst, Jeff; Karimipanah, Yahya; Wright, Nathaniel C.; Wessel, Ralf

    2015-08-01

    A long-standing hypothesis at the interface of physics and neuroscience is that neural networks self-organize to the critical point of a phase transition, thereby optimizing aspects of sensory information processing. This idea is partially supported by strong evidence for critical dynamics observed in the cerebral cortex, but the impact of sensory input on these dynamics is largely unknown. Thus, the foundations of this hypothesis--the self-organization process and how it manifests during strong sensory input--remain unstudied experimentally. Here we show in visual cortex and in a computational model that strong sensory input initially elicits cortical network dynamics that are not critical, but adaptive changes in the network rapidly tune the system to criticality. This conclusion is based on observations of multifaceted scaling laws predicted to occur at criticality. Our findings establish sensory adaptation as a self-organizing mechanism that maintains criticality in visual cortex during sensory information processing.

  2. Individuals' and groups' intentions in the medial prefrontal cortex.

    PubMed

    Chaminade, Thierry; Kawato, Mitsuo; Frith, Chris

    2011-11-16

    Functional MRI signal was recorded while participants perceived stimuli presented using moving dots. In two conditions of interest, the motion of dots depicted intentions: dots representing the joints of an agent performing an action, and dots representing individual agents behaving contingently. The finding of a common cluster in the posterior part of the medial frontal cortex involved in intentional action representation validates the hypothesis that perception of these two conditions requires a similar internal representation. A cluster responding to the behaving group only is found in the anterior medial frontal cortex. These results support a division of the medial frontal cortex according to social stimuli attributes, with anterior areas responding to higher-order group behaviours integrating the action of multiple individual agents. PMID:21897305

  3. Double dissociation of 'what' and 'where' processing in auditory cortex.

    PubMed

    Lomber, Stephen G; Malhotra, Shveta

    2008-05-01

    Studies of cortical connections or neuronal function in different cerebral areas support the hypothesis that parallel cortical processing streams, similar to those identified in visual cortex, may exist in the auditory system. However, this model has not yet been behaviorally tested. We used reversible cooling deactivation to investigate whether the individual regions in cat nonprimary auditory cortex that are responsible for processing the pattern of an acoustic stimulus or localizing a sound in space could be doubly dissociated in the same animal. We found that bilateral deactivation of the posterior auditory field resulted in deficits in a sound-localization task, whereas bilateral deactivation of the anterior auditory field resulted in deficits in a pattern-discrimination task, but not vice versa. These findings support a model of cortical organization that proposes that identifying an acoustic stimulus ('what') and its spatial location ('where') are processed in separate streams in auditory cortex. PMID:18408717

  4. Associative Hebbian Synaptic Plasticity in Primate Visual Cortex

    PubMed Central

    Huang, Shiyong; Rozas, Carlos; Treviño, Mario; Contreras, Jessica; Yang, Sunggu; Song, Lihua; Yoshioka, Takashi; Lee, Hey-Kyoung

    2014-01-01

    In primates, the functional connectivity of adult primary visual cortex is susceptible to be modified by sensory training during perceptual learning. It is widely held that this type of neural plasticity might involve mechanisms like long-term potentiation (LTP) and long-term depression (LTD). NMDAR-dependent forms of LTP and LTD are particularly attractive because in rodents they can be induced in a Hebbian manner by near coincidental presynaptic and postsynaptic firing, in a paradigm termed spike timing-dependent plasticity (STDP). These fundamental properties of LTP and LTD, Hebbian induction and NMDAR dependence, have not been examined in primate cortex. Here we demonstrate these properties in the primary visual cortex of the rhesus macaque (Macaca mulatta), and also show that, like in rodents, STDP is gated by neuromodulators. These findings indicate that the cellular principles governing cortical plasticity are conserved across mammalian species, further validating the use of rodents as a model system. PMID:24872561

  5. Interplay of hippocampus and prefrontal cortex in memory

    PubMed Central

    Preston, Alison R.; Eichenbaum, Howard

    2013-01-01

    Recent studies on the hippocampus and the prefrontal cortex have considerably advanced our understanding of the distinct roles of these brain areas in the encoding and retrieval of memories, and of how they interact in the prolonged process by which new memories are consolidated into our permanent storehouse of knowledge. These studies have led to a new model of how the hippocampus forms and replays memories and how the prefrontal cortex engages representations of the meaningful contexts in which related memories occur, as well as how these areas interact during memory retrieval. Furthermore, they have provided new insights into how interactions between the hippocampus and prefrontal cortex support the assimilation of new memories into pre-existing networks of knowledge, called schemas, and how schemas are modified in this process as the foundation of memory consolidation. PMID:24028960

  6. Computer assisted measurement of femoral cortex thickening on radiographs

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Liu, Yixun; Chen, Foster; Summers, Ronald M.; Bhattacharyya, Timothy

    2013-03-01

    Radiographic features such as femoral cortex thickening have been frequently observed with atypical subtrochanteric fractures. These features may be a valuable finding to help prevent fractures before they happen. The current practice of manual measurement is often subjective and inconsistent. We developed a semi-automatic tool to consistently measure and monitor the progress of femoral cortex thickening on radiographs. By placing two seed points on each side of the femur, the program automatically extracts the periosteal and endosteal layers of the cortical shell by active contour models and B-spline fitting. Several measurements are taken along the femur shaft, including shaft diameter, cortical thickness, and integral area for medial and lateral cortex. The experiment was conducted on 52 patient datasets. The semi-automatic measurements were validated against manual measurements on 52 patients and demonstrated great improvement in consistency and accuracy (p<0.001).

  7. Pulvinar-Cortex Interactions in Vision and Attention.

    PubMed

    Zhou, Huihui; Schafer, Robert John; Desimone, Robert

    2016-01-01

    The ventro-lateral pulvinar is reciprocally connected with the visual areas of the ventral stream that are important for object recognition. To understand the mechanisms of attentive stimulus processing in this pulvinar-cortex loop, we investigated the interactions between the pulvinar, area V4, and IT cortex in a spatial-attention task. Sensory processing and the influence of attention in the pulvinar appeared to reflect its cortical inputs. However, pulvinar deactivation led to a reduction of attentional effects on firing rates and gamma synchrony in V4, a reduction of sensory-evoked responses and overall gamma coherence within V4, and severe behavioral deficits in the affected portion of the visual field. Conversely, pulvinar deactivation caused an increase in low-frequency cortical oscillations, often associated with inattention or sleep. Thus, cortical interactions with the ventro-lateral pulvinar are necessary for normal attention and sensory processing and for maintaining the cortex in an active state. PMID:26748092

  8. Spatial clustering of tuning in mouse primary visual cortex

    PubMed Central

    Ringach, Dario L.; Mineault, Patrick J.; Tring, Elaine; Olivas, Nicholas D.; Garcia-Junco-Clemente, Pablo; Trachtenberg, Joshua T.

