Sample records for absent cd44v6 expression

  1. CD44s and CD44v6 Expression in Head and Neck Epithelia

    PubMed Central

    Mack, Brigitte; Gires, Olivier

    2008-01-01

    Background CD44 splice variants are long-known as being associated with cell transformation. Recently, the standard form of CD44 (CD44s) was shown to be part of the signature of cancer stem cells (CSCs) in colon, breast, and in head and neck squamous cell carcinomas (HNSCC). This is somewhat in contradiction to previous reports on the expression of CD44s in HNSCC. The aim of the present study was to clarify the actual pattern of CD44 expression in head and neck epithelia. Methods Expression of CD44s and CD44v6 was analysed by immunohistochemistry with specific antibodies in primary head and neck tissues. Scoring of all specimens followed a two-parameters system, which implemented percentages of positive cells and staining intensities from − to +++ (score = %×intensity; resulting max. score 300). In addition, cell surface expression of CD44s and CD44v6 was assessed in lymphocytes and HNSCC. Results In normal epithelia CD44s and CD44v6 were expressed in 60–95% and 50–80% of cells and yielded mean scores with a standard error of a mean (SEM) of 249.5±14.5 and 198±11.13, respectively. In oral leukoplakia and in moderately differentiated carcinomas CD44s and CD44v6 levels were slightly increased (278.9±7.16 and 242±11.7; 291.8±5.88 and 287.3±6.88). Carcinomas in situ displayed unchanged levels of both proteins whereas poorly differentiated carcinomas consistently expressed diminished CD44s and CD44v6 levels. Lymphocytes and HNSCC lines strongly expressed CD44s but not CD44v6. Conclusion CD44s and CD44v6 expression does not distinguish normal from benign or malignant epithelia of the head and neck. CD44s and CD44v6 were abundantly present in the great majority of cells in head and neck tissues, including carcinomas. Hence, the value of CD44s as a marker for the definition of a small subset of cells (i.e. less than 10%) representing head and neck cancer stem cells may need revision. PMID:18852874

  2. Expression and significance of CD44s, CD44v6, and nm23 mRNA in human cancer.

    PubMed

    Liu, Yong-Jun; Yan, Pei-Song; Li, Jun; Jia, Jing-Fen

    2005-11-14

    To investigate the relationship between the expression levels of nm23 mRNA, CD44s, and CD44v6, and oncogenesis, development and metastasis of human gastric adenocarcinoma, colorectal adenocarcinoma, intraductal carcinoma of breast, and lung cancer. Using tissue microarray by immuhistochemical (IHC) staining and in situ hybridization (ISH), we examined the expression levels of nm23 mRNA, CD44s, and CD44v6 in 62 specimens of human gastric adenocarcinoma and 62 specimens of colorectal adenocarcinoma; the expression of CD44s and CD44v6 in 120 specimens of intraductal carcinoma of breast and 20 specimens of normal breast tissue; the expression of nm23 mRNA in 72 specimens of human lung cancer and 23 specimens of normal tissue adjacent to cancer. The expression of nm23 mRNA in the tissues of gastric and colorectal adenocarcinoma was not significantly different from that in the normal tissues adjacent to cancer (P>0.05), and was not associated with the invasion of tumor and the pathology grade of adenocarcinoma (P>0.05). However, the expression of nm23 mRNA was correlated negatively to the lymph node metastasis of gastric and colorectal adenocarcinoma (r = -0.49, P<0.01; r = -4.93, P<0.01). The expression of CD44s in the tissues of gastric and colorectal adenocarcinoma was significantly different from that in the normal tissues adjacent to cancer (P<0.05; P<0.01). CD44v6 was expressed in the tissues of gastric and colorectal adenocarcinoma only, the expression of CD44v6 was significantly associated with the lymph node metastasis, invasion and pathological grade of the tumor (r = 0.47, P<0.01; r = 5.04, P<0.01). CD44s and CD44v6 were expressed in intraductal carcinoma of breast, the expression of CD44s and CD44v6 was significantly associated with lymph node metastases and invasion (P<0.01). However, neither of them was expressed in the normal breast tissue. In addition, the expression of CD44v6 was closely related to the degree of cell differentiation of intraductal

  3. CD44v6 expression in patients with stage II or stage III sporadic colorectal cancer is superior to CD44 expression for predicting progression

    PubMed Central

    Zhao, LH; Lin, QL; Wei, J; Huai, YL; Wang, KJ; Yan, HY

    2015-01-01

    Background: Currently, it is difficult to predict the prognosis of patients exhibiting stage II or stage III colorectal cancer (CRC) and to identify those patients most likely to benefit from aggressive treatment. The current study was performed to examine the clinicopathological significance of CD44 and CD44v6 protein expression in these patients. Study design: We retrospectively investigated 187 consecutive patients who underwent surgery with curative intent for stage II to III CRC from 2007 to 2013 in the Beijing Civil Aviation Hospital. CD44 and CD44v6 protein expression levels were determined using immunohistochemistry and compared to the clinicopathological data. Results: Using immunohistochemical detection, CD44 expression was observed in 108 (57.75%) of the CRC patients; and its detection was significantly associated with greater invasion depth, lymph node metastasis, angiolymphatic invasion, and a more advanced pathological tumor-lymph node-metastasis (TNM) stage. CD44v6 expression was observed in 135 (72.19%) of the CRC patients; and its expression was significantly associated with a poorly differentiated histology, greater invasion depth, lymph node metastasis, angiolymphatic invasion, and a more advanced pathological TNM stage. Expression of CD44v6 was higher than that of CD44 in stage II and stage III sporadic CRC. Conclusion: CD44v6 is a more useful marker for predicting a poor prognosis in stage II and stage III sporadic CRC as compared to CD44. PMID:25755763

  4. Expression of CD44v6 as matrix-associated ectodomain in the bone development.

    PubMed

    Nakajima, Kosei; Taniguchi, Kazumi; Mutoh, Ken-ichiro

    2010-08-01

    This study describes the expression of CD44v6 in the bone development and is the first study of its kind to the authors' best knowledge. The CD44 family is a family of transmembrane glycoproteins that acts as cell adhesion molecules binding cells to other cells as well as cells to the extracellular matrix. It has been suggested that the CD44v6, a family member of CD44, is closely related to the osteosarcoma metastasis. In general, when cancer cells metastasize, they revert to their immature forms. In the present study, therefore, we have investigated CD44v6 and the standard form of CD44 (CD44st) in two types of immature forms of bone tissues: developmentally immature stages from fetuses to adults as well as experimentally immature stages using fracture models. CD44st expression was identified in osteoblasts, osteocytes, and in the peripheral portion of the bone matrix from the fetal to young ages of rats. Many more intense reactions for CD44v6 were observed in the bone matrix than CD44st in fetal stages. In experimental fracture models, positive immunoreactions to CD44st were clearly observed in the osteoblasts and osteocytes. CD44v6-positive immunoreactivity, however, was not detected in either osteoblasts or the bone matrix. In conclusion, CD44v6 is expressed in the embryonic stages and may be involved in the bone matrix formation as a matrix-associated ectodomain during normal ontogenetic development but not involved in the process of fracture healing.

  5. Generation and evaluation of antibody agents for molecular imaging of CD44v6-expressing cancers

    PubMed Central

    Haylock, Anna-Karin; Nilvebrant, Johan; Mortensen, Anja; Velikyan, Irina; Nestor, Marika; Falk, Ronny

    2017-01-01

    Aim The aim of this study was to generate and characterize scFv antibodies directed to human CD44v6, as well as to radiolabel and evaluate top candidates in vitro and in vivo for their potential use in CD44v6-targeted molecular imaging in cancer patients. Materials and methods Phage display selections were used to isolate CD44v6-specific scFvs. A chain shuffling strategy was employed for affinity maturation based on a set of CD44v6-specific first-generation clones. Two second-generation scFv clones were then chosen for labeling with 111In or 125I and assessed for CD44v6-specific binding on cultured tumor cells. In vivo uptake and distribution was evaluated in tumor-bearing mice using a dual tumor model. Finally, a proof-of-concept small animal PET-CT study was performed on one of the candidates labeled with 124I. Results Two affinity-matured clones, CD44v6-scFv-A11 and CD44v6-scFv-H12, displayed promising binding kinetics. Seven out of eight radiolabeled conjugates demonstrated CD44v6-specific binding. In vivo studies on selected candidates demonstrated very advantageous tumor-to-organ ratios, in particular for iodinated conjugates, where 125I-labeled scFvs exhibited favorable kinetics and tumor-to-blood ratios above five already at 24 hours p.i.. The small animal PET-CT study using 124I-labeled CD44v6-scFv-H12 was in line with the biodistribution data, clearly visualizing the high CD44v6-expressing tumor. Conclusion The single chain fragments, CD44v6-scFv-A11 and CD44v6-scFv-H12 specifically bind to CD44v6, and the radiolabeled counterparts provide high tumor-to-blood ratios and fast clearance from organs and blood. We conclude that radioiodinated CD44v6-scFv-A11 and CD44v6-scFv-H12 possess features highly suitable for stringent molecular imaging. PMID:29029420

  6. Expression of Bmi-1, P16, and CD44v6 in Uterine Cervical Carcinoma and Its Clinical Significance

    PubMed Central

    Weng, Mei-ying; Li, Lin; Feng, Shu-ying; Hong, Shun-jia

    2012-01-01

    Objective Bmi-1, a putative proto-oncogene, is a core member of the polycomb gene family, which is expressed in many human tumors. The p16 protein negatively regulated cell proliferation, whereas CD44v6 is associated with proliferation as an important protein. Additionally, CD44v6 is an important nuclear antigen closely correlated to tumor metastasis. The present study aims to investigate the expression and significance of Bmi-1, p16, and CD44v6 in uterine cervical carcinoma (UCC). Methods A total of 62 UCC, 30 cervical neoplasic, and 20 normal cervical mucosal tissues were used in the current study. The expression of Bmi-1, p16, and CD44v6 in these tissues was determined using immunohistochemical assay. The relationships among the expression of these indices, the clinicopathologic features of UCC, and the survival rate of UCC patients were also discussed. The correlation between Bmi-1 protein expression and p16 or CD44v6 protein in UCC was analyzed. Results The expression of Bmi-1, p16, and CD44v6 was significantly high in cervical carcinoma compared with that in the cervical neoplasia and normal colorectal mucosa (P<0.05). The over-expression of Bmi-1 protein in UCC was apparently related to the distant metastasis (P<0.01) and the tumor, nodes and metastasis-classification, i.e. the TNM staging, World Health Organization (P<0.05). Nevertheless, the positive expression of p16 protein in UCC was not significantly associated with the clinicopathologic features (P>0.05). The Kaplan–Meier survival analysis showed that the over-expression of Bmi-1 significantly decreased the survival rate of UCC patients (P<0.05). A strong correlation indicated that there was statistical significance between the expression of Bmi-1 and CD44V6 proteins in UCC (r=0.419, P=0.001). Conclusions The over-expression of Bmi-1 and CD44v6 protein closely correlate to the tumorigenesis, metastasis, and prognosis of UCC. Bmi-1 and CD44v6 may be used to predict the prognosis of cervical carcinoma

  7. Expression of Bmi-1, P16, and CD44v6 in Uterine Cervical Carcinoma and Its Clinical Significance.

    PubMed

    Weng, Mei-Ying; Li, Lin; Feng, Shu-Ying; Hong, Shun-Jia

    2012-03-01

    Bmi-1, a putative proto-oncogene, is a core member of the polycomb gene family, which is expressed in many human tumors. The p16 protein negatively regulated cell proliferation, whereas CD44v6 is associated with proliferation as an important protein. Additionally, CD44v6 is an important nuclear antigen closely correlated to tumor metastasis. The present study aims to investigate the expression and significance of Bmi-1, p16, and CD44v6 in uterine cervical carcinoma (UCC). A total of 62 UCC, 30 cervical neoplasic, and 20 normal cervical mucosal tissues were used in the current study. The expression of Bmi-1, p16, and CD44v6 in these tissues was determined using immunohistochemical assay. The relationships among the expression of these indices, the clinicopathologic features of UCC, and the survival rate of UCC patients were also discussed. The correlation between Bmi-1 protein expression and p16 or CD44v6 protein in UCC was analyzed. The expression of Bmi-1, p16, and CD44v6 was significantly high in cervical carcinoma compared with that in the cervical neoplasia and normal colorectal mucosa (P<0.05). The over-expression of Bmi-1 protein in UCC was apparently related to the distant metastasis (P<0.01) and the tumor, nodes and metastasis-classification, i.e. the TNM staging, World Health Organization (P<0.05). Nevertheless, the positive expression of p16 protein in UCC was not significantly associated with the clinicopathologic features (P>0.05). The Kaplan-Meier survival analysis showed that the over-expression of Bmi-1 significantly decreased the survival rate of UCC patients (P<0.05). A strong correlation indicated that there was statistical significance between the expression of Bmi-1 and CD44V6 proteins in UCC (r=0.419, P=0.001). The over-expression of Bmi-1 and CD44v6 protein closely correlate to the tumorigenesis, metastasis, and prognosis of UCC. Bmi-1 and CD44v6 may be used to predict the prognosis of cervical carcinoma. Bmi-1 may indirectly regulate the

  8. Expression of CD44s and CD44v6 in transitional cell carcinomas of the urinary bladder: comparison with tumour grade, proliferative activity and p53 immunoreactivity of tumour cells.

    PubMed

    Kuncová, Jitka; Urban, Michael; Mandys, Václav

    2007-11-01

    Alterations of CD44 glycoproteins have been shown to play an important role in progression of various malignancies, including urothelial cancer. We investigated expression patterns of CD44s and CD44v6 in transitional cell carcinoma (TCC) of the urinary bladder in relation to tumour grade, proliferative activity, and immunoreactivity for p53. The selected markers were detected immunohistochemically in 122 samples of TCC. We found a close relationship between CD44s and CD44v6 expression and tumour grade. The extension of positive staining for CD44s and CD44v6 towards the luminal surface was a predominant feature of differentiated carcinomas (grades 1 and 2), suggesting deranged maturation of cancer cells related to their neoplastic transformation. Heterogeneous expression of CD44s and CD44v6 predominated in poorly differentiated tumours (G3-4). However, areas of squamous differentiation within the high-grade tumours displayed strong immunoreactivity for both CD44s and CD44v6. The proliferative activity and p53 overexpression increased with the dedifferentiation of the tumour. The results of this study are discussed in relation to the significance of CD44 expression in TCC and to the explanation for controversial results reported in previous studies on the relationship between CD44 expression and the biological behaviour of urothelial cells.

  9. CD44v6 Regulates Growth of Brain Tumor Stem Cells Partially through the AKT-Mediated Pathway

    PubMed Central

    Jijiwa, Mayumi; Demir, Habibe; Gupta, Snehalata; Leung, Crystal; Joshi, Kaushal; Orozco, Nicholas; Huang, Tiffany; Yildiz, Vedat O.; Shibahara, Ichiyo; de Jesus, Jason A.; Yong, William H.; Mischel, Paul S.; Fernandez, Soledad; Kornblum, Harley I.; Nakano, Ichiro

    2011-01-01

    Identification of stem cell-like brain tumor cells (brain tumor stem-like cells; BTSC) has gained substantial attention by scientists and physicians. However, the mechanism of tumor initiation and proliferation is still poorly understood. CD44 is a cell surface protein linked to tumorigenesis in various cancers. In particular, one of its variant isoforms, CD44v6, is associated with several cancer types. To date its expression and function in BTSC is yet to be identified. Here, we demonstrate the presence and function of the variant form 6 of CD44 (CD44v6) in BTSC of a subset of glioblastoma multiforme (GBM). Patients with CD44high GBM exhibited significantly poorer prognoses. Among various variant forms, CD44v6 was the only isoform that was detected in BTSC and its knockdown inhibited in vitro growth of BTSC from CD44high GBM but not from CD44low GBM. In contrast, this siRNA-mediated growth inhibition was not apparent in the matched GBM sample that does not possess stem-like properties. Stimulation with a CD44v6 ligand, osteopontin (OPN), increased expression of phosphorylated AKT in CD44high GBM, but not in CD44low GBM. Lastly, in a mouse spontaneous intracranial tumor model, CD44v6 was abundantly expressed by tumor precursors, in contrast to no detectable CD44v6 expression in normal neural precursors. Furthermore, overexpression of mouse CD44v6 or OPN, but not its dominant negative form, resulted in enhanced growth of the mouse tumor stem-like cells in vitro. Collectively, these data indicate that a subset of GBM expresses high CD44 in BTSC, and its growth may depend on CD44v6/AKTpathway. PMID:21915300

  10. CD44v6 expression in human skin keratinocytes as a possible mechanism for carcinogenesis associated with chronic arsenic exposure.

    PubMed

    Huang, S; Guo, S; Guo, F; Yang, Q; Xiao, X; Murata, M; Ohnishi, S; Kawanishi, S; Ma, N

    2013-01-14

    Inorganic arsenic is a well-known human skin carcinogen. Chronic arsenic exposure results in various types of human skin lesions, including squamous cell carcinoma (SCC). To investigate whether mutant stem cells participate in arsenic-associated carcinogenesis, we repeatedly exposed the HaCaT cells line to an environmentally relevant level of arsenic (0.05 ppm) in vitro for 18 weeks. Following sodium arsenic arsenite administration, cell cycle, colony-forming efficiency (CFE), cell tumorigenicity, and expression of CD44v6, NF-κB and p53, were analyzed at different time points (0, 5, 10, 15, 20, 25 and 30 passages). We found that a chronic exposure of HaCaT cells to a low level of arsenic induced a cancer stem- like phenotype. Furthermore, arsenic-treated HaCaT cells also became tumorigenic in nude mice, their growth cycle was predominantly in G2/M and S phases. Relative to nontreated cells, they exhibited a higher growth rate and a significant increase in CFE. Western blot analysis found that arsenic was capable of increasing cell proliferation and sprouting of cancer stem-like phenotype. Additionally, immunohistochemical analysis demonstrated that CD44v6 expression was up-regulated in HaCaT cells exposed to a low level of arsenic during early stages of induction. The expression of CD44v6 in arsenic-treated cells was positively correlated with their cloning efficiency in soft agar (r=0.949, P=0.01). Likewise, the expressions of activating transcription factor NF-κB and p53 genes in the arsenic-treated HaCaT cells were significantly higher than that in non-treated cells. Higher expressions of CD44v6, NF-κB and p53 were also observed in tumor tissues isolated from Balb/c nude mice. The present results suggest that CD44v6 may be a biomarker of arsenic-induced neoplastic transformation in human skin cells, and that arsenic promotes malignant transformation in human skin lesions through a NF-κB signaling pathway-stimulated expression of CD44v6.

  11. CD44v10, osteopontin and lymphoma growth retardation by a CD44v10-specific antibody.

    PubMed

    Megaptche, Amelie Pajip; Erb, Ulrike; Büchler, Markus Wolfgang; Zöller, Margot

    2014-09-01

    Blockade of CD44 is considered a therapeutic option for the elimination of leukemia-initiating cells. However, the application of anti-panCD44 can be burdened by severe side effects. We determined whether these side effects could be avoided by replacing anti-panCD44 with CD44 variant isoform (CD44v)-specific antibodies in CD44v-positive hematological malignancies using the EL4 thymoma and CD44v10-transfected EL4 (EL4-v10) as models. Subcutaneous growth of EL4 and EL4-v10 was equally well inhibited by the anti-panCD44 and anti-CD44v10 antibodies, respectively. Ex vivo analysis indicated that natural killer cytotoxicity and antibody-dependent cellular cytotoxicity were the main effector mechanisms. Under local inflammation, the efficacy of anti-CD44v10 prolonged the survival time twofold compared with untreated, EL4-v10 tumor-bearing mice, and this was due to inflammation-induced expression of osteopontin (OPN). A high level of OPN in EL4-v10 tumors supported leukocyte recruitment and tumor-infiltrating T-cell activation. Taken together, in hematological malignancies expressing CD44v, anti-panCD44 can be replaced by CD44v-specific antibodies without a loss in efficacy. Furthermore, CD44v10-specific antibodies appear particularly advantageous in cutaneous leukemia therapy, as CD44v10 binding of OPN drives leukocyte recruitment and activation.

  12. CD44 standard and CD44v10 isoform expression on leukemia cells distinctly influences niche embedding of hematopoietic stem cells.

    PubMed

    Erb, Ulrike; Megaptche, Amelie Pajip; Gu, Xiaoyu; Büchler, Markus W; Zöller, Margot

    2014-03-31

    A blockade of CD44 is considered a therapeutic option for the elimination of leukemia initiating cells. However, anti-panCD44 can interfere with hematopoiesis. Therefore we explored, whether a CD44 variant isoform (CD44v)-specific antibody can inhibit leukemia growth without attacking hematopoiesis. As a model we used CD44v10 transfected EL4 thymoma cells (EL4-v10). The therapeutic efficacy of anti-panCD44 and anti-CD44v10 was evaluated after intravenous application of EL4/EL4-v10. Ex vivo and in vitro studies evaluated the impact of anti-panCD44 and anti-CD44v10 as well as of EL4 and EL4-v10 on hematopoietic stem cells (HSC) in cocultures with bone marrow stroma cells with a focus on adhesion, migration, cell cycle progression and apoptosis resistance. Intravenously injected EL4-v10 grow in bone marrow and spleen. Anti-panCD44 and, more pronounced anti-CD44v10 prolong the survival time. The higher efficacy of anti-CD44v10 compared to anti-panCD44 does not rely on stronger antibody-dependent cellular cytotoxicity or on promoting EL4-v10 apoptosis. Instead, EL4 compete with HSC niche embedding. This has consequences on quiescence and apoptosis-protecting signals provided by the stroma. Anti-panCD44, too, more efficiently affected embedding of HSC than of EL4 in the bone marrow stroma. EL4-v10, by catching osteopontin, migrated on bone marrow stroma and did not or weakly interfere with HSC adhesion. Anti-CD44v10, too, did not affect the HSC--bone marrow stroma crosstalk. The therapeutic effect of anti-panCD44 and anti-CD44v10 is based on stimulation of antibody-dependent cellular cytotoxicity. The superiority of anti-CD44v10 is partly due to blocking CD44v10-stimulated osteopontin expression that could drive HSC out of the niche. However, the main reason for the superiority of anti-CD44v10 relies on neither EL4-v10 nor anti-CD44v10 severely interfering with HSC--stroma cell interactions that, on the other hand, are affected by EL4 and anti-panCD44. Anti-panCD44

  13. CD44 standard and CD44v10 isoform expression on leukemia cells distinctly influences niche embedding of hematopoietic stem cells

    PubMed Central

    2014-01-01

    Background A blockade of CD44 is considered a therapeutic option for the elimination of leukemia initiating cells. However, anti-panCD44 can interfere with hematopoiesis. Therefore we explored, whether a CD44 variant isoform (CD44v)-specific antibody can inhibit leukemia growth without attacking hematopoiesis. As a model we used CD44v10 transfected EL4 thymoma cells (EL4-v10). Methods The therapeutic efficacy of anti-panCD44 and anti-CD44v10 was evaluated after intravenous application of EL4/EL4-v10. Ex vivo and in vitro studies evaluated the impact of anti-panCD44 and anti-CD44v10 as well as of EL4 and EL4-v10 on hematopoietic stem cells (HSC) in cocultures with bone marrow stroma cells with a focus on adhesion, migration, cell cycle progression and apoptosis resistance. Results Intravenously injected EL4-v10 grow in bone marrow and spleen. Anti-panCD44 and, more pronounced anti-CD44v10 prolong the survival time. The higher efficacy of anti-CD44v10 compared to anti-panCD44 does not rely on stronger antibody-dependent cellular cytotoxicity or on promoting EL4-v10 apoptosis. Instead, EL4 compete with HSC niche embedding. This has consequences on quiescence and apoptosis-protecting signals provided by the stroma. Anti-panCD44, too, more efficiently affected embedding of HSC than of EL4 in the bone marrow stroma. EL4-v10, by catching osteopontin, migrated on bone marrow stroma and did not or weakly interfere with HSC adhesion. Anti-CD44v10, too, did not affect the HSC – bone marrow stroma crosstalk. Conclusion The therapeutic effect of anti-panCD44 and anti-CD44v10 is based on stimulation of antibody-dependent cellular cytotoxicity. The superiority of anti-CD44v10 is partly due to blocking CD44v10-stimulated osteopontin expression that could drive HSC out of the niche. However, the main reason for the superiority of anti-CD44v10 relies on neither EL4-v10 nor anti-CD44v10 severely interfering with HSC – stroma cell interactions that, on the other hand, are affected

  14. [Dectection of G3BP and CD44v6 in the tissues of laryngeal squamous cell carcinoma and their clinical significance].

    PubMed

    Luo, Dahu; Lou, Weihua

    2017-07-01

    Objective To study the expressions of RNA-binding Ras-GAP SH3 binding protein (G3BP) and tumor stem cell marker CD44v6 in laryngeal squamous cell carcinoma and their correlations with angiogenesis. Methods We collected the cancer tissues and corresponding paracancerous tissues from 56 patients with laryngeal squamous cell carcinoma. The expressions of G3BP and CD44v6 proteins were detected by Western blotting in cancer tissues and corresponding paracancerous tissues; the expressions of G3BP, CD44v6 and vascular endothelial growth factor A (VEGF-A) were tested by immunohistochemistry. Thereafter, we compared the positive expression rates of G3BP and CD44v6 between in cancer tissues and in normal tissues, analyzed the correlations between the expressions of G3BP, CD44v6 and the laryngeal squamous cell carcinoma features as well as their correlations with microvessel density (MVD) that was determined by FVIIIAg immunohistochemistry. Results Western blotting showed that the expressions of G3BP and CD44v6 proteins in the laryngeal squamous cell carcinoma were higher than those in the paracancerous tissues. Immunohistochemistry showed that compared with the paracancerous tissues, G3BP, CD44v6 and VEGF-A expressions (the positive rates are 58.9%, 53.6%, 46.4%, respectively) were higher in cancer tissues. The positive rates of G3BP and CD44v6 in cancer tissues were related with the clinical stage, recurrence or metastasis, and lymph node metastasis of laryngeal squamous cell carcinoma, but had nothing to do with patients' age and tumor size. Pearson correlation analysis showed the expressions of both G3BP and CD44v6 were positively correlated with VEGF-A (r=0.741, r=0.756). MVD values were significantly higher in the G3BP and CD44v6 positive cases than in paracancerous tissues, but there was no difference in MVD between those without G3BP and CD44v6 positive expressions and the paracancerous tissues. Conclusion The positive expression rates of G3BP and CD44v6 in laryngeal

  15. CD44v6: A metastasis-associated biomarker in patients with gastric cancer?

    PubMed Central

    Lu, Li; Huang, Fei; Zhao, Zhicheng; Li, Chuan; Liu, Tong; Li, Weidong; Fu, Weihua

    2016-01-01

    Abstract Background: The diagnostic and prognostic value of CD44v6 in patients with gastric cancer remains unclear. Therefore, a quantitative meta-analysis was conducted to determine the clinical value of CD44v6 in patients with gastric cancer. Methods: Sixteen studies with 2177 patients were included. Pooled odds ratios (ORs) and hazard ratio (HR) with 95% confidence intervals (CIs) were calculated to estimate the impact of CD44v6 in patients with gastric cancer on clinicopathological features and 5-year overall survival (OS). Sensitivity analysis, subgroup analysis, and regression analysis were introduced to evaluate the heterogeneity across the studies. Publication bias was also explored among the studies. Results: The meta-analysis showed that the upregulated CD44v6 was associated with lymph node metastasis (OR 1.91, 95% CI 1.19–3.08; P = 0.007), distant metastasis (OR 3.41, 95% CI 2.01–5.78; P = 0.000), high TNM stage (OR 2.29, 95% CI 1.10–4.75; P = 0.026), lymphatic vessel invasion (OR 1.59, 95% CI 1.21–2.09; P = 0.001), and vascular invasion (OR 1.57, 95% CI 1.19–2.07; P = 0.001). When excluded 1 study based on sensitivity analysis, pooled HR indicated that CD44v6 positive expression was correlated poor 5-year OS (OR 1.76, 95% CI 1.30–2.39; P = 0.000), meanwhile, heterogeneity was eliminated. The heterogeneity of Lauren type mainly existed in the big sample size subgroup. Different region and publication year might contribute to the heterogeneity of differentiation type. While the heterogeneity of lymph node mainly existed in Asian and big sample size group. Publication bias was observed among 12 studies on lymph node metastasis (Ppublication bias = 0.041), and 5 studies on TNM stage (Ppublication bias = 0.026). Conclusion: Taken together, CD44v6 overexpression might be correlated to the characteristics of tumor metastasis in gastric cancer, consisting with many mechanism studies. Therefore, CD44v6 might present a

  16. Prognostic value of E-cadherin, beta-catenin, CD44v6, and HER2/neu in metastatic cutaneous adenocarcinoma.

    PubMed

    Pozdnyakova, Olga; Hoang, Mai M P; Dresser, Karen A; Mahalingam, Meera

    2009-08-01

    Our recent experience with a patient developing cutaneous metastases within 3 months of diagnosis of esophageal adenocarcinoma suggests that altered expression of the cellular adhesion molecules, E-cadherin and CD44v6, may have had a role to play in the rapid onset of metastases. To corroborate these findings, we designed a cross-sectional study to investigate the expression of select molecules involved in the metastatic cascade. E-cadherin, beta-catenin, CD44v6, and HER2/neu immunohistochemical stains were performed on archival materials of metastatic adenocarcinoma to the skin from 27 patients and the available corresponding primary tumors in 10 patients. The primary sites included breast (n = 10; 37%), gastrointestinal tract (n = 10; 37%), ovary (n = 1; 4%), thyroid (n = 2; 7%), lung (n = 1; 4%), and unknown primary (n = 3; 11%). Expression of all markers was noted with the most significant increases observed in beta-catenin (26 of 27 cases; 96%), followed by CD44v6 (24 of 27 cases; 89%), E-cadherin (22 of 27 cases; 82%), and HER2/neu (11 of 27 cases; 41%). Contrasting expression of these molecules in the primary versus the metastatic tumors, enhanced expression of CD44v6 was observed in the cutaneous metastases relative to the primary in 6 of 10 (60%) cases. Of interest, 2 of these 6 cases (33%) also showed reduction in E-cadherin--a member of the cadherin family functioning as an invasion suppressor molecule. These findings reinforce the complexities of the metastatic cascade and imply that the variation in adhesive properties of tumor cells is, perhaps, a consequence of the difference in density of the molecules mediating this process.

  17. PDGF Suppresses the Sulfation of CD44v and Potentiates CD44v-Mediated Binding of Colon Carcinoma Cells to Fibrin under Flow

    PubMed Central

    Alves, Christina S.; Konstantopoulos, Konstantinos

    2012-01-01

    Fibrin(ogen) mediates sustained tumor cell adhesion and survival in the pulmonary vasculature, thereby facilitating the metastatic dissemination of tumor cells. CD44 is the major functional fibrin receptor on colon carcinoma cells. Growth factors, such as platelet-derived growth factor (PDGF), induce post-translational protein modifications, which modulate ligand binding activity. In view of the roles of PDGF, fibrin(ogen) and CD44 in cancer metastasis, we aimed to delineate the effect of PDGF on CD44-fibrin recognition. By immunoprecipitating CD44 from PDGF-treated and untreated LS174T colon carcinoma cells, which express primarily CD44v, we demonstrate that PDGF enhances the adhesion of CD44v-coated beads to immobilized fibrin. Enzymatic inhibition studies coupled with flow-based adhesion assays and autoradiography reveal that PDGF augments the binding of CD44v to fibrin by significantly attenuating the extent of CD44 sulfation primarily on chondroitin and dermatan sulfate chains. Surface plasmon resonance assays confirm that PDGF enhances the affinity of CD44v-fibrin binding by markedly reducing its dissociation rate while modestly increasing the association rate. PDGF mildly reduces the affinity of CD44v-hyaluronan binding without affecting selectin-CD44v recognition. The latter is attributed to the fact that CD44v binds to selectins via sialofucosylated O-linked residues independent of heparan, dermatan and chondroitin sulfates. Interestingly, PDGF moderately reduces the sulfation of CD44s and CD44s-fibrin recognition. Collectively, these data offer a novel perspective into the mechanism by which PGDF regulates CD44-dependent binding of metastatic colon carcinoma cells to fibrin(ogen). PMID:23056168

  18. Analysis of human articular chondrocyte CD44 isoform expression and function in health and disease.

    PubMed

    Salter, D M; Godolphin, J L; Gourlay, M S; Lawson, M F; Hughes, D E; Dunne, E

    1996-08-01

    Interactions between articular chondrocytes and components of the extracellular matrix are of potential importance in the normal function of cartilage and in the pathophysiology of arthritis. Little is known of the basis of these interactions, but cell adhesive molecules such as CD44 are likely to be involved. Immunohistology using six well-characterized anti-CD44 monoclonal antibodies demonstrated standard CD44 isoform (CD44H) expression by all chondrocytes in normal and osteoarthrotic (OA) cartilage but absence of the CD44E variant. Polymerase chain reaction (PCR) of reverse transcribed mRNA from monolayer cultures of normal and OA chondrocytes using primer sequences which span the region containing variably spliced exons produced a predominant band representing the standard form of CD44, which lacks the variable exons 6-15 (v1-v10). No product was seen at the expected size of the epithelial variant of CD44 (CD44v8-10). Use of exon-specific primers, however, showed expression of variant exons resulting in multiple minor isoforms. Standard CD44 was also shown to be the predominantly expressed isoform identified by immunoprecipitation, but human articular chondrocytes did not adhere to hyaluronan in vitro. Chondrocyte CD44 may function as an adhesion receptor for other matrix molecules such as fibronectin or collagen.

  19. Pancreatic cancer cells express CD44 variant 9 and multidrug resistance protein 1 during mitosis.

    PubMed

    Kiuchi, Shizuka; Ikeshita, Shunji; Miyatake, Yukiko; Kasahara, Masanori

    2015-02-01

    Pancreatic cancer is one of the most lethal cancers with high metastatic potential and strong chemoresistance. Its intractable natures are attributed to high robustness in tumor cells for their survival. We demonstrate here that pancreatic cancer cells (PCCs) with an epithelial phenotype upregulate cell surface expression of CD44 variant 9 (CD44v9), an important cancer stem cell marker, during the mitotic phases of the cell cycle. Of five human CD44(+) PCC lines examined, three cell lines, PCI-24, PCI-43 and PCI-55, expressed E-cadherin and CD44 variants, suggesting that they have an epithelial phenotype. By contrast, PANC-1 and MIA PaCa-2 cells expressed vimentin and ZEB1, suggesting that they have a mesenchymal phenotype. PCCs with an epithelial phenotype upregulated cell surface expression of CD44v9 in prophase, metaphase, anaphase and telophase and downregulated CD44v9 expression in late-telophase, cytokinesis and interphase. Sorted CD44v9-negative PCI-55 cells resumed CD44v9 expression when they re-entered the mitotic stage. Interestingly, CD44v9(bright) mitotic cells expressed multidrug resistance protein 1 (MDR1) intracellularly. Upregulated expression of CD44v9 and MDR1 might contribute to the intractable nature of PCCs with high proliferative activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Conservation of CD44 exon v3 functional elements in mammals

    PubMed Central

    Vela, Elena; Hilari, Josep M; Delclaux, María; Fernández-Bellon, Hugo; Isamat, Marcos

    2008-01-01

    Background The human CD44 gene contains 10 variable exons (v1 to v10) that can be alternatively spliced to generate hundreds of different CD44 protein isoforms. Human CD44 variable exon v3 inclusion in the final mRNA depends on a multisite bipartite splicing enhancer located within the exon itself, which we have recently described, and provides the protein domain responsible for growth factor binding to CD44. Findings We have analyzed the sequence of CD44v3 in 95 mammalian species to report high conservation levels for both its splicing regulatory elements (the 3' splice site and the exonic splicing enhancer), and the functional glycosaminglycan binding site coded by v3. We also report the functional expression of CD44v3 isoforms in peripheral blood cells of different mammalian taxa with both consensus and variant v3 sequences. Conclusion CD44v3 mammalian sequences maintain all functional splicing regulatory elements as well as the GAG binding site with the same relative positions and sequence identity previously described during alternative splicing of human CD44. The sequence within the GAG attachment site, which in turn contains the Y motif of the exonic splicing enhancer, is more conserved relative to the rest of exon. Amplification of CD44v3 sequence from mammalian species but not from birds, fish or reptiles, may lead to classify CD44v3 as an exclusive mammalian gene trait. PMID:18710510

  1. CD44 Splice Variants as Potential Players in Alzheimer's Disease Pathology.

    PubMed

    Pinner, Elhanan; Gruper, Yaron; Ben Zimra, Micha; Kristt, Don; Laudon, Moshe; Naor, David; Zisapel, Nava

    2017-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive deficits, deposition of amyloid-β (Aβ) plaques, intracellular neurofibrillary tangles, and neuronal cell death. Neuroinflammation is commonly believed to participate in AD pathogenesis. CD44 is an inflammation-related gene encoding a widely-distributed family of alternatively spliced cell surface glycoproteins that have been implicated in inflammation, metastases, and inflammation-linked neuronal injuries. Here we investigated the expression patterns of CD44S (which does not contain any alternative exon) and CD44 splice variants in postmortem hippocampal samples from AD patients and matched non-AD controls. The expression of CD44S and CD44 splice variants CD44V3, CD44V6, and CD44V10 was significantly higher in AD patients compared to non-AD controls. Immunohistochemistry of human hippocampal sections revealed that CD44S differentially localized to neuritic plaques and astrocytes, whereas CD44V3, CD44V6, and CD44V10 expression was mostly neuronal. Consistent with these findings, we found that the expression of CD44V6 and CD44V10 was induced by Aβ peptide in neuroblastoma cells and primary neurons. Furthermore, in loss of function studies we found that both CD44V10-specific siRNA and CD44V10 antibody protected neuronal cells from Aβ-induced toxicity, suggesting a causal relationship between CD44V10 and neuronal cell death. These data indicate that certain CD44 splice variants contribute to AD pathology and that CD44V10 inhibition may serve as a new neuroprotective treatment strategy for this disease.

  2. CD44v3 and VEGF-C expression and its relationship with lymph node metastasis in squamous cell carcinomas of the uterine cervix.

    PubMed

    Liu, Ye-Qing; Li, Hai-Feng; Han, Jing-Jing; Tang, Qiong-Lan; Sun, Qing; Huang, Zhi-Quan; Li, Hai-Gang

    2014-01-01

    To investigate the expression of CD44v3 and vascular endothelial growth factor-C (VEGF-C) and their relationship with lymph node metastasis in squamous cell carcinomas (SCC) of the uterine cervix. Expression of CD44v3 and VEGF-C was analyzed in 109 cases of cervical SCC by immunohistochemistry (IHC). The relationship was analyzed between expression and the patient age, histological differentiation, formation of tumor emboli in lymphoid vessels, lymph node metastasis, FIGO staging, and TNM classification. Expression rates for both CD44v3 and VEGF-C were 43.1% in cervical SCC. The cells with positive immunohistochemical staining of CD44v3 were distributed mainly around the keratin pearls in well differentiated carcinomas, but distributed diffusely in the moderately and poorly differentiated lesions. VEGF-C was found stained positively in most of the tumor cells. There were differences in expression between normal epithelium and atypical hyperplasia as well as carcinoma. Both CD44v3 and VEGF-C were found to be associated positively with lymph node metastasis and TNM classification (both p=0.000). Neither CD44v3 nor VEGF-C was found to be associated with patient age, histological differentiation, formation of tumor emboli in lymphoid vessels and FIGO staging. CD44v3 was found to be associated with VEGF-C positively (p=0.000). Abnormal expression of CD44v3 and VEGF-C is associated closely with the lymph node metastasis in cervical SCC, and these agents may cooperate in carcinogenesis and development of metastatic lesions.

  3. Prognostic value of CD44 expression in non-small cell lung cancer: a systematic review.

    PubMed

    Luo, Zhuang; Wu, Rong-Rong; Lv, Liang; Li, Peng; Zhang, Li-Yan; Hao, Qing-Lin; Li, Wei

    2014-01-01

    CD44 is a potentially interesting prognostic marker and therapeutic target in non-small cell lung cancer (NSCLC). Although the expression of CD44 has been reported to correlate with poor prognosis of NSCLC in most literatures, some controversies still exist. Since the limited patient numbers within independent studies, here we performed a meta-analysis to clarify the correlations between CD44 expression and prognosis and clinicopathological features in NSCLC. Relevant literatures were identified using PubMed, EMBASE and CNKI (China National Knowledge Infrastructure) databases (up to February 2014). Data from eligible studies were extracted and included into meta-analysis using a random effects model. Studies were pooled. Summary hazard ratios (HR) and clinical parameters were calculated. We performed a final analysis of 1772 patients from 23 evaluable studies for Prognostic Value and 2167 patients from 28 evaluable studies for clinicopathological features. Our study shows that the pooled hazard ratio (HR) of overexpression CD44-V6 for overall survival in NSCLC was 1.63 [95% confidence interval (CI): 1.20-2.21] by univariate analysis and 1.29 (95% CI: 0.71-2.37) by multivariate analysis.The pooled HR of overexprssion panCD44 for overall survival in NSCLC was 1.53 (95% CI: 0.58-4.04) by univariate analysis and 3.00 (95% CI: 1.53-5.87) by multivariate analysis. Overexpression of CD44-V6 is associated with tumor differentiation (poor differentiation, OR = 1.66, 95% CI: 1.12-2.45), tumor histological type [squamous cell carcinomas (SCC), OR = 2.6, 95% CI: 1.63-5.02], clinical TMN stage (TMN stage III, OR = 2.22, 95% CI: 1.44-3.43) and lymph node metastasis (N1-3, 3.52, 95% CI: 2.08-5.93) in patients with NSCLC. However, there was no significant association between CD44-V6 and tumor size [T category, OR = 1.42, 95% CI: 0.73-2.78]. Our meta-analysis showed that CD44-V6 is an efficient prognostic factor for NSCLC. Overexpression of CD44-V6 was significantly associated with

  4. Clinical significance of CD44 expression in children with hepatoblastoma.

    PubMed

    Cai, H-Y; Yu, B; Feng, Z-C; Qi, X; Wei, X-J

    2015-10-27

    The aim of this study was to investigate the expression of CD44 and its clinical significance in children suffering from hepatoblastoma (HB). CD44 expression was detected with immunohistochemistry staining in 30 samples from hepatoblastoma children and 10 normal liver tissue samples from normal children. The data obtained was statistically analyzed using the chi-square test, using the SPSS (v.11.0) software. The rate of CD44 expression was significantly higher (66.7%) in hepatoblastoma tissues than in normal liver tissues (χ(2) = 4.848, P < 0.05). The rate of CD44 expression was significantly higher in children with stage III or IV hepatoblastoma (83.3%) than that in children with stage I and II hepatoblastoma (χ(2) = 5.625, P < 0.05) (41.7%). Therefore, CD44 expression might play an important role in the pathogenesis, progression, and prognosis of HB in children.

  5. Expression of two isoforms of CD44 in human endometrium.

    PubMed

    Behzad, F; Seif, M W; Campbell, S; Aplin, J D

    1994-10-01

    The distribution of the cell-surface adhesion glycoprotein CD44 in human endometrium was examined by immunofluorescence using six monoclonal antibodies to epitopes common to all forms of the molecule, and by reverse transcription-polymerase chain reaction (RT-PCR). Immunoreactivity was observed throughout the menstrual cycle in stroma, vessels, glandular, and luminal epithelium. Variations in staining intensity were observed, especially in the epithelial compartment. CD44 was also expressed strongly by decidualized stromal cells of first-trimester pregnancy. No systematic variation of immunoreactivity was observed with stages of the normal cycle, but a fraction (25%) of the specimens lacked reactivity in the epithelium. To determine the molecular size of the epithelial isoform, an immunoprecipitation technique was developed using surface-radioiodinated, detergent-extracted glands. This indicated the presence at the cell surface of a single dominant CD44E species with an approximate molecular mass of 130 kDa. RT-PCR was used to investigate the isoforms present in whole endometrial tissue, isolated gland fragments, and Ishikawa endometrial carcinoma cells. Complementary DNA produced from total endometrial mRNA was PCR-amplified across the splice junction between exons 5 and 15. Transcripts corresponding to the hyaluronate receptor CD44H as well as a larger isoform were identified. CD44H was absent, or very scarce, in cDNA from purified gland epithelium. In contrast, Ishikawa cells expressed this form abundantly. The glands and Ishikawa cells also expressed CD44E containing sequences encoded by exons 12, 13, and 14. These data demonstrate the presence of CD44 in human endometrium and decidua, and show that different isoforms of CD44 are associated with tissue compartments in which different functional roles can be anticipated.

  6. Detection of high CD44 expression in oral cancers using the novel monoclonal antibody, C44Mab-5.

    PubMed

    Yamada, Shinji; Itai, Shunsuke; Nakamura, Takuro; Yanaka, Miyuki; Kaneko, Mika K; Kato, Yukinari

    2018-07-01

    CD44 is a transmembrane glycoprotein that regulates a variety of genes related to cell-adhesion, migration, proliferation, differentiation, and survival. A large number of alternative splicing isoforms of CD44, containing various combinations of alternative exons, have been reported. CD44 standard (CD44s), which lacks variant exons, is widely expressed on the surface of most tissues and all hematopoietic cells. In contrast, CD44 variant isoforms show tissue-specific expression patterns and have been extensively studied as both prognostic markers and therapeutic targets in cancer and other diseases. In this study, we immunized mice with CHO-K1 cell lines overexpressing CD44v3-10 to obtain novel anti-CD44 mAbs. One of the clones, C 44 Mab-5 (IgG 1 , kappa), recognized both CD44s and CD44v3-10. C 44 Mab-5 also reacted with oral cancer cells such as Ca9-22, HO-1-u-1, SAS, HSC-2, HSC-3, and HSC-4 using flow cytometry. Moreover, immunohistochemical analysis revealed that C 44 Mab-5 detected 166/182 (91.2%) of oral cancers. These results suggest that the C 44 Mab-5 antibody may be useful for investigating the expression and function of CD44 in various cancers.

  7. In vivo characterization of the novel CD44v6-targeting Fab fragment AbD15179 for molecular imaging of squamous cell carcinoma: a dual-isotope study

    PubMed Central

    2014-01-01

    Background Patients with squamous cell carcinoma in the head and neck region (HNSCC) offer a diagnostic challenge due to difficulties to detect small tumours and metastases. Imaging methods available are not sufficient, and radio-immunodiagnostics could increase specificity and sensitivity of diagnostics. The objective of this study was to evaluate, for the first time, the in vivo properties of the radiolabelled CD44v6-targeting fragment AbD15179 and to assess its utility as a targeting agent for radio-immunodiagnostics of CD44v6-expressing tumours. Methods The fully human CD44v6-targeting Fab fragment AbD15179 was labelled with 111In or 125I, as models for radionuclides suitable for imaging with SPECT or PET. Species specificity, antigen specificity and internalization properties were first assessed in vitro. In vivo specificity and biodistribution were then evaluated in tumour-bearing mice using a dual-tumour and dual-isotope setup. Results Both species-specific and antigen-specific binding of the conjugates were demonstrated in vitro, with no detectable internalization. The in vivo studies demonstrated specific tumour binding and favourable tumour targeting properties for both conjugates, albeit with higher tumour uptake, slower tumour dissociation, higher tumour-to-blood ratio and higher CD44v6 sensitivity for the 111In-labelled fragment. In contrast, the 125I-Fab demonstrated more favourable tumour-to-organ ratios for liver, spleen and kidneys. Conclusions We conclude that AbD15179 efficiently targets CD44v6-expressing squamous cell carcinoma xenografts, and particularly, the 111In-Fab displayed high and specific tumour uptake. CD44v6 emerges as a suitable target for radio-immunodiagnostics, and a fully human antibody fragment such as AbD15179 can enable further clinical imaging studies. PMID:24598405

  8. CD44 functions in Wnt signaling by regulating LRP6 localization and activation

    PubMed Central

    Schmitt, M; Metzger, M; Gradl, D; Davidson, G; Orian-Rousseau, V

    2015-01-01

    Wnt reception at the membrane is complex and not fully understood. CD44 is a major Wnt target gene in the intestine and is essential for Wnt-induced tumor progression in colorectal cancer. Here we show that CD44 acts as a positive regulator of the Wnt receptor complex. Downregulation of CD44 expression decreases, whereas CD44 overexpression increases Wnt activity in a concentration-dependent manner. Epistasis experiments place CD44 function at the level of the Wnt receptor LRP6. Mechanistically, CD44 physically associates with LRP6 upon Wnt treatment and modulates LRP6 membrane localization. Moreover, CD44 regulates Wnt signaling in the developing brain of Xenopus laevis embryos as shown by a decreased expression of Wnt targets tcf-4 and en-2 in CD44 morphants. PMID:25301071

  9. [Effect of Biejiajian Pills on Wnt signal pathway molecules β-catenin and GSK-3β and the target genes CD44v6 and VEGF in hepatocellular carcinoma cells].

    PubMed

    Sun, Haitao; He, Songqi; Wen, Bin; Jia, Wenyan; Fan, Eryan; Zheng, Yan

    2014-10-01

    To investigate the effect of Biejiajian Pills on the expressions of the signal molecules and target genes of Wnt signal pathway in HepG2 cells and explore the mechanisms by which Biejiajian pills suppress the invasiveness of hepatocellular carcinoma. HepG2 cells were cultured for 48 h in the presence of serum collected from rats fed with Biejiajian Pills. The expressions of β-catenin, GSK-3β and P-GSK-3β in the cultured cells were assessed by Western blotting and the expressions of CD44v6 and VEGF were detected using immunohistochemistry. HepG2 cells cultured with the serum of rats fed with Biejiajian Pills showed lowered expressions of β-catenin protein both in the cytoplasm and the nuclei with also inhibition of phosphorylation of GSK-3β and reduced expression of CD44v6 and VEGF. Biejiajian Pills can significantly reduce the expression of β-catenin by decreasing the phosphorylation of GSK-3β and blocking the Wnt/β-catenin signaling pathway to cause down-regulation of the target genes CD44v6 and VEGF, which may be one of the molecular mechanisms by which Biejiajian Pills suppress the proliferation and invasiveness of hepatocellular carcinoma.

  10. CD44 variant isoform 9 emerges in response to injury and contributes to the regeneration of the gastric epithelium

    PubMed Central

    Bertaux-Skeirik, Nina; Wunderlich, Mark; Teal, Emma; Chakrabarti, Jayati; Biesiada, Jacek; Mahe, Maxime; Sundaram, Nambirajan; Gabre, Joel; Hawkins, Jennifer; Jian, Gao; Engevik, Amy C.; Yang, Li; Wang, Jiang; Goldenring, James R.; Qualls, Joseph E.; Medvedovic, Mario; Helmrath, Michael A.; Diwan, Tayyab; Mulloy, James C.; Zavros, Yana

    2017-01-01

    The CD44 gene encodes several protein isoforms due to alternative splicing and post translational modifications. Given that CD44 variant isoform 9 (CD44v9) is expressed within Spasmolytic Polypeptide/TFF2-Expressing Metaplasia (SPEM) glands during repair, CD44v9 may be play a functional role during the process of regeneration of the gastric epithelium. Here we hypothesize that CD44v9 marks a regenerative cell lineage responsive to infiltrating macrophages during regeneration of the gastric epithelium. Ulcers were induced in CD44-decient (CD44KO) and C57BL/6 (BL6) mice by a localized application of acetic acid to the serosal surface of the stomach. Gastric organoids expressing CD44v9 were derived from mouse stomachs and transplanted at the ulcer site of CD44KO mice. Ulcers, CD44v9 expression, proliferation and histology were measured 1, 3, 5 and 7-days post-injury. Human-derived gastric organoids were generated from stomach tissue collected from elderly (>55 years) or young (14–20 years) patients. Organoids were transplanted into the stomachs of NOD scid gamma (NSG) mice at the site of injury. Gastric injury was induced in NRG-SGM3 (NRGS) mice harboring human-derived immune cells (hnNRGS) and the immune profile analyzed by CyTOF. CD44v9 expression emerged within regenerating glands the ulcer margin in response to injury. While ulcers in BL6 mice healed within 7-days post-injury, CD44KO mice exhibited loss of repair and epithelial regeneration. Ulcer healing was promoted in CD44KO mice by transplanted CD55v9-expressing gastric organoids. NSG mice exhibited loss of CD44v9 expression and gastric repair. Transplantation of human-derived gastric organoids from young, but not aged stomachs promoted repair in NSG mouse stomachs in response to injury. Finally, compared to NRGS mice, huNRGS animals exhibited reduced ulcer sizes, an infiltration of human CD162+ macrophages and an emergence of CD44v9 expression in SPEM. Thus, during repair of the gastric epithelium CD44v9

  11. Spatial distribution of osteopontin, CD44v6 and podoplanin in the lining epithelium of odontogenic keratocyst, and their biological relevance.

    PubMed

    Kechik, Khamisah Awang; Siar, Chong Huat

    2018-02-01

    The odontogenic keratocyst (OKC) remains the most challenging jaw cyst to treat because of its locally-aggressive behaviour and high recurrence potential. Emerging evidence suggests that osteopontin, its receptors CD44v6 and integrin α v , and podoplanin, have a role in the local invasiveness of this cyst. However the spatial distribution characteristics of these pro-invasive markers in the lining epithelium of OKC, and their association with the clinicopathologic parameters of OKC are largely unexplored. This study sought to address these issues in comparison with dentigerous cysts (DCs) and radicular cysts (RCs) and to evaluate their biological relevance. A sample consisting of 20 OKC cases, 10 DCs and 10 RCs was subjected to immunohistochemical staining for osteopontin, CD44v6 and integrin α v , and podoplanin, and semiquantitative analysis was performed. All factors (except integrin α v ) were detected heterogeneously in the constitutive layers of the lining epithelium in all three cyst types. Key observations were significant upregulation of CD44v6 and podoplanin in OKC compared to DCs and RCs, suggesting that these protein molecules may play crucial roles in promoting local invasiveness in OKC (P<0.05). Osteopontin underexpression and distribution patterns were indistinctive among all three cysts indicating its limited role as pro-invasive factor. Clinical parameters showed no significant correlations with all protein factors investigated. Present findings suggest that an osteopontin low CD44v6 high and podoplanin high immunoprofile most probably represent epithelial signatures of OKC and are markers of local invasiveness in this cyst. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. CD44 expression is related to poor prognosis of hypopharyngeal squamous cell carcinoma.

    PubMed

    Uwa, Nobuhiro; Kataoka, Tatsuki R; Torii, Ikuko; Sato, Ayuko; Nishigami, Takashi; Song, Misa; Daimon, Takashi; Saeki, Nobuo; Sagawa, Kousuke; Mouri, Takeshi; Terada, Tomonori; Sakagami, Masafumi; Tsujimura, Tohru

    2011-03-01

    CD44 expression in hypopharyngeal squamous cell carcinomas (SCCs) is closely associated with poor prognosis for patients. CD44 may serve as a prognostic marker for hypopharyngeal SCCs. CD44, an adhesion molecule binding to extracellular matrix, is believed to participate in the progression of malignancies. To clarify the role of CD44 in the progression of hypopharyngeal SCCs, we examined CD44 expression in relation to clinical parameters in hypopharyngeal SCCs. Biopsy specimens of hypopharyngeal SCCs were collected from 40 untreated patients, and their CD44 expression was examined immunohistochemically. Hypopharyngeal SCCs were classified into two groups: CD44-low SCCs comprising < 50% CD44-positive tumor cells and CD44-high SCCs comprising ≥ 50% CD44-positive tumor cells. The relation between CD44 expression and various parameters (clinical T and N stages, distant metastasis, and pathological T and N stages) was analyzed by Fisher's exact test. The relation between CD44 expression and the 5-year disease-free survival (DFS) rate was also analyzed by log rank test. The CD44 expression in hypopharyngeal SCCs was related to pathological N stage, but not to clinical T and N stages and pathological T stage, of the patients. Distant metastasis during the follow-up occurred more frequently in patients with CD44-high SCCs than those with CD44-low SCCs. The 5-year DFS was significantly lower in the former than in the latter.

  13. Differential regulation of CD44 expression by lipopolysaccharide (LPS) and TNF-alpha in human monocytic cells: distinct involvement of c-Jun N-terminal kinase in LPS-induced CD44 expression.

    PubMed

    Gee, Katrina; Lim, Wilfred; Ma, Wei; Nandan, Devki; Diaz-Mitoma, Francisco; Kozlowski, Maya; Kumar, Ashok

    2002-11-15

    Alterations in the regulation of CD44 expression play a critical role in modulating cell adhesion, migration, and inflammation. LPS, a bacterial cell wall component, regulates CD44 expression and may modulate CD44-mediated biological effects in monocytic cells during inflammation and immune responses. In this study, we show that in normal human monocytes, LPS and LPS-induced cytokines IL-10 and TNF-alpha enhance CD44 expression. To delineate the mechanism underlying LPS-induced CD44 expression, we investigated the role of the mitogen-activated protein kinases (MAPKs), p38, p42/44 extracellular signal-regulated kinase, and c-Jun N-terminal kinase (JNK) by using their specific inhibitors. We demonstrate the involvement, at least in part, of p38 MAPK in TNF-alpha-induced CD44 expression in both monocytes and promonocytic THP-1 cells. However, neither p38 nor p42/44 MAPKs were involved in IL-10-induced CD44 expression in monocytes. To further dissect the TNF-alpha and LPS-induced signaling pathways regulating CD44 expression independent of IL-10-mediated effects, we used IL-10 refractory THP-1 cells as a model system. Herein, we show that CD44 expression induced by the LPS-mediated pathway predominantly involved JNK activation. This conclusion was based on results derived by transfection of THP-1 cells with a dominant-negative mutant of stress-activated protein/extracellular signal-regulated kinase kinase 1, and by exposure of cells to JNK inhibitors dexamethasone and SP600125. All these treatments prevented CD44 induction in LPS-stimulated, but not in TNF-alpha-stimulated, THP-1 cells. Furthermore, we show that CD44 induction may involve JNK-dependent early growth response gene activation in LPS-stimulated monocytic cells. Taken together, these results suggest a predominant role of JNK in LPS-induced CD44 expression in monocytic cells.

  14. CD44 expression in curettage and postoperative specimens of endometrial cancer.

    PubMed

    Wojciechowski, Michał; Krawczyk, Tomasz; Śmigielski, Janusz; Malinowski, Andrzej

    2015-02-01

    Adhesive molecules like CD44 are well defined key players in the metastatic cascade in many cancers, including endometrial cancer. They could play a role of markers of invasion, metastasis and prognostic factors. The aim of the study is to assess a possible role of the CD44 as a marker of invasion in endometrial cancer, both at the moment of preoperative workup and final staging. Available for analysis were archival specimens of 51 patients who had underwent curettage and surgery between 2002 and 2007. An immunohistochemical study for CD44 expression was performed in curettage and postoperative specimens. Normal endometrium of 20 randomly chosen patients was used as a control group. In endometrial cancer the expression of CD44 was significantly more intensive than in normal endometrium. In postoperative specimens, the CD44 expression was weaker in serous than in endometrioid cancer. There was no significant correlation between the adhesion molecule expression and clinicopathological features: grade,depth of invasion, cervical involvement, serosal and adnexal involvement, lymph-vascular space involvement, lymph node and distant metastases nor FIGO stage. An increased expression of CD44 in endometrial cancer suggests its possible role in pathogenesis of this disease, however, it doesn't seem to be crucial. Different expression of the CD44 in endometrioid and papillary-serous type may reflect different pathogenesis of these types of cancer. No statistically proved relation between the investigated molecule expression and clinicopathological parameters suggests scepticism about its use in diagnostic process of endometrial cancer.

  15. Co-Expression of Putative Cancer Stem Cell Markers CD44 and CD133 in Prostate Carcinomas.

    PubMed

    Kalantari, Elham; Asgari, Mojgan; Nikpanah, Seyedehmoozhan; Salarieh, Naghme; Asadi Lari, Mohammad Hossein; Madjd, Zahra

    2017-10-01

    Cancer stem cells (CSCs) are the main players of prostate tumorigenesis thus; characterization of CSCs can pave the way for understanding the early detection, drug resistance, metastasis and relapse. The current study was conducted to evaluate the expression level and clinical significance of the potential CSC markers CD44 and CD133 in a series of prostate tissues. One hundred and forty eight prostate tissues composed of prostate cancer (PCa), high-grade prostatic intraepithelial neoplasia (HGPIN), and benign prostate hyperplasia (BPH) were immunostained for the putative CSC markers CD44 and CD133. Subsequently, the correlation between the expression of these markers and the clinicopathological variables was examined. A higher level of CD44 expression was observed in 42% of PCa, 57% of HGPIN, and 42% BPH tissues. In the case of CD133 expression PCa, HGPIN, and BPH samples demonstrated high immunoreactivity in 46%, 43%, and 42% of cells, respectively. Statistical analysis showed an inverse significant correlation between CD44 expression with Gleason score of PCa (P = 0.02), while no significant correlation was observed between CD133 expression and clinicopathological parameters. A significant reciprocal correlation was observed between the expression of two putative CSC markers CD44 and CD133 in PCa specimens while not indicating clinical significance. Further clinical investigation is required to consider these markers as targets of new therapeutic strategies for PCa.

  16. MicroRNA miR-328 Regulates Zonation Morphogenesis by Targeting CD44 Expression

    PubMed Central

    Wang, Chia-Hui; Lee, Daniel Y.; Deng, Zhaoqun; Jeyapalan, Zina; Lee, Shao-Chen; Kahai, Shireen; Lu, Wei-Yang; Zhang, Yaou; Yang, Burton B.

    2008-01-01

    Morphogenesis is crucial to initiate physiological development and tumor invasion. Here we show that a microRNA controls zonation morphogenesis by targeting hyaluronan receptor CD44. We have developed a novel system to study microRNA functions by generating constructs expressing pre-miRNAs and mature miRNAs. Using this system, we have demonstrated that expression of miR-328 reduced cell adhesion, aggregation, and migration, and regulated formation of capillary structure. Protein analysis indicated that miR-328 repressed CD44 expression. Activities of luciferase constructs harboring the target site in CD44, but not the one containing mutation, were repressed by miR-328. Zonation morphogenesis appeared in cells transfected by miR-328: miR-328-transfected cells were present on the surface of zonating structures while the control cells stayed in the middle. MiR-328-mediated CD44 actions was validated by anti-CD44 antibody, hyaluronidase, CD44 siRNA, and CD44 expression constructs. In vivo experiments showed that CD44-silencing cells appeared as layers on the surfaces of nodules or zonating structures. Immuno-histochemistry also exhibited CD44-negative cells on the surface layers of normal rat livers and the internal zones of Portal veins. Our results demonstrate that miR-328 targets CD44, which is essential in regulating zonation morphogenesis: silencing of CD44 expression is essential in sealing the zonation structures to facilitate their extension and to inhibit complex expansion. PMID:18560585

  17. MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression.

    PubMed

    Wang, Chia-Hui; Lee, Daniel Y; Deng, Zhaoqun; Jeyapalan, Zina; Lee, Shao-Chen; Kahai, Shireen; Lu, Wei-Yang; Zhang, Yaou; Yang, Burton B

    2008-06-18

    Morphogenesis is crucial to initiate physiological development and tumor invasion. Here we show that a microRNA controls zonation morphogenesis by targeting hyaluronan receptor CD44. We have developed a novel system to study microRNA functions by generating constructs expressing pre-miRNAs and mature miRNAs. Using this system, we have demonstrated that expression of miR-328 reduced cell adhesion, aggregation, and migration, and regulated formation of capillary structure. Protein analysis indicated that miR-328 repressed CD44 expression. Activities of luciferase constructs harboring the target site in CD44, but not the one containing mutation, were repressed by miR-328. Zonation morphogenesis appeared in cells transfected by miR-328: miR-328-transfected cells were present on the surface of zonating structures while the control cells stayed in the middle. MiR-328-mediated CD44 actions was validated by anti-CD44 antibody, hyaluronidase, CD44 siRNA, and CD44 expression constructs. In vivo experiments showed that CD44-silencing cells appeared as layers on the surfaces of nodules or zonating structures. Immuno-histochemistry also exhibited CD44-negative cells on the surface layers of normal rat livers and the internal zones of Portal veins. Our results demonstrate that miR-328 targets CD44, which is essential in regulating zonation morphogenesis: silencing of CD44 expression is essential in sealing the zonation structures to facilitate their extension and to inhibit complex expansion.

  18. CD82 suppresses CD44 alternative splicing-dependent melanoma metastasis by mediating U2AF2 ubiquitination and degradation

    PubMed Central

    Fu, Ailing; Zhu, Huifeng; Ren, Qiao; Wang, Bochu; Xu, Xingran; Bai, Huiyuan; Dong, Cheng

    2016-01-01

    Melanoma is one of the most lethal forms of skin cancer due to its early metastatic spread. The variant form of CD44 (CD44v), a cell surface glycoprotein, is highly expressed on metastatic melanoma. The mechanisms of regulation of CD44 alternative splicing in melanoma and its pathogenic contributions are so far poorly understood. Here, we investigated the expression level of CD44 in a large set of melanocytic lesions at different stages. We found that the expression of CD44v8-10 and a splicing factor, U2AF2, is significantly increased during melanoma progression, while CD82/KAI1, a tetraspanin family of tumor suppressor, is reduced in metastatic melanoma. CD44v8-10 and U2AF2 expressions which are negatively correlated with CD82 levels are dramatically elevated in primary melanoma compared with dysplastic nevi and further increased in metastatic melanoma. We also showed that patients with higher CD44v8-10 and U2AF2 expression levels tended to have shorter survival. By using both in vivo and in vitro assays, we demonstrated that CD82 inhibits the production of CD44v8-10 on melanoma. Mechanistically, U2AF2 is a downstream target of CD82 and in malignant melanoma facilitates CD44v8-10 alternative splicing. U2AF2-mediated CD44 isoform switch is required for melanoma migration in vitro and lung and liver metastasis in vivo. Notably, overexpression of CD82 suppresses U2AF2 activity by inducing U2AF2 ubiquitination. In addition, our data suggested that enhancement of melanoma migration by U2AF2-dependent CD44v8-10 splicing is mediated by Src/FAK/RhoA activation and formation of stress fibers as well as CD44-E-selectin binding reinforcement. These findings uncovered a hitherto unappreciated function of CD82 in severing the linkage between U2AF2-mediated CD44 alternative splicing and cancer aggressiveness, with potential prognostic and therapeutic implications in melanoma. PMID:27041584

  19. Prognostic value of CD44 expression in penile squamous cell carcinoma: a pilot study.

    PubMed

    Minardi, Daniele; Lucarini, Guendalina; Filosa, Alessandra; Zizzi, Antonio; Simonetti, Oriana; Offidani, Anna Maria; d'Anzeo, Gianluca; Di Primio, Roberto; Montironi, Rodolfo; Muzzonigro, Giovanni

    2012-10-01

    Several studies have reported on the prognostic value of molecular markers for metastasis risk and survival in penile squamous cell carcinoma (SCC) patients. The usefulness of CD44 expression as such a marker has been studied in different tumors, but not in penile SCC. Our aim was to determine whether CD44 expression may serve as a prognostic marker for lymph node metastasis and survival in penile SCC patients. CD44 immunoistochemical expression was investigated in tissue specimens from 39 patients with penile SCC. CD44 cell positivity, staining intensity and distribution were analyzed and correlated with tumor stage, grade, lymph node status and disease-specific survival. CD44 expression was detected in epithelial cells of both intratumoral and normal tissues with different intensities and staining distributions. In normal tissues CD44 protein was mainly detected in cell membranes, whereas in the tumor compartments it was found in both the cell membranes and the cytoplasm. The intensities and percentages of CD44 expressing cells did not correlate with tumor stage and/or grade. Seventy-three percent of the patients with lymph node metastasis showed high intensities of CD44 staining, as compared to 44% of the patients without lymph node metastasis (P = 0.03). Lymph node-positive patients showed both cytoplasmic and membranous CD44 expression. High CD44 expression was found to be significantly correlated with a decreased 5 year overall survival (P = 0.01). CD44 levels and patterns of expression can be considered as markers for penile SCC aggressiveness and, in addition, may serve as predictive markers for lymph node metastasis, also in patients with clinically negative lymph nodes. CD44 expression may provide prognostic information for penile SCC patients, next to classical clinical-pathological factors.

  20. Low molecular weight (LMW) heparin inhibits injury-induced femoral artery remodeling in mouse via upregulating CD44 expression.

    PubMed

    Zhao, Gaofeng; Shaik, Rahamthulla S; Zhao, Hang; Beagle, John; Kuo, Shuennwen; Hales, Charles A

    2011-05-01

    The mechanism of postangioplasty restenosis remains poorly understood. Low molecular weight (LMW) heparin has been shown to inhibit the proliferation of vascular smooth muscle cells (VSMCs), which is the principal characteristic of restenosis. Studies have shown that LMW heparin could bind to CD44. We hypothesized that LMW heparin might modulate CD44 expression thereby decreasing vascular remodeling. Vascular remodeling was induced in CD44(+/+) and CD44(-/-) mice and treated with LMW heparin. The arteries were harvested for histologic assessment and determination of CD44 expression. Bone marrow transplantation was introduced to further explore the role and functional sites of CD44. Effects of LMW heparin on growth capacity, CD44 expression were further studied using the cultured mouse VSMCs. Transluminal injury induced remarkable remodeling in mouse femoral artery (sham wall thickness percentage [WT%]: 3.4 ± 1.2% vs injury WT%: 31.8 ± 4.7%; P < .001). LMW heparin reduced the remodeling significantly (WT%: 17.8 ± 3.5%, P < .005). CD44(-/-) mice demonstrated considerably thicker arterial wall remodeling (WT%: 46.2 ± 7.6%, P = .0035), and CD44-chimeric mice exhibited equal contributions of the local and circulating CD44 signal to the neointima formation. LMW heparin markedly upregulated CD44 expression in the injured femoral arteries. In vitro, LMW heparin decreased mouse VSMC growth capacity and upregulated its CD44 expression simultaneously in a dose-dependent and time-dependent manner, which could be partially blocked by CD44 inhibitor. LMW heparin inhibits injury-induced femoral artery remodeling, at least partially, by upregulating CD44 expression. Copyright © 2011. Published by Mosby, Inc.