    2016-01-01

    The primary visual cortex of higher mammals is organized into two-dimensional maps, where the preference of cells for stimulus parameters is arranged regularly on the cortical surface. In contrast, the preference of neurons in the rodent appears to be arranged randomly, in what is termed a salt-and-pepper map. Here we revisited the spatial organization of receptive fields in mouse primary visual cortex by measuring the tuning of pyramidal neurons in the joint orientation and spatial frequency domain. We found that the similarity of tuning decreases as a function of cortical distance, revealing a weak but statistically significant spatial clustering. Clustering was also observed across different cortical depths, consistent with a columnar organization. Thus, the mouse visual cortex is not strictly a salt-and-pepper map. At least on a local scale, it resembles a degraded version of the organization seen in higher mammals, hinting at a possible common origin. PMID:27481398

  9. Mapping the Structural Core of Human Cerebral Cortex

    PubMed Central

    Hagmann, Patric; Cammoun, Leila; Gigandet, Xavier; Meuli, Reto; Honey, Christopher J; Wedeen, Van J; Sporns, Olaf

    2008-01-01

    Structurally segregated and functionally specialized regions of the human cerebral cortex are interconnected by a dense network of cortico-cortical axonal pathways. By using diffusion spectrum imaging, we noninvasively mapped these pathways within and across cortical hemispheres in individual human participants. An analysis of the resulting large-scale structural brain networks reveals a structural core within posterior medial and parietal cerebral cortex, as well as several distinct temporal and frontal modules. Brain regions within the structural core share high degree, strength, and betweenness centrality, and they constitute connector hubs that link all major structural modules. The structural core contains brain regions that form the posterior components of the human default network. Looking both within and outside of core regions, we observed a substantial correspondence between structural connectivity and resting-state functional connectivity measured in the same participants. The spatial and topological centrality of the core within cortex suggests an important role in functional integration. PMID:18597554

  10. Altered intrinsic connectivity of the auditory cortex in congenital amusia.

    PubMed

    Leveque, Yohana; Fauvel, Baptiste; Groussard, Mathilde; Caclin, Anne; Albouy, Philippe; Platel, Hervé; Tillmann, Barbara

    2016-07-01

    Congenital amusia, a neurodevelopmental disorder of music perception and production, has been associated with abnormal anatomical and functional connectivity in a right frontotemporal pathway. To investigate whether spontaneous connectivity in brain networks involving the auditory cortex is altered in the amusic brain, we ran a seed-based connectivity analysis, contrasting at-rest functional MRI data of amusic and matched control participants. Our results reveal reduced frontotemporal connectivity in amusia during resting state, as well as an overconnectivity between the auditory cortex and the default mode network (DMN). The findings suggest that the auditory cortex is intrinsically more engaged toward internal processes and less available to external stimuli in amusics compared with controls. Beyond amusia, our findings provide new evidence for the link between cognitive deficits in pathology and abnormalities in the connectivity between sensory areas and the DMN at rest. PMID:27009161

  11. Modulation of inferotemporal cortex activation during verbal working memory maintenance

    PubMed Central

    Fiebach, Christian J.; Rissman, Jesse; D'Esposito, Mark

    2015-01-01

    Summary Regions of the left inferotemporal cortex are involved in visual word recognition and semantics. We utilized functional magnetic resonance imaging to localize an inferotemporal language area and to demonstrate that this area is involved in the active maintenance of visually presented words in working memory. Maintenance activity in this inferotemporal area showed an effect of memory load for words, but not pseudowords. The selective modulation of this language-related inferotemporal area for the maintenance of words, in the absence of visual input, is accompanied by an increased functional connectivity with left prefrontal cortex. These results are the first demonstration of an involvement of inferotemporal cortex in verbal working memory. They provide neurophysiological support for the notion that nonphonological language representations can be recruited in the service of verbal working memory. More generally, they suggest that verbal working memory should be conceptualized as the frontally-guided, sustained activation of pre-existing cortical language representations. PMID:16846859

  12. Principal Slip Zones in Limestone: Microstructural Characterization and Implications for the Seismic Cycle (Tre Monti Fault, Central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Smith, Steven A. F.; Billi, Andrea; Toro, Giulio Di; Spiess, Richard

    2011-12-01

    Earthquakes in central Italy, and in other areas worldwide, often nucleate within and rupture through carbonates in the upper crust. During individual earthquake ruptures, most fault displacement is thought to be accommodated by thin principal slip zones. This study presents detailed microstructural observations of the slip zones of the seismically active Tre Monti normal fault zone. All of the slip zones cut limestone, and geological constraints indicate exhumation from <2 km depth, where ambient temperatures are ≪100°C. Scanning electron microscope observations suggest that the slip zones are composed of 100% calcite. The slip zones of secondary faults in the damage zone contain protocataclastic and cataclastic fabrics that are cross-cut by systematic fracture networks and stylolite dissolution surfaces. The slip zone of the principal fault has much more microstructural complexity, and contains a 2-10 mm thick ultracataclasite that lies immediately beneath the principal slip surface. The ultracataclasite itself is internally zoned; 200-300 μm-thick ultracataclastic sub-layers record extreme localization of slip. Syn-tectonic calcite vein networks spatially associated with the sub-layers suggest fluid involvement in faulting. The ultracataclastic sub-layers preserve compelling microstructural evidence of fluidization, and also contain peculiar rounded grains consisting of a central (often angular) clast wrapped by a laminated outer cortex of ultra-fine-grained calcite. These "clast-cortex grains" closely resemble those produced during layer fluidization in other settings, including the basal detachments of catastrophic landslides and saturated high-velocity friction experiments on clay-bearing gouges. An overprinting foliation is present in the slip zone of the principal fault, and electron backscatter diffraction analyses indicate the presence of a weak calcite crystallographic preferred orientation (CPO) in the fine-grained matrix. The calcite c-axes are

  13. Similarities between GCS and human motor cortex: complex movement coordination

    NASA Astrophysics Data System (ADS)

    Rodríguez, Jose A.; Macias, Rosa; Molgo, Jordi; Guerra, Dailos

    2014-07-01

    The "Gran Telescopio de Canarias" (GTC1) is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). The GTC control system (GCS), the brain of the telescope, is is a distributed object & component oriented system based on RT-CORBA and it is responsible for the management and operation of the telescope, including its instrumentation. On the other hand, the Human motor cortex (HMC) is a region of the cerebrum responsible for the coordination of planning, control, and executing voluntary movements. If we analyze both systems, as far as the movement control of their mechanisms and body parts is concerned, we can find extraordinary similarities in their architectures. Both are structured in layers, and their functionalities are comparable from the movement conception until the movement action itself: In the GCS we can enumerate the Sequencer high level components, the Coordination libraries, the Control Kit library and the Device Driver library as the subsystems involved in the telescope movement control. If we look at the motor cortex, we can also enumerate the primary motor cortex, the secondary motor cortices, which include the posterior parietal cortex, the premotor cortex, and the supplementary motor area (SMA), the motor units, the sensory organs and the basal ganglia. From all these components/areas we will analyze in depth the several subcortical regions, of the the motor cortex, that are involved in organizing motor programs for complex movements and the GCS coordination framework, which is composed by a set of classes that allow to the high level components to transparently control a group of mechanisms simultaneously.