  1. The PBX1 lupus susceptibility gene regulates CD44 expression.

    PubMed

    Niu, Yuxin; Sengupta, Mayami; Titov, Anton A; Choi, Seung-Chul; Morel, Laurence

    2017-05-01

    PBX1-d is novel splice isoform of pre-B-cell leukemia homeobox 1 (PBX1) that lacks its DNA-binding and Hox-binding domains, and functions as a dominant negative. We have shown that PBX1-d expression in CD4 + T cells is associated with systemic lupus erythematosus (SLE) in a mouse model as well as in human subjects. More specifically, PBX1-d expression leads to the production of autoreactive activated CD4+ T cells, a reduced frequency and function of Foxp3+ regulatory T (Treg) cells and an expansion of follicular helper T (Tfh) cells. Very little is known about the function of PBX1 in T cells, except that it directly regulates the expression of miRNAs associated with Treg and Tfh homeostasis. In the present study, we show that PBX1 directly regulated the expression of CD44, a marker of T cell activation. Two PBX1 binding sites in the promoter directly regulated CD44 expression, with PBX1-d driving a higher expression than the normal isoform PBX1-b. In addition, mutations in each of the two binding sites had different effects of PBX1-b and PBX1-d. Finally, we showed that an enhanced recruitment of co-factor MEIS by PBX1-d over PBX1-b, while there was no difference for co-factor PREP1 recruitment. Therefore, this study demonstrates that the lupus-associated PBX1-d isoform directly transactivates CD44, a marker of CD44 activation and memory, and that it has different DNA binding and co-factor recruitment relative to the normal isoform. Taken together, these results confirm that PBX1 directly regulates genes related to T cell activation and shows that the lupus-associated isoform PBX1-d has unique molecular functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The PBX1 lupus susceptibility gene regulates CD44 expression

    PubMed Central

    Niu, Yuxin; Sengupta, Mayami; Titov, Anton A.; Choi, Seung-Chul; Morel, Laurence

    2017-01-01

    PBX1-d is novel splice isoform of pre-B-cell leukemia homeobox 1 (PBX1) that lacks its DNA-binding and Hox-binding domains, and functions as a dominant negative. We have shown that PBX1-d expression in CD4+ T cells is associated with systemic lupus erythematosus (SLE) in a mouse model as well as in human subjects. More specifically, PBX1-d expression leads to the production of autoreactive activated CD4+ T cells, a reduced frequency and function of Foxp3+ regulatory T (Treg) cells and an expansion of follicular helper T (Tfh) cells. Very little is known about the function of PBX1 in T cells, except that it directly regulates the expression of miRNAs associated with Treg and Tfh homeostasis. In the present study, we show that PBX1 directly regulated the expression of CD44, a marker of T cell activation. Two PBX1 binding sites in the promoter directly regulated CD44 expression, with PBX1-d driving a higher expression than the normal isoform PBX1-b. In addition, mutations in each of the two binding sites had different effects of PBX1-b and PBX1-d. Finally, we showed that an enhanced recruitment of co-factor MEIS by PBX1-d over PBX1-b, while there was no difference for co-factor PREP1 recruitment. Therefore, this study demonstrates that the lupus-associated PBX1-d isoform directly transactivates CD44, a marker of CD44 activation and memory, and that it has different DNA binding and co-factor recruitment relative to the normal isoform. Taken together, these results confirm that PBX1 directly regulates genes related to T cell activation and show that the lupus-associated isoform PBX1-d has unique molecular functions. PMID:28257976

  3. Non-Small Cell Lung Cancer Cells Expressing CD44 Are Enriched for Stem Cell-Like Properties

    PubMed Central

    Leung, Elaine Lai-Han; Fiscus, Ronald R.; Tung, James W.; Tin, Vicky Pui-Chi; Cheng, Lik Cheung; Sihoe, Alan Dart-Loon; Fink, Louis M.; Ma, Yupo; Wong, Maria Pik

    2010-01-01

    Background The cancer stem cell theory hypothesizes that cancers are perpetuated by cancer stem cells (CSC) or tumor initiating cells (TIC) possessing self-renewal and other stem cell-like properties while differentiated non-stem/initiating cells have a finite life span. To investigate whether the hypothesis is applicable to lung cancer, identification of lung CSC and demonstration of these capacities is essential. Methodology/Principal Finding The expression profiles of five stem cell markers (CD34, CD44, CD133, BMI1 and OCT4) were screened by flow cytometry in 10 lung cancer cell lines. CD44 was further investigated by testing for in vitro and in vivo tumorigenecity. Formation of spheroid bodies and in vivo tumor initiation ability were demonstrated in CD44+ cells of 4 cell lines. Serial in vivo tumor transplantability in nude mice was demonstrated using H1299 cell line. The primary xenografts initiated from CD44+ cells consisted of mixed CD44+ and CD44− cells in similar ratio as the parental H1299 cell line, supporting in vivo differentiation. Semi-quantitative Real-Time PCR (RT-PCR) showed that both freshly sorted CD44+ and CD44+ cells derived from CD44+-initiated tumors expressed the pluripotency genes OCT4/POU5F1, NANOG, SOX2. These stemness markers were not expressed by CD44− cells. Furthermore, freshly sorted CD44+ cells were more resistant to cisplatin treatment with lower apoptosis levels than CD44− cells. Immunohistochemical analysis of 141 resected non-small cell lung cancers showed tumor cell expression of CD44 in 50.4% of tumors while no CD34, and CD133 expression was observed in tumor cells. CD44 expression was associated with squamous cell carcinoma but unexpectedly, a longer survival was observed in CD44-expressing adenocarcinomas. Conclusion/Significance Overall, our results demonstrated that stem cell-like properties are enriched in CD44-expressing subpopulations of some lung cancer cell lines. Further investigation is required to clarify

  4. Clinical relevance of TRKA expression on neuroblastoma: comparison with N-MYC amplification and CD44 expression.

    PubMed Central

    Combaret, V.; Gross, N.; Lasset, C.; Balmas, K.; Bouvier, R.; Frappaz, D.; Beretta-Brognara, C.; Philip, T.; Favrot, M. C.; Coll, J. L.

    1997-01-01

    TRKA expression was evaluated on 122 untreated neuroblastomas by immunohistochemistry using an antibody with predetermined specificity. This procedure is simple and reliable for protein detection at cellular level in a routine clinical setting. Fourteen tumours were classified as benign ganglioneuroma with a restricted expression of TRKA on ganglion cells; these patients were excluded from the following analysis. A total of 108 tumours were classified as neuroblastoma or ganglioneuroblastoma; 74 expressed TRKA protein, which strongly correlated with low stage, absence of N-MYC amplification, age (<1 year), CD44 expression and favourable clinical outcome. In a univariate analysis including tumour stage, age, histology, N-MYC amplification, CD44 and TRKA expression, all parameters had significant prognostic value. The absence of TRKA expression on CD44-positive or N-MYC non-amplified tumours permits the characterization of a subgroup of patients with intermediate prognosis. However, in a multivariate analysis taking into consideration the prognostic factors mentioned above, CD44 and tumour stage were the only independent prognostic factors for the prediction of patients' event-free survival. PMID:9099963

  5. Aberrant expression of cancer stem cell markers (CD44, CD90, and CD133) contributes to disease progression and reduced survival in hepatoblastoma patients: 4-year survival data.

    PubMed

    Bahnassy, Abeer A; Fawzy, Mohamed; El-Wakil, Mohamed; Zekri, Abdel-Rahman N; Abdel-Sayed, Ahmed; Sheta, Marwa

    2015-03-01

    Hepatoblastoma (HB) is an embryonal tumor of the liver in children. Prognosis and response to treatment in HB are highly variable. Cancer stem cells (CSCs) constitute a population of cells, which contribute to the development and progression of many tumors. However, their role in HB is not well defined yet. We assessed the prognostic and predictive values of some CSC markers in HB patients. Protein and messenger RNA expressions of the CSC markers CD133, CD90, and CD44 were assessed in 43 HB patients and 20 normal hepatic tissues using immunohistochemistry and quantitative real-time polymerase chain reaction. The expression levels of these markers were correlated to standard prognostic factors, patients' response to treatment, overall survival (OS), and disease-free survival (DFS). CD44, CD90, and CD133 proteins were detected in 48.8%, 32.6%, and 48.8% compared with 46.5%, 41.7%, and 58.1% RNA, respectively (concordance, 77.8%-96%). None of the normal tissue samples was positive for any of the markers. Significant correlations were reported between α-fetoprotein and both CD44 and CD133 (P = 0.02) as well as between tumor types CD90 and CD133 (P = 0.009). Reduced OS correlated with CD44, CD90, and CD133 expressions (P < 0.001), advanced stage (P < 0.001), response to treatment (P < 0.001), and total excision of the tumor. Reduced DFS correlated with CD44 and CD133 expressions (P < 0.001) only. In conclusion, CD133, CD44, and CD90 could be used as prognostic and predictive markers in HB. High expression of these markers is significantly associated with poor response to treatment and reduced survival. Moreover, complete surgical resection and systemic chemotherapy are essential to achieve good response and prolonged survival, especially in early stage patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Dose-escalation study for the targeting of CD44v+ cancer stem cells by sulfasalazine in patients with advanced gastric cancer (EPOC1205).

    PubMed

    Shitara, Kohei; Doi, Toshihiko; Nagano, Osamu; Imamura, Chiyo K; Ozeki, Takeshi; Ishii, Yuya; Tsuchihashi, Kenji; Takahashi, Shunji; Nakajima, Takako E; Hironaka, Shuichi; Fukutani, Miki; Hasegawa, Hiromi; Nomura, Shogo; Sato, Akihiro; Einaga, Yasuaki; Kuwata, Takeshi; Saya, Hideyuki; Ohtsu, Atsushi

    2017-03-01

    Cancer stem cells (CSCs) have enhanced mechanisms of protection from oxidative stress. A variant form of CD44 (CD44v), a major CSC marker, was shown to interact with xCT, a subunit of cystine-glutamate transporter, which maintains high levels of intracellular reduced glutathione (GSH) which defend the cell against oxidative stress. Sulfasalazine (SSZ) is an inhibitor of xCT and was shown to suppress the survival of CD44v-positive stem-like cancer cells both in vitro and in vivo. To find the dose of SSZ which can safely reduce the population of CD44v-positive cells in tumors, a dose-escalation study in patients with advanced gastric cancer was conducted. SSZ was given four times daily by oral administration with 2 weeks as one cycle. Tumor biopsies were obtained before and after 14 days of administration of SSZ to evaluate expression of CD44v and the intratumoral level of GSH. Eleven patients were enrolled and received a dosage from 8 to 12 g/day. Safety was confirmed up to a dosage of 12 g/day, which was considered the maximum tolerated dose. Among the eight patients with CD44v-positive cells in their pretreatment biopsy samples, the CD44v-positive cancer cell population appeared to be reduced in the posttreatment biopsy tissues of four patients. Intratumoral GSH levels were also decreased in two patients, suggesting biological effectiveness of SSZ at 8 g/day or greater. This is the first study of SSZ as an xCT inhibitor for targeting CSCs. Reduction of the levels of CD44v-positive cells and GSH was observed in some patients, consistent with the mode of action of SSZ in CSCs.

  7. CD44 variant-dependent redox status regulation in liver fluke-associated cholangiocarcinoma: A target for cholangiocarcinoma treatment.

    PubMed

    Thanee, Malinee; Loilome, Watcharin; Techasen, Anchalee; Sugihara, Eiji; Okazaki, Shogo; Abe, Shinya; Ueda, Shiho; Masuko, Takashi; Namwat, Nisana; Khuntikeo, Narong; Titapun, Attapol; Pairojkul, Chawalit; Saya, Hideyuki; Yongvanit, Puangrat

    2016-07-01

    Expression of CD44, especially the variant isoforms (CD44v) of this major cancer stem cell marker, contributes to reactive oxygen species (ROS) defense through stabilizing xCT (a cystine-glutamate transporter) and promoting glutathione synthesis. This enhances cancer development and increases chemotherapy resistance. We investigate the role of CD44v in the regulation of the ROS defense system in cholangiocarcinoma (CCA). Immunohistochemical staining of CD44v and p38(MAPK) (a major ROS target) expression in Opisthorchis viverrini-induced hamster CCA tissues (at 60, 90, 120, and 180 days) reveals a decreased phospho-p38(MAPK) signal, whereas the CD44v signal was increased during bile duct transformation. Patients with CCA showed CD44v overexpression and negative-phospho-p38(MAPK) patients a significantly shorter survival rate than the low CD44v signal and positive-phospho-p38(MAPK) patients (P = 0.030). Knockdown of CD44 showed that xCT and glutathione levels were decreased, leading to a high level of ROS. We examined xCT-targeted CD44v cancer stem cell therapy using sulfasalazine. Glutathione decreased and ROS increased after the treatment, leading to inhibition of cell proliferation and induction of cell death. Thus, the accumulation of CD44v leads to the suppression of p38(MAPK) in transforming bile duct cells. The redox status regulation of CCA cells depends on the expression of CD44v to contribute the xCT function and is a link to the poor prognosis of patients. Thus, an xCT inhibitor could inhibit cell growth and activate cell death. This suggests that an xCT-targeting drug may improve CCA therapy by sensitization to the available drug (e.g. gemcitabine) by blocking the mechanism of the cell's ROS defensive system. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  8. Increased expression of CD44 is associated with more aggressive behavior in clear cell renal cell carcinoma.

    PubMed

    Zanjani, Leili Saeednejad; Madjd, Zahra; Abolhasani, Maryam; Rasti, Arezoo; Fodstad, Oystein; Andersson, Yvonne; Asgari, Mojgan

    2018-01-01

    Although CD44 has been suggested as a prognostic marker in renal cell carcinoma (RCC), the prognostic significance of this marker in three main subtypes of RCC is still unclear. Thus, the present study was conducted to evaluate the expression and prognostic significance of CD44 as a cancer stem cell marker in different histological subtypes of RCC. Methodology & results: CD44 expression was evaluated in 206 well-defined renal tumor samples using immunohistochemistry on tissue microarrays. Higher CD44 expression was associated with more aggressive behavior, tumor progression and worse prognosis in clear cell RCC (ccRCC) but not in papillary and chromophobe RCC subtypes. Cancer stem cell marker CD44 may be a promising target for cancer treatment only in ccRCC.

  9. CD44 Promotes Inflammation and Extracellular Matrix Production During Arteriovenous Fistula Maturation.

    PubMed

    Kuwahara, Go; Hashimoto, Takuya; Tsuneki, Masayuki; Yamamoto, Kota; Assi, Roland; Foster, Trenton R; Hanisch, Jesse J; Bai, Hualong; Hu, Haidi; Protack, Clinton D; Hall, Michael R; Schardt, John S; Jay, Steven M; Madri, Joseph A; Kodama, Shohta; Dardik, Alan

    2017-06-01

    Arteriovenous fistulae (AVF) remain the optimal conduit for hemodialysis access but continue to demonstrate poor patency and poor rates of maturation. We hypothesized that CD44, a widely expressed cellular adhesion molecule that serves as a major receptor for extracellular matrix components, promotes wall thickening and extracellular matrix deposition during AVF maturation. AVF were created via needle puncture in wild-type C57BL/6J and CD44 knockout mice. CD44 mRNA and protein expression was increased in wild-type AVF. CD44 knockout mice showed no increase in AVF wall thickness (8.9 versus 26.8 μm; P =0.0114), collagen density, and hyaluronic acid density, but similar elastin density when compared with control AVF. CD44 knockout mice also showed no increase in vascular cell adhesion molecule-1 expression, intercellular adhesion molecule-1 expression, and monocyte chemoattractant protein-1 expression in the AVF compared with controls; there were also no increased M2 macrophage markers (transglutaminase-2: 81.5-fold, P =0.0015; interleukin-10: 7.6-fold, P =0.0450) in CD44 knockout mice. Delivery of monocyte chemoattractant protein-1 to CD44 knockout mice rescued the phenotype with thicker AVF walls (27.2 versus 14.7 μm; P =0.0306), increased collagen density (2.4-fold; P =0.0432), and increased number of M2 macrophages (2.1-fold; P =0.0335). CD44 promotes accumulation of M2 macrophages, extracellular matrix deposition, and wall thickening during AVF maturation. These data show the association of M2 macrophages with wall thickening during AVF maturation and suggest that enhancing CD44 activity may be a strategy to increase AVF maturation. © 2017 American Heart Association, Inc.

  10. CD44 Promotes Inflammation and Extracellular Matrix Production During Arteriovenous Fistula Maturation

    PubMed Central

    Kuwahara, Go; Hashimoto, Takuya; Tsuneki, Masayuki; Yamamoto, Kota; Assi, Roland; Foster, Trenton R; Hanisch, Jesse J; Bai, Hualong; Hu, Haidi; Protack, Clinton D; Hall, Michael R; Schardt, John S; Jay, Steven M; Madri, Joseph A; Kodama, Shohta; Dardik, Alan

    2017-01-01

    Objective Arteriovenous fistulae (AVF) remain the optimal conduit for hemodialysis access but continue to demonstrate poor patency and poor rates of maturation. We hypothesized that CD44, a widely expressed cellular adhesion molecule that serves as a major receptor for extracellular matrix (ECM) components, promotes wall thickening and ECM deposition during AVF maturation. Approach and Results AVF were created via needle puncture in wild-type (WT) C57BL/6J and CD44 knockout (KO) mice. CD44 mRNA and protein expression was increased in WT AVF. CD44 KO mice showed no increase in AVF wall thickness (8.9 μm vs. 26.8 μm; P = 0.0114), collagen density, and hyaluronic acid density, but similar elastin density when compared to control AVF. CD44 KO mice also showed no increase in VCAM-1 expression, ICAM-1 expression and MCP-1 expression in the AVF compared to controls; there were also no increased M2 macrophage markers (TGM2: 81.5 fold, P = 0.0015; IL-10: 7.6 fold, P = 0.0450) in CD44 KO mice. Delivery of MCP-1 to CD44 KO mice rescued the phenotype with thicker AVF walls (27.2 μm vs. 14.7 μm; P = 0.0306), increased collagen density (2.4 fold; P = 0.0432), and increased number of M2 macrophages (2.1 fold; P = 0.0335). Conclusions CD44 promotes accumulation of M2 macrophages, ECM deposition and wall thickening during AVF maturation. These data show the association of M2 macrophages with wall thickening during AVF maturation and suggest that enhancing CD44 activity may be a strategy to increase AVF maturation. PMID:28450292

  11. Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma.

    PubMed

    Bourguignon, Lilly Y W; Wong, Gabriel; Earle, Christine; Chen, Liqun

    2012-09-21

    Human head and neck squamous cell carcinoma (HNSCC) is a highly malignant cancer associated with major morbidity and mortality. In this study, we determined that human HNSCC-derived HSC-3 cells contain a subpopulation of cancer stem cells (CSCs) characterized by high levels of CD44v3 and aldehyde dehydrogenase-1 (ALDH1) expression. These tumor cells also express several stem cell markers (the transcription factors Oct4, Sox2, and Nanog) and display the hallmark CSC properties of self-renewal/clonal formation and the ability to generate heterogeneous cell populations. Importantly, hyaluronan (HA) stimulates the CD44v3 (an HA receptor) interaction with Oct4-Sox2-Nanog leading to both a complex formation and the nuclear translocation of three CSC transcription factors. Further analysis reveals that microRNA-302 (miR-302) is controlled by an upstream promoter containing Oct4-Sox2-Nanog-binding sites, whereas chromatin immunoprecipitation (ChIP) assays demonstrate that stimulation of miR-302 expression by HA-CD44 is Oct4-Sox2-Nanog-dependent in HNSCC-specific CSCs. This process results in suppression of several epigenetic regulators (AOF1/AOF2 and DNMT1) and the up-regulation of several survival proteins (cIAP-1, cIAP-2, and XIAP) leading to self-renewal, clonal formation, and cisplatin resistance. These CSCs were transfected with a specific anti-miR-302 inhibitor to silence miR-302 expression and block its target functions. Our results demonstrate that the anti-miR-302 inhibitor not only enhances the expression of AOF1/AOF2 and DNMT1 but also abrogates the production of cIAP-1, cIAP-2, and XIAP and HA-CD44v3-mediated cancer stem cell functions. Taken together, these findings strongly support the contention that the HA-induced CD44v3 interaction with Oct4-Sox2-Nanog signaling plays a pivotal role in miR-302 production leading to AOF1/AOF2/DNMT1 down-regulation and survival of protein activation. All of these events are critically important for the acquisition of cancer

  12. Hyaluronan-CD44v3 Interaction with Oct4-Sox2-Nanog Promotes miR-302 Expression Leading to Self-renewal, Clonal Formation, and Cisplatin Resistance in Cancer Stem Cells from Head and Neck Squamous Cell Carcinoma*

    PubMed Central

    Bourguignon, Lilly Y. W.; Wong, Gabriel; Earle, Christine; Chen, Liqun

    2012-01-01

    Human head and neck squamous cell carcinoma (HNSCC) is a highly malignant cancer associated with major morbidity and mortality. In this study, we determined that human HNSCC-derived HSC-3 cells contain a subpopulation of cancer stem cells (CSCs) characterized by high levels of CD44v3 and aldehyde dehydrogenase-1 (ALDH1) expression. These tumor cells also express several stem cell markers (the transcription factors Oct4, Sox2, and Nanog) and display the hallmark CSC properties of self-renewal/clonal formation and the ability to generate heterogeneous cell populations. Importantly, hyaluronan (HA) stimulates the CD44v3 (an HA receptor) interaction with Oct4-Sox2-Nanog leading to both a complex formation and the nuclear translocation of three CSC transcription factors. Further analysis reveals that microRNA-302 (miR-302) is controlled by an upstream promoter containing Oct4-Sox2-Nanog-binding sites, whereas chromatin immunoprecipitation (ChIP) assays demonstrate that stimulation of miR-302 expression by HA-CD44 is Oct4-Sox2-Nanog-dependent in HNSCC-specific CSCs. This process results in suppression of several epigenetic regulators (AOF1/AOF2 and DNMT1) and the up-regulation of several survival proteins (cIAP-1, cIAP-2, and XIAP) leading to self-renewal, clonal formation, and cisplatin resistance. These CSCs were transfected with a specific anti-miR-302 inhibitor to silence miR-302 expression and block its target functions. Our results demonstrate that the anti-miR-302 inhibitor not only enhances the expression of AOF1/AOF2 and DNMT1 but also abrogates the production of cIAP-1, cIAP-2, and XIAP and HA-CD44v3-mediated cancer stem cell functions. Taken together, these findings strongly support the contention that the HA-induced CD44v3 interaction with Oct4-Sox2-Nanog signaling plays a pivotal role in miR-302 production leading to AOF1/AOF2/DNMT1 down-regulation and survival of protein activation. All of these events are critically important for the acquisition of cancer

  13. Intracellular targeting of CD44+ cells with self-assembling, protein only nanoparticles.

    PubMed

    Pesarrodona, Mireia; Ferrer-Miralles, Neus; Unzueta, Ugutz; Gener, Petra; Tatkiewicz, Witold; Abasolo, Ibane; Ratera, Imma; Veciana, Jaume; Schwartz, Simó; Villaverde, Antonio; Vazquez, Esther

    2014-10-01

    CD44 is a multifunctional cell surface protein involved in proliferation and differentiation, angiogenesis and signaling. The expression of CD44 is up-regulated in several types of human tumors and particularly in cancer stem cells, representing an appealing target for drug delivery in the treatment of cancer. We have explored here several protein ligands of CD44 for the construction of self-assembling modular proteins designed to bind and internalize target cells. Among five tested ligands, two of them (A5G27 and FNI/II/V) drive the formation of protein-only, ring-shaped nanoparticles of about 14 nm that efficiently bind and penetrate CD44(+) cells by an endosomal route. The potential of these newly designed nanoparticles is evaluated regarding the need of biocompatible nanostructured materials for drug delivery in CD44-linked conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. In Vitro and In Vivo Prostate Cancer Metastasis and Chemoresistance Can Be Modulated by Expression of either CD44 or CD147

    PubMed Central

    Hao, Jingli; Madigan, Michele C.; Khatri, Aparajita; Power, Carl A.; Hung, Tzong-Tyng; Beretov, Julia; Chang, Lei; Xiao, Weiwei; Cozzi, Paul J.; Graham, Peter H.; Kearsley, John H.; Li, Yong

    2012-01-01

    CD44 and CD147 are associated with cancer metastasis and progression. Our purpose in the study was to investigate the effects of down-regulation of CD44 or CD147 on the metastatic ability of prostate cancer (CaP) cells, their docetaxel (DTX) responsiveness and potential mechanisms involved in vitro and in vivo. CD44 and CD147 were knocked down (KD) in PC-3M-luc CaP cells using short hairpin RNA (shRNA). Expression of CD44, CD147, MRP2 (multi-drug resistance protein-2) and MCT4 (monocarboxylate tranporter-4) was evaluated using immunofluorescence and Western blotting. The DTX dose-response and proliferation was measured by MTT and colony assays, respectively. The invasive potential was assessed using a matrigel chamber assay. Signal transduction proteins in PI3K/Akt and MAPK/Erk pathways were assessed by Western blotting. An in vivo subcutaneous (s.c.) xenograft model was established to assess CaP tumorigenecity, lymph node metastases and DTX response. Our results indicated that KD of CD44 or CD147 decreased MCT4 and MRP2 expression, reduced CaP proliferation and invasive potential and enhanced DTX sensitivity; and KD of CD44 or CD147 down-regulated p-Akt and p-Erk, the main signal modulators associated with cell growth and survival. In vivo, CD44 or CD147-KD PC-3M-luc xenografts displayed suppressed tumor growth with increased DTX responsiveness compared to control xenografts. Both CD44 and CD147 enhance metastatic capacity and chemoresistance of CaP cells, potentially mediated by activation of the PI3K and MAPK pathways. Selective targeting of CD44/CD147 alone or combined with DTX may limit CaP metastasis and increase chemosensitivity, with promise for future CaP treatment. PMID:22870202

  15. Expression of CD44 and CD29 by PEComa cells suggests their possible origin of mesenchymal stem cells.

    PubMed

    Liu, Ruixue; Jia, Wei; Zou, Hong; Wang, Xinhua; Ren, Yan; Zhao, Jin; Wang, Lianghai; Li, Man; Qi, Yan; Shen, Yaoyuan; Liang, Weihua; Jiang, Jinfang; Sun, Zhenzhu; Pang, Lijuan; Li, Feng

    2015-01-01

    Perivascular epithelioid cell tumor (PEComa) is a rare mesenchymal tumor composed of histologically and immunohistochemically distinctive perivascular epithelioid cells. The perivascular epithelioid cell (PEC) co-expresses melanocytic and muscle markers. Since no normal counterpart to the PEC has ever been identified in any normal tissue, the cell origin of these tumors is still uncertain. Although, several hypotheses have recently been advanced to explain the histogenesis of PEComa, it remains unclear. The aim of this study was to discuss whether differential expression of stem cell-associated proteins could be used to aid in determining the histogenesis of PEComa. For this purpose, we detected the immunoexpression of 5 kinds of stem cell markers on PEComas, including CD29, CD44, CD133, ALDH1, and nestin. In addition to observed histopathologic morphology, we also performed PEComa relevant clinical diagnostic markers (HMB-45, SMA, melan-A, Desmin, Ki-67, S-100 and TFE3) to identify whether they belonged to PEComas. Our study included 13 PEComa samples, and we obtained positive immunoexpression results as follows: CD29 (13/13), CD44 (8/13), ALDH1 (10/13), nestin (1/13), and CD133 (0/13). Since CD44 and CD29 are surface proteins associated with MSCs, these results suggest that PEComa might arise from MSCs. However, whether MSCs are the origin of PEComa needs to be further explored in the future.

  16. Visualization of CD44 and CD133 in Normal Pancreas and Pancreatic Ductal Adenocarcinomas

    PubMed Central

    Immervoll, Heike; Hoem, Dag; Steffensen, Ole Johnny; Miletic, Hrvoje; Molven, Anders

    2011-01-01

    Tumor-initiating cells of pancreatic ductal adenocarcinoma (PDAC) have been isolated based on expression of either CD133 or CD44. The authors aimed to visualize pancreatic cells simultaneously expressing both these cell surface markers by employing the same antibodies commonly used in cell-sorting studies. Normal and diseased pancreatic tissue, including 51 PDAC cases, were analyzed. CD44 and CD133 expression was determined by immunohistochemical double staining on formalin-fixed material and subcellular protein distribution evaluated by immunofluorescence/confocal microscopy. In the normal pancreas, CD44 and CD133 were coexpressed in the centroacinar regions but in non-overlapping subcellular compartments. As expected, CD44 was found mainly basolaterally, whereas CD133 was present on the apical/endoluminal membrane. This was also the case in chronically inflamed/atrophic pancreatic tissue and in PDAC. In some malignant ducts, CD44 was found at the apical cell membrane adjacent to but never overlapping with CD133 expression. CD44 level was significantly associated with the patient’s lymph node status. In conclusion, a CD44+/CD133+ cell population does exist in the normal and neoplastic pancreas. The preferentially centroacinar localization of the doubly positive cells in the normal parenchyma suggests that this population could be of particular interest in attempts to identify tumor-initiating cells in PDAC. This article contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials. PMID:21411814

  17. Expression of CD44 and CD29 by PEComa cells suggests their possible origin of mesenchymal stem cells

    PubMed Central

    Liu, Ruixue; Jia, Wei; Zou, Hong; Wang, Xinhua; Ren, Yan; Zhao, Jin; Wang, Lianghai; Li, Man; Qi, Yan; Shen, Yaoyuan; Liang, Weihua; Jiang, Jinfang; Sun, Zhenzhu; Pang, Lijuan; Li, Feng

    2015-01-01

    Background: Perivascular epithelioid cell tumor (PEComa) is a rare mesenchymal tumor composed of histologically and immunohistochemically distinctive perivascular epithelioid cells. The perivascular epithelioid cell (PEC) co-expresses melanocytic and muscle markers. Since no normal counterpart to the PEC has ever been identified in any normal tissue, the cell origin of these tumors is still uncertain. Although, several hypotheses have recently been advanced to explain the histogenesis of PEComa, it remains unclear. Methods: The aim of this study was to discuss whether differential expression of stem cell-associated proteins could be used to aid in determining the histogenesis of PEComa. For this purpose, we detected the immunoexpression of 5 kinds of stem cell markers on PEComas, including CD29, CD44, CD133, ALDH1, and nestin. In addition to observed histopathologic morphology, we also performed PEComa relevant clinical diagnostic markers (HMB-45, SMA, melan-A, Desmin, Ki-67, S-100 and TFE3) to identify whether they belonged to PEComas. Results: Our study included 13 PEComa samples, and we obtained positive immunoexpression results as follows: CD29 (13/13), CD44 (8/13), ALDH1 (10/13), nestin (1/13), and CD133 (0/13). Conclusions: Since CD44 and CD29 are surface proteins associated with MSCs, these results suggest that PEComa might arise from MSCs. However, whether MSCs are the origin of PEComa needs to be further explored in the future. PMID:26722497

  18. Expression profiles of cancer stem cell markers: CD133, CD44, Musashi-1 and EpCAM in the cardiac mucosa-Barrett's esophagus-early esophageal adenocarcinoma-advanced esophageal adenocarcinoma sequence.

    PubMed

    Mokrowiecka, Anna; Veits, Lothar; Falkeis, Christina; Musial, Jacek; Kordek, Radzislaw; Lochowski, Mariusz; Kozak, Jozef; Wierzchniewska-Lawska, Agnieszka; Vieth, Michael; Malecka-Panas, Ewa

    2017-03-01

    Barrett's esophagus (BE), which develops as a result of gastroesophageal reflux disease, is a preneoplastic condition for esophageal adenocarcinoma (EAC). A new hypothesis suggests that cancer is a disease of stem cells, however, their expression and pathways in BE - EAC sequence are not fully elucidated yet. We used a panel of putative cancer stem cells markers to identify stem cells in consecutive steps of BE-related cancer progression. Immunohistochemistry was performed on formalin-fixed, paraffin-embedded blocks from 58 patients with normal cardiac mucosa (n=5), BE (n=14), early EAC (pT1) from mucosal resection (n=17) and advanced EAC (pT1-T4) from postoperative specimens (n=22). Expression of the CD133, CD44, Musashi-1 and EpCAM was analyzed using respective monoclonal antibodies. All markers showed a heterogeneous expression pattern, mainly at the base of the crypts of Barrett's epithelium and EAC, with positive stromal cells in metaplastic and dysplastic lesions. Immuno-expression of EpCAM, CD44 and CD133 in cardiac mucosa was significantly lower (mean immunoreactivity score (IRS)=1.2; 0.0; 0.4; respectively) compared to their expression in Barrett's metaplasia (mean IRS=4.3; 0.14; 0.7; respectively), in early adenocarcinoma (mean IRS=4.4; 0.29; 1.3; respectively) and in advanced adenocarcinoma (mean IRS=6.6; 0.7; 2.7; respectively) (p<0.05). On the contrary, Musashi-1 expression was higher in BE and early ADC compared to GM and advanced ADC (NS). Our results suggest that the stem cells could be present in premalignant lesions. EpCAM, CD44 and CD133 expression could be candidate markers for BE progression, whereas Musashi-1 may be a marker of the small intestinal features of Barrett's mucosa. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells.

    PubMed

    Veiseh, Mandana; Leith, Sean J; Tolg, Cornelia; Elhayek, Sallie S; Bahrami, S Bahram; Collis, Lisa; Hamilton, Sara; McCarthy, James B; Bissell, Mina J; Turley, Eva

    2015-01-01

    The interaction of hyaluronan (HA) with mesenchymal progenitor cells impacts trafficking and fate after tissue colonization during wound repair and these events contribute to diseases such as cancer. How this interaction occurs is poorly understood. Using 10T½ cells as a mesenchymal progenitor model and fluorescent (F-HA) or gold-labeled HA (G-HA) polymers, we studied the role of two HA receptors, RHAMM and CD44, in HA binding and uptake in non-adherent and adherent mesenchymal progenitor (10T½) cells to mimic aspects of cell trafficking and tissue colonization. We show that fluorescent labeled HA (F-HA) binding/uptake was high in non-adherent cells but dropped over time as cells became increasingly adherent. Non-adherent cells displayed both CD44 and RHAMM but only function-blocking anti-RHAMM and not anti-CD44 antibodies significantly reduced F-HA binding/uptake. Adherent cells, which also expressed CD44 and RHAMM, primarily utilized CD44 to bind to F-HA since anti-CD44 but not anti-RHAMM antibodies blocked F-HA uptake. RHAMM overexpression in adherent 10T½ cells led to increased F-HA uptake but this increased binding remained CD44 dependent. Further studies showed that RHAMM-transfection increased CD44 mRNA and protein expression while blocking RHAMM function reduced expression. Collectively, these results suggest that cellular microenvironments in which these receptors function as HA binding proteins differ significantly, and that RHAMM plays at least two roles in F-HA binding by acting as an HA receptor in non-attached cells and by regulating CD44 expression and display in attached cells. Our findings demonstrate adhesion-dependent mechanisms governing HA binding/ uptake that may impact development of new mesenchymal cell-based therapies.

  20. Uncovering the dual role of RHAMM as an HA receptor and a regulator of CD44 expression in RHAMM-expressing mesenchymal progenitor cells

    PubMed Central

    Veiseh, Mandana; Leith, Sean J.; Tolg, Cornelia; Elhayek, Sallie S.; Bahrami, S. Bahram; Collis, Lisa; Hamilton, Sara; McCarthy, James B.; Bissell, Mina J.; Turley, Eva

    2015-01-01

    The interaction of hyaluronan (HA) with mesenchymal progenitor cells impacts trafficking and fate after tissue colonization during wound repair and these events contribute to diseases such as cancer. How this interaction occurs is poorly understood. Using 10T½ cells as a mesenchymal progenitor model and fluorescent (F-HA) or gold-labeled HA (G-HA) polymers, we studied the role of two HA receptors, RHAMM and CD44, in HA binding and uptake in non-adherent and adherent mesenchymal progenitor (10T½) cells to mimic aspects of cell trafficking and tissue colonization. We show that fluorescent labeled HA (F-HA) binding/uptake was high in non-adherent cells but dropped over time as cells became increasingly adherent. Non-adherent cells displayed both CD44 and RHAMM but only function-blocking anti-RHAMM and not anti-CD44 antibodies significantly reduced F-HA binding/uptake. Adherent cells, which also expressed CD44 and RHAMM, primarily utilized CD44 to bind to F-HA since anti-CD44 but not anti-RHAMM antibodies blocked F-HA uptake. RHAMM overexpression in adherent 10T½ cells led to increased F-HA uptake but this increased binding remained CD44 dependent. Further studies showed that RHAMM-transfection increased CD44 mRNA and protein expression while blocking RHAMM function reduced expression. Collectively, these results suggest that cellular microenvironments in which these receptors function as HA binding proteins differ significantly, and that RHAMM plays at least two roles in F-HA binding by acting as an HA receptor in non-attached cells and by regulating CD44 expression and display in attached cells. Our findings demonstrate adhesion-dependent mechanisms governing HA binding/ uptake that may impact development of new mesenchymal cell-based therapies. PMID:26528478

  1. CD44 staining of cancer stem-like cells is influenced by down-regulation of CD44 variant isoforms and up-regulation of the standard CD44 isoform in the population of cells that have undergone epithelial-to-mesenchymal transition.

    PubMed

    Biddle, Adrian; Gammon, Luke; Fazil, Bilal; Mackenzie, Ian C

    2013-01-01

    CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44(high) cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44(high) population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44(high) population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44(high) population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that consideration be given to

  2. CD44 Staining of Cancer Stem-Like Cells Is Influenced by Down-Regulation of CD44 Variant Isoforms and Up-Regulation of the Standard CD44 Isoform in the Population of Cells That Have Undergone Epithelial-to-Mesenchymal Transition

    PubMed Central

    Biddle, Adrian; Gammon, Luke; Fazil, Bilal; Mackenzie, Ian C.

    2013-01-01

    CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44high cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44high population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44high population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44high population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that consideration be given to use of

  3. Immunohistochemical expression of CD44s in human neuroblastic tumors: Moroccan experience and highlights on current data

    PubMed Central

    2013-01-01

    Background Peripheral neuroblastic tumors (pNTs), including neuroblastoma (NB), ganglioneuroblastoma (GNB) and ganglioneuroma (GN), are extremely heterogeneous pediatric tumors responsible for 15 % of childhood cancer death. The aim of the study was to evaluate the expression of CD44s (‘s’: standard form) cell adhesion molecule by comparison with other specific prognostic markers. Methods An immunohistochemical profile of 32 formalin-fixed paraffin-embedded pNTs tissues, diagnosed between January 2007 and December 2010, was carried out. Results Our results have demonstrated the association of CD44s negative pNTs cells to lack of differentiation and tumour progression. A significant association between absence of CD44s expression and metastasis in human pNTs has been reported. We also found that expression of CD44s defines subgroups of patients without MYCN amplification as evidenced by its association with low INSS stages, absence of metastasis and favorable Shimada histology. Discussion These findings support the thesis of the role of CD44s glycoprotein in the invasive growth potential of neoplastic cells and suggest that its expression could be taken into consideration in the therapeutic approaches targeting metastases. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1034403150888863 Résumé Introduction les tumeurs neuroblastiques périphériques (TNPs), comprenant le neuroblastome (NB), le ganglioneuroblastome (GNB) et le ganglioneurome (GN), sont des tumeurs pédiatriques extrêmement hétérogènes responsables de 15% des décès par cancer chez les enfants. Le but de cette étude était d’évaluer l’expression de la molécule d’adhésion cellulaire CD44s (‘s’: pour standard) par rapport à d’autres facteurs pronostiques spécifiques. Méthodes Un profil immunohistochimique de 32 TNPs fixées au formol et incluses en paraffine, diagnostiquées entre Janvier 2007 et D

  4. sCD44 overexpression increases intraocular pressure and aqueous outflow resistance

    PubMed Central

    Giovingo, Michael; Nolan, Michael; McCarty, Ryan; Pang, Iok-Hou; Clark, Abbot F.; Beverley, Rachel M.; Schwartz, Steven; Stamer, W. Daniel; Walker, Loyal; Grybauskas, Algis; Skuran, Kevin; Kuprys, Paulius V.; Yue, Beatrice Y.J.T.

    2013-01-01

    Purpose CD44 plays major roles in multiple physiologic processes. The ectodomain concentration of the CD44 receptor, soluble CD44 (sCD44), is significantly increased in the aqueous humor of primary open-angle glaucoma (POAG). The purpose of this study was to determine if adenoviral constructs of CD44 and isolated 32-kDa sCD44 change intraocular pressure (IOP) in vivo and aqueous outflow resistance in vitro. Methods Adenoviral constructs of human standard CD44 (Ad-CD44S), soluble CD44 (Ad-sCD44), and empty viral cDNA were injected into the vitreous of BALB/cJ mice, followed by serial IOP measurements. Overexpression of CD44S and sCD44 was verified in vitro by enzyme-linked immunosorbent assay (ELISA) and western blot analysis. Anterior segments of porcine eyes were perfused with the isolated sCD44. sCD44-treated human trabecular meshwork (TM) cells and microdissected porcine TM were examined by confocal microscopy and Optiprep density gradient with western blot analysis to determine changes in lipid raft components. Results Intravitreous injection of adenoviral constructs with either Ad-CD44S or Ad-sCD44 vectors caused prolonged ocular hypertension in mice. Eight days after vector injection, Ad-CD44S significantly elevated IOP to 28.3±1.2 mmHg (mean±SEM, n=8; p<0.001); Ad-sCD44 increased IOP to 18.5±2.6 mmHg (n=8; p<0.01), whereas the IOP of uninjected eyes was 12.7±0.2 mmHg (n=16). The IOP elevation lasted more than 50 days. Topical administration of a γ-secretase inhibitor normalized Ad-sCD44-induced elevated IOP. sCD44 levels were significantly elevated in the aqueous humor of Ad-CD44S and Ad-sCD44 eyes versus contralateral uninjected eyes (p<0.01). Anterior segment perfusion of isolated 32-kDa sCD44 significantly decreased aqueous outflow rates. Co-administration of isolated sCD44 and CD44 neutralizing antibody or of γ-secretase inhibitor significantly enhanced flow rates. sCD44-treated human TM cells displayed cross-linked actin network formation

  5. The influence of rat mesenchymal stem cell CD44 surface markers on cell growth, fibronectin expression, and cardiomyogenic differentiation on silk fibroin - Hyaluronic acid cardiac patches.

    PubMed

    Yang, Ming-Chia; Chi, Nai-Hsin; Chou, Nai-Kuan; Huang, Yi-You; Chung, Tze-Wen; Chang, Yu-Lin; Liu, Hwa-Chang; Shieh, Ming-Jium; Wang, Shoei-Shen

    2010-02-01

    Since MSCs contain an abundant of CD44 surface markers, it is of interesting to investigate whether CD44 on rat MSC (rMSCs) influenced cell growth, fibronectin expression and cardiomyogenic differentiation on new SF/HA cardiac patches. For this investigation, we examined the influences of rMSCs with or without a CD44-blockage treatment on the aforementioned issues after they were cultivated, and further induced by 5-aza on SF and SF/HA patches. The results showed that the relative growth rates of rMSCs cultured on cultural wells, SF/HA patches without or with a CD44-blockage treatment were 100%, 208.9+/-7.1 (%) or 48.4+/-6.0 (%) (n=3, for all), respectively, after five days of cultivations. Moreover, rMSCs cultivated on SF/HA patches highly promoted fibronectin expressions (e.g., 1.8x10(5)/cell, in fluorescent intensity) while cells with a CD44-blockage treatment markedly diminished the expressions (e.g., 1.1x10(4)/cell, in fluorescent intensity) on same patches. For investigating possible influences of CD44 surface markers of rMSCs on their cardiomyogenic differentiation, the expressions of specific cardiac genes of cells were examined by using real-time PCR analysis. The results indicated that 5-aza inducing rMSCs significantly promoted the expressions of Gata4, Nkx2.5, Tnnt2 and Actc1 genes (all, P<0.01 or better, n=3) on SF/HA patches compared with those expressions on SF patches and for cells with a CD44-blockage treatment on SF/HA patches. Furthermore, the intensity of the expressions of cardiotin and connexin 43 of 5-aza inducing rMSCs were markedly higher than those of cells with a CD44-blockage treatment after they were cultured on SF/HA patches. Through this study, we reported that CD44 surface markers of rMSCs highly influenced the proliferations, fibronectin expressions and cardiomyogenic differentiation of rMSCs cultivated on cardiac SF/HA patches.

  6. Intracellular Domain Fragment of CD44 Alters CD44 Function in Chondrocytes*

    PubMed Central

    Mellor, Liliana; Knudson, Cheryl B.; Hida, Daisuke; Askew, Emily B.; Knudson, Warren

    2013-01-01

    The hyaluronan receptor CD44 undergoes sequential proteolytic cleavage at the cell surface. The initial cleavage of the CD44 extracellular domain is followed by a second intramembranous cleavage of the residual CD44 fragment, liberating the C-terminal cytoplasmic tail of CD44. In this study conditions that promote CD44 cleavage resulted in a diminished capacity to assemble and retain pericellular matrices even though sufficient non-degraded full-length CD44 remained. Using stable and transient overexpression of the cytoplasmic domain of CD44, we determined that the intracellular domain interfered with anchoring of the full-length CD44 to the cytoskeleton and disrupted the ability of the cells to bind hyaluronan and assemble a pericellular matrix. Co-immunoprecipitation assays were used to determine whether the mechanism of this interference was due to competition with actin adaptor proteins. CD44 of control chondrocytes was found to interact and co-immunoprecipitate with both the 65- and 130-kDa isoforms of ankyrin-3. Moreover, this interaction with ankyrin-3 proteins was diminished in cells overexpressing the CD44 intracellular domain. Mutating the putative ankyrin binding site of the transiently transfected CD44 intracellular domain diminished the inhibitory effects of this protein on matrix retention. Although CD44 in other cells types has been shown to interact with members of the ezrin/radixin/moesin (ERM) family of adaptor proteins, only modest interactions between CD44 and moesin could be demonstrated in chondrocytes. The data suggest that release of the CD44 intracellular domain into the cytoplasm of cells such as chondrocytes exerts a competitive or dominant-negative effect on the function of full-length CD44. PMID:23884413

  7. Expression of CXCR6 on CD8(+) T cells was up-regulated in allograft rejection.

    PubMed

    Jiang, Xiaofeng; Sun, Wenyu; Zhu, Lei; Guo, Dawei; Jiang, Honglei; Ma, Dongyan; Jin, Junzhe; Zhao, Yu; Liang, Jian

    2010-02-01

    CXCL16/SR-PSOX is a novel transmembrane-type chemokine, which was also identified as a novel scavenger receptor for oxidized low density lipoprotein. Its receptor CXCR6 expresses on activated CD8(+) T cells, type 1-polarized CD4(+), and constitutively expresses on NKT cells. Moreover, it has been shown that CXCL16 accumulated activated CD8(+) T cells to sites of inflammation. To date, the effect of CXCL16 (SR-PSOX)/CXCR6 on CD8(+) T cells and its role in allograft rejection/acceptance are not well understood. In the current study, we show that rejected allografts showed higher expressions of CXCR6 and CXCL16. More importantly, expression of CXCR6 on CD8(+) T cells was also up-regulated by rejection. However, the blockade of CXCL16(SR-PSOX)/CXCR6 interaction could not inhibit cytotoxic activity of CD8(+) T cells, and therefore, could not prolong the cardiac graft survival time. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Analysis of Cd44-Containing Lipid Rafts

    PubMed Central

    Oliferenko, Snezhana; Paiha, Karin; Harder, Thomas; Gerke, Volker; Schwärzler, Christoph; Schwarz, Heinz; Beug, Hartmut; Günthert, Ursula; Huber, Lukas A.

    1999-01-01

    CD44, the major cell surface receptor for hyaluronic acid (HA), was shown to localize to detergent-resistant cholesterol-rich microdomains, called lipid rafts, in fibroblasts and blood cells. Here, we have investigated the molecular environment of CD44 within the plane of the basolateral membrane of polarized mammary epithelial cells. We show that CD44 partitions into lipid rafts that contain annexin II at their cytoplasmic face. Both CD44 and annexin II were released from these lipid rafts by sequestration of plasma membrane cholesterol. Partition of annexin II and CD44 to the same type of lipid rafts was demonstrated by cross-linking experiments in living cells. First, when CD44 was clustered at the cell surface by anti-CD44 antibodies, annexin II was recruited into the cytoplasmic leaflet of CD44 clusters. Second, the formation of intracellular, submembranous annexin II–p11 aggregates caused by expression of a trans-dominant mutant of annexin II resulted in coclustering of CD44. Moreover, a frequent redirection of actin bundles to these clusters was observed. These basolateral CD44/annexin II–lipid raft complexes were stabilized by addition of GTPγS or phalloidin in a semipermeabilized and cholesterol-depleted cell system. The low lateral mobility of CD44 in the plasma membrane, as assessed with fluorescent recovery after photobleaching (FRAP), was dependent on the presence of plasma membrane cholesterol and an intact actin cytoskeleton. Disruption of the actin cytoskeleton dramatically increased the fraction of CD44 which could be recovered from the light detergent-insoluble membrane fraction. Taken together, our data indicate that in mammary epithelial cells the vast majority of CD44 interacts with annexin II in lipid rafts in a cholesterol-dependent manner. These CD44-containing lipid microdomains interact with the underlying actin cytoskeleton. PMID:10459018

  9. Role of CD44 in lymphokine-activated killer cell-mediated killing of melanoma.

    PubMed

    Sun, Jingping; Law, Gabriela P; McKallip, Robert J

    2012-03-01

    In the current study, we examined the potential significance of CD44 expression on lymphokine-activated killer (LAK) cells in their interaction and killing of melanoma cells. Stimulation of splenocytes with IL-2 led to a significant increase in the expression of CD44 on T cells, NK cells, and NKT cells. Treatment of melanoma-bearing CD44 WT mice with IL-2 led to a significant reduction in the local tumor growth while treatment of melanoma-bearing CD44 KO mice with IL-2 was ineffective at controlling tumor growth. Furthermore, the ability of splenocytes from IL-2-treated CD44 KO mice to kill melanoma tumor targets was significantly reduced when compared to the anti-tumor activity of splenocytes from IL-2-treated CD44 WT mice. The importance of CD44 expression on the LAK cells was further confirmed by the observation that adoptively transferred CD44 WT LAK cells were significantly more effective than CD44 KO LAK cells at controlling tumor growth in vivo. Next, the significance of the increased expression of CD44 in tumor killing was examined and showed that following stimulation with IL-2, distinct populations of cells with low (CD44(lo)) or elevated (CD44(hi)) expression of CD44 are generated and that the CD44(hi) cells are responsible for killing of the melanoma cells. The reduced killing activity of the CD44 KO LAK cells did not result from reduced activation or expression of effector molecules but was due, at least in part, to a reduced ability to adhere to B16F10 tumor cells.

  10. A mesenchymal-like phenotype and expression of CD44 predict lack of apoptotic response to sorafenib in liver tumor cells.

    PubMed

    Fernando, Joan; Malfettone, Andrea; Cepeda, Edgar B; Vilarrasa-Blasi, Roser; Bertran, Esther; Raimondi, Giulia; Fabra, Àngels; Alvarez-Barrientos, Alberto; Fernández-Salguero, Pedro; Fernández-Rodríguez, Conrado M; Giannelli, Gianluigi; Sancho, Patricia; Fabregat, Isabel

    2015-02-15

    The multikinase inhibitor sorafenib is the only effective drug in advanced cases of hepatocellular carcinoma (HCC). However, response differs among patients and effectiveness only implies a delay. We have recently described that sorafenib sensitizes HCC cells to apoptosis. In this work, we have explored the response to this drug of six different liver tumor cell lines to define a phenotypic signature that may predict lack of response in HCC patients. Results have indicated that liver tumor cells that show a mesenchymal-like phenotype, resistance to the suppressor effects of transforming growth factor beta (TGF-β) and high expression of the stem cell marker CD44 were refractory to sorafenib-induced cell death in in vitro studies, which correlated with lack of response to sorafenib in nude mice xenograft models of human HCC. In contrast, epithelial-like cells expressing the stem-related proteins EpCAM or CD133 were sensitive to sorafenib-induced apoptosis both in vitro and in vivo. A cross-talk between the TGF-β pathway and the acquisition of a mesenchymal-like phenotype with up-regulation of CD44 expression was found in the HCC cell lines. Targeted CD44 knock-down in the mesenchymal-like cells indicated that CD44 plays an active role in protecting HCC cells from sorafenib-induced apoptosis. However, CD44 effect requires a TGF-β-induced mesenchymal background, since the only overexpression of CD44 in epithelial-like HCC cells is not sufficient to impair sorafenib-induced cell death. In conclusion, a mesenchymal profile and expression of CD44, linked to activation of the TGF-β pathway, may predict lack of response to sorafenib in HCC patients. © 2014 UICC.

  11. CD44+CD24+ subset of PANC-1 cells exhibits radiation resistance via decreased levels of reactive oxygen species.

    PubMed

    Wang, Lei; Li, Pengping; Hu, Wei; Xia, Youyou; Hu, Chenxi; Liu, Liang; Jiang, Xiaodong

    2017-08-01

    Emerging evidence has suggested that pancreatic adenocarcinoma is sustained by pancreatic cancer stem cells. The present study aimed to investigate the expression patterns of the pancreatic cancer stem cell surface markers cluster of differentiation CD44 and CD24 in a pancreatic adenocarcinoma cell line, and to investigate the possible mechanisms for their radiation resistance. Flow cytometry was used to analyze the expression patterns of CD44 and CD24 in the pancreatic adenocarcinoma PANC-1 cell line. In addition, a multi-target click model was used to fit cell survival curves and determine the sensitizer enhancement ratio. The apoptosis and cycle distribution of the four cell subsets was determined using flow cytometry, and the level of reactive oxygen species (ROS) was determined using the 2',7'-dichlorofluorescin diacetate probe. The present results identified that the ratios of CD44 + and CD24 + in the sorted PANC-1 cell line were 92.0 and 4.7%, respectively. Prior to radiation, no statistically significant differences were observed among the four groups. Following treatment with 6 MV of X-rays, the rate of apoptosis was decreased in the CD44 + CD24 + group compared with other subsets. The percentage of G0/G1 cells was highest in the CD44 + CD24 + group compared with the three other groups, which exhibited increased radiosensitivity. In addition, the level of ROS in the CD44 + CD24 + group was reduced compared with the other groups. In summary, the results of the present study indicated that CD44 + CD24 + exhibited stem cell properties. The lower level of ROS and apoptosis in CD44 + CD24 + cells may contribute to their resistance to radiation in pancreatic adenocarcinoma.

  12. Galunisertib suppresses the staminal phenotype in hepatocellular carcinoma by modulating CD44 expression.

    PubMed

    Rani, Bhavna; Malfettone, Andrea; Dituri, Francesco; Soukupova, Jitka; Lupo, Luigi; Mancarella, Serena; Fabregat, Isabel; Giannelli, Gianluigi

    2018-03-07

    Cancer stem cells (CSCs) niche in the tumor microenvironment is responsible for cancer recurrence and therapy failure. To better understand its molecular and biological involvement in hepatocellular carcinoma (HCC) progression, one can design more effective therapies and tailored then to individual patients. While sorafenib is currently the only approved drug for first-line treatment of advanced stage HCC, its role in modulating the CSC niche is estimated to be small. By contrast, transforming growth factor (TGF)-β pathway seems to influence the CSC and thus may impact hallmarks of HCC, such as liver fibrosis, cirrhosis, and tumor progression. Therefore, blocking this pathway may offer an appealing and druggable target. In our study, we have used galunisertib (LY2157299), a selective ATP-mimetic inhibitor of TGF-β receptor I (TGFβI/ALK5) activation, currently under clinical investigation in HCC patients. Because the drug resistance is mainly mediated by CSCs, we tested the effects of galunisertib on stemness phenotype in HCC cells to determine whether TGF-β signaling modulates CSC niche and drug resistance. Galunisertib modulated the expression of stemness-related genes only in the invasive (HLE and HLF) HCC cells inducing a decreased expression of CD44 and THY1. Furthermore, galunisertib also reduced the stemness-related functions of invasive HCC cells decreasing the formation of colonies, liver spheroids and invasive growth ability. Interestingly, CD44 loss of function mimicked the galunisertib effects on HCC stemness-related functions. Galunisertib treatment also reduced the expression of stemness-related genes in ex vivo human HCC specimens. Our observations are the first evidence that galunisertib effectiveness overcomes stemness-derived aggressiveness via decreased expression CD44 and THY1.

  13. [Expression, crystallization and crystallographic study of the 1st IgV domain of human CD96].

    PubMed

    Jiang, Wenjing; Zhang, Shuijun; Yan, Jinghua; Guo, Ning

    2013-05-01

    CD96 (Tactile) is an adhesion receptor expressed mainly on activated T cells, NK cells. As a family member of the immunoglobulin-like cell receptor, CD96 consists of three immunoglobulin-like domains (V1, V2/C and C) in the extracellular region. Recent studies have shown that the 1st IgV domain of CD96 (CD96V1) plays an essential role in cell adhesion and NK cell-mediated killing. In this study, the 1st IgV domain of human CD96 (hCD96V1) was cloned and expressed in Escherichia coli (BL21). The soluble protein was obtained by refolding of the hCD96V1 inclusion bodies. From analytical ultracentrifugation, we could predict that CD96 V1 maily exists as dimer with approximate molecular weight of 26.9 kDa. The protein was then successfully crystallized using the sitting-drop vapour-diffusion method. The crystals diffracted to 1.9 angstrom resolution and belonged to space group P21, with unit-cell parameters a = 35.1, b = 69.5, c = 49.6A, alpha=gamma=90 degrees, beta=105.4 degrees.

  14. CD44 mediated hyaluronan adhesion of Toxoplasma gondii-infected leukocytes.

    PubMed

    Hayashi, Takeshi; Unno, Akihiro; Baba, Minami; Ohno, Tamio; Kitoh, Katsuya; Takashima, Yasuhiro

    2014-04-01

    Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects humans and animals. Ingested parasites cross the intestinal epithelium, invade leukocytes and are then disseminated to peripheral organs. However, the mechanism of extravasation of the infected leukocytes remains poorly understood. In this study, we demonstrate that T. gondii-invaded human and mouse leukocytes express higher level of CD44, a ligand of hyaluronan (HA), and its expression on myeloid and non-myeloid leukocytes causes T. gondii-invaded human and mouse leukocyte to adhere to HA more effectively than non-invaded leukocytes. The specific adherence of parasite-invaded leukocytes was inhibited by anti CD44 antibody. Leukocytes of CD44 knockout mice did not show parasite-invaded leukocyte specific adhesion. Our results indicate that parasite-invaded leukocytes, regardless of whether myeloid or not, gain higher ability to adhere to HA than non-invaded leukocytes, via upregulation of CD44 expression and/or selective invasion to CD44 highly expressing cells. The difference in ability to adhere to HA between parasite-invaded cells and non-invaded neighboring cells might facilitate effective delivery of parasite-invaded leukocytes to the HA-producing endothelial cell surface and/or HA-rich extra cellular matrix. © 2013.

  15. CD44 regulates cell migration in human colon cancer cells via Lyn kinase and AKT phosphorylation.

    PubMed

    Subramaniam, Venkateswaran; Vincent, Isabella R; Gardner, Helena; Chan, Emily; Dhamko, Helena; Jothy, Serge

    2007-10-01

    Colon cancer is among the leading causes of cancer death in North America. CD44, an adhesion and antiapoptotic molecule is overexpressed in colon cancer. Cofilin is involved in the directional motility of cells. In the present study, we looked at how CD44 might modulate cell migration in human colon cancer via cofilin. We used a human colon cancer cell line, HT29, which expresses CD44, HT29 where CD44 expression was knocked down by siRNA, SW620, a human colon cancer cell line which does not express CD44, stably transfected exons of CD44 in SW620 cells and the colon from CD44 knockout and wild-type mouse. Western blot analysis of siRNA CD44 lysates showed increased level of AKT phosphorylation and decreased level of cofilin expression. Similar results were also observed with SW620 cells and CD44 knockout mouse colon lysates. Experiments using the AKT phosphorylation inhibitor LY294002 indicate that AKT phosphorylation downregulates cofilin. Immunoprecipitation studies showed CD44 complex formation with Lyn, providing an essential link between CD44 and AKT phosphorylation. LY294002 also stabilized Lyn from phosphorylated AKT, suggesting an interaction between Lyn and AKT phosphorylation. Immunocytochemistry showed that cofilin and Lyn expression were downregulated in siRNA CD44 cells and CD44 knockout mouse colon. siRNA CD44 cells had significantly less migration compared to HT29 vector. Given the well-defined roles of CD44, phosphorylated AKT in apoptosis and cancer, these results indicate that CD44-induced cell migration is dependent on its complex formation with Lyn and its consequent regulation of AKT phosphorylation and cofilin expression.

  16. CD133+CD54+CD44+ circulating tumor cells as a biomarker of treatment selection and liver metastasis in patients with colorectal cancer

    PubMed Central

    Wang, Cun; Huang, Qiaorong; Meng, Wentong; Yu, Yongyang; Yang, Lie; Peng, Zhihai; Hu, Jiankun; Li, Yuan; Mo, Xianming; Zhou, Zongguang

    2016-01-01

    Introduction Liver is the most common site of distant metastasis in colorectal cancer (CRC). Early diagnosis and appropriate treatment selection decides overall prognosis of patients. However, current diagnostic measures were basically imaging but not functional. Circulating tumor cells (CTCs) known as hold the key to understand the biology of metastatic mechanism provide a novel and auxiliary diagnostic strategy for CRC with liver metastasis (CRC-LM). Results The expression of CD133+ and CD133+CD54+CD44+ cellular subpopulations were higher in the peripheral blood of CRC-LM patients when compared with those without metastasis (P<0.001). Multivariate analysis proved the association between the expression of CD133+CD44+CD54+ cellular subpopulation and the existence of CRC-LM (P<0.001). The combination of abdominal CT/MRI, CEA and the CD133+CD44+CD54+ cellular subpopulation showed increased detection and discrimination rate for liver metastasis, with a sensitivity of 88.2% and a specificity of 92.4%. Meanwhile, it also show accurate predictive value for liver metastasis (OR=2.898, 95% C.I.1.374–6.110). Materials and Method Flow cytometry and multivariate analysis was performed to detect the expression of cancer initiating cells the correlation between cellular subpopulations and liver metastasis in patients with CRC. The receiver operating characteristic curves combined with the area under the curve were generated to compare the predictive ability of the cellular subpopulation for liver metastasis with current CT and MRI images. Conclusions The identification, expression and application of CTC subpopulations will provide an ideal cellular predictive marker for CRC liver metastasis and a potential marker for further investigation. PMID:27764803

  17. Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of apolipoprotein E deficient mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Hong-Bo, E-mail: xhbzhb@yahoo.com; Lu, Xiang-Yang; Sun, Zhi-Liang

    Recent studies show that osteopontin (OPN) and its receptor cluster of differentiation 44 (CD44) are two pro-inflammatory cytokines contributing to the development of atherosclerosis. The objective of this study was to explore the inhibitory effect of kaempferol, a naturally occurring flavonoid compound, on atherogenesis and the mechanisms involved. The experiments were performed in aorta and plasma from C57BL/6J control and apolipoprotein E-deficient (ApoE{sup -/-}) mice treated or not with kaempferol (50 or 100 mg/kg, intragastrically) for 4 weeks. Kaempferol treatment decreased atherosclerotic lesion area, improved endothelium-dependent vasorelaxation, and increased the maximal relaxation value concomitantly with decrease in the half-maximum effectivemore » concentration, plasma OPN level, aortic OPN expression, and aortic CD44 expression in ApoE{sup -/-} mice. In addition, treatment with kaempferol also significantly decreased reactive oxygen species production in mice aorta. The present results suggest that kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. -- Graphical abstract: Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. Highlights: Black-Right-Pointing-Pointer OPN-CD44 pathway plays a critical role in the development of atherosclerosis. Black-Right-Pointing-Pointer We examine lesion area, OPN and CD44 changes after kaempferol treatment. Black-Right-Pointing-Pointer Kaempferol treatment decreased atherosclerotic lesion area in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol treatment decreased aortic OPN and CD44 expressions in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis.« less

  18. Cytoskeletal Regulation of CD44 Membrane Organization and Interactions with E-selectin*

    PubMed Central

    Wang, Ying; Yago, Tadayuki; Zhang, Nan; Abdisalaam, Salim; Alexandrakis, George; Rodgers, William; McEver, Rodger P.

    2014-01-01

    Interactions of CD44 on neutrophils with E-selectin on activated endothelial cells mediate rolling under flow, a prerequisite for neutrophil arrest and migration into perivascular tissues. How CD44 functions as a rolling ligand despite its weak affinity for E-selectin is unknown. We examined the nanometer scale organization of CD44 on intact cells. CD44 on leukocytes and transfected K562 cells was cross-linked within a 1.14-nm spacer. Depolymerizing actin with latrunculin B reduced cross-linking. Fluorescence resonance energy transfer (FRET) revealed tight co-clustering between CD44 fused to yellow fluorescent protein (YFP) and CD44 fused to cyan fluorescent protein on K562 cells. Latrunculin B reduced FRET-reported co-clustering. Number and brightness analysis confirmed actin-dependent CD44-YFP clusters on living cells. CD44 lacking binding sites for ankyrin and for ezrin/radixin/moesin (ERM) proteins on its cytoplasmic domain (ΔANKΔERM) did not cluster. Unexpectedly, CD44 lacking only the ankyrin-binding site (ΔANK) formed larger but looser clusters. Fluorescence recovery after photobleaching demonstrated increased CD44 mobility by latrunculin B treatment or by deleting the cytoplasmic domain. ΔANKΔERM mobility increased only modestly, suggesting that the cytoplasmic domain engages the cytoskeleton by an additional mechanism. Ex vivo differentiated CD44-deficient neutrophils expressing exogenous CD44 rolled on E-selectin and activated Src kinases after binding anti-CD44 antibody. In contrast, differentiated neutrophils expressing ΔANK had impaired rolling and kinase activation. These data demonstrate that spectrin and actin networks regulate CD44 clustering and suggest that ankyrin enhances CD44-mediated neutrophil rolling and signaling. PMID:25359776

  19. Expression and distribution of hyaluronic acid and CD44 in unphonated human vocal fold mucosa.

    PubMed

    Sato, Kiminori; Umeno, Hirohito; Nakashima, Tadashi; Nonaka, Satoshi; Harabuchi, Yasuaki

    2009-11-01

    The tension caused by phonation (vocal fold vibration) is hypothesized to stimulate vocal fold stellate cells (VFSCs) in the maculae flavae (MFe) to accelerate production of extracellular matrices. The distribution of hyaluronic acid (HA) and expression of CD44 (a cell surface receptor for HA) were examined in human vocal fold mucosae (VFMe) that had remained unphonated since birth. Five specimens of VFMe (3 adults, 2 children) that had remained unphonated since birth were investigated with Alcian blue staining, hyaluronidase digestion, and immunohistochemistry for CD44. The VFMe containing MFe were hypoplastic and rudimentary. The VFMe did not have a vocal ligament, Reinke's space, or a layered structure, and the lamina propria appeared as a uniform structure. In the children, HA was distributed in the VFMe containing MFe. In the adults, HA had decreased in the VFMe containing MFe. In both groups, the VFSCs in the MFe and the fibroblasts in the lamina propria expressed little CD44. This study supports the hypothesis that the tensions caused by vocal fold vibration stimulate the VFSCs in the MFe to accelerate production of extracellular matrices and form the layered structure. Phonation after birth is one of the important factors in the growth and development of the human VFMe.

  20. Cytoskeletal regulation of CD44 membrane organization and interactions with E-selectin.

    PubMed

    Wang, Ying; Yago, Tadayuki; Zhang, Nan; Abdisalaam, Salim; Alexandrakis, George; Rodgers, William; McEver, Rodger P

    2014-12-19

    Interactions of CD44 on neutrophils with E-selectin on activated endothelial cells mediate rolling under flow, a prerequisite for neutrophil arrest and migration into perivascular tissues. How CD44 functions as a rolling ligand despite its weak affinity for E-selectin is unknown. We examined the nanometer scale organization of CD44 on intact cells. CD44 on leukocytes and transfected K562 cells was cross-linked within a 1.14-nm spacer. Depolymerizing actin with latrunculin B reduced cross-linking. Fluorescence resonance energy transfer (FRET) revealed tight co-clustering between CD44 fused to yellow fluorescent protein (YFP) and CD44 fused to cyan fluorescent protein on K562 cells. Latrunculin B reduced FRET-reported co-clustering. Number and brightness analysis confirmed actin-dependent CD44-YFP clusters on living cells. CD44 lacking binding sites for ankyrin and for ezrin/radixin/moesin (ERM) proteins on its cytoplasmic domain (ΔANKΔERM) did not cluster. Unexpectedly, CD44 lacking only the ankyrin-binding site (ΔANK) formed larger but looser clusters. Fluorescence recovery after photobleaching demonstrated increased CD44 mobility by latrunculin B treatment or by deleting the cytoplasmic domain. ΔANKΔERM mobility increased only modestly, suggesting that the cytoplasmic domain engages the cytoskeleton by an additional mechanism. Ex vivo differentiated CD44-deficient neutrophils expressing exogenous CD44 rolled on E-selectin and activated Src kinases after binding anti-CD44 antibody. In contrast, differentiated neutrophils expressing ΔANK had impaired rolling and kinase activation. These data demonstrate that spectrin and actin networks regulate CD44 clustering and suggest that ankyrin enhances CD44-mediated neutrophil rolling and signaling. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Characterization of a CD44/CD122int memory CD8 T cell subset generated under sterile inflammatory conditions.

    PubMed

    Mbitikon-Kobo, Florentin-Martial; Vocanson, Marc; Michallet, Marie-Cécile; Tomkowiak, Martine; Cottalorda, Anne; Angelov, Georgi S; Coupet, Charles-Antoine; Djebali, Sophia; Marçais, Antoine; Dubois, Bertrand; Bonnefoy-Bérard, Nathalie; Nicolas, Jean-François; Arpin, Christophe; Marvel, Jacqueline

    2009-03-15

    Most memory CD8 T cell subsets that have been hitherto defined are generated in response to infectious pathogens. In this study, we have characterized the CD8 T cells that survive priming conditions, devoid of pathogen-derived danger signals. In both a TCR-transgenic model and a model of contact hypersensitivity, we show that the priming of naive CD8 T cells under sterile inflammatory conditions generates memory. The corresponding memory CD8 T cells can be identified by their intermediate expression levels of CD44 and CD122. We also show that CD44/122(int) memory CD8 T cells spontaneously develop in wild type mice and that they display intermediate levels of several other memory traits including functional (IFN-gamma secretion capacity, CCL5 messenger stores), phenotypic, and molecular (T-bet and eomesodermin expression levels) features. We finally show that they correspond to an early differentiation stage and can further differentiate in CD44/122(high) memory T cells. Altogether, our results identify a new memory CD8 T cell subset that is generated under sterile inflammatory conditions and involved in the recall contact hypersensitivity reactions that are responsible for allergic contact dermatitis.

  2. CD44-mediated hyaluronan binding marks proliferating hematopoietic progenitor cells and promotes bone marrow engraftment

    PubMed Central

    Lee-Sayer, Sally S. M.; Dougan, Meghan N.; Cooper, Jesse; Sanderson, Leslie; Dosanjh, Manisha; Maxwell, Christopher A.

    2018-01-01

    CD44 is a widely expressed cell adhesion molecule that binds to the extracellular matrix component, hyaluronan. However, this interaction is not constitutive in most immune cells at steady state, as the ability of CD44 to engage hyaluronan is highly regulated. While activated T cells and macrophages gain the ability to bind hyaluronan by CD44, the status in other immune cells is less studied. Here we found a percentage of murine eosinophils, natural killer and natural killer T cells were capable of interacting with hyaluronan at steady state. To further investigate the consequences of hyaluronan binding by CD44 in the hematopoietic system, point mutations of CD44 that either cannot bind hyaluronan (LOF-CD44) or have an increased affinity for hyaluronan (GOF-CD44) were expressed in CD44-deficient bone marrow. Competitive bone marrow reconstitution of irradiated mice revealed an early preference for GOF-CD44 over WT-CD44 expressing cells, and for WT-CD44 over LOF-CD44 expressing cells, in the hematopoietic progenitor cell compartment. The advantage of the hyaluronan-binding cells was observed in the hematopoietic stem and progenitor populations, and was maintained throughout the immune system. Hematopoietic stem cells bound minimal hyaluronan at steady state, and this was increased when the cells were induced to proliferate whereas multipotent progenitors had an increased ability to bind hyaluronan at steady state. In vitro, the addition of hyaluronan promoted their proliferation. Thus, proliferating hematopoietic progenitors bind hyaluronan, and hyaluronan binding cells have a striking competitive advantage in bone marrow engraftment. PMID:29684048

  3. [Epstein-Barr virus associated gastric carcinoma: the genetic alteration and the expression of CD44 variant].

    PubMed

    Chong, J M; Fukayama, M

    1997-02-01

    Epstein-Barr virus (EBV), a ubiquitous human herpes virus, was recently identified in 2-16% of gastric carcinomas. EBV-encoded small RNA was found in nearly all of the carcinoma cells even at the intramucosal stage. EBV in EBV associated gastric carcinoma (EBVaGC) is monoclonal based on Southern blot hybridization using probes adjacent to the unique terminal repeat of EBV-DNA. Furthermore, the genetic pathway of this carcinogenesis is different of EBVaGC: deletion of 5q and/or 17p and microsatellite instability are extremely rare in EBVaGC, in contrast to their high frequency in EBV-negative carcinomas. We also examined the relationship between the expression of CD44 variants and EBVaGC, and found the expression of CD44 variants was significantly correlated with EBV-etiology.

  4. A rational approach for cancer stem-like cell isolation and characterization using CD44 and prominin-1(CD133) as selection markers

    PubMed Central

    Lee, Yi-Jen; Wu, Chang-Cheng; Li, Jhy-Wei; Ou, Chien-Chih; Hsu, Shih-Chung; Tseng, Hsiu-Hsueh; Kao, Ming-Ching; Liu, Jah-Yao

    2016-01-01

    The availability of adequate cancer stem cells or cancer stem-like cell (CSC) is important in cancer study. From ovarian cancer cell lines, SKOV3 and OVCAR3, we induced peritoneal ascites tumors in immunodeficient mice. Among the cells (SKOV3.PX1 and OVCAR3.PX1) from those tumors, we sorted both CD44 and CD133 positive cells (SKOV3.PX1_133+44+, OVCAR3.PX1_133+44+), which manifest the characteristics of self-renewal, multi-lineage differentiation, chemoresistance and tumorigenicity, those of cancer stem-like cells (CSLC). Intraperitoneal transplantation of these CD44 and CD133 positive cells resulted in poorer survival in the engrafted animals. Clinically, increased CD133 expression was found in moderately and poorly differentiated (grade II and III) ovarian serous cystadenocarcinomas. The ascites tumor cells from human ovarian cancers demonstrated more CD133 and CD44 expressions than those from primary ovarian or metastatic tumors and confer tumorigenicity in immunodeficient mice. Compared to their parental cells, the SKOV3.PX1_133+44+ and OVCAR3.PX1_133+44+ cells uniquely expressed 5 CD markers (CD97, CD104, CD107a, CD121a, and CD125). Among these markers, CD97, CD104, CD107a, and CD121a are significantly more expressed in the CD133+ and CD44+ double positive cells of human ovarian ascites tumor cells (Ascites_133+44+) than those from primary ovarian or metastatic tumors. The cancer stem-like cells were enriched from 3% to more than 70% after this manipulation. This intraperitoneal enrichment of cancer stem-like cells, from ovarian cancer cell lines or primary ovarian tumor, potentially provides an adequate amount of ovarian cancer stem-like cells for the ovarian cancer study and possibly benefits cancer therapy. PMID:27655682

  5. MET Signaling Mediates Intestinal Crypt-Villus Development, Regeneration, and Adenoma Formation and Is Promoted by Stem Cell CD44 Isoforms.

    PubMed

    Joosten, Sander P J; Zeilstra, Jurrit; van Andel, Harmen; Mijnals, R Clinton; Zaunbrecher, Joost; Duivenvoorden, Annet A M; van de Wetering, Marc; Clevers, Hans; Spaargaren, Marcel; Pals, Steven T

    2017-10-01

    Resistance of metastatic human colorectal cancer cells to drugs that block epidermal growth factor (EGF) receptor signaling could be caused by aberrant activity of other receptor tyrosine kinases, activating overlapping signaling pathways. One of these receptor tyrosine kinases could be MET, the receptor for hepatocyte growth factor (HGF). We investigated how MET signaling, and its interaction with CD44 (a putative MET coreceptor regulated by Wnt signaling and highly expressed by intestinal stem cells [ISCs] and adenomas) affects intestinal homeostasis, regeneration, and adenoma formation in mini-gut organoids and mice. We established organoid cultures from ISCs stimulated with HGF or EGF and assessed intestinal differentiation by immunohistochemistry. Mice with total epithelial disruption of MET (Ah Cre /Met fl/fl /LacZ) or ISC-specific disruption of MET (Lgr5 Creert2 /Met fl/fl /LacZ) and control mice (Ah Cre /Met +/+ /LacZ, Lgr5 Creert2 /Met +/+ /LacZ) were exposed to 10 Gy total body irradiation; intestinal tissues were collected, and homeostasis and regeneration were assessed by immunohistochemistry. We investigated adenoma organoid expansion stimulated by HGF or EGF using adenomas derived from Lgr5 Creert2 /Met fl/fl /Apc fl/fl and Lgr5 Creert2 /Met +/+ /Apc fl/fl mice. The same mice were evaluated for adenoma prevalence and size. We also quantified adenomas in Ah Cre /Met fl/fl /Apc fl/+ mice compared with Ah Cre /Met +/+ /Apc fl/+ control mice. We studied expansion of organoids generated from crypts and adenomas, stimulated by HGF or EGF, that were derived from mice expressing different CD44 splice variants (Cd44 +/+ , Cd44 -/- , Cd44 s/s , or Cd44 v4-10/v4-10 mice). Crypts incubated with EGF or HGF expanded into self-organizing mini-guts with similar levels of efficacy and contained all differentiated cell lineages. MET-deficient mice did not have defects in intestinal homeostasis. Total body irradiation reduced numbers of proliferating crypts in Ah Cre

  6. CD44 as a receptor for colonization of the pharynx by group A Streptococcus

    PubMed Central

    Cywes, Colette; Stamenkovic, Ivan; Wessels, Michael R.

    2000-01-01

    The pharynx is the primary reservoir for strains of group A Streptococcus (GAS) associated both with pharyngitis (streptococcal sore throat) and with invasive or “flesh-eating” soft tissue infections. We now report that CD44, a hyaluronic acid-binding protein that mediates human cell-cell– and cell-extracellular matrix–binding interactions, functions as a receptor for GAS colonization of the pharynx in vivo. We found that attachment of GAS to murine epithelial keratinocytes was mediated by binding of the GAS hyaluronic acid capsular polysaccharide to CD44. In studies of transgenic mice with a selective defect in epithelial expression of CD44, GAS adherence to CD44-deficient keratinocytes in vitro was reduced compared with adherence to keratinocytes expressing normal levels of CD44. After intranasal inoculation, GAS colonized the oropharynx of wild-type mice but failed to colonize transgenic mice deficient in CD44 expression. GAS colonization of wild-type mice could be blocked by coadministration of mAb to CD44 or by pretreatment of the animals with exogenous hyaluronic acid. These results provide evidence that CD44 serves as a receptor for GAS colonization of the pharynx and support the potential efficacy of disrupting the interaction between the GAS hyaluronic acid capsule and CD44 as a novel approach to preventing pharyngeal infection. PMID:11032859

  7. Overexpression of molecular chaperons GRP78 and GRP94 in CD44(hi)/CD24(lo) breast cancer stem cells.

    PubMed

    Nami, Babak; Ghasemi-Dizgah, Armin; Vaseghi, Akbar

    2016-01-01

    Breast cancer stem cell with CD44(hi)/CD24(lo) phonotype is described having stem cell properties and represented as the main driving factor in breast cancer initiation, growth, metastasis and low response to anti-cancer agents. Glucoseregulated proteins (GRPs) are heat shock protein family chaperons that are charged with regulation of protein machinery and modulation of endoplasmic reticulum homeostasis whose important roles in stem cell development and invasion of various cancers have been demonstrated. Here, we investigated the expression levels of GRP78 and GRP94 in CD44(hi)/CD24(lo) phenotype breast cancer stem cells (BCSCs). MCF7, T-47D and MDA-MB-231 breast cancer cell lines were used. CD44(hi)/CD24(lo) phenotype cell population were analyzed and sorted by fluorescence-activated cell sorting (FACS). Transcriptional and translational expression of GRP78 and GRP94 were investigated by western blotting and quantitative real time PCR. RESULTS showed different proportion of CD44(hi)/CD24(lo) phenotype cell population in their original bulk cells. The ranking of the cell lines in terms of CD44(hi)/CD24(lo) phenotype cell population was as MCF7CD44(hi)/CD24(lo) phenotype cells exhibited higher mRNA and protein expression level of GRP78 and GRP94 compared to their original bulk cells. Our results show a relationship between overexpression of GRP78 and GRP94 and exhibiting CD44hi/CD24lo phenotype in breast cancer cells. We conclude that upregulation of GRPs may be an important factor in the emergence of CD44hi/CD24lo phenotype BCSCs features.

  8. Premature aging induced by radiation exhibits pro-atherosclerotic effects mediated by epigenetic activation of CD44 expression

    PubMed Central

    Lowe, Donna; Raj, Kenneth

    2014-01-01

    Age is undoubtedly a major risk factor for heart disease. However, the reason for this is not entirely clear. In the course of our investigation into the mechanism of radiation-induced cardiovascular disease, we made several unexpected findings that inform us on this question. We observed that human coronary endothelial cells, while being able to initiate repair of radiation-induced DNA damage, often fail to complete the repair and become senescent. Such radiation-induced cellular aging occurs through a mutation-independent route. Endothelial cells that aged naturally through replication or as a result of radiation exhibited indistinguishable characteristics. The promoter regions of the CD44 gene in aging endothelial cells become demethylated, and the proteins are highly expressed on the cell surface, making the cells adhesive for monocytes. Adhesion is a cardinal feature that recruits monocytes to the endothelium, allowing them to infiltrate the vessel wall and initiate atherosclerosis. The epigenetic activation of CD44 expression is particularly significant as it causes persistent elevated CD44 protein expression, making senescent endothelial cells chronically adhesive. In addition to understanding why cardiovascular disease increases with age, these observations provide insights into the puzzling association between radiation and cardiovascular disease and highlight the need to consider premature aging as an additional risk of radiation to human health. PMID:25059316

  9. Up-regulation of CD44 in the development of metastasis, recurrence and drug resistance of ovarian cancer

    PubMed Central

    Gao, Yan; Foster, Rosemary; Yang, Xiaoqian; Feng, Yong; Shen, Jacson K.; Mankin, Henry J.; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-01-01

    The clinical significance of Cluster of Differentiation 44 (CD44) remains controversial in human ovarian cancer. The aim of this study is to evaluate the clinical significance of CD44 expression by using a unique tissue microarray, and then to determine the biological functions of CD44 in ovarian cancer. In this study, a unique ovarian cancer tissue microarray (TMA) was constructed with paired primary, metastatic, and recurrent tumor tissues from 26 individual patients. CD44 expression in TMA was assessed by immunohistochemistry. Both the metastatic and recurrent ovarian cancer tissues expressed higher level of CD44 than the patient-matched primary tumor. A significant association has been shown between CD44 expression and both the disease free survival and overall survival. A strong increase of CD44 was found in the tumor recurrence of mouse model. Finally, when CD44 was knocked down, proliferation, migration/invasion activity, and spheroid formation were significantly suppressed, while drug sensitivity was enhanced. Thus, up-regulation of CD44 represents a crucial event in the development of metastasis, recurrence, and drug resistance to current treatments in ovarian cancer. Developing strategies to target CD44 may prevent metastasis, recurrence, and drug resistance in ovarian cancer. PMID:25823654

  10. Up-regulation of CD44 in the development of metastasis, recurrence and drug resistance of ovarian cancer.

    PubMed

    Gao, Yan; Foster, Rosemary; Yang, Xiaoqian; Feng, Yong; Shen, Jacson K; Mankin, Henry J; Hornicek, Francis J; Amiji, Mansoor M; Duan, Zhenfeng

    2015-04-20

    The clinical significance of Cluster of Differentiation 44 (CD44) remains controversial in human ovarian cancer. The aim of this study is to evaluate the clinical significance of CD44 expression by using a unique tissue microarray, and then to determine the biological functions of CD44 in ovarian cancer. In this study, a unique ovarian cancer tissue microarray (TMA) was constructed with paired primary, metastatic, and recurrent tumor tissues from 26 individual patients. CD44 expression in TMA was assessed by immunohistochemistry. Both the metastatic and recurrent ovarian cancer tissues expressed higher level of CD44 than the patient-matched primary tumor. A significant association has been shown between CD44 expression and both the disease free survival and overall survival. A strong increase of CD44 was found in the tumor recurrence of mouse model. Finally, when CD44 was knocked down, proliferation, migration/invasion activity, and spheroid formation were significantly suppressed, while drug sensitivity was enhanced. Thus, up-regulation of CD44 represents a crucial event in the development of metastasis, recurrence, and drug resistance to current treatments in ovarian cancer. Developing strategies to target CD44 may prevent metastasis, recurrence, and drug resistance in ovarian cancer.

  11. Virtual screening-driven repositioning of etoposide as CD44 antagonist in breast cancer cells

    PubMed Central

    Aguirre-Alvarado, Charmina; Segura-Cabrera, Aldo; Velázquez-Quesada, Inés; Hernández-Esquivel, Miguel A.; García-Pérez, Carlos A.; Guerrero-Rodríguez, Sandra L.; Ruiz, Angel J.; Rodríguez-Moreno, Andrea; Pérez-Tapia, Sonia M.; Velasco-Velázquez, Marco A.

    2016-01-01

    CD44 is a receptor for hyaluronan (HA) that promotes epithelial-to-mesenchymal transition (EMT), induces cancer stem cell (CSC) expansion, and favors metastasis. Thus, CD44 is a target for the development of antineoplastic agents. In order to repurpose drugs as CD44 antagonists, we performed consensus-docking studies using the HA-binding domain of CD44 and 11,421 molecules. Drugs that performed best in docking were examined in molecular dynamics simulations, identifying etoposide as a potential CD44 antagonist. Ligand competition and cell adhesion assays in MDA-MB-231 cells demonstrated that etoposide decreased cell binding to HA as effectively as a blocking antibody. Etoposide-treated MDA-MB-231 cells developed an epithelial morphology; increased their expression of E-cadherin; and reduced their levels of EMT-associated genes and cell migration. By gene expression analysis, etoposide reverted an EMT signature similarly to CD44 knockdown, whereas other topoisomerase II (TOP2) inhibitors did not. Moreover, etoposide decreased the proportion of CD44+/CD24− cells, lowered chemoresistance, and blocked mammosphere formation. Our data indicate that etoposide blocks CD44 activation, impairing key cellular functions that drive malignancy, thus rendering it a candidate for further translational studies and a potential lead compound in the development of new CD44 antagonists. PMID:27009862

  12. Virtual screening-driven repositioning of etoposide as CD44 antagonist in breast cancer cells.

    PubMed

    Aguirre-Alvarado, Charmina; Segura-Cabrera, Aldo; Velázquez-Quesada, Inés; Hernández-Esquivel, Miguel A; García-Pérez, Carlos A; Guerrero-Rodríguez, Sandra L; Ruiz-Moreno, Angel J; Rodríguez-Moreno, Andrea; Pérez-Tapia, Sonia M; Velasco-Velázquez, Marco A

    2016-04-26

    CD44 is a receptor for hyaluronan (HA) that promotes epithelial-to-mesenchymal transition (EMT), induces cancer stem cell (CSC) expansion, and favors metastasis. Thus, CD44 is a target for the development of antineoplastic agents. In order to repurpose drugs as CD44 antagonists, we performed consensus-docking studies using the HA-binding domain of CD44 and 11,421 molecules. Drugs that performed best in docking were examined in molecular dynamics simulations, identifying etoposide as a potential CD44 antagonist. Ligand competition and cell adhesion assays in MDA-MB-231 cells demonstrated that etoposide decreased cell binding to HA as effectively as a blocking antibody. Etoposide-treated MDA-MB-231 cells developed an epithelial morphology; increased their expression of E-cadherin; and reduced their levels of EMT-associated genes and cell migration. By gene expression analysis, etoposide reverted an EMT signature similarly to CD44 knockdown, whereas other topoisomerase II (TOP2) inhibitors did not. Moreover, etoposide decreased the proportion of CD44+/CD24- cells, lowered chemoresistance, and blocked mammosphere formation. Our data indicate that etoposide blocks CD44 activation, impairing key cellular functions that drive malignancy, thus rendering it a candidate for further translational studies and a potential lead compound in the development of new CD44 antagonists.

  13. HAb18G/CD147 Promotes pSTAT3-Mediated Pancreatic Cancer Development via CD44s †, ‡

    PubMed Central

    Li, Ling; Tang, Wenhua; Wu, Xiaoqing; Karnak, David; Meng, Xiaojie; Thompson, Rachel; Hao, Xinbao; Li, Yongmin; Qiao, Xiaotan T.; Lin, Jiayuh; Fuchs, James; Simeone, Diane M.; Chen, Zhi-Nan; Lawrence, Theodore S.; Xu, Liang

    2013-01-01

    Purpose STAT3 plays a critical role in initiation and progression of pancreatic cancer. However, therapeutically targeting STAT3 is failure in clinic. We previously identified HAb18G/CD147 as an effective target for cancer treatment. In this study, we aimed to investigate potential role of HAb18G/CD147 in STAT3-involved pancreatic tumorigenesis in vitro and in vivo. Experimental Design The expression of HAb18G/CD147, pSTAT3 and CD44s were determined in tissue microarrays. The tumorigenic function and molecular signaling mechanism of HAb18G/CD147 was assessed by in vitro cellular and clonogenic growth, reporter assay, immunoblot, immunofluorescence staining, immunoprecipitation, and in vivo tumor formationusing loss or gain-of-function strategies. Results Highly expressed HAb18G/CD147 promoted cellular and clonogenic growth in vitro and tumorigenicity in vivo. CyPA, a ligand of CD147, stimulated STAT3 phosphorylation and its downstream genes cyclin D1/survivin through HAb18G/CD147 dependent mechanisms. HAb18G/CD147 was associated and co-localized with cancer stem cell marker CD44s in lipid rafts. The inhibitors of STAT3 and survivin, as well as CD44s neutralizing antibodies suppressed the HAb18G/CD147-induced cell growth. High HAb18G/CD147 expression in pancreatic cancer was significantly correlated with the poor tumor differentiation, and the high co-expression of HAb18G/CD147-CD44s-STAT3 associated with poor survival of patients with pancreatic cancer. Conclusions We identified HAb18G/CD147 as a novel upstream activator of STAT3 via interacts with CD44s and plays a critical role in the development of pancreatic cancer. The data suggest HAb18G/CD147 could be a promising therapeutic target for highly aggressive pancreatic cancer and a surrogate marker in the STAT3-targeted molecular therapies. PMID:24132924

  14. STAT3 as a potential therapeutic target in ALDH+ and CD44+/CD24+ stem cell-like pancreatic cancer cells.

    PubMed

    Lin, Li; Jou, David; Wang, Yina; Ma, Haiyan; Liu, Tianshu; Fuchs, James; Li, Pui-Kai; Lü, Jiagao; Li, Chenglong; Lin, Jiayuh

    2016-12-01

    Persistent activation of signal transducers and activators of transcription 3 (STAT3) is commonly detected in many types of cancer including pancreatic cancer. Whether STAT3 is activated in stem cell-like pancreatic cancer cells and the effect of STAT3 inhibition, is still unknown. Flow cytometry was used to isolate pancreatic cancer stem-like cells which are identified by both aldehyde dehydrogenase (ALDH)-positive (ALDH+) as well as cluster of differentiation (CD44-positive/CD24-positive subpopulations (CD44+/CD24+). STAT3 activation and the effects of STAT3 inhibition by STAT3 inhibitors, LLL12, FLLL32, and Stattic in ALDH+ and CD44+/CD24+ cells were examined. Our results showed that ALDH+ and CD44+/CD24+ pancreatic cancer stem-like cells expressed higher levels of phosphorylated STAT3, an active form of STAT3, compared to ALDH-negative (ALDH-) and CD44-negative/CD24-negative (CD44-/CD24-) pancreatic cancer cells, suggesting that STAT3 is activated in pancreatic cancer stem-like cells. Small molecular STAT3 inhibitors inhibited STAT3 phosphorylation, STAT3 downstream target gene expression, cell viability, and tumorsphere formation in ALDH+ and CD44+/CD24+ cells. Our results indicate that STAT3 is a novel therapeutic target in pancreatic cancer stem-like cells and inhibition of activated STAT3 in these cells by STAT3 inhibitors may offer an effective treatment for pancreatic cancer.

  15. CD44 increases the efficiency of distant metastasis of breast cancer

    PubMed Central

    McFarlane, Suzanne; Coulter, Jonathan A.; Tibbits, Paul; O'Grady, Anthony; McFarlane, Cheryl; Montgomery, Nicola; Hill, Ashleigh; McCarthy, Helen O.; Young, Leonie S.; Kay, Elaine W.; Isacke, Clare M.; Waugh, David J.J.

    2015-01-01

    Metastasis is the predominant cause of death from cancer yet we have few biomarkers to predict patients at increased risk of metastasis and are unable to effectively treat disseminated disease. Analysis of 448 primary breast tumors determined that expression of the hylauronan receptor CD44 associated with high grade (p = 0.046), ER- (p = 0.001) and PR-negative tumors (p = 0.029), and correlated with increased distant recurrence and reduced disease-free survival in patients with lymph-node positive or large tumors. To determine its functional role in distant metastasis, CD44 was knocked-down in MDA-MB-231 cells using two independent shRNA sequences. Loss of CD44 attenuated tumor cell adhesion to endothelial cells and reduced cell invasion but did not affect proliferation in vitro. To verify the importance of CD44 to post-intravasation events, tumor formation was assessed by quantitative in vivo imaging and post-mortem tissue analysis following an intra-cardiac injection of transfected cells. CD44 knock-down increased survival and decreased overall tumor burden at multiple sites, including the skeleton in vivo. We conclude that elevated CD44 expression on tumour cells within the systemic circulation increases the efficiency of post-intravasation events and distant metastasis in vivo, consistent with its association with increased distant recurrence and reduced disease-free survival in patients. PMID:25888636

  16. Human Lymphoid Tissues Harbor a Distinct CD69+CXCR6+ NK Cell Population.

    PubMed

    Lugthart, Gertjan; Melsen, Janine E; Vervat, Carly; van Ostaijen-Ten Dam, Monique M; Corver, Willem E; Roelen, Dave L; van Bergen, Jeroen; van Tol, Maarten J D; Lankester, Arjan C; Schilham, Marco W

    2016-07-01

    Knowledge of human NK cells is based primarily on conventional CD56(bright) and CD56(dim) NK cells from blood. However, most cellular immune interactions occur in lymphoid organs. Based on the coexpression of CD69 and CXCR6, we identified a third major NK cell subset in lymphoid tissues. This population represents 30-60% of NK cells in marrow, spleen, and lymph node but is absent from blood. CD69(+)CXCR6(+) lymphoid tissue NK cells have an intermediate expression of CD56 and high expression of NKp46 and ICAM-1. In contrast to circulating NK cells, they have a bimodal expression of the activating receptor DNAX accessory molecule 1. CD69(+)CXCR6(+) NK cells do not express the early markers c-kit and IL-7Rα, nor killer cell Ig-like receptors or other late-differentiation markers. After cytokine stimulation, CD69(+)CXCR6(+) NK cells produce IFN-γ at levels comparable to CD56(dim) NK cells. They constitutively express perforin but require preactivation to express granzyme B and exert cytotoxicity. After hematopoietic stem cell transplantation, CD69(+)CXCR6(+) lymphoid tissue NK cells do not exhibit the hyperexpansion observed for both conventional NK cell populations. CD69(+)CXCR6(+) NK cells constitute a separate NK cell population with a distinct phenotype and function. The identification of this NK cell population in lymphoid tissues provides tools to further evaluate the cellular interactions and role of NK cells in human immunity. Copyright © 2016 by The American Association of Immunologists, Inc.

  17. CD44S-hyaluronan interactions protect cells resulting from EMT against anoikis

    PubMed Central

    Cieply, Benjamin; Koontz, Colton; Frisch, Steven M.

    2016-01-01

    The detachment of normal epithelial cells from matrix triggers an apoptotic response known as anoikis, during homeostatic turnover. Metastatic tumor cells evade anoikis, by mechanisms that are only partly characterized. In particular, the epithelial–mesenchymal transition (EMT) in a subset of invasive tumor cells confers anoikis-resistance. In some cases, EMT up-regulates the cancer stem cell marker CD44S and the enzyme hyaluronic acid synthase-2 (HAS2). CD44S is the major receptor for hyaluronan in the extracellular matrix. Herein, we demonstrate that CD44S, unlike the CD44E isoform expressed in normal epithelial cells, contributes to the protection against anoikis. This protection requires the interaction of CD44S with hyaluronan (HA). CD44S–HA interaction is proposed to play an important role in tumor metastasis through enhanced cell survival under detached conditions. PMID:25937513

  18. CD44 Is a Negative Cell Surface Marker for Pluripotent Stem Cell Identification during Human Fibroblast Reprogramming

    PubMed Central

    Vaz, Candida; Tanavde, Vivek; Lakshmipathy, Uma

    2014-01-01

    Induced pluripotent stem cells (iPSCs) are promising tools for disease research and cell therapy. One of the critical steps in establishing iPSC lines is the early identification of fully reprogrammed colonies among unreprogrammed fibroblasts and partially reprogrammed intermediates. Currently, colony morphology and pluripotent stem cell surface markers are used to identify iPSC colonies. Through additional clonal characterization, we show that these tools fail to distinguish partially reprogrammed intermediates from fully reprogrammed iPSCs. Thus, they can lead to the selection of suboptimal clones for expansion. A subsequent global transcriptome analysis revealed that the cell adhesion protein CD44 is a marker that differentiates between partially and fully reprogrammed cells. Immunohistochemistry and flow cytometry confirmed that CD44 is highly expressed in the human parental fibroblasts used for the reprogramming experiments. It is gradually lost throughout the reprogramming process and is absent in fully established iPSCs. When used in conjunction with pluripotent cell markers, CD44 staining results in the clear identification of fully reprogrammed cells. This combination of positive and negative surface markers allows for easier and more accurate iPSC detection and selection, thus reducing the effort spent on suboptimal iPSC clones. PMID:24416407

  19. Lung cancer tumorigenicity and drug resistance are maintained through ALDH(hi)CD44(hi) tumor initiating cells.

    PubMed

    Liu, Jing; Xiao, Zhijie; Wong, Sunny Kit-Man; Tin, Vicky Pui-Chi; Ho, Ka-Yan; Wang, Junwen; Sham, Mai-Har; Wong, Maria Pik

    2013-10-01

    Limited improvement in long term survival of lung cancer patients has been achieved by conventional chemotherapy or targeted therapy. To explore the potentials of tumor initiating cells (TIC)-directed therapy, it is essential to identify the cell targets and understand their maintenance mechanisms. We have analyzed the performance of ALDH/CD44 co-expression as TIC markers and treatment targets of lung cancer using well-validated in vitro and in vivo analyses in multiple established and patient-derived lung cancer cells. The ALDH(hi)CD44(hi) subset showed the highest enhancement of stem cell phenotypic properties compared to ALDH(hi)CD44(lo), ALDH(lo)CD44(hi), ALDH(lo)CD44(lo) cells and unsorted controls. They showed higher invasion capacities, pluripotency genes and epithelial-mesenchymal transition transcription factors expression, lower intercellular adhesion protein expression and higher G2/M phase cell cycle fraction. In immunosuppressed mice, the ALDH(hi)CD44(hi)xenografts showed the highest tumor induction frequency, serial transplantability, shortest latency, largest volume and highest growth rates. Inhibition of sonic Hedgehog and Notch developmental pathways reduced ALDH+CD44+ compartment. Chemotherapy and targeted therapy resulted in higher AALDH(hi)CD44(hi) subset viability and ALDH(lo)CD44(lo) subset apoptosis fraction. ALDH inhibition and CD44 knockdown led to reduced stemness gene expression and sensitization to drug treatment. In accordance, clinical lung cancers containing a higher abundance of ALDH and CD44-coexpressing cells was associated with lower recurrence-free survival. Together, results suggested theALDH(hi)CD44(hi)compartment was the cellular mediator of tumorigenicity and drug resistance. Further investigation of the regulatory mechanisms underlying ALDH(hi)CD44(hi)TIC maintenance would be beneficial for the development of long term lung cancer control.

  20. Inhibitory Phenotype of HBV-Specific CD4+ T-Cells Is Characterized by High PD-1 Expression but Absent Coregulation of Multiple Inhibitory Molecules

    PubMed Central

    Kurktschiev, Peter; Schraut, Winfried; Zachoval, Reinhart; Wendtner, Clemens; Wächtler, Martin; Spannagl, Michael; Denk, Gerald; Ulsenheimer, Axel; Bengsch, Bertram; Pircher, Hanspeter; Diepolder, Helmut M.; Grüner, Norbert H.; Jung, Maria-Christina

    2014-01-01

    Background T-cell exhaustion seems to play a critical role in CD8+ T-cell dysfunction during chronic viral infections. However, up to now little is known about the mechanisms underlying CD4+ T-cell dysfunction during chronic hepatitis B virus (CHB) infection and the role of inhibitory molecules such as programmed death 1 (PD-1) for CD4+ T-cell failure. Methods The expression of multiple inhibitory molecules such as PD-1, CTLA-4, TIM-3, CD244, KLRG1 and markers defining the grade of T-cell differentiation as CCR7, CD45RA, CD57 and CD127 were analyzed on virus-specific CD4+ T-cells from peripheral blood using a newly established DRB1*01-restricted MHC class II Tetramer. Effects of in vitro PD-L1/2 blockade were defined by investigating changes in CD4+ T-cell proliferation and cytokine production. Results CD4+ T-cell responses during chronic HBV infection was characterized by reduced Tetramer+CD4+ T-cell frequencies, effector memory phenotype, sustained PD-1 but low levels of CTLA-4, TIM-3, KLRG1 and CD244 expression. PD-1 blockade revealed individualized patterns of in vitro responsiveness with partly increased IFN-γ, IL-2 and TNF-α secretion as well as enhanced CD4+ T-cell expansion almost in treated patients with viral control. Conclusion HBV-specific CD4+ T-cells are reliably detectable during different courses of HBV infection by MHC class II Tetramer technology. CD4+ T-cell dysfunction during chronic HBV is basically linked to strong PD-1 upregulation but absent coregulation of multiple inhibitory receptors. PD-L1/2 neutralization partly leads to enhanced CD4+ T-cell functionality with heterogeneous patterns of CD4+ T-cell rejunivation. PMID:25144233

  1. Activated ERK1/2 increases CD44 in glomerular parietal epithelial cells leading to matrix expansion

    PubMed Central

    Roeder, Sebastian S.; Barnes, Taylor J.; Lee, Jonathan S.; Kato, India; Eng, Diana G.; Kaverina, Natalya V.; Sunseri, Maria W.; Daniel, Christoph; Amann, Kerstin; Pippin, Jeffrey W.; Shankland, Stuart J.

    2017-01-01

    The glycoprotein CD44 is barely detected in normal mouse and human glomeruli, but is increased in glomerular parietal epithelial cells following podocyte injury in focal segmental glomerulosclerosis (FSGS). To determine the biological role and regulation of CD44 in these cells, we employed an in vivo and in vitro approach. Experimental FSGS was induced in CD44 knockout and wildtype mice with a cytotoxic podocyte antibody. Albuminuria, focal and global glomerulosclerosis (periodic acid-Schiff stain) and collagen IV staining were lower in CD44 knockout compared with wild type mice with FSGS. Parietal epithelial cells had lower migration from Bowman’s capsule to the glomerular tuft in CD44 knockout mice with disease compared with wild type mice. In cultured murine parietal epithelial cells, overexpressing CD44 with a retroviral vector encoding CD44 was accompanied by significantly increased collagen IV expression and parietal epithelial cells migration. Because our results showed de novo co-staining for activated ERK1/2 (pERK) in parietal epithelial cells in experimental FSGS, and also in biopsies from patients with FSGS, two in vitro strategies were employed to prove that pERK regulated CD44 levels. First, mouse parietal epithelial cells were infected with a retroviral vector for the upstream kinase MEK-DD to increase pERK, which was accompanied by increased CD44 levels. Second, in CD44 overexpressing parietal epithelial cells, decreasing pERK with U0126 was accompanied by reduced CD44. Finally, parietal epithelial cell migration was higher in cells with increased and reduced in cells with decreased pERK. Thus, pERK is a regulator of CD44 expression and increased CD44 expression leads to a pro-sclerotic and migratory parietal epithelial cells phenotype. PMID:27998643

  2. CD44 deficiency enhanced Streptococcus equi ssp. zooepidemicus dissemination and inflammation response in a mouse model.

    PubMed

    Fu, Qiang; Xiao, Pingping; Chen, Yaosheng; Wei, Zigong; Liu, Xiaohong

    2017-12-01

    Streptococcus equi ssp. zooepidemicus (S. zooepidemicus) is responsible for peritonitis, septicemia, meningitis, arthritis and several other serious diseases in various species. Recent studies have demonstrated that CD44 is implicated in the process of host defense against pathogenic microorganisms. In the present study, the role of CD44 in the host response to S. zooepidemicus infection was investigated in a mouse model. Upon intraperitoneal infection with S. zooepidemicus, the expression of CD44 on the peritoneal exudate cells from wild-type (WT) mice was increased. CD44 deficiency accelerated mortality, which was accompanied by increased peritoneal bacterial growth and dissemination to distant body sites. CD44 knock-out (KO) mice showed enhanced early inflammatory cell recruitment into the peritoneal fluid on S. zooepidemicus infection. In line with this, the expression of proinflammatory cytokines, chemokines in peritoneal exudate cells and peritoneal macrophages of CD44 KO mice were increased compared with those of WT mice. In addition, CD44 deficiency was associated with reduced expression of A20, a negative regulator in TLR signaling. Overall, the present study suggests that CD44 plays a protective role in antibacterial defense against S. zooepidemicus in mice. Copyright © 2017. Published by Elsevier Ltd.

  3. Differential expression of CD44 and CD24 markers discriminates the epitheliod from the fibroblastoid subset in a sarcomatoid renal carcinoma cell line: evidence suggesting the existence of cancer stem cells in both subsets as studied with sorted cells.

    PubMed

    Hsieh, Chin-Hsuan; Hsiung, Shih-Chieh; Yeh, Chi-Tai; Yen, Chih-Feng; Chou, Yah-Huei Wu; Lei, Wei-Yi; Pang, See-Tong; Chuang, Cheng-Keng; Liao, Shuen-Kuei

    2017-02-28

    Epithelioid and fibroblastoid subsets coexist in the human sarcomatoid renal cell carcinoma (sRCC) cell line, RCC52, according to previous clonal studies. Herein, using monoclonal antibodies to CD44 and CD24 markers, we identified and isolated these two populations, and showed that CD44bright/CD24dim and CD44bright/CD24bright phenotypes correspond to epithelioid and fibroblastoid subsets, respectively. Both sorted subsets displayed different levels of tumorigenicity in xenotransplantation, indicating that each harbored its own cancer stem cells (CSCs). The CD44bright/CD24bright subset, associated with higher expression of MMP-7, -8 and TIMP-1 transcripts, showed greater migratory/invasive potential than the CD44bright/CD24dim subset, which was associated with higher expression of MMP-2, -9 and TIMP-2 transcripts. Both subsets differentially expressed stemness gene products c-Myc, Oct4A, Notch1, Notch2 and Notch3, and the RCC stem cell marker, CD105 in 4-5% of RCC52 cells. These results suggest the presence of CSCs in both sRCC subsets for the first time and should therefore be considered potential therapeutic targets for this aggressive malignancy.

  4. CD147, CD44, and the epidermal growth factor receptor (EGFR) signaling pathway cooperate to regulate breast epithelial cell invasiveness.

    PubMed

    Grass, G Daniel; Tolliver, Lauren B; Bratoeva, Momka; Toole, Bryan P

    2013-09-06

    The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777-788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer.

  5. CD147, CD44, and the Epidermal Growth Factor Receptor (EGFR) Signaling Pathway Cooperate to Regulate Breast Epithelial Cell Invasiveness*

    PubMed Central

    Grass, G. Daniel; Tolliver, Lauren B.; Bratoeva, Momka; Toole, Bryan P.

    2013-01-01

    The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777–788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer. PMID:23888049

  6. Combined overexpression of cadherin 6, cadherin 11 and cluster of differentiation 44 is associated with lymph node metastasis and poor prognosis in oral squamous cell carcinoma.

    PubMed

    Ma, Chao; Zhao, Ji-Zhi; Lin, Run-Tai; Zhou, Lian; Chen, Yong-Ning; Yu, Li-Jiang; Shi, Tian-Yin; Wang, Mu; Liu, Man-Man; Liu, Yao-Ran; Zhang, Tao

    2018-06-01

    Oral squamous cell carcinoma (OSCC) is a highly invasive lesion that frequently metastasizes to the cervical lymph nodes and is associated with a poor prognosis. Several adhesion factors, including cadherin 6 (CDH6), cadherin 11 (CDH11) and cluster of differentiation 44 (CD44), have been reported to be involved in the invasion and metastasis of multiple types of cancer. Therefore, the aim of the present study was to determine the expression of CDH6, CDH11 and CD44 in tumor tissues from patients with OSCC, and whether this was associated with the metastasis and survival of OSCC. The mRNA expression of the human tumor metastasis-related cytokines was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in OSCC tumors with or without lymph node metastasis (n=10/group). The expression of CDH6, CDH11 and CD44 in 101 OSCC and 10 normal oral mucosa samples was examined by immunohistochemical staining. The association between overall and disease-specific survival times of patients with OSCC and the expression of these three proteins was evaluated using Kaplan-Meier curves and the log-rank test. RT-qPCR results indicated that the mRNA expression of CDH6, CDH11 and CD44 was increased in OSCC patients with lymph node metastasis (2.93-, 2.01- and 1.92-fold; P<0.05). Overexpression of CDH6, CDH11 and CD44 was observed in 31/35 (89%), 25/35 (71%) and 31/35 (89%) patients, respectively. The number of OSCC patients with lymph node metastasis exhibiting CDH6, CDH11 and CD44 overexpression was significantly higher than the number of patients without lymph node metastasis exhibiting overexpression of these proteins (P=0.017, P=0.038 and P=0.007, respectively). OSCC patients with high co-expression of CDH6, CDH11 and CD44 exhibited lower disease-specific survival times (P=0.047; χ 2 =3.933) when compared with OSCC patients with low co-expression of these adhesion factors. CDH6, CDH11 and CD44 serve important roles in OSCC metastasis and the combined use

  7. Interaction between hyaluronan and CD44 in the development of dimethylnitrosamine-induced liver cirrhosis.

    PubMed

    Satoh, T; Ichida, T; Matsuda, Y; Sugiyama, M; Yonekura, K; Ishikawa, T; Asakura, H

    2000-04-01

    A significant increase in serum hyaluronan (HA) levels has been reported in patients with liver cirrhosis. This mechanism is not yet clear, and receptors for HA have not been characterized. In this study, we examined the expression of both HA and its receptors, CD44 and intercellular adhesion molecule-1 (ICAM-1), in dimethylnitrosamine-induced liver cirrhosis. Using biotinylated HA binding protein, HA was detected in the area of periportal fibrosis and around the sinusoidal wall where hepatic fibrosis was developing. Electron microscopy revealed that HA was localized on Ito cells and sinusoidal endothelial cells (SEC). Conversely, CD44, which was only expressed weakly in normal liver, was present in large amounts in cirrhotic liver. The distribution pattern of CD44 was similar to that of HA, however, CD44 was mainly localized on the infiltrating lymphocytes and Kupffer cells. Moreover, CD44 was detected on part of factor VIII-positive SEC. Intercellular adhesion molecule-1, another receptor for HA, was detected on the surface of hepatocytes and around the sinusoidal wall in cirrhotic liver, but its distribution was not accompanied by expression of HA. With respect to CD44 isoforms, the standard form m-RNA predominated in both normal and cirrhotic liver. Variant pMeta-1 mRNA was detected at low levels. An interaction between HA and CD44 may play a role in the recruitment of numerous infiltrating cells and HA accumulation in hepatic sinusoids. Together with phenotypic changes in the SEC, these results may lead to a disturbance in the elimination of HA during the progression of liver cirrhosis.

  8. Exosomes Promote Ovarian Cancer Cell Invasion through Transfer of CD44 to Peritoneal Mesothelial Cells.

    PubMed

    Nakamura, Koji; Sawada, Kenjiro; Kinose, Yasuto; Yoshimura, Akihiko; Toda, Aska; Nakatsuka, Erika; Hashimoto, Kae; Mabuchi, Seiji; Morishige, Ken-Ichirou; Kurachi, Hirohisa; Lengyel, Ernst; Kimura, Tadashi

    2017-01-01

    Epithelial ovarian cancer (EOC) cells metastasize within the peritoneal cavity and directly encounter human peritoneal mesothelial cells (HPMC) as the initial step of metastasis. The contact between ovarian cancer cells and the single layer of mesothelial cells involves direct communications that modulate cancer progression but the mechanisms are unclear. One candidate mediating cell-cell communications is exosomes, 30-100 nm membrane vesicles of endocytic origin, through the cell-cell transfer of proteins, mRNAs, or microRNAs. Therefore, the goal was to mechanistically characterize how EOC-derived exosomes modulate metastasis. Exosomes from ovarian cancer cells were fluorescently labeled and cocultured with HPMCs which internalized the exosomes. Upon exosome uptake, HPMCs underwent a change in cellular morphology to a mesenchymal, spindle phenotype. CD44, a cell surface glycoprotein, was found to be enriched in the cancer cell-derived exosomes, transferred, and internalized to HPMCs, leading to high levels of CD44 in HPMCs. This increased CD44 expression in HPMCs promoted cancer invasion by inducing the HPMCs to secrete MMP9 and by cleaning the mesothelial barrier for improved cancer cell invasion. When CD44 expression was knocked down in cancer cells, exosomes had fewer effects on HPMCs. The inhibition of exosome release from cancer cells blocked CD44 internalization in HPMCs and suppressed ovarian cancer invasion. In ovarian cancer omental metastasis, positive CD44 expression was observed in those mesothelial cells that directly interacted with cancer cells, whereas CD44 expression was negative in the mesothelial cells remote from the invading edge. This study indicates that ovarian cancer-derived exosomes transfer CD44 to HPMCs, facilitating cancer invasion. Mechanistic insight from the current study suggests that therapeutic targeting of exosomes may be beneficial in treating ovarian cancer. Mol Cancer Res; 15(1); 78-92. ©2016 AACR. ©2016 American

  9. A phase IIa study of HA-irinotecan, formulation of hyaluronic acid and irinotecan targeting CD44 in extensive-stage small cell lung cancer.

    PubMed

    Alamgeer, Muhammad; Neil Watkins, D; Banakh, Ilia; Kumar, Beena; Gough, Daniel J; Markman, Ben; Ganju, Vinod

    2018-04-01

    Preclinical studies in small cell lung cancer (SCLC) have shown that hyaluronic acid (HA) can be effectively used to deliver chemotherapy and selectively decrease CD44 expressing (stem cell-like) tumour cells. The current study aimed to replicate these findings and obtain data on safety and activity of HA-irinotecan (HA-IR). Eligible patients with extensive stage SCLC were consented. A safety cohort (n = 5) was treated with HA-IR and Carboplatin (C). Subsequently, the patients were randomised 1:1 to receive experimental (HA-IR + C) or standard (IR + C) treatment, to a maximum of 6 cycles. The second line patients were added to the study and treated with open label HA-IR + C. Tumour response was measured after every 2 cycles. Baseline tumour specimens were stained for CD44s and CD44v6 expression. Circulating tumour cells (CTCs) were enumerated before each treatment cycle. Out of 39 patients screened, 34 were evaluable for the study. The median age was 66 (range 39-83). The overall response rates were 69% and 75% for experimental and standard arms respectively. Median progression free survival was 42 and 28 weeks, respectively (p = 0.892). The treatments were well tolerated. The incidence of grade III/IV diarrhea was more common in the standard arm, while anaemia was more common in the experimental arm. IHC analysis suggested that the patients with CD44s positive tumours may gain survival benefit from HA-IR. HA-IR is well tolerated and active in ES-SCLC. The effect of HA-IR on CD44s + cancer stem-like cells provide an early hint towards a potential novel target.

  10. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong; Zhou, Xianguang; Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing; Wang, Jiandong; Zhang, Longjiang; Teng, Zhaogang; Lu, Guangming

    2015-03-01

    Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer.

  11. Activation of p44/42 in Human Natural Killer Cells Decreases Cell-surface Protein Expression: Relationship to Tributyltin-induced alterations of protein expression

    PubMed Central

    Dudimah, Fred D.; Abraha, Abraham; Wang, Xiaofei; Whalen, Margaret M.

    2010-01-01

    Tributyltin (TBT) activates the mitogen activated protein kinase (MAPK), p44/42 in human natural killer (NK) cells. TBT also reduces NK cytotoxic function and decreases the expression of several NK-cell proteins. To understand the role that p44/42 activation plays in TBT-induced loss of NK cell function, we have investigated how selective activation of p44/42 by phorbol 12-myristate 13-acetate (PMA) affects NK cells. Previously we showed that PMA caused losses of lytic function similar to those seen with TBT exposures. Here we examined activation of p44/42 in the regulation of NK-cell protein expression and how this regulation may explain the protein expression changes seen with TBT exposures. NK cells exposed to PMA were examined for levels of cell-surface proteins, granzyme mRNA, and perforin mRNA expression. The expression of CD11a, CD16, CD18, and CD56 were reduced, perforin mRNA levels were unchanged and granzyme mRNA levels were increased. To verify that activation of p44/42 was responsible for the alterations seen in CD11a, CD16, CD18, and CD56 with PMA, NK cells were treated with the p44/42 pathway inhibitor (PD98059) prior to PMA exposures. In the presence of PD98059, PMA caused no decreases in the expression of the cell-surface proteins. Results of these studies indicate that the activation of p44/42 may lead to the loss of NK cell cytotoxic function by decreasing the expression of CD11a, CD16, CD18, and CD56. Further, activation of p44/42 appears to be at least in part responsible for the TBT-induced decreases in expression of CD16, CD18, and CD56. PMID:20883105

  12. Comparison of EpCAMhighCD44+ cancer stem cells with EpCAMhighCD44- tumor cells in colon cancer by single-cell sequencing.

    PubMed

    Liu, Mingshan; Di, Jiabo; Liu, Yang; Su, Zhe; Jiang, Beihai; Wang, Zaozao; Su, Xiangqian

    2018-03-26

    Cancer stem cells (CSCs) are considered to be responsible for tumorigenesis and cancer relapse. EpCAM high CD44 + tumor cells are putative colorectal CSCs that express high levels of stem cell genes, while the EpCAM high CD44 - population mostly contains differentiated tumor cells (DTCs). This study aims to determine whether single CSC (EpCAM high CD44 + ) and DTC (EpCAM high CD44 - ) can be distinguished in terms of somatic copy number alterations (SCNAs). We applied fluorescence-activated cell sorting to isolate the CD45 - EpCAM high CD44 + and CD45 - EpCAM high CD44 - populations from two primary colon tumors, on which low-coverage single-cell whole-genome sequencing (WGS) was then performed ∼0.1x depth. We compared the SCNAs of the CSCs and DTCs at single-cell resolution. In total, 47 qualified single cells of the two populations underwent WGS. The single-cell SCNA profiles showed that there were obvious SCNAs in both the CSCs and DTCs of each patient, and each patient had a specific copy number alteration pattern. Hierarchical clustering and correlation analysis both showed that the SCNA profiles of CSCs and DTCs from the same patient had similar SCNA pattern, while there were regional differences in the CSCs and DTCs in certain patient. SCNAs of CSCs in the same patient were highly reproducible. Our data suggest that major SCNAs occurred at an early stage and were inherited steadily. The similarity of ubiquitous SCNAs between the CSCs and DTCs might have arisen from lineage differentiation. CSCs from the same patient had reproducible SCNA profiles, indicating that gain or loss in certain chromosome is required for colon cancer development.

  13. Cooperativity of CD44 and CD49d in leukemia cell homing, migration, and survival offers a means for therapeutic attack.

    PubMed

    Singh, Vibuthi; Erb, Ulrike; Zöller, Margot

    2013-11-15

    A CD44 blockade drives leukemic cells into differentiation and apoptosis by dislodging from the osteogenic niche. Because anti-CD49d also supports hematopoietic stem cell mobilization, we sought to determine the therapeutic efficacy of a joint CD49d/CD44 blockade. To unravel the underlying mechanism, the CD49d(-) EL4 lymphoma was transfected with CD49d or point-mutated CD49d, prohibiting phosphorylation and FAK binding; additionally, a CD44(-) Jurkat subline was transfected with murine CD44, CD44 with a point mutation in the ezrin binding site, or with cytoplasmic tail-truncated CD44. Parental and transfected EL4 and Jurkat cells were evaluated for adhesion, migration, and apoptosis susceptibility in vitro and in vivo. Ligand-binding and Ab-blocking studies revealed CD44-CD49d cooperation in vitro and in vivo in adhesion, migration, and apoptosis resistance. The cooperation depends on ligand-induced proximity such that both CD44 and CD49d get access to src, FAK, and paxillin and via lck to the MAPK pathway, with the latter also supporting antiapoptotic molecule liberation. Accordingly, synergisms were only seen in leukemia cells expressing wild-type CD44 and CD49d. Anti-CD44 together with anti-CD49d efficiently dislodged EL4-CD49d/Jurkat-CD44 in bone marrow and spleen. Dislodging was accompanied by increased apoptosis susceptibility that strengthened low-dose chemotherapy, the combined treatment most strongly interfering with metastatic settlement and being partly curative. Ab treatment also promoted NK and Ab-dependent cellular cytotoxicity activation, which affected leukemia cells independent of CD44/CD49d tail mutations. Thus, mostly owing to a blockade of joint signaling, anti-CD44 and anti-CD49d hamper leukemic cell settlement and break apoptosis resistance, which strongly supports low-dose chemotherapy.

  14. CD44 gene vaccination for insulin-dependent diabetes mellitus in non-obese diabetic mice.

    PubMed

    Weiss, Lola; Botero-Anug, Ana Maria; Hand, Carla; Slavin, Shimon; Naor, David

    2008-01-01

    Standard CD44 and its alternatively spliced variants were found to be associated with the metastatic potential of tumor cells and with cell migration of autoimmune inflammatory cells, including cells involved in experimental insulin-dependent diabetes mellitus. To investigate whether induction of anti-CD44 immune reactivity, through cDNA vaccination, could attenuate IDDM in a transfer model of NOD mice. Our vaccination technique involved the insertion of CD44s or CD44v cDNA into a silicone tube filled with a 2.5 cm long segment of hydroxylated-polyvinyl acetate wound dressing sponge (forming a virtual lymph node) which was implanted under the skin of male NOD recipients reconstituted with diabetogenic spleen cells of female NOD donors. The VLN were implanted 20 days before and 3 days after cell transfer. In contrast to control groups of recipient mice, recipients vaccinated with VLN loaded with CD44v or CD44s cDNAs developed resistance to IDDM almost to the same extent. Our results suggest that the gene vaccination effect was mediated by anti-CD44 antibody rather than by cellular immunity. Histopathological examinations revealed a significant protection of pancreatic islets in the DNA-vaccinated recipients, whereas the islets of control recipients of diabetogenic cells were almost totally destroyed. These findings may open new opportunities for IDDM therapy in the future.

  15. The High and Low Molecular Weight Forms of Hyaluronan Have Distinct Effects on CD44 Clustering*

    PubMed Central

    Yang, Cuixia; Cao, Manlin; Liu, Hua; He, Yiqing; Xu, Jing; Du, Yan; Liu, Yiwen; Wang, Wenjuan; Cui, Lian; Hu, Jiajie; Gao, Feng

    2012-01-01

    CD44 is a major cell surface receptor for the glycosaminoglycan hyaluronan (HA). Native high molecular weight hyaluronan (nHA) and oligosaccharides of hyaluronan (oHA) provoke distinct biological effects upon binding to CD44. Despite the importance of such interactions, however, the feature of binding with CD44 at the cell surface and the molecular basis for functional distinction between different sizes of HA is still unclear. In this study we investigated the effects of high and low molecular weight hyaluronan on CD44 clustering. For the first time, we provided direct evidence for a strong relationship between HA size and CD44 clustering in vivo. In CD44-transfected COS-7 cells, we showed that exogenous nHA stimulated CD44 clustering, which was disrupted by oHA. Moreover, naturally expressed CD44 was distributed into clusters due to abundantly expressed nHA in HK-2 cells (human renal proximal tubule cells) and BT549 cells (human breast cancer cell line) without exogenous stimulation. Our results suggest that native HA binding to CD44 selectively induces CD44 clustering, which could be inhibited by oHA. Finally, we demonstrated that HA regulates cell adhesion in a manner specifically dependent on its size. oHA promoted cell adhesion while nHA showed no effects. Our results might elucidate a molecular- and/or cellular-based mechanism for the diverse biological activities of nHA and oHA. PMID:23118219

  16. Transforming growth factor-β-mediated CD44/STAT3 signaling contributes to the development of atrial fibrosis and fibrillation.

    PubMed

    Chang, Shang-Hung; Yeh, Yung-Hsin; Lee, Jia-Lin; Hsu, Yu-Juei; Kuo, Chi-Tai; Chen, Wei-Jan

    2017-09-04

    Atrial fibrillation (AF) is associated with atrial fibrosis. Inhibition of atrial fibrosis might be a plausible approach for AF prevention and therapy. This study is designed to evaluate the potential role of CD44, a membrane receptor known to regulate fibrosis, and its related signaling in the pathogenesis of atrial fibrosis and AF. Treatment of cultured rat atrial fibroblasts with transforming growth factor-β (TGF-β, a key mediator of atrial fibrosis) led to a higher expression of hyaluronan (HA), CD44, STAT3, and collagen (a principal marker of fibrosis) than that of ventricular fibroblasts. In vivo, TGF-β transgenic mice and AF patients exhibited a greater expression of HA, CD44, STAT3, and collagen in their atria than wild-type mice and sinus rhythm subjects, respectively. Treating TGF-β transgenic mice with an anti-CD44 blocking antibody resulted in a lower expression of STAT3 and collagen in their atria than those with control IgG antibody. Programmed stimulation triggered less AF episodes in TGF-β transgenic mice treated with anti-CD44 blocking antibody than in those with control IgG. Blocking CD44 signaling with anti-CD44 antibody and mutated CD44 plasmids attenuated TGF-β-induced STAT3 activation and collagen expression in cultured atrial fibroblasts. Deletion and mutational analysis of the collagen promoter along with chromatin immunoprecipitation demonstrated that STAT3 served as a vital transcription factor in collagen expression. TGF-β-mediated HA/CD44/STAT3 pathway plays a crucial role in the development of atrial fibrosis and AF. Blocking CD44-dependent signaling may be a feasible way for AF management.

  17. СD44+/CD24- markers of cancer stem cells in patients with breast cancer of different molecular subtypes.

    PubMed

    Chekhun, S V; Zadvorny, T V; Tymovska, Yu O; Anikusko, M F; Novak, O E; Polishchuk, L Z

    2015-03-01

    To determine frequency of tumors with immunohistochemical markers of cancer stem cells (CSC) CD44+/CD24- in patients with breast cancer (BC) of different molecular subtype and to evaluate their prognostic value. Surgical material of 132 patients with BC stage I-II, age from 23 to 75 years, mean age - 50.2 ± 3.1 years was studied. Clinical, immunohistochemical (expression CD44+/CD24-), morphological, statistical. BC is characterized by heterogeneity of molecular subtypes and expression of markers (CD44+/CD24-). Immunohistochemical study of expression of CSC markers in surgical material has detected their expression in 34 (25.4%) patients with BC of different molecular subtypes. The highest frequency of cells with expression of CSC marker was observed in patients with basal molecular subtype (44.8% patients). Most of BC patients with phenotype CD44+/CD24 had stage I of tumor process (34.3%). Statistical processing of data has showen that Yule colligation coefficient equaled 0.28 (р > 0.05) that argues poor correlation between stage of tumor process and number of tumors with positive expression of CSC markers. Statistical processing of data has showen high correlation between presence of cells with expression of CSC markers and metastases of BC in regional lymph nodes (Yule colligation coefficient equals 0.943; р < 0.5). Difference in overall survival of patients with BC of basal molecular subtype depending on expression of CSC CD44+/CD24- markers was detected. Survival of patients with basal BC was reliably higher at lack in tumors of cells with CSC markers CD44+/CD24- and, correspondingly, lower at presence of such cells (р < 0.05). In patients with BC of luminal (A and B), HER-2-positive subtypes, significant change in survival of patients depending on expression of CSC markers was not determined (р > 0.05). Significance of tumor cells with markers CD44+/CD24- within the limits of molecular subtype of BC may be additional criterion for advanced biological

  18. Self-renewal and circulating capacities of metastatic hepatocarcinoma cells required for collaboration between TM4SF5 and CD44

    PubMed Central

    Lee, Doohyung; Lee, Jung Weon

    2015-01-01

    Tumor metastasis involves circulating and tumor-initiating capacities of metastatic cancer cells. Hepatic TM4SF5 promotes EMT for malignant growth and migration. Hepatocellular carcinoma (HCC) biomarkers remain unexplored for metastatic potential throughout metastasis. Here, novel TM4SF5/CD44 interaction-mediated self-renewal and circulating tumor cell (CTC) capacities were mechanistically explored. TM4SF5-dependent sphere growth was correlated with CD133+, CD24-, ALDH activity, and a physical association between CD44 and TM4SF5. The TM4SF5/CD44 interaction activated c-Src/STAT3/ Twist1/ B mi1 signaling for spheroid formation, while disturbing the interaction, expression, or activity of any component in this signaling pathway inhibited spheroid formation. In serial xenografts of less than 5,000 cells/injection, TM4SF5-positive tumors exhibited locally-increased CD44 expression, suggesting tumor cell differentiation. TM4SF5-positive cells were identified circulating in blood 4 to 6 weeks after orthotopic liver-injection. Anti-TM4SF reagents blocked their metastasis to distal intestinal organs. Altogether, our results provide evidence that TM4SF5 promotes self-renewal and CTC properties supported by CD133+/TM4SF5+/CD44+(TM4SF5-bound)/ALDH+/ CD24- markers during HCC metastasis. [BMB Reports 2015; 48(3): 127-128] PMID:25772760

  19. Hyaluronan functionalizing QDs as turn-on fluorescent probe for targeted recognition CD44 receptor

    NASA Astrophysics Data System (ADS)

    Zhou, Shang; Huo, Danqun; Hou, Changjun; Yang, Mei; Fa, Huanbao

    2017-09-01

    The recognition of tumor markers in living cancer cells has attracted increasing interest. In the present study, the turn-on fluorescence probe was designed based on the fluorescence of thiolated chitosan-coated CdTe QDs (CdTe/TCS QDs) quenched by hyaluronan, which could provide the low background signal for sensitive cellular imaging. This system is expected to offer specific recognition of CD44 receptor over other substances owing to the specific affinity of hyaluronan and CD44 receptor ( 8-9 kcal/mol). The probe is stable in aqueous and has little toxicity to living cells; thus, it can be utilized for targeted cancer cell imaging. The living lung cancer cell imaging experiments further demonstrate its value in recognizing cell-surface CD44 receptor with turn-on mode. In addition, the probe can be used to recognize and differentiate the subtypes of lung cancer cells based on the difference of CD44 expression on the surface of lung cancer cells. And, the western blot test further confirmed that the expression level of the CD44 receptor in lung cancer cells is different. Therefore, this probe may be potentially applied in recognizing lung cancer cells with higher contrast and sensitivity and provide new tools for cancer prognosis and therapy. [Figure not available: see fulltext.

  20. Relationship between p53 dysfunction, CD38 expression, and IgV(H) mutation in chronic lymphocytic leukemia.

    PubMed

    Lin, Ke; Sherrington, Paul D; Dennis, Michael; Matrai, Zoltan; Cawley, John C; Pettitt, Andrew R

    2002-08-15

    Established adverse prognostic factors in chronic lymphocytic leukemia (CLL) include CD38 expression, relative lack of IgV(H) mutation, and defects of the TP53 gene. However, disruption of the p53 pathway can occur through mechanisms other than TP53 mutation, and we have recently developed a simple screening test that detects p53 dysfunction due to mutation of the genes encoding either p53 or ATM, a kinase that regulates p53. The present study was conducted to examine the predictive value of this test and to establish the relationship between p53 dysfunction, CD38 expression, and IgV(H) mutation. CLL cells from 71 patients were examined for IgV(H) mutation, CD38 expression, and p53 dysfunction (detected as an impaired p53/p21 response to ionizing radiation). Survival data obtained from 69 patients were analyzed according to each of these parameters. Relative lack of IgV(H) mutation (less than 5%; n = 45), CD38 positivity (antigen expressed on more than 20% of malignant cells; n = 19), and p53 dysfunction (n = 19) were independently confirmed as adverse prognostic factors. Intriguingly, all p53-dysfunctional patients and all but one of the CD38(+) patients had less [corrected] than 5% IgV(H) mutation. Moreover, patients with p53 dysfunction and/or CD38 positivity (n = 31) accounted for the short survival of the less mutated group. These findings indicate that the poor outcome associated with having less than 5% IgV(H) mutation may be due to the overrepresentation of high-risk patients with p53 dysfunction and/or CD38 positivity within this group, and that CD38(-) patients with functionally intact p53 may have a prolonged survival regardless of the extent of IgV(H) mutation.

  1. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells

    NASA Astrophysics Data System (ADS)

    Aires, Antonio; Ocampo, Sandra M.; Simões, Bruno M.; Josefa Rodríguez, María; Cadenas, Jael F.; Couleaud, Pierre; Spence, Katherine; Latorre, Alfonso; Miranda, Rodolfo; Somoza, Álvaro; Clarke, Robert B.; Carrascosa, José L.; Cortajarena, Aitziber L.

    2016-02-01

    Nanomedicine nowadays offers novel solutions in cancer therapy and diagnosis by introducing multimodal treatments and imaging tools in one single formulation. Nanoparticles acting as nanocarriers change the solubility, biodistribution and efficiency of therapeutic molecules, reducing their side effects. In order to successfully apply these novel therapeutic approaches, efforts are focused on the biological functionalization of the nanoparticles to improve the selectivity towards cancer cells. In this work, we present the synthesis and characterization of novel multifunctionalized iron oxide magnetic nanoparticles (MNPs) with antiCD44 antibody and gemcitabine derivatives, and their application for the selective treatment of CD44-positive cancer cells. The lymphocyte homing receptor CD44 is overexpressed in a large variety of cancer cells, but also in cancer stem cells (CSCs) and circulating tumor cells (CTCs). Therefore, targeting CD44-overexpressing cells is a challenging and promising anticancer strategy. Firstly, we demonstrate the targeting of antiCD44 functionalized MNPs to different CD44-positive cancer cell lines using a CD44-negative non-tumorigenic cell line as a control, and verify the specificity by ultrastructural characterization and downregulation of CD44 expression. Finally, we show the selective drug delivery potential of the MNPs by the killing of CD44-positive cancer cells using a CD44-negative non-tumorigenic cell line as a control. In conclusion, the proposed multifunctionalized MNPs represent an excellent biocompatible nanoplatform for selective CD44-positive cancer therapy in vitro.

  2. Expression of CD44 3'-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis.

    PubMed

    Jeyapalan, Zina; Deng, Zhaoqun; Shatseva, Tatiana; Fang, Ling; He, Chengyan; Yang, Burton B

    2011-04-01

    The non-coding 3'-untranslated region (UTR) plays an important role in the regulation of microRNA (miRNA) functions, since it can bind and inactivate multiple miRNAs. Here, we show the 3'-UTR of CD44 is able to antagonize cytoplasmic miRNAs, and result in the increased translation of CD44 and downstream target mRNA, CDC42. A series of cell function assays in the human breast cancer cell line, MT-1, have shown that the CD44 3'-UTR inhibits proliferation, colony formation and tumor growth. Furthermore, it modulated endothelial cell activities, favored angiogenesis, induced tumor cell apoptosis and increased sensitivity to Docetaxel. These results are due to the interaction of the CD44 3'-UTR with multiple miRNAs. Computational algorithms have predicted three miRNAs, miR-216a, miR-330 and miR-608, can bind to both the CD44 and CDC42 3'-UTRs. This was confirmed with luciferase assays, western blotting and immunohistochemical staining and correlated with a series of siRNA assays. Thus, the non-coding CD44 3'-UTR serves as a competitor for miRNA binding and subsequently inactivates miRNA functions, by freeing the target mRNAs from being repressed.

  3. TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24- cancer cells.

    PubMed

    Pal, Debjani; Pertot, Anja; Shirole, Nitin H; Yao, Zhan; Anaparthy, Naishitha; Garvin, Tyler; Cox, Hilary; Chang, Kenneth; Rollins, Fred; Kendall, Jude; Edwards, Leyla; Singh, Vijay A; Stone, Gary C; Schatz, Michael C; Hicks, James; Hannon, Gregory J; Sordella, Raffaella

    2017-01-16

    Many lines of evidence have indicated that both genetic and non-genetic determinants can contribute to intra-tumor heterogeneity and influence cancer outcomes. Among the best described sub-population of cancer cells generated by non-genetic mechanisms are cells characterized by a CD44+/CD24- cell surface marker profile. Here, we report that human CD44+/CD24- cancer cells are genetically highly unstable because of intrinsic defects in their DNA-repair capabilities. In fact, in CD44+/CD24- cells, constitutive activation of the TGF-beta axis was both necessary and sufficient to reduce the expression of genes that are crucial in coordinating DNA damage repair mechanisms. Consequently, we observed that cancer cells that reside in a CD44+/CD24- state are characterized by increased accumulation of DNA copy number alterations, greater genetic diversity and improved adaptability to drug treatment. Together, these data suggest that the transition into a CD44+/CD24- cell state can promote intra-tumor genetic heterogeneity, spur tumor evolution and increase tumor fitness.

  4. Angiotensin II AT1 receptor alters ACE2 activity, eNOS expression and CD44-hyaluronan interaction in rats with hypertension and myocardial fibrosis.

    PubMed

    Bai, Feng; Pang, Xue-Fen; Zhang, Li-Hui; Wang, Ning-Ping; McKallip, Robert J; Garner, Ronald E; Zhao, Zhi-Qing

    2016-05-15

    This study tested the hypothesis that angiotensin II (Ang II) AT1 receptor is involved in development of hypertension and cardiac fibrosis via modifying ACE2 activity, eNOS expression and CD44-hyaluronan interaction. Male Sprague-Dawley rats were subjected to Ang II infusion (500ng/kg/min) using osmotic minipumps up to 4weeks and the AT1 receptor blocker, telmisartan was administered by gastric gavage (10mg/kg/day) during Ang II infusion. Our results indicated that Ang II enhances AT1 receptor, downregulates AT2 receptor, ACE2 activity and eNOS expression, and increases CD44 expression and hyaluronidase activity, an enzyme for hyaluronan degradation. Further analyses revealed that Ang II increases blood pressure and augments vascular/interstitial fibrosis. Comparison of the Ang II group, treatment with telmisartan significantly increased ACE2 activity and eNOS expression in the intracardiac vessels and intermyocardium. These changes occurred in coincidence with decreased blood pressure. Furthermore, the locally-expressed AT1 receptor was downregulated, as evidenced by an increased ratio of the AT2 over AT1 receptor (1.4±0.4% vs. 0.4±0.1% in Ang II group, P<0.05). Along with these modulations, telmisartan inhibited membrane CD44 expression and hyaluronidase activity, decreased populations of macrophages and myofibroblasts, and reduced expression of TGFβ1 and Smads. Collagen I synthesis and tissue fibrosis were attenuated as demonstrated by the less extensive collagen-rich area. These results suggest that the AT1 receptor is involved in development of hypertension and cardiac fibrosis. Selective activating ACE2/eNOS and inhibiting CD44/HA interaction might be considered as the therapeutic targets for attenuating Ang II induced deleterious cardiovascular effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Evaluation of CD44 and CD133 as markers of liver cancer stem cells in Egyptian patients with HCV-induced chronic liver diseases versus hepatocellular carcinoma

    PubMed Central

    Rozeik, Mohammed Saeed; Hammam, Olfat Ali; Ali, Ali Ibrahim; Magdy, Mona; Khalil, Heba; Anas, Amgad; Abo el Hassan, Ahmed Abdelaleem; Rahim, Ali Abdel; El-Shabasy, Ahmed Ibrahim

    2017-01-01

    Background Cancer stem cells (CSCs) play a critical role in tumor development, progression, metastasis and recurrence. Aim To evaluate hepatic expression of CD44 and CD133 in Egyptian patients with HCV-induced chronic liver diseases and hepatocellular carcinomas (HCCs), and to assess its correlation with inflammatory activity scores, stages of fibrosis (in chronic hepatitis with or without cirrhosis) and grades of HCC. Methods This prospective case-control study was conducted on eighty subjects who attended the Tropical Diseases Department, Al-Azhar University Hospital, and in collaboration with Theodor Bilharz Research Institute (2014–2016). They were divided as follows: A) Control healthy group: Ten individuals with serologically negative HCV-Ab and HBsAg, and histopathologically normal liver, B) Seventy patients subdivided into 3 groups; Twenty subjects each, as: HCV-Ab+ non-cirrhotic, HCV-Ab+ cirrhotic and HCC. Necroinflammatory activity and fibrosis in non-neoplastic liver biopsies were scored according to the METAVIR scoring system. CD44 and CD133 immunostaining was evaluated in all groups semi-quantitatively using H score. Statistical analysis was performed by SPSS version 22, using independent-samples t-test. Results Our study showed a significant increase of mean CD44 & CD133 expression values with disease progression among the groups (p<0.05). Their expressions increased significantly with the inflammatory activity scores and stages of fibrosis, reaching the highest values in A3F4 score compared to A1F1 (p<0.05). Moreover, there was a significant increase of their expressions across HCC grades (p<0.05), however with no significant correlation with focal lesions size. Conclusion CSCs clusters exhibiting CD133+ and/or CD44+ profiles were identified in chronic hepatitis, liver cirrhosis and HCC. CD133 and CD44 expressions significantly corresponded to the increased inflammatory activity, fibrosis stages and higher tumor grades. Therefore, evaluation of CD

  6. Characterisation of FAP-1 expression and CD95 mediated apoptosis in the A818-6 pancreatic adenocarcinoma differentiation system.

    PubMed

    Winterhoff, Boris J N; Arlt, Alexander; Duttmann, Angelika; Ungefroren, Hendrik; Schäfer, Heiner; Kalthoff, Holger; Kruse, Marie-Luise

    2012-03-01

    The present study investigated the expression and localisation of FAP-1 (Fas associated phosphatase-1) and CD95 in a 3D differentiation model in comparison to 2D monolayers of the pancreatic adenocarcinoma cell line A818-6. Under non-adherent growth conditions, A818-6 cells differentiate into 3D highly organised polarised epithelial hollow spheres, resembling duct-like structures. A818-6 cells showed a differentiation-dependent FAP-1 localisation. Cells grown as 2D monolayers revealed FAP-1 staining in a juxtanuclear cisternal position, as well as localisation in the nucleus. After differentiation into hollow spheres, FAP-1 was relocated towards the actin cytoskeleton beneath the outer plasma membrane of polarised cells and no further nuclear localisation was observed. CD95 surface staining was found only in a subset of A818-6 monolayer cells, while differentiated hollow spheres appeared to express CD95 in all cells of a given sphere. We rarely observed co-localisation of CD95 and FAP-1 in A818-6 monolayer cells, but strong co-localisation beneath the outer plasma membrane in polarised cells. Analysis of surface expression by flow cytometry revealed that only a subset (36%) of monolayer cells showed CD95 surface expression, and after induction of hollow spheres, CD95 presentation at the outer plasma membrane was reduced to 13% of hollow spheres. Induction of apoptosis by stimulation with agonistic anti-CD95 antibodies, resulted in increased caspase activity in both, monolayer cells and hollow spheres. Knock down of FAP-1 mRNA in A818-6 monolayer cells did not alter resposiveness to CD95 agonistic antibodies. These data suggested that CD95 signal transduction was not affected by FAP-1 expression in A818-6 monolayer cells. In differentiated 3D hollow spheres, we found a polarisation-induced co-localisation of CD95 and FAP-1. A tight control of receptor surface representation and signalling induced apoptosis ensures controlled removal of individual cells instead of a

  7. Comparative study of β-catenin and CD44 immunoexpression in oral lichen planus and squamous cell carcinoma.

    PubMed

    Zargaran, Massoumeh; Baghaei, Fahimeh; Moghimbeigi, Abbas

    2018-04-24

    Dysfunction of adhesion molecules is believed to play an early and important role in developing cancer. Accordingly, this study aims to compare beta-catenin (β-catenin) and CD44 expression in oral lichen planus (OLP) as a condition with malignant potential and oral squamous cell carcinoma (OSCC). β-Catenin and CD44 expression were evaluated in 15 patients with epithelial hyperplasia (group A), 20 OLP (group B), and 20 OSCC (group C) by immunohistochemistry. Quantitative and semi-quantitative evaluations revealed β-catenin, and CD44 membranous expression had significant differences among the three groups. Expression of these markers in the OSCC group decreased significantly compared to that of the OLP. Also, nuclear/cytoplasmic expression of β-catenin was significantly different among the three groups, considering that nuclear expression was not observed in any of the epithelial hyperplasia and OLP samples. According to the findings of this study, β-catenin and CD44 can differentiate between behavior of OLP and OSCC, while the precancerous nature of OLP and malignant transformation potential of it are not suggested. © 2018 The International Society of Dermatology.