  14. Transcranial static magnetic field stimulation of the human motor cortex.

    PubMed

    Oliviero, Antonio; Mordillo-Mateos, Laura; Arias, Pablo; Panyavin, Ivan; Foffani, Guglielmo; Aguilar, Juan

    2011-10-15

    The aim of the present study was to investigate in healthy humans the possibility of a non-invasive modulation of motor cortex excitability by the application of static magnetic fields through the scalp. Static magnetic fields were obtained by using cylindrical NdFeB magnets. We performed four sets of experiments. In Experiment 1, we recorded motor potentials evoked by single-pulse transcranial magnetic stimulation (TMS) of the motor cortex before and after 10 min of transcranial static magnetic field stimulation (tSMS) in conscious subjects. We observed an average reduction of motor cortex excitability of up to 25%, as revealed by TMS, which lasted for several minutes after the end of tSMS, and was dose dependent (intensity of the magnetic field) but not polarity dependent. In Experiment 2, we confirmed the reduction of motor cortex excitability induced by tSMS using a double-blind sham-controlled design. In Experiment 3, we investigated the duration of tSMS that was necessary to modulate motor cortex excitability. We found that 10 min of tSMS (compared to 1 min and 5 min) were necessary to induce significant effects. In Experiment 4, we used transcranial electric stimulation (TES) to establish that the tSMS-induced reduction of motor cortex excitability was not due to corticospinal axon and/or spinal excitability, but specifically involved intracortical networks. These results suggest that tSMS using small static magnets may be a promising tool to modulate cerebral excitability in a non-invasive, painless, and reversible way. PMID:21807616

  15. The Organization of Dorsal Frontal Cortex in Humans and Macaques

    PubMed Central

    Mars, Rogier B.; Noonan, MaryAnn P.; Neubert, Franz-Xaver; Jbabdi, Saad; O'Reilly, Jill X.; Filippini, Nicola; Thomas, Adam G.; Rushworth, Matthew F.

    2013-01-01

    The human dorsal frontal cortex has been associated with the most sophisticated aspects of cognition, including those that are thought to be especially refined in humans. Here we used diffusion-weighted magnetic resonance imaging (DW-MRI) and functional MRI (fMRI) in humans and macaques to infer and compare the organization of dorsal frontal cortex in the two species. Using DW-MRI tractography-based parcellation, we identified 10 dorsal frontal regions lying between the human inferior frontal sulcus and cingulate cortex. Patterns of functional coupling between each area and the rest of the brain were then estimated with fMRI and compared with functional coupling patterns in macaques. Areas in human medial frontal cortex, including areas associated with high-level social cognitive processes such as theory of mind, showed a surprising degree of similarity in their functional coupling patterns with the frontal pole, medial prefrontal, and dorsal prefrontal convexity in the macaque. We failed to find evidence for “new” regions in human medial frontal cortex. On the lateral surface, comparison of functional coupling patterns suggested correspondences in anatomical organization distinct from those that are widely assumed. A human region sometimes referred to as lateral frontal pole more closely resembled area 46, rather than the frontal pole, of the macaque. Overall the pattern of results suggest important similarities in frontal cortex organization in humans and other primates, even in the case of regions thought to carry out uniquely human functions. The patterns of interspecies correspondences are not, however, always those that are widely assumed. PMID:23884933

  16. Purification and characterization of phytocystatins from kiwifruit cortex and seeds.

    PubMed

    Rassam, Maysoon; Laing, William A

    2004-01-01

    Kiwifruit cysteine proteinase inhibitors (KCPIs) were purified from the cortex and seeds of kiwifruit after inactivation of the abundant cortex cysteine proteinase actinidain. One major (KCPI1) and four minor cystatins were identified from Actinidia deliciosa ripe mature kiwifruit cortex as well as a seed KCPI from A. chinensis. The predominant cortex cystatin, KCPI1, inhibited clan CA, family C1 (papain family) cysteine proteinases (papain, chymopapain, bromelain, ficin, human cathepsins B, H and L, actinidain and the house dust mite endopeptidase 1), while cysteine proteinases belonging to other families, [clostripain (C11), streptopain (C10) and calpain (C2)] were not inhibited. Inhibition constants (K(I)) ranged between 0.001 nM for cathepsin L and 0.98 nM for endopeptidase 1. The K(I) (14 nM) for KCPI1 inhibiting actinidain is at least 2 orders of magnitude higher than for other plant proteinases measured. The cortex KCPI1 and a seed KCPI purified from seeds had the same N-terminal sequence (VAAGGWRPIESLNSAEVQDV). BLAST-matching the peptide sequence against an in-house generated Actinidia EST database, identified 81 cDNAs that exactly matched the measured KCPI1 peptide sequence. Peptide sequences of two other cortex KCPIs each exactly matched a predicted peptide sequence of a cDNA from kiwifruit. The predicted peptide sequence of KCPI1 of 116 amino acids encodes a signal peptide and does not contain cysteine. Without the signal peptide (mature protein), KCPI1 has a molecular mass of approximately 11 kDa, possesses the consensus sequence characteristic for the phytocystatins and shows the highest homology to a cystatin from Citrusxparadisi (52% identity). This is the first report of phytocystatins from the Ericales. PMID:14697268

  17. Visual cortex controls retinal output in the rat.

    PubMed

    Molotchnikoff, S; Tremblay, F

    1986-07-01

    The first objective of the present investigation was to shed more light on corticofugal influences on the retina by providing an analysis of the type and proportion of retinal ganglion cells that are affected by cooling the visual cortex in rats. The second question was to determine if the pretectum participates in functional cortico-retinal relationships. In urethane-anesthetized and paralyzed hooded rats, axonal activity of retinal ganglion cells was recorded with glass micropipettes at optic chiasm level. Units were classified as ON, OFF, suppressed-by-light and concentric. The visual cortex was inactivated by cooling its surface with a 4 mm2 steel probe using the Peltier effect. The pretectum was blocked with microinjections of 50 to 100 nanoliters of cobalt ions, lidocaine hydrochloride or KCl. The inactivations and recoveries at both sites were monitored by simultaneously recording evoked field potentials. Interrupting corticofugal impulses caused modifications of the evoked discharge pattern in all types of cells. The concentric type was the group least affected by cortical cooling. A common trend emerged suggesting that cooling of the visual cortex led to an enhancement of the initial evoked excitation. This was often followed by an enhanced post-excitatory inhibition. The Pearson coefficient allowed us to measure the degree of similarity between two histograms. When all data were pooled, a weak correlation between control and test histograms (r = 0.29, N = 56) was found, while the control and recovery patterns averaged a correlation of more than twice that size (r = 0.68). In a second series of experiments, the pretectum and visual cortex (VC) were simultaneously inactivated. It is shown that both sites summed their influence and acted synergistically upon the pattern of ganglion cell responses. The results strongly suggest that the visual cortex exerts a major control over the response pattern of thirty percent of retinal ganglion cells, and that the

  18. Prefrontal Cortex Activity Related to Abstract Response Strategies

    PubMed Central

    Genovesio, Aldo; Brasted, Peter J.; Mitz, Andrew R.; Wise, Steven P.