  8. CD133 expression is not restricted to stem cells, and both CD133+ and CD133– metastatic colon cancer cells initiate tumors

    PubMed Central

    Shmelkov, Sergey V.; Butler, Jason M.; Hooper, Andrea T.; Hormigo, Adilia; Kushner, Jared; Milde, Till; St. Clair, Ryan; Baljevic, Muhamed; White, Ian; Jin, David K.; Chadburn, Amy; Murphy, Andrew J.; Valenzuela, David M.; Gale, Nicholas W.; Thurston, Gavin; Yancopoulos, George D.; D’Angelica, Michael; Kemeny, Nancy; Lyden, David; Rafii, Shahin

    2008-01-01

    Colon cancer stem cells are believed to originate from a rare population of putative CD133+ intestinal stem cells. Recent publications suggest that a small subset of colon cancer cells expresses CD133, and that only these CD133+ cancer cells are capable of tumor initiation. However, the precise contribution of CD133+ tumor-initiating cells in mediating colon cancer metastasis remains unknown. Therefore, to temporally and spatially track the expression of CD133 in adult mice and during tumorigenesis, we generated a knockin lacZ reporter mouse (CD133lacZ/+), in which the expression of lacZ is driven by the endogenous CD133 promoters. Using this model and immunostaining, we discovered that CD133 expression in colon is not restricted to stem cells; on the contrary, CD133 is ubiquitously expressed on differentiated colonic epithelium in both adult mice and humans. Using Il10–/–CD133lacZ mice, in which chronic inflammation in colon leads to adenocarcinomas, we demonstrated that CD133 is expressed on a full gamut of colonic tumor cells, which express epithelial cell adhesion molecule (EpCAM). Similarly, CD133 is widely expressed by human primary colon cancer epithelial cells, whereas the CD133– population is composed mostly of stromal and inflammatory cells. Conversely, CD133 expression does not identify the entire population of epithelial and tumor-initiating cells in human metastatic colon cancer. Indeed, both CD133+ and CD133– metastatic tumor subpopulations formed colonospheres in in vitro cultures and were capable of long-term tumorigenesis in a NOD/SCID serial xenotransplantation model. Moreover, metastatic CD133– cells form more aggressive tumors and express typical phenotypic markers of cancer-initiating cells, including CD44 (CD44+CD24–), whereas the CD133+ fraction is composed of CD44lowCD24+ cells. Collectively, our data suggest that CD133 expression is not restricted to intestinal stem or cancer-initiating cells, and during the metastatic

  9. Melanoma upregulates ICAM-1 expression on endothelial cells through engagement of tumor CD44 with endothelial E-selectin and activation of a PKCα–p38–SP-1 pathway

    PubMed Central

    Zhang, Pu; Goodrich, Chris; Fu, Changliang; Dong, Cheng

    2014-01-01

    Cancer metastasis involves multistep adhesive interactions between tumor cells (TCs) and endothelial cells (ECs), but the molecular mechanisms of intercellular communication in the tumor microenvironment remain elusive. Using static and flow coculture systems in conjunction with flow cytometry, we discovered that certain receptors on the ECs are upregulated on melanoma cell adhesion. Direct contact but not separate coculture between human umbilical endothelial cells (HUVECs) and a human melanoma cell line (Lu1205) increased intercellular adhesion molecule 1 (ICAM-1) and E-selectin expression on HUVECs by 3- and 1.5-fold, respectively, compared with HUVECs alone. The nonmetastatic cell line WM35 failed to promote ICAM-1 expression changes in HUVECs on contact. Enzyme-linked immunosorbent assay (ELISA) revealed that EC–TC contact has a synergistic effect on the expression of the cytokines interleukin (IL)-8, IL-6, and growth-related oncogene α (Gro-α). By using E-selectin cross-linking and beads coated with CD44 immunopurified from Lu1205 cells, we showed that CD44/selectin ligation was responsible for the ICAM-1 up-regulation on HUVECs. Protein kinase Cα (PKC-α) activation was found to be the downstream target of the CD44/selectin-initiated signaling, as ICAM-1 elevation was inhibited by siRNA targeting PKCα or a dominant negative form of PKCα (PKCα DN). Western blot analysis and electrophoretic mobility shift assays (EMSAs) showed that TC–EC contact mediated p38 phosphorylation and binding of the transcription factor SP-1 to its regulation site. In conclusion, CD44/selectin binding signals ICAM-1 up-regulation on the EC surface through a PKCα–p38–SP-1 pathway, which further enhances melanoma cell adhesion to ECs during metastasis.—Zhang, P., Goodrich, C., Fu, C., Dong, C. Melanoma upregulates ICAM-1 expression on ECs through engagement of tumor CD44 with endothelial E-selectin and activation of a PKCα–p38–SP-1 pathway. PMID:25138157

  10. Screening and Identification of a Phage Display Derived Peptide That Specifically Binds to the CD44 Protein Region Encoded by Variable Exons.

    PubMed

    Zhang, Dan; Jia, Huan; Li, Weiming; Hou, Yingchun; Lu, Shaoying; He, Shuixiang

    2016-01-01

    CD44, especially the isoforms with variable exons (CD44v), is a promising biomarker for the detection of cancer. To develop a CD44v-specific probe, we screened a 7-mer phage peptide library against the CD44v3-v10 protein using an improved subtractive method. The consensus sequences with the highest frequency (designated CV-1) emerged after four rounds of panning. The binding affinity and specificity of the CV-1 phage and the synthesized peptide for the region of CD44 encoded by the variable exons were confirmed using enzyme-linked immunosorbent assay and competitive inhibition assays. Furthermore, the binding of the CV-1 probe to gastric cancer cells and tissues was validated using immunofluorescence and immunohistochemistry assays. CV-1 sensitively and specifically bound to CD44v on cancer cells and tissues. Thus, CV-1 has the potential to serve as a promising probe for cancer molecular imaging and target therapy. © 2015 Society for Laboratory Automation and Screening.

  11. Expression of CD44 3′-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis

    PubMed Central

    Jeyapalan, Zina; Deng, Zhaoqun; Shatseva, Tatiana; Fang, Ling; He, Chengyan; Yang, Burton B.

    2011-01-01

    The non-coding 3′-untranslated region (UTR) plays an important role in the regulation of microRNA (miRNA) functions, since it can bind and inactivate multiple miRNAs. Here, we show the 3′-UTR of CD44 is able to antagonize cytoplasmic miRNAs, and result in the increased translation of CD44 and downstream target mRNA, CDC42. A series of cell function assays in the human breast cancer cell line, MT-1, have shown that the CD44 3′-UTR inhibits proliferation, colony formation and tumor growth. Furthermore, it modulated endothelial cell activities, favored angiogenesis, induced tumor cell apoptosis and increased sensitivity to Docetaxel. These results are due to the interaction of the CD44 3′-UTR with multiple miRNAs. Computational algorithms have predicted three miRNAs, miR-216a, miR-330 and miR-608, can bind to both the CD44 and CDC42 3′-UTRs. This was confirmed with luciferase assays, western blotting and immunohistochemical staining and correlated with a series of siRNA assays. Thus, the non-coding CD44 3′-UTR serves as a competitor for miRNA binding and subsequently inactivates miRNA functions, by freeing the target mRNAs from being repressed. PMID:21149267

  12. CD44 deficiency leads to decreased proinflammatory cytokine production in lung induced by PCV2 in mice.

    PubMed

    Fu, Qiang; Hou, Linbing; Xiao, Pingping; Guo, Chunhe; Chen, Yaosheng; Liu, Xiaohong

    2014-12-01

    Porcine circovirus type 2 (PCV2) is the primary etiological agent of postweaning multisystemic wasting syndrome (PMWS). CD44 is a widely expressed class I transmembrane glycoprotein implicated in immunological and inflammatory responses. In previous studies, the role of CD44 in host defense against microorganism infection remains controversial. The role of CD44 in host defense against PCV2 infection has never been studied before. In this study, we investigated the role of CD44 in the development of pneumonia induced by PCV2 in mice model. Upon infection, CD44 mRNA level in lung tissue was upregulated, and we confirmed a detrimental role of CD44 in host defense against PCV2 infection. The results demonstrated that CD44 deficiency could result in decreased proinflammatory cytokine production in lung induced by PCV2 in mice, suggesting a previously unrecognized role for CD44 in the development of pneumonia response to PCV2 infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. TGF-β reduces DNA ds-break repair mechanisms to heighten genetic diversity and adaptability of CD44+/CD24− cancer cells

    PubMed Central

    Pal, Debjani; Pertot, Anja; Shirole, Nitin H; Yao, Zhan; Anaparthy, Naishitha; Garvin, Tyler; Cox, Hilary; Chang, Kenneth; Rollins, Fred; Kendall, Jude; Edwards, Leyla; Singh, Vijay A; Stone, Gary C; Schatz, Michael C; Hicks, James; Hannon, Gregory J; Sordella, Raffaella

    2017-01-01

    Many lines of evidence have indicated that both genetic and non-genetic determinants can contribute to intra-tumor heterogeneity and influence cancer outcomes. Among the best described sub-population of cancer cells generated by non-genetic mechanisms are cells characterized by a CD44+/CD24− cell surface marker profile. Here, we report that human CD44+/CD24− cancer cells are genetically highly unstable because of intrinsic defects in their DNA-repair capabilities. In fact, in CD44+/CD24− cells, constitutive activation of the TGF-beta axis was both necessary and sufficient to reduce the expression of genes that are crucial in coordinating DNA damage repair mechanisms. Consequently, we observed that cancer cells that reside in a CD44+/CD24− state are characterized by increased accumulation of DNA copy number alterations, greater genetic diversity and improved adaptability to drug treatment. Together, these data suggest that the transition into a CD44+/CD24− cell state can promote intra-tumor genetic heterogeneity, spur tumor evolution and increase tumor fitness. DOI: http://dx.doi.org/10.7554/eLife.21615.001 PMID:28092266

  14. Novel Single-Cell Analysis Platform Based on a Solid-State Zinc-Coadsorbed Carbon Quantum Dots Electrochemiluminescence Probe for the Evaluation of CD44 Expression on Breast Cancer Cells.

    PubMed

    Qiu, Youyi; Zhou, Bin; Yang, Xiaojuan; Long, Dongping; Hao, Yan; Yang, Peihui

    2017-05-24

    A novel single-cell analysis platform was fabricated using solid-state zinc-coadsorbed carbon quantum dot (ZnCQDs) nanocomposites as an electrochemiluminescence (ECL) probe for the detection of breast cancer cells and evaluation of the CD44 expression level. Solid-state ZnCQDs nanocomposite probes were constructed through the attachment of ZnCQDs to gold nanoparticles and then the loading of magnetic beads to amplify the ECL signal, exhibiting a remarkable 120-fold enhancement of the ECL intensity. Hyaluronic acid (HA)-functionalized solid-state probes were used to label a single breast cancer cell by the specific recognition of HA with CD44 on the cell surface, revealing more stable, sensitive, and effective tagging in comparison with the water-soluble CQDs. This strategy exhibited a good analytical performance for the analysis of MDA-MB-231 and MCF-7 single cells with linear range from 1 to 18 and from 1 to 12 cells, respectively. Furthermore, this single-cell analysis platform was used for evaluation of the CD44 expression level of these two cell lines, in which the MDA-MB-231 cells revealed a 2.8-5.2-fold higher CD44 expression level. A total of 20 single cells were analyzed individually, and the distributions of the ECL intensity revealed larger variations, indicating the high cellular heterogeneity of the CD44 expression level on the same cell line. The as-proposed single-cell analysis platform might provide a novel protocol to effectively study the individual cellular function and cellular heterogeneity.

  15. Shear Stress Regulates Adhesion and Rolling of CD44+ Leukemic and Hematopoietic Progenitor Cells on Hyaluronan

    PubMed Central

    Christophis, Christof; Taubert, Isabel; Meseck, Georg R.; Schubert, Mario; Grunze, Michael; Ho, Anthony D.; Rosenhahn, Axel

    2011-01-01

    Leukemic cells and human hematopoietic progenitor cells expressing CD44 receptors have the ability to attach and roll on hyaluronan. We investigated quantitatively the adhesion behavior of leukemic cell lines and hematopoietic progenitor cells on thin films of the polysaccharides hyaluronan and alginate in a microfluidic system. An applied flow enhances the interaction between CD44-positive cells and hyaluronan if a threshold shear stress of 0.2 dyn/cm2 is exceeded. At shear stress ∼1 dyn/cm2, the cell rolling speed reaches a maximum of 15 μm/s. Leukemic Jurkat and Kasumi-1 cells lacking CD44-expression showed no adhesion or rolling on the polysaccharides whereas the CD44-expressing leukemic cells KG-1a, HL-60, K-562, and hematopoietic progenitor cells attached and rolled on hyaluronan. Interestingly, the observations of flow-induced cell rolling are related to those found in the recruitment of leukocytes to inflammatory sites and the mechanisms of stem-cell homing into the bone marrow. PMID:21806926

  16. Adoptive cell therapy for lymphoma with CD4 T cells depleted of CD137-expressing regulatory T cells.

    PubMed

    Goldstein, Matthew J; Kohrt, Holbrook E; Houot, Roch; Varghese, Bindu; Lin, Jack T; Swanson, Erica; Levy, Ronald

    2012-03-01

    Adoptive immunotherapy with antitumor T cells is a promising novel approach for the treatment of cancer. However, T-cell therapy may be limited by the cotransfer of regulatory T cells (T(reg)). Here, we explored this hypothesis by using 2 cell surface markers, CD44 and CD137, to isolate antitumor CD4 T cells while excluding T(regs). In a murine model of B-cell lymphoma, only CD137(neg)CD44(hi) CD4 T cells infiltrated tumor sites and provided protection. Conversely, the population of CD137(pos)CD44hi CD4 T cells consisted primarily of activated T(regs). Notably, this CD137(pos) T(reg) population persisted following adoptive transfer and maintained expression of FoxP3 as well as CD137. Moreover, in vitro these CD137(pos) cells suppressed the proliferation of effector cells in a contact-dependent manner, and in vivo adding the CD137(pos)CD44(hi) CD4 cells to CD137(neg)CD44(hi) CD4 cells suppressed the antitumor immune response. Thus, CD137 expression on CD4 T cells defined a population of activated T(regs) that greatly limited antitumor immune responses. Consistent with observations in the murine model, human lymphoma biopsies also contained a population of CD137(pos) CD4 T cells that were predominantly CD25(pos)FoxP3(pos) T(regs). In conclusion, our findings identify 2 surface markers that can be used to facilitate the enrichment of antitumor CD4 T cells while depleting an inhibitory T(reg) population.

  17. CD44+ Cancer Stem-Like Cells in EBV-Associated Nasopharyngeal Carcinoma

    PubMed Central

    Lun, Samantha Wei-Man; Cheung, Siu Tim; Cheung, Phyllis Fung Yi; To, Ka-Fai; Woo, John Kong-Sang; Choy, Kwong-Wai; Chow, Chit; Cheung, Chartia Ching-Mei; Chung, Grace Tin-Yun; Cheng, Alice Suk-Hang; Ko, Chun-Wai; Tsao, Sai-Wah; Busson, Pierre; Ng, Margaret Heung-Ling; Lo, Kwok-Wai

    2012-01-01

    Nasopharyngeal carcinoma (NPC) is a unique EBV-associated epithelial malignancy, showing highly invasive and metastatic phenotype. Despite increasing evidence demonstrating the critical role of cancer stem-like cells (CSCs) in the maintenance and progression of tumors in a variety of malignancies, the existence and properties of CSC in EBV-associated NPC are largely unknown. Our study aims to elucidate the presence and role of CSCs in the pathogenesis of this malignant disease. Sphere-forming cells were isolated from an EBV-positive NPC cell line C666-1 and its tumor-initiating properties were confirmed by in vitro and in vivo assays. In these spheroids, up-regulation of multiple stem cell markers were found. By flow cytometry, we demonstrated that both CD44 and SOX2 were overexpressed in a majority of sphere-forming C666-1 cells. The CD44+SOX2+ cells was detected in a minor population in EBV-positive xenografts and primary tumors and considered as potential CSC in NPC. Notably, the isolated CD44+ NPC cells were resistant to chemotherapeutic agents and with higher spheroid formation efficiency, showing CSC properties. On the other hand, microarray analysis has revealed a number of differentially expressed genes involved in transcription regulation (e.g. FOXN4, GLI1), immune response (CCR7, IL8) and transmembrane transport (e.g. ABCC3, ABCC11) in the spheroids. Among these genes, increased expression of CCR7 in CD44+ CSCs was confirmed in NPC xenografts and primary tumors. Importantly, blocking of CCR7 abolished the sphere-forming ability of C666-1 in vitro. Expression of CCR7 was associated with recurrent disease and distant metastasis. The current study defined the specific properties of a CSC subpopulation in EBV-associated NPC. Our findings provided new insights into developing effective therapies targeting on CSCs, thereby potentiating treatment efficacy for NPC patients. PMID:23285037

  18. CD44 is a direct target of miR-199a-3p and contributes to aggressive progression in osteosarcoma

    PubMed Central

    Gao, Yan; Feng, Yong; Shen, Jacson K.; Lin, Min; Choy, Edwin; Cote, Gregory M.; Harmon, David C.; Mankin, Henry J.; Hornicek, Francis J.; Duan, Zhenfeng

    2015-01-01

    Osteosarcoma is the most common primary bone malignancy in children and adolescents. Herein, we investigated the role of cluster of differentiation 44 (CD44), a cell-surface glycoprotein involved in cell-cell interactions, cell adhesion, and migration in osteosarcoma. We constructed a human osteosarcoma tissue microarray with 114 patient tumor specimens, including tumor tissues from primary, metastatic, and recurrent stages, and determined the expression of CD44 by immunohistochemistry. Results showed that CD44 was overexpressed in metastatic and recurrent osteosarcoma as compared with primary tumors. Higher expression of CD44 was found in both patients with shorter survival and patients who exhibited unfavorable response to chemotherapy before surgical resection. Additionally, the 3′-untranslated region of CD44 mRNA was the direct target of microRNA-199a-3p (miR-199a-3p). Overexpression of miR-199a-3p significantly inhibited CD44 expression in osteosarcoma cells. miR-199a-3p is one of the most dramatically decreased miRs in osteosarcoma cells and tumor tissues as compared with normal osteoblast cells. Transfection of miR-199a-3p significantly increased the drug sensitivity through down-regulation of CD44 in osteosarcoma cells. Taken together, these results suggest that the CD44-miR-199a-3p axis plays an important role in the development of metastasis, recurrence, and drug resistance of osteosarcoma. Developing strategies to target CD44 may improve the clinical outcome of osteosarcoma. PMID:26079799

  19. Human CD134 (OX40) expressed on T cells plays a key role for human herpesvirus 6B replication after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Nagamata, Satoshi; Nagasaka, Miwako; Kawabata, Akiko; Kishimoto, Kenji; Hasegawa, Daiichiro; Kosaka, Yoshiyuki; Mori, Takeshi; Morioka, Ichiro; Nishimura, Noriyuki; Iijima, Kazumoto; Yamada, Hideto; Kawamoto, Shinichiro; Yakushijin, Kimikazu; Matsuoka, Hiroshi; Mori, Yasuko

    2018-05-01

    CD134 (OX40), which is a cellular receptor for human herpesvirus-6B (HHV-6B) and expresses on activated T cells, may play a key role for HHV-6B replication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Therefore, we examined the CD134 expression on T cells and HHV-6B replication after allo-HSCT, and analyzed the correlation between them. Twenty-three patients after allo-HSCT were enrolled. The percentages of CD134-positive cells within the CD4 + and CD8 + cell populations were measured by flow cytometry, and the viral copy number of HHV-6B was simultaneously quantified by real-time PCR. The correlation between CD134 and HHV-6B viral load was then statistically analyzed. HHV-6B reactivation occurred in 11 of 23 patients (47.8%). CD134 expression was seen on T cells and was coincident with the time of peak viral load. The percentage of CD134-positive cells decreased significantly when HHV-6B DNA disappeared (p = .005 in CD4 + T cells, p = .02 in CD8 + T cells). In the 4 patients who underwent umbilical cord blood transplantation (UCBT), the viral load varied with the percentage of CD134-positive cells. In the comparison between the HHV-6B reactivation group and non-reactivation group, maximum percentages of CD134-positive cells among CD4 + T cells in reactivation group were significantly higher than those in non-reactivation group (p = .04). This is the first study to show that a correlation of CD134 expression on T cells with HHV-6B replication after allo-HSCT, especially in UCBT. The results possibly indicate that CD134 on T cells plays a key role for HHV-6B replication after allo-HSCT. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44.

    PubMed

    Liu, Can; Kelnar, Kevin; Liu, Bigang; Chen, Xin; Calhoun-Davis, Tammy; Li, Hangwen; Patrawala, Lubna; Yan, Hong; Jeter, Collene; Honorio, Sofia; Wiggins, Jason F; Bader, Andreas G; Fagin, Randy; Brown, David; Tang, Dean G

    2011-02-01

    Cancer stem cells (CSCs), or tumor-initiating cells, are involved in tumor progression and metastasis. MicroRNAs (miRNAs) regulate both normal stem cells and CSCs, and dysregulation of miRNAs has been implicated in tumorigenesis. CSCs in many tumors--including cancers of the breast, pancreas, head and neck, colon, small intestine, liver, stomach, bladder and ovary--have been identified using the adhesion molecule CD44, either individually or in combination with other marker(s). Prostate CSCs with enhanced clonogenic and tumor-initiating and metastatic capacities are enriched in the CD44(+) cell population, but whether miRNAs regulate CD44(+) prostate cancer cells and prostate cancer metastasis remains unclear. Here we show, through expression analysis, that miR-34a, a p53 target, was underexpressed in CD44(+) prostate cancer cells purified from xenograft and primary tumors. Enforced expression of miR-34a in bulk or purified CD44(+) prostate cancer cells inhibited clonogenic expansion, tumor regeneration, and metastasis. In contrast, expression of miR-34a antagomirs in CD44(-) prostate cancer cells promoted tumor development and metastasis. Systemically delivered miR-34a inhibited prostate cancer metastasis and extended survival of tumor-bearing mice. We identified and validated CD44 as a direct and functional target of miR-34a and found that CD44 knockdown phenocopied miR-34a overexpression in inhibiting prostate cancer regeneration and metastasis. Our study shows that miR-34a is a key negative regulator of CD44(+) prostate cancer cells and establishes a strong rationale for developing miR-34a as a novel therapeutic agent against prostate CSCs.

  1. Phosphatidylinositol 4,5-Bisphosphate Clusters the Cell Adhesion Molecule CD44 and Assembles a Specific CD44-Ezrin Heterocomplex, as Revealed by Small Angle Neutron Scattering*

    PubMed Central

    Chen, Xiaodong; Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K.; Stanley, Christopher B.; Do, Changwoo; Heller, William T.; Aggarwal, Aneel K.; Callaway, David J. E.; Bu, Zimei

    2015-01-01

    The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin that links the CD44 assembled receptor signaling complexes to the cytoskeletal actin network, which organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered. Upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2), CD44ct clusters into aggregates. Further, contrary to the generally accepted model, CD44ct does not bind directly to the FERM domain of Ezrin or to the full-length Ezrin but only forms a complex with FERM or with the full-length Ezrin in the presence of PIP2. Using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific heterotetramer complex of CD44ct with Ezrin. This study reveals the role of PIP2 in clustering CD44 and in assembling multimeric CD44-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of CD44 clusters and the multimeric PIP2-CD44-Ezrin complexes. PMID:25572402

  2. Phosphatidylinositol 4,5-Bisphosphate Clusters the Cell Adhesion Molecule CD44 and Assembles a Specific CD44-Ezrin Heterocomplex, as Revealed by Small Angle Neutron Scattering

    DOE PAGES

    Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K.; ...

    2015-01-08

    The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin, which links the CD44 assembled receptor signaling complexes to the cytoskeletal actin and organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered and adopts an autoinhibited conformation, which prevents CD44ct from binding directly to activated Ezrin in solution. Binding to the signaling lipid phosphatidylinositol 4,5-biphosphlate (PIP2) disrupts autoinhibition in CD44ct, and activates CD44ct to associate with Ezrin.more » Further, using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific hetero-tetramer complex of CD44ct with Ezrin. This study reveals a novel autoregulation mechanism in the cytoplasmic tail of CD44 and the role of PIP2 in mediating the assembly of multimeric CD44ct-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of multimeric PIP2-CD44-Ezrin complexes.« less

  3. Phosphatidylinositol 4,5-bisphosphate clusters the cell adhesion molecule CD44 and assembles a specific CD44-Ezrin heterocomplex, as revealed by small angle neutron scattering.

    PubMed

    Chen, Xiaodong; Khajeh, Jahan Ali; Ju, Jeong Ho; Gupta, Yogesh K; Stanley, Christopher B; Do, Changwoo; Heller, William T; Aggarwal, Aneel K; Callaway, David J E; Bu, Zimei

    2015-03-06

    The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin that links the CD44 assembled receptor signaling complexes to the cytoskeletal actin network, which organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered. Upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2), CD44ct clusters into aggregates. Further, contrary to the generally accepted model, CD44ct does not bind directly to the FERM domain of Ezrin or to the full-length Ezrin but only forms a complex with FERM or with the full-length Ezrin in the presence of PIP2. Using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific heterotetramer complex of CD44ct with Ezrin. This study reveals the role of PIP2 in clustering CD44 and in assembling multimeric CD44-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of CD44 clusters and the multimeric PIP2-CD44-Ezrin complexes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Challenging the roles of CD44 and lipolysis stimulated lipoprotein receptor in conveying Clostridium perfringens iota toxin cytotoxicity in breast cancer.

    PubMed

    Fagan-Solis, Katerina D; Reaves, Denise K; Rangel, M Cristina; Popoff, Michel R; Stiles, Bradley G; Fleming, Jodie M

    2014-07-02

    Translational exploration of bacterial toxins has come to the forefront of research given their potential as a chemotherapeutic tool. Studies in select tissues have demonstrated that Clostridium perfringens iota toxin binds to CD44 and lipolysis stimulated lipoprotein receptor (LSR) cell-surface proteins. We recently demonstrated that LSR expression correlates with estrogen receptor positive breast cancers and that LSR signaling directs aggressive, tumor-initiating cell behaviors. Herein, we identify the mechanisms of iota toxin cytotoxicity in a tissue-specific, breast cancer model with the ultimate goal of laying the foundation for using iota toxin as a targeted breast cancer therapy. In vitro model systems were used to determine the cytotoxic effect of iota toxin on breast cancer intrinsic subtypes. The use of overexpression and knockdown technologies confirmed the roles of LSR and CD44 in regulating iota toxin endocytosis and induction of cell death. Lastly, cytotoxicity assays were used to demonstrate the effect of iota toxin on a validated set of tamoxifen resistant breast cancer cell lines. Treatment of 14 breast cancer cell lines revealed that LSR+/CD44- lines were highly sensitive, LSR+/CD44+ lines were slightly sensitive, and LSR-/CD44+ lines were resistant to iota cytotoxicity. Reduction in LSR expression resulted in a significant decrease in toxin sensitivity; however, overexpression of CD44 conveyed toxin resistance. CD44 overexpression was correlated with decreased toxin-stimulated lysosome formation and decreased cytosolic levels of iota toxin. These findings indicated that expression of CD44 drives iota toxin resistance through inhibition of endocytosis in breast cancer cells, a role not previously defined for CD44. Moreover, tamoxifen-resistant breast cancer cells exhibited robust expression of LSR and were highly sensitive to iota-induced cytotoxicity. Collectively, these data are the first to show that iota toxin has the potential to be an

  5. CD44 Interacts with HIF-2α to Modulate the Hypoxic Phenotype of Perinecrotic and Perivascular Glioma Cells.

    PubMed

    Johansson, Elinn; Grassi, Elisa S; Pantazopoulou, Vasiliki; Tong, Bei; Lindgren, David; Berg, Tracy J; Pietras, Elin J; Axelson, Håkan; Pietras, Alexander

    2017-08-15

    Hypoxia-inducible factors enhance glioma stemness, and glioma stem cells have an amplified hypoxic response despite residing within a perivascular niche. Still, little is known about differential HIF regulation in stem versus bulk glioma cells. We show that the intracellular domain of stem cell marker CD44 (CD44ICD) is released at hypoxia, binds HIF-2α (but not HIF-1α), enhances HIF target gene activation, and is required for hypoxia-induced stemness in glioma. In a glioma mouse model, CD44 was restricted to hypoxic and perivascular tumor regions, and in human glioma, a hypoxia signature correlated with CD44. The CD44ICD was sufficient to induce hypoxic signaling at perivascular oxygen tensions, and blocking CD44 cleavage decreased HIF-2α stabilization in CD44-expressing cells. Our data indicate that the stem cell marker CD44 modulates the hypoxic response of glioma cells and that the pseudo-hypoxic phenotype of stem-like glioma cells is achieved by stabilization of HIF-2α through interaction with CD44, independently of oxygen. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Immunohistochemical Analysis of p53, Ki-67, CD44, HER-2/neu Expression Patterns in Gastric Cancer, and Their Association with One Year Survival in North-West of Iran

    PubMed Central

    Sanaat, Zohreh; Halimi, Monireh; Ghojezadeh, Morteza; Pirovi, Amir Hossein; Gharamaleki, Jalil Vaez; Ziae, Ali Esfahani Jamal Eivazi; Kermani, Iraj Aswadi

    2013-01-01

    Introduction Gastric cancer remains the second most common cause of cancer-related deaths worldwide. In many malignancies like, lung and breast, multiple prognostic factors are known, such as mutations in Ki-67, HER-2/neu, p53. In this study, we evaluated immunohistochemical protein expression patterns of cell-cycle-regulators p53, proliferation marker Ki-67, surface expression of CD44, HER-2/neu oncogene proposed as useful prognostic factors. Methods In this descriptive-analytic study, we evaluate 100 patients with gastric cancer who were referred to Shahid Ghazi Hospital or other oncology clinics of Tabriz University of Medical Sciences in 2005-2010. Patients with pathologic confirmation of gastric cancer were selected. Expression of p53, ki-67, CD-44, HER-2/neu were detected by immunohistochemical staining. Results In this study, 100 patients with gastric cancer participated. 76(76%) were men and 24(24%) were women with mean age of 64.02(8.05) years. Seventy two samples were intestinal type and 28 were diffuse type. CD44 was positive in 27(27%) patients. P53 was positive in 35(35%) patients. Ki-67 was positive in 53(53%) patients. HER-2/neu was positive in 51(51%) patients. Conclusion The frequency of positive p53, Ki-67, CD44 and HER-2/neu varied in different studies. Positive Ki-67 and HER-2/neu were not associated with changes in survival but positive p53 and CD44 were significantly associated with improved survival. PMID:24505530

  7. CD44 Promotes intoxication by the clostridial iota-family toxins.

    PubMed

    Wigelsworth, Darran J; Ruthel, Gordon; Schnell, Leonie; Herrlich, Peter; Blonder, Josip; Veenstra, Timothy D; Carman, Robert J; Wilkins, Tracy D; Van Nhieu, Guy Tran; Pauillac, Serge; Gibert, Maryse; Sauvonnet, Nathalie; Stiles, Bradley G; Popoff, Michel R; Barth, Holger

    2012-01-01

    Various pathogenic clostridia produce binary protein toxins associated with enteric diseases of humans and animals. Separate binding/translocation (B) components bind to a protein receptor on the cell surface, assemble with enzymatic (A) component(s), and mediate endocytosis of the toxin complex. Ultimately there is translocation of A component(s) from acidified endosomes into the cytosol, leading to destruction of the actin cytoskeleton. Our results revealed that CD44, a multifunctional surface protein of mammalian cells, facilitates intoxication by the iota family of clostridial binary toxins. Specific antibody against CD44 inhibited cytotoxicity of the prototypical Clostridium perfringens iota toxin. Versus CD44(+) melanoma cells, those lacking CD44 bound less toxin and were dose-dependently resistant to C. perfringens iota, as well as Clostridium difficile and Clostridium spiroforme iota-like, toxins. Purified CD44 specifically interacted in vitro with iota and iota-like, but not related Clostridium botulinum C2, toxins. Furthermore, CD44 knockout mice were resistant to iota toxin lethality. Collective data reveal an important role for CD44 during intoxication by a family of clostridial binary toxins.

  8. CD44 Promotes Intoxication by the Clostridial Iota-Family Toxins

    PubMed Central

    Wigelsworth, Darran J.; Ruthel, Gordon; Schnell, Leonie; Herrlich, Peter; Blonder, Josip; Veenstra, Timothy D.; Carman, Robert J.; Wilkins, Tracy D.; Van Nhieu, Guy Tran; Pauillac, Serge; Gibert, Maryse; Sauvonnet, Nathalie; Stiles, Bradley G.; Popoff, Michel R.; Barth, Holger

    2012-01-01

    Various pathogenic clostridia produce binary protein toxins associated with enteric diseases of humans and animals. Separate binding/translocation (B) components bind to a protein receptor on the cell surface, assemble with enzymatic (A) component(s), and mediate endocytosis of the toxin complex. Ultimately there is translocation of A component(s) from acidified endosomes into the cytosol, leading to destruction of the actin cytoskeleton. Our results revealed that CD44, a multifunctional surface protein of mammalian cells, facilitates intoxication by the iota family of clostridial binary toxins. Specific antibody against CD44 inhibited cytotoxicity of the prototypical Clostridium perfringens iota toxin. Versus CD44+ melanoma cells, those lacking CD44 bound less toxin and were dose-dependently resistant to C. perfringens iota, as well as Clostridium difficile and Clostridium spiroforme iota-like, toxins. Purified CD44 specifically interacted in vitro with iota and iota-like, but not related Clostridium botulinum C2, toxins. Furthermore, CD44 knockout mice were resistant to iota toxin lethality. Collective data reveal an important role for CD44 during intoxication by a family of clostridial binary toxins. PMID:23236484

  9. Autophagy regulates cisplatin-induced stemness and chemoresistance via the upregulation of CD44, ABCB1 and ADAM17 in oral squamous cell carcinoma.

    PubMed

    Naik, Prajna Paramita; Mukhopadhyay, Subhadip; Panda, Prashanta Kumar; Sinha, Niharika; Das, Chandan Kanta; Mishra, Rajakishore; Patil, Shankargouda; Bhutia, Sujit Kumar

    2018-02-01

    We inspected the relevance of CD44, ABCB1 and ADAM17 in OSCC stemness and deciphered the role of autophagy/mitophagy in regulating stemness and chemoresistance. A retrospective analysis of CD44, ABCB1 and ADAM17 with respect to the various clinico-pathological factors and their correlation was analysed in sixty OSCC samples. Furthermore, the stemness and chemoresistance were studied in resistant oral cancer cells using sphere formation assay, flow cytometry and florescence microscopy. The role of autophagy/mitophagy was investigated by transient transfection of siATG14, GFP-LC3, tF-LC3, mKeima-Red-Mito7 and Western blot analysis of autophagic and mitochondrial proteins. In OSCC, high CD44, ABCB1 and ADAM17 expressions were correlated with higher tumour grades and poor differentiation and show significant correlation in their co-expression. In vitro and OSCC tissue double labelling confirmed that CD44 + cells co-expresses ABCB1 and ADAM17. Further, cisplatin (CDDP)-resistant FaDu cells displayed stem-like features and higher CD44, ABCB1 and ADAM17 expression. Higher autophagic flux and mitophagy were observed in resistant FaDu cells as compared to parental cells, and inhibition of autophagy led to the decrease in stemness, restoration of mitochondrial proteins and reduced expression of CD44, ABCB1 and ADAM17. The CD44 + /ABCB1 + /ADAM17 + expression in OSCC is associated with stemness and chemoresistance. Further, this study highlights the involvement of mitophagy in chemoresistance and autophagic regulation of stemness in OSCC. © 2017 John Wiley & Sons Ltd.

  10. Comparison of DNA aneuploidy, chromosome 1 abnormalities, MYCN amplification and CD44 expression as prognostic factors in neuroblastoma.

    PubMed

    Christiansen, H; Sahin, K; Berthold, F; Hero, B; Terpe, H J; Lampert, F

    1995-01-01

    A comparison of the prognostic impact of five molecular variables in a large series was made, including tests of their nonrandom association and multivariate analysis. Molecular data were available for 377 patients and MYCN amplification, cytogenetic chromosome 1p deletion, loss of chromosome 1p heterozygosity, DNA ploidy and CD44 expression were investigated. Their interdependence and influence on event-free survival was tested uni- and multivariately using Pearson's chi 2-test, Kaplan-Meier estimates, log rank tests and the Cox's regression model. MYCN amplification was present in 18% (58/322) of cases and predicted poorer prognosis in localised (P < 0.001), metastatic (P = 0.002) and even 4S (P = 0.040) disease. CD44 expression was found in 86% (127/148) of cases, and was a marker for favourable outcome in patients with neuroblastoma stages 1-3 (P = 0.003) and 4 (P = 0.017). Chromosome 1p deletion was cytogenetically detected in 51% (28/55), and indicated reduced event-free survival in localised neuroblastoma (P = 0.020). DNA ploidy and loss of heterozygosity on chromosome 1p were of less prognostic value. Most factors of prognostic significance were associated with each other. By multivariate analysis, MYCN was selected as the only relevant factor. Risk estimation of high discriminating power is, therefore, possible for patients with localised and metastatic neuroblastoma using stage and MYCN.

  11. Challenging the roles of CD44 and lipolysis stimulated lipoprotein receptor in conveying Clostridium perfringens iota toxin cytotoxicity in breast cancer

    PubMed Central

    2014-01-01

    Background Translational exploration of bacterial toxins has come to the forefront of research given their potential as a chemotherapeutic tool. Studies in select tissues have demonstrated that Clostridium perfringens iota toxin binds to CD44 and lipolysis stimulated lipoprotein receptor (LSR) cell-surface proteins. We recently demonstrated that LSR expression correlates with estrogen receptor positive breast cancers and that LSR signaling directs aggressive, tumor-initiating cell behaviors. Herein, we identify the mechanisms of iota toxin cytotoxicity in a tissue-specific, breast cancer model with the ultimate goal of laying the foundation for using iota toxin as a targeted breast cancer therapy. Methods In vitro model systems were used to determine the cytotoxic effect of iota toxin on breast cancer intrinsic subtypes. The use of overexpression and knockdown technologies confirmed the roles of LSR and CD44 in regulating iota toxin endocytosis and induction of cell death. Lastly, cytotoxicity assays were used to demonstrate the effect of iota toxin on a validated set of tamoxifen resistant breast cancer cell lines. Results Treatment of 14 breast cancer cell lines revealed that LSR+/CD44- lines were highly sensitive, LSR+/CD44+ lines were slightly sensitive, and LSR-/CD44+ lines were resistant to iota cytotoxicity. Reduction in LSR expression resulted in a significant decrease in toxin sensitivity; however, overexpression of CD44 conveyed toxin resistance. CD44 overexpression was correlated with decreased toxin-stimulated lysosome formation and decreased cytosolic levels of iota toxin. These findings indicated that expression of CD44 drives iota toxin resistance through inhibition of endocytosis in breast cancer cells, a role not previously defined for CD44. Moreover, tamoxifen-resistant breast cancer cells exhibited robust expression of LSR and were highly sensitive to iota-induced cytotoxicity. Conclusions Collectively, these data are the first to show that iota

  12. Assessing Specific Oligonucleotides and Small Molecule Antibiotics for the Ability to Inhibit the CRD-BP-CD44 RNA Interaction

    PubMed Central

    Thomsen, Dana; Lee, Chow H.

    2014-01-01

    Studies on Coding Region Determinant-Binding Protein (CRD-BP) and its orthologs have confirmed their functional role in mRNA stability and localization. CRD-BP is present in extremely low levels in normal adult tissues, but it is over-expressed in many types of aggressive human cancers and in neonatal tissues. Although the exact role of CRD-BP in tumour progression is unclear, cumulative evidence suggests that its ability to physically associate with target mRNAs is an important criterion for its oncogenic role. CRD-BP has high affinity for the 3′UTR of the oncogenic CD44 mRNA and depletion of CRD-BP in cells led to destabilization of CD44 mRNA, decreased CD44 expression, reduced adhesion and disruption of invadopodia formation. Here, we further characterize the CRD-BP-CD44 RNA interaction and assess specific antisense oligonucleotides and small molecule antibiotics for their ability to inhibit the CRD-BP-CD44 RNA interaction. CRD-BP has a high affinity for binding to CD44 RNA nts 2862–3055 with a Kd of 645 nM. Out of ten antisense oligonucleotides spanning nts 2862–3055, only three antisense oligonucleotides (DD4, DD7 and DD10) were effective in competing with CRD-BP for binding to 32P-labeled CD44 RNA. The potency of DD4, DD7 and DD10 in inhibiting the CRD-BP-CD44 RNA interaction in vitro correlated with their ability to specifically reduce the steady-state level of CD44 mRNA in cells. The aminoglycoside antibiotics neomycin, paramomycin, kanamycin and streptomycin effectively inhibited the CRD-BP-CD44 RNA interaction in vitro. Assessing the potential inhibitory effect of aminoglycoside antibiotics including neomycin on the CRD-BP-CD44 mRNA interaction in cells proved difficult, likely due to their propensity to non-specifically bind nucleic acids. Our results have important implications for future studies in finding small molecules and nucleic acid-based inhibitors that interfere with protein-RNA interactions. PMID:24622399

  13. Assessing specific oligonucleotides and small molecule antibiotics for the ability to inhibit the CRD-BP-CD44 RNA interaction.

    PubMed

    King, Dustin T; Barnes, Mark; Thomsen, Dana; Lee, Chow H

    2014-01-01

    Studies on Coding Region Determinant-Binding Protein (CRD-BP) and its orthologs have confirmed their functional role in mRNA stability and localization. CRD-BP is present in extremely low levels in normal adult tissues, but it is over-expressed in many types of aggressive human cancers and in neonatal tissues. Although the exact role of CRD-BP in tumour progression is unclear, cumulative evidence suggests that its ability to physically associate with target mRNAs is an important criterion for its oncogenic role. CRD-BP has high affinity for the 3'UTR of the oncogenic CD44 mRNA and depletion of CRD-BP in cells led to destabilization of CD44 mRNA, decreased CD44 expression, reduced adhesion and disruption of invadopodia formation. Here, we further characterize the CRD-BP-CD44 RNA interaction and assess specific antisense oligonucleotides and small molecule antibiotics for their ability to inhibit the CRD-BP-CD44 RNA interaction. CRD-BP has a high affinity for binding to CD44 RNA nts 2862-3055 with a Kd of 645 nM. Out of ten antisense oligonucleotides spanning nts 2862-3055, only three antisense oligonucleotides (DD4, DD7 and DD10) were effective in competing with CRD-BP for binding to 32P-labeled CD44 RNA. The potency of DD4, DD7 and DD10 in inhibiting the CRD-BP-CD44 RNA interaction in vitro correlated with their ability to specifically reduce the steady-state level of CD44 mRNA in cells. The aminoglycoside antibiotics neomycin, paramomycin, kanamycin and streptomycin effectively inhibited the CRD-BP-CD44 RNA interaction in vitro. Assessing the potential inhibitory effect of aminoglycoside antibiotics including neomycin on the CRD-BP-CD44 mRNA interaction in cells proved difficult, likely due to their propensity to non-specifically bind nucleic acids. Our results have important implications for future studies in finding small molecules and nucleic acid-based inhibitors that interfere with protein-RNA interactions.

  14. Polymorphism of the bivalent metal vanadates MeV 2O 6 ( Me = Mg, Ca, Mn, Co, Ni, Cu, Zn, Cd)

    NASA Astrophysics Data System (ADS)

    Mocała, Krzysztof; Ziółkowski, Jacek

    1987-08-01

    Based on the literature data, our former findings and additional DTA and high-temperature X-ray studies performed for CdV 2O 6, MgV 2O 6, and MnV 2O 6, a consistent scheme of the phase transformations of the MeV 2O 6 ( Me = Mg, Ca, Mn, Co, Ni, Cu, Zn, Cd) metavanadates is constructed at normal pressure between room temperature and melting points. Three types of structures exist for the considered compounds: brannerite type (B), pseudobrannerite type (P), and NiV 2O 6 type (N). The following phase transformations have been observed: Me = Mg, B → P at 535°C; Me = Mn, B → P at 540°C; Me = Co, N → B at 660°C; Me = Cu, B (with triclinic distortion) → B at 625°C (secondary order); and Me = Cd, B → P at 170°. CaV 2O 6P, NiV 2O 6N, and ZnV 2O 6B exist in unique form in the entire temperature range. P-form seems to be favored by Me of larger ionic radii. N-form seems to appear at a peculiar d-shell structure and small Me size. Preliminary explanation of the dependence of the structure type on Me size is offered. New X-ray data are given for CdV 2O 6B, CdV 2O 6P, MgV 2O 6B, MgV 2O 6P, and MnV 2O 6P.

  15. Dual-targeting hybrid nanoparticles for the delivery of SN38 to Her2 and CD44 overexpressed human gastric cancer

    NASA Astrophysics Data System (ADS)

    Yang, Zhe; Luo, Huiyan; Cao, Zhong; Chen, Ya; Gao, Jinbiao; Li, Yingqin; Jiang, Qing; Xu, Ruihua; Liu, Jie

    2016-06-01

    2 (Her2) and cluster determinant 44 (CD44), is one of the most malignant human tumors which causes a high mortality rate due to rapid tumor growth and metastasis. To develop effective therapeutic treatments, a dual-targeting hybrid nanoparticle (NP) system was designed and constructed to deliver the SN38 agent specifically to human solid gastric tumors bearing excessive Her2 and CD44. The hybrid NPs consist of a particle core made of the biodegradable polymer PLGA and a lipoid shell prepared by conjugating the AHNP peptides and n-hexadecylamine (HDA) to the carboxyl groups of hyaluronic acid (HA). Upon encapsulation of the SN38 agent in the NPs, the AHNP peptides and HA on the NP surface allow preferential delivery of the drug to gastric cancer cells (e.g., HGC27 cells) by targeting Her2 and CD44. Cellular uptake and in vivo biodistribution experiments verified the active targeting and prolonged in vivo circulation properties of the dual-targeting hybrid NPs, leading to enhanced accumulation of the drug in tumors. Furthermore, the anti-proliferation mechanism studies revealed that the inhibition of the growth and invasive activity of HGC27 cells was not only attributed to the enhanced cellular uptake of dual-targeting NPs, but also benefited from the suppression of CD44 and Her2 expression by HA and AHNP moieties. Finally, intravenous administration of the SN38-loaded dual-targeting hybrid NPs induced significant growth inhibition of HGC27 tumor xenografted in nude mice compared with a clinical antitumor agent, Irinotecan (CPT-11), and the other NP formulations. These results demonstrate that the designed dual-targeting hybrid NPs are promising for targeted anti-cancer drug delivery to treat human gastric tumors over-expressing Her2 and CD44. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01749e

  16. Sensitivity of GBM cells to cAMP agonist-mediated apoptosis correlates with CD44 expression and agonist resistance with MAPK signaling.

    PubMed

    Daniel, Paul M; Filiz, Gulay; Mantamadiotis, Theo

    2016-12-01

    In some cell types, activation of the second messenger cAMP leads to increased expression of proapoptotic Bim and subsequent cell death. We demonstrate that suppression of the cAMP pathway is a common event across many cancers and that pharmacological activation of cAMP in glioblastoma (GBM) cells leads to enhanced BIM expression and apoptosis in specific GBM cell types. We identified the MAPK signaling axis as the determinant of cAMP agonist sensitivity in GBM cells, with high MAPK activity corresponding to cAMP resistance and low activity corresponding to sensitization to cAMP-induced apoptosis. Sensitive cells were efficiently killed by cAMP agonists alone, while targeting both the cAMP and MAPK pathways in resistant GBM cells resulted in efficient apoptosis. We also show that CD44 is differentially expressed in cAMP agonist-sensitive and -resistant cells. We thus propose that CD44 may be a useful biomarker for distinguishing tumors that may be sensitive to cAMP agonists alone or cAMP agonists in combination with other pathway inhibitors. This suggests that using existing chemotherapeutic compounds in combination with existing FDA-approved cAMP agonists may fast track trials toward improved therapies for difficult-to-treat cancers, such as GBM.

  17. The rat macrophage scavenger receptor CD163: expression, regulation and role in inflammatory mediator production.

    PubMed

    Polfliet, Machteld M J; Fabriek, Babs O; Daniëls, Wouter P; Dijkstra, Christine D; van den Berg, Timo K

    2006-01-01

    The monoclonal antibody ED2 is widely used to define macrophages (mphi) in the rat. We have recently identified the ED2 antigen as the rat CD163 glycoprotein. CD163 is a member of the scavenger receptor cysteine-rich group B (SRCR-B) family and functions as a scavenger receptor for hemoglobin-haptoglobin complexes. Moreover, CD163 has also been indicated as a marker for alternatively activated mphi. In the current study, we identify rat CD163/ED2-antigen as a marker for mature tissue mphi. Rat CD163 is constitutively expressed on most subpopulations of mature tissue mphi, including splenic red pulp mphi, thymic cortical mphi, Kupffer cells in the liver, resident bone marrow mphi and central nervous system perivascular and meningeal mphi, but is apparently absent from monocytes. Rat CD163 expression can be promoted by glucocorticoids, and this can be further enhanced by IL4. Finally, engagement of rat CD163 on peritoneal mphi induces the production of pro-inflammatory mediators, including NO, IL-1beta, IL-6 and TNF-alpha. Collectively, our findings identify rat CD163 as a broadly expressed macrophage scavenger receptor that may play a role in the activation of mphi during hemolytic and/or inflammatory conditions.

  18. Fine Mapping and Functional Analysis of the Multiple Sclerosis Risk Gene CD6

    PubMed Central

    Swaminathan, Bhairavi; Cuapio, Angélica; Alloza, Iraide; Matesanz, Fuencisla; Alcina, Antonio; García-Barcina, Maria; Fedetz, Maria; Fernández, Óscar; Lucas, Miguel; Órpez, Teresa; Pinto-Medel, Mª Jesus; Otaegui, David; Olascoaga, Javier; Urcelay, Elena; Ortiz, Miguel A.; Arroyo, Rafael; Oksenberg, Jorge R.; Antigüedad, Alfredo; Tolosa, Eva; Vandenbroeck, Koen

    2013-01-01

    CD6 has recently been identified and validated as risk gene for multiple sclerosis (MS), based on the association of a single nucleotide polymorphism (SNP), rs17824933, located in intron 1. CD6 is a cell surface scavenger receptor involved in T-cell activation and proliferation, as well as in thymocyte differentiation. In this study, we performed a haptag SNP screen of the CD6 gene locus using a total of thirteen tagging SNPs, of which three were non-synonymous SNPs, and replicated the recently reported GWAS SNP rs650258 in a Spanish-Basque collection of 814 controls and 823 cases. Validation of the six most strongly associated SNPs was performed in an independent collection of 2265 MS patients and 2600 healthy controls. We identified association of haplotypes composed of two non-synonymous SNPs [rs11230563 (R225W) and rs2074225 (A257V)] in the 2nd SRCR domain with susceptibility to MS (P max(T) permutation = 1×10−4). The effect of these haplotypes on CD6 surface expression and cytokine secretion was also tested. The analysis showed significantly different CD6 expression patterns in the distinct cell subsets, i.e. – CD4+ naïve cells, P = 0.0001; CD8+ naïve cells, P<0.0001; CD4+ and CD8+ central memory cells, P = 0.01 and 0.05, respectively; and natural killer T (NKT) cells, P = 0.02; with the protective haplotype (RA) showing higher expression of CD6. However, no significant changes were observed in natural killer (NK) cells, effector memory and terminally differentiated effector memory T cells. Our findings reveal that this new MS-associated CD6 risk haplotype significantly modifies expression of CD6 on CD4+ and CD8+ T cells. PMID:23638056

  19. Triple negative breast tumors in African-American and Hispanic/Latina women are high in CD44+, low in CD24+, and have loss of PTEN.

    PubMed

    Wu, Yanyuan; Sarkissyan, Marianna; Elshimali, Yahya; Vadgama, Jaydutt V

    2013-01-01

    African-American women have higher mortality from breast cancer than other ethnic groups. The association between poor survival and differences with tumor phenotypes is not well understood. The purpose of this study is to assess the clinical significance of (1) Stem cell-like markers CD44 and CD24; (2) PI3K/Akt pathway associated targets PTEN, activation of Akt, and FOXO1; and (3) the Insulin-like growth factor-1 (IGF-I) and IGF binding protein-3 (IGFBP3) in different breast cancer subtypes, and compare the differences between African-American and Hispanic/Latina women who have similar social-economic-status. A total of N=318 African-American and Hispanic/Latina women, with clinically-annotated information within the inclusion criteria were included. Formalin fixed paraffin embedded tissues from these patients were tested for the different markers using immunohistochemistry techniques. Kaplan-Meier survival-curves and Cox-regression analyses were used to assess Relative Risk and Disease-Free-Survival (DFS). The triple-negative-breast-cancer (TNBC) receptor-subtype was more prevalent among premenopausal women, and the Hormonal Receptor (HR) positive subtype was most common overall. TNBC tumors were more likely to have loss of PTEN, express high Ki67, and have increased CD44+/CD24- expression. TNBC was also associated with higher plasma-IGF-I levels. HR-/HER2+ tumors showed high pAkt, decreased FOXO1, and high CD24+ expression. The loss of PTEN impacted DFS significantly in African Americans, but not in Hispanics/Latinas after adjusted for treatment and other tumor pathological factors. The CD44+/CD24- and CD24+/CD44- phenotypes decreased DFS, but were not independent predictors for DFS. HER2-positive and TNBC type of cancers continued to exhibit significant decrease in DFS after adjusting for the selected biomarkers and treatment. TNBC incidence is high among African-American and Hispanic/Latino women residing in South Los Angeles. Our study also shows for the first

  20. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease.

    PubMed

    Hamblin, Terry J; Orchard, Jenny A; Ibbotson, Rachel E; Davis, Zadie; Thomas, Peter W; Stevenson, Freda K; Oscier, David G

    2002-02-01

    Although the presence or absence of somatic mutations in the immunoglobulin variable region (IgV(H)) genes in chronic lymphocytic leukemia (B-CLL) identifies subtypes with very different prognoses, the assay is technically complex and unavailable to most laboratories. CD38 expression has been suggested as a surrogate marker for the 2 subtypes. IgV(H) mutations and CD38 expression in 145 patients with B-CLL with a long follow-up were compared. The 2 assays gave discordant results in 41 patients (28.3%). Multivariate analysis demonstrated that Binet stage, IgV(H) mutations and CD38 were independent prognostic indicators. Median survival time in patients whose cells had unmutated IgV(H) genes and expressed CD38 was 8 years; in those with mutated IgV(H) genes not expressing CD38, it was 26 years. For those with discordant results, median survival time was 15 years. Thus, although CD38 expression does not identify the same 2 subsets as IgV(H) mutations in CLL, it is an independent risk factor that can be used with IgV(H) mutations and clinical stage to select patients with B-CLL with the worst prognoses. Using cryopreserved cells taken at intervals during the course of the disease, however, changes of CD38 expression over time were demonstrated in 10 of 41 patients. Causes of the variation of CD38 expression require further study. Additional prospective studies are required for comparing CD38 expression with other prognostic factors and for taking sequential measurements during the course of the disease.

  1. Immunohistochemical CD271 expression correlates with melanoma progress in a case-control study.

    PubMed

    Nielsen, Patricia Switten; Riber-Hansen, Rikke; Steiniche, Torben

    2018-06-01

    Putative cancer stem cell (CSC) markers have arisen from melanoma mouse and in vitro models, but their expression in paraffin embedded patient samples relative to clinical outcome remains largely unexplored. Rather than cells of the tumour bulk, conceivably, CSC drive tumour progression. Accordingly, complete eradication may prevent melanoma relapse. Because elevated tumour-cell proliferation is an established indicator of aggressive disease, this study aimed to investigate the correlation between melanoma recurrence and proliferation of putative CSC that express CD271, CD166, or CD20. Additionally, the expression of these markers was studied in naevi, melanomas, and their recurrence. In melanoma patients, 30 with relapse (cases) and 30 without (controls) were matched for tumour thickness, ulceration, Clark level, subtype, site, gender, and age. One paraffin-embedded section of the patients' primary melanoma (n = 60), relapse (n = 21), and naevus (n = 17) were immunohistochemically double-stained for Ki-67/MART1 and single-stained for CD271, CD166, and CD20. Their whole slide images were aligned as virtual quadruple stains. Image analysis established proliferation indices of each putative stem cell marker and the tumour bulk in addition to the markers' percentage level in tumour areas and the epidermis. In cases vs controls, median dermal proliferation indices (no./mm 2 ) were 211 vs 103 (p = 0.04) for CD271, 512 vs 227 (p = 0.3) for CD166, 184 vs 97 (p = 0.3) for CD20, and 95 vs 103 (p = 0.6) for the tumour bulk. Of additional interest, epidermal CD271 + keratinocytes totalled 8.8% in naevi and 0.98% in melanomas (p = 0.0007). Even though differences between naevi and melanomas also were observed for CD166 in both the epidermis (p = 0.002) and dermis (p = 0.006), they were visually less apparent. CD20 + MART1 + cells were absent in half of the melanomas, and all naevi and relapses. In conclusion, high levels of CD271 + Ki-67 + MART1 + cells were linked to

  2. Clinically relevant morphological structures in breast cancer represent transcriptionally distinct tumor cell populations with varied degrees of epithelial-mesenchymal transition and CD44+CD24- stemness

    PubMed Central

    Denisov, Evgeny V.; Skryabin, Nikolay A.; Gerashchenko, Tatiana S.; Tashireva, Lubov A.; Wilhelm, Jochen; Buldakov, Mikhail A.; Sleptcov, Aleksei A.; Lebedev, Igor N.; Vtorushin, Sergey V.; Zavyalova, Marina V.; Cherdyntseva, Nadezhda V.; Perelmuter, Vladimir M.

    2017-01-01

    Intratumor morphological heterogeneity in breast cancer is represented by different morphological structures (tubular, alveolar, solid, trabecular, and discrete) and contributes to poor prognosis; however, the mechanisms involved remain unclear. In this study, we performed 3D imaging, laser microdissection-assisted array comparative genomic hybridization and gene expression microarray analysis of different morphological structures and examined their association with the standard immunohistochemistry scorings and CD44+CD24- cancer stem cells. We found that the intratumor morphological heterogeneity is not associated with chromosomal aberrations. By contrast, morphological structures were characterized by specific gene expression profiles and signaling pathways and significantly differed in progesterone receptor and Ki-67 expression. Most importantly, we observed significant differences between structures in the number of expressed genes of the epithelial and mesenchymal phenotypes and the association with cancer invasion pathways. Tubular (tube-shaped) and alveolar (spheroid-shaped) structures were transcriptionally similar and demonstrated co-expression of epithelial and mesenchymal markers. Solid (large shapeless) structures retained epithelial features but demonstrated an increase in mesenchymal traits and collective cell migration hallmarks. Mesenchymal genes and cancer invasion pathways, as well as Ki-67 expression, were enriched in trabecular (one/two rows of tumor cells) and discrete groups (single cells and/or arrangements of 2-5 cells). Surprisingly, the number of CD44+CD24- cells was found to be the lowest in discrete groups and the highest in alveolar and solid structures. Overall, our findings indicate the association of intratumor morphological heterogeneity in breast cancer with the epithelial-mesenchymal transition and CD44+CD24- stemness and the appeal of this heterogeneity as a model for the study of cancer invasion. PMID:28977854

  3. Hyaluronan receptors in the human ocular surface: a descriptive and comparative study of RHAMM and CD44 in tissues, cell lines and freshly collected samples.

    PubMed

    García-Posadas, Laura; Contreras-Ruiz, Laura; López-García, Antonio; Villarón Álvarez, Sonia; Maldonado, Miguel J; Diebold, Yolanda

    2012-02-01

    The purpose of this study was to demonstrate the presence of the receptor for hyaluronan-mediated motility (RHAMM) in human conjunctival epithelium and in two widely used cell lines from human corneal (HCE) and conjunctival (IOBA-NHC) epithelia. We compared the distribution of RHAMM proteins and mRNAs in human ocular surface tissues (corneal, limbal and conjunctival), HCE and IOBA-NHC cell lines, and corneal and conjunctival epithelia primary samples from healthy donors with the previously identified hyaluronan receptor CD44. We also aimed to determine if soluble CD44 (sCD44) was present in human tears, as it could have a role in the interaction of the tear fluid with hyaluronan. Protein expression was evaluated by Western blots and immunofluorescence microscopy. mRNA expression was evaluated by RT-PCR and Q-PCR. sCD44 was analyzed by ELISA in culture supernatants and in human tears. We describe the expression of RHAMM in human healthy conjunctiva and in HCE and IOBA-NHC cells at both protein and mRNA levels, and the presence of sCD44 in human tears. Furthermore, we detected CD44 and sCD44 expression variations in in vitro inflammatory conditions. This study also focused on the necessary caution with which the conclusions extracted from cell lines should be made, and in the great value of using primary samples as often as possible.

  4. [Effect of CD-14 and toll like receptors on the expression of interleukin-6 induced by lipopolysaccharides of Porphyromonas endodontalis].

    PubMed

    Jia, Ge; Qiu, Li-Hong; Li, Ren; Lü, You; Yu, Ya-Qiong; Zhong, Ming

    2011-09-01

    To evaluate the effect of cluster of differentiation 14 (CD-14) and Toll like receptors (TLR) on the expression of interleukin-6 (IL-6) mRNA induced by Porphyromonas endodontalis (Pe) lipopolysaccharides (LPS). MC3T3-E1 cells were treated with 10 mg/L Pe-LPS for different hours, and the cells uninvolved by anything as the blank group. The expression of IL-6 was detected by reverse transcription polymerse chain reaction (RT-PCR) and enzyme-liked immunosorbent assay (ELISA). The expression of CD-14, TLR-2 and TLR-4 mRNA was observed at different time point (0 - 24 h) by RT-PCR. The protein of CD-14, TLR-2 and TLR-4 was analyzed with a flow cytometer. MC3T3-E1 cells were pretreated with anti-CD-14, anti-TLR-2 and anti-TLR-4 antibody for 1 h, and then cells were stimulated with 10 mg/L Pe-LPS for 6 h. The expression of IL-6 mRNA was examined by RT-PCR. Statistical analysis was performed using one-way ANOVA Dunnett-t test with SPSS 11.0 software package. The IL-6 mRNA and proteins increased significantly after treatment with Pe-LPS. When MC3T3-E1 cells treated by Pe-LPS for 6 h, the expression of proteins soared from (11.696 ± 0.672) ng/L to (36.534 ± 0.574) ng/L (P < 0.01); In the control group, the CD-14 and TLR-4 mRNA are ambly-expression, and the ratios of CD-14 and TLR-4 positive cells were (39.038 ± 3.131)% and (11.438 ± 0.385)% respectively in MC3T3-E1. After treatment by Pe-LPS, the expression of CD-14 and TLR-4 mRNA increased significantly, and the ratios of CD-14 and TLR-4 positive cells markedly increased to (62.407 ± 1.800)% and (21.367 ± 2.271)%. TLR-2 expression did not change apparently after Pe-LPS treatment. The expression of IL-6 mRNA was partly inhibited by anti-CD-14 or anti-TLR-4 antibody, but not by TLR-2. Pe-LPS can induce the expression of IL-6 in osteoblast MC3T3-E1 through CD-14 and TLR-4, but not TLR-2.

  5. Immunohistochemistry Analysis of CD44, EGFR, and p16 in Oral Cavity and Oropharyngeal Squamous Cell Carcinoma.

    PubMed

    Cohen, Erin R; Reis, Isildinha M; Gomez, Carmen; Pereira, Lutecia; Freiser, Monika E; Hoosien, Gia; Franzmann, Elizabeth J

    2017-08-01

    Objectives We analyze the relationship between CD44, epidermal growth factor receptor (EGFR), and p16 expression in oral cavity and oropharyngeal cancers in a diverse population. We also describe whether particular patterns of staining are associated with progression-free survival and overall survival. Study Design Prospective study, single-blind to pathologist and laboratory technologist. Setting Hospital based. Subjects and Methods Immunohistochemistry, comprising gross staining and cellular expression, was performed and interpreted in a blinded fashion on 24 lip/oral cavity and 40 oropharyngeal cancer specimens collected between 2007 and 2012 from participants of a larger study. Information on overall survival and progression-free survival was obtained from medical records. Results Nineteen cases were clinically p16 positive, 16 of which were oropharyngeal. Oral cavity lesions were more likely to exhibit strong CD44 membrane staining ( P = .0002). Strong CD44 membrane and strong EGFR membrane and/or cytoplasmic staining were more common in p16-negative cancers ( P = .006). Peripheral/mixed gross p16 staining pattern was associated with worse survival than the universal staining on univariate and multivariate analyses ( P = .006, P = .030). This held true when combining gross and cellular localization for p16. For CD44, universal gross staining demonstrated poorer overall survival compared with the peripheral/mixed group ( P = .039). CD44 peripheral/mixed group alone and when combined with universal p16 demonstrated the best survival on multivariate analysis ( P = .010). Conclusion In a diverse population, systematic analysis applying p16, CD44, and EGFR gross staining and cellular localization on immunohistochemistry demonstrates distinct patterns that may have prognostic potential exceeding current methods. Larger studies are warranted to investigate these findings further.

  6. CD52, CD22, CD26, EG5 and IGF-1R expression in thymic malignancies.

    PubMed

    Remon, J; Abedallaa, N; Taranchon-Clermont, E; Bluthgen, V; Lindsay, C R; Besse, B; Thomas de Montpréville, V

    2017-06-01

    Thymic epithelial tumours are rare cancers for which new treatment options are required. Identification of putative predictive markers is important for developing clinical trials. We studied the expression of five putative predictive biomarkers, potentially actionable by approved experimental drugs. CD52, CD22, CD26, EG5, and IGF-1R expression were investigated by immunohistochemistry in formalin-fixed surgical samples of thymic epithelial tumour patients. All samples containing 10% positive epithelial tumour cells, independent of tumour cell intensity, were considered as positive. Correlation with histological subtype was performed. 106 surgical samples (89 thymomas, 12 thymic carcinoma, and 5 thymic neuroendocrine tumours) were evaluated. Overall, CD52, CD22, CD26, EG5 and IGF-1R expression was observed in 7%, 42%, 25%, 42% and 77% of samples, respectively. CD52 expression was more frequent in B2 and B3 thymoma. All TET subtypes stained for CD22, mainly AB thymoma (68%). CD26 expression also correlated with AB thymoma (68%), and A thymoma (50%) subtype, while IGFR1 was the most common marker expressed by thymic carcinoma samples (92%), followed by EG5 (60%). Only EG5 expression was significantly higher in thymic carcinomas than in thymomas (75% vs. 38%, p=0.026). Our data were consistent with a previous study of IGF-1R expression. Based on their expression, activity of agents targeting CD52, CD 22, CD26 and EG5 could be further explored in TET patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Alternate Splicing of CD44 Messenger RNA in Prostate Cancer Growth

    DTIC Science & Technology

    2009-10-01

    CT-cells have endog- enous CT stably knocked down to undetectable levels using anti-CT hammerhead ribozymes [25]. Salmon CT (BAChem, Torrance, CA) was...and cells called CTR-, derived from PC-3M cells after anti-CT receptor ribozyme knock- down of CTR[18]. CTR-cells have very low levels of CD44v

  8. Notch1 inhibition alters the CD44hi/CD24lo population and reduces the formation of brain metastases from breast cancer.

    PubMed

    McGowan, Patricia M; Simedrea, Carmen; Ribot, Emeline J; Foster, Paula J; Palmieri, Diane; Steeg, Patricia S; Allan, Alison L; Chambers, Ann F

    2011-07-01

    Brain metastasis from breast cancer is an increasingly important clinical problem. Here we assessed the role of CD44(hi)/CD24(lo) cells and pathways that regulate them, in an experimental model of brain metastasis. Notch signaling (mediated by γ-secretase) has been shown to contribute to maintenance of the cancer stem cell (CSC) phenotype. Cells sorted for a reduced stem-like phenotype had a reduced ability to form brain metastases compared with unsorted or CD44(hi)/CD24(lo) cells (P < 0.05; Kruskal-Wallis). To assess the effect of γ-secretase inhibition, cells were cultured with DAPT and the CD44/CD24 phenotypes quantified. 231-BR cells with a CD44(hi)/CD24(lo) phenotype was reduced by about 15% in cells treated with DAPT compared with DMSO-treated or untreated cells (P = 0.001, ANOVA). In vivo, mice treated with DAPT developed significantly fewer micro- and macrometastases compared with vehicle treated or untreated mice (P = 0.011, Kruskal-Wallis). Notch1 knockdown reduced the expression of CD44(hi)/CD24(lo) phenotype by about 20%. In vitro, Notch1 shRNA resulted in a reduction in cellular growth at 24, 48, and 72 hours time points (P = 0.033, P = 0.002, and P = 0.009, ANOVA) and about 60% reduction in Matrigel invasion was observed (P < 0.001, ANOVA). Cells transfected with shNotch1 formed significantly fewer macrometastases and micrometastases compared with scrambled shRNA or untransfected cells (P < 0.001; Kruskal-Wallis). These data suggest that the CSC phenotype contributes to the development of brain metastases from breast cancer, and this may arise in part from increased Notch activity. ©2011 AACR.

  9. CD44 expression in endothelial colony-forming cells regulates neurovascular trophic effect

    PubMed Central

    Sakimoto, Susumu; Marchetti, Valentina; Aguilar, Edith; Lee, Kelsey; Usui, Yoshihiko; Bucher, Felicitas; Trombley, Jennifer K.; Fallon, Regis; Wagey, Ravenska; Peters, Carrie; Scheppke, Elizabeth L.; Westenskow, Peter D.

    2017-01-01

    Vascular abnormalities are a common component of eye diseases that often lead to vision loss. Vaso-obliteration is associated with inherited retinal degenerations, since photoreceptor atrophy lowers local metabolic demands and vascular support to those regions is no longer required. Given the degree of neurovascular crosstalk in the retina, it may be possible to use one cell type to rescue another cell type in the face of severe stress, such as hypoxia or genetically encoded cell-specific degenerations. Here, we show that intravitreally injected human endothelial colony-forming cells (ECFCs) that can be isolated and differentiated from cord blood in xeno-free media collect in the vitreous cavity and rescue vaso-obliteration and neurodegeneration in animal models of retinal disease. Furthermore, we determined that a subset of the ECFCs was more effective at anatomically and functionally preventing retinopathy; these cells expressed high levels of CD44, the hyaluronic acid receptor, and IGFBPs (insulin-like growth factor–binding proteins). Injection of cultured media from ECFCs or only recombinant human IGFBPs also rescued the ischemia phenotype. These results help us to understand the mechanism of ECFC-based therapies for ischemic insults and retinal neurodegenerative diseases. PMID:28138561

  10. Effect of dacarbazine on CD44 in live melanoma cells as measured by atomic force microscopy-based nanoscopy.

    PubMed

    Huang, Xun; He, Jiexiang; Zhang, Huan-Tian; Sun, Kai; Yang, Jie; Wang, Huajun; Zhang, Hongxin; Guo, Zhenzhao; Zha, Zhen-Gang; Zhou, Changren

    2017-01-01

    CD44 ligand-receptor interactions are known to be involved in regulating cell migration and tumor cell metastasis. High expression levels of CD44 correlate with a poor prognosis of melanoma patients. In order to understand not only the mechanistic basis for dacarbazine (DTIC)-based melanoma treatment but also the reason for the poor prognosis of melanoma patients treated with DTIC, dynamic force spectroscopy was used to structurally map single native CD44-coupled receptors on the surface of melanoma cells. The effect of DTIC treatment was quantified by the dynamic binding strength and the ligand-binding free-energy landscape. The results demonstrated no obvious effect of DTIC on the unbinding force between CD44 ligand and its receptor, even when the CD44 nanodomains were reduced significantly. However, DTIC did perturb the kinetic and thermodynamic interactions of the CD44 ligand-receptor, with a resultant greater dissociation rate, lower affinity, lower binding free energy, and a narrower energy valley for the free-energy landscape. For cells treated with 25 and 75 μg/mL DTIC for 24 hours, the dissociation constant for CD44 increased 9- and 70-fold, respectively. The CD44 ligand binding free energy decreased from 9.94 for untreated cells to 8.65 and 7.39 kcal/mol for DTIC-treated cells, which indicated that the CD44 ligand-receptor complexes on DTIC-treated melanoma cells were less stable than on untreated cells. However, affinity remained in the micromolar range, rather than the millimolar range associated with nonaffinity ligands. Hence, the CD44 receptor could still be activated, resulting in intracellular signaling that could trigger a cellular response. These results demonstrate DTIC perturbs, but not completely inhibits, the binding of CD44 ligand to membrane receptors, suggesting a basis for the poor prognosis associated with DTIC treatment of melanoma. Overall, atomic force microscopy-based nanoscopic methods offer thermodynamic and kinetic insight into

  11. Effect of dacarbazine on CD44 in live melanoma cells as measured by atomic force microscopy-based nanoscopy

    PubMed Central

    Huang, Xun; He, Jiexiang; Zhang, Huan-tian; Sun, Kai; Yang, Jie; Wang, Huajun; Zhang, Hongxin; Guo, Zhenzhao; Zha, Zhen-gang; Zhou, Changren

    2017-01-01

    CD44 ligand–receptor interactions are known to be involved in regulating cell migration and tumor cell metastasis. High expression levels of CD44 correlate with a poor prognosis of melanoma patients. In order to understand not only the mechanistic basis for dacarbazine (DTIC)-based melanoma treatment but also the reason for the poor prognosis of melanoma patients treated with DTIC, dynamic force spectroscopy was used to structurally map single native CD44-coupled receptors on the surface of melanoma cells. The effect of DTIC treatment was quantified by the dynamic binding strength and the ligand-binding free-energy landscape. The results demonstrated no obvious effect of DTIC on the unbinding force between CD44 ligand and its receptor, even when the CD44 nanodomains were reduced significantly. However, DTIC did perturb the kinetic and thermodynamic interactions of the CD44 ligand–receptor, with a resultant greater dissociation rate, lower affinity, lower binding free energy, and a narrower energy valley for the free-energy landscape. For cells treated with 25 and 75 μg/mL DTIC for 24 hours, the dissociation constant for CD44 increased 9- and 70-fold, respectively. The CD44 ligand binding free energy decreased from 9.94 for untreated cells to 8.65 and 7.39 kcal/mol for DTIC-treated cells, which indicated that the CD44 ligand–receptor complexes on DTIC-treated melanoma cells were less stable than on untreated cells. However, affinity remained in the micromolar range, rather than the millimolar range associated with nonaffinity ligands. Hence, the CD44 receptor could still be activated, resulting in intracellular signaling that could trigger a cellular response. These results demonstrate DTIC perturbs, but not completely inhibits, the binding of CD44 ligand to membrane receptors, suggesting a basis for the poor prognosis associated with DTIC treatment of melanoma. Overall, atomic force microscopy-based nanoscopic methods offer thermodynamic and kinetic insight

  12. CD44-positive cells are candidates for astrocyte precursor cells in developing mouse cerebellum.

    PubMed

    Cai, Na; Kurachi, Masashi; Shibasaki, Koji; Okano-Uchida, Takayuki; Ishizaki, Yasuki

    2012-03-01

    Neural stem cells are generally considered to be committed to becoming precursor cells before terminally differentiating into either neurons or glial cells during neural development. Neuronal and oligodendrocyte precursor cells have been identified in several areas in the murine central nervous system. The presence of astrocyte precursor cells (APCs) is not so well understood. The present study provides several lines of evidence that CD44-positive cells are APCs in the early postnatal mouse cerebellum. In developing mouse cerebellum, CD44-positive cells, mostly located in the white matter, were positive for the markers of the astrocyte lineage, but negative for the markers of mature astrocytes. CD44-positive cells were purified from postnatal cerebellum by fluorescence-activated cell sorting and characterized in vitro. In the absence of any signaling molecule, many cells died by apoptosis. The surviving cells gradually expressed glial fibrillary acidic protein, a marker for mature astrocytes, indicating that differentiation into mature astrocytes is the default program for these cells. The cells produced no neurospheres nor neurons nor oligodendrocytes under any condition examined, indicating these cells are not neural stem cells. Leukemia inhibitory factor greatly promoted astrocytic differentiation of CD44-positive cells, whereas bone morphogenetic protein 4 (BMP4) did not. Fibroblast growth factor-2 was a potent mitogen for these cells, but was insufficient for survival. BMP4 inhibited activation of caspase-3 and greatly promoted survival, suggesting a novel role for BMP4 in the control of development of astrocytes in cerebellum. We isolated and characterized only CD44 strongly positive large cells and discarded small and/or CD44 weakly positive cells in this study. Further studies are necessary to characterize these cells to help determine whether CD44 is a selective and specific marker for APCs in the developing mouse cerebellum. In conclusion, we succeeded in

  13. [Expression of molecular markers detected by immunohistochemistry and risk of lymph node metastasis in stage T1 and T2 colorecrectal cancers].

    PubMed

    Wang, Fu-long; Wan, De-sen; Lu, Zhen-hai; Fang, Yu-jing; Li, Li-ren; Chen, Gong; Wu, Xiao-jun; Ding, Pei-rong; Kong, Ling-heng; Lin, Jun-zhong; Pan, Zhi-zhong

    2013-04-01

    To study the molecular risk factors of lymph node metastasis in stage T1 and T2 colorectal cancers by tissue microarray and immunohistochemistry techniques. Two hundred and three patients with stage T1 and T2 colorectal carcinoma who underwent radical surgery from 1999 to 2010 in our department were included in this study. Their clinicopathological data were retrospectively analyzed. Expression of the following 14 molecular markers were selected and assayed by tissue microarray and immunohistochemistry: VEGFR-3, HER2, CD44v6, CXCR4, TIMP-1, EGFR, IGF-1R, IGF-2, IGFBP-1, ECAD, MMP-9, RKIP, CD133, MSI. Chi-squared test and logistic regression were used to evaluate the variables as potential risk factors for lymph node metastasis. The positive expression rates of biomarkers were as following: VEGFR-3 (44.3%), EGFR (30.5%), HER-2 (28.1%), IGF-1R (63.5%), IGF-2 (44.8%), IGFBP-1 (70.9%), ECAD (45.8%), CD44v6 (51.2%), MMP-9 (44.3%), TIMP-1 (41.4%), RKIP (45.3%), CXCR4 (40.9%), and CD133 (49.8%). The positive rate of MSI expression was 22.2%. Both univariate and multivariate analyses showed that VEGFR-3, HER-2, and TIMP-1 were significant predictors of lymph node metastasis. Univariate analysis showed that CD44v6 and CXCR4 were significant significant predictors of lymph node metastasis. VEGFR-3, HER2 and TIMP-1 are independent factors for lymph node metastasis in stage T1 and T2 colorectal cancers.

  14. CD44-mediated activation of α5β1-integrin, cortactin and paxillin signaling underpins adhesion of basal-like breast cancer cells to endothelium and Fibronectin-enriched matrices

    PubMed Central

    McFarlane, Suzanne; McFarlane, Cheryl; Montgomery, Nicola; Hill, Ashleigh; Waugh, David J.J.

    2015-01-01

    CD44 expression is elevated in basal-like breast cancer (BLBC) tissue, and correlates with increased efficiency of distant metastasis in patients and experimental models. We sought to characterize mechanisms underpinning CD44-promoted adhesion of BLBC cells to vascular endothelial monolayers and extracellular matrix (ECM) substrates. Stimulation with hyaluronan (HA), the native ligand for CD44, increased expression and activation of β1-integrin receptors, and increased α5-integrin subunit expression. Adhesion assays confirmed that CD44-signalling potentiated BLBC cell adhesion to endothelium and Fibronectin in an α5B1-integrin-dependent mechanism. Co-immunoprecipitation experiments confirmed HA-promoted association of CD44 with talin and the β1-integrin chain in BLBC cells. Knockdown of talin inhibited CD44 complexing with β1-integrin and repressed HA-induced, CD44-mediated activation of β1-integrin receptors. Immunoblotting confirmed that HA induced rapid phosphorylation of cortactin and paxillin, through a CD44-dependent and β1-integrin-dependent mechanism. Knockdown of CD44, cortactin or paxillin independently attenuated the adhesion of BL-BCa cells to endothelial monolayers and Fibronectin. Accordingly, we conclude that CD44 induced, integrin-mediated signaling not only underpins efficient adhesion of BLBC cells to BMECs to facilitate extravasation but initiates their adhesion to Fibronectin, enabling penetrant cancer cells to adhere more efficiently to underlying Fibronectin-enriched matrix present within the metastatic niche. PMID:26447611

  15. Endocytosed factor V is trafficked to CD42b+ proplatelet extensions during differentiation of human umbilical cord blood-derived megakaryocytes.

    PubMed

    Gertz, Jacqueline M; McLean, Kelley C; Bouchard, Beth A

    2018-05-15

    Plasma- and platelet-derived factor Va are essential for thrombin generation catalyzed by the prothrombinase complex; however, several observations demonstrate that the platelet-derived cofactor, which is formed following megakaryocyte endocytosis and modification of the plasma procofactor, factor V, is more hemostatically relevant. Factor V endocytosis, as a function of megakaryocyte differentiation and proplatelet formation, was assessed by flow cytometry and microscopy in CD34 + hematopoietic progenitor cells isolated from human umbilical cord blood and cultured for 12 days in the presence of cytokines to induce ex vivo differentiation into megakaryocytes. Expression of an early marker of megakaryocyte differentiation, CD41, endocytosis of factor V, and the percentage of CD41 + cells that endocytosed factor V increased from days 6 to 12 of differentiation. In contrast, statistically significant decreases in expression of the stem cell marker, CD34, and in the percentage of CD34 + cells that endocytosed factor V were observed. A statistically significant increase in the expression of CD42b, a late marker of megakaryocyte differentiation, was also observed over time, such that by Day 12, all CD42b + cells endocytosed factor V and expressed CD41. This endocytosed factor V was trafficked to proplatelet extensions and was localized in a punctate pattern in the cytoplasm consistent with its storage in α-granules. In conclusion, loss of CD34 and expression of CD42b define cells capable of factor V endocytosis and trafficking to proplatelet extensions during differentiation of megakaryocytes ex vivo from progenitor cells isolated from umbilical cord blood. © 2018 Wiley Periodicals, Inc.

  16. The natural flavonoid apigenin sensitizes human CD44+ prostate cancer stem cells to cisplatin therapy.

    PubMed

    Erdogan, Suat; Turkekul, Kader; Serttas, Rıza; Erdogan, Zeynep

    2017-04-01

    Prostate cancer (PCa) is the second most common type of cancer and the fifth leading cause of cancer-related death among men. Development of chemoresistance, tumor relapse and metastasis remain major barriers to effective treatment and all been identified to be associated with cancer stem cells (CSCs). Natural flavonoids such as apigenin have been shown to have the ability to improve the therapeutic efficacy of common chemotherapy agents through CSCs sensitization. Thus, the aim of this study was to evaluate the combination of apigenin with cisplatin on CD44 + PCa stem cell growth and migration. Platinum-based anti-neoplastic drugs have been used to treat a number of malignancies including PCa. However, acquired resistance and side effects unfortunately have limited cisplatin's use. A CD44 + subpopulation was isolated from human androgen-independent PC3 PCa cells by using human CD44-PE antibody. IC 50 values were determined by MTT test. RT-qPCR, Western blot analyses and image-based cytometer were used to investigate apoptosis, cell cycle and their underlying molecular mechanisms. Cell migration was evaluated by wound healing test. The combination of the IC 50 doses of apigenin (15μM) and cisplatin (7.5μM) for 48h significantly enhanced cisplatin's cytotoxic and apoptotic effects through downregulation of Bcl-2, sharpin and survivin; and upregulation of caspase-8, Apaf-1 and p53 mRNA expression. The combined therapy suppressed the phosphorylation of p-PI3K and p-Akt, inhibited the protein expression of NF-κB, and downregulated the cell cycle by upregulating p21, as well as cyclin dependent kinases CDK-2, -4, and -6. Apigenin significantly increased the inhibitory effects of cisplatin on cell migration via downregulation of Snail expression. In conclusion, our study showed the possible therapeutic approach of using apigenin to potentially increase the effects of cisplatin by targeting CSCs subset in prostate cancer. Copyright © 2017 Elsevier Masson SAS. All

  17. Effects of CD44 and E-cadherin overexpression on the proliferation, adhesion and invasion of ovarian cancer cells.

    PubMed

    Mao, Meiya; Zheng, Xiaojiao; Jin, Bohong; Zhang, Fubin; Zhu, Linyan; Cui, Lining

    2017-12-01

    CD44 is a prognostic indicator of shorter survival time in ovarian cancer. E-cadherin fragmentation promotes the progression of ovarian cancer. However, the effects of CD44 and E-cadherin overexpression on ovarian cancer cells have remained elusive. The present study aimed to investigate the effects of overexpression of CD44 and E-cadherin on cell proliferation, adhesion and invasion of SKOV-3 and OVCAR-3 ovarian cancer cells. Overexpression of CD44 and E-cadherin was achieved by transfecting SKOV-3 and OVCAR-3 cells with viruses carrying the CD44 or E-cadherin gene, respectively. Expression of CD44 and E-cadherin was detected by western blot analysis. The proliferation of SKOV-3 and OVCAR-3 cells was measured by a Cell Counting Kit-8 at 0, 24 and 48 h after viral transfection. The adhesion ability of SKOV-3 and OVCAR-3 cells to the endothelial layer was detected. A Transwell invasion assay was utilized to assess the invasion ability of the cells. Overexpression of CD44 and E-cadherin in SKOV-3 and OVCAR-3 cells was confirmed by western blot. Compared with the blank or negative control groups, the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells exhibited an increased cell proliferation rate at 24 and 48 h, whereas overexpression of E-cadherin did not alter the proliferation of these cells. Furthermore, compared with the blank and negative control groups, the cell adhesion and invasion ability in the CD44 overexpression groups of SKOV-3 and OVCAR-3 cells was markedly higher. There were no significant differences in adhesion ability between the E-cadherin overexpression group and the blank/negative control group. Of note, overexpression of E-cadherin decreased the invasive ability of SKOV-3 and OVCAR-3 cells. In conclusion, Overexpression of CD44 increased the proliferation, adhesion and invasion of ovarian cancer cells, while overexpression of E-cadherin decreased the invasion of ovarian cancer cells.

  18. [Correlation of CD82 and hTERT expressions and HPV infection with penile cancer].

    PubMed

    Zhai, Jian-Po; Li, Ming; Wang, Qi-Yan; Wei, Dong; Xu, Ke-Xin

    2011-09-01

    To study the correlation of the expressions of CD82 and hTERT and HPV infection with the clinical pathological features of penile cancer and identify their prognostic significance in the lymphatic metastasis of the disease. A total of 44 patients underwent partial or radical penectomy and lymph node dissection. The expressions of CD82 and hTERT were determined by immunohistochemistry, and HPV infection was detected by PCR. The positive rates of CD82, hTERT, and HPV DNA in penile carcinoma were 47.7%, 38.6% and 25.9%, respectively. The amplified HPV DNA was HPV-16. The pathological stage and hTERT expression were positively correlated with inguinal lymph node metastasis of penile cancer (P = 0.032, P = 0.041), and so was the pathological stage with the expression of CD82 (P = 0.045), but neither the pathological stage, nor the expression of CD82 or the positive rate of HPV DNA showed any correlation with lymph node metastasis (P = 0.627, P = 0.094, P = 0.633). The pathological grade and hTERT expression are independent prognostic factors for lymph node metastasis in penile carcinoma. These features help the prognosis and identification of the patient at the risk of nodal metastasis.

  19. Abnormal proliferation of CD4- CD8+ gammadelta+ T cells with chromosome 6 anomaly: role of Fas ligand expression in spontaneous regression of the cells.

    PubMed

    Ichikawa, N; Kitano, K; Ito, T; Nakazawa, T; Shimodaira, S; Ishida, F; Kiyosawa, K

    1999-04-01

    We report a case of granular lymphocyte proliferative disorder accompanied with hemolytic anemia and neutropenia. Phenotypes of the cells were T cell receptor gammadelta+ CD3+ CD4- CD8+ CD16+ CD56- CD57-. Southern blot analysis of T cell receptor beta and gamma chains demonstrated rearranged bands in both. Chromosomal analysis after IL-2 stimulation showed deletion of chromosome 6. Sorted gammadelta+ T cells showed an increase in Fas ligand expression compared with the levels in sorted alphabeta+ T cells. The expression of Fas ligand on these gammadelta+ T cells increased after IL-2 stimulation. The patient's anemia improved along with a decrease in granular lymphocyte count and disappearance of the abnormal karyotype without treatment. The expression of Fas ligand may be involved in spontaneous regression of granular lymphocyte proliferation with hemolytic anemia.

  20. Induction of resistance to diabetes in non-obese diabetic mice by targeting CD44 with a specific monoclonal antibody

    PubMed Central

    Weiss, Lola; Slavin, Shimon; Reich, Shoshana; Cohen, Patrizia; Shuster, Svetlana; Stern, Robert; Kaganovsky, Ella; Okon, Elimelech; Rubinstein, Ariel M.; Naor, David

    2000-01-01

    Inflammatory destruction of insulin-producing β cells in the pancreatic islets is the hallmark of insulin-dependent diabetes mellitus, a spontaneous autoimmune disease of non-obese diabetic mice resembling human juvenile (type I) diabetes. Histochemical analysis of diabetic pancreata revealed that mononuclear cells infiltrating the islets and causing autoimmune insulitis, as well as local islet cells, express the CD44 receptor; hyaluronic acid, the principal ligand of CD44, is detected in the islet periphery and islet endothelium. Injection of anti-CD44 mAb 1 hr before cell transfer of diabetogenic splenocytes and subsequently on alternate days for 4 weeks induced considerable resistance to diabetes in recipient mice, reflected by reduced insulitis. Contact sensitivity to oxazolone was not influenced by this treatment. A similar antidiabetic effect was observed even when the anti-CD44 mAb administration was initiated at the time of disease onset: i.e., 4–7 weeks after cell transfer. Administration of the enzyme hyaluronidase also induced appreciable resistance to insulin-dependent diabetes mellitus, suggesting that the CD44–hyaluronic acid interaction is involved in the development of the disease. These findings demonstrate that CD44-positive inflammatory cells may be a potential therapeutic target in insulin-dependent diabetes. PMID:10618410

  1. Lipid Raft Association Restricts CD44-Ezrin Interaction and Promotion of Breast Cancer Cell Migration

    PubMed Central

    Donatello, Simona; Babina, Irina S.; Hazelwood, Lee D.; Hill, Arnold D.K.; Nabi, Ivan R.; Hopkins, Ann M.

    2012-01-01

    Cancer cell migration is an early event in metastasis, the main cause of breast cancer-related deaths. Cholesterol-enriched membrane domains called lipid rafts influence the function of many molecules, including the raft-associated protein CD44. We describe a novel mechanism whereby rafts regulate interactions between CD44 and its binding partner ezrin in migrating breast cancer cells. Specifically, in nonmigrating cells, CD44 and ezrin localized to different membranous compartments: CD44 predominantly in rafts, and ezrin in nonraft compartments. After the induction of migration (either nonspecific or CD44-driven), CD44 affiliation with lipid rafts was decreased. This was accompanied by increased coprecipitation of CD44 and active (threonine-phosphorylated) ezrin-radixin-moesin (ERM) proteins in nonraft compartments and increased colocalization of CD44 with the nonraft protein, transferrin receptor. Pharmacological raft disruption using methyl-β-cyclodextrin also increased CD44-ezrin coprecipitation and colocalization, further suggesting that CD44 interacts with ezrin outside rafts during migration. Conversely, promoting CD44 retention inside lipid rafts by pharmacological inhibition of depalmitoylation virtually abolished CD44-ezrin interactions. However, transient single or double knockdown of flotillin-1 or caveolin-1 was not sufficient to increase cell migration over a short time course, suggesting complex crosstalk mechanisms. We propose a new model for CD44-dependent breast cancer cell migration, where CD44 must relocalize outside lipid rafts to drive cell migration. This could have implications for rafts as pharmacological targets to down-regulate cancer cell migration. PMID:23031255

  2. Over-expression of CD8+ T-cell activation is associated with decreased CD4+ cells in patients seeking treatment of Alcohol Use Disorder.

    PubMed

    Zuluaga, Paola; Sanvisens, Arantza; Martínez-Cáceres, Eva; Teniente, Aina; Tor, Jordi; Muga, Robert

    2017-11-01

    Harmful alcohol consumption may have an impact on the adaptive immune system through an imbalance in T cell subpopulations and changes in cell activation. We aimed to analyze profiles of CD4 and CD8T cell activation in patients with alcohol use disorder (AUD). We used a cross-sectional study with patients seeking treatment of the disorder. Blood samples for immunophenotyping were obtained at admission. Profiles of T cell activation were defined: (I) CD38 + /HLA-DR + , (II) CD38 + /HLA-DR - , (III) CD38 - /HLA-DR + , (IV) CD38 - /HLA-DR - and compared with healthy controls. We calculated a CD8 + T cell activation indicator (AI) that was defined as the quotient of non-activated cells (CD38 - /HLA-DR - ) and activated cells (CD38 + /HLA-DR + ). 60 patients were eligible (83%M); median age was 49 years [IQR: 44-54] and alcohol consumption was 145g/day [IQR: 90-205]. Mean±SD of CD38 + /HLA-DR - was 50.3±50.6 cells/μL in patients and 33.5±24.5 cells/μL in controls (p=0.03), for the CD38 - /HLA-DR + it was 61±62.2 cells/μL in patients and 21.2±17.3 cells/μL in controls (p<0.001) and for the CD38 + /HLA-DR + it was 20.2±15.6 cells/μL in patients and 10.8±10.3 cells/μL in controls (p<0.001). In patients, an inverse correlation was observed between absolute number and percentage of CD4 + T cells, and the percentage of CD38 + /HLA-DR + CD8 + T cells (r=0.37, p=0.003; r=0.2, p=0.086, respectively). Patients with AUD have an increased expression of immune activation with respect to healthy individuals. This excess of activated CD8 + T cells correlates with the absolute CD4 + T cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. CD44-tropic polymeric nanocarrier for breast cancer targeted rapamycin chemotherapy.

    PubMed

    Zhao, Yunqi; Zhang, Ti; Duan, Shaofeng; Davies, Neal M; Forrest, M Laird

    2014-08-01

    In contrast with the conventional targeting of nanoparticles to cancer cells with antibody or peptide conjugates, a hyaluronic acid (HA) matrix nanoparticle with intrinsic-CD44-tropism was developed to deliver rapamycin for localized CD44-positive breast cancer treatment. Rapamycin was chemically conjugated to the particle surface via a novel sustained-release linker, 3-amino-4-methoxy-benzoic acid. The release of the drug from the HA nanoparticle was improved by 42-fold compared to HA-temsirolimus in buffered saline. In CD44-positive MDA-MB-468 cells, using HA as drug delivery carrier, the cell viability was significantly decreased compared to free rapamycin and CD44-blocked controls. Rat pharmacokinetics showed that the area under the curve of HA nanoparticle formulation was 2.96-fold greater than that of the free drug, and the concomitant total body clearance was 8.82-fold slower. Moreover, in immunocompetent BALB/c mice bearing CD44-positive 4T1.2neu breast cancer, the rapamycin-loaded HA particles significantly improved animal survival, suppressed tumor growth and reduced the prevalence of lung metastasis. This study demonstrates increased efficiency of rapamycin delivery and consequential treatment effects in a breast cancer model by hyaluronic acid - L-rapamycin conjugates with intrinsic tropism for CD44-positive cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Semisolid forming of 44MnSiV6 microalloyed steel

    NASA Astrophysics Data System (ADS)

    Plata, Gorka; Lozares, Jokin; Hurtado, Iñaki; Azpilgain, Zigor; Idoyaga, Zuriñe

    2018-05-01

    Globalisation is forcing many sectors to be more cost-effective due to the low manpower cost of developing countries. This, in combination with European trends of green production and reduction of emissions, enhances the necessity of advanced technologies to remain at the forefront of the market. It is precisely in this field where the Semisolid forming (SSF) exhibits a great potential. In Mondragon Unibertsitatea, it has been demonstrated the capability of producing sound components of 42CrMo4 and S48C steels by saving material, energy and attaining as hot forged properties. To make the process even more cost-effective, it has also been proved the capacity of SSF 44MnSiV6 microalloyed steel that enables the striking of the post processing heat treatment.

  5. [Expressions of angiogenesis-related factors: CD105, EphA2 and EphrinA1 in laryngeal squamous cell carcinoma and clinical implication].

    PubMed

    Su, J; Ji, X B; Xie, J H; Li, W

    2016-12-07

    Objective: To investigate the expressions of endoglin (CD105), erythropoietin-producing hepatocyte receptor A2 (EphA2) and its ligand ephrinA1 proteins in laryngeal squamous cell carcinoma (LSCC) and the relationship between their expressions and the clinicopathological factors of LSCC. Methods: The expressions of CD105, EphA2 and EphrinA1 proteins were detected with immunohistochemical staining in LSCC in 76 cases and adjacent normal laryngeal tissues (ANLT) (S-P) in 25 cases.SPSS 17.0 software was used to analyze the data. Results: The mean microvessel density (MVD) value marked by CD105 staining in LSCC was 10.33±2.29, which was significantly higher than that in ANLT(1.20±1.04, t =18.732, P <0.05). The CD105-MVD was correlated with T stage, histological grading, clinical stage, lymph node metastasis, recurrence and prognosis in LSCC (F value was 5.34, 4.79, 5.36, t value was -2.70, 2.56, all P <0.05). The positive expression rates of EphA2 and EphrinA1 in LSCC were 78.95% (60/76), and 81.85% (62/76), which were respectively significantly higher than 40% (10/25) for EphA2 expression and 44% (11/25) for EphrinA1, expression in ANLT (χ 2 value was 13.41, 13.26, both P <0.05). EphA2 expression was correlated with histological grading, T stage, clinical stage, lymph node metastasis, recurrence and prognosis in LSCC (χ 2 value was 6.25, 14.60, 15.11, 8.52, 5.54, all P <0.05). EphrinA1 expression was correlated with T stage, clinical stage, lymph node metastasis, recurrence and prognosis in LSCC (χ 2 value was 6.44, 12.28, 16.78, 6.44, all P <0.05). The expressions of CD105, EphA2 and EphrinA1 were positively correlated with each other r value was 0.72, 0.74, 0.64, all P <0.05. Survival analysis indicated that the expressions of CD105 and EphA2, histological grading, lymph node metastasis, clinical stage and recurrence were independent factors for tumor prognosis in LSCC ( P <0.05). Conclusions: The expressions of CD105, EphA2 and EphrinA1 protein were positively

  6. Inhibition of Ovarian Cancer Chemoresistance and Metastasis with Antagonists of Hyaluronan-CD44-CD147 Interactions

    DTIC Science & Technology

    2015-09-01

    malignant and drug- resistant properties. This most likely occurs through assembly and/or stabilization of plasma membrane signaling complexes ...interactions of hyaluronan polymer with CD44 are necessary for stabilizing CD44-CD147 signaling complexes , and that small, monovalent, hyaluronan...transporter complexes (Ghatak et al., 2005; Grass et al., 2012; Grass et al., 2013; Qin et al., 2011; Slomiany et al., 2009a; Slomiany et al., 2009b

  7. Organotypic culture of normal, dysplastic and squamous cell carcinoma-derived oral cell lines reveals loss of spatial regulation of CD44 and p75 NTR in malignancy.

    PubMed

    Dalley, Andrew J; AbdulMajeed, Ahmad A; Upton, Zee; Farah, Camile S

    2013-01-01

    Oral squamous cell carcinomas (OSCC) often arise from dysplastic lesions. The role of cancer stem cells in tumour initiation is widely accepted, yet the potential existence of pre-cancerous stem cells in dysplastic tissue has received little attention. Cell lines from oral diseases ranging in severity from dysplasia to malignancy provide opportunity to investigate the involvement of stem cells in malignant progression from dysplasia. Stem cells are functionally defined by their ability to generate hierarchical tissue structures in consortium with spatial regulation. Organotypic cultures readily display tissue hierarchy in vitro; hence, in this study, we compared hierarchical expression of stem cell-associated markers in dermis-based organotypic cultures of oral epithelial cells from normal tissue (OKF6-TERT2), mild dysplasia (DOK), severe dysplasia (POE-9n) and OSCC (PE/CA P J15). Expression of CD44, p75(NTR), CD24 and ALDH was studied in monolayers by flow cytometry and in organotypic cultures by immunohistochemistry. Spatial regulation of CD44 and p75(NTR) was evident for organotypic cultures of normal (OKF6-TERT2) and dysplasia (DOK and POE-9n) but was lacking for OSCC (PE/CA PJ15)-derived cells. Spatial regulation of CD24 was not evident. All monolayer cultures exhibited CD44, p75(NTR), CD24 antigens and ALDH activity (ALDEFLUOR(®) assay), with a trend towards loss of population heterogeneity that mirrored disease severity. In monolayer, increased FOXA1 and decreased FOXA2 expression correlated with disease severity, but OCT3/4, Sox2 and NANOG did not. We conclude that dermis-based organotypic cultures give opportunity to investigate the mechanisms that underlie loss of spatial regulation of stem cell markers seen with OSCC-derived cells. © 2012 John Wiley & Sons A/S.

  8. Integrin alpha 10, CD44, PTEN, cadherin-11 and lactoferrin expressions are potential biomarkers for selecting patients in need of central nervous system prophylaxis in diffuse large B-cell lymphoma

    PubMed Central

    Lemma, Siria A; Kuusisto, Milla; Haapasaari, Kirsi-Maria; Sormunen, Raija; Lehtinen, Tuula; Klaavuniemi, Tuula; Eray, Mine; Jantunen, Esa; Soini, Ylermi; Vasala, Kaija; Böhm, Jan; Salokorpi, Niina; Koivunen, Petri; Karihtala, Peeter; Vuoristo, Jussi; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi

    2017-01-01

    Abstract Central nervous system (CNS) relapse is a devastating complication that occurs in about 5% of diffuse large B-cell lymphoma (DLBCL) patients. Currently, there are no predictive biological markers. We wanted to study potential biomarkers of CNS tropism that play a role in adhesion, migration and/or in the regulation of inflammatory responses. The expression levels of ITGA10, CD44, PTEN, cadherin-11, CDH12, N-cadherin, P-cadherin, lactoferrin and E-cadherin were studied with IHC and IEM. GEP was performed to see whether found expressional changes are regulated at DNA/RNA level. IHC included 96 samples of primary CNS lymphoma (PCNSL), secondary CNS lymphoma (sCNSL) and systemic DLBCL (sDLBCL). IEM included two PCNSL, one sCNSL, one sDLBCL and one reactive lymph node samples. GEP was performed on two DLBCL samples, one with and one without CNS relapse. CNS disease was associated with enhanced expression of cytoplasmic and membranous ITGA10 and nuclear PTEN (P < 0.0005, P = 0.002, P = 0.024, respectively). sCNSL presented decreased membranous CD44 and nuclear and cytoplasmic cadherin-11 expressions (P = 0.001, P = 0.006, P = 0.048, respectively). In PCNSL lactoferrin expression was upregulated (P < 0.0005). IEM results were mainly supportive of the IHC results. In GEP CD44, cadherin-11, lactoferrin and E-cadherin were under-expressed in CNS disease. Our results are in line with previous studies, where gene expressions in extracellular matrix and adhesion-related pathways are altered in CNS lymphoma. This study gives new information on the DLBCL CNS tropism. If further verified, these markers might become useful in predicting CNS relapses. PMID:28854563

  9. IL‐12 and IL‐15 induce the expression of CXCR6 and CD49a on peripheral natural killer cells

    PubMed Central

    Hydes, Theresa; Noll, Angela; Salinas‐Riester, Gabriela; Abuhilal, Mohammed; Armstrong, Thomas; Hamady, Zaed; Primrose, John; Takhar, Arjun; Walter, Lutz

    2017-01-01

    Abstract Introduction Murine hepatic NK cells exhibit adaptive features, with liver‐specific adhesion molecules CXCR6 and CD49a acting as surface markers. Methods We investigated human liver‐resident CXCR6+ and CD49a+ NK cells using RNA sequencing, flow cytometry, and functional analysis. We further assessed the role of cytokines in generating NK cells with these phenotypes from the peripheral blood. Results Hepatic CD49a+ NK cells could be induced using cytokines and produce high quantities of IFNγ and TNFα, in contrast to hepatic CXCR6+ NK cells. RNA sequencing of liver‐resident CXCR6+ NK cells confirmed a tolerant immature phenotype with reduced expression of markers associated with maturity and cytotoxicity. Liver‐resident double‐positive CXCR6 + CD49a+ hepatic NK cells are immature but maintain high expression of Th1 cytokines as observed for single‐positive CD49a+ NK cells. We show that stimulation with activating cytokines can readily induce upregulation of both CD49a and CXCR6 on NK cells in the peripheral blood. In particular, IL‐12 and IL‐15 can generate CXCR6 + CD49a+ NK cells in vitro from NK cells isolated from the peripheral blood, with comparable phenotypic and functional features to liver‐resident CD49a+ NK cells, including enhanced IFNγ and NKG2C expression. Conclusion IL‐12 and IL‐15 may be key for generating NK cells with a tissue‐homing phenotype and strong Th1 cytokine profile in the blood, and links peripheral activation of NK cells with tissue‐homing. These findings may have important therapeutic implications for immunotherapy of chronic liver disease. PMID:28952190

  10. A novel mechanism of regulating breast cancer cell migration via palmitoylation-dependent alterations in the lipid raft affiliation of CD44

    PubMed Central

    2014-01-01

    Introduction Most breast cancer-related deaths result from metastasis, a process involving dynamic regulation of tumour cell adhesion and migration. The adhesion protein CD44, a key regulator of cell migration, is enriched in cholesterol-enriched membrane microdomains termed lipid rafts. We recently reported that raft affiliation of CD44 negatively regulates interactions with its migratory binding partner ezrin. Since raft affiliation is regulated by post-translational modifications including palmitoylation, we sought to establish the contribution of CD44 palmitoylation and lipid raft affiliation to cell migration. Methods Recovery of CD44 and its binding partners from raft versus non-raft membrane microdomains was profiled in non-migrating and migrating breast cancer cell lines. Site-directed mutagenesis was used to introduce single or double point mutations into both CD44 palmitoylation sites (Cys286 and Cys295), whereupon the implications for lipid raft recovery, phenotype, ezrin co-precipitation and migratory behaviour was assessed. Finally CD44 palmitoylation status and lipid raft affiliation was assessed in primary cultures from a small panel of breast cancer patients. Results CD44 raft affiliation was increased during migration of non-invasive breast cell lines, but decreased during migration of highly-invasive breast cells. The latter was paralleled by increased CD44 recovery in non-raft fractions, and exclusive non-raft recovery of its binding partners. Point mutation of CD44 palmitoylation sites reduced CD44 raft affiliation in invasive MDA-MB-231 cells, increased CD44-ezrin co-precipitation and accordingly enhanced cell migration. Expression of palmitoylation-impaired (raft-excluded) CD44 mutants in non-invasive MCF-10a cells was sufficient to reversibly induce the phenotypic appearance of epithelial-to-mesenchymal transition and to increase cell motility. Interestingly, cell migration was associated with temporal reductions in CD44 palmitoylation in

  11. A novel mechanism of regulating breast cancer cell migration via palmitoylation-dependent alterations in the lipid raft affiliation of CD44.

    PubMed

    Babina, Irina S; McSherry, Elaine A; Donatello, Simona; Hill, Arnold D K; Hopkins, Ann M

    2014-02-10

    Most breast cancer-related deaths result from metastasis, a process involving dynamic regulation of tumour cell adhesion and migration. The adhesion protein CD44, a key regulator of cell migration, is enriched in cholesterol-enriched membrane microdomains termed lipid rafts. We recently reported that raft affiliation of CD44 negatively regulates interactions with its migratory binding partner ezrin. Since raft affiliation is regulated by post-translational modifications including palmitoylation, we sought to establish the contribution of CD44 palmitoylation and lipid raft affiliation to cell migration. Recovery of CD44 and its binding partners from raft versus non-raft membrane microdomains was profiled in non-migrating and migrating breast cancer cell lines. Site-directed mutagenesis was used to introduce single or double point mutations into both CD44 palmitoylation sites (Cys286 and Cys295), whereupon the implications for lipid raft recovery, phenotype, ezrin co-precipitation and migratory behaviour was assessed. Finally CD44 palmitoylation status and lipid raft affiliation was assessed in primary cultures from a small panel of breast cancer patients. CD44 raft affiliation was increased during migration of non-invasive breast cell lines, but decreased during migration of highly-invasive breast cells. The latter was paralleled by increased CD44 recovery in non-raft fractions, and exclusive non-raft recovery of its binding partners. Point mutation of CD44 palmitoylation sites reduced CD44 raft affiliation in invasive MDA-MB-231 cells, increased CD44-ezrin co-precipitation and accordingly enhanced cell migration. Expression of palmitoylation-impaired (raft-excluded) CD44 mutants in non-invasive MCF-10a cells was sufficient to reversibly induce the phenotypic appearance of epithelial-to-mesenchymal transition and to increase cell motility. Interestingly, cell migration was associated with temporal reductions in CD44 palmitoylation in wild-type breast cells. Finally

  12. Group A Streptococcus tissue invasion by CD44-mediated cell signalling

    NASA Astrophysics Data System (ADS)

    Cywes, Colette; Wessels, Michael R.

    2001-12-01

    Streptococcus pyogenes (also known as group A Streptococcus, GAS), the agent of streptococcal sore throat and invasive soft-tissue infections, attaches to human pharyngeal or skin epithelial cells through specific recognition of its hyaluronic acid capsular polysaccharide by the hyaluronic-acid-binding protein CD44 (refs 1, 2). Because ligation of CD44 by hyaluronic acid can induce epithelial cell movement on extracellular matrix, we investigated whether molecular mimicry by the GAS hyaluronic acid capsule might induce similar cellular responses. Here we show that CD44-dependent GAS binding to polarized monolayers of human keratinocytes induced marked cytoskeletal rearrangements manifested by membrane ruffling and disruption of intercellular junctions. Transduction of the signal induced by GAS binding to CD44 on the keratinocyte surface involved Rac1 and the cytoskeleton linker protein ezrin, as well as tyrosine phosphorylation of cellular proteins. Studies of bacterial translocation in two models of human skin indicated that cell signalling triggered by interaction of the GAS capsule with CD44 opened intercellular junctions and promoted tissue penetration by GAS through a paracellular route. These results support a model of host cytoskeleton manipulation and tissue invasion by an extracellular bacterial pathogen.

  13. Myosin 1g Contributes to CD44 Adhesion Protein and Lipid Rafts Recycling and Controls CD44 Capping and Cell Migration in B Lymphocytes

    PubMed Central

    López-Ortega, Orestes; Santos-Argumedo, Leopoldo

    2017-01-01

    Cell migration and adhesion are critical for immune system function and involve many proteins, which must be continuously transported and recycled in the cell. Recycling of adhesion molecules requires the participation of several proteins, including actin, tubulin, and GTPases, and of membrane components such as sphingolipids and cholesterol. However, roles of actin motor proteins in adhesion molecule recycling are poorly understood. In this study, we identified myosin 1g as one of the important motor proteins that drives recycling of the adhesion protein CD44 in B lymphocytes. We demonstrate that the lack of Myo1g decreases the cell-surface levels of CD44 and of the lipid raft surrogate GM1. In cells depleted of Myo1g, the recycling of CD44 was delayed, the delay seems to be caused at the level of formation of recycling complex and entry into recycling endosomes. Moreover, a defective lipid raft recycling in Myo1g-deficient cells had an impact both on the capping of CD44 and on cell migration. Both processes required the transportation of lipid rafts to the cell surface to deliver signaling components. Furthermore, the extramembrane was essential for cell expansion and remodeling of the plasma membrane topology. Therefore, Myo1g is important during the recycling of lipid rafts to the membrane and to the accompanied proteins that regulate plasma membrane plasticity. Thus, Myosin 1g contributes to cell adhesion and cell migration through CD44 recycling in B lymphocytes. PMID:29321775

  14. Radiation leukemia virus-induced thymic lymphomas express a restricted repertoire of T-cell receptor V beta gene products.

    PubMed Central

    Sen-Majumdar, A; Weissman, I L; Hansteen, G; Marian, J; Waller, E K; Lieberman, M

    1994-01-01

    We have investigated the phenotypic changes that take place during the process of neoplastic transformation in the thymocytes of C57BL/Ka mice infected by the radiation leukemia virus (RadLV). By the combined use of antibodies against the envelope glycoprotein gp70 of RadLV, the transformation-associated cell surface marker 1C11, and the CD3-T-cell receptor (TCR) complex, we found that in the RadLV-infected thymus, the earliest expression of viral gp70 is in 1C11hi cells; a small but significant percentage of these cells also express CD3. A first wave of viral replication, manifested by the expression of high levels of gp70 in thymocytes (over 70% positive), reaches a peak at 2 weeks; during this period, no significant changes are observed in the expression of 1C11 or CD3. The population of gp70+ cells is drastically reduced at 3 to 4 weeks after infection. However, a second cohort of gp70+ cells appears after 4 weeks, and these cells express high levels of 1C11 and TCR determinants as well. RadLV-induced lymphomas differ from normal thymocytes in their CD4 CD8 phenotype, with domination by one or more subsets. Characterization of TCR gene rearrangements in RadLV-induced lymphomas shows that most of these tumors are clonal or oligoclonal with respect to the J beta 2 TCR gene, while the J beta 1 TCR gene is rearranged in a minority (4 of 11) of lymphomas. TCR V beta repertoire analysis of 12 tumors reveals that 6 (50%) express exclusively the V beta 6 gene product, 2 (17%) are V beta 5+, and 1 (8%) each are V beta 8+ and V beta 9+. In normal C57BL/Ka mice, V beta 6 is expressed on 12%, V beta 5 is expressed on 9%, V beta 8 is expressed on 22%, and V beta 9 is expressed on 4% of TCRhi thymocytes. Thus, it appears that RadLV-induced thymic lymphomas are not randomly selected with respect to expressed TCR V beta type. Images PMID:8289345

  15. IL-12 and IL-15 induce the expression of CXCR6 and CD49a on peripheral natural killer cells.

    PubMed

    Hydes, Theresa; Noll, Angela; Salinas-Riester, Gabriela; Abuhilal, Mohammed; Armstrong, Thomas; Hamady, Zaed; Primrose, John; Takhar, Arjun; Walter, Lutz; Khakoo, Salim I

    2018-03-01

    Murine hepatic NK cells exhibit adaptive features, with liver-specific adhesion molecules CXCR6 and CD49a acting as surface markers. We investigated human liver-resident CXCR6+ and CD49a+ NK cells using RNA sequencing, flow cytometry, and functional analysis. We further assessed the role of cytokines in generating NK cells with these phenotypes from the peripheral blood. Hepatic CD49a+ NK cells could be induced using cytokines and produce high quantities of IFNγ and TNFα, in contrast to hepatic CXCR6+ NK cells. RNA sequencing of liver-resident CXCR6+ NK cells confirmed a tolerant immature phenotype with reduced expression of markers associated with maturity and cytotoxicity. Liver-resident double-positive CXCR6 + CD49a+ hepatic NK cells are immature but maintain high expression of Th1 cytokines as observed for single-positive CD49a+ NK cells. We show that stimulation with activating cytokines can readily induce upregulation of both CD49a and CXCR6 on NK cells in the peripheral blood. In particular, IL-12 and IL-15 can generate CXCR6 + CD49a+ NK cells in vitro from NK cells isolated from the peripheral blood, with comparable phenotypic and functional features to liver-resident CD49a+ NK cells, including enhanced IFNγ and NKG2C expression. IL-12 and IL-15 may be key for generating NK cells with a tissue-homing phenotype and strong Th1 cytokine profile in the blood, and links peripheral activation of NK cells with tissue-homing. These findings may have important therapeutic implications for immunotherapy of chronic liver disease. © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

  16. CD47 is an adverse prognostic factor and a therapeutic target in gastric cancer

    PubMed Central

    Yoshida, Kazumichi; Tsujimoto, Hironori; Matsumura, Kouji; Kinoshita, Manabu; Takahata, Risa; Matsumoto, Yusuke; Hiraki, Shuichi; Ono, Satoshi; Seki, Shuhji; Yamamoto, Junji; Hase, Kazuo

    2015-01-01

    CD47 is an antiphagocytic molecule that acts via ligation to signal regulatory protein alpha on phagocytes; its enhanced expression and therapeutic targeting have recently been reported for several malignancies. However, CD47 expression in gastric cancer is not well documented. Immunohistochemical expression of CD47 in surgical specimens was investigated. Expression of CD47 and CD44, a known gastric cancer stem cell marker, were investigated in gastric cancer cell lines by flow cytometry. MKN45 and MKN74 gastric cancer cells were sorted by fluorescence-activated cell sorting according to CD44 and CD47 expression levels, and their in vitro proliferation, spheroid-forming capacity, and in vivo tumorigenicity were studied. In vitro phagocytosis of cancer cells by human macrophages in the presence of a CD47 blocking monoclonal antibody (B6H12) and the survival of immunodeficient mice intraperitoneally engrafted with MKN45 cells and B6H12 were compared to experiments using control antibodies. Immunohistochemistry of the clinical specimens indicated that CD47 was positive in 57 out of 115 cases, and its positivity was an independent adverse prognostic factor. Approximately 90% of the MKN45 and MKN74 cells expressed CD47 and CD44. CD47hi gastric cancer cells showed significantly higher proliferation and spheroid colony formation than CD47lo, and CD44hiCD47hi cells showed the highest proliferation in vitro and tumorigenicity in vivo. B6H12 significantly enhanced in vitro phagocytosis of cancer cells by human macrophages and prolonged the survival of intraperitoneal cancer dissemination in mice compared to control antibodies. In conclusion, CD47 is an adverse prognostic factor and promising therapeutic target in gastric cancer. PMID:26077800

  17. Integrin alpha 10, CD44, PTEN, cadherin-11 and lactoferrin expressions are potential biomarkers for selecting patients in need of central nervous system prophylaxis in diffuse large B-cell lymphoma.

    PubMed

    Lemma, Siria A; Kuusisto, Milla; Haapasaari, Kirsi-Maria; Sormunen, Raija; Lehtinen, Tuula; Klaavuniemi, Tuula; Eray, Mine; Jantunen, Esa; Soini, Ylermi; Vasala, Kaija; Böhm, Jan; Salokorpi, Niina; Koivunen, Petri; Karihtala, Peeter; Vuoristo, Jussi; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi

    2017-08-01

    Central nervous system (CNS) relapse is a devastating complication that occurs in about 5% of diffuse large B-cell lymphoma (DLBCL) patients. Currently, there are no predictive biological markers. We wanted to study potential biomarkers of CNS tropism that play a role in adhesion, migration and/or in the regulation of inflammatory responses. The expression levels of ITGA10, CD44, PTEN, cadherin-11, CDH12, N-cadherin, P-cadherin, lactoferrin and E-cadherin were studied with IHC and IEM. GEP was performed to see whether found expressional changes are regulated at DNA/RNA level. IHC included 96 samples of primary CNS lymphoma (PCNSL), secondary CNS lymphoma (sCNSL) and systemic DLBCL (sDLBCL). IEM included two PCNSL, one sCNSL, one sDLBCL and one reactive lymph node samples. GEP was performed on two DLBCL samples, one with and one without CNS relapse. CNS disease was associated with enhanced expression of cytoplasmic and membranous ITGA10 and nuclear PTEN (P < 0.0005, P = 0.002, P = 0.024, respectively). sCNSL presented decreased membranous CD44 and nuclear and cytoplasmic cadherin-11 expressions (P = 0.001, P = 0.006, P = 0.048, respectively). In PCNSL lactoferrin expression was upregulated (P < 0.0005). IEM results were mainly supportive of the IHC results. In GEP CD44, cadherin-11, lactoferrin and E-cadherin were under-expressed in CNS disease. Our results are in line with previous studies, where gene expressions in extracellular matrix and adhesion-related pathways are altered in CNS lymphoma. This study gives new information on the DLBCL CNS tropism. If further verified, these markers might become useful in predicting CNS relapses. © The Author 2017. Published by Oxford University Press.

  18. Alternate Splicing of CD44 Messenger RNA in Prostate Cancer Growth

    DTIC Science & Technology

    2008-04-01

    hammerhead ribozymes .25 Salmon CT (BAChem, Torrance, CA) was used at physiologic 50 nM dose14,16, which effectively alters CD44,6 or at 250 nM. To detect...receptor14), and cells called CTR-, derived from PC-3M cells after anti-CT receptor ribozyme knockdown of CTR.18 CTR- cells have very low levels of

  19. CXCR6 Expression Is Important for Retention and Circulation of ILC Precursors.

    PubMed

    Chea, Sylvestre; Possot, Cécilie; Perchet, Thibaut; Petit, Maxime; Cumano, Ana; Golub, Rachel

    2015-01-01

    Innate lymphoid cells are present at mucosal sites and represent the first immune barrier against infections, but what contributes to their circulation and homing is still unclear. Using Rag2(-/-) Cxcr6(Gfp/+) reporter mice, we assessed the expression and role of CXCR6 in the circulation of ILC precursors and their progeny. We identify CXCR6 expressing ILC precursors in the bone marrow and characterize their significant increase in CXCR6-deficient mice at steady state, indicating their partial retention in the bone marrow after CXCR6 ablation. Circulation was also impaired during embryonic life as fetal liver from CXCR6-deficient embryos displayed decreased numbers of ILC3 precursors. When injected, fetal CXCR6-deficient ILC3 precursors also fail to home and reconstitute ILC compartments in vivo. We show that adult intestinal ILC subsets have heterogeneous expression pattern of CXCR6, integrin α 4 β 7, CD62L, CD69, and CD44, with ILC1 and ILC3 being more likely tissue resident lymphocytes. Intestinal ILC subsets were unchanged in percentages and numbers in both mice. We demonstrate that the ILC frequency is maintained due to a significant increase of ILC peripheral proliferation, as well as an increased proliferation of the in situ ILC precursors to compensate their retention in the bone marrow.

  20. CXCR6 Expression Is Important for Retention and Circulation of ILC Precursors

    PubMed Central

    Chea, Sylvestre; Possot, Cécilie; Perchet, Thibaut; Petit, Maxime; Cumano, Ana; Golub, Rachel

    2015-01-01

    Innate lymphoid cells are present at mucosal sites and represent the first immune barrier against infections, but what contributes to their circulation and homing is still unclear. Using Rag2 −/− Cxcr6 Gfp/+ reporter mice, we assessed the expression and role of CXCR6 in the circulation of ILC precursors and their progeny. We identify CXCR6 expressing ILC precursors in the bone marrow and characterize their significant increase in CXCR6-deficient mice at steady state, indicating their partial retention in the bone marrow after CXCR6 ablation. Circulation was also impaired during embryonic life as fetal liver from CXCR6-deficient embryos displayed decreased numbers of ILC3 precursors. When injected, fetal CXCR6-deficient ILC3 precursors also fail to home and reconstitute ILC compartments in vivo. We show that adult intestinal ILC subsets have heterogeneous expression pattern of CXCR6, integrin α 4 β 7, CD62L, CD69, and CD44, with ILC1 and ILC3 being more likely tissue resident lymphocytes. Intestinal ILC subsets were unchanged in percentages and numbers in both mice. We demonstrate that the ILC frequency is maintained due to a significant increase of ILC peripheral proliferation, as well as an increased proliferation of the in situ ILC precursors to compensate their retention in the bone marrow. PMID:26494947

  1. Alternate Splicing of CD44 Messenger RNA in Prostate Cancer Growth

    DTIC Science & Technology

    2009-04-01

    Higashi M, Kishi H, Hiwasa T, Koda K, Nakajima N, Harigaya K. CD44 signaling through focal adhesion kinase and its anti-apoptotic effect. FEBS Lett...Nakamura, S., Azuma, K., Ishii, G., Higashi, M., Kishi, H., Hiwasa, T., Koda , K., Nakajima, N. and Harigaya, K.: CD44 signaling through focal adhesion

  2. Extracellular matrix components expression in human pluripotent stem cell-derived retinal organoids recapitulates retinogenesis in vivo and reveals an important role for IMPG1 and CD44 in the development of photoreceptors and interphotoreceptor matrix.

    PubMed

    Felemban, Majed; Dorgau, Birthe; Hunt, Nicola Claire; Hallam, Dean; Zerti, Darin; Bauer, Roman; Ding, Yuchun; Collin, Joseph; Steel, David; Krasnogor, Natalio; Al-Aama, Jumana; Lindsay, Susan; Mellough, Carla; Lako, Majlinda

    2018-05-17

    The extracellular matrix (ECM) plays an important role in numerous processes including cellular proliferation, differentiation, migration, maturation, adhesion guidance and axonal growth. To date, there has been no detailed analysis of the ECM distribution during retinal ontogenesis in humans and the functional importance of many ECM components is poorly understood. In this study, the expression of key ECM components in adult mouse and monkey retina, developing and adult human retina and retinal organoids derived from human pluripotent stem cells was studied. Our data indicate that basement membrane ECMs (Fibronectin and Collagen IV) were expressed in Bruch's membrane and the inner limiting membrane of the developing human retina, whilst the hyalectins (Versican and Brevican), cluster of differentiation 44 (CD44), photoreceptor-specific ECMs Interphotoreceptor Matrix Proteoglycan 1 (IMPG1) and Interphotoreceptor Matrix Proteoglycan 2 (IMPG2) were detected in the developing interphotoreceptor matrix (IPM). The expression of IMPG1, Versican and Brevican in the developing IPM was conserved between human developing retina and human pluripotent stem cell-derived retinal organoids. Blocking the action of CD44 and IMPG1 in pluripotent stem cell derived retinal organoids affected the development of photoreceptors, their inner/outer segments and connecting cilia and disrupted IPM formation, with IMPG1 having an earlier and more significant impact. Together, our data suggest an important role for IMPG1 and CD44 in the development of photoreceptors and IPM formation during human retinogenesis. The expression and the role of many extracellular matrix (ECM) components during human retinal development is not fully understood. In this study, expression of key ECM components (Collagen IV, Fibronectin, Brevican, Versican, IMPG1 and IMPG2) was investigated during human retinal ontogenesis. Collagen IV and Fibronectin were expressed in Bruch's membrane; whereas Brevican, Versican

  3. Increased CD147 (EMMPRIN) expression in the rat brain following traumatic brain injury.

    PubMed

    Wei, Ming; Li, Hong; Shang, Yanguo; Zhou, Ziwei; Zhang, Jianning

    2014-10-17

    The extracellular matrix metalloproteinase inducer (EMMPRIN), or CD147, has been known to play a key regulatory role in vascular permeability and leukocyte activation by inducing the expression of matrix metalloproteinases (MMPs). The effects of traumatic brain injury on the expression of EMMPRIN remain poorly understood. In this study, we investigated changes in EMMPRIN expression in a rat model of fluid percussion injury (FPI) and examined the potential association between EMMPRIN and MMP-9 expression. Adult male rats were subjected to FPI. EMMPRIN expression was markedly up-regulated in the brain tissue surrounding the injured region 6-48 h after TBI, as measured by immunoblot and immunohistochemistry. EMMPRIN expression was localized to inflammatory cells. The increase in EMMPRIN expression was temporally correlated with an increase in MMP-9 levels. These data demonstrate, for the first time, changes in CD147 and MMP-9 expression following TBI. These data also suggest that CD147 and MMP-9 may play a role in vascular injuries after TBI. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Characterization of kidney CD45intCD11bintF4/80+MHCII+CX3CR1+Ly6C- "intermediate mononuclear phagocytic cells".

    PubMed

    Lee, Sul A; Noel, Sanjeev; Sadasivam, Mohanraj; Allaf, Mohamad E; Pierorazio, Phillip M; Hamad, Abdel R A; Rabb, Hamid

    2018-01-01

    Kidney immune cells play important roles in pathogenesis of many diseases, including ischemia-reperfusion injury (IRI) and transplant rejection. While studying murine kidney T cells, we serendipitously identified a kidney mononuclear phagocytic cell (MPC) subset characterized by intermediate surface expression of CD45 and CD11b. These CD45intCD11bint MPCs were further identified as F4/80+MHCII+CX3CR1+Ly6C- cells, comprising ~17% of total CD45+ cells in normal mouse kidney (P < 0.01) and virtually absent from all other organs examined except the heart. Systemic clodronate treatment had more significant depletive effect on the CD45intCD11bint population (77.3%±5.9%, P = 0.03) than on CD45highCD11b+ population (14.8%±16.6%, P = 0.49). In addition, CD45intCD11bint MPCs had higher phagocytic function in the normal kidney (35.6%±3.3% vs. 24.1%±2.2%, P = 0.04), but lower phagocytic capacity in post-ischemic kidney (54.9%±1.0% vs. 67.8%±1.9%, P < 0.01) compared to the CD45highCD11b+ population. Moreover, the CD45intCD11bint population had higher intracellular production of the pro-inflammatory tumor necrosis factor (TNF)-α (58.4%±5.2% vs. 27.3%±0.9%, P < 0.001) after lipopolysaccharide (LPS) stimulation and lower production of the anti-inflammatory interleukin (IL)-10 (7.2%±1.3% vs. 14.9%±2.2%, P = 0.02) following kidney IRI, suggesting a functional role under inflammatory conditions. The CD45intCD11bint cells increased early after IRI, and then abruptly decreased 48h later, whereas CD45highCD11b+ cells steadily increased after IRI before declining at 72h (P = 0.03). We also identified the CD45intCD11bint MPC subtype in human kidney. We conclude that CD45intCD11bint F4/80+MHCII+CX3CR1+Ly6C-population represent a unique subset of MPCs found in both mouse and human kidneys. Future studies will further characterize their role in kidney health and disease.

  5. Characterization of mouse CD53: epitope mapping, cellular distribution and induction by T cell receptor engagement during repertoire selection.

    PubMed

    Tomlinson, M G; Hanke, T; Hughes, D A; Barclay, A N; Scholl, E; Hünig, T; Wright, M D

    1995-08-01

    The pan-leukocyte antigen CD53 is a member of the poorly understood transmembrane 4 superfamily (TM4SF) of cell membrane glycoproteins. CD53 is proposed to play a role in thymopoiesis, since rat CD53 is expressed on immature CD4-8-thymocytes and the functionally mature single-positive subset, but is largely absent from the intermediate CD4+8+ cells. We have characterized CD53 in the mouse through the production of two new monoclonal antibodies, MRC OX-79 and OX-80, which were raised against the RAW 264 cell line and screened on recombinant CD53 fusion proteins. The epitopes recognized by both antibodies are dependent on disulfide bonding and map to the major extracellular region of CD53, requiring the presence of a single threonine residue at position 154. Mouse CD53 has a molecular mass of 35-45 kDa and is expressed on virtually all peripheral leukocytes, but not on cells outside the lymphoid or myeloid lineages. CD53 expression distinguishes subpopulations of thymocytes in the mouse and resembles the expression pattern of rat CD53. Amongst the immature CD4-8-thymocytes, mouse CD53 is clearly detectable on the earliest CD44high25- subset, but down-regulated on the later CD44high25+, CD44low25+ and CD44low25- stages. Also, the subsequent transient TcR-/low CD4-8+ cells and most CD4+8+ thymocytes express little or no CD53. This is consistent with the idea that cells which are committed to enter the selectable CD4+8+ compartment switch off CD53. The effect of T cell receptor (TcR) engagement on the re-expression of CD53 on CD4+8+ thymocytes was studied both ex vivo and in vitro using F5 mice, transgenic for the H-2b/influenza nucleoprotein-peptide-specific TcR, back-crossed onto an H-2q or H-2b background of RAG-2-deficient mice. CD4+8+ thymocytes from non-selecting H-2q F5 mice are CD53 negative, but in vitro stimulation through the TcR dramatically induces CD53 expression. In contrast, a fraction of CD4+8+ thymocytes from positively selecting H-2b F5 transgenic

  6. N-glycosylation by N-acetylglucosaminyltransferase V enhances the interaction of CD147/basigin with integrin β1 and promotes HCC metastasis.

    PubMed

    Cui, Jian; Huang, Wan; Wu, Bo; Jin, Jin; Jing, Lin; Shi, Wen-Pu; Liu, Zhen-Yu; Yuan, Lin; Luo, Dan; Li, Ling; Chen, Zhi-Nan; Jiang, Jian-Li

    2018-05-01

    While the importance of protein N-glycosylation in cancer cell migration is well appreciated, the precise mechanisms by which N-acetylglucosaminyltransferase V (GnT-V) regulates cancer processes remain largely unknown. In the current study, we report that GnT-V-mediated N-glycosylation of CD147/basigin, a tumor-associated glycoprotein that carries β1,6-N-acetylglucosamine (β1,6-GlcNAc) glycans, is upregulated during TGF-β1-induced epithelial-to-mesenchymal transition (EMT), which correlates with tumor metastasis in patients with hepatocellular carcinoma (HCC). Interruption of β1,6-GlcNAc glycan modification of CD147/basigin decreased matrix metalloproteinase (MMP) expression in HCC cell lines and affected the interaction of CD147/basigin with integrin β1. These results reveal that β1,6-branched glycans modulate the biological function of CD147/basigin in HCC metastasis. Moreover, we showed that the PI3K/Akt pathway regulates GnT-V expression and that inhibition of GnT-V-mediated N-glycosylation suppressed PI3K signaling. In summary, β1,6-branched N-glycosylation affects the biological function of CD147/basigin and these findings provide a novel approach for the development of therapeutic strategies targeting metastasis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  7. Relationship of PCNA, C-erbB2 and CD44s expression with tumor grade and stage in urothelial carcinomas of the bladder

    PubMed Central

    Yıldırım, Ayhan; Kösem, Mustafa; Sayar, İlyas; Gelincik, İbrahim; Yavuz, Alparslan; Bozkurt, Aliseydi; Erkorkmaz, Ünal; Bayram, İrfan

    2014-01-01

    In the present study, the intention was to reveal the relationship of histological grade and stage with c-erbB2, CD44s, and PCNA immunoreactivity in bladder urothelial carcinomas (UC). In our study, we evaluated 46 items of transurethral resection material of patients submitted by YYU Faculty of Medicine, Main Department of Pathology, with a mass revealed in their bladder after clinical and radiological studies at our laboratories and who were diagnosed with urothelial carcinomas. PCNA, c-erbB2, and CD44s were applied in an immunohistochemical manner comprised from nine low-malignant potential papillary urothelial neoplasia, 23 low-grade papillary urothelial carcinoma, and 14 high-grade papillary urothelial carcinoma. Immunostaining was scored according to the percentage of positive cells. The immunohistochemical study demonstrated that the c-erbB2 and PCNA staining ratio increased when an increase occurred in stage and grade. The CD44s staining ratio decreased. C-erbB2, PCNA, and CD44s appear to be a useful marker in the assessment of the prognosis and treatment options in urothelial carcinomas. PMID:25035774

  8. Fc gamma RII/III and CD2 expression mark distinct subpopulations of immature CD4-CD8- murine thymocytes: in vivo developmental kinetics and T cell receptor beta chain rearrangement status.

    PubMed

    Rodewald, H R; Awad, K; Moingeon, P; D'Adamio, L; Rabinowitz, D; Shinkai, Y; Alt, F W; Reinherz, E L

    1993-04-01

    We have recently identified a dominant wave of CD4-CD8- (double-negative [DN]) thymocytes in early murine fetal development that express low affinity Fc gamma receptors (Fc gamma RII/III) and contain precursors for Ti alpha/beta lineage T cells. Here we show that Fc gamma RII/III is expressed in very immature CD4low single-positive (SP) thymocytes and that Fc gamma RII/III expression is downregulated within the DN subpopulation and before the CD3-CD8low SP stage in T cell receptor (TCR)-alpha/beta lineage-committed thymocytes. DN Fc gamma RII/III+ thymocytes also contain a small fraction of TCR-gamma/delta lineage cells in addition to TCR-alpha/beta progenitors. Fetal day 15.5 DN TCR-alpha/beta lineage progenitors can be subdivided into three major subpopulations as characterized by cell surface expression of Fc gamma RII/III vs. CD2 (Fc gamma RII/III+CD2-, Fc gamma RII/III+CD2+, Fc gamma RII/III-CD2+). Phenotypic analysis during fetal development as well as adoptive transfer of isolated fetal thymocyte subpopulations derived from C57B1/6 (Ly5.1) mice into normal, nonirradiated Ly5.2 congenic recipient mice identifies one early differentiation sequence (Fc gamma RII/III+CD2(-)-->Fc gamma RII/III+CD2(+)-->Fc gamma RII/III-CD2+) that precedes the entry of DN thymocytes into the CD4+CD8+ double-positive (DP) TCRlow/- stage. Unseparated day 15.5 fetal thymocytes develop into DP thymocytes within 2.5 d and remain at the DP stage for > 48 h before being selected into either CD4+ or CD8+ SP thymocytes. In contrast, Fc gamma RII/III+CD2- DN thymocytes follow this same developmental pathway but are delayed by approximately 24 h before entering the DP compartment, while Fc gamma RII/III-CD2+ display accelerated development by approximately 24 h compared with total day 15.5 thymocytes. Fc gamma RII/III-CD2+ are also more developmentally advanced than Fc gamma RII/III+CD2- fetal thymocytes with respect to their TCR beta chain V(D)J rearrangement. At day 15.5 in gestation, beta

  9. Distinct Roles for CXCR6(+) and CXCR6(-) CD4(+) T Cells in the Pathogenesis of Chronic Colitis.

    PubMed

    Mandai, Yasushi; Takahashi, Daisuke; Hase, Koji; Obata, Yuuki; Furusawa, Yukihiro; Ebisawa, Masashi; Nakagawa, Tomoo; Sato, Toru; Katsuno, Tatsuro; Saito, Yasushi; Shimaoka, Takeshi; Yokosuka, Osamu; Yokote, Kotaro; Ohno, Hiroshi

    2013-01-01

    CD4(+) T cells play a central role in the development of inflammatory bowel disease (IBD) via high-level production of effector cytokines such as IFN-γ and TNF-α. To better characterize the colitogenic CD4(+) T cells, we examined their expression of CXCR6, a chemokine receptor that is expressed by T cells upon activation and is upregulated in several inflammatory diseases. We found that 80% of colonic lamina propria CD4(+) T cells expressed CXCR6 in the CD45RB(high) T cell-transferred colitis model. CXCR6 expression was similarly upregulated in inflamed mucosa of patients with Crohn's disease. Although surface marker analysis demonstrated that both CXCR6(+) and CXCR6(-) CD4(+) T-cell subsets consist of the cells with effector and effector-memory cells, the more cells in the CXCR6(+) subset produced IFN-γ and TNF-α compared to CXCR6(-) subset, and only the CXCR6(+) subset produced IL-17A. Nevertheless, adoptive retransfer of lamina propria CXCR6(+) T cells into Rag1 (-/-) recipients failed to induce the disease due to limited expansion of the transferred cells. By contrast, retransfer of CXCR6(-) cells evoked colitis similar to that observed in CD4(+)CD45RB(high) T cell-transferred mice, and resulted in their conversion into CXCR6(+) cells. Collectively, these observations suggest that the CXCR6(+)CD4(+) T-cell subset consists of terminally differentiated effector cells that serve as the major source of effector cytokines in the inflamed tissue, whereas CXCR6(-)CD4(+) T-cell subset serves as a colitogenic memory compartment that retains the ability to proliferate and differentiate into CXCR6(+)CD4(+) T cells.

  10. Novel Dual Mitochondrial and CD44 Receptor Targeting Nanoparticles for Redox Stimuli-Triggered Release

    NASA Astrophysics Data System (ADS)

    Wang, Kaili; Qi, Mengjiao; Guo, Chunjing; Yu, Yueming; Wang, Bingjie; Fang, Lei; Liu, Mengna; Wang, Zhen; Fan, Xinxin; Chen, Daquan

    2018-02-01

    In this work, novel mitochondrial and CD44 receptor dual-targeting redox-sensitive multifunctional nanoparticles (micelles) based on oligomeric hyaluronic acid (oHA) were proposed. The amphiphilic nanocarrier was prepared by (5-carboxypentyl)triphenylphosphonium bromide (TPP), oligomeric hyaluronic acid (oHA), disulfide bond, and curcumin (Cur), named as TPP-oHA-S-S-Cur. The TPP targeted the mitochondria, the antitumor drug Cur served as a hydrophobic core, the CD44 receptor targeting oHA worked as a hydrophilic shell, and the disulfide bond acted as a connecting arm. The chemical structure of TPP-oHA-S-S-Cur was characterized by 1HNMR technology. Cur was loaded into the TPP-oHA-S-S-Cur micelles by self-assembly. Some properties, including the preparation of micelles, morphology, redox sensitivity, and mitochondrial targeting, were studied. The results showed that TPP-oHA-S-S-Cur micelles had a mean diameter of 122.4 ± 23.4 nm, zeta potential - 26.55 ± 4.99 mV. In vitro release study and cellular uptake test showed that TPP-oHA-S-S-Cur micelles had redox sensibility, dual targeting to mitochondrial and CD44 receptor. This work provided a promising smart multifunctional nanocarrier platform to enhance the solubility, decrease the side effects, and improve the therapeutic efficacy of anticancer drugs.

  11. CD147 expression predicts biochemical recurrence after prostatectomy independent of histologic and pathologic features.

    PubMed

    Bauman, Tyler M; Ewald, Jonathan A; Huang, Wei; Ricke, William A

    2015-07-25

    CD147 is an MMP-inducing protein often implicated in cancer progression. The purpose of this study was to investigate the expression of CD147 in prostate cancer (PCa) progression and the prognostic ability of CD147 in predicting biochemical recurrence after prostatectomy. Plasma membrane-localized CD147 protein expression was quantified in patient samples using immunohistochemistry and multispectral imaging, and expression was compared to clinico-pathological features (pathologic stage, Gleason score, tumor volume, preoperative PSA, lymph node status, surgical margins, biochemical recurrence status). CD147 specificity and expression were confirmed with immunoblotting of prostate cell lines, and CD147 mRNA expression was evaluated in public expression microarray datasets of patient prostate tumors. Expression of CD147 protein was significantly decreased in localized tumors (pT2; p = 0.02) and aggressive PCa (≥pT3; p = 0.004), and metastases (p = 0.001) compared to benign prostatic tissue. Decreased CD147 was associated with advanced pathologic stage (p = 0.009) and high Gleason score (p = 0.02), and low CD147 expression predicted biochemical recurrence (HR 0.55; 95 % CI 0.31-0.97; p = 0.04) independent of clinico-pathologic features. Immunoblot bands were detected at 44 kDa and 66 kDa, representing non-glycosylated and glycosylated forms of CD147 protein, and CD147 expression was lower in tumorigenic T10 cells than non-tumorigenic BPH-1 cells (p = 0.02). Decreased CD147 mRNA expression was associated with increased Gleason score and pathologic stage in patient tumors but is not associated with recurrence status. Membrane-associated CD147 expression is significantly decreased in PCa compared to non-malignant prostate tissue and is associated with tumor progression, and low CD147 expression predicts biochemical recurrence after prostatectomy independent of pathologic stage, Gleason score, lymph node status, surgical margins, and tumor volume in multivariable

  12. Syndecan-1/CD147 association is essential for cyclophilin B-induced activation of p44/42 mitogen-activated protein kinases and promotion of cell adhesion and chemotaxis.