    2005-01-01

    Overview In monkeys, foraging strategies depend not only on a context established by spatial or symbolic cues, but also on the relations among cues. Genovesio et al. recorded the activity of prefrontal cortex neurons while monkeys chose a strategy based on the relation between consecutive symbolic cues. For the same cues and actions, the monkeys also learned fixed responses to the same symbols. Many neurons had activity selective for a given strategy, others for whether the monkeys’ response choice depended on a symbol or the relation between symbols. These findings indicate that the primate prefrontal cortex contributes to implementing abstract strategies. PMID:16039571

  19. Adult deafness induces somatosensory conversion of ferret auditory cortex

    PubMed Central

    Allman, Brian L.; Keniston, Leslie P.; Meredith, M. Alex

    2009-01-01

    In response to early or developmental lesions, responsiveness of sensory cortex can be converted from the deprived modality to that of the remaining sensory systems. However, little is known about capacity of the adult cortex for cross-modal reorganization. The present study examined the auditory cortices of animals deafened as adults, and observed an extensive somatosensory conversion within as little as 16 days after deafening. These results demonstrate that cortical cross-modal reorganization can occur after the period of sensory system maturation. PMID:19307553

  20. Primary somatosensory cortex hand representation dynamically modulated by motor output.

    PubMed

    McGeoch, Paul D; Brang, David; Huang, Mingxiong; Ramachandran, V S

    2015-02-01

    The brain's primary motor and primary somatosensory cortices are generally viewed as functionally distinct entities. Here we show by means of magnetoencephalography with a phantom-limb patient, that movement of the phantom hand leads to a change in the response of the primary somatosensory cortex to tactile stimulation. This change correlates with the described conscious perception and suggests a greater degree of functional unification between the primary motor and somatosensory cortices than is currently realized. We suggest that this may reflect the evolution of this part of the human brain, which is thought to have occurred from an undifferentiated sensorimotor cortex. PMID:24433220

  1. Long-term motor cortex stimulation for phantom limb pain.

    PubMed

    Pereira, Erlick A C; Moore, Tom; Moir, Liz; Aziz, Tipu Z

    2015-04-01

    We present the long-term course of motor cortex stimulation to relieve a case of severe burning phantom arm pain after brachial plexus injury and amputation. During 16-year follow-up the device continued to provide efficacious analgesia. However, several adjustments of stimulation parameters were required, as were multiple pulse generator changes, antibiotics for infection and one electrode revision due to lead migration. Steady increases in stimulation parameters over time were required. One of the longest follow-ups of motor cortex stimulation is described; the case illustrates challenges and pitfalls in neuromodulation for chronic pain, demonstrating strategies for maintaining analgesia and overcoming tolerance. PMID:25340991

  2. Expression and distribution of genes encoding for polyamine-metabolizing enzymes in the different zones of male and female mouse kidneys.

    PubMed

    Levillain, Olivier; Ramos-Molina, Bruno; Forcheron, Fabien; Peñafiel, Rafael

    2012-11-01

    The role of polyamines in renal physiology is only partially understood. Moreover, most of the data on the enzymes of polyamine metabolism come from studies using whole kidneys. The aim of the present study was to analyze the mRNA abundance of the genes implicated in both the polyamine biosynthetic and catabolic pathways in different renal zones of male and female mice, by means of the quantitative reverse transcription-polymerase chain reaction. Our results indicate that there is an uneven distribution of the different mRNAs studied in the five renal zones: superficial cortex, deep cortex, outer stripe of the outer medulla (OS), inner stripe of the outer medulla (IS), and the inner medulla + papilla (IM). The biosynthetic genes, ornithine decarboxylase (ODC) and spermine synthase, were more expressed in the cortex, whereas the mRNAs of the catabolic genes spermine oxidase (SMO) and diamine oxidase were more abundant in IS and IM. The genes involved in the regulation of polyamine synthesis (AZ1, AZ2 and AZIN1) were expressed in all the renal zones, predominantly in the cortex, while AZIN2 gene was more abundant in the OS. ODC, SMO, spermidine synthase and spermidine/spermine acetyl transferase expression was higher in males than in females. In conclusion, the genes encoding for the polyamine metabolism were specifically and quantitatively distributed along the corticopapillary axis of male and female mouse kidneys, suggesting that their physiological role is essential in defined renal zones and/or nephron segments. PMID:22562773

  3. Supply-demand mismatch transients in susceptible peri-infarct hot zones explain the origin of spreading injury depolarizations

    PubMed Central

    von Bornstädt, Daniel; Houben, Thijs; Seidel, Jessica; Zheng, Yi; Dilekoz, Ergin; Qin, Tao; Sandow, Nora; Kura, Sreekanth; Eikermann-Haerter, Katharina; Endres, Matthias; Boas, David A.; Moskowitz, Michael A.; Lo, Eng H.; Dreier, Jens P.; Woitzik, Johannes; Sakadžić, Sava; Ayata, Cenk

    2015-01-01

    SUMMARY Peri-infarct depolarizations (PIDs) are seemingly spontaneous spreading depression-like waves that negatively impact tissue outcome in both experimental and human stroke. Factors triggering PIDs are unknown. Here, we show that somatosensory activation of peri-infarct cortex triggers PIDs when the activated cortex is within a critical range of ischemia. We show that the mechanism involves increased oxygen utilization within the activated cortex, worsening the supply-demand mismatch. We support the concept by clinical data showing that mismatch predisposes to PIDs in human stroke as well. Conversely, transient worsening of mismatch by episodic hypoxemia or hypotension also reproducibly triggers PIDs. Therefore, PIDs are triggered upon supply-demand mismatch transients in metastable peri-infarct hot zones due to increased demand or reduced supply. Based on the data, we propose that minimizing sensory stimulation and hypoxic or hypotensive transients in stroke and brain injury would reduce PID incidence and their adverse impact on outcome. PMID:25741731