    PubMed

    Pakula, Rachel; Melchior, Aurélie; Denys, Agnès; Vanpouille, Christophe; Mazurier, Joël; Allain, Fabrice

    2007-05-01

    Many of the biological functions attributed to cell surface proteoglycans are dependent on the interaction with extracellular mediators through their heparan sulphate (HS) moieties and the participation of their core proteins in signaling events. A class of recently identified inflammatory mediators is secreted cyclophilins, which are mostly known as cyclosporin A-binding proteins. We previously demonstrated that cyclophilin B (CyPB) triggers chemotaxis and integrin-mediated adhesion of T lymphocytes mainly of the CD4+/CD45RO+ phenotype. These activities are related to interactions with two types of binding sites, CD147 and cell surface HS. Here, we demonstrate that CyPB-mediated adhesion of CD4+/CD45RO+ T cells is related to p44/42 mitogen-activated protein kinase (MAPK) activation by a mechanism involving CD147 and HS proteoglycans (HSPG). Although HSPG core proteins are represented by syndecan-1, -2, -4, CD44v3 and betaglycan in CD4+/CD45RO+ T cells, we found that only syndecan-1 is physically associated with CD147. The intensity of the heterocomplex increased in response to CyPB, suggesting a transient enhancement and/or stabilization in the association of CD147 to syndecan-1. Pretreatment with anti-syndecan-1 antibodies or knockdown of syndecan-1 expression by RNA interference dramatically reduced CyPB-induced p44/p42 MAPK activation and consequent migration and adhesion, supporting the model in which syndecan-1 serves as a binding subunit to form the fully active receptor of CyPB. Altogether, our findings provide a novel example of a soluble mediator in which a member of the syndecan family plays a critical role in efficient interaction with signaling receptors and initiation of cellular responses.

  13. Regulation and Gene Expression Profiling of NKG2D Positive Human Cytomegalovirus-Primed CD4+ T-Cells

    PubMed Central

    Jensen, Helle; Folkersen, Lasse; Skov, Søren

    2012-01-01

    NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4+ T-cells, however recently a subset of NKG2D+ CD4+ T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D+ CD4+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D+ CD4+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D+ CD4+ T-cells, generated from HCMV-primed CD4+ T-cells. We show that the HCMV-primed NKG2D+ CD4+ T-cells possess a higher differentiated phenotype than the NKG2D– CD4+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4+ T-cells, whereas it is produced de novo in resting CD4+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D+ CD4+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression. PMID:22870231

  14. Regulation and gene expression profiling of NKG2D positive human cytomegalovirus-primed CD4+ T-cells.

    PubMed

    Jensen, Helle; Folkersen, Lasse; Skov, Søren

    2012-01-01

    NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8(+) T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4(+) T-cells, however recently a subset of NKG2D(+) CD4(+) T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D(+) CD4(+) T-cells possesses effector-like functions, thus resembling the subsets of NKG2D(+) CD4(+) T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4(+) T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D(+) CD4(+) T-cells, generated from HCMV-primed CD4(+) T-cells. We show that the HCMV-primed NKG2D(+) CD4(+) T-cells possess a higher differentiated phenotype than the NKG2D(-) CD4(+) T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4(+) T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4(+) T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4(+) T-cells, whereas it is produced de novo in resting CD4(+) T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D(+) CD4(+) T-cells, as well as the mechanisms regulating NKG2D cell surface expression.

  15. Expression of the Ly6/uPAR-domain proteins C4.4A and Haldisin in non-invasive and invasive skin lesions.

    PubMed

    Kriegbaum, Mette C; Clausen, Ole P F; Lærum, Ole D; Ploug, Michael

    2015-02-01

    C4.4A and Haldisin belong to the Ly6/uPAR/α-neurotoxin protein domain family. They exhibit highly regulated expression profiles in normal epidermis, where they are confined to early (C4.4A) and late (Haldisin) squamous differentiation. We have now explored if dysregulated expressions occur in non-invasive and invasive skin lesions. In non-invasive lesions, their expression signatures were largely maintained as defined by that of normal epidermis. The scenario was, however, markedly different in the progression towards invasive squamous cell carcinomas. In its non-invasive stage (carcinoma in situ), a pronounced attenuation of C4.4A expression was observed, but upon transition to malignant invasive squamous cell carcinomas, the invasive fronts regained high expression of C4.4A. A similar progression was observed for the early stages of benign infiltrating keratoacanthomas. Interestingly, this transition was accompanied by a shift in the predominant association of C4.4A expression with CK1/10 in the normal epidermis to CK5/14 in the invasive lesions. In contrast, Haldisin expression maintained its confinement to the most-differentiated cells and was hardly expressed in the invasive lesions. Because this altered expression of C4.4A was seen in the invasive front of benign (keratoacanthomas) and malignant (squamous cell carcinomas) neoplasms, we propose that this transition of expression is primarily related to the invasive process. © The Author(s) 2014.

  16. Distinct Roles for CXCR6+ and CXCR6CD4+ T Cells in the Pathogenesis of Chronic Colitis

    PubMed Central

    Hase, Koji; Obata, Yuuki; Furusawa, Yukihiro; Ebisawa, Masashi; Nakagawa, Tomoo; Sato, Toru; Katsuno, Tatsuro; Saito, Yasushi; Shimaoka, Takeshi; Yokosuka, Osamu; Yokote, Kotaro; Ohno, Hiroshi

    2013-01-01

    CD4+ T cells play a central role in the development of inflammatory bowel disease (IBD) via high-level production of effector cytokines such as IFN-γ and TNF-α. To better characterize the colitogenic CD4+ T cells, we examined their expression of CXCR6, a chemokine receptor that is expressed by T cells upon activation and is upregulated in several inflammatory diseases. We found that 80% of colonic lamina propria CD4+ T cells expressed CXCR6 in the CD45RBhigh T cell-transferred colitis model. CXCR6 expression was similarly upregulated in inflamed mucosa of patients with Crohn’s disease. Although surface marker analysis demonstrated that both CXCR6+ and CXCR6CD4+ T-cell subsets consist of the cells with effector and effector-memory cells, the more cells in the CXCR6+ subset produced IFN-γ and TNF-α compared to CXCR6− subset, and only the CXCR6+ subset produced IL-17A. Nevertheless, adoptive retransfer of lamina propria CXCR6+ T cells into Rag1 −/− recipients failed to induce the disease due to limited expansion of the transferred cells. By contrast, retransfer of CXCR6− cells evoked colitis similar to that observed in CD4+CD45RBhigh T cell-transferred mice, and resulted in their conversion into CXCR6+ cells. Collectively, these observations suggest that the CXCR6+CD4+ T-cell subset consists of terminally differentiated effector cells that serve as the major source of effector cytokines in the inflamed tissue, whereas CXCR6CD4+ T-cell subset serves as a colitogenic memory compartment that retains the ability to proliferate and differentiate into CXCR6+CD4+ T cells. PMID:23840334

  17. N‐glycosylation by N‐acetylglucosaminyltransferase V enhances the interaction of CD147/basigin with integrin β1 and promotes HCC metastasis

    PubMed Central

    Cui, Jian; Huang, Wan; Wu, Bo; Jin, Jin; Jing, Lin; Shi, Wen‐Pu; Liu, Zhen‐Yu; Yuan, Lin; Luo, Dan; Li, Ling

    2018-01-01

    Abstract While the importance of protein N‐glycosylation in cancer cell migration is well appreciated, the precise mechanisms by which N‐acetylglucosaminyltransferase V (GnT‐V) regulates cancer processes remain largely unknown. In the current study, we report that GnT‐V‐mediated N‐glycosylation of CD147/basigin, a tumor‐associated glycoprotein that carries β1,6‐N‐acetylglucosamine (β1,6‐GlcNAc) glycans, is upregulated during TGF‐β1‐induced epithelial‐to‐mesenchymal transition (EMT), which correlates with tumor metastasis in patients with hepatocellular carcinoma (HCC). Interruption of β1,6‐GlcNAc glycan modification of CD147/basigin decreased matrix metalloproteinase (MMP) expression in HCC cell lines and affected the interaction of CD147/basigin with integrin β1. These results reveal that β1,6‐branched glycans modulate the biological function of CD147/basigin in HCC metastasis. Moreover, we showed that the PI3K/Akt pathway regulates GnT‐V expression and that inhibition of GnT‐V‐mediated N‐glycosylation suppressed PI3K signaling. In summary, β1,6‐branched N‐glycosylation affects the biological function of CD147/basigin and these findings provide a novel approach for the development of therapeutic strategies targeting metastasis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:29431199

  18. Analysis of CD44-Hyaluronan Interactions in an Artificial Membrane System

    PubMed Central

    Wolny, Patricia M.; Banerji, Suneale; Gounou, Céline; Brisson, Alain R.; Day, Anthony J.; Jackson, David G.; Richter, Ralf P.

    2010-01-01

    CD44 is a major cell surface receptor for the large polydisperse glycosaminoglycan hyaluronan (HA). Binding of the long and flexible HA chains is thought to be stabilized by the multivalent nature of the sugar molecule. In addition, high and low molecular weight forms of HA provoke distinct proinflammatory and anti-inflammatory effects upon binding to CD44 and can deliver either proliferative or antiproliferative signals in appropriate cell types. Despite the importance of such interactions, however, neither the stoichiometry of multivalent HA binding at the cell surface nor the molecular basis for functional distinction between different HA size categories is understood. Here we report on the design of a supported lipid bilayer system that permits quantitative analysis of multivalent binding through presentation of CD44 in a stable, natively oriented manner and at controlled density. Using this system in combination with biophysical techniques, we show that the amount of HA binding to bilayers that are densely coated with CD44 increases as a function of HA size, with half-maximal saturation at ∼30 kDa. Moreover, reversible binding was confined to the smaller HA species (molecular weight of ≤10 kDa), whereas the interaction was essentially irreversible with larger polymers. The amount of bound HA decreased with decreasing receptor surface density, but the stability of binding was not affected. From a physico-chemical perspective, the binding properties of HA share many similarities with the typical behavior of a flexible polymer as it adsorbs onto a homogeneously attractive surface. These findings provide new insight into the multivalent nature of CD44-HA interactions and suggest a molecular basis for the distinct biological properties of different size fractions of hyaluronan. PMID:20663884

  19. Salivary-soluble CD44 levels in smokers and non-smokers with chronic periodontitis: a pilot study.

    PubMed

    Ghallab, Noha; Shaker, Olfat

    2010-05-01

    Smoking is the most important environmental risk factor for periodontal disease. Elevated levels of serum-soluble CD44 (sCD44) have been detected in smokers and also have been recognized as a diagnostic marker in some smoking-induced diseases. The present study investigates the salivary sCD44 profiles of smokers and non-smokers with and without chronic periodontitis in response to scaling and root planing (SRP). The study included 44 subjects divided into two groups: 22 patients with chronic periodontitis and 22 periodontally healthy subjects. Both groups were equally subdivided into smokers (n = 11) and non-smokers (n = 11). Plaque index, gingival index, probing depth, and clinical attachment level were recorded only for chronic periodontitis patients. Salivary samples were collected from all 44 patients at baseline and after 1 month of SRP from the 22 chronic periodontitis patients. Assay for salivary sCD44 was carried out by enzyme-linked immunosorbent assay. Baseline salivary sCD44 profiles were significantly higher when smokers were compared to non-smokers in both chronic periodontitis patients and the control subjects (P <0.001) with the highest levels recorded in smokers within the chronic periodontitis group. There was a significant decline in salivary sCD44 levels after treatment in the chronic periodontitis group for both smokers and non-smokers (P <0.01); however, the difference between groups was insignificant. Salivary sCD44 might be considered a biomarker of periodontal destruction in smokers and non-smokers. The research opens the door to further research into a role for CD44 as a diagnostic marker for periodontitis.

  20. The human TREM gene cluster at 6p21.1 encodes both activating and inhibitory single IgV domain receptors and includes NKp44.

    PubMed

    Allcock, Richard J N; Barrow, Alexander D; Forbes, Simon; Beck, Stephan; Trowsdale, John

    2003-02-01

    We have characterized a cluster of single immunoglobulin variable (IgV) domain receptors centromeric of the major histocompatibility complex (MHC) on human chromosome 6. In addition to triggering receptor expressed on myeloid cells (TREM)-1 and TREM2, the cluster contains NKp44, a triggering receptor whose expression is limited to NK cells. We identified three new related genes and two gene fragments within a cluster of approximately 200 kb. Two of the three new genes lack charged residues in their transmembrane domain tails. Further, one of the genes contains two potential immunotyrosine Inhibitory motifs in its cytoplasmic tail, suggesting that it delivers inhibitory signals. The human and mouse TREM clusters appear to have diverged such that there are unique sequences in each species. Finally, each gene in the TREM cluster was expressed in a different range of cell types.

  1. Regulation of cytokine signaling by B cell antigen receptor and CD40-controlled expression of heparan sulfate proteoglycans.

    PubMed

    van der Voort, R; Keehnen, R M; Beuling, E A; Spaargaren, M; Pals, S T

    2000-10-16

    Recently, biochemical, cell biological, and genetic studies have converged to reveal that integral membrane heparan sulfate proteoglycans (HSPGs) are critical regulators of growth and differentiation of epithelial and connective tissues. As a large number of cytokines involved in lymphoid tissue homeostasis or inflammation contain potential HS-binding domains, HSPGs presumably also play important roles in the regulation of the immune response. In this report, we explored the expression, regulation, and function of HSPGs on B lymphocytes. We demonstrate that activation of the B cell antigen receptor (BCR) and/or CD40 induces a strong transient expression of HSPGs on human tonsillar B cells. By means of these HSPGs, the activated B cells can bind hepatocyte growth factor (HGF), a cytokine that regulates integrin-mediated B cell adhesion and migration. This interaction with HGF is highly selective since the HSPGs did not bind the chemokine stromal cell-derived factor (SDF)-1 alpha, even though the affinities of HGF and SDF-1alpha for heparin are similar. On the activated B cells, we observed induction of a specific HSPG isoform of CD44 (CD44-HS), but not of other HSPGs such as syndecans or glypican-1. Interestingly, the expression of CD44-HS on B cells strongly promotes HGF-induced signaling, resulting in an HS-dependent enhanced phosphorylation of Met, the receptor tyrosine kinase for HGF, as well as downstream signaling molecules including Grb2-associated binder 1 (Gab1) and Akt/protein kinase B (PKB). Our results demonstrate that the BCR and CD40 control the expression of HSPGs, specifically CD44-HS. These HSPGs act as functional coreceptors that selectively promote cytokine signaling in B cells, suggesting a dynamic role for HSPGs in antigen-specific B cell differentiation.

  2. Expression Profiles of Ligands for Activating Natural Killer Cell Receptors on HIV Infected and Uninfected CD4⁺ T Cells.

    PubMed

    Tremblay-McLean, Alexandra; Bruneau, Julie; Lebouché, Bertrand; Lisovsky, Irene; Song, Rujun; Bernard, Nicole F

    2017-10-12

    Natural Killer (NK) cell responses to HIV-infected CD4 T cells (iCD4) depend on the integration of signals received through inhibitory (iNKR) and activating NK receptors (aNKR). iCD4 activate NK cells to inhibit HIV replication. HIV infection-dependent changes in the human leukocyte antigen (HLA) ligands for iNKR on iCD4 are well documented. By contrast, less is known regarding the HIV infection related changes in ligands for aNKR on iCD4. We examined the aNKR ligand profiles HIV p24⁺ HIV iCD4s that maintained cell surface CD4 (iCD4⁺), did not maintain CD4 (iCD4 - ) and uninfected CD4 (unCD4) T cells for expression of unique long (UL)-16 binding proteins-1 (ULBP-1), ULBP-2/5/6, ULBP-3, major histocompatibility complex (MHC) class 1-related (MIC)-A, MIC-B, CD48, CD80, CD86, CD112, CD155, Intercellular adhesion molecule (ICAM)-1, ICAM-2, HLA-E, HLA-F, HLA-A2, HLA-C, and the ligands to NKp30, NKp44, NKp46, and killer immunoglobulin-like receptor 3DS1 (KIR3DS1) by flow cytometry on CD4 T cells from 17 HIV-1 seronegative donors activated and infected with HIV. iCD4⁺ cells had higher expression of aNKR ligands than did unCD4. However, the expression of aNKR ligands on iCD4 where CD4 was downregulated (iCD4 - ) was similar to (ULBP-1, ULBP-2/5/6, ULBP-3, MIC-A, CD48, CD80, CD86 and CD155) or significantly lower than (MIC-B, CD112 and ICAM-2) what was observed on unCD4. Thus, HIV infection can be associated with increased expression of aNKR ligands or either baseline or lower than baseline levels of aNKR ligands, concomitantly with the HIV-mediated downregulation of cell surface CD4 on infected cells.

  3. Expression of CD30 mRNA, CD30L mRNA and a variant form of CD30 mRNA in restimulated peripheral blood mononuclear cells (PBMC) of patients with helminthic infections resembling a Th2 disease

    PubMed Central

    Kilwinski, J; Berger, T; Mpalaskas, J; Reuter, S; Flick, W; Kern, P

    1999-01-01

    It has been proposed that CD30, a member of the tumour necrosis factor (TNF) receptor superfamily, is preferentially up-regulated on Th2-type human T cells. In order to investigate a correlation between infection with Echinococcus multilocularis and CD30 expression, we analysed regulation of CD30 mRNA, a variant form of CD30 mRNA (CD30v) and CD30 ligand (CD30L) mRNA expression on PBMC from patients with alveolar echinococcosis (AE) using reverse transcriptase-polymerase chain reaction (RT-PCR). In PBMC of patients with AE as well as healthy donors, spontaneous expression of CD30L mRNA and the CD30v mRNA could be detected. However, the intact form of CD30 mRNA could be detected neither in freshly isolated PBMC of patients nor in PBMC of healthy individuals. Expression of CD30L mRNA and the variant form of CD30 mRNA was frequently detected at individual time points during 72 h of culture of PBMC stimulated with crude Echinococcus antigen. In contrast to CD30v or CD30L mRNA expression, induction of CD30 mRNA expression was detected only in three out of six (50%) healthy donors and in 10 out of 21 (48%) patients with alveolar echinococcosis after 72 h of incubation. As a control, mitogenic stimulation of PBMC of both healthy individuals and infected patients led to expression of intact CD30 mRNA within 24 h of culture. These data demonstrate the different expression of two different forms of CD30 mRNA in PBMC of human individuals. The specific induction of CD30 expression is correlated only in rare cases with the clinical status of patients with AE, indicating the lack of a general induction of CD30 mRNA in this Th2-type-dominated helminthic disease. The data provide further evidence that the CD30 receptor is not an exclusive marker for a Th2-type response. PMID:9933429

  4. Expression of complement membrane regulators membrane cofactor protein (CD46), decay accelerating factor (CD55), and protectin (CD59) in human malignant gliomas.

    PubMed Central

    Mäenpää, A.; Junnikkala, S.; Hakulinen, J.; Timonen, T.; Meri, S.

    1996-01-01

    Gliomas are malignant brain tumors, which, despite recent progress in surgical and radiological treatment, still have a poor prognosis. Since gliomas apparently resist immunological clearance mechanisms, we became interested in examining bow gliomas resist killing by the human complement system. The resistance of human cells to complement-mediated damage is, in large part, mediated by specific inhibitors of complement:membrane cofactor protein (CD46), decay-accelerating factor (CD55), and protectin (CD59). In the present study we examined the expression of complement regulators in 14 human glioma tumors and in 7 glioma cell lines (U251, U87, HS683, U373, U138, U118, and H2). Protectin was found to be strongly expressed by all glioma tumors and cell lines. Northern blotting analysis demonstrated the typical pattern of four to five protectin mRNAs in the glioma cells. Except for blood vessels, the expression of decay-accelerating factor was weak or absent in the tumors in situ, whereas in the cell lines its expression varied, ranging from negative to intermediate. Membrane cofactor protein was moderately expressed by all the cell lines but only weakly in the tumors. Cell-killing experiments demonstrated that the glioma cell lines were exceptionally resistant to C-mediated lysis. Five of the seven cell lines (U373, HS683, U118, U138, and H2) resisted complement lysis under conditions where most other cell lines were sensitive to killing. Neutralization experiments using specific monoclonal antibodies indicated that protectin was functionally the most important complement regulator in the glioma cells. The killing of the U87 and U251 cells could be significantly increased by a blocking anti-protectin monoclonal antibody, whereas for the other cell lines only moderate or no response was observed. The H2 cell line resisted killing by all antibodies and by complement. These results show that protectin is the most important complement regulator on human glioma cells. The

  5. Immunohistochemical expression of CD-10, BCL-6 and MUM-1 antibodies and immediate clinical response in patients of diffuse large B-cell lymphomas after six cycles of chemotherapy.

    PubMed

    Hassan, Usman; Ishtiaq, Sheeba; Hussain, Mudassar

    2014-10-01

    To determine the expression of CD-10, BCL-6 and MUM-1 in patients with diffuse large B-cell lymphoma (DLBCL) and its association with immediate clinical response after six cycles of CHOP chemotherapy. Analytical study. Armed Forces Institute of Pathology (AFIP), Rawalpindi in collaboration with Nuclear medicine, Oncology and Radiotherapy Institute (NORI), Islamabad from September 2010 to September 2011. CD-10, BCL-6 and MUM-1 antibodies were applied on cases diagnosed as DLBCL. Immediate clinical response was noted after 6 cycles of chemotherapy with the help of oncologist and divided into complete response, partial response, stable disease and relapse/ progression. Patient's age, results of expression of CD-10, BCL-6 and MUM-1 and results of immediate clinical response to chemotherapy were noted. Regarding analysis of prognostic markers (CD-10, BCL-6 and MUM-1), chi-square test was used for immediate clinical response to chemotherapy in DLBCL. CD-10 was positive in 40% cases, BCL-6 in 58.7% cases and MUM-1 was positive in 46.7% cases. About 41.3% of patients showed complete response, 10.6% partial response, 17.3% stable disease and 30.8% showed relapse/progression. CD-10 expression in DLBCL was associated with better immediate clinical response (p=0.011) whereas MUM-1 expression in DLBCL was associated with poor immediate clinical response (p<0.0001). However, there was no statistically significant association of BCL-6 with immediate clinical response (p=0.22). DLBCL shows expression of CD-10, BCL-6 and MUM-1 in nearly fifty percent of the cases. CD-10 is associated with good whereas MUM is associated with poor response. However, there was no association of BCL-6 with immediate clinical response.

  6. Selective silencing of full-length CD80 but not IgV-CD80 leads to impaired clonal deletion of self-reactive T cells and altered regulation of immune responses.

    PubMed

    Bugeon, L; Hargreaves, R E; Crompton, T; Outram, S; Rahemtulla, A; Porter, A C; Dallman, M J

    2001-01-01

    Co-stimulation provided by the B7 family of proteins underpins the development of protective immunity. There are three identified members of this family: CD80, its splice variant IgV-CD80 and CD86. It has hitherto been difficult to analyze the expression and function of IgV-CD80 since there are no appropriate reagents capable of distinguishing it from CD80. We have generated mice, by gene targeting, the lack CD80 whilst maintaining expression of IgV-CD80. Mutant animals did not delete T cells bearing mammary tumor virus-reactive TCR as efficiently as wild-type animals. We also demonstrate the importance of IgV-CD80 in the responses of recently activated cells and reveal a role for CD80 in sustaining T cell responses. CD86, whilst critical to primary T cell activation, made only a minor contribution to re-activation of normal cells.

  7. Production and Breeding of Transgenic Cloned Pigs Expressing Human CD73.

    PubMed

    Lee, Seung-Chan; Lee, Haesun; Oh, Keon Bong; Hwang, In-Sul; Yang, Hyeon; Park, Mi-Ryung; Ock, Sun-A; Woo, Jae-Seok; Im, Gi-Sun; Hwang, Seongsoo

    2017-06-01

    One of the reasons to causing blood coagulation in the tissue of xenografted organs was known to incompatibility of the blood coagulation and anti-coagulation regulatory system between TG pigs and primates. Thus, overexpression of human CD73 (hCD73) in the pig endothelial cells is considered as a method to reduce coagulopathy after pig-to-non-human-primate xenotransplantation. This study was performed to produce and breed transgenic pigs expressing hCD73 for the studies immune rejection responses and could provide a successful application of xenotransplantation. The transgenic cells were constructed an hCD73 expression vector under control porcine Icam2 promoter (pIcam2-hCD73) and established donor cell lines expressing hCD73. The numbers of transferred reconstructed embryos were 127 ± 18.9. The pregnancy and delivery rate of surrogates were 8/18 (44%) and 3/18 (16%). The total number of delivered cloned pigs were 10 (2 alive, 7 mummy, and 1 died after birth). Among them, three live hCD73-pigs were successfully delivered by Caesarean section, but one was dead after birth. The two hCD73 TG cloned pigs had normal reproductive ability. They mated with wild type (WT) MGH (Massachusetts General Hospital) female sows and produced totally 16 piglets. Among them, 5 piglets were identified as hCD73 TG pigs. In conclusion, we successfully generated the hCD73 transgenic cloned pigs and produced their litters by natural mating. It can be possible to use a mate for the production of multiple transgenic pigs such as α-1,3-galactosyltransferase knock-out /hCD46 for xenotransplantation.

  8. CD44 in cancer progression: adhesion, migration and growth regulation.

    PubMed

    Marhaba, R; Zöller, M

    2004-03-01

    It is well established that the large array of functions that a tumour cell has to fulfil to settle as a metastasis in a distant organ requires cooperative activities between the tumour and the surrounding tissue and that several classes of molecules are involved, such as cell-cell and cell-matrix adhesion molecules and matrix degrading enzymes, to name only a few. Furthermore, metastasis formation requires concerted activities between tumour cells and surrounding cells as well as matrix elements and possibly concerted activities between individual molecules of the tumour cell itself. Adhesion molecules have originally been thought to be essential for the formation of multicellular organisms and to tether cells to the extracellular matrix or to neighbouring cells. CD44 transmembrane glycoproteins belong to the families of adhesion molecules and have originally been described to mediate lymphocyte homing to peripheral lymphoid tissues. It was soon recognized that the molecules, under selective conditions, may suffice to initiate metastatic spread of tumour cells. The question remained as to how a single adhesion molecule can fulfil that task. This review outlines that adhesion is by no means a passive task. Rather, ligand binding, as exemplified for CD44 and other similar adhesion molecules, initiates a cascade of events that can be started by adherence to the extracellular matrix. This leads to activation of the molecule itself, binding to additional ligands, such as growth factors and matrix degrading enzymes, complex formation with additional transmembrane molecules and association with cytoskeletal elements and signal transducing molecules. Thus, through the interplay of CD44 with its ligands and associating molecules CD44 modulates adhesiveness, motility, matrix degradation, proliferation and cell survival, features that together may well allow a tumour cell to proceed through all steps of the metastatic cascade.

  9. Characterization of CD22 Expression in Acute Lymphoblastic Leukemia

    PubMed Central

    Shah, Nirali N.; Stetler-Stevenson, Maryalice; Yuan, Constance M.; Richards, Kelly; Delbrook, Cindy; Kreitman, Robert J.; Pastan, Ira; Wayne, Alan S.

    2015-01-01

    Background CD22 is a B-lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL). Procedure Properties of CD22 expression relevant to therapeutic targeting were characterized in primary samples obtained from children and young adults with relapsed and chemotherapy refractory B-precursor (pre-B) ALL. Results CD22 expression was demonstrated in all subjects (n=163) with detection on at least 90% of blasts in 155 cases. Median antigen site density of surface CD22 was 3,470 sites/cell (range 349 – 19,653, n=160). Blasts from patients with known 11q23 (MLL) rearrangement had lower site density (median 1,590 sites/cell, range 349-3,624, n=20 versus 3,853 sites/cell, range 451-19,653, n=140; p=<0.0001) and 6 of 21 cases had sub-populations of blasts lacking CD22 expression (22% – 82% CD22+). CD22 expression was maintained in serial studies of 73 subjects, including those treated with anti-CD22 targeted therapy. The levels of soluble CD22 in blood and marrow by ELISA were low and not expected to influence the pharmacokinetics of anti-CD22 directed agents. Conclusions These characteristics make CD22 an excellent potential therapeutic target in patients with relapsed and chemotherapy-refractory ALL, although cases with MLL rearrangement require close study to exclude the presence of a CD22-negative blast population. PMID:25728039

  10. Targeting CD44 with nanoparticles in head and neck squamous cell carcinoma: A novel therapeutic strategy against cancer stem cells

    NASA Astrophysics Data System (ADS)

    Thapa, Ranjeeta

    Head and neck squamous cell carcinoma (HNSCC) is the sixth most common type of cancer worldwide and is associated with significant morbidity and mortality. Advances in multi-modality treatments have only minimally improved survival rates in the past several years. Recent attention has been focused on the hypothesis that cancer stem cells (CSCs) may be responsible for the failure of current treatments. In HNSCC, a CSC population is contained within the cell fraction that expresses high levels of CD44. CD44 is a cell surface glycoprotein and was the first CSC marker to be described in solid malignancies. in this study, hyaluronan conjugated, dextran-coated super paramagnetic iron-oxide nanoparticles (HA-DESPIONs) were used to target the CD44 population in CD44-overexpressed HNSCC cell lines for treatment by establishing the interaction of HA-DESPIONs with radiation and hyperthermia therapy. The first part of this dissertation studied the cytotoxic, radiosensitizing, and hyperthermic properties of the HA-DESPIONs using cell proliferation and clonogenic survival assays. Cells were grown, plated, treated with HA-DESPIONs, irradiated/exposed to local hyperthermia, and then analyzed for apoptosis. HA-DESPIONs proved to be relatively non-toxic and nonradiosensitizing. However, temperature-dependent cell survival reduction upon incubation with HA-DESPIONs was observed with evidence of apoptotic cell death. These results supported further development of an alternating magnetic field (AMF) approach to activate the HADESPIONs attached to CSCs. In the second part of the dissertation, an AMF generator was constructed and its heat generating effect was tested via kinetic and dose-dependent bulk heating experiments by exposing magnetic nanoparticles to AMF. For elimination of the CD44 population, cells were treated with HA-DESPIONs/DESPIONs, exposed to AMF, and processed for flow cytometrybased apoptosis analysis. Magnetic nanoparticles caused concentration-dependent bulk heating

  11. CD44 fucosylation on mesenchymal stem cell enhances homing and macrophage polarization in ischemic kidney injury.

    PubMed

    Chou, Kang-Ju; Lee, Po-Tsang; Chen, Chien-Liang; Hsu, Chih-Yang; Huang, Wei-Chieh; Huang, Chien-Wei; Fang, Hua-Chang

    2017-01-01

    The lack of homing ability possibly reduces the healing potential of bone-marrow-derived mesenchymal stem cells (MSCs). Therefore, transforming native CD44 on MSCs into a hematopoietic cell E-/L-selectin ligand (HCELL) that possesses potent E-selectin affinity might enhance the homing and regenerative abilities of MSCs. Through fucosyltransferase VI (FTVI) transfection, MSCs were fucosylated on N-glycans of CD44 to become HCELL positive, thus interacting with E-selectin on injured endothelial cells. HCELL expression facilitated MSC homing in kidneys within 24h after injury and reduced lung stasis. An in vitro adhesion assay revealed that transfection enhanced the association between MSCs and hypoxic endothelial cells. In mice treated with HCELL-positive MSCs, the injured kidneys exhibited clusters of homing MSCs, whereas MSCs were rarely observed in mouse kidneys treated with HCELL-negative MSCs. Most MSCs were initially localized at the renal capsule, and some MSCs later migrated inward between tubules. Most homing MSCs were in close contact with inflammatory cells without tubular transdifferentiation. Furthermore, HCELL-positive MSCs substantially alleviated renal injury, partly by enhancing the polarization of infiltrating macrophages. In conclusion, engineering the glycan of CD44 on MSCs through FTVI transfection might enhance renotropism and the regenerating ability of MSCs in ischemic kidney injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Calcineurin-dependent negative regulation of CD94/NKG2A expression on naive CD8+ T cells.

    PubMed

    Cho, Jae-Ho; Kim, Hee-Ok; Webster, Kylie; Palendira, Mainthan; Hahm, Bumsuk; Kim, Kyu-Sik; King, Cecile; Tangye, Stuart G; Sprent, Jonathan

    2011-07-07

    Immune responses lead to expression of immunoregulatory molecules on T cells, including natural killer (NK) receptors, such as CD94/NKG2A on CD8(+) T cells; these receptors restrain CD8(+) responses, thereby preventing T-cell exhaustion in chronic infections and limiting immunopathology. Here, we examined the requirements for inducing CD94/NKG2A on T cells responding to antigen. In vitro, moderate induction of CD94/NKG2A expression occurred after exposure of naive CD8(+) (but not CD4(+)) cells to CD3 ligation or specific peptide. Surprisingly, expression was inhibited by CD28/B7 costimulation. Such inhibition applied only to CD94/NKG2A and not other NK receptors (NKG2D) and was mediated by IL-2. Inhibition by IL-2 occurred via a NFAT cell-independent component of the calcineurin pathway, and CD94/NKG2A induction was markedly enhanced in the presence of calcineurin blockers, such as FK506 or using calcineurin-deficient T cells, both in vitro and in vivo. In addition to CD28-dependent inhibition by IL-2, CD94/NKG2A expression was impaired by several other cytokines (IL-4, IL-23, and transforming growth factor-β) but enhanced by others (IL-6, IL-10, and IL-21). The complex interplay between these various stimuli may account for the variable expression of CD94/NKG2A during responses to different pathogens in vivo.

  13. High-temperature heat capacity of CdO-V2O5 oxides

    NASA Astrophysics Data System (ADS)

    Denisova, L. T.; Chumilina, L. G.; Belousova, N. V.; Denisov, V. M.; Galiakhmetova, N. A.

    2017-12-01

    Vanadates Cd2V2O7 and CdV2O6 have been prepared from CdO i V2O5 by three-phase synthesis with subsequent burning at 823-1073 K and 823-853 K, respectively. The molar heat capacity of these oxide compounds has been measured by differential scanning calorimetry. The enthalpy change, the entropy change, and the reduced Gibbs energy are calculated using the experimental dependences C p = f( T). It is shown that there is a correlation between the specific heat capacity and the composition of CdO-V2O5 oxide system.

  14. Lipopolysaccharide-Elicited TSLPR Expression Enriches a Functionally Discrete Subset of Human CD14+ CD1c+ Monocytes.

    PubMed

    Borriello, Francesco; Iannone, Raffaella; Di Somma, Sarah; Vastolo, Viviana; Petrosino, Giuseppe; Visconte, Feliciano; Raia, Maddalena; Scalia, Giulia; Loffredo, Stefania; Varricchi, Gilda; Galdiero, Maria Rosaria; Granata, Francescopaolo; Del Vecchio, Luigi; Portella, Giuseppe; Marone, Gianni

    2017-05-01

    Thymic stromal lymphopoietin (TSLP) is a cytokine produced mainly by epithelial cells in response to inflammatory or microbial stimuli and binds to the TSLP receptor (TSLPR) complex, a heterodimer composed of TSLPR and IL-7 receptor α (CD127). TSLP activates multiple immune cell subsets expressing the TSLPR complex and plays a role in several models of disease. Although human monocytes express TSLPR and CD127 mRNAs in response to the TLR4 agonist LPS, their responsiveness to TSLP is poorly defined. We demonstrate that TSLP enhances human CD14 + monocyte CCL17 production in response to LPS and IL-4. Surprisingly, only a subset of CD14 + CD16 - monocytes, TSLPR + monocytes (TSLPR + mono), expresses TSLPR complex upon LPS stimulation in an NF-κB- and p38-dependent manner. Phenotypic, functional, and transcriptomic analysis revealed specific features of TSLPR + mono, including higher CCL17 and IL-10 production and increased expression of genes with important immune functions (i.e., GAS6 , ALOX15B , FCGR2B , LAIR1 ). Strikingly, TSLPR + mono express higher levels of the dendritic cell marker CD1c. This evidence led us to identify a subset of peripheral blood CD14 + CD1c + cells that expresses the highest levels of TSLPR upon LPS stimulation. The translational relevance of these findings is highlighted by the higher expression of TSLPR and CD127 mRNAs in monocytes isolated from patients with Gram-negative sepsis compared with healthy control subjects. Our results emphasize a phenotypic and functional heterogeneity in an apparently homogeneous population of human CD14 + CD16 - monocytes and prompt further ontogenetic and functional analysis of CD14 + CD1c + and LPS-activated CD14 + CD1c + TSLPR + mono. Copyright © 2017 by The American Association of Immunologists, Inc.

  15. Acidic conditions induce the suppression of CD86 and CD54 expression in THP-1 cells.

    PubMed

    Mitachi, Takafumi; Mezaki, Minori; Yamashita, Kunihiko; Itagaki, Hiroshi

    2018-01-01

    To evaluate the sensitization potential of chemicals in cosmetics, using non-animal methods, a number of in vitro safety tests have been designed. Current assays are based on the expression of cell surface markers, such as CD86 and CD54, which are associated with the activation of dendritic cells, in skin sensitization tests. However, these markers are influenced by culture conditions through activating danger signals. In this study, we investigated the relationship between extracellular pH and the expression of the skin sensitization test human cell line activation test (h-CLAT) markers CD86 and CD54. We measured expression levels after THP-1 cells were exposed to representative contact allergens, i.e., 2,4-dinitrochlorobenzene and imidazolidinyl urea, under acidic conditions. These conditions were set by exposure to hydrochloric acid, lactic acid, and citric acid. An acidic extracellular pH (6-7) suppressed the augmentation of CD86 and CD54 levels by the sensitizer. Additionally, when the CD86/CD54 expression levels were suppressed, a reduction in the intracellular pH was confirmed. Furthermore, we observed that Na + /H + exchanger 1 (NHE-1), a protein that contributes to the regulation of extracellular/intracellular pH, is involved in CD86 and CD54 expression. These findings suggest that the extracellular/intracellular pH has substantial effects on in vitro skin sensitization markers and should be considered in evaluations of the safety of mixtures and commercial products in the future.

  16. CD6 as a potential target for treating multiple sclerosis

    PubMed Central

    Singer, Nora G.; Whitbred, Joy; Bowen, Michael A.; Lin, Feng

    2017-01-01

    CD6 was established as a marker of T cells more than three decades ago, and recent studies have identified CD6 as a risk gene for multiple sclerosis (MS), a disease in which autoreactive T cells are integrally involved. Nevertheless, the precise role of CD6 in regulating T-cell responses is controversial and its significance in the pathogenesis of various diseases remains elusive, partly due to the lack of animals engineered to alter expression of the CD6 gene. In this report, we found that CD6 KO mice showed decreased pathogenic T-cell responses, reduced spinal cord T-cell infiltration, and attenuated disease severity in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. CD6-deficient T cells exhibited augmented activation, but also significantly reduced survival and proliferation after activation, leading to overall decreased Th1 and Th17 polarization. Activated CD6-deficient T cells also showed impaired infiltration through brain microvascular endothelial cell monolayers. Furthermore, by developing CD6 humanized mice, we identified a mouse anti-human CD6 monoclonal antibody that is highly effective in treating established EAE without depleting T cells. These results suggest that (i) CD6 is a negative regulator of T-cell activation, (ii) at the same time, CD6 is a positive regulator of activated T-cell survival/proliferation and infiltration; and (iii) CD6 is a potential new target for treating MS and potentially other T-cell–driven autoimmune conditions. PMID:28209777

  17. Mouse and human HSPC immobilization in liquid culture by CD43- or CD44-antibody coating.

    PubMed

    Loeffler, Dirk; Wang, Weijia; Hopf, Alois; Hilsenbeck, Oliver; Bourgine, Paul E; Rudolf, Fabian; Martin, Ivan; Schroeder, Timm

    2018-03-29

    Keeping track of individual cell identifications is imperative to the study of dynamic single-cell behavior over time. Highly motile hematopoietic stem and progenitor cells (HSPCs) migrate quickly and do not adhere, and thus must be imaged very frequently to keep cell identifications. Even worse, they are also flushed away during medium exchange. To overcome these limitations, we tested antibody coating for reducing HSPC motility in vitro. Anti-CD43- and anti-CD44-antibody coating reduced the cell motility of mouse and human HSPCs in a concentration-dependent manner. This enables 2-dimensional (2D) colony formation without cell mixing in liquid cultures, massively increases time-lapse imaging throughput, and also maintains cell positions during media exchange. Anti-CD43 but not anti-CD44 coating reduces mouse HSPC proliferation with increasing concentrations. No relevant effects on cell survival or myeloid and megakaryocyte differentiation of hematopoietic stem cells and multipotent progenitors 1-5 were detected. Human umbilical cord hematopoietic CD34 + cell survival, proliferation, and differentiation were not affected by either coating. This approach both massively simplifies and accelerates continuous analysis of suspension cells, and enables the study of their behavior in dynamic rather than static culture conditions over time. © 2018 by The American Society of Hematology.

  18. Tissue-specific expression of human CD4 in transgenic mice.

    PubMed Central

    Gillespie, F P; Doros, L; Vitale, J; Blackwell, C; Gosselin, J; Snyder, B W; Wadsworth, S C

    1993-01-01

    The gene for the human CD4 glycoprotein, which serves as the receptor for human immunodeficiency virus type 1, along with approximately 23 kb of sequence upstream of the translational start site, was cloned. The ability of 5' flanking sequences to direct tissue-specific expression was tested in cell culture and in transgenic mice. A 5' flanking region of 6 kb was able to direct transcription of the CD4 gene in NIH 3T3 cells but did not result in detectable expression in the murine T-cell line EL4 or in four lines of transgenic mice. A larger 5' flanking region of approximately 23 kb directed high-level CD4 transcription in the murine T-cell line EL4 and in three independent lines of transgenic mice. Human CD4 expression in all tissues analyzed was tightly correlated with murine CD4 expression; the highest levels of human CD4 RNA expression were found in the thymus and spleen, with relatively low levels detected in other tissues. Expression of human CD4 protein in peripheral blood mononuclear cells was examined by flow cytometry in these transgenic animals and found to be restricted to the murine CD4+ subset of lymphocytes. Human CD4 protein, detected with an anti-human CD4 monoclonal antibody, was present on the surface of 45 to 50% of the peripheral blood mononuclear cells from all transgenic lines. Images PMID:8474453

  19. Hyaluronan injection in murine osteoarthritis prevents TGFbeta 1-induced synovial neovascularization and fibrosis and maintains articular cartilage integrity by a CD44-dependent mechanism

    PubMed Central

    2012-01-01

    Introduction The mechanism by which intra-articular injection of hyaluronan (HA) ameliorates joint pathology is unknown. Animal studies have shown that HA can reduce synovial activation, periarticular fibrosis and cartilage erosion; however, its specific effects on the different cell types involved remain unclear. We have used the TTR (TGFbeta1 injection and Treadmill Running) model of murine osteoarthritis (OA), which exhibits many OA-like changes, including synovial activation, to examine in vivo tissue-specific effects of intra-articular HA. Methods The kinetics of clearance of fluorotagged HA from joints was examined with whole-body imaging. Naïve and treated knee joints were examined macroscopically for cartilage erosion, meniscal damage and fibrosis. Quantitative histopathology was done with Safranin O for cartilage and with Hematoxylin & Eosin for synovium. Gene expression in joint tissues for Acan, Col1a1, Col2a1, Col3a1, Col5a1, Col10a1, Adamts5 and Mmp13 was done by quantitative PCR. The abundance and distribution of aggrecan, collagen types I, II, III, V and X, ADAMTS5 and MMP13 were examined by immunohistochemistry. Results Injected HA showed a half-life of less than 2 h in the murine knee joint. At the tissue level, HA protected against neovascularization and fibrosis of the meniscus/synovium and maintained articular cartilage integrity in wild-type but not in Cd44 knockout mice. HA injection enhanced the expression of chondrogenic genes and proteins and blocked that of fibrogenic/degradative genes and proteins in cartilage/subchondral bone, whereas it blocked activation of both groups in meniscus/synovium. In all locations it reduced the expression/protein for Mmp13 and blocked Adamts5 expression but not its protein abundance in the synovial lining. Conclusions The injection of HA, 24 h after TGFbeta1 injection, inhibited the cascade of OA-like joint changes seen after treadmill use in the TTR model of OA. In terms of mechanism, tissue protection by

  20. Characterization of CD22 expression in acute lymphoblastic leukemia.

    PubMed

    Shah, Nirali N; Stevenson, Maryalice Stetler; Yuan, Constance M; Richards, Kelly; Delbrook, Cindy; Kreitman, Robert J; Pastan, Ira; Wayne, Alan S

    2015-06-01

    CD22 is a B-lineage differentiation antigen that has emerged as a leading therapeutic target in acute lymphoblastic leukemia (ALL). Properties of CD22 expression relevant to therapeutic targeting were characterized in primary samples obtained from children and young adults with relapsed and chemotherapy refractory B-precursor (pre-B) ALL. CD22 expression was demonstrated in all subjects (n = 163) with detection on at least 90% of blasts in 155 cases. Median antigen site density of surface CD22 was 3,470 sites/cell (range 349-19,653, n = 160). Blasts from patients with known 11q23 (MLL) rearrangement had lower site density (median 1,590 sites/cell, range 349-3,624, n = 20 versus 3,853 sites/cell, range 451-19,653, n = 140; P = <0.0001) and 6 of 21 cases had sub-populations of blasts lacking CD22 expression (22%-82% CD22 +). CD22 expression was maintained in serial studies of 73 subjects, including those treated with anti-CD22 targeted therapy. The levels of soluble CD22 in blood and marrow by ELISA were low and not expected to influence the pharmacokinetics of anti-CD22 directed agents. These characteristics make CD22 an excellent potential therapeutic target in patients with relapsed and chemotherapy-refractory ALL, although cases with MLL rearrangement require close study to exclude the presence of a CD22-negative blast population. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  1. Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blazek, Ed R.; Foutch, Jennifer L.; Maki, Guitta

    2007-01-01

    Purpose: Primary medulloblastoma and glioblastoma multiforme tumor cells that express the surface marker CD133 are believed to be enriched for brain tumor stem cells because of their unique ability to initiate or reconstitute tumors in immunodeficient mice. This study sought to characterize the radiobiological properties and marker expression changes of CD133+ vs. CD133- cells of an established medulloblastoma cell line. Methods and Materials: Daoy and D283 Med cell lines were stained with fluorescently labeled anti-CD133 antibody and sorted into CD133+ and CD133- populations. The effect of oxygen (2% vs. 20%) on CD133 expression was measured. Both populations were analyzed formore » marker stability, cell cycle distribution, and radiosensitivity. Results: CD133+ Daoy cells restored nearly native CD133+ and CD133- populations within 18 days, whereas CD133- cells remained overwhelmingly CD133-. Culturing Daoy cells in 2% oxygen rather than the standard 20% oxygen increased their CD133 expression 1.6-fold. CD133+ Daoy cells were radioresistant via the {beta}-parameter of the linear-quadratic model relative to CD133- Daoy cells, although their {alpha}-parameters and cell cycle distributions were identical. Conclusions: Restoration of the original CD133+ and CD133- populations from CD133+ Daoy cells in serum is further evidence that CD133+ cells are functionally distinct from CD133- cells. The radioresistance of CD133+ compared with CD133- Daoy cells is consistent with better repair of sublethal damage. Enlargement of the CD133+ sector is a new feature of the hypoxic response.« less

  2. Hyaluronic Acid Surface Modified Liposomes Prepared via Orthogonal Aminoxy Coupling: Synthesis of Nontoxic Aminoxylipids Based on Symmetrically α-Branched Fatty Acids, Preparation of Liposomes by Microfluidic Mixing, and Targeting to Cancer Cells Expressing CD44.

    PubMed

    Bartheldyová, Eliška; Effenberg, Roman; Mašek, Josef; Procházka, Lubomír; Knötigová, Pavlína Turánek; Kulich, Pavel; Hubatka, František; Velínská, Kamila; Zelníčková, Jaroslava; Zouharová, Darina; Fojtíková, Martina; Hrebík, Dominik; Plevka, Pavel; Mikulík, Robert; Miller, Andrew D; Macaulay, Stuart; Zyka, Daniel; Drož, Ladislav; Raška, Milan; Ledvina, Miroslav; Turánek, Jaroslav

    2018-06-25

    New synthetic aminoxy lipids are designed and synthesized as building blocks for the formulation of functionalized nanoliposomes by microfluidization using a NanoAssemblr. Orthogonal binding of hyaluronic acid onto the outer surface of functionalized nanoliposomes via aminoxy coupling ( N-oxy ligation) is achieved at hemiacetal function of hyaluronic acid and the structure of hyaluronic acid-liposomes is visualized by transmission electron microscopy and cryotransmission electron microscopy. Observed structures are in a good correlation with data obtained by dynamic light scattering (size and ζ-potential). In vitro experiments on cell lines expressing CD44 receptors demonstrate selective internalization of fluorochrome-labeled hyaluronic acid-liposomes, while cells with down regulated CD44 receptor levels exhibit very low internalization of hyaluronic acid-liposomes. A method based on microfluidization mixing was developed for preparation of monodispersive unilamellar liposomes containing aminoxy lipids and orthogonal binding of hyaluronic acid onto the liposomal surface was demonstrated. These hyaluronic acid-liposomes represent a potentially new drug delivery platform for CD44-targeted anticancer drugs as well as for immunotherapeutics and vaccines.

  3. The metastasis suppressor, NDRG1, inhibits “stemness” of colorectal cancer via down-regulation of nuclear β-catenin and CD44

    PubMed Central

    Wangpu, Xiongzhi; Yang, Xiao; Zhao, Jingkun; Lu, Jiaoyang; Guan, Shaopei; Lu, Jun; Kovacevic, Zaklina; Liu, Wensheng; Mi, Lan; Jin, Runsen; Sun, Jing; Yue, Fei; Ma, Junjun; Lu, Aiguo; Richardson, Des R.; Wang, Lishun; Zheng, Minhua

    2015-01-01

    N-myc downstream-regulated gene 1 (NDRG1), has been identified as an important metastasis suppressor for colorectal cancer (CRC). In this study, we investigated: (1) the effects of NDRG1 on CRC stemness and tumorigenesis; (2) the molecular mechanisms involved; and (3) the relationship between NDRG1 expression and colorectal cancer prognosis. Our investigation demonstrated that CRC cells with silenced NDRG1 showed more tumorigenic ability and stem cell-like properties, such as: colony and sphere formation, chemoresistance, cell invasion, high expression of CD44, and tumorigenicity in vivo. Moreover, NDRG1 silencing reduced β-catenin expression on the cell membrane, while increasing its nuclear expression. The anti-tumor activity of NDRG1 was demonstrated to be mediated by preventing β-catenin nuclear translocation, as silencing of this latter molecule could reverse the effects of silencing NDRG1 expression. NDRG1 expression was also demonstrated to be negatively correlated to CRC prognosis. In addition, there was a negative correlation between NDRG1 and nuclear β-catenin and also NDRG1 and CD44 expression in clinical CRC specimens. Taken together, our investigation demonstrates that the anti-metastatic activity of NDRG1 in CRC occurs through the down-regulation of nuclear β-catenin and suggests that NDRG1 is a significant therapeutic target. PMID:26418878

  4. Immunohistochemical Expression of CD31 (PECAM-1) in Nonendothelial Tumors of Dogs.

    PubMed

    Ramos-Vara, José A; Miller, Margaret A; Dusold, Dee M

    2018-05-01

    CD31 immunoreactivity has been reported in human nonendothelial tumors of both epithelial and mesenchymal origin. This study examined CD31 immunoreactivity of 347 formalin-fixed, paraffin-embedded normal, nonneoplastic, and neoplastic canine tissues. CD31 expression was considered positive if at least 10% of the cell population had membranous reactivity. Labeling with the CD31 antibody (clone JC/70A) was observed in 16 samples of normal organs (liver, kidney, lymph node), 6 of 6 specimens of hepatic nodular hyperplasia, 3 of 3 hepatic regenerative nodules, 1 of 4 anal sac carcinomas, 6 of 6 hemangiosarcomas, 18 of 20 hepatocellular carcinomas, 1 of 6 mammary carcinomas, 3 of 5 plasmacytomas, 18 of 53 renal cell carcinomas, and 1 of 5 cutaneous histiocytomas. CD31 expression did not correlate with case outcome in hepatocellular or renal cell carcinomas. Although distinguishing hemangiosarcoma from other neoplasms is typically straightforward, pathologists should be aware of potential cross-reactivity when relying on CD31 immunohistochemistry for diagnosis, particularly in small biopsy samples or when faced with an epithelioid or poorly differentiated vascular neoplasm.

  5. Differential Gene Expression Profiling of Functionally and Developmentally Distinct Human Prostate Epithelial Populations

    PubMed Central

    Liu, Haibo; Cadaneanu, Radu M; Lai, Kevin; Zhang, Baohui; Huo, Lihong; An, Dong Sun; Li, Xinmin; Lewis, Michael S; Garraway, Isla P

    2015-01-01

    BACKGROUND Human fetal prostate buds appear in the 10th gestational week as solid cords, which branch and form lumens in response to androgen 1. Previous in vivo analysis of prostate epithelia isolated from benign prostatectomy specimens indicated that Epcam+CD44CD49fHi basal cells possess efficient tubule initiation capability relative to other subpopulations 2. Stromal interactions and branching morphogenesis displayed by adult tubule-initiating cells (TIC) are reminiscent of fetal prostate development. In the current study, we evaluated in vivo tubule initiation by human fetal prostate cells and determined expression profiles of fetal and adult epithelial subpopulations in an effort to identify pathways used by TIC. METHODS Immunostaining and FACS analysis based on Epcam, CD44, and CD49f expression demonstrated the majority (99.9%) of fetal prostate epithelial cells (FC) were Epcam+CD44− with variable levels of CD49f expression. Fetal populations isolated via cell sorting were implanted into immunocompromised mice. Total RNA isolation from Epcam+CD44CD49fHi FC, adult Epcam+CD44CD49fHi TIC, Epcam+CD44+CD49fHi basal cells (BC), and Epcam+CD44CD49fLo luminal cells (LC) was performed, followed by microarray analysis of 19 samples using the Affymetrix Gene Chip Human U133 Plus 2.0 Array. Data was analyzed using Partek Genomics Suite Version 6.4. Genes selected showed >2-fold difference in expression and P < 5.00E-2. Results were validated with RT-PCR. RESULTS Grafts retrieved from Epcam+CD44− fetal cell implants displayed tubule formation with differentiation into basal and luminal compartments, while only stromal outgrowths were recovered from Epcam- fetal cell implants. Hierarchical clustering revealed four distinct groups determined by antigenic profile (TIC, BC, LC) and developmental stage (FC). TIC and BC displayed basal gene expression profiles, while LC expressed secretory genes. FC had a unique profile with the most similarities to adult TIC

  6. Differential gene expression profiling of functionally and developmentally distinct human prostate epithelial populations.

    PubMed

    Liu, Haibo; Cadaneanu, Radu M; Lai, Kevin; Zhang, Baohui; Huo, Lihong; An, Dong Sun; Li, Xinmin; Lewis, Michael S; Garraway, Isla P

    2015-05-01

    Human fetal prostate buds appear in the 10th gestational week as solid cords, which branch and form lumens in response to androgen 1. Previous in vivo analysis of prostate epithelia isolated from benign prostatectomy specimens indicated that Epcam⁺ CD44CD49f(Hi) basal cells possess efficient tubule initiation capability relative to other subpopulations 2. Stromal interactions and branching morphogenesis displayed by adult tubule-initiating cells (TIC) are reminiscent of fetal prostate development. In the current study, we evaluated in vivo tubule initiation by human fetal prostate cells and determined expression profiles of fetal and adult epithelial subpopulations in an effort to identify pathways used by TIC. Immunostaining and FACS analysis based on Epcam, CD44, and CD49f expression demonstrated the majority (99.9%) of fetal prostate epithelial cells (FC) were Epcam⁺ CD44⁻ with variable levels of CD49f expression. Fetal populations isolated via cell sorting were implanted into immunocompromised mice. Total RNA isolation from Epcam⁺ CD44CD49f(Hi) FC, adult Epcam⁺ CD44CD49f(Hi) TIC, Epcam⁺ CD44CD49f(Hi) basal cells (BC), and Epcam⁺ CD44CD49f(Lo) luminal cells (LC) was performed, followed by microarray analysis of 19 samples using the Affymetrix Gene Chip Human U133 Plus 2.0 Array. Data was analyzed using Partek Genomics Suite Version 6.4. Genes selected showed >2-fold difference in expression and P < 5.00E-2. Results were validated with RT-PCR. Grafts retrieved from Epcam⁺ CD44⁻ fetal cell implants displayed tubule formation with differentiation into basal and luminal compartments, while only stromal outgrowths were recovered from Epcam- fetal cell implants. Hierarchical clustering revealed four distinct groups determined by antigenic profile (TIC, BC, LC) and developmental stage (FC). TIC and BC displayed basal gene expression profiles, while LC expressed secretory genes. FC had a unique profile with the most similarities

  7. Profiling of normal and malignant breast tissue show CD44high/CD24low phenotype as a predominant stem/progenitor marker when used in combination with Ep-CAM/CD49f markers

    PubMed Central

    2013-01-01

    Background Accumulating evidence supports cancer to initiate and develop from a small population of stem-like cells termed as cancer stem cells (CSC). The exact phenotype of CSC and their counterparts in normal mammary gland is not well characterized. In this study our aim was to evaluate the phenotype and function of stem/progenitor cells in normal mammary epithelial cell populations and their malignant counterparts. Methods Freshly isolated cells from both normal and malignant human breasts were sorted using 13 widely used stem/progenitor cell markers individually or in combination by multi-parametric (up to 9 colors) cell sorting. The sorted populations were functionally evaluated by their ability to form colonies and mammospheres, in vitro. Results We have compared, for the first time, the stem/progenitor markers of normal and malignant breasts side-by-side. Amongst all markers tested, we found CD44high/CD24low cell surface marker combination to be the most efficient at selecting normal epithelial progenitors. Further fractionation of CD44high/CD24low positive cells showed that this phenotype selects for luminal progenitors within Ep-CAMhigh/CD49f + cells, and enriches for basal progenitors within Ep-CAM-/low/CD49f + cells. On the other hand, primary breast cancer samples, which were mainly luminal Ep-CAMhigh, had CD44high/CD24low cells among both CD49fneg and CD49f + cancer cell fractions. However, functionally, CSC were predominantly CD49f + proposing the use of CD44high/CD24low in combination with Ep-CAM/CD49f cell surface markers to further enrich for CSC. Conclusion Our study clearly demonstrates that both normal and malignant breast cells with the CD44high/CD24low phenotype have the highest stem/progenitor cell ability when used in combination with Ep-CAM/CD49f reference markers. We believe that this extensive characterization study will help in understanding breast cancer carcinogenesis, heterogeneity and drug resistance. PMID:23768049

  8. Lysosomal Degradation of CD44 Mediates Ceramide Nanoliposome-induced Anoikis and Diminished Extravasation in Metastatic Carcinoma Cells*

    PubMed Central

    Haakenson, Jeremy K.; Khokhlatchev, Andrei V.; Choi, Younhee J.; Linton, Samuel S.; Zhang, Pu; Zaki, Peter M.; Fu, Changliang; Cooper, Timothy K.; Manni, Andrea; Zhu, Junjia; Fox, Todd E.; Dong, Cheng; Kester, Mark

    2015-01-01

    The ceramide nanoliposome (CNL) has shown promise in being able to treat a variety of primary tumors. However, its potential for treating metastatic cancer remains unknown. In this study, we demonstrate that CNL increases anoikis while preventing cancer cell extravasation under both static and physiological fluid flow conditions. Mechanistically, CNL limits metastases by decreasing CD44 protein levels in human breast and pancreatic cancer cells via lysosomal degradation of CD44, independent of palmitoylation or proteasome targeting. siRNA down-regulation of CD44 mimics CNL-induced anoikis and diminished extravasation of cancer cells. Taken together, our data indicate that ceramide limits CD44-dependent cancer cell migration, suggesting that CNL could be used to prevent and treat solid tumor metastasis. PMID:25681441

  9. Potent inhibition of OKT3-induced T cell proliferation and suppression of CD147 cell surface expression in HeLa cells by scFv-M6-1B9.

    PubMed

    Intasai, Nutjeera; Tragoolpua, Khajornsak; Pingmuang, Prakitnavin; Khunkaewla, Panida; Moonsom, Seangdeun; Kasinrerk, Watchara; Lieber, André; Tayapiwatana, Chatchai

    2008-01-01

    CD147, a multifunctional type I transmembrane glycoprotein, has been implicated in various physiological and pathological processes. It is involved in signal transduction pathways and also plays a crucial role in the invasive and metastatic activity of malignant tumor cells. Diminished expression of this molecule has been shown to be beneficial in suppression of tumor progression. In a previous study, we generated and characterized a recombinant antibody fragment, scFv, which reacted specifically to CD147. In the present study, we further investigated the biological properties, function and the effect of generated scFv on CD147 expression. The in vitro study showed that soluble scFv-M6-1B9 produced from E. coli HB2151 bound to CD147 surface molecule and inhibited OKT3-induced T cell proliferation. Furthermore, soluble lysate of scFv-M6-1B9 from 293A cells, transduced with a scFv-M6-1B9 expressing adenovirus vector, recognized both recombinant and native CD147. These results indicate that scFv-M6-1B9 binds with high efficiency and specificity. Importantly, scFv-M6-1B9 intrabody reduced the expression of CD147 on the cell surface of HeLa cells suggesting that scFv-M6-1B9 is biologically active. In conclusion, our present study demonstrated that scFv-M6-1B9 has a great potential to target both the intracellular and the extracellular CD147. The generated scFv-M6-1B9 may be an effective agent to clarify the cellular function of CD147 and may aid in efforts to develop a novel treatment in various human carcinomas.

  10. Expression of CD133 confers malignant potential by regulating metalloproteinases in human hepatocellular carcinoma.

    PubMed

    Kohga, Keisuke; Tatsumi, Tomohide; Takehara, Tetsuo; Tsunematsu, Hinako; Shimizu, Satoshi; Yamamoto, Masashi; Sasakawa, Akira; Miyagi, Takuya; Hayashi, Norio

    2010-06-01

    Although CD133 expression is identified as a cancer stem cell marker of hepatocellular carcinoma (HCC), the detailed characteristics of HCC cells expressing CD133 remain unclear. We examined the malignant characteristics of CD133-expressing HCC cells. CD133-expressing cells could be detected with low frequency in 5 HCC tissues. We derived two different HCC cell lines by (1) transfection of CD133 siRNA in PLC/PRF/5 cells in (CD133si-PLC/PRF/5), and (2) by a magnetic cell sorting method that allowed to divide Huh7 cells into two CD133 positive (+) and negative (-) groups. CD133 knockdown in PLC/PRF/5 cells resulted in a decrease of the mRNA and protein expressions of matrix metalloproteinase (MMP)-2 and a disintegrin and metalloproteinase (ADAM)9. We next examined the malignant characteristics related to decreasing MMP-2 and ADAM9 in HCC cells. In CD133si-PLC/PRF/5 cells and CD133- Huh7 cells, invasiveness and vascular endothelial growth factor (VEGF) production, which are both related to the activity of MMP-2, were inhibited compared CD133-expressing HCC cells. We previously demonstrated that ADAM9 protease plays critical roles in the shedding of MHC class I-related chain A (MICA) which regulates the sensitivity of tumor cells to natural killer cells (NK). Decreasing ADAM9 expression in CD133si-PLC/PRF/5 cells and CD133- Huh7 cells resulted in an increase in membrane-bound MICA and a decrease in soluble MICA production. Both CD133si-PLC/PRF/5 cells and CD133- Huh7 cells were susceptible to NK activity, depending on the expression levels of membrane-bound MICA, but CD133-expressing HCC cells were not. These results demonstrate that CD133 expression in HCC cells confers malignant potential which may contribute to the survival of HCC cells. Copyright 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  11. CD40 expression in Wehi-164 cell line

    PubMed Central

    Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Moazzeni, Seyed Mohammad

    2010-01-01

    CD40-CD154 interaction is an important process for cellular and humoral immunity regulation and can be effective in the body’s defense against tumors. In the present study, we evaluated the expression of CD40 in Wehi-164 cell line. CD40 expressions on the cell surface and in the cytoplasm were assessed by flow cytometry and intracellular staining assay, respectively. Also, the mRNA expression was identified by real time-PCR. The obtained results showed the high mRNA and cytoplasmic protein expression of CD40 but no surface expression. These results suggest that the Wehi-164 cell line down regulates expression of CD40 on the surface for evasion of immune system. PMID:20496113

  12. CD40 expression in Wehi-164 cell line.

    PubMed

    Karimi, Mohammad Hossein; Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Moazzeni, Seyed Mohammad

    2010-07-01

    CD40-CD154 interaction is an important process for cellular and humoral immunity regulation and can be effective in the body's defense against tumors. In the present study, we evaluated the expression of CD40 in Wehi-164 cell line. CD40 expressions on the cell surface and in the cytoplasm were assessed by flow cytometry and intracellular staining assay, respectively. Also, the mRNA expression was identified by real time-PCR. The obtained results showed the high mRNA and cytoplasmic protein expression of CD40 but no surface expression. These results suggest that the Wehi-164 cell line down regulates expression of CD40 on the surface for evasion of immune system.

  13. Impaired ATP6V0A2 expression contributes to Golgi dispersion and glycosylation changes in senescent cells.

    PubMed

    Udono, Miyako; Fujii, Kaoru; Harada, Gakuro; Tsuzuki, Yumi; Kadooka, Keishi; Zhang, Pingbo; Fujii, Hiroshi; Amano, Maho; Nishimura, Shin-Ichiro; Tashiro, Kosuke; Kuhara, Satoru; Katakura, Yoshinori

    2015-11-27

    Many genes and signaling pathways have been found to be involved in cellular senescence program. In the present study, we have identified 16 senescence-associated genes by differential proteomic analysis of the normal human diploid fibroblast cell line, TIG-1, and focused on ATP6V0A2. The aim of this study is to clarify the role of ATP6V0A2, the causal gene for ARCL2, a syndrome of abnormal glycosylation and impaired Golgi trafficking, in cellular senescence program. Here we showed that ATP6V0A2 is critical for cellular senescence; impaired expression of ATP6V0A2 disperses the Golgi structure and triggers senescence, suggesting that ATP6V0A2 mediates these processes. FITC-lectin staining and glycoblotting revealed significantly different glycosylation structures in presenescent (young) and senescent (old) TIG-1 cells; reducing ATP6V0A2 expression in young TIG-1 cells yielded structures similar to those in old TIG-1 cells. Our results suggest that senescence-associated impaired expression of ATP6V0A2 triggers changes in Golgi structure and glycosylation in old TIG-1 cells, which demonstrates a role of ATP6V0A2 in cellular senescence program.

  14. Impaired ATP6V0A2 expression contributes to Golgi dispersion and glycosylation changes in senescent cells

    PubMed Central

    Udono, Miyako; Fujii, Kaoru; Harada, Gakuro; Tsuzuki, Yumi; Kadooka, Keishi; Zhang, Pingbo; Fujii, Hiroshi; Amano, Maho; Nishimura, Shin-Ichiro; Tashiro, Kosuke; Kuhara, Satoru; Katakura, Yoshinori

    2015-01-01

    Many genes and signaling pathways have been found to be involved in cellular senescence program. In the present study, we have identified 16 senescence-associated genes by differential proteomic analysis of the normal human diploid fibroblast cell line, TIG-1, and focused on ATP6V0A2. The aim of this study is to clarify the role of ATP6V0A2, the causal gene for ARCL2, a syndrome of abnormal glycosylation and impaired Golgi trafficking, in cellular senescence program. Here we showed that ATP6V0A2 is critical for cellular senescence; impaired expression of ATP6V0A2 disperses the Golgi structure and triggers senescence, suggesting that ATP6V0A2 mediates these processes. FITC-lectin staining and glycoblotting revealed significantly different glycosylation structures in presenescent (young) and senescent (old) TIG-1 cells; reducing ATP6V0A2 expression in young TIG-1 cells yielded structures similar to those in old TIG-1 cells. Our results suggest that senescence-associated impaired expression of ATP6V0A2 triggers changes in Golgi structure and glycosylation in old TIG-1 cells, which demonstrates a role of ATP6V0A2 in cellular senescence program. PMID:26611489

  15. Lysosomal degradation of CD44 mediates ceramide nanoliposome-induced anoikis and diminished extravasation in metastatic carcinoma cells.

    PubMed

    Haakenson, Jeremy K; Khokhlatchev, Andrei V; Choi, Younhee J; Linton, Samuel S; Zhang, Pu; Zaki, Peter M; Fu, Changliang; Cooper, Timothy K; Manni, Andrea; Zhu, Junjia; Fox, Todd E; Dong, Cheng; Kester, Mark

    2015-03-27

    The ceramide nanoliposome (CNL) has shown promise in being able to treat a variety of primary tumors. However, its potential for treating metastatic cancer remains unknown. In this study, we demonstrate that CNL increases anoikis while preventing cancer cell extravasation under both static and physiological fluid flow conditions. Mechanistically, CNL limits metastases by decreasing CD44 protein levels in human breast and pancreatic cancer cells via lysosomal degradation of CD44, independent of palmitoylation or proteasome targeting. siRNA down-regulation of CD44 mimics CNL-induced anoikis and diminished extravasation of cancer cells. Taken together, our data indicate that ceramide limits CD44-dependent cancer cell migration, suggesting that CNL could be used to prevent and treat solid tumor metastasis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Tumor associated CD70 expression is involved in promoting tumor migration and macrophage infiltration in GBM.

    PubMed

    Ge, Haitao; Mu, Luyan; Jin, Linchun; Yang, Changlin; Chang, Yifan Emily; Long, Yu; DeLeon, Gabriel; Deleyrolle, Loic; Mitchell, Duane A; Kubilis, Paul S; Lu, Dunyue; Qi, Jiping; Gu, Yunhe; Lin, Zhiguo; Huang, Jianping

    2017-10-01

    Tumor migration/metastasis and immunosuppression are major obstacles in effective cancer therapy. Incidentally, these 2 hurdles usually coexist inside tumors, therefore making therapy significantly more complicated, as both oncogenic mechanisms must be addressed for successful therapeutic intervention. Our recent report highlights that the tumor expression of a TNF family member, CD70, is correlated with poor survival for primary gliomas. In this study, we investigated how CD70 expression by GBM affects the characteristics of tumor cells and the tumor microenvironment. We found that the ablation of CD70 in primary GBM decreased CD44 and SOX2 gene expression, and inhibited tumor migration, growth and the ability to attract monocyte-derived M2 macrophages in vitro. In the tumor microenvironment, CD70 was associated with immune cell infiltrates, such as T cells; myeloid-derived suppressor cells; and monocytes/macrophages based on the RNA-sequencing profile. The CD163+ macrophages were far more abundant than T cells were. This overwhelming level of macrophages was identified only in GBM and not in low-grade gliomas and normal brain specimens, implying their tumor association. CD70 was detected only on tumor cells, not on macrophages, and was highly correlated with CD163 gene expression in primary GBM. Additionally, the co-expression of the CD70 and CD163 genes was found to correlate with decreased survival for patients with primary GBM. Together, these data suggest that CD70 expression is involved in promoting tumor aggressiveness and immunosuppression via tumor-associated macrophage recruitment/activation. Our current efforts to target this molecule using chimeric antigen receptor T cells hold great potential for treating patients with GBM. © 2017 UICC.

  17. Expression of CTLA-4 (CD152) on human medullary CD4+ thymocytes.

    PubMed

    Castan, J; Klauenberg, U; Kalmár, P; Fleischer, B; Bröker, B M

    1998-06-01

    CTLA-4 (CD152) is a T cell surface receptor with sequence homology to the co-stimulatory molecule CD28. The molecule, which is essential for the inhibitory regulation of the immune response, becomes transiently expressed on mature T cells after stimulation in vitro. In situ, CTLA-4+ T cells are enriched in the light zones of the germinal centers in human peripheral lymphoid organs. In this study we have studied expression of CTLA-4 in human thymus in situ. CTLA-4 was expressed on about one third of CD4+/CD8-/CD1- medullary thymocytes. CTLA-4 was acquired by a subset of immature (CD1+) thymocytes and lost from the mature (CD1-) subpopulation within 48 h of cell culture, suggesting that the expression on medullary thymocytes is transient. The demonstration of CTLA-4 on a substantial subpopulation of mature CD4+ thymocytes adds a new dimension to the understanding of this important molecule. When contemplating application of anti-CTLA-4 for therapy its potential influence on T cell maturation has to be taken into account.

  18. The effect of lipopolysaccharides on the expression of CD14 and TLR4 in rat Kupffer cells.

    PubMed

    Feng, Jun-Ming; Shi, Jing-Quan; Liu, You-Sheng

    2003-05-01

    To assess the effect of lipopolysaccharides (LPS) on the expression of CD14 and TLR4 in rat Kupffer cells (KCs). In rat KCs induced by LPS, the changes of CD14 and TLR4 expression were measured by RT-PCR and immunohistochemistry, and the expressions of TNF-alphamRNA, IL-6mRNA or the concentrations of TNF-alpha, IL-6 were estimated by in situ hybridization, radioimmunoassay, and others. The expressions of CD14 and TLR4 in KCs induced by LPS were markedly increased in a dose-dependent manner (10 mg/L-1 microg/L) or in a time-dependent manner (0.5 h-24 h), with the peaked expression of CD14 at 3-6 hours. The expressions of CD14 and TLR4 in KCs stimulated by the active mediators from KCs which had been exposed to LPS for 1 hour were obviously increased. There is a close relationship between LPS or the active mediators from KCs induced by LPS and the expressions of CD14, TLR4. It is implied that the increase of TLR4, CD14 expression may be induced by LPS within 1-3 hours, and further increase of TLR4, CD14 expression may be correlated with the cytokines produced by KCs.

  19. CD44 and ALDH1 immunoexpression as prognostic indicators of invasion and metastasis in oral squamous cell carcinoma.

    PubMed

    Ortiz, Rafael Carneiro; Lopes, Nathália Martins; Amôr, Nadia Ghinelli; Ponce, José Burgos; Schmerling, Cláudia Kliemann; Lara, Vanessa Soares; Moyses, Raquel Ajub; Rodini, Camila Oliveira

    2018-05-23

    Tumour metastasis has been associated with cancer stem cells, a small population with stem-like cells properties, higher rate of migration and metastatic potential compared to cells from the tumour bulk. Our aim was to evaluate the immunoexpression of the putative cancer stem cell biomarkers ALDH1 and CD44 in primary tumour and corresponding metastatic lymph nodes. Tumour tissue specimens (n=50) and corresponding metastatic lymph nodes (n=25) were surgically obtained from 50 patients with oral squamous cell carcinoma and submitted to immunohistochemistry. CD44 and ALDH1 were semi-quantitatively scored according to the proportion and intensity of positive cells within the invasive front and metastatic lymph nodes as a whole. A combined score was obtained by multiplying both parameters and later dichotomized into a final score classified as low (≤ 2) or high (> 2) immunoexpression. ALDH1 and CD44 immunoexpression was detected in both tumour sites, although the means of ALDH1 (P = 0.0985) and CD44 (P = 0.4220) cells were higher in metastasis compared to primary tumours. ALDH1 high was positively associated (P = 0.0184) with angiolymphatic invasion, while CD44 high was positively associated (P = 0.0181) with metastasis (N+). At multivariate analysis, CD44 significantly increased the odds of lymph node metastasis, regardless of T stage (OR=8,24; 1,64-65,64, p=0,0088). CD44 immunoexpression was a significant predictor of lymph node metastasis, while ALDH1 high immunostaining was associated with angiolymphatic invasion. Altogether, it suggests that immunoexpression of CD44 and ALDH1 links the cancer stem cell phenotype with oral squamous cell carcinoma invasion and metastasis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Functional Elements on SIRPα IgV domain Mediate Cell Surface Binding to CD47

    PubMed Central

    Liu, Yuan; Tong, Qiao; Zhou, Yubin; Lee, Hsiau-Wei; Yang, Jenny J.; Bühring, Hans-Jörg; Chen, Yi-Tien; Ha, Binh; Chen, Celia X-J.; Zen, Ke

    2007-01-01

    Summary SIRPα and SIRPβ1, the two major isoforms of the signal regulatory protein (SIRP) family, are co-expressed in human leukocytes but mediate distinct extracellular binding interactions and divergent cell signaling responses. Previous studies have demonstrated that binding of SIRPα with CD47, another important cell surface molecule, through the extracellular IgV domain regulates important leukocyte functions including macrophage recognition, leukocyte adhesion and transmigration. Although SIRPβ1 shares highly homologous extracellular IgV structure with SIRPα, it does not bind to CD47. In this study, we defined key amino acid residues exclusively expressing in the IgV domain of SIRPα, but not SIRPβ1, which determine the extracellular binding interaction of SIRPα to CD47. These key residues include Gln67, a small hydrophobic amino acid (Ala or Val) at the 57th position and Met102. We found that Gln67 and Ala/Val57 are critical. Mutation of either of these residues abates SIRPα directly binding to CD47. Functional cell adhesion and leukocyte transmigration assays further demonstrated central roles of Gln67 and Ala/Val57 in SIRPα extracellular binding mediated cell interactions and cell migration. Another SIRPα-specific residue, Met102, appears to assist SIRPα IgV binding through Gln67 and Ala/Val57. An essential role of these amino acids in SIRPα binding to CD47 was further confirmed by introducing these residues into the SIRPβ1 IgV domain, which dramatically converts SIRPβ1 into a CD47-binding molecule. Our results thus revealed the molecular basis by which SIRPα selectively binds to CD47 and shed new light into the structural mechanisms of SIRP isoform mediated distinctive extracellular interactions and cellular responses. PMID:17070842

  1. Functional elements on SIRPalpha IgV domain mediate cell surface binding to CD47.

    PubMed

    Liu, Yuan; Tong, Qiao; Zhou, Yubin; Lee, Hsiau-Wei; Yang, Jenny J; Bühring, Hans-Jörg; Chen, Yi-Tien; Ha, Binh; Chen, Celia X-J; Yang, Yang; Zen, Ke

    2007-01-19

    SIRPalpha and SIRPbeta1, the two major isoforms of the signal regulatory protein (SIRP) family, are co-expressed in human leukocytes but mediate distinct extracellular binding interactions and divergent cell signaling responses. Previous studies have demonstrated that binding of SIRPalpha with CD47, another important cell surface molecule, through the extracellular IgV domain regulates important leukocyte functions including macrophage recognition, leukocyte adhesion and transmigration. Although SIRPbeta1 shares highly homologous extracellular IgV structure with SIRPalpha, it does not bind to CD47. Here, we defined key amino acid residues exclusively expressing in the IgV domain of SIRPalpha, but not SIRPbeta1, which determine the extracellular binding interaction of SIRPalpha to CD47. These key residues include Gln67, a small hydrophobic amino acid (Ala or Val) at the 57th position and Met102. We found that Gln67 and Ala/Val57 are critical. Mutation of either of these residues abates SIRPalpha directly binding to CD47. Functional cell adhesion and leukocyte transmigration assays further demonstrated central roles of Gln67 and Ala/Val57 in SIRPalpha extracellular binding mediated cell interactions and cell migration. Another SIRPalpha-specific residue, Met102, appears to assist SIRPalpha IgV binding through Gln67 and Ala/Val57. An essential role of these amino acid residues in SIRPalpha binding to CD47 was further confirmed by introducing these residues into the SIRPbeta1 IgV domain, which dramatically converts SIRPbeta1 into a CD47-binding molecule. Our results thus revealed the molecular basis by which SIRPalpha binds to CD47 and shed new light into the structural mechanisms of SIRP isoform mediated distinctive extracellular interactions and cellular responses.

  2. IL-32γ promotes integrin αvβ6 expression through the activation of NF-κB in HSCs

    PubMed Central

    Liu, Hongcan; Pan, Xingfei; Cao, Hong; Shu, Xin; Sun, Haixia; Lu, Jianxi; Liang, Jiayin; Zhang, Ka; Zhu, Fengqin; Li, Gang; Zhang, Qi

    2017-01-01

    Hepatic stellate cell (HSC) activation is important in the pathogenesis of liver fibrosis. However, the molecular mechanism of HSC activation is not completely understood. In the present study, it was demonstrated that interleukin-32γ (IL-32γ) is capable of enhancing intefgrin αvβ6 expression by inducing integrin αvβ6 promoter activity in a dose-dependent manner in HSCs. Furthermore, it was determined that nuclear factor κB (NF-κB) activation is required for IL-32γ-induced integrin αvβ6 expression. Increased integrin αvβ6 expression is then able to activate HSCs. These results indicate that NF-κB activation is required for IL-32γ to induce integrin αvβ6 expression and consequently promote HSC activation. Therefore, IL-32γ activates HSCs and therefore may be associated with hepatic fibrogenesis. These results may enable the development of novel effective strategies to treat hepatic fibrosis. PMID:29042996

  3. CD133(+)/CD44(+)/Oct4(+)/Nestin(+) stem-like cells isolated from Panc-1 cell line may contribute to multi-resistance and metastasis of pancreatic cancer.

    PubMed

    Wang, Dongqing; Zhu, Haitao; Zhu, Ying; Liu, Yanfang; Shen, Huiling; Yin, Ruigen; Zhang, Zhijian; Su, Zhaoliang

    2013-05-01

    Pancreatic cancer is an aggressive malignant disease. Owing to the lack of early symptoms, accompanied by extensive metastasis and high resistance to chemotherapy, pancreatic adenocarcinoma becomes the fourth leading cause of cancer-related deaths. In this study, we identified a subpopulation of cells isolated from the Panc-1 cell line and named pancreatic cancer stem-like cells. These Panc-1 stem-like cells expressed high levels of CD133/CD44/Oct4/Nestin. Compared to Panc-1 cells, Panc-1 stem-like cells were resistant to gemcitabine and expressed high levels of MDR1; furthermore, Panc-1 stem-like cells have high anti-apoptotic, but weak proliferative potential. These results indicated that Panc-1 stem-like cells, as a novel group, may be a potential major cause of pancreatic cancer multidrug resistance and extensive metastasis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  4. The reliability of cytoplasmic CD3 and CD22 antigen expression in the immunodiagnosis of acute leukemia: a study of 500 cases.

    PubMed

    Janossy, G; Coustan-Smith, E; Campana, D

    1989-03-01

    Current views about the origin of acute lymphoid leukemia (ALL) emphasize the importance of maturation arrest at a precursor cell level. Recently, the CD22 antigen has been identified in the cytoplasm of normal bone marrow-borne immature B lineage cells, while the CD3 antigen (epsilon chain) has been detected within normal immature thymic blasts. In the first part our study performed on 100 cases of known acute leukemias, the expression of such cytoplasmic molecules, referred to as cCD22 and cCD3, was analyzed together with their appearance in the leukemic cells' membrane (mCD22 and mCD3). The presence of cCD22 in B-lineage ALL and that of cCD3 in T-ALL has indeed fully confirmed the diagnosis reached by other markers, and mCD22 and mCD3 were expressed on only a few cases of B- and T-lineage ALL, also revealing a degree of developmental asynchrony within leukemic blasts. In the subsequent analysis both cCD22 and cCD3 have been included in a standard panel of diagnostic reagents applied on 500 consecutive cases of acute leukemia. Here the aim was to analyze both the diagnostic precision of individual markers and the heterogeneity of various leukemic types in terms of the expression of membrane and intracellular antigens and their cytochemical features (Sudan Black B and esterases). It has been found that cCD22 and cCD3 are exquisitely specific for B-precursor ALL (TdT+, CD19+) and T-ALL (TdT+, CD7+), respectively, while both markers are absent in acute myeloblastic leukemia (AML) and acute myelomonocytic and monocytic leukemia (AMML/AMoL). These observations contrast the findings which demonstrate that 31% of cases among nonlymphoid acute leukemia (including AML and AMML) express CD7 and/or TdT. The study of myeloid antigens detected by CD13, CD33, and CD14 is also informative and complementary, both in diagnosing and subdividing the AML and AMML/AMoL groups. The peculiar main observation of this study is that only with the combined use of these markers in a

  5. Hyaluronan Tumor Cell Interactions in Prostate Cancer Growth and Survival

    DTIC Science & Technology

    2006-12-01

    prognostic value of CD44 standard and variant v3 and v6 isoforms in prostate cancer. Eur Urol, 2001. 39(2): p. 138-44. 32. De Marzo , A.M., et al., CD44...subcutaneous injection model [ 24 ]and in orthotopic or intrafemoral bone injection models (see progress report below). Importantly, the addition of...expression from these cells, completely reverses growth inhibition[ 24 ]. CD44 and Rhamm – Two Hyaladherins with Overlapping Function: The two most

  6. Cloning and expression of canine CD25 for validation of an anti-human CD25 antibody to compare T regulatory lymphocytes in healthy dogs and dogs with osteosarcoma.

    PubMed

    Rissetto, K C; Rindt, H; Selting, K A; Villamil, J A; Henry, C J; Reinero, C R

    2010-05-15

    T regulatory cells (Tregs) are a unique subset of T helper cells that serve to modify/inhibit effector cells of the immune system and thus are essential to prevent autoimmunity. Overzealous Treg activity may contribute to impaired immune responses to cancer. Tregs can be phenotypically identified by proteins expressed on the cell surface (CD4 and CD25) and inside the cell (forkhead box3 (FoxP3)), although in dogs, no anti-canine CD25 antibody exists. We hypothesized that a mouse anti-human CD25 antibody definitively recognizes the canine protein and can be used to identify Tregs in dogs. We describe cloning and transfection of the canine CD25 gene into human HeLa cells with subsequent expression of the canine protein on the cell surface detected using an anti-human CD25 antibody in a flow cytometric assay. Validation of this antibody was used to identify CD4+CD25+FoxP3+ Tregs in 39 healthy dogs and 16 dogs with osteosarcoma (OSA). Results were expressed in five different ways and showed significantly fewer %CD4+CD25+ T lymphocytes expressing FoxP3 in blood of older dogs (>/=7 years) compared with the other two age groups (<2 and 2-6 years) (p<0.001) and fewer %CD4+CD25+FoxP3+ Tregs in the tumor draining lymph nodes of OSA patients compared to the unrelated lymph node (p=0.049). However, there was no significant difference in % Tregs in the peripheral blood or lymph nodes between the control dogs and those with OSA. While the CD25 antibody can be successfully used in a flow cytometric assay to identify Tregs, this study does not support clinical utility of phenotypic recognition of Tregs in dogs with OSA. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Characterization of four CD18 mutants in leucocyte adhesion deficient (LAD) patients with differential capacities to support expression and function of the CD11/CD18 integrins LFA-1, Mac-1 and p150,95

    PubMed Central

    Shaw, J M; Al-Shamkhani, A; Boxer, L A; Buckley, C D; Dodds, A W; Klein, N; Nolan, S M; Roberts, I; Roos, D; Scarth, S L; Simmons, D L; Tan, S M; Law, S K A

    2001-01-01

    Leucocyte adhesion deficiency (LAD) is a hereditary disorder caused by mutations in the CD18 (β2 integrin) gene. Four missense mutations have been identified in three patients. CD18(A270V) supports, at a diminished level, CD11b/CD18 (Mac-1, αMβ2 integrin) and CD11c/CD18 (p150,95, αXβ2 integrin) expression and function but not CD11a/CD18 (LFA-1, αLβ2 integrin) expression. Conversely, CD18(A341P) supports a limited level of expression and function of CD11a/CD18, but not of the other two CD11/CD18 antigens. CD18(C590R) and CD18(R593C) show a decreasing capacity to associate with the CD11a, CD11c and CD11b subunits. Transfectants expressing the CD11a/CD18 with the C590R and R593C mutations are more adhesive than transfectants expressing wild-type LFA-1, and express the reporter epitope of the monoclonal antibody 24 constitutively. Thus, the four mutations affect CD18 differently in its capacities to support CD11/CD18 expression and adhesion. These results not only provide a biochemical account for the clinical diversity of patients with leucocyte adhesion deficiency, but also offer novel insights into the structural basis of interaction between the α and β subunits, which is an integral component in our understanding of integrin-mediated adhesion and its regulation. PMID:11703376

  8. Voltage-Dependent Charge Storage in Cladded Zn0.56Cd0.44Se Quantum Dot MOS Capacitors for Multibit Memory Applications

    NASA Astrophysics Data System (ADS)

    Khan, J.; Lingalugari, M.; Al-Amoody, F.; Jain, F.

    2013-11-01

    As conventional memories approach scaling limitations, new storage methods must be utilized to increase Si yield and produce higher on-chip memory density. Use of II-VI Zn0.56Cd0.44Se quantum dots (QDs) is compatible with epitaxial gate insulators such as ZnS-ZnMgS. Voltage-dependent charging effects in cladded Zn0.56Cd0.44Se QDs are presented in a conventional metal-oxide-semiconductor capacitor structure. Charge storage capabilities in Si and ZnMgS QDs have been reported by various researchers; this work is focused on II-VI material Zn0.56Cd0.44Se QDs nucleated using photoassisted microwave plasma metalorganic chemical vapor deposition. Using capacitance-voltage hysteresis characterization, the multistep charging and discharging capabilities of the QDs at room temperature are presented. Three charging states are presented within a 10 V charging voltage range. These characteristics exemplify discrete charge states in the QD layer, perfect for multibit, QD-functionalized high-density memory applications. Multiple charge states with low operating voltage provide device characteristics that can be used for multibit storage by allowing varying charges to be stored in a QD layer based on the applied "write" voltage.

  9. Possible role of CD22, CD79b and CD20 expression in distinguishing small lymphocytic lymphoma from chronic lymphocytic leukemia.

    PubMed

    Jovanovic, Danijela; Djurdjevic, Predrag; Andjelkovic, Nebojsa; Zivic, Ljubica

    2014-01-01

    Flow cytometry has an important role in diagnosis and classification of B-cell lymphoproliferative disorders (BCLPDs). However, in distinguishing chronic lymphocytic leukemia (CLL) from small lymphocytic lymphoma (SLL) only clinical criteria are available so far. Aim of the study was to determine differences in the expression of common B cell markers (CD22, CD79b and CD20) on the malignant lymphocytes in the peripheral blood samples of CLL and SLL patients. Peripheral blood samples of 56 CLL and 11 SLL patients were analyzed by 5-color flow cytometry on the CD45/CD19/CD5 gate for CD22, CD79b and CD20. In the samples collected from the CLL patients, CD22 expression was detected in only 20% of patients in the low pattern, while in SLL patients the expression was medium and present in 90.9% of patients (p < 0.0001). For CD79b expression, statistical significance is reached both in the expression pattern, which was low/medium for CLL and high for SLL, and expression level (p = 0.006). The expression of CD20 was counted as the CD20/CD19 ratio. The average ratio was 0.512 in the CLL patients vs. 0.931 in the SLL patients (p = 0.0001). The pattern of expression and expression level of CD22, CD79b and CD20 in peripheral blood could be used for distinguishing SLL from CLL patients.

  10. Characterization of CD44-Mediated Cancer Cell Uptake and Intracellular Distribution of Hyaluronan-Grafted Liposomes

    PubMed Central

    Qhattal, Hussaini Syed Sha; Liu, Xinli

    2011-01-01

    Hyaluronan (HA) is a biocompatible and biodegradable linear polysaccharide which is of interest for tumor targeting through cell surface CD44 receptors. HA binds with high affinity to CD44 receptors, which are overexpressed in many tumors and involved in cancer metastasis. In the present study, we investigated the impact of HA molecular weight (MW), grafting density, and CD44 receptor density on endocytosis of HA-grafted liposomes (HA-liposomes) by cancer cells. Additionally, the intracellular localization of the HA-liposomes was determined. HAs of different MWs (5-8, 10-12, 175-350, and 1600 kDa) were conjugated to liposomes with varying degrees of grafting density. HA surface density was quantified using the hexadecyltrimethylammonium bromide turbidimetric method. Cellular uptake and subcellular localization of HA-liposomes were evaluated by flow cytometry and fluorescence microscopy. Mean particle sizes of HA-liposomes ranged from 120 to 180 nm and increased with the bigger size of HA. HA-liposome uptake correlated with HA MW (5-8 < 10-12 < 175-350 kDa), grafting density, and CD44 receptor density and exceeded that obtained with unconjugated plain liposomes. HA-liposomes were taken up into cells via lipid raft-mediated endocytosis, which is both energy- and cholesterol-dependent. Once within cells, HA-liposomes localized primarily to endosomes and lysosomes. The results demonstrate that cellular targeting efficiency of HA-liposomes depends strongly upon HA MW, grafting density, and cell surface receptor CD44 density. The results support a role of HA-liposomes for targeted drug delivery. PMID:21696190

  11. Conserved regulation of mesenchymal gene expression by Fgf-8 in face and limb development.

    PubMed

    Tucker, A S; Al Khamis, A; Ferguson, C A; Bach, I; Rosenfeld, M G; Sharpe, P T

    1999-01-01

    Clim-2 (NLI, Lbd1) is one of two related mouse proteins that interact with Lim-domain homeoproteins. In the mouse, embryonic expression of Clim-2 is particularly pronounced in facial ectomesenchyme and limb bud mesenchyme in association with Lim genes, Lhx-6 and Lmx-1 respectively. We show that in common with both these Lim genes, Clim-2 expression is regulated by signals from overlying epithelium. In both the developing face and the limb buds we identify Fgf-8 as the likely candidate signalling molecule that regulates Clim-2 expression. We show that in the mandibular arch, as in the limb, Fgf-8 functions in combination with CD44, a cell surface binding protein, and that blocking CD44 binding results in inhibition of Fgf8-induced expression of Clim-2 and Lhx-6. Regulation of gene expression by Fgf8 in association with CD44 is thus conserved between limb and mandibular arch development.

  12. Excitation functions of the natCr(p,x)44Ti, 56Fe(p,x)44Ti, natNi(p,x)44Ti and 93Nb(p,x)44Ti reactions at energies up to 2.6 GeV

    NASA Astrophysics Data System (ADS)

    Titarenko, Yu. E.; Batyaev, V. F.; Pavlov, K. V.; Titarenko, A. Yu.; Zhivun, V. M.; Chauzova, M. V.; Balyuk, S. A.; Bebenin, P. V.; Ignatyuk, A. V.; Mashnik, S. G.; Leray, S.; Boudard, A.; David, J. C.; Mancusi, D.; Cugnon, J.; Yariv, Y.; Nishihara, K.; Matsuda, N.; Kumawat, H.; Stankovskiy, A. Yu.

    2016-06-01

    The paper presents the measured cumulative yields of 44Ti for natCr, 56Fe, natNi and 93Nb samples irradiated by protons at the energy range 0.04-2.6 GeV. The obtained excitation functions are compared with calculations of the well-known codes: ISABEL, Bertini, INCL4.2+ABLA, INCL4.5+ABLA07, PHITS, CASCADE07 and CEM03.02. The predictive power of these codes regarding the studied nuclides is analyzed.

  13. CD44-targeted hyaluronic acid-curcumin prodrug protects renal tubular epithelial cell survival from oxidative stress damage.

    PubMed

    Hu, Jing-Bo; Li, Shu-Juan; Kang, Xu-Qi; Qi, Jing; Wu, Jia-Hui; Wang, Xiao-Juan; Xu, Xiao-Ling; Ying, Xiao-Ying; Jiang, Sai-Ping; You, Jian; Du, Yong-Zhong

    2018-08-01

    Based on the abnormally increased expression of CD44 receptors on renal tubule epithelial cells during ischemia/reperfusion-induced acute kidney injury (AKI), we developed a hyaluronic acid-curcumin (HA-CUR) polymeric prodrug targeting to epithelial cells and then relieving oxidative stress damages. The water solubility of HA-CUR was significantly enhanced and approximately 27-fold higher than that of CUR. Cellular uptake test showed HA-CUR was preferably internalized by H 2 O 2 -pretreated tubular epithelial (HK-2) cells compared with free CUR benefiting from the specific binding between HA and CD44 receptors. Biodistribution results further demonstrated the increased accumulation of HA-CUR in kidneys with 13.9-fold higher than that of free CUR. Pharmacodynamic studies indicated HA-CUR effectively ameliorated AKI, and the exact mechanism was that HA-CUR protected renal tubule epithelial cells from oxidative stress damage via inhibiting PtdIns3K-AKT-mTOR signaling pathway. Taken together, this study provides a new therapeutic strategy for the treatment of AKI based on the pathogenesis of the disease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Tartrate-resistant acid phosphatase (TRAP/ACP5) promotes metastasis-related properties via TGFβ2/TβR and CD44 in MDA-MB-231 breast cancer cells.

    PubMed

    Reithmeier, Anja; Panizza, Elena; Krumpel, Michael; Orre, Lukas M; Branca, Rui M M; Lehtiö, Janne; Ek-Rylander, Barbro; Andersson, Göran

    2017-09-15

    Tartrate-resistant acid phosphatase (TRAP/ACP5), a metalloenzyme that is characteristic for its expression in activated osteoclasts and in macrophages, has recently gained considerable focus as a driver of metastasis and was associated with clinically relevant parameters of cancer progression and cancer aggressiveness. MDA-MB-231 breast cancer cells with different TRAP expression levels (overexpression and knockdown) were generated and characterized for protein expression and activity levels. Functional cell experiments, such as proliferation, migration and invasion assays were performed as well as global phosphoproteomic and proteomic analysis was conducted to connect molecular perturbations to the phenotypic changes. We identified an association between metastasis-related properties of TRAP-overexpressing MDA-MB-231 breast cancer cells and a TRAP-dependent regulation of Transforming growth factor (TGFβ) pathway proteins and Cluster of differentiation 44 (CD44). Overexpression of TRAP increased anchorage-independent and anchorage-dependent cell growth and proliferation, induced a more elongated cellular morphology and promoted cell migration and invasion. Migration was increased in the presence of the extracellular matrix (ECM) proteins osteopontin and fibronectin and the basement membrane proteins collagen IV and laminin I. TRAP-induced properties were reverted upon shRNA-mediated knockdown of TRAP or treatment with the small molecule TRAP inhibitor 5-PNA. Global phosphoproteomics and proteomics analyses identified possible substrates of TRAP phosphatase activity or signaling intermediates and outlined a TRAP-dependent regulation of proteins involved in cell adhesion and ECM organization. Upregulation of TGFβ isoform 2 (TGFβ2), TGFβ receptor type 1 (TβR1) and Mothers against decapentaplegic homolog 2 (SMAD2), as well as increased intracellular phosphorylation of CD44 were identified upon TRAP perturbation. Functional antibody-mediated blocking and chemical

  15. Prognostic value of CD8CD45RO tumor infiltrating lymphocytes in patients with extrahepatic cholangiocarcinoma

    PubMed Central

    Kim, Richard; Coppola, Domenico; Wang, Emilie; Chang, Young Doo; Kim, Yuhree; Anaya, Daniel; Kim, Dae Won

    2018-01-01

    Cholangiocarcinoma is a malignancy arising from the biliary tract epithelial cells with poor prognosis. Tumor infiltrating lymphocytes (TIL)s and programmed cell death receptor ligand 1 (PD-L1) have a prognostic impact in various solid tumors. We aimed to investigate TILs and PD-L1 expression and their clinical relevance in cholangiocarcinoma. Tumor samples from 44 patients with resected and histologically verified extrahepatic cholangiocarcinoma were evaluated for CD8, CD45RO and PD-L1 expression, and their correlations with clinicopathological data and survival data were analyzed. Total 44 extrahepatic cholangiocarcinoma tissues were evaluated. CD8+ tumor infiltrating lymphocytes (TIL)s were observed in 30 (68%) tumors. Among them, 14 had CD8+CD45RO+ TILs. PD-L1 was expressed on cancer cells in 10 (22.7%) tumors in 34 evaluable extrahepatic cholangiocarciniomas. The presence of CD8+ TILs or CD8+CD45RO+ TILs was not associated with clinical staging or tumor differentiation. Extrahepatic cholangiocarcinoma with CD8+CD45RO+ TILs had longer overall survival (OS) on univariate (P = 0.013) and multivariate (P = 0.012) analysis. Neither CD8+TIL nor PD-L1 expression on cancer cells correlated significantly with OS. These results add to the understanding of the clinical features associated with CD8 TILs and PD-L1 expression in extrahepatic cholangiocarcinoma, and they support the potential rationale of using PD-1 blockade immunotherapy in cholangiocarcinoma.

  16. CD127 and CD25 expression defines CD4+ T cell subsets that are differentially depleted during HIV infection.

    PubMed

    Dunham, Richard M; Cervasi, Barbara; Brenchley, Jason M; Albrecht, Helmut; Weintrob, Amy; Sumpter, Beth; Engram, Jessica; Gordon, Shari; Klatt, Nichole R; Frank, Ian; Sodora, Donald L; Douek, Daniel C; Paiardini, Mirko; Silvestri, Guido

    2008-04-15

    Decreased CD4(+) T cell counts are the best marker of disease progression during HIV infection. However, CD4(+) T cells are heterogeneous in phenotype and function, and it is unknown how preferential depletion of specific CD4(+) T cell subsets influences disease severity. CD4(+) T cells can be classified into three subsets by the expression of receptors for two T cell-tropic cytokines, IL-2 (CD25) and IL-7 (CD127). The CD127(+)CD25(low/-) subset includes IL-2-producing naive and central memory T cells; the CD127(-)CD25(-) subset includes mainly effector T cells expressing perforin and IFN-gamma; and the CD127(low)CD25(high) subset includes FoxP3-expressing regulatory T cells. Herein we investigated how the proportions of these T cell subsets are changed during HIV infection. When compared with healthy controls, HIV-infected patients show a relative increase in CD4(+)CD127(-)CD25(-) T cells that is related to an absolute decline of CD4(+)CD127(+)CD25(low/-) T cells. Interestingly, this expansion of CD4(+)CD127(-) T cells was not observed in naturally SIV-infected sooty mangabeys. The relative expansion of CD4(+)CD127(-)CD25(-) T cells correlated directly with the levels of total CD4(+) T cell depletion and immune activation. CD4(+)CD127(-)CD25(-) T cells were not selectively resistant to HIV infection as levels of cell-associated virus were similar in all non-naive CD4(+) T cell subsets. These data indicate that, during HIV infection, specific changes in the fraction of CD4(+) T cells expressing CD25 and/or CD127 are associated with disease progression. Further studies will determine whether monitoring the three subsets of CD4(+) T cells defined based on the expression of CD25 and CD127 should be used in the clinical management of HIV-infected individuals.

  17. Loss of a single N-linked glycan allows CD4-independent human immunodeficiency virus type 1 infection by altering the position of the gp120 V1/V2 variable loops.

    PubMed

    Kolchinsky, P; Kiprilov, E; Bartley, P; Rubinstein, R; Sodroski, J

    2001-04-01

    The gp120 envelope glycoprotein of primary human immunodeficiency virus type 1 (HIV-1) promotes virus entry by sequentially binding CD4 and the CCR5 chemokine receptor on the target cell. Previously, we adapted a primary HIV-1 isolate, ADA, to replicate in CD4-negative canine cells expressing human CCR5. The gp120 changes responsible for CD4-independent replication were limited to the V2 loop-V1/V2 stem. Here we show that elimination of a single glycosylation site at asparagine 197 in the V1/V2 stem is sufficient for CD4-independent gp120 binding to CCR5 and for HIV-1 entry into CD4-negative cells expressing CCR5. Deletion of the V1/V2 loops also allowed CD4-independent viral entry and gp120 binding to CCR5. The binding of the wild-type ADA gp120 to CCR5 was less dependent upon CD4 at 4 degrees C than at 37 degrees C. In the absence of the V1/V2 loops, neither removal of the N-linked carbohydrate at asparagine 197 nor lowering of the temperature increased the CD4-independent phenotypes. A CCR5-binding conformation of gp120, achieved by CD4 interaction or by modification of temperature, glycosylation, or variable loops, was preferentially recognized by the monoclonal antibody 48d. These results suggest that the CCR5-binding region of gp120 is occluded by the V1/V2 variable loops, the position of which can be modulated by temperature, CD4 binding, or an N-linked glycan in the V1/V2 stem.

  18. CD1 molecule expression on human monocytes induced by granulocyte-macrophage colony-stimulating factor.

    PubMed

    Kasinrerk, W; Baumruker, T; Majdic, O; Knapp, W; Stockinger, H

    1993-01-15

    In this paper we demonstrate that granulocyte-macrophage CSF (GM-CSF) specifically induces the expression of CD1 molecules, CD1a, CD1b and CD1c, upon human monocytes. CD1 molecules appeared upon monocytes on day 1 of stimulation with rGM-CSF, and expression was up-regulated until day 3. Monocytes cultured in the presence of LPS, FMLP, PMA, recombinant granulocyte-CSF, rIFN-gamma, rTNF-alpha, rIL-1 alpha, rIL-1 beta, and rIL-6 remained negative. The induction of CD1 molecules by rGM-CSF was restricted to monocytes, since no such effect was observed upon peripheral blood granulocytes, PBL, and the myeloid cell lines Monomac1, Monomac6, MV4/11, HL60, U937, THP1, KG1, and KG1A. CD1a mRNA was detectable in rGM-CSF-induced monocytes but not in those freshly isolated. SDS-PAGE and immunoblotting analyses of CD1a mAb VIT6 immunoprecipitate from lysate of rGM-CSF-activated monocytes revealed an appropriate CD1a polypeptide band of 49 kDa associated with beta 2-microglobulin. Expression of CD1 molecules on monocytes complements the distribution of these structures on accessory cells, and their specific induction by GM-CSF strengthens the suggestion that CD1 is a family of crucial structures required for interaction between accessory cells and T cells.

  19. Development of Virus-Specific CD4+ and CD8+ Regulatory T Cells Induced by Human Herpesvirus 6 Infection

    PubMed Central

    Wang, Fang; Chi, Jing; Peng, Guangyong; Zhou, Feng; Wang, Jinfeng; Li, Lingyun; Feng, Dongju; Xie, Fangyi; Gu, Bin; Qin, Jian; Chen, Yun

    2014-01-01

    Human herpesvirus 6 (HHV-6) is an important immunosuppressive and immunomodulatory virus. The mechanisms by which HHV-6 establishes latency and immunosuppression in its host are not well understood. Here we characterized HHV-6-specific T cells in peripheral blood mononuclear cells (PBMCs) from HHV-6-infected donors. Our results showed that HHV-6 infection could induce both CD4+ and CD8+ HHV-6-specific regulatory T (Treg) cells. These HHV-6-specific Treg cells had potent suppressive activity and expressed high levels of Treg-associated molecules CD25, FoxP3, and GITR. Both CD4+ and CD8+ Treg cells secreted gamma interferon (IFN-γ) and interleukin-10 (IL-10) but little or no IL-2, IL-4, or transforming growth factor β (TGF-β). Furthermore, HHV-6-specifc Treg cells not only could suppress naive and HHV-6-specific CD4+ effector T cell immune responses but also could impair dendritic cell (DC) maturation and functions. In addition, the suppressive effects mediated by HHV-6-specific Treg cells were mainly through a cell-to-cell contact-dependent mechanism but not through the identified cytokines. These results suggest that HHV-6 may utilize the induction of Treg cells as a strategy to escape antivirus immune responses and maintain the latency and immunosuppression in infected hosts. PMID:24198406

  20. Characterization of polyethylene glycol-grafted polyethylenimine and superparamagnetic iron oxide nanoparticles (PEG-g-PEI-SPION) as an MRI-visible vector for siRNA delivery in gastric cancer in vitro and in vivo.

    PubMed

    Chen, Yinting; Lian, Guoda; Liao, Chengde; Wang, Weiwei; Zeng, Linjuan; Qian, Chenchen; Huang, Kaihong; Shuai, Xintao

    2013-07-01

    Gene therapy is a promising therapeutic method but is severely hampered due to its lack of an ideal delivery system. Therefore, in this study, a nonviral and magnetic resonance imaging (MRI) visible vector, polyethylene glycol-grafted polyethylenimine and superparamagnetic iron oxide nanoparticles (PEG-g-PEI-SPION) was used as a nanocarrier for small interfering RNA (siRNA) delivery in gastric cancer. Biophysical characterization of PEG-g-PEI-SPION was systematically analyzed, including size, zeta potential, siRNA condensation capacity, cell viability, transfection efficiency, cellular uptake, and MRI-visible function in vivo. Besides, CD44 variant isoform 6 (CD44v6), a protein marker for metastatic behavior in gastric cancer, and was chose as the target gene to further analyze the siRNA delivery function of PEG-g-PEI-SPION. Under comprehensive analysis, the appropriate N/P ratio of PEG-g-PEI-SPION/siRNA was 10, and siRNA targeting at human CD44v6 (siCD44v6) transferred by PEG-g-PEI-SPION was effective at downregulating the CD44v6 expression of gastric carcinoma cell line SGC-7901 in vitro. Moreover, knockdown of CD44v6 impaired migrating and invasive abilities of SGC-7901 cells. Furthermore, PEG-g-PEI-SPION was a highly efficient contrast agent for MRI scan in vivo. PEG-g-PEI-SPION was a promising nonviral vector with molecular image tracing capacity for cancer gene therapy. And CD44v6 was a potential target gene for the prevention and detection of metastatic behavior in gastric cancer.

  1. Expression of KAI1/CD82 and MRP-1/CD9 in transitional cell carcinoma of bladder.

    PubMed

    Ai, Xing; Zhang, Xu; Wu, Zhun; Ma, Xin; Ju, Zhenghua; Wang, Baojun; Shi, Taoping

    2007-02-01

    The expression of KAI1/CD82 and MRP-1/CD9 in transitional cell carcinoma of bladder (TCCB) and its clinical significance were investigated. Immunohistochemistry was used to detect KAI1/CD82 and MRP-1/CD9 protein expression in 52 TCCB specimens. Correlation between the expression of KAI1/CD82 and MRP-1/CD9 to clinicopathologic factors was statistically analyzed. The results showed that the positive rate of KAI1/CD82 and MRP-1/CD9 in TCCB was 50% and 61.5%, respectively. The MRP-1/CD9 and KAI1/CD82 expression was significantly associated with grade of TCCB (P<0.05), but no correlation was found between MRP-1/CD9 or KAI1/CD82 expression and clinical stage of TCCB (P>0.05). The expression level of MRP-1/CD9 and KAI1/CD82 in recurrent TCCB samples was lower than that in non-recurrent samples (P<0.05). Meanwhile, the correlation between the KAI1/CD82 expression and MRP-1/CD9 expression was statistically significant (r=0.316, P<0.05). It was concluded that KAI1/CD82 and MRP-1/CD9 expression may be important prognostic indicators and potentially useful for assessing the biological behavior of TCCB.

  2. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer

    PubMed Central

    Yang, Xiaoqian; lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-01-01

    Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer. PMID:25687880

  3. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqian; Lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-02-01

    Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Go J., E-mail: medical21go@yahoo.co.jp; Saya, Hideyuki

    Highlights: •CD44 variant8–10 and c-Myc are inversely expressed in gastric cancer cells. •Redox-stress enhances c-Myc expression via canonical Wnt signal. •CD44v, but not CD44 standard, suppresses redox stress-induced Wnt activation. •CD44v expression promotes both transcription and proteasome degradation of c-Myc. •Inversed expression pattern between CD44v and c-Myc is often recognized in vivo. -- Abstract: Cancer stem-like cells express high amount of CD44 variant8-10 which protects cancer cells from redox stress. We have demonstrated by immunohistochemical analysis and Western blotting, and reverse-transcription polymerase chain reaction, that CD44 variant8-10 and c-Myc tend to show the inversed expression manner in gastric cancer cells.more » That is attributable to the oxidative stress-induced canonical Wnt activation, and furthermore, the up-regulation of the downstream molecules, one of which is oncogenic c-Myc, is not easily to occur in CD44 variant-positive cancer cells. We have also found out that CD44v8-10 expression is associated with the turn-over of the c-Myc with the experiments using gastric cancer cell lines. This cannot be simply explained by the model of oxidative stress-induced Wnt activation. CD44v8-10-positive cancer cells are enriched at the invasive front. Tumor tissue at the invasive area is considered to be composed of heterogeneous cellular population; dormant cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup high}/ c-Myc {sup low} and proliferative cancer stem-like cells with CD44v8-10 {sup high}/ Fbw7 {sup low}/ c-Myc {sup high}.« less

  5. Antibody to the gp120 V1/V2 loops and CD4+and CD8+ T-cell responses in protection from SIVmac251 vaginal acquisition and persistent viremia

    PubMed Central

    Gordon, Shari N.; Doster, Melvin N; Kines, Rhonda C.; Keele, Brandon F; Cofano, Egidio Brocca; Guan, Yongjun; Pegu, Poonam; Liyanage, Namal P.M.; Vaccari, Monica; Cuburu, Nicolas; Buck, Christopher B.; Ferrari, Guido; Montefiori, David; Piatak, Mike; Lifson, Jeffrey D; Xenophontos, Anastasia M.; Venzon, David; Robert-Guroff, Marjorie; Graham, Barney S.; Lowy, Douglas R.; Schiller, John T.; Franchini, Genoveffa

    2015-01-01

    The human papilloma virus pseudovirions (HPV-PsVs) approach is an effective gene-delivery system that can prime or boost an immune response in the vaginal tract of non human primates and mice. Intra-vaginal vaccination with HPV-PsVs expressing SIV genes, combined with an intra-muscular gp120 protein injection, induced humoral and cellular SIV-specific responses in macaques. Priming systemic immune responses with intramuscular immunization with ALVAC-SIV vaccines, followed by intra-vaginal HPV-PsV-SIV/gp120 boosting, expanded and/or recruited T-cells in the female genital tract. Using a stringent repeated low dose intra-vaginal challenge with the highly pathogenic SIVmac251, we show that while these regimens did not demonstrate significant protection from virus acquisition, they provided control of viremia in a number of animals. High avidity antibody responses to the envelope gp120 V1/V2 region correlated with delayed SIVmac251 acquisition, while virus levels in mucosal tissues were inversely correlated with anti-envelope CD4+T-cell responses. CD8+T-cell depletion in animals with controlled viremia caused an increase in tissue virus load in some animals, suggesting a role for CD8+T-cells in virus control. This study highlights the importance of CD8+ cells and anti-envelope CD4+ T-cell in curtailing virus replication and anti-envelope V1/V2 antibodies in preventing SIVmac251 acquisition. PMID:25398324

  6. StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato

    PubMed Central

    Zhou, Xiangjun; Zha, Manrong; Huang, Jing; Li, Li; Imran, Muhammad

    2017-01-01

    Abstract Phosphorus is an important macronutrient for plant growth, but often deficient in soil. To understand the molecular basis of the complex responses of potato (Solanum tuberosum L.) to phosphate (Pi) deficiency stress, the RNA-Seq approach was taken to identify genes responding to Pi starvation in potato roots. A total of 359 differentially expressed genes were identified, among which the Solanum tuberosum transcription factor gene MYB44 (StMYB44) was found to be down-regulated by Pi starvation. StMYB44 was ubiquitously expressed in potato tissues and organs, and StMYB44 protein was exclusively localized in the nucleus. Overexpression of StMYB44 in potato resulted in lower accumulation of Pi in shoots. Transcriptomic analysis indicated that the abundance of S. tuberosum PHOSPHATE1 (StPHO1), a Pi transport-related gene, was reduced in StMYB44 overexpression lines. In contrast, knock-out of StMYB44 by a CRISPR/Cas9 system failed to increase transcription of StPHO1. Moreover, StMYB44 was found to interact in the nucleus with AtWRKY6, a known Arabidopsis transcription factor directly regulating PHO1 expression, and StWRKY6, indicating that StMYB44 could be a member of the regulatory complex controlling transcription of StPHO1. Taken together, our study demonstrates that StMYB44 negatively regulates Pi transport in potato by suppressing StPHO1 expression. PMID:28338870

  7. CD20-positive primary gastric T-cell lymphoma poorly responding to initial treatment with rituximab plus CHOP, and a literature review.

    PubMed

    Kakinoki, Yasutaka; Hashiguchi, Junichi; Ishio, Takashi; Chiba, Koji; Niino, Daisuke; Ohshima, Koichi

    2015-12-01

    There have been rare reported cases of peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) that co-expressed CD20. A 44-year-old Japanese male was initially misdiagnosed as CD20-positive diffuse large B-cell lymphoma with a background of reactive CD3-positive T-cells in the stomach. After four cycles of R-CHOP [rituximab plus cyclophosphamide (CY), doxorubicin, vincristine, and prednisolone (PSL)], total gastrectomy with regional lymph node dissection was performed due to the poor response to R-CHOP. A final diagnosis of CD20-positive primary gastric PTCL-NOS was made based on the immunohistochemical, flow cytometric, and molecular genetic findings. In the present case, CD20 immunostaining for T-cell lymphoma cells in tumor tissue varied; in a large part, these were strong to weak-positive, and in some parts, absent. We additionally reviewed the literature focusing on CD20-positive PTCL-NOS treated with rituximab. The administration of rituximab has been performed as an initial treatment in 11 cases, including the case reported here. The response was good in cases with high expression of CD20, while it was poor in cases with variable intensity in CD20 staining, which is consistent with our experience in the present case. The efficacy of rituximab may be associated with intensity of CD20 expression in T cells and its homogeneity in the tumor tissue.

  8. Characterization of detergent compatible protease from halophilic Virgibacillus sp. CD6.

    PubMed

    Lam, Ming Quan; Nik Mut, Nik Nurhidayu; Thevarajoo, Suganthi; Chen, Sye Jinn; Selvaratnam, Chitra; Hussin, Huszalina; Jamaluddin, Haryati; Chong, Chun Shiong

    2018-02-01

    A halophilic bacterium, Virgibacillus sp. strain CD6, was isolated from salted fish and its extracellular protease was characterized. Protease production was found to be highest when yeast extract was used as nitrogen source for growth. The protease exhibited stability at wide range of salt concentration (0-12.5%, w/v), temperatures (20-60 °C), and pH (4-10) with maximum activity at 10.0% (w/v) NaCl, 60 °C, pH 7 and 10, indicating its polyextremophilicity. The protease activity was enhanced in the presence of Mg 2+ , Mn 2+ , Cd 2+ , and Al 3+ (107-122% relative activity), and with retention of activity > 80% for all of other metal ions examined (K + , Ca 2+ , Cu 2+ , Co 2+ , Ni 2+ , Zn 2+ , and Fe 3+ ). Both PMSF and EDTA inhibited protease activity, denoting serine protease and metalloprotease properties, respectively. High stability (> 70%) was demonstrated in the presence of organic solvents and detergent constituents, and the extracellular protease from strain CD6 was also found to be compatible in commercial detergents. Proteinaceous stain removal efficacy revealed that crude protease of strain CD6 could significantly enhance the performance of commercial detergent. The protease from Virgibacillus sp. strain CD6 could serve as a promising alternative for various applications, especially in detergent industry.

  9. α(V)β(6) integrin expression is induced in the POET and Pten(pc-/-) mouse models of prostatic inflammation and prostatic adenocarcinoma.

    PubMed

    Garlick, David S; Li, Jing; Sansoucy, Brian; Wang, Tao; Griffith, Leeanne; Fitzgerald, Tj; Butterfield, Julie; Charbonneau, Bridget; Violette, Shelia M; Weinreb, Paul H; Ratliff, Timothy L; Liao, Chun-Peng; Roy-Burman, Pradip; Vietri, Michele; Lian, Jane B; Stein, Gary S; Altieri, Dario C; Languino, Lucia R

    2012-01-01

    Chronic inflammation is proposed to prime the development of prostate cancer. However, the mechanisms of prostate cancer initiation and development are not completely understood. The α(v)β(6) integrin has been shown to play a role in epithelial development, wound healing and some epithelial cancers [1, 2]. Here, we investigate the expression of α(v)β(6) in mouse models of prostatic inflammation and prostate cancer to establish a possible relationship between inflammation of the prostate, α(v)β(6) expression and the progression of prostate cancer. Using immunohistochemical techniques, we show expression of α(v)β(6) in two in vivo mouse models; the Pten(pc)-/- model containing a prostate- specific Pten tumor suppressor deletion that causes cancer, and the prostate ovalbumin-expressing transgenic (POET) inflammation mouse model. We show that the α(v)β(6) integrin is induced in prostate cancer and inflammation in vivo in these two mouse models. α(v)β(6) is expressed in all the mice with cancer in the Pten(pc-/-) model but not in age-matched wild-type mice. In the POET inflammation model, α(v)β(6) is expressed in mice injected with activated T-cells, but in none of the control mice. In the POET model, we also used real time PCR to assess the expression of Transforming Growth Factor Beta 1 (TGFβ1), a factor in inflammation that is activated by α(v)β(6). In conclusion, through in vivo evidence, we conclude that α(v)β(6) integrin may be a crucial link between prostatic inflammation and prostatic adenocarcinoma.

  10. Trametinib plus 4-Methylumbelliferone Exhibits Antitumor Effects by ERK Blockade and CD44 Downregulation and Affects PD-1 and PD-L1 in Malignant Pleural Mesothelioma.

    PubMed

    Cho, Hiroyuki; Matsumoto, Seiji; Fujita, Yoshiko; Kuroda, Ayumi; Menju, Toshi; Sonobe, Makoto; Kondo, Nobuyuki; Torii, Ikuko; Nakano, Takashi; Lara, Primo N; Gandara, David R; Date, Hiroshi; Hasegawa, Seiki

    2017-03-01

    Malignant pleural mesothelioma (MPM) is a highly aggressive malignancy in which the mitogen-activated protein kinase pathway plays a critical role in the regulation of tumorigenesis. Hyaluronic acid (HA) is a major component of the extracellular matrix, and elevated HA levels with a concurrent increase in malignant properties are associated with MPM. We evaluated the effects of trametinib, a mitogen-activated protein kinase (MEK) inhibitor, and 4-methylumbelliferone (4-MU), an HA synthesis inhibitor, alone and in combination on MPM cells in vitro and in vivo. We studied the effects of trametinib, 4-MU, and their combination on MPM cells by using cell viability assays, Western blot analysis, and a mouse xenograft model. Trametinib and 4-MU exhibited antiproliferative activity in MPM cells. Trametinib blocked MEK-dependent extracellular signal-regulated kinase (ERK) phosphorylation and decreased CD44 expression in a concentration-dependent manner. Trametinib inhibited the expression of Fra-1 (the activator protein 1 [AP1] component), inhibited ERK phosphorylation, and decreased CD44 expression. 4-MU inhibited ERK phosphorylation but not CD44 expression. In a mouse xenograft model, trametinib and 4-MU alone suppressed tumor growth compared with a control. The combination had a greater inhibitory effect than either monotherapy. Immunohistochemical analysis showed that trametinib treatment alone significantly reduced expression of programmed cell death 1 ligand 1. Furthermore, the combination of trametinib and 4-MU resulted in higher expression of programmed cell death 1 and programmed cell death 1 ligand 1 than did the 4-MU treatment alone. Our results suggest that trametinib and 4-MU are promising therapeutic agents in MPM and that further study of the combination is warranted. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  11. IL-6 inhibits upregulation of membrane-bound TGF-beta 1 on CD4+ T cells and blocking IL-6 enhances oral tolerance

    PubMed Central

    Kuhn, Chantal; Rezende, Rafael Machado; M'Hamdi, Hanane; da Cunha, Andre Pires; Weiner, Howard L.

    2016-01-01

    Oral administration of antigen induces regulatory T cells that express latent membrane-bound TGF-beta (LAP) and that have been shown to play an important role in the induction of oral tolerance. We developed an in vitro model to study modulation of LAP+ on CD4+ T cells. The combination of anti-CD3 mAb, anti-CD28 mAb and recombinant IL-2 induced expression of LAP on naïve CD4+ T cells, independent of FoxP3 or exogenous TGF-β. In vitro generated CD4+LAP+FoxP3− T cells were suppressive in vitro, inhibiting proliferation of naïve CD4+ T cells and IL-17A secretion by Th17 cells. Assessing the impact of different cytokines and neutralizing antibodies against cytokines we found that LAP induction was decreased in the presence of IL-6 and IL-21, and to a lesser extent by IL-4 and TNFα. IL-6 abrogated the in vitro induction of CD4+LAP+ T cells by STAT3 dependent inhibition of Lrrc32 (GARP), the adapter protein that tethers TGF-beta to the membrane. Oral tolerance induction was enhanced in mice lacking expression of IL-6R by CD4+ T cells and by treatment of wild-type mice with neutralizing anti-IL-6 mAb. These results suggest that pro-inflammatory cytokines interfere with oral tolerance induction and that blocking the IL-6 pathway is a potential strategy for enhancing oral tolerance in the setting of autoimmune and inflammatory diseases. PMID:28039301

  12. An enteric pathogen Salmonella enterica serovar Typhimurium suppresses tumor growth by downregulating CD44high and CD4T regulatory (Treg) cell expression in mice: the critical role of lipopolysaccharide and Braun lipoprotein in modulating tumor growth.

    PubMed

    Liu, T; Chopra, A K

    2010-02-01

    An antitumor activity associated with several bacterial pathogens, including Salmonella enterica serovar Typhimurium, has been reported; however, the underlying immunological mechanism(s) that lead to an antitumor effect are currently unclear. Furthermore, such pathogens cannot be used to suppress tumor growth because of their potential for causing sepsis. Recently, we reported the characterization of S. Typhimurium isogenic mutants from which Braun lipoprotein genes (lppA and B) and the multicopy repressor of high temperature requirement (msbB) gene were deleted. In a mouse infection model, two mutants, namely, lppB/msbB and lppAB/msbB, minimally induced proinflammatory cytokine production at high doses and were nonlethal to animals. We showed that immunization of mice with these mutants, followed by challenge with the wild-type S. Typhimurium, could significantly suppress tumor growth, as evidenced by an 88% regression in tumor size in lppB/msbB mutant-immunized animals over a 24-day period. However, the lppAB/msbB mutant alone was not effective in modulating tumor growth in mice, although the lppB/msbB mutant alone caused marginal regression in tumor size. Importantly, we showed that CD44(+) cells grew much faster than CD44(-) cells from human liver tumors in mice, leading us to examine the possibility that S. Typhimurium might downregulate CD44 in tumors and splenocytes of mice. Consequently, we found in S. Typhimurium-infected mice that tumor size regression could indeed be related to the downregulation of CD44(high) and CD4(+)CD25(+) T(reg) cells. Importantly, the role of lipopolysaccharide and Braun lipoprotein was critical in S. Typhimurium-induced antitumor immune responses. Taken together, we have defined new immune mechanisms leading to tumor suppression in mice by S. Typhimurium.

  13. Functional and phenotypical analysis of IL-6-secreting CD4+ T cells in human adipose tissue.

    PubMed

    de Jong, Anja J; Pollastro, Sabrina; Kwekkeboom, Joanneke C; Andersen, Stefan N; Dorjée, Annemarie L; Bakker, Aleida M; Alzaid, Fawaz; Soprani, Antoine; Nelissen, Rob G H H; Mullers, Jan B; Venteclef, Nicolas; de Vries, Niek; Kloppenburg, Margreet; Toes, René E M; Ioan-Facsinay, Andreea

    2018-03-01

    Emerging evidence indicates that a dynamic interplay between the immune system and adipocytes contributes to the disturbed homeostasis in adipose tissue of obese subjects. Recently, we observed IL-6-secretion by CD4 + T cells from the stromal vascular fraction (SVF) of the infrapatellar fat pad (IFP) of knee osteoarthritis patients directly ex vivo. Here we show that human IL-6 + CD4 + T cells from SVF display a more activated phenotype than the IL-6 - T cells, as evidenced by the expression of the activation marker CD69. Analysis of cytokines secretion, as well as expression of chemokine receptors and transcription factors associated with different Th subsets (Treg, Th1, Th2, Th17 and Tfh) revealed that IL-6-secreting CD4 + T cells cannot be assigned to a conventional Th subset. TCRβ gene analysis revealed that IL-6 + and IL-6 - CD4 + T cells appear clonally unrelated to each other, suggesting a different specificity of these cells. In line with these observations, adipocytes are capable of enhancing IL-6 production by CD4 + T cells. Thus, IL-6 + CD4 + T cells are TCRαβ T cells expressing an activated phenotype potentially resulting from an interplay with adipocytes that could be involved in the inflammatory processes in the OA joint. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Case report: absent C6 cervical pedicle in a collegiate football player.

    PubMed

    Fowler, John R; Moyer, Ray A

    2010-06-01

    Congenital absence of a cervical pedicle is a rare clinical finding with only 70 reported cases in the literature from 1946 until present. The congenitally absent pedicle has clinical importance owing to the frequency of misdiagnosis and inappropriate invasive treatments. We present the case of a 21-year-old college football player who experienced neck and shoulder pain after violent twisting of his neck by the face mask. The player walked off the field under his own power. He was sent to the locker room, where he underwent right shoulder and cervical spine radiographs. Initial review of the radiographs raised concern for a jumped right C6 facet. The patient then underwent CT and MRI of the cervical spine, confirming the diagnosis of an absent cervical pedicle. He was treated nonoperatively for a short time and completed the season. He had no symptoms at last followup at 8 months. The most frequent location of the absent cervical pedicle is at the C6 level, and the next most common is at the C5 level. Neural compression or instability is uncommon and nonsurgical treatment is the mainstay of treatment. Misdiagnosis can lead to inappropriate treatment such as halo or tong application with traction, which occurred in seven of 57 cases in one series, and exploratory surgery, which occurred in four of 57 cases.

  15. YKL-40 expression in CD14+ liver cells in acute and chronic injury

    PubMed Central

    Pizano-Martínez, Oscar; Yañez-Sánchez, Irinea; Alatorre-Carranza, Pilar; Miranda-Díaz, Alejandra; Ortiz-Lazareno, Pablo C; García-Iglesias, Trinidad; Daneri-Navarro, Adrian; Mercado, Mónica Vázquez-Del; Fafutis-Morris, Mary; Delgado-Rizo, Vidal

    2011-01-01

    AIM: To demonstrate that CD14+ cells are an important source of the growth factor YKL-40 in acute and chronic liver damage. METHODS: Rats were inoculated with one dose of CCl4 to induce acute damage. Liver biopsies were obtained at 0, 6, 12, 24, 48 and 72 h. For chronic damage, CCl4 was administered three days per week for 6 or 8 wk. Tissue samples were collected, and cellular populations were isolated by liver digestion and purified by cell sorting. YKL-40 mRNA and protein expression were evaluated by real-time polymerase chain reaction and western blot. RESULTS: Acute liver damage induced a rapid increase of YKL-40 mRNA beginning at 12 h. Expression peaked at 24 h, with a 26-fold increase over basal levels. By 72 h however, YKL-40 expression levels had nearly returned to control levels. On the other hand, chronic damage induced a sustained increase in YKL-40 expression, with 7- and 9-fold higher levels at 6 and 8 wk, respectively. The pattern of YKL-40 expression in different subpopulations showed that CD14+ cells, which include Kupffer cells, are a source of YKL-40 after acute damage at 72 h [0.09 relative expression units (REU)] as well as after chronic injury at 6 wk (0.11 REU). Hepatocytes, in turn, accounted for 0.06 and 0.01 REU after 72 h (acute) or 6 wk (chronic), respectively. The rest of the CD14- cells (including T lymphocytes, B lymphocytes, natural killer and natural killer T cells) yielded 0.07 and 0.15 REU at 72 h and 6 wk, respectively. YKL-40 protein expression in liver was detected at 72 h as well as 6 and 8 wk, with the highest expression relative to controls (11-fold; P ≤ 0.05) seen at 6 wk. Macrophages were stimulated by lipopolysaccharide. We demonstrate that under these conditions, these cells showed maximum expression of YKL-40 at 12 h, with P < 0.05 compared with controls. CONCLUSION: Hepatic CD14+ cells are an YKL-40 mRNA and protein source in acute and chronic liver injury, with expression patterns similar to growth factors implicated

  16. CD127 and CD25 Expression Defines CD4+ T Cell Subsets That Are Differentially Depleted during HIV Infection1

    PubMed Central

    Dunham, Richard M.; Cervasi, Barbara; Brenchley, Jason M.; Albrecht, Helmut; Weintrob, Amy; Sumpter, Beth; Engram, Jessica; Gordon, Shari; Klatt, Nichole R.; Frank, Ian; Sodora, Donald L.; Douek, Daniel C.; Paiardini, Mirko; Silvestri, Guido

    2009-01-01

    Decreased CD4+ T cell counts are the best marker of disease progression during HIV infection. However, CD4+ T cells are heterogeneous in phenotype and function, and it is unknown how preferential depletion of specific CD4+ T cell subsets influences disease severity. CD4+ T cells can be classified into three subsets by the expression of receptors for two T cell-tropic cytokines, IL-2 (CD25) and IL-7 (CD127). The CD127+CD25low/− subset includes IL-2-producing naive and central memory T cells; the CD127−CD25− subset includes mainly effector T cells expressing perforin and IFN-γ; and the CD127lowCD25high subset includes FoxP3-expressing regulatory T cells. Herein we investigated how the proportions of these T cell subsets are changed during HIV infection. When compared with healthy controls, HIV-infected patients show a relative increase in CD4+CD127−CD25− T cells that is related to an absolute decline of CD4+CD127+CD25low/− T cells. Interestingly, this expansion of CD4+CD127− T cells was not observed in naturally SIV-infected sooty mangabeys. The relative expansion of CD4+CD127−CD25− T cells correlated directly with the levels of total CD4+ T cell depletion and immune activation. CD4+CD127−CD25− T cells were not selectively resistant to HIV infection as levels of cell-associated virus were similar in all non-naive CD4+ T cell subsets. These data indicate that, during HIV infection, specific changes in the fraction of CD4+ T cells expressing CD25 and/or CD127 are associated with disease progression. Further studies will determine whether monitoring the three subsets of CD4+ T cells defined based on the expression of CD25 and CD127 should be used in the clinical management of HIV-infected individuals. PMID:18390743

  17. CD77 levels over enzyme replacement treatment in Fabry Disease Family (V269M).

    PubMed

    Pereira, Ester Miranda; Silva, Adalberto Socorro da; Silva, Raimundo Nonato da; Monte Neto, José Tiburcio; Nascimento, Fernando F do; Sousa, Jackeline L M; Costa Filho, Henrique César Saraiva de Arêa Leão; Sales Filho, Herton Luiz Alves; Labilloy, Anatalia; Monte, Semiramis Jamil Hadad do

    2018-06-04

    Fabry disease (FD) is a disorder caused by mutations in the gene encoding for lysosomal enzyme α-galactosidase A (α-GAL). Reduced α-GAL activity leads to progressive accumulation of globotriaosylceramide (Gb3), also known as CD77. The recent report of increased expression of CD77 in blood cells of patients with FD indicated that this molecule can be used as a potential marker for monitoring enzyme replacement therapy (ERT). The purpose of this study was to evaluate the CD77 levels throughout ERT in FD patients (V269M mutation). We evaluated the fluctuations in PBMC (peripheral blood mononuclear cell) membrane CD77 expression in FD patients undergoing ERT and correlated these levels with those observed in different cell types. A greater CD77 expression was found in phagocytes of patients compared to controls at baseline. Interestingly, the variability in CD77 levels is larger in patients at baseline (340 - 1619 MIF) and after 12 months of ERT (240 - 530 MIF) compared with the control group (131 - 331 MFI). Furthermore, by analyzing the levels of CD77 in phagocytes from patients throughout ERT, we found a constant decrease in CD77 levels. The increased CD77 levels in the phagocytes of Fabry carriers together with the decrease in CD77 levels throughout ERT suggest that measuring CD77 levels in phagocytes is a promising tool for monitoring the response to ERT in FD.

  18. Paraffin immunoreactivity of CD10, CDw75, and Bcl-6 in follicle center cell lymphoma.

    PubMed

    Dunphy, C H; Polski, J M; Lance Evans, H; Gardner, L J

    2001-05-01

    Follicle center cell lymphoma(FCCL) has the following immunophenotype(IP): sIg+, Pan B+, CD10+/-, CD5-, CD23-/+, CD43-, CD11c-, CD25-. In addition, reactivities of a malignant lymphoma with CDw75(LN-1) and bcl-6 are considered indicators of FCCL. Bcl-6 expression is common in Grade 1 FCCL (100%) and rare in other indolent B-cell lymphomas(BCL). In contrast, bcl-2 expression is common in FCCL (80%) and in other BCL subtypes. Since no previous study has correlated paraffin immunoreactivity(PIR) of CD10, CDw75, and bcl-6 in FCCL (Grades 1-3), this is this study's purpose. Twenty-nine FCCL's were identified and reviewed (6, Grade 1; 10, Grade 2; 13, Grade 3) from the Division of Hematopathology, St. Louis University. The diagnoses were based on morphology and immunohistochemistry(IH)(21 cases) +/- the flow cytometric IP(14 cases). The paraffin blocks were stained for CD10 (Novacastra, Vector Laboratories, Burlingame, CA), CDw75 and bcl-6 (DAKO Corporation, Carpinteria, CA). Results showed that, CD10 by paraffin IH(PIH) was positive in 23 [18(strong); 3(moderate); 2(weak)] and negative in 6(3, Grade 2; 3, Grade 3). All CD10-cases were CDw75+; 4, bcl-6+. The two CD10-, bcl-6-cases were Grade 2. CDw75 was positive in 28 cases [16(strong); 11(moderate); 1(weak)] and negative in 1 (Grade 3; CD10+, bcl-2+, bcl-6+). Bcl-6 was positive in 26 [16(strong); 6(moderate); 4(weak)] and negative in 3(Grade 2's). Thus, the sensitivity of CD10, CDw75, and bcl-6 by PIH for FCCL was 79%, 97%, and 90%, respectively. Of the three stains evaluated by PIH in FCCL, CDw75 was the most sensitive, closely followed by bcl-6. CD10 was least sensitive-79%. By combining these 3 stains, the sensitivity was 100%; thus, a combined approach is recommended.

  19. Differential usage of T-cell receptor V beta gene families by CD4+ and CD8+ T cells in patients with CD8hi common variable immunodeficiency: evidence of a post-thymic effect.

    PubMed Central

    Duchmann, R; Jaffe, J; Ehrhardt, R; Alling, D W; Strober, W

    1996-01-01

    In this study, we report that differences between T-cell receptor (TCR) V beta gene family usage in CD4+ and CD8+ T cells are significantly greater in a subgroup of patients with common variable immunodeficiency (CVI) and high levels of activated CD8+ T cells (CD8hi CVI) than in controls (P < 0.001). In CD8hi CVI patients, such differences were also significantly greater for V beta 12 than for other V beta families. As the causes of the differential usage of V beta gene families by CD4+ and CD8+ T cells are under investigation, it was interesting that the combined differences between V beta gene family usage in the CD4+ and CD8+ T-cell subpopulations as a whole were significantly lower than the combined differences between individual V beta gene family usage in either CD4+ or CD8+ T-cell subpopulations (P < 0.001 in both control and CD8hi CVI patients). Further, the pattern of V beta gene family usage in CD4+ T cells was remarkably similar to that in CD8+ T cells in both groups. These data strongly suggest that differences in V beta gene family usage arising from coselection by major histocompatibility complex (MHC) class I versus MHC class II restriction elements do not fundamentally distort 'basic' V beta gene family usage patterns. They also support the concept that differences in CD4+ and CD8+ T-cell V beta gene family usage, which were increased in CD8hi CVI, can arise from high-affinity interactions between disease-associated antigens or superantigens and T cells in the post-thymic T-cell compartment. Images Figure 6 PMID:8666443

  20. STAT3 as a promising chemoresistance biomarker associated with the CD44+/high/CD24-/low/ALDH+ BCSCs-like subset of the triple-negative breast cancer (TNBC) cell line.

    PubMed

    Moreira, Milene Pereira; da Conceição Braga, Letícia; Cassali, Geovanni Dantas; Silva, Luciana Maria

    2018-02-15

    The cancer stem cell (CSC) concept is currently employed to explain the mechanism of multidrug resistance that is implicated in the reduced efficacy of many chemotherapeutic agents, consequently leading to metastatic spread and disease relapse. We searched for potential predictive markers of doxorubicin (DOX) resistance in breast cancer stem cells (BCSCs) of the BT-549 human triple-negative breast cancer (TNBC) cell line classified as a claudin-low subtype. In this study, we show that BT-549 presents a BCSCs-like subset determined by a CD44 +/high /CD24 -/low /ALDH1 + phenotype. The CD44 +/high /CD24 -/low /ALDH + BCSCs-like subset presented the downregulation of a majority of the genes analyzed (64 genes), and only 3 genes were upregulated after DOX treatment. Among the upregulated genes, MAPK3, PRKCZ and STAT3, STAT3 presented a higher level of upregulation in the DOX-treated CD44 +/high /CD24 -/low /ALDH + BCSCs-like subset. The identification of biomarkers that predict antitumor responses is at the top of cancer research priorities. STAT3 was highlighted as a molecular signature in the CD44 +/high /CD24 -/low /ALDH1 + BCSCs-like subset obtained from the TNBC BT-549 cell line related to DOX resistance. A majority of the evaluated genes in the EGF pathway appear to be not associated with DOX resistance, as observed in the CD44 +/high /CD24 -/low /ALDH1 + BCSCs-like subset. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. [Analysis of expression of cancer stem cell-related markers in orbital adenoid cystic carcinoma].

    PubMed

    Lin, Ting-ting; Zhu, Li-min; He, Yan-jin; Zhang, Hong

    2011-08-01

    To observe the expression and distribution of CD44, CD133, and ABCG2 in orbital adenoid cystic carcinoma (ACC) and investigate their correlations with pathological type and prognosis. Two steps method of immunohistochemical staining was employed in 33 cases of paraffin embedded surgical specimens of human orbital ACC, 5 cases of recurrence samples, 3 cases of an excised lacrimal gland caused by neither inflammation nor tumor diseases, and 6 cases of xenograft tumors in nude mice. A retrospective analysis was performed on the clinical material of these patients, which were collected from Jan. 1991 to Mar. 2009. The positive rate of CD44 was 54.5% (18/33), with 76.9% (10/13) in solid type and 40.0% (8/20) in adeno-tubiform type. There was no statistically significant difference between them (P = 0.072). In solid type the positive expression cells were often located at the marginal part of the cancer nest. In the adeno-tubiform type, positive cells were often located at the outer layer of the tubiform structure (myoepithelial cells). CD44 was also expressed in normal tissues. The positive rate of CD133 was 57.6% (19/33), with 76.9% (10/13) in solid type and 45.0% (9/20) in adeno-tubiform type. There was no significant difference between them (P = 0.087). CD133 antigen was expressed in either the cytoplasm or nucleus, or expressed in both the cytoplasm and nucleus. The positive rate of ABCG2 was 21.2% (7/33), with 30.77% (4/13) in solid type and 15.0% (3/20) in adeno-tubiform type. There was no significant difference between them (P = 0.393). Many positive cells surrounded the vessels in tumor tissues. There were no significant differences between different prognosis groups of these surface phenotypes. The correlative analysis results of three surface phenotypes showed that CD44(+) cells have positive correlation with CD133(+) cells (Spearman, r(s) = 0.416, P = 0.016). In six transplanted tumors of nude mice, the number of positive cases for CD44(+), CD133(+) and ABCG2

  2. AF1q is a novel TCF7 co-factor which activates CD44 and promotes breast cancer metastasis.

    PubMed

    Park, Jino; Schlederer, Michaela; Schreiber, Martin; Ice, Ryan; Merkel, Olaf; Bilban, Martin; Hofbauer, Sebastian; Kim, Soojin; Addison, Joseph; Zou, Jie; Ji, Chunyan; Bunting, Silvia T; Wang, Zhengqi; Shoham, Menachem; Huang, Gang; Bago-Horvath, Zsuzsanna; Gibson, Laura F; Rojanasakul, Yon; Remick, Scot; Ivanov, Alexey; Pugacheva, Elena; Bunting, Kevin D; Moriggl, Richard; Kenner, Lukas; Tse, William

    2015-08-21

    AF1q is an MLL fusion partner that was identified from acute myeloid leukemia (AML) patients with t (1; 11) (q21; q23) chromosomal abnormality. The function of AF1q is not yet fully known, however, elevated AF1q expression is associated with poor clinical outcomes in various malignancies. Here, we show that AF1q specifically binds to T-cell-factor-7 (TCF7) in the Wnt signaling pathway and results in transcriptional activation of CD44 as well as multiple downstream targets of the TCF7/LEF1. In addition, enhanced AF1q expression promotes breast cancer cell proliferation, migration, mammosphere formation, and chemo-resistance. In xenograft models, enforced AF1q expression in breast cancer cells also promotes liver metastasis and lung colonization. In a cohort of 63 breast cancer patients, higher percentages of AF1q-positive cancer cells in primary sites were associated with significantly poorer overall survival (OS), disease-free survival (DFS), and brain metastasis-free survival (b-MFS). Using paired primary/metastatic samples from the same patients, we demonstrate that AF1q-positive breast cancer cells become dynamically dominant in the metastatic sites compared to the primary sites. Our findings indicate that breast cancer cells with a hyperactive AF1q/TCF7/CD44 regulatory axis in the primary sites may represent "metastatic founder cells" which have invasive properties.

  3. Human liver-resident CD56(bright)/CD16(neg) NK cells are retained within hepatic sinusoids via the engagement of CCR5 and CXCR6 pathways.