  4. Comparative characterization of the human and mouse third ventricle germinal zones.

    PubMed

    Dahiya, Sonika; Lee, Da Yong; Gutmann, David H

    2011-07-01

    Recent evidence indicates differences in neural stem cell biology in different brain regions. For example, we demonstrated that neurofibromatosis 1 (NF1) tumor suppressor gene inactivation leads to increased neural stem cell proliferation and gliogenesis in the optic chiasm and brainstem but not in the cerebral cortex. The differential effect of Nf1 inactivation in the optic nerve and brainstem (in which gliomas commonly form in children with NF1) versus the cortex (in which gliomas rarely develop) suggests the existence of distinct ventricular zones for gliomagenesis in children and in adults. Here, we characterized the third ventricle subventricular zone (tv-SVZ) in young and adult mouse and human brains. In children, but not adult humans, the tv-SVZ contains nestin-positive, glial fibrillary acidic protein-positive, brain fatty acid binding protein-positive, and sox2-positive cells with radial processes and prominent cilia. In contrast, the tv-SVZ in young mice contains sox2-positive progenitor cells and ciliated ependymal lining cells but lacks glial fibrillary acidic protein-positive, nestin-positive radial glia. As in the lateral ventricle SVZ, proliferation in the human and murine tv-SVZ decreases with age. The tv-SVZ in adult mice lacks the hypocellular subventricular zone observed in adult human specimens. Collectively, these data indicate the existence of a subventricular zone relevant to our understanding of glioma formation in children and will assist interpretation of genetically engineered mouse glioma models. PMID:21666496

  5. Breathing zone air sampler

    DOEpatents

    Tobin, John

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  6. Habitable zones in the universe.

    PubMed

    Gonzalez, Guillermo

    2005-12-01

    Habitability varies dramatically with location and time in the universe. This was recognized centuries ago, but it was only in the last few decades that astronomers began to systematize the study of habitability. The introduction of the concept of the habitable zone was key to progress in this area. The habitable zone concept was first applied to the space around a star, now called the Circumstellar Habitable Zone. Recently, other, vastly broader, habitable zones have been proposed. We review the historical development of the concept of habitable zones and the present state of the research. We also suggest ways to make progress on each of the habitable zones and to unify them into a single concept encompassing the entire universe. PMID:16254692

  7. Zoning should promote public health.

    PubMed

    Hirschhorn, Joel S

    2004-01-01

    Legally, governments use their police powers to protect public health, safety, and welfare through zoning. This paper presents a case for revisiting zoning on the basis of increasing evidence that certain types of community design promote public health, as opposed to the dominant pattern of sprawl development, which does not. Zoning, and the land use planning linked to it, that prohibits or disfavors health-promoting community designs contradicts the inherent public policy goal on which it is based. If there is a paradigm shift underway, from traditional sprawl to health-promoting community designs, then health professionals and others should understand why zoning must be reassessed. PMID:14748317

  8. An Anillin-Ect2 Complex Stabilizes Central Spindle Microtubules at the Cortex during Cytokinesis

    PubMed Central

    Frenette, Paul; Haines, Eric; Loloyan, Michael; Kinal, Mena; Pakarian, Paknoosh; Piekny, Alisa

    2012-01-01

    Cytokinesis occurs due to the RhoA-dependent ingression of an actomyosin ring. During anaphase, the Rho GEF (guanine nucleotide exchange factor) Ect2 is recruited to the central spindle via its interaction with MgcRacGAP/Cyk-4, and activates RhoA in the central plane of the cell. Ect2 also localizes to the cortex, where it has access to RhoA. The N-terminus of Ect2 binds to Cyk-4, and the C-terminus contains conserved DH (Dbl homologous) and PH (Pleckstrin Homology) domains with GEF activity. The PH domain is required for Ect2's cortical localization, but its molecular function is not known. In cultured human cells, we found that the PH domain interacts with anillin, a contractile ring protein that scaffolds actin and myosin and interacts with RhoA. The anillin-Ect2 interaction may require Ect2's association with lipids, since a novel mutation in the PH domain, which disrupts phospholipid association, weakens their interaction. An anillin-RacGAP50C (homologue of Cyk-4) complex was previously described in Drosophila, which may crosslink the central spindle to the cortex to stabilize the position of the contractile ring. Our data supports an analogous function for the anillin-Ect2 complex in human cells and one hypothesis is that this complex has functionally replaced the Drosophila anillin-RacGAP50C complex. Complexes between central spindle proteins and cortical proteins could regulate the position of the contractile ring by stabilizing microtubule-cortical interactions at the division plane to ensure the generation of active RhoA in a discrete zone. PMID:22514687

  9. Cortico‐cortical connectivity within ferret auditory cortex

    PubMed Central

    Bajo, Victoria M.; Nodal, Fernando R.; King, Andrew J.

    2015-01-01

    ABSTRACT Despite numerous studies of auditory cortical processing in the ferret (Mustela putorius), very little is known about the connections between the different regions of the auditory cortex that have been characterized cytoarchitectonically and physiologically. We examined the distribution of retrograde and anterograde labeling after injecting tracers into one or more regions of ferret auditory cortex. Injections of different tracers at frequency‐matched locations in the core areas, the primary auditory cortex (A1) and anterior auditory field (AAF), of the same animal revealed the presence of reciprocal connections with overlapping projections to and from discrete regions within the posterior pseudosylvian and suprasylvian fields (PPF and PSF), suggesting that these connections are frequency specific. In contrast, projections from the primary areas to the anterior dorsal field (ADF) on the anterior ectosylvian gyrus were scattered and non‐overlapping, consistent with the non‐tonotopic organization of this field. The relative strength of the projections originating in each of the primary fields differed, with A1 predominantly targeting the posterior bank fields PPF and PSF, which in turn project to the ventral posterior field, whereas AAF projects more heavily to the ADF, which then projects to the anteroventral field and the pseudosylvian sulcal cortex. These findings suggest that parallel anterior and posterior processing networks may exist, although the connections between different areas often overlap and interactions were present at all levels. J. Comp. Neurol. 523:2187–2210, 2015. © 2015 Wiley Periodicals, Inc. PMID:25845831

  10. Neurophotonics applications to motor cortex research: a review

    PubMed Central

    Suter, Benjamin A.; Yamawaki, Naoki; Borges, Katharine; Li, Xiaojian; Kiritani, Taro; Hooks, Bryan M.; Shepherd, Gordon M. G.

    2014-01-01

    Abstract. Neurophotonics methods offer powerful ways to access neuronal signals and circuits. We highlight recent advances and current themes in this area, emphasizing tools for mapping, monitoring, and manipulating excitatory projection neurons and their synaptic circuits in mouse motor cortex. PMID:25553337

  11. Stimulus Dependence of Gamma Oscillations in Human Visual Cortex.

    PubMed

    Hermes, D; Miller, K J; Wandell, B A; Winawer, J

    2015-09-01

    A striking feature of some field potential recordings in visual cortex is a rhythmic oscillation within the gamma band (30-80 Hz). These oscillations have been proposed to underlie computations in perception, attention, and information transmission. Recent studies of cortical field potentials, including human electrocorticography (ECoG), have emphasized another signal within the gamma band, a nonoscillatory, broadband signal, spanning 80-200 Hz. It remains unclear under what conditions gamma oscillations are elicited in visual cortex, whether they are necessary and ubiquitous in visual encoding, and what relationship they have to nonoscillatory, broadband field potentials. We demonstrate that ECoG responses in human visual cortex (V1/V2/V3) can include robust narrowband gamma oscillations, and that these oscillations are reliably elicited by some spatial contrast patterns (luminance gratings) but not by others (noise patterns and many natural images). The gamma oscillations can be conspicuous and robust, but because they are absent for many stimuli, which observers can see and recognize, the oscillations are not necessary for seeing. In contrast, all visual stimuli induced broadband spectral changes in ECoG responses. Asynchronous neural signals in visual cortex, reflected in the broadband ECoG response, can support transmission of information for perception and recognition in the absence of pronounced gamma oscillations. PMID:24855114

  12. Changes in rat frontal cortex gene expression following chronic cocaine.

    PubMed

    Freeman, Willard M; Brebner, Karen; Lynch, Wendy J; Patel, Kruti M; Robertson, Daniel J; Roberts, David C S; Vrana, Kent E

    2002-07-15

    Alterations in gene expression caused by repeated cocaine administration have been implicated in the long-term behavioral aspects of cocaine abuse. The frontal cortex mediates reinforcement, sensory, associative, and executive functions and plays an important role in the mesocortical dopamine reinforcement system. Repeated cocaine administration causes changes in frontal cortex gene expression that may lead to changes in the behaviors subserved by this brain region. Rats treated non-contingently with a binge model of cocaine (45 mg/kg/day, i.p.) for 14 days were screened for changes in relative mRNA abundance in the frontal cortex by cDNA hybridization arrays. To confirm changes, immunoreactive protein was measured (via protein-specific immunoblots) in a second group of identically-treated animals. Protein levels of protein tyrosine kinase 2 (PYK2), activity-regulated cytoskeletal protein (ARC), as well as an antigen related to nerve growth factor I-B (NGFI-B-RA) were shown to be significantly induced after cocaine administration. Levels of NGFI-B mRNA were confirmed by real-time RT-PCR to be increased with cocaine administration. These observations are similar to previously reported cocaine-responsive changes in gene expression but novel to the frontal cortex. This study also validates the use of hybridization arrays for screening of neuronal gene expression changes and the utility of relative protein quantification as a post-hoc confirmation tool. PMID:12117546

  13. Attentional Modulation in Visual Cortex Is Modified during Perceptual Learning

    ERIC Educational Resources Information Center

    Bartolucci, Marco; Smith, Andrew T.

    2011-01-01

    Practicing a visual task commonly results in improved performance. Often the improvement does not transfer well to a new retinal location, suggesting that it is mediated by changes occurring in early visual cortex, and indeed neuroimaging and neurophysiological studies both demonstrate that perceptual learning is associated with altered activity…

  14. Orbito-Frontal Cortex Is Necessary for Temporal Context Memory

    ERIC Educational Resources Information Center

    Duarte, Audrey; Henson, Richard N.; Knight, Robert T.; Emery, Tina; Graham, Kim S.

    2010-01-01

    Lesion and neuroimaging studies suggest that orbito-frontal cortex (OFC) supports temporal aspects of episodic memory. However, it is unclear whether OFC contributes to the encoding and/or retrieval of temporal context and whether it is selective for temporal relative to nontemporal (spatial) context memory. We addressed this issue with two…

  15. Interactions across Multiple Stimulus Dimensions in Primary Auditory Cortex.

    PubMed

    Sloas, David C; Zhuo, Ran; Xue, Hongbo; Chambers, Anna R; Kolaczyk, Eric; Polley, Daniel B; Sen, Kamal

    2016-01-01

    Although sensory cortex is thought to be important for the perception of complex objects, its specific role in representing complex stimuli remains unknown. Complex objects are rich in information along multiple stimulus dimensions. The position of cortex in the sensory hierarchy suggests that cortical neurons may integrate across these dimensions to form a more gestalt representation of auditory objects. Yet, studies of cortical neurons typically explore single or few dimensions due to the difficulty of determining optimal stimuli in a high dimensional stimulus space. Evolutionary algorithms (EAs) provide a potentially powerful approach for exploring multidimensional stimulus spaces based on real-time spike feedback, but two important issues arise in their application. First, it is unclear whether it is necessary to characterize cortical responses to multidimensional stimuli or whether it suffices to characterize cortical responses to a single dimension at a time. Second, quantitative methods for analyzing complex multidimensional data from an EA are lacking. Here, we apply a statistical method for nonlinear regression, the generalized additive model (GAM), to address these issues. The GAM quantitatively describes the dependence between neural response and all stimulus dimensions. We find that auditory cortical neurons in mice are sensitive to interactions across dimensions. These interactions are diverse across the population, indicating significant integration across stimulus dimensions in auditory cortex. This result strongly motivates using multidimensional stimuli in auditory cortex. Together, the EA and the GAM provide a novel quantitative paradigm for investigating neural coding of complex multidimensional stimuli in auditory and other sensory cortices. PMID:27622211

  16. SUPERIOR COLLICULUS LESIONS AND FLASH EVOKED POTENTIALS FROM RAT CORTEX

    EPA Science Inventory

    It is generally assumed that the primary response of the rat flash evoked potential (FEP) is activated by a retino-geniculate pathway, and that the second response reflects input to the cortex by way of the superior colliculus (SC) or other brainstem structures. In the present st...

  17. Role of Frontal Cortex in Attentional Capture by Singleton Distractors

    ERIC Educational Resources Information Center

    de Fockert, Jan W.; Theeuwes, Jan

    2012-01-01

    The role of frontal cortex in selective attention to visual distractors was examined in an attentional capture task in which participants searched for a unique shape in the presence or absence of an additional colour singleton distractor. The presence of the additional singleton was associated with slower behavioural responses to the shape target,…

  18. The Role of the Orbitofrontal Cortex in Human Discrimination Learning

    ERIC Educational Resources Information Center

    Chase, Henry W.; Clark, Luke; Myers, Catherine E.; Gluck, Mark A.; Sahakian, Barbara J.; Bullmore, Edward T.; Robbins, Trevor W.