    PubMed

    Hudspeth, Kelly; Donadon, Matteo; Cimino, Matteo; Pontarini, Elena; Tentorio, Paolo; Preti, Max; Hong, Michelle; Bertoletti, Antonio; Bicciato, Silvio; Invernizzi, Pietro; Lugli, Enrico; Torzilli, Guido; Gershwin, M Eric; Mavilio, Domenico

    2016-01-01

    The liver-specific natural killer (NK) cell population is critical for local innate immune responses, but the mechanisms that lead to their selective homing and the definition of their functionally relevance remain enigmatic. We took advantage of the availability of healthy human liver to rigorously define the mechanisms regulating the homing of NK cells to liver and the repertoire of receptors that distinguish liver-resident NK (lr-NK) cells from circulating counterparts. Nearly 50% of the entire liver NK cell population is composed of functionally relevant CD56(bright) lr-NK cells that localize within hepatic sinusoids. CD56(bright) lr-NK cells express CD69, CCR5 and CXCR6 and this unique repertoire of chemokine receptors is functionally critical as it determines selective migration in response to the chemotactic stimuli exerted by CCL3, CCL5 and CXCL16. Here, we also show that hepatic sinusoids express CCL3(pos) Kupffer cells, CXCL16(pos) endothelial cells and CCL5(pos) T and NK lymphocytes. The selective presence of these chemokines in sinusoidal spaces creates a unique tissue niche for lr-CD56(bright) NK cells that constitutively express CCR5 and CXCR6. CD56(bright) lr-NK cells co-exist with CD56(dim) conventional NK (c-NK) cells that are, interestingly, transcriptionally and phenotypically similar to their peripheral circulating counterparts. Indeed, CD56(dim) c-NK cells lack expression of CD69, CCR5, and CXCR6 but express selectins, integrins and CX3CR1. Our findings disclosing the phenotypic and functional differences between lr-Nk cells and c-NK cells are critical to distinguish liver-specific innate immune responses. Hence, any therapeutic attempts at modifying the large population of CD56(bright) lr-NK cells will require modification of hepatic CCR5 and CXCR6. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Human liver-resident CD56bright/CD16neg NK cells are retained within hepatic sinusoids via the engagement of CCR5 and CXCR6 pathways

    PubMed Central

    Hudspeth, Kelly; Donadon, Matteo; Cimino, Matteo; Pontarini, Elena; Tentorio, Paolo; Preti, Max; Hong, Michelle; Bertoletti, Antonio; Bicciato, Silvio; Invernizzi, Pietro; Lugli, Enrico; Torzilli, Guido; Gershwin, M. Eric; Mavilio, Domenico

    2015-01-01

    Rationale The liver-specific natural killer (NK) cell population is critical for local innate immune responses, but the mechanisms that lead to their selective homing and the definition of their functionally relevance remain enigmatic. Objectives We took advantage of the availability of healthy human liver to rigorously define the mechanisms regulating the homing of NK cells to liver and the repertoire of receptors that distinguish liver-resident NK (lr-NK) cells from circulating counterparts. Findings Nearly 50% of the entire liver NK cell population is composed of functionally relevant CD56bright lr-NK cells that localize within hepatic sinusoids. Further, CD56bright lr-NK cells express CD69, CCR5 and CXCR6 and this unique repertoire of chemokine receptors is functionally critical as it determines selective migration in response to the chemotactic stimuli exerted by CCL3, CCL5 and CXCL16. In addition, hepatic sinusoids express CCL3pos Kupffer cells, CXCL16pos endothelial cells and CCL5pos T and NK lymphocytes. The selective presence of these chemokines in sinusoidal spaces creates a tissue niche for lr-CD56bright NK cells that constitutively express CCR5 and CXCR6. CD56bright lr-NK cells co-exist with CD56dim conventional NK (c-NK) cells that are, interestingly, transcriptionally and phenotypically similar to their peripheral circulating counterparts. Indeed, CD56dim c-NK cells lack expression of CD69, CCR5, and CXCR6 but express selectins, integrins and CX3CR1. Conclusion Our findings disclosing the phenotypic and functional differences between lr-Nk cells and c-NK cells are critical to distinguish liver-specific innate immune responses. Hence, any therapeutic attempts at modifying the large population of CD56bright lr-NK cells will require modification of hepatic CCR5 and CXCR6. PMID:26330348

  5. Light- and transmission-electron-microscopic investigations on distribution of CD44, connexin 43 and actin cytoskeleton during the foreign body reaction to a nanoparticular hydroxyapatite in mini-pigs.

    PubMed

    Wenisch, Sabine; Cavalcanti-Adam, E Ada; Tryankowski, Eva; Raabe, Oksana; Kilian, Olaf; Heiss, Christian; Alt, Volker; Arnhold, Stefan; Schnettler, Reinhard

    2012-07-01

    Foreign body giant cells (FBGCs) are formed by fusion of mononucleated macrophages during the foreign body response to a nanoparticulate hydroxyapatite (HA) implanted in defects of mini-pig femura. The molecular mechanisms underlying the formation of FBGCs are still largely obscure. Here we propose connexin 43 (cx43) and CD44 as candidate molecules involved in the fusion process. Immunohistochemistry and ultrastructural immunogold labeling indicated that cx43 is present within the ruffled border of FBGCs and is the main component of gap junctions formed between fusing macrophages. CD44 was strongly expressed during clustering and fusion of mononucleated macrophages. FBGCs adhering apically at the implanted HA showed CD44 reactivity only along the basolateral aspects of the plasma membranes, while podosome formation was observed within the sealing zone and ruffled border. Taken together, these findings demonstrate that cx43 and CD44 are part of the fusion machinery responsible for the formation of FBGCs. Furthermore, the results of microfilament and cx43 labeling suggest a functional role for podosomes and hemi-channels in biomaterial degradation. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. CD133 expression in osteosarcoma and derivation of CD133⁺ cells.

    PubMed

    Li, Ji; Zhong, Xiao-Yan; Li, Zong-Yu; Cai, Jin-Fang; Zou, Lin; Li, Jian-Min; Yang, Tao; Liu, Wei

    2013-02-01

    Cluster of differentiation 133 (CD133) is recognized as a stem cell marker for normal and cancerous tissues. Using cell culture and real‑time fluorescent polymerase chain reaction, CD133 expression was analyzed in osteosarcoma tissue and Saos‑2 cell lines. In addition, cancer stem cell‑related gene expression in the Saos‑2 cell line was determined to explore the mechanisms underlying tumorigenesis and high drug resistance in osteosarcoma. CD133+ cells were found to be widely distributed in various types of osteosarcoma tissue. Following cell culture, cells entered the G2/M and S cell cycle stages from G0/G1. Levels of CD133+ cells decreased to normal levels rapidly over the course of cell culture. Colony forming efficiency was higher in the CD133+ compared with the CD133‑ subpopulation of Saos‑2 cells. Expression levels of stem cell‑related genes, including multidrug resistance protein 1 (MDR1) and sex determining region Y‑box 2 (Sox2) in the CD133+ subpopulation of cells were found to be significantly higher compared with the CD133‑ subpopulation. These observations indicate that CD133+ Saos‑2 cells exhibit stem cell characteristics, including low abundance, quiescence and a high potential to undergo differentiation, as well as expression of key stem cell regulatory and drug resistance genes, which may cause osteosarcoma and high drug resistance.

  7. 7 CFR 6.44 - Delegation of authority.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false Delegation of authority. 6.44 Section 6.44 Agriculture Office of the Secretary of Agriculture IMPORT QUOTAS AND FEES Price-Undercutting of Domestic Cheese by Quota Cheeses § 6.44 Delegation of authority. The powers vested in the Administrator, FAS, insofar as...

  8. 7 CFR 6.44 - Delegation of authority.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false Delegation of authority. 6.44 Section 6.44 Agriculture Office of the Secretary of Agriculture IMPORT QUOTAS AND FEES Price-Undercutting of Domestic Cheese by Quota Cheeses § 6.44 Delegation of authority. The powers vested in the Administrator, FAS, insofar as...

  9. 7 CFR 6.44 - Delegation of authority.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Delegation of authority. 6.44 Section 6.44 Agriculture Office of the Secretary of Agriculture IMPORT QUOTAS AND FEES Price-Undercutting of Domestic Cheese by Quota Cheeses § 6.44 Delegation of authority. The powers vested in the Administrator, FAS, insofar as...

  10. 7 CFR 6.44 - Delegation of authority.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false Delegation of authority. 6.44 Section 6.44 Agriculture Office of the Secretary of Agriculture IMPORT QUOTAS AND FEES Price-Undercutting of Domestic Cheese by Quota Cheeses § 6.44 Delegation of authority. The powers vested in the Administrator, FAS, insofar as...

  11. 7 CFR 6.44 - Delegation of authority.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Delegation of authority. 6.44 Section 6.44 Agriculture Office of the Secretary of Agriculture IMPORT QUOTAS AND FEES Price-Undercutting of Domestic Cheese by Quota Cheeses § 6.44 Delegation of authority. The powers vested in the Administrator, FAS, insofar as...

  12. Co-expression of CD147 and GLUT-1 indicates radiation resistance and poor prognosis in cervical squamous cell carcinoma.

    PubMed

    Huang, Xin-Qiong; Chen, Xiang; Xie, Xiao-Xue; Zhou, Qin; Li, Kai; Li, Shan; Shen, Liang-Fang; Su, Juan

    2014-01-01

    The aim of this study was to investigate the association of CD147 and GLUT-1, which play important roles in glycolysis in response to radiotherapy and clinical outcomes in patients with locally advanced cervical squamous cell carcinoma (LACSCC). The records of 132 female patients who received primary radiation therapy to treat LACSCC at FIGO stages IB-IVA were retrospectively reviewed. Forty-seven patients with PFS (progression-free survival) of less than 36 months were regarded as radiation-resistant. Eighty-five patients with PFS longer than 36 months were regarded as radiation-sensitive. Using pretreatment paraffin-embedded tissues, we evaluated CD147 and GLUT-1 expression by immunohistochemistry. Overexpression of CD147, GLUT-1, and CD147 and GLUT-1 combined were 44.7%, 52.9% and 36.5%, respectively, in the radiation-sensitive group, and 91.5%, 89.4% and 83.0%, respectively, in the radiation-resistant group. The 5-year progress free survival (PFS) rates in the CD147-low, CD147-high, GLUT-1-low, GLUT-1-high, CD147- and/or GLUT-1-low and CD147- and GLUT-1- dual high expression groups were 66.79%, 87.10%, 52.78%, 85.82%, 55.94%, 82.90% and 50.82%, respectively. CD147 and GLUT-1 co-expression, FIGO stage and tumor diameter were independent poor prognostic factors for patients with LACSCC in multivariate Cox regression analysis. Patients with high expression of CD147 alone, GLUT-1 alone or co-expression of CD147 and GLUT-1 showed greater resistance to radiotherapy and a shorter PFS than those with low expression. In particular, co-expression of CD147 and GLUT-1 can be considered as a negative independent prognostic factor.

  13. Co-expression of CD147 and GLUT-1 indicates radiation resistance and poor prognosis in cervical squamous cell carcinoma

    PubMed Central

    Huang, Xin-Qiong; Chen, Xiang; Xie, Xiao-Xue; Zhou, Qin; Li, Kai; Li, Shan; Shen, Liang-Fang; Su, Juan

    2014-01-01

    The aim of this study was to investigate the association of CD147 and GLUT-1, which play important roles in glycolysis in response to radiotherapy and clinical outcomes in patients with locally advanced cervical squamous cell carcinoma (LACSCC). The records of 132 female patients who received primary radiation therapy to treat LACSCC at FIGO stages IB-IVA were retrospectively reviewed. Forty-seven patients with PFS (progression-free survival) of less than 36 months were regarded as radiation-resistant. Eighty-five patients with PFS longer than 36 months were regarded as radiation-sensitive. Using pretreatment paraffin-embedded tissues, we evaluated CD147 and GLUT-1 expression by immunohistochemistry. Overexpression of CD147, GLUT-1, and CD147 and GLUT-1 combined were 44.7%, 52.9% and 36.5%, respectively, in the radiation-sensitive group, and 91.5%, 89.4% and 83.0%, respectively, in the radiation-resistant group. The 5-year progress free survival (PFS) rates in the CD147-low, CD147-high, GLUT-1-low, GLUT-1-high, CD147- and/or GLUT-1-low and CD147- and GLUT-1- dual high expression groups were 66.79%, 87.10%, 52.78%, 85.82%, 55.94%, 82.90% and 50.82%, respectively. CD147 and GLUT-1 co-expression, FIGO stage and tumor diameter were independent poor prognostic factors for patients with LACSCC in multivariate Cox regression analysis. Patients with high expression of CD147 alone, GLUT-1 alone or co-expression of CD147 and GLUT-1 showed greater resistance to radiotherapy and a shorter PFS than those with low expression. In particular, co-expression of CD147 and GLUT-1 can be considered as a negative independent prognostic factor. PMID:24817962

  14. IL-6 Inhibits Upregulation of Membrane-Bound TGF-β 1 on CD4+ T Cells and Blocking IL-6 Enhances Oral Tolerance.

    PubMed

    Kuhn, Chantal; Rezende, Rafael Machado; M'Hamdi, Hanane; da Cunha, Andre Pires; Weiner, Howard L

    2017-02-01

    Oral administration of Ag induces regulatory T cells that express latent membrane-bound TGF-β (latency-associated peptide [LAP]) and have been shown to play an important role in the induction of oral tolerance. We developed an in vitro model to study modulation of LAP + on CD4 + T cells. The combination of anti-CD3 mAb, anti-CD28 mAb, and recombinant IL-2 induced expression of LAP on naive CD4 + T cells, independent of Foxp3 or exogenous TGF-β. In vitro generated CD4 + LAP + Foxp3 - T cells were suppressive in vitro, inhibiting proliferation of naive CD4 + T cells and IL-17A secretion by Th17 cells. Assessing the impact of different cytokines and neutralizing Abs against cytokines, we found that LAP induction was decreased in the presence of IL-6 and IL-21, and to a lesser extent by IL-4 and TNF-α. IL-6 abrogated the in vitro induction of CD4 + LAP + T cells by STAT3-dependent inhibition of Lrrc32 (glycoprotein A repetitions predominant [GARP]), the adapter protein that tethers TGF-β to the membrane. Oral tolerance induction was enhanced in mice lacking expression of IL-6R by CD4 + T cells and by treatment of wild-type mice with neutralizing anti-IL-6 mAb. These results suggest that proinflammatory cytokines interfere with oral tolerance induction and that blocking the IL-6 pathway is a potential strategy for enhancing oral tolerance in the setting of autoimmune and inflammatory diseases. Copyright © 2017 by The American Association of Immunologists, Inc.

  15. Comparative Analysis of Hepatic CD14 Expression between Two Different Endotoxin Shock Model Mice: Relation between Hepatic Injury and CD14 Expression

    PubMed Central

    Hozumi, Hiroyasu; Tada, Rui; Murakami, Taisuke; Adachi, Yoshiyuki; Ohno, Naohito

    2013-01-01

    CD14 is a glycoprotein that recognizes gram-negative bacterial lipopolysaccharide (LPS) and exists in both membrane-bound and soluble forms. Infectious and/or inflammatory diseases induce CD14 expression, which may be involved in the pathology of endotoxin shock. We previously found that the expression of CD14 protein differs among the endotoxin shock models used, although the reasons for these differences are unclear. We hypothesized that the differences in CD14 expression might be due to liver injury, because the hepatic tissue produces CD14 protein. We investigated CD14 expression in the plasma and liver in the carrageenan (CAR)-primed and D-galN-primed mouse models of endotoxin shock. Our results showed that severe liver injury was not induced in CAR-primed endotoxin shock model mice. In this CAR-primed model, the higher mRNA and protein expression of CD14 was observed in the liver, especially in the interlobular bile duct in contrast to D-galN-primed-endotoxin shock model mice. Our findings indicated that the molecular mechanism(s) underlying septic shock in CAR-primed and D-galN-primed endotoxin shock models are quite different. Because CD14 expression is correlated with clinical observations, the CAR-primed endotoxin shock model might be useful for studying the functions of CD14 during septic shock in vivo. PMID:23308276

  16. Lineage determination of CD7+ CD5- CD2- and CD7+ CD5+ CD2- lymphoblasts: studies on phenotype, genotype, and gene expression of myeloperoxidase, CD3 epsilon, and CD3 delta.

    PubMed

    Yoneda, N; Tatsumi, E; Teshigawara, K; Nagata, S; Nagano, T; Kishimoto, Y; Kimura, T; Yasunaga, K; Yamaguchi, N

    1994-04-01

    The gene expression of myeloperoxidase (MPO), CD3 epsilon, and CD3 delta molecules, the gene rearrangement of T-cell receptor (TCR) delta, gamma, and beta and immunoglobulin heavy (IgH) chain, and the expression of cell-surface antigens were investigated in seven cases of CD7+ CD5- CD2- and four cases of CD7+ CD5+ CD2- acute lymphoblastic leukemia or lymphoblastic lymphoma (ALL/LBL) blasts, which were negative for cytochemical myeloperoxidase (cyMPO). More mature T-lineage blasts were also investigated in a comparative manner. In conclusion, the CD7+ CD5- CD2- blasts included four categories: undifferentiated blasts without lineage commitment, T-lineage blasts, T-/myeloid lineage blasts, and cyMPO-negative myeloblasts. The CD7+ CD5+ CD2- blasts included two categories; T-lineage and T-/myeloid lineage blasts. The 11 cases were of the germ-line gene (G) for TCR beta and IgH. Four cases were G for TCR delta and TCR gamma. The others were of the monoclonally rearranged gene (R) for TCR delta and G for TCR gamma or R for both TCR delta and TCR gamma. The expression or in vitro induction of CD13 and/or CD33 antigens correlated with the immaturity of these neoplastic T cells, since it was observed in all 11 CD7+ CD5- CD2- and CD7+ CD5+ CD2-, and some CD7+ CD5+ CD2+ (CD3- CD4- CD8-) cases, but not in CD3 +/- CD4+ CD8+ or CD3+ CD4+ CD8- cases. CD3 epsilon mRNA, but not CD3 delta mRNA, was detected in two CD7+ CD5- CD2- cases, while mRNA of neither of the two CD3 molecules was detected in the other tested CD7+ CD5- CD2- cases. In contrast, mRNA of both CD3 epsilon and CD3 delta were detected in all CD7+ CD5+ CD2- cases, indicating that CD7+ CD5- CD2- blasts at least belong to T-lineage. The blasts of two CD7+ CD5- CD2- cases with entire germ-line genes and without mRNA of the three molecules (MPO, CD3 epsilon, and CD3 delta) were regarded as being at an undifferentiated stage prior to their commitment to either T- or myeloid-lineage. The co-expression of the genes of MPO

  17. Synergetic effects of DA-6/GA₃ with EDTA on plant growth, extraction and detoxification of Cd by Lolium perenne.

    PubMed

    He, Shanying; Wu, Qiuling; He, Zhenli

    2014-12-01

    Research is needed to improve efficiency of phytoextraction of heavy metals from contaminated soils. A pot experiment was carried out to study the effects of plant growth regulators (PGRs) (diethyl aminoethyl hexanoate (C18H33NO8, DA-6) and gibberellic acid 3 (C19H22O6, GA3)) and/or EDTA on Cd extraction, subcellular distribution and chemical forms in Lolium perenne. The addition of EDTA or PGRs significantly enhanced Cd extraction efficiency (P<0.05), with the decreasing order of: 1 μM DA-6>10 μM DA-6>10 μM GA3>2.5 mmol kg(-1) EDTA>other treatments of PGR alone. PGRs+EDTA resulted in a further increase in Cd extraction efficiency, with EDTA+1 μM DA-6 being the most efficient. At the subcellular level, about 44-57% of Cd was soluble fraction, 18-44% in cell walls, and 12-25% in cellular organelles fraction. Chemical speciation analysis showed that 40-54% of Cd was NaCl extractable, 7-23% HAc extractable, followed by other fractions. EDTA increased the proportions of Cd in soluble and cellular organelles fraction, as well as the metal migration in shoot; therefore, the toxicity to plant increased and plant growth was inhibited. Conversely, PGRs fixed more Cd in cell walls and reduced Cd migration in shoot; thus, metal toxicity was reduced. In addition, PGRs promoted plant biomass growth significantly (P<0.05), with 1 μM DA-6 being the most effective. A combination of DA-6/GA3 with EDTA can alleviate the adverse effect of EDTA on plant growth, and the treatment of EDTA+1 μM DA-6 appears to be optimal for improving the remediation efficiency of L. perenne for Cd contaminated soil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The effect of CD34+ cell telomere length and hTERT expression on the outcome of autologous CD34+ cell transplantation in patients with chronic heart failure.

    PubMed

    Rozman, Jasmina-Ziva; Perme, Maja Pohar; Jez, Mojca; Malicev, Elvira; Krasna, Metka; Novakovic, Srdjan; Vrtovec, Bojan; Rozman, Primoz

    2017-09-01

    Age-related telomere attrition in stem/progenitor cells may diminish their functional capacity and thereby impair the outcome of cell-based therapies. The aim of the present study was to investigate the effect of CD34 + cell telomere length and hTERT expression on the clinical outcome of autologous CD34 + cell transplantation. We studied 43 patients with cardiomyopathy. Their peripheral blood CD34 + cells were mobilized with granulocyte colony-stimulating factor, enriched by immunoselection and delivered transendocardially. Relative telomere length and expression levels of hTERT were measured using a real-time PCR assay. Immunoselected CD34 + cells had longer telomere length compared to leukocytes in leukapheresis products (p=0.001). In multivariate analysis, CD34 + cell telomere length was not associated with the clinical outcome (b=3.306, p=0.540). While hTERT expression was undetectable in all leukapheresis products, 94.4% of the CD34 + enriched cell products expressed hTERT. Higher CD34 + hTERT expression was associated with a better clinical outcome on univariate analysis (b=87.911, p=0.047). Our findings demonstrate that CD34 + cell telomere length may not influence the clinical outcome in cardiomyopathy patients treated with autologous CD34 + cell transplantation. Larger studies are needed to validate the impact of the CD34 + hTERT expression on the clinical outcome of autologous CD34 + cell transplantation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. FOXP3, CBLB and ITCH gene expression and cytotoxic T lymphocyte antigen 4 expression on CD4+CD25high T cells in multiple sclerosis

    PubMed Central

    Sellebjerg, F; Krakauer, M; Khademi, M; Olsson, T; Sørensen, P S

    2012-01-01

    Expression of the forkhead box protein 3 (FoxP3) transcription factor is regulated by the E3 ubiquitin ligases Itch and Cbl-b and induces regulatory activity CD4+CD25high T cells. Treatment with interferon (IFN)-β enhances regulatory T cell activity in multiple sclerosis (MS). We studied the phenotype of CD4+CD25high T cells in MS by flow cytometry and its relationship with expression of the FOXP3, ITCH and CBLB genes. We found that untreated MS patients had lower cell surface expression of cytotoxic T lymphocyte antigen 4 (CTLA-4) on CD4+CD25high T cells and higher intracellular CTLA-4 expression than healthy controls. Cell surface expression of CTLA-4 on CD4+CD25high T cells correlated with expression of FOXP3 mRNA in untreated patients and increased significantly with time from most recent injection in patients treated with IFN-β. FOXP3 mRNA expression correlated with CBLB and ITCH and T helper type 2 cytokine mRNA expression in MS patients. These data link expression of FOXP3, CBLB and ITCH mRNA and CTLA-4 expression on the surface of CD4+CD25high T cell in MS. We hypothesize that this may reflect alterations in the inhibitory effect of CTLA-4 or in regulatory T cell function. PMID:23039885

  20. Interleukin-6 controls uterine Th9 cells and CD8(+) T regulatory cells to accelerate parturition in mice.

    PubMed

    Gomez-Lopez, Nardhy; Olson, David M; Robertson, Sarah A

    2016-01-01

    Interleukin-6 (IL6) is a determinant of the timing of parturition and birth in mice. We previously demonstrated that genetic IL6 deficiency delays parturition by ~24 h, and this is restored by administration of exogenous IL6. In this study, we have investigated whether IL6 influences the number or phenotypes of T cells or other leukocytes in uterine decidual tissue at the maternal-fetal interface. In late gestation, decidual leukocytes in Il6 null mutant (Il6(-/-)) mice exhibit an altered profile, characterized by reduced numbers of cells expressing the monocyte/macrophage marker F4/80 or the T-cell marker CD4, increased cells expressing the natural killer (NK) cell marker CD49b or the dendritic cell marker CD11c, but no change in cells expressing the neutrophil marker Ly6G. These changes are specific to late pregnancy, as similar differences in decidual leukocytes were not evident in mid-gestation Il6(-/-) mice. The IL6-regulated changes in decidual NK and dendritic cells appear secondary to local recruitment, as no comparable changes occurred in peripheral blood of Il6(-/-) mice. When exogenous IL6 was administered to restore normal timing of parturition, a partial reversal of the altered leukocyte profile was observed, with a 10% increase in the proportion of decidual CD4(+) T cells, a notable 60% increase in CD8(+) T cells including CD8(+)CD25(+)Foxp3(+) regulatory T cells and a 60% reduction in CD4(+)IL9(+) Th9 cells. Together these findings suggest that IL6-controlled accumulation of decidual CD4(+) T cells and CD8(+) regulatory T cells, with an associated decline in decidual Th9 cells, is instrumental for progressing parturition in mice.

  1. Epithelial expression of extracellular matrix metalloproteinase inducer/CD147 and matrix metalloproteinase-2 in neoplasms and precursor lesions derived from cutaneous squamous cells: An immunohistochemical study.

    PubMed

    Ayva, Sebnem Kupana; Karabulut, Ayse Anil; Akatli, Ayşe Nur; Atasoy, Pinar; Bozdogan, Onder

    2013-10-01

    Extracellular matrix metalloproteinase inducer (CD147) is a transmembrane glycoprotein involved in the regulation of matrix metalloproteinases (MMPs). The study investigated CD147 and MMP-2 expression in epidermis of cutaneous squamous lesions. CD147 and MMP-2 expressions were evaluated immunohistochemically in 44 specimens: 18 actinic keratoses (AK), 6 squamous cell carcinomas in situ (SCCIS), 13 squamous cell carcinomas (SCC; peritumoral and invasive portions assessed), and 7 normal skins. Patterns of expression were assessed, with MMP-2 in nuclei (MMP-2n) and cytoplasm (MMP-2c) evaluated separately. The expression of each marker was quantified using a calculated immunohistochemical/histologic score (H-score). Correlations were analyzed for the marker H-scores in each study group. Associations between H-scores and histopathologic parameters were also evaluated. CD147 H-score was the highest in SCC (invasive islands), followed by AK, SCCIS, and control specimens, respectively. MMP-2n and MMP-2c H-scores were the highest in AK, followed by SCCIS, SCC, and control specimens, respectively. MMP-2c and MMP-2n H-scores were significantly higher in peritumoral epidermis than in invasive islands of SCC. MMP-2c and CD147 H-scores were positively correlated in the peritumoral SCCs. CD147 H-score was positively correlated with tumor differentiation in SCC. The findings suggest that overexpression of CD147 plays a role in the development of SCC. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Loss of CXCR6 coreceptor usage characterizes pathogenic lentiviruses.

    PubMed

    Wetzel, Katherine S; Yi, Yanjie; Yadav, Anjana; Bauer, Anya M; Bello, Ezekiel A; Romero, Dino C; Bibollet-Ruche, Frederic; Hahn, Beatrice H; Paiardini, Mirko; Silvestri, Guido; Peeters, Martine; Collman, Ronald G

    2018-04-01

    Pandemic HIV-1 originated from the cross-species transmission of SIVcpz, which infects chimpanzees, while SIVcpz itself emerged following the cross-species transmission and recombination of monkey SIVs, with env contributed by the SIVgsn/mus/mon lineage that infects greater spot-nosed, mustached and mona monkeys. SIVcpz and HIV-1 are pathogenic in their respective hosts, while the phenotype of their SIVgsn/mus/mon ancestors is unknown. However, two well-studied SIV infected natural hosts, sooty mangabeys (SMs) and African green monkeys (AGMs), typically remain healthy despite high viral loads; these species express low levels of the canonical coreceptor CCR5, and recent work shows that CXCR6 is a major coreceptor for SIV in these hosts. It is not known what coreceptors were used by the precursors of SIVcpz, whether coreceptor use changed during emergence of the SIVcpz/HIV-1 lineage, and what T cell subsets express CXCR6 in natural hosts. Using species-matched coreceptors and CD4, we show here that SIVcpz uses only CCR5 for entry and, like HIV-1, cannot use CXCR6. In contrast, SIVmus efficiently uses both CXCR6 and CCR5. Coreceptor selectivity was determined by Env, with CXCR6 use abrogated by Pro326 in the V3 crown, which is absent in monkey SIVs but highly conserved in SIVcpz/HIV-1. To characterize which cells express CXCR6, we generated a novel antibody that recognizes CXCR6 of multiple primate species. Testing lymphocytes from SM, the best-studied natural host, we found that CXCR6 is restricted to CD4+ effector memory cells, and is expressed by a sub-population distinct from those expressing CCR5. Thus, efficient CXCR6 use, previously identified in SM and AGM infection, also characterizes a member of the SIV lineage that gave rise to SIVcpz/HIV-1. Loss of CXCR6 usage by SIVcpz may have altered its cell tropism, shifting virus from CXCR6-expressing cells that may support replication without disrupting immune function or homeostasis, towards CCR5-expressing cells

  3. CD33: increased inclusion of exon 2 implicates the Ig V-set domain in Alzheimer's disease susceptibility

    PubMed Central

    Raj, Towfique; Ryan, Katie J.; Replogle, Joseph M.; Chibnik, Lori B.; Rosenkrantz, Laura; Tang, Anna; Rothamel, Katie; Stranger, Barbara E.; Bennett, David A.; Evans, Denis A.; De Jager, Philip L.; Bradshaw, Elizabeth M.

    2014-01-01

    We previously demonstrated that the Alzheimer's disease (AD) associated risk allele, rs3865444C, results in a higher surface density of CD33 on monocytes. Here, we find alternative splicing of exon 2 to be the primary mechanism of the genetically driven differential expression of CD33 protein. We report that the risk allele, rs3865444C, is associated with greater cell surface expression of CD33 in both subjects of European and African–American ancestry and that there is a single haplotype influencing CD33 surface expression. A meta-analysis of the two populations narrowed the number of significant SNPs in high linkage disequilibrium (LD) (r2 > 0.8) with rs3865444 to just five putative causal variants associated with increased protein expression. Using gene expression data from flow-sorted CD14+CD16− monocytes from 398 healthy subjects of three populations, we show that the rs3865444C risk allele is strongly associated with greater expression of CD33 exon 2 (pMETA = 2.36 × 10−60). Western blotting confirms increased protein expression of the full-length CD33 isoform containing exon 2 relative to the rs3865444C allele (P < 0.0001). Of the variants in strong LD with rs3865444, rs12459419, which is located in a putative SRSF2 splice site of exon 2, is the most likely candidate to mediate the altered alternative splicing of CD33's Immunoglobulin V-set domain 2 and ultimately influence AD susceptibility. PMID:24381305

  4. CXCL16 and CXCR6 are upregulated in psoriasis and mediate cutaneous recruitment of human CD8+ T cells.

    PubMed

    Günther, Claudia; Carballido-Perrig, Nicole; Kaesler, Susanne; Carballido, José M; Biedermann, Tilo

    2012-03-01

    Psoriatic skin lesions are characterized by an inflammatory infiltrate, consisting of dendritic cells, monocytes, and both CD4(+) and CD8(+) T lymphocytes. Although the chemokines involved in the migration of CD4(+) T cells into psoriatic skin are well characterized, those regulating CD8(+) T-cell recruitment are less understood. We found that the percentages of peripheral blood CD8(+) T cells expressing CXCR6 were higher in psoriatic patients than in healthy or atopic individuals. In addition, CXCR6 expression in psoriatic patients was more abundant in the CD8(+) than in the CD4(+) T-cell compartment. CXCR6 mRNA expression was also stronger in skin CD8(+) T cells than in the corresponding blood-derived counterparts. Immunofluorescence analysis revealed profound upregulation of the CXCR6 ligand CXCL16 by monocytes, keratinocytes, and dendritic cells in psoriatic skin compared with healthy or atopic dermatitis skin. In line with this, CXCR6(+) CD8(+) T cells also were most prevalent in psoriatic skin. Furthermore, CXCL16 induced Ca(2+) influx and chemotactic migration of psoriatic skin-derived CD8(+) T cells in vitro. Most importantly, CXCL16 potently recruited human CD8(+) T cells to human skin grafts previously transplanted onto SCID mice in vivo. These investigations indicate that CXCL16-CXCR6 interactions mediate homing of CD8(+) T cells into human skin, and thereby contribute to psoriasis pathogenesis.

  5. CD30 expression in follicular lymphoma.

    PubMed

    Gardner, L J; Polski, J M; Evans, H L; Perkins, S L; Dunphy, C H

    2001-08-01

    CD30(+) anaplastic large cell lymphomas were originally described as being of T-cell, null cell, and B-cell origin. CD30, however, is not a specific marker of anaplastic large cell lymphoma and has been found to be expressed in reactive as well as neoplastic populations as a probable activation marker. In addition, CD30(+) cells have also been described in both diffuse large B-cell and follicular lymphomas (FLs), resembling the pattern seen in reactive tonsils and lymph nodes. We report an index case of FL with CD30 expression, which on initial touch preparations and flow cytometric immunophenotyping revealed a prominent population of CD30(+) cells with marked cellular pleomorphism (anaplasia) in a background of typical FL. Immunohistochemistry of the paraffin section for CD30 in our index case confirmed unequivocal CD30(+) pleomorphic cells in the malignant nodules in occasional clusters. This case prompted a study of additional cases of FL for pattern of immunoreactivity with CD30 on paraffin sections. Twenty-two additional cases of FL (grades 1-3) were retrieved for CD30 immunoperoxidase staining as in the index case. This study demonstrated 32% of the additional cases of FL had definitive CD30(+), large, pleomorphic malignant cells by paraffin immunohistochemistry. In 2 cases (9%), the pattern of immunoreactivity with CD30 showed clustering and variable staining of large cells, as our index case. This study underscores the morphologic and immunophenotypic spectrum of FL that includes CD30 staining and cellular pleomorphism.

  6. [Effect of lipopolysaccharides extracted from Porphyromonas endodontalis on the expression of CD14 in osteoblast].

    PubMed

    Jia, Ge; Qiu, Li-hong; Li, Ren; Yang, Di; Guo, Yan

    2010-10-01

    To investigate the effect of lipopolysaccharides(LPS) extracted from Porphyromonas endodontalis(P.e) on the expression of CD14 in osteoblast. Under the condition with or without serum, MC3T3-E1 cells were stimulated with 10 μg/mL P.e-LPS for 24 hours, then the expression of CD14 was measured using flow cytometry; the membrane CD14 mRNA was detected at different time point (0, 1, 3, 6, 12, 24 h) by RT-PCR. Statistical analysis was performed using two-sample t test, one-way ANOVA and Dunnett t test with SPSS13.0 software package. Flow cytometry showed that CD14 protein increased after the stimulation of P.e-LPS for 24 h, while the non-serum group demonstrated more increase; the membrane CD14 mRNA level was up-regulated by 10 μg/mL P.e-LPS at 1 hour, and reached the maximum at 3 h and declined after 6 h. P.e-LPS can induce the expression of CD14 in osteoblast MC3T3-E1, which indicates that P.e-LPS may play an important role in osteoblast through CD14.

  7. [Cordyceps sinensis enhances lymphocyte proliferation and CD markers expression in simulated microgravity environment].

    PubMed

    Hao, Tong; Li, Jun-Jie; Du, Zhi-Yan; Duan, Cui-Mi; Wang, Yan-Meng; Wang, Chang-Yong; Song, Jing-Ping; Wang, Lin-Jie; Li, Ying-Hui; Wang, Yan

    2012-10-01

    This study was aimed to explore the effect of cordyceps sinensis enhancing lymphocyte proliferation and surface CD marker expression in simulated microgravity environment. The splenic lymphocytes were separated from mice and cultured in the rotary cell culture system simulated microgravity environment. The cells were treated with different concentration of cordyceps sinensis solution (0, 6.25, 12.5, 25 and 50 µg/ml) for 24, 48 and 72 h respectively, then the cells were harvested, and analyzed for cell proliferation and the expression of cell surface markers (CD4 and CD8). The results showed that under simulated microgravity environment, the lymphocyte proliferation was inhibited. When the concentration of cordyceps sinensis was 25 or 50 µg/ml, the lymphocyte proliferation, CD4 and CD8 expressions all increased, but 50 µg/ml cordyceps sinensis could inhibit the proliferation ability with the time prolonging. It is concluded that the suitable concentration of cordyceps sinensis displayed the ability to enhance the lymphocyte proliferation and CD marker expression in simulated microgravity environment. These results may be valuable for screening drugs which can be potentially against immunosuppression under simulated microgravity.

  8. Na+/H+ exchanger isoform 1-induced osteopontin expression facilitates cardiac hypertrophy through p90 ribosomal S6 kinase.

    PubMed

    Abdulrahman, Nabeel; Jaspard-Vinassa, Beatrice; Fliegel, Larry; Jabeen, Aayesha; Riaz, Sadaf; Gadeau, Alain-Pierre; Mraiche, Fatima

    2018-05-01

    Cardiovascular diseases are the leading cause of death worldwide. One in three cases of heart failure is due to dilated cardiomyopathy. The Na + /H + exchanger isoform 1 (NHE1), a multifunctional protein and the key pH regulator in the heart, has been demonstrated to be increased in this condition. We have previously demonstrated that elevated NHE1 activity induced cardiac hypertrophy in vivo. Furthermore, the overexpression of active NHE1 elicited modulation of gene expression in cardiomyocytes including an upregulation of myocardial osteopontin (OPN) expression. To determine the role of OPN in inducing NHE1-mediated cardiomyocyte hypertrophy, double transgenic mice expressing active NHE1 and OPN knockout were generated and assessed by echocardiography and the cardiac phenotype. Our studies showed that hearts expressing active NHE1 exhibited cardiac remodeling indicated by increased systolic and diastolic left ventricular internal diameter and increased ventricular volume. Moreover, these hearts demonstrated impaired function with decreased fractional shortening and ejection fraction. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNA was upregulated, and there was an increase in heart cell cross-sectional area confirming the cardiac hypertrophic effect. Moreover, NHE1 transgenic mice also showed increased collagen deposition, upregulation of CD44 and phosphorylation of p90 ribosomal s6 kinase (RSK), effects that were regressed in OPN knockout mice. In conclusion, we developed an interesting comparative model of active NHE1 transgenic mouse lines which express a dilated hypertrophic phenotype expressing CD44 and phosphorylated RSK, effects which were regressed in absence of OPN.

  9. Chemotherapeutic Effect of CD147 Antibody-labeled Micelles Encapsulating Doxorubicin Conjugate Targeting CD147-Expressing Carcinoma Cells.

    PubMed

    Asakura, Tadashi; Yokoyama, Masayuki; Shiraishi, Koichi; Aoki, Katsuhiko; Ohkawa, Kiyoshi

    2018-03-01

    CD147 (basigin/emmprin) is expressed on the surface of carcinoma cells. For studying the efficacy of CD147-targeting medicine on CD147-expressing cells, we studied the effect of anti-CD147-labeled polymeric micelles (CD147ab micelles) that encapsulated a conjugate of doxorubicin with glutathione (GSH-DXR), with specific accumulation and cytotoxicity against CD147-expressing A431 human epidermoid carcinoma cells, Ishikawa human endometrial adenocarcinoma cells, and PC3 human prostate carcinoma cells. By treatment of each cell type with CD147ab micelles for 1 h, a specific accumulation of CD147ab micelles in CD147-expressing cells was observed. In addition, the cytotoxicity of GSH-DXR-encapsulated micelles against each cell type was measured by treatment of the micelles for 1 h. The cytotoxic effect of CD147ab micelles carrying GSH-DXR was 3- to 10-fold higher for these cells than that of micelles without GSH-DXR. These results suggest that GSH-DXR-encapsulated CD147ab micelles could serve as an effective drug delivery system to CD147-expressing carcinoma cells. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. The depletion of ATM inhibits colon cancer proliferation and migration via B56γ2-mediated Chk1/p53/CD44 cascades.

    PubMed

    Liu, Rui; Tang, Jiajia; Ding, Chaodong; Liang, Weicheng; Zhang, Li; Chen, Tianke; Xiong, Yan; Dai, Xiaowei; Li, Wenfeng; Xu, Yunsheng; Hu, Jin; Lu, Liting; Liao, Wanqin; Lu, Xincheng

    2017-04-01

    Ataxia-telangiectasia mutated (ATM) protein kinase is a major guardian of genomic stability, and its well-established function in cancer is tumor suppression. Here, we report an oncogenic role of ATM. Using two isogenic sets of human colon cancer cell lines that differed only in their ATM status, we demonstrated that ATM deficiency significantly inhibits cancer cell proliferation, migration, and invasion. The tumor-suppressive function of ATM depletion is not modulated by the compensatory activation of ATR, but it is associated with B56γ2-mediated Chk1/p53/CD44 signaling pathways. Under normal growth conditions, the depletion of ATM prevents B56γ2 ubiquitination and degradation, which activates PP2A-mediated Chk1/p53/p21 signaling pathways, leading to senescence and cell cycle arrest. CD44 was validated as a novel ATM target based on its ability to rescue cell migration and invasion defects in ATM-depleted cells. The activation of p53 induced by ATM depletion suppresses CD44 transcription, thus resulting in epithelial-mesenchymal transition (EMT) and cell migration suppression. Our study suggests that ATM has tumorigenic potential in post-formed colon neoplasia, and it supports ATM as an appealing target for improving cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Rapid evolution of binding specificities and expression patterns of inhibitory CD33-related Siglecs in primates

    PubMed Central

    Padler-Karavani, Vered; Hurtado-Ziola, Nancy; Chang, Yung-Chi; Sonnenburg, Justin L.; Ronaghy, Arash; Yu, Hai; Verhagen, Andrea; Nizet, Victor; Chen, Xi; Varki, Nissi; Varki, Ajit; Angata, Takashi

    2014-01-01

    Siglecs are sialic acid-binding Ig-like lectins that recognize sialoglycans via amino-terminal V-set domains. CD33-related Siglecs (CD33rSiglecs) on innate immune cells recognize endogenous sialoglycans as “self-associated molecular patterns” (SAMPs), dampening immune responses via cytosolic immunoreceptor tyrosine-based inhibition motifs that recruit tyrosine phosphatases. However, sialic acid-expressing pathogens subvert this mechanism through molecular mimicry. Meanwhile, endogenous host SAMPs must continually evolve to evade other pathogens that exploit sialic acids as invasion targets. We hypothesized that these opposing selection forces have accelerated CD33rSiglec evolution. We address this by comparative analysis of major CD33rSiglec (Siglec-3, Siglec-5, and Siglec-9) orthologs in humans, chimpanzees, and baboons. Recombinant soluble molecules displaying ligand-binding domains show marked quantitative and qualitative interspecies differences in interactions with strains of the sialylated pathogen, group B Streptococcus, and with sialoglycans presented as gangliosides or in the form of sialoglycan microarrays, including variations such as N-glycolyl and O-acetyl groups. Primate Siglecs also show quantitative and qualitative intra- and interspecies variations in expression patterns on leukocytes, both in circulation and in tissues. Taken together our data explain why the CD33rSiglec-encoding gene cluster is undergoing rapid evolution via multiple mechanisms, driven by the need to maintain self-recognition by innate immune cells, while escaping 2 distinct mechanisms of pathogen subversion.—Padler-Karavani, V., Hurtado-Ziola, N., Chang, Y.-C., Sonnenburg, J. L., Ronaghy, A., Yu, H., Verhagen, A., Nizet, V., Chen, X., Varki, N., Varki, A., Angata, T. Rapid evolution of binding specificities and expression patterns of inhibitory CD33-related Siglecs in primates. PMID:24308974

  12. Expansion of natural killer cell receptor (CD94/NKG2A)-expressing cytolytic CD8 T cells and CD4+CD25+ regulatory T cells from the same cord blood unit.

    PubMed

    Tanaka, Junji; Sugita, Junichi; Kato, Naoko; Toubai, Tomomi; Ibata, Makoto; Shono, Yusuke; Ota, Shuichi; Kondo, Takeshi; Kobayashi, Takahiko; Kobayashi, Masanobu; Asaka, Masahiro; Imamura, Masahiro

    2007-10-01

    Cord blood contains a significant number of precursor cells that differentiate to cytotoxic effector cells and immunoregulatory cells. We tried to expand inhibitory natural killer cell receptor CD94-expressing CD8 T cells with cytolytic activity and CD4(+)CD25(+) regulatory T cells from the same cord cell unit. Cytotoxic CD94-expressing CD8 T cells were expanded from CD4-depleted cord blood using an immobilized anti-CD3 monoclonal antibody and a cytokine and also CD4(+)CD25(+) regulatory T cells were expanded from a CD4-enriched fraction derived from the same cord blood unit using anti-CD3/CD28 monoclonal antibody-coated Dynabeads and cytokines. We were able to obtain a more than 1000-fold expansion of CD94-expressing CD8 T cells and a more than 50-fold expansion of CD4(+)CD25(+) cells from the same cord blood unit. These expanded CD4(+)CD25(+) cells expressed FoxP3 mRNA at a level about 100-fold higher than that in isolated CD25(-) cells and could suppress allogeneic mixed lymphocyte culture by >80% (effector cells: CD4(+)CD25(+) cells = 2:1). Cytolytic activities of purified CD94-expressing cells detected by a 4-hour (51)Cr release assay against K562 were >60%. Coculture of CD94-expressing cells with expanded CD4(+)CD25(+) cells did not have any effect on cytolytic activities of purified CD94-expressing cells against K562 cells. These expanded cytolytic CD94-expressing CD8 cells might be able to induce a graft-vs-leukemia effect without enhancing graft-vs-host disease, and CD4(+)CD25(+) cells might be able to suppress allogeneic responses, including graft-vs-host disease and graft rejection after cord blood transplantation.

  13. Reduced expression of Na(v)1.6 sodium channels and compensation by Na(v)1.2 channels in mice heterozygous for a null mutation in Scn8a.

    PubMed

    Vega, Ana V; Henry, Diane L; Matthews, Gary

    2008-09-05

    The voltage-gated sodium channel alpha subunit Na(v)1.6, encoded by the Scn8a gene, accumulates at high density at mature nodes of Ranvier of myelinated axons, replacing the Na(v)1.2 channels found at nodes earlier in development. To investigate this preferential expression of Na(v)1.6 at adult nodes, we examined isoform-specific expression of sodium channels in mice heterozygous for a null mutation in Scn8a. Immunoblots from these +/- mice had 50% of the wild-type level of Na(v)1.6 protein, and their optic-nerve nodes of Ranvier had correspondingly less anti-Na(v)1.6 immunofluorescence. Protein level and nodal immunofluorescence of the Na(v)1.2 alpha subunit increased in Scn8a(+/-) mice, keeping total sodium channel expression approximately constant despite partial loss of Na(v)1.6 channels. The results are consistent with a model in which Na(v)1.6 and Na(v)1.2 compete for binding partners at sites of high channel density, such as nodes of Ranvier. We suggest that Na(v)1.6 channels normally occupy most of the molecular machinery responsible for channel clustering because they have higher binding affinity, and not because they are exclusively recognized by mechanisms for transport and insertion of sodium channels in myelinated axons. The reduced amount of Na(v)1.6 protein in Scn8a(+/-) mice is apparently insufficient to saturate the nodal binding sites, allowing Na(v)1.2 channels to compete more successfully.

  14. CD28 T-cell costimulatory molecule expression in pemphigus vulgaris.

    PubMed

    Alecu, M; Ursaciuc, C; Surcel, M; Coman, G; Ciotaru, D; Dobre, M

    2009-03-01

    CD28 superfamily of immune costimulatory molecules could play an important role in autotolerance control. CD28 costimulation seems to be necessary for regulatory T cell (Treg) activation and successive suppressive activities involved in autoimmunity protection. This study investigates CD28 expression, especially inducible costimulator fraction, on T lymphocytes in pemphigus vulgaris (PV) patients. CD28 expression on T lymphocytes was assessed in 16 PV patients during acute attack. All patients and 10 healthy control subjects were tested for lymphocyte populations, T-cell subpopulations (T-CD4+, T-CD8+), Treg and CD28 expression on T-cell subpopulations. T, B and natural killer cells average values in PV patients were close to the control group values. Compared with control group, PV values showed lower Treg (2.2% compared with 4.7%), slightly decreased CD4+ CD28+ T cells (91% compared with 95%), higher CD4+ CD28- T cells (9% compared with 5%), decreased CD8+ CD28+ T cells (57% and 73%, respectively) and significantly enhanced CD8+ CD28- T cells (43% compared with 27%). These data suggest that Treg-mediated suppressor T-cell effects could be diminished in PV, together with an abnormal or ineffective subsequent helper T-cell suppression. CD28 high expression on helper T cells and low expression on suppressor T cells are arguments for a potential CD28 role in PV autoimmune response mechanism.

  15. CD146 Expression Influences Periapical Cyst Mesenchymal Stem Cell Properties.

    PubMed

    Paduano, Francesco; Marrelli, Massimo; Palmieri, Francesca; Tatullo, Marco

    2016-10-01

    Recent studies have identified a new human dental derived progenitor cell population with multi-lineage differentiation potential referred to as human periapical cyst mesenchymal stem cells (hPCy-MSCs). In the present study, we compared two subpopulations of hPCy-MSCs characterised by the low or high expression of CD146 to establish whether this expression can regulate their stem cell properties. Using flow cytometry, we evaluated the stem cell marker profile of hPCy-MSCs during passaging. Furthermore, CD146 Low and CD146 High cells were sorted by magnetic beads and subsequently both cell populations were evaluated for differences in their proliferation, self-renewal, stem cell surface markers, stemness genes expression and osteogenic differentiation potential.We found that hPCy-MSCs possessed a stable expression of several mesenchymal stem cell surface markers, whereas CD146 expression declined during passaging.In addition, sorted CD146 Low cells proliferated significantly faster, displayed higher colony-forming unit-fibroblast capacity and showed higher expression of Klf4 when compared to the CD146 High subset. Significantly, the osteogenic potential of hPCy-MSCs was greater in the CD146 Low than in CD146 High population. These results demonstrate that CD146 is spontaneously downregulated with passaging at both mRNA and protein levels and that the high expression of CD146 reduces the proliferative, self-renewal and osteogenic differentiation potential of hPCy-MSCs. In conclusion, our study demonstrates that changes in the expression of CD146 can influence the stem cell properties of hPCy-MSCs.

  16. Basal cell carcinoma: CD56 and cytokeratin 5/6 staining patterns in the differential diagnosis with Merkel cell carcinoma.

    PubMed

    Panse, Gauri; McNiff, Jennifer M; Ko, Christine J

    2017-06-01

    Basal cell carcinoma (BCC) can resemble Merkel cell carcinoma (MCC) on histopathological examination and while CK20 is a useful marker in this differential, it is occasionally negative in MCC. CD56, a sensitive marker of neuroendocrine differentiation, is sometimes used to identify MCC, but has been reportedly variably positive in BCC as well. In contrast, CK5/6 consistently labels BCC but is not expressed in neuroendocrine tumors. We evaluated 20 cases of BCC for the pattern of CD56 and cytokeratin 5/6 (CK5/6) staining, hypothesizing that these 2 stains could differentiate BCC from MCC in difficult cases. Seventeen cases of MCC previously stained with CD56 were also examined. All BCCs showed patchy expression of CD56 except for 2 cases, which showed staining of greater than 70% of tumor. CK5/6 was diffusely positive in all cases of BCC. Fifteen of 17 MCCs were diffusely positive for CD56. The difference in the pattern of CD56 expression between MCC and BCC (diffuse vs patchy, respectively) was statistically significant (P < .05). BCC typically shows patchy CD56 expression and diffuse CK5/6 positivity. These 2 markers can be used to distinguish between BCC and MCC in challenging cases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Per a 10 protease activity modulates CD40 expression on dendritic cell surface by nuclear factor-kappaB pathway.

    PubMed

    Goel, C; Kalra, N; Dwarakanath, B S; Gaur, S N; Arora, N

    2015-05-01

    Serine protease activity of Per a 10 from Periplaneta americana modulates dendritic cell (DC) functions by a mechanism(s) that remains unclear. In the present study, Per a 10 protease activity on CD40 expression and downstream signalling was evaluated in DCs. Monocyte-derived DCs from cockroach-allergic patients were treated with proteolytically active/heat-inactivated Per a 10. Stimulation with active Per a 10 demonstrated low CD40 expression on DCs surface (P < 0·05), while enhanced soluble CD40 level in the culture supernatant (P < 0·05) compared to the heat-inactivated Per a 10, suggesting cleavage of CD40. Per a 10 activity reduced the interleukin (IL)-12 and interferon (IFN)-γ secretion by DCs (P < 0·05) compared to heat-inactivated Per a 10, indicating that low CD40 expression is associated with low levels of IL-12 secretion. Active Per a 10 stimulation caused low nuclear factor-kappa B (NF-κB) activation in DCs compared to heat-inactivated Per a 10. Inhibition of the NF-κB pathway suppressed the CD40 expression and IL-12 secretion by DCs, further indicating that NF-κB is required for CD40 up-regulation. CD40 expression activated the tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), thereby suggesting its involvement in NF-κB activation. Protease activity of Per a 10 induced p38 mitogen-activated protein kinase (MAPK) activation that showed no significant effect on CD40 expression by DCs. However, inhibiting p38 MAPK or NF-κB suppressed the secretion of IL-12, IFN-γ, IL-6 and TNF-α by DCs. Such DCs further reduced the secretion of IL-4, IL-6, IL-12 and TNF-α by CD4(+) T cells. In conclusion, protease activity of Per a 10 reduces CD40 expression on DCs. CD40 down-regulation leads to low NF-κB levels, thereby modulating DC-mediated immune responses. © 2014 British Society for Immunology.

  18. Per a 10 protease activity modulates CD40 expression on dendritic cell surface by nuclear factor-kappaB pathway

    PubMed Central

    Goel, C; Kalra, N; Dwarakanath, B S; Gaur, S N; Arora, N

    2015-01-01

    Serine protease activity of Per a 10 from Periplaneta americana modulates dendritic cell (DC) functions by a mechanism(s) that remains unclear. In the present study, Per a 10 protease activity on CD40 expression and downstream signalling was evaluated in DCs. Monocyte-derived DCs from cockroach-allergic patients were treated with proteolytically active/heat-inactivated Per a 10. Stimulation with active Per a 10 demonstrated low CD40 expression on DCs surface (P < 0·05), while enhanced soluble CD40 level in the culture supernatant (P < 0·05) compared to the heat-inactivated Per a 10, suggesting cleavage of CD40. Per a 10 activity reduced the interleukin (IL)-12 and interferon (IFN)-γ secretion by DCs (P < 0·05) compared to heat-inactivated Per a 10, indicating that low CD40 expression is associated with low levels of IL-12 secretion. Active Per a 10 stimulation caused low nuclear factor-kappa B (NF-κB) activation in DCs compared to heat-inactivated Per a 10. Inhibition of the NF-κB pathway suppressed the CD40 expression and IL-12 secretion by DCs, further indicating that NF-κB is required for CD40 up-regulation. CD40 expression activated the tumour necrosis factor (TNF) receptor-associated factor 6 (TRAF6), thereby suggesting its involvement in NF-κB activation. Protease activity of Per a 10 induced p38 mitogen-activated protein kinase (MAPK) activation that showed no significant effect on CD40 expression by DCs. However, inhibiting p38 MAPK or NF-κB suppressed the secretion of IL-12, IFN-γ, IL-6 and TNF-α by DCs. Such DCs further reduced the secretion of IL-4, IL-6, IL-12 and TNF-α by CD4+ T cells. In conclusion, protease activity of Per a 10 reduces CD40 expression on DCs. CD40 down-regulation leads to low NF-κB levels, thereby modulating DC-mediated immune responses. PMID:25492061

  19. A reevaluation of CD22 expression in human lung cancer.

    PubMed

    Pop, Laurentiu M; Barman, Stephen; Shao, Chunli; Poe, Jonathan C; Venturi, Guglielmo M; Shelton, John M; Pop, Iliodora V; Gerber, David E; Girard, Luc; Liu, Xiao-yun; Behrens, Carmen; Rodriguez-Canales, Jaime; Liu, Hui; Wistuba, Ignacio I; Richardson, James A; Minna, John D; Tedder, Thomas F; Vitetta, Ellen S

    2014-01-01

    CD22 is a transmembrane glycoprotein expressed by mature B cells. It inhibits signal transduction by the B-cell receptor and its coreceptor CD19. Recent reports indicate that most human lung cancer cells and cell lines express CD22, making it an important new therapeutic target for lung cancer. The objective of our studies was to independently validate these results with the goal of testing the efficacy of our CD22 immunotoxins on lung cancer cell lines. As determined by quantitative real-time PCR analysis, we found that levels of CD22 mRNA in a panel of human lung cancer cell lines were 200 to 60,000-fold lower than those observed in the human CD22(+) Burkitt lymphoma cells, Daudi. Using flow cytometry with a panel of CD22 monoclonal antibodies and Western blot analyses, we could not detect surface or intracellular expression of CD22 protein in a panel of lung cancer cell lines. In addition, the in vitro proliferation of the lung tumor cell lines was not affected by either CD22 antibodies or our highly potent anti-CD22 immunotoxin. In contrast, CD22(+) Daudi cells expressed high levels of CD22 mRNA and protein, and were sensitive to our CD22 immunotoxin. Importantly, primary non-small cell lung cancers from more than 250 patient specimens did not express detectable levels of CD22 protein as assessed by immunohistochemistry. We conclude that CD22 is not expressed at measurable levels on the surface of lung cancer cells, and that these cells cannot be killed by anti-CD22 immunotoxins.

  20. Increased expression of activation antigens on CD8+ T lymphocytes in Myalgic Encephalomyelitis/chronic fatigue syndrome: inverse associations with lowered CD19+ expression and CD4+/CD8+ ratio, but no associations with (auto)immune, leaky gut, oxidative and nitrosative stress biomarkers.

    PubMed

    Maes, Michael; Bosmans, Eugene; Kubera, Marta

    2015-01-01

    There is now evidence that specific subgroups of patients with Myalgic Encephalomyelitis / chronic fatigue syndrome (ME/CFS) suffer from a neuro-psychiatric-immune disorder. This study was carried out to delineate the expression of the activation markers CD38 and human leukocyte antigen (HLA) DR on CD4+ and CD8+ peripheral blood lymphocytes in ME/CFS. Proportions and absolute numbers of peripheral lymphocytes expressing CD3+, CD19+, CD4+, CD8+, CD38+ and HLA-DR+ were measured in ME/CFS (n=139), chronic fatigue (CF, n=65) and normal controls (n=40). The proportions of CD3+, CD8+, CD8+CD38+ and CD8+HLA-DR+ were significantly higher in ME/CFS patients than controls, while CD38+, CD8+CD38+, CD8+HLA-DR+ and CD38+HLA-DR+ were significantly higher in ME/CFS than CF. The percentage of CD19+ cells and the CD4+/CD8+ ratio were significantly lower in ME/CFS and CF than in controls. There were highly significant inverse correlations between the increased expression of CD38+, especially that of CD8+CD38+, and the lowered CD4+/CD8+ ratio and CD19+ expression. There were no significant associations between the flow cytometric results and severity or duration of illness and peripheral blood biomarkers of oxidative and nitrosative stress (O&NS, i.e. IgM responses to O&N modified epitopes), leaky gut (IgM or IgA responses to LPS of gut commensal bacteria), cytokines (interleukin-1, tumor necrosis factor-α), neopterin, lysozyme and autoimmune responses to serotonin. The results support that a) increased CD38 and HLA-DR expression on CD8+ T cells are biomarkers of ME/CFS; b) increased CD38 antigen expression may contribute to suppression of the CD4+/CD8+ ratio and CD19+ expression; c) there are different immune subgroups of ME/CFS patients, e.g. increased CD8+ activation marker expression versus inflammation or O&NS processes; and d) viral infections or reactivation may play a role in a some ME/CFS patients.

  1. Directional charge transfer mediated by mid-gap states: A transient absorption spectroscopy study of CdSe quantum dot/β-Pb 0.33V 2O 5 heterostructures

    DOE PAGES

    Milleville, Christopher C.; Pelcher, Kate E.; Sfeir, Matthew Y.; ...

    2016-02-15

    For solar energy conversion, not only must a semiconductor absorb incident solar radiation efficiently but also its photoexcited electron—hole pairs must further be separated and transported across interfaces. Charge transfer across interfaces requires consideration of both thermodynamic driving forces as well as the competing kinetics of multiple possible transfer, cooling, and recombination pathways. In this work, we demonstrate a novel strategy for extracting holes from photoexcited CdSe quantum dots (QDs) based on interfacing with β-Pb 0.33V 2O 5 nanowires that have strategically positioned midgap states derived from the intercalating Pb 2+ ions. Unlike midgap states derived from defects or dopants,more » the states utilized here are derived from the intrinsic crystal structure and are thus homogeneously distributed across the material. CdSe/β-Pb 0.33V 2O 5 heterostructures were assembled using two distinct methods: successive ionic layer adsorption and reaction (SILAR) and linker-assisted assembly (LAA). Transient absorption spectroscopy measurements indicate that, for both types of heterostructures, photoexcitation of CdSe QDs was followed by the transfer of electrons to the conduction band of β-Pb 0.33V 2O 5 nanowires and holes to the midgap states of β-Pb 0.33V 2O 5 nanowires. Holes were transferred on time scales less than 1 ps, whereas electrons were transferred more slowly on time scales of ~2 ps. In contrast, for analogous heterostructures consisting of CdSe QDs interfaced with V 2O 5 nanowires (wherein midgap states are absent), only electron transfer was observed. Interestingly, electron transfer was readily achieved for CdSe QDs interfaced with V 2O 5 nanowires by the SILAR method; however, for interfaces incorporating molecular linkers, electron transfer was observed only upon excitation at energies substantially greater than the bandgap absorption threshold of CdSe. Furthermore, transient absorbance decay traces reveal longer excited

  2. Structure and expression of the human thymocyte antigens CD1a, CD1b, and CD1c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, L.H.; Calabi, F.; Lefebvre, F.A.

    1987-12-01

    The CD1 human antigens are a family of at least three components, CD1a, CD1b, and CD1c, that are characteristic of the cortical stage of thymocyte maturation. CD1a was originally named HTA1 or T6 and thought to be the human equivalent of mouse Tla. The genes coding for all three have not been identified by transfection into mouse cells. The transfectants express the surface antigens that can then be recognized by the corresponding cluster of monoclonal antibodies used to define the three members of CD1. The full sequence of the genomic DNA is described for all three. The intron-exon structure ofmore » CD1a is deduced by comparison with a near-full-length cDNA clone. Similar structures are proposed for the other two, largely based on sequence homology. An unusually long 5'-untranslated exon (280 bases long) is highly conserved between the three genes, suggesting an important but unknown function. CD1c has a duplicated form of this exon that is thought to be spliced out. The major homology between the three antigens is in the ..beta../sub 2/-microglobulin-binding-domain. The general relatedness to major histocompatibility complex class I and class II molecules is significant but low, with no section of higher homology to mouse Tla.« less

  3. [Expression and clinical significance of CD147 in parathyroid carcinoma].

    PubMed

    Du, X M; Wang, L L; Chang, H; Meng, W; Zhang, J Y; Shen, B

    2016-06-08

    To study the expression and clinical significance of CD147 in the patients of parathyroid carcinoma. Fourteen cases of parathyroid carcinoma encountered during the period from 2012 to 2015 were enrolled. Thirty three cases of parathyroid adenoma encountered during the same period were enrolled. The expression of CD147 in parathyroid carcinoma and parathyroid adenoma was studied by means of immunohistochemistry (EnVision method). CD147 positive color was brown and yellow, and positive position was located mainly in the cytomembrane, and a small amount of cytoplasm was appeared. Among 14 cases of parathyroid carcinoma, 11 cases of CD147 positive score was 3+ , 3 cases of CD147 positive score was 2+ ; Among 33 cases of parathyroid adenoma , 8 cases of CD147 positive score was 2+ , 15 cases of it was 1+ , 10 cases of it was negative. CD147 was highly expressed in parathyroid carcinoma tissues, and the expression of CD147 was significantly different from the expression of parathyroid adenoma(P<0.05). CD147 immunohistochemical staining can help to diagnose parathyroid carcinoma.

  4. CD81 expression on CD19+ peripheral blood lymphocytes is associated with chronic HCV disease and increased risk for HCV infection: a putative role for inflammatory cytokines.

    PubMed

    D'Agosto, G; Trento, E; Nosotti, L; Bordignon, V; Battista, M; Prignano, G; Pimpinelli, F; Biolcati, G; Macrì, A; Palamara, G; Miglioresi, L; Morrone, A; Di Carlo, A; Cordiali-Fei, P; Ensoli, F

    2009-01-01

    The level of CD81 cell surface expression, a cellular co-receptor for hepatitis C virus (HCV), is critical for productive HCV infection of host cells. In addition, the cross-linking of HCV-E2 protein to CD81 can alter the function of T and B lymphocytes as well as that of NK cells by interfering with the activation signalling pathway. The down-regulation of CD81 expression on peripheral blood lymphocytes (PBL) has been associated to effective therapy of HCV infection. The aim of the present study is to quantitatively assess the levels of CD81 expression in PBL from HCV-infected patients compared to subjects at high risk for HCV infection such as HIV-infected individuals or patients with Porphyria Cutanea Tarda (PCT). The expression of CD81 was quantified by flow-cytometry using Phycoerythrin-labelled standard beads. Determination of CD81 was performed on CD3+ and CD19+ lymphocytes from 34 healthy controls, 51 patients with HCV infection and different clinical outcomes [these included HCV-RNA-negative subjects (8), patients with chronic active hepatitis (16), recipients of liver transplantation under immunosuppressive therapy (12), a subgroup with concomitant HIV infection (9) or concomitant PCT (6)]. In addition, 60 HIV-infected subjects and 4 patients with PCT were studied. The putative role of inflammatory cytokines in modulating CD81 was explored in vitro by assessing the effect of IL-6 or IFN-gamma on cultured human hepatocytes. A significant increase of the CD81 expression was found on CD19+ lymphocytes in association with either HIV or HCV infection, as compared to the control group. Immunosuppressive therapy with FK506, subsequent to liver transplantation, restored CD81 expression at normal levels. Data gathered in vitro using the WRL 68 hepatocytic cell line confirmed that inflammatory cytokines can up-regulate CD81 expression in liver cell inclusion. Our data suggest that CD81 up-regulation can increase the risk of HCV infection, particularly in HIV

  5. CD163-L1 is an endocytic macrophage protein strongly regulated by mediators in the inflammatory response.

    PubMed

    Moeller, Jesper B; Nielsen, Marianne J; Reichhardt, Martin P; Schlosser, Anders; Sorensen, Grith L; Nielsen, Ole; Tornøe, Ida; Grønlund, Jørn; Nielsen, Maria E; Jørgensen, Jan S; Jensen, Ole N; Mollenhauer, Jan; Moestrup, Søren K; Holmskov, Uffe

    2012-03-01

    CD163-L1 belongs to the group B scavenger receptor cysteine-rich family of proteins, where the CD163-L1 gene arose by duplication of the gene encoding the hemoglobin scavenger receptor CD163 in late evolution. The current data demonstrate that CD163-L1 is highly expressed and colocalizes with CD163 on large subsets of macrophages, but in contrast to CD163 the expression is low or absent in monocytes and in alveolar macrophages, glia, and Kupffer cells. The expression of CD163-L1 increases when cultured monocytes are M-CSF stimulated to macrophages, and the expression is further increased by the acute-phase mediator IL-6 and the anti-inflammatory mediator IL-10 but is suppressed by the proinflammatory mediators IL-4, IL-13, TNF-α, and LPS/IFN-γ. Furthermore, we show that CD163-L1 is an endocytic receptor, which internalizes independently of cross-linking through a clathrin-mediated pathway. Two cytoplasmic splice variants of CD163-L1 are differentially expressed and have different subcellular distribution patterns. Despite its many similarities to CD163, CD163-L1 does not possess measurable affinity for CD163 ligands such as the haptoglobin-hemoglobin complex or various bacteria. In conclusion, CD163-L1 exhibits similarity to CD163 in terms of structure and regulated expression in cultured monocytes but shows clear differences compared with the known CD163 ligand preferences and expression pattern in the pool of tissue macrophages. We postulate that CD163-L1 functions as a scavenger receptor for one or several ligands that might have a role in resolution of inflammation.

  6. Characterization of Diabetogenic CD8+ T Cells

    PubMed Central

    Garyu, Justin W.; Uduman, Mohamed; Stewart, Alex; Rui, Jinxiu; Deng, Songyan; Shenson, Jared; Staron, Matt M.; Kleinstein, Steven H.

    2016-01-01

    Type 1 diabetes mellitus is caused by the killing of insulin-producing β cells by CD8+T cells. The disease progression, which is chronic, does not follow a course like responses to conventional antigens such as viruses, but accelerates as glucose tolerance deteriorates. To identify the unique features of the autoimmune effectors that may explain this behavior, we analyzed diabetogenic CD8+ T cells that recognize a peptide from the diabetes antigen IGRP (NRP-V7-reactive) in prediabetic NOD mice and compared them to others that shared their phenotype (CD44+CD62LloPD-1+CXCR3+) but negative for diabetes antigen tetramers and to LCMV (lymphocytic choriomeningitis)-reactive CD8+ T cells. There was an increase in the frequency of the NRP-V7-reactive cells coinciding with the time of glucose intolerance. The T cells persisted in hyperglycemic NOD mice maintained with an insulin pellet despite destruction of β cells. We compared gene expression in the three groups of cells compared with the other two subsets of cells, and the NRP-V7-reactive cells exhibited gene expression of memory precursor effector cells. They had reduced cellular proliferation and were less dependent on oxidative phosphorylation. When prediabetic NOD mice were treated with 2-deoxyglucose to block aerobic glycolysis, there was a reduction in the diabetes antigen versus other cells of similar phenotype and loss of lymphoid cells infiltrating the islets. In addition, treatment of NOD mice with 2-deoxyglucose resulted in improved β cell granularity. These findings identify a link between metabolic disturbances and autoreactive T cells that promotes development of autoimmune diabetes. PMID:26994137

  7. Expression of beta-dystroglycan is reduced or absent in many human carcinomas.

    PubMed

    Cross, S S; Lippitt, J; Mitchell, A; Hollingsbury, F; Balasubramanian, S P; Reed, M W R; Eaton, C; Catto, J W; Hamdy, F; Winder, S J

    2008-11-01

    Dystroglycan is an important structural and signalling protein that is expressed in most human cells. alpha-Dystroglycan has been investigated and found to be reduced in human cancers, but there is only one published study on the expression of beta-dystroglycan in human cancer and that was only on small numbers of breast and prostatic cancers. The aim was to conduct a comprehensive immunohistochemical survey of the expression of beta-dystroglycan in normal human tissues and common cancers. Triplicate tissue microarrays of 681 samples of normal human tissues and common cancers were stained using an antibody directed against the cytoplasmic component of beta-dystroglycan. beta-Dystroglycan was strongly expressed at the intercellular junctions and basement membranes of all normal human epithelia. Expression of beta-dystroglycan was absent or markedly reduced in 100% of oesophageal adenocarcinomas, 97% of colonic cancers, 100% of transitional cell carcinomas of the urothelium and 94% of breast cancers. In the breast cancers, the only tumours that showed any retention of beta-dystroglycan expression were small low-grade oestrogen receptor-positive tumours. The only cancers that showed retention of beta-dystroglycan expression were cutaneous basal cell carcinomas. There is loss or marked reduction of beta-dystroglycan expression (by immunohistochemistry) in the vast majority of human cancers surveyed. Since beta-dystroglycan is postulated to have a tumour suppressor effect, this loss may have important functional significance.

  8. Expression of CD147 in advanced non-small cell lung cancer correlated with cisplatin-based chemotherapy resistance.

    PubMed

    Zeng, H Z; Qu, Y Q; Liang, A B; Deng, A M; Zhang, W J; Xiu, B; Wang, H; Wang, H

    2011-01-01

    CD147, a widely expressed cell surface glycoprotein in cancer, is associated with tumor invasiveness and chemotherapy resistance. Recently, CD147 is also regarded