    2008-01-01

    Several lines of evidence implicate the prefrontal cortex in learning but there is little evidence from studies of human lesion patients to demonstrate the critical role of this structure. To this end, we tested patients with lesions of the frontal lobe (n = 36) and healthy controls (n = 35) on two learning tasks: the weather prediction task…

  19. The third dimension in the primary visual cortex

    PubMed Central

    Westheimer, Gerald

    2009-01-01

    Anatomical superposition of the cortical projections from the overlapping visual fields of the two eyes does not make it obvious how the disposition of objects in the third dimension is encoded. Hubel and Wiesel's demonstration that units in the primary visual cortex of the mammal respond preferentially to elongated contours of specific orientation encouraged the inquiry into whether binocular disparity might not similarly be represented as an attribute interdigitated within the orderly progression of position. When this was found to indeed be the case, this entrained a brisk research activity into the disparity of receptive fields of single units in the primary visual cortex and the influence on their response of the three-dimensional locations of outside world stimuli. That cells’ preferred orientations covered the whole gamut whereas space perception required only horizontal disparity was an apparent paradox that needed resolution. A connection with an observer's stereoscopic performance was made by the discovery that cells in the primate primary visual cortex display good tuning to the disparity in random-dot stereograms. But a wide gap still remains between the properties of these cortical units and human stereo thresholds in simple target configurations, let alone depth judgments in which perceptual and cognitive factors enter. When the neural circuits in the primary visual cortex that are involved in processing depth are eventually traced in detail they will also need to have properties that allow for the plasticity in learning and experience. PMID:19525565

  20. Motor cortex guides selection of predictable movement targets

    PubMed Central

    Woodgate, Philip J.W.; Strauss, Soeren; Sami, Saber A.; Heinke, Dietmar

    2016-01-01

    The present paper asks whether the motor cortex contributes to prediction-based guidance of target selection. This question was inspired by recent evidence that suggests (i) recurrent connections from the motor system into the attentional system may extract movement-relevant perceptual information and (ii) that the motor cortex cannot only generate predictions of the sensory consequences of movements but may also operate as predictor of perceptual events in general. To test this idea we employed a choice reaching task requiring participants to rapidly reach and touch a predictable or unpredictable colour target. Motor cortex activity was modulated via transcranial direct current stimulation (tDCS). In Experiment 1 target colour repetitions were predictable. Under such conditions anodal tDCS facilitated selection versus sham and cathodal tDCS. This improvement was apparent for trajectory curvature but not movement initiation. Conversely, where no predictability of colour was embedded reach performance was unaffected by tDCS. Finally, the results of a key-press experiment suggested that motor cortex involvement is restricted to tasks where the predictable target colour is movement-relevant. The outcomes are interpreted as evidence that the motor system contributes to the top-down guidance of selective attention to movement targets. PMID:25835319

  1. Effector selection precedes reach planning in the dorsal parietofrontal cortex

    PubMed Central

    Cieslak, Matthew; Grafton, Scott T.

    2012-01-01

    Experimental evidence and computational modeling suggest that target selection for reaching is associated with the parallel encoding of multiple movement plans in the dorsomedial posterior parietal cortex (dmPPC) and the caudal part of the dorsal premotor cortex (PMdc). We tested the hypothesis that a similar mechanism also accounts for arm selection for unimanual reaching, with simultaneous and separate motor goal representations for the left and right arms existing in the right and left parietofrontal cortex, respectively. We recorded simultaneous electroencephalograms and functional MRI and studied a condition in which subjects had to select the appropriate arm for reaching based on the color of an appearing visuospatial target, contrasting it to a condition in which they had full knowledge of the arm to be used before target onset. We showed that irrespective of whether subjects had to select the arm or not, activity in dmPPC and PMdc was only observed contralateral to the reaching arm after target onset. Furthermore, the latency of activation in these regions was significantly delayed when arm selection had to be achieved during movement planning. Together, these results demonstrate that effector selection is not achieved through the simultaneous specification of motor goals tied to the two arms in bilateral parietofrontal cortex, but suggest that a motor goal is formed in these regions only after an arm is selected for action. PMID:22457458

  2. Auditory modulation of visual stimulus encoding in human retinotopic cortex

    PubMed Central

    de Haas, Benjamin; Schwarzkopf, D. Samuel; Urner, Maren; Rees, Geraint

    2013-01-01

    Sounds can modulate visual perception as well as neural activity in retinotopic cortex. Most studies in this context investigated how sounds change neural amplitude and oscillatory phase reset in visual cortex. However, recent studies in macaque monkeys show that congruence of audio-visual stimuli also modulates the amount of stimulus information carried by spiking activity of primary auditory and visual neurons. Here, we used naturalistic video stimuli and recorded the spatial patterns of functional MRI signals in human retinotopic cortex to test whether the discriminability of such patterns varied with the presence and congruence of co-occurring sounds. We found that incongruent sounds significantly impaired stimulus decoding from area V2 and there was a similar trend for V3. This effect was associated with reduced inter-trial reliability of patterns (i.e. higher levels of noise), but was not accompanied by any detectable modulation of overall signal amplitude. We conclude that sounds modulate naturalistic stimulus encoding in early human retinotopic cortex without affecting overall signal amplitude. Subthreshold modulation, oscillatory phase reset and dynamic attentional modulation are candidate neural and cognitive mechanisms mediating these effects. PMID:23296187

  3. Anterior Cingulate Cortex in Schema Assimilation and Expression

    ERIC Educational Resources Information Center

    Wang, Szu-Han; Tse, Dorothy; Morris, Richard G. M.

    2012-01-01

    In humans and in animals, mental schemas can store information within an associative framework that enables rapid and efficient assimilation of new information. Using a hippocampal-dependent paired-associate task, we now report that the anterior cingulate cortex is part of a neocortical network of schema storage with NMDA receptor-mediated…

  4. Development of Rostral Prefrontal Cortex and Cognitive and Behavioural Disorders

    ERIC Educational Resources Information Center

    Dumontheil, Iroise; Burgess, Paul W.; Blakemore, Sarah-Jayne

    2008-01-01

    Information on the development and functions of rostral prefrontal cortex (PFC), or Brodmann area 10, has been gathered from different fields, from anatomical development to functional neuroimaging in adults, and put forward in relation to three particular cognitive and behavioural disorders. Rostral PFC is larger and has a lower cell density in…

  5. Interactions across Multiple Stimulus Dimensions in Primary Auditory Cortex

    PubMed Central

    Zhuo, Ran; Xue, Hongbo; Chambers, Anna R.; Kolaczyk, Eric; Polley, Daniel B.

    2016-01-01

    Although sensory cortex is thought to be important for the perception of complex objects, its specific role in representing complex stimuli remains unknown. Complex objects are rich in information along multiple stimulus dimensions. The position of cortex in the sensory hierarchy suggests that cortical neurons may integrate across these dimensions to form a more gestalt representation of auditory objects. Yet, studies of cortical neurons typically explore single or few dimensions due to the difficulty of determining optimal stimuli in a high dimensional stimulus space. Evolutionary algorithms (EAs) provide a potentially powerful approach for exploring multidimensional stimulus spaces based on real-time spike feedback, but two important issues arise in their application. First, it is unclear whether it is necessary to characterize cortical responses to multidimensional stimuli or whether it suffices to characterize cortical responses to a single dimension at a time. Second, quantitative methods for analyzing complex multidimensional data from an EA are lacking. Here, we apply a statistical method for nonlinear regression, the generalized additive model (GAM), to address these issues. The GAM quantitatively describes the dependence between neural response and all stimulus dimensions. We find that auditory cortical neurons in mice are sensitive to interactions across dimensions. These interactions are diverse across the population, indicating significant integration across stimulus dimensions in auditory cortex. This result strongly motivates using multidimensional stimuli in auditory cortex. Together, the EA and the GAM provide a novel quantitative paradigm for investigating neural coding of complex multidimensional stimuli in auditory and other sensory cortices. PMID:27622211

  6. Immunoprofiling of Rice Root Cortex Reveals Two Cortical Subdomains

    PubMed Central

    Henry, Sophia; Divol, Fanchon; Bettembourg, Mathilde; Bureau, Charlotte; Guiderdoni, Emmanuel; Périn, Christophe; Diévart, Anne

    2016-01-01

    The formation and differentiation of aerenchyma, i.e., air-containing cavities that are critical for flooding tolerance, take place exclusively in the cortex. The understanding of development and differentiation of the cortex is thus an important issue; however, studies on this tissue are limited, partly because of the lack of available molecular tools. We screened a commercially available library of cell wall antibodies to identify markers of cortical tissue in rice roots. Out of the 174 antibodies screened, eight were cortex-specific. Our analysis revealed that two types of cortical tissues are present in rice root seedlings. We named these cell layers “inner” and “outer” based on their location relative to the stele. We then used the antibodies to clarify cell identity in lateral roots. Without these markers, previous studies could not distinguish between the cortex and sclerenchyma in small lateral roots. By immunostaining lateral root sections, we showed that the internal ground tissue in small lateral roots has outer cortical identity. PMID:26779208

  7. A Mediating Role of the Premotor Cortex in Phoneme Segmentation

    ERIC Educational Resources Information Center

    Sato, Marc; Tremblay, Pascale; Gracco, Vincent L.

    2009-01-01

    Consistent with a functional role of the motor system in speech perception, disturbing the activity of the left ventral premotor cortex by means of repetitive transcranial magnetic stimulation (rTMS) has been shown to impair auditory identification of syllables that were masked with white noise. However, whether this region is crucial for speech…

  8. Extinction Circuits for Fear and Addiction Overlap in Prefrontal Cortex

    ERIC Educational Resources Information Center

    Peters, Jamie; Kalivas, Peter W.; Quirk, Gregory J.

    2009-01-01

    Extinction is a form of inhibitory learning that suppresses a previously conditioned response. Both fear and drug seeking are conditioned responses that can lead to maladaptive behavior when expressed inappropriately, manifesting as anxiety disorders and addiction, respectively. Recent evidence indicates that the medial prefrontal cortex (mPFC) is…

  9. The Role of the Insular Cortex in Retaliation.

    PubMed

    Emmerling, Franziska; Schuhmann, Teresa; Lobbestael, Jill; Arntz, Arnoud; Brugman, Suzanne; Sack, Alexander Thomas

    2016-01-01

    The insular cortex has consistently been associated with various aspects of emotion regulation and social interaction, including anger processing and overt aggression. Aggression research distinguishes proactive or instrumental aggression from retaliation, i.e. aggression in response to provocation. Here, we investigated the specific role of the insular cortex during retaliation, employing a controlled behavioral aggression paradigm implementing different levels of provocation. Fifteen healthy male volunteers underwent whole brain functional magnetic resonance imaging (fMRI) to identify brain regions involved in interaction with either a provoking or a non-provoking opponent. FMRI group analyses were complemented by examining the parametric modulations of brain activity related to the individual level of displayed aggression. These analyses identified a hemispheric lateralization as well as an anatomical segregation of insular cortex with specifically the left posterior part being involved in retaliation. The left-lateralization of insular activity during retaliation is in accordance with evidence from electro-physiological studies, suggesting left-lateralized fronto-cortical dominance during anger processing and aggressive acts. The posterior localization of insular activity, on the other hand, suggests a spatial segregation within insular cortex with particularly the posterior part being involved in the processing of emotions that trigger intense bodily sensations and immediate action tendencies. PMID:27096431

  10. Wrinkling of a spherical lipid interface induced by actomyosin cortex.

    PubMed

    Ito, Hiroaki; Nishigami, Yukinori; Sonobe, Seiji; Ichikawa, Masatoshi

    2015-12-01

    Actomyosin actively generates contractile forces that provide the plasma membrane with the deformation stresses essential to carry out biological processes. Although the contractile property of purified actomyosin has been extensively studied, to understand the physical contribution of the actomyosin contractile force on a deformable membrane is still a challenging problem and of great interest in the field of biophysics. Here, we reconstitute a model system with a cell-sized deformable interface that exhibits anomalous curvature-dependent wrinkling caused by the actomyosin cortex underneath the spherical closed interface. Through a shape analysis of the wrinkling deformation, we find that the dominant contributor to the wrinkled shape changes from bending elasticity to stretching elasticity of the reconstituted cortex upon increasing the droplet curvature radius of the order of the cell size, i.e., tens of micrometers. The observed curvature dependence is explained by the theoretical description of the cortex elasticity and contractility. Our present results provide a fundamental insight into the deformation of a curved membrane induced by the actomyosin cortex. PMID:26764731

  11. Point-light biological motion perception activates human premotor cortex.

    PubMed

    Saygin, Ayse Pinar; Wilson, Stephen M; Hagler, Donald J; Bates, Elizabeth; Sereno, Martin I

    2004-07-01

    Motion cues can be surprisingly powerful in defining objects and events. Specifically, a handful of point-lights attached to the joints of a human actor will evoke a vivid percept of action when the body is in motion. The perception of point-light biological motion activates posterior cortical areas of the brain. On the other hand, observation of others' actions is known to also evoke activity in motor and premotor areas in frontal cortex. In the present study, we investigated whether point-light biological motion animations would lead to activity in frontal cortex as well. We performed a human functional magnetic resonance imaging study on a high-field-strength magnet and used a number of methods to increase signal, as well as cortical surface-based analysis methods. Areas that responded selectively to point-light biological motion were found in lateral and inferior temporal cortex and in inferior frontal cortex. The robust responses we observed in frontal areas indicate that these stimuli can also recruit action observation networks, although they are very simplified and characterize actions by motion cues alone. The finding that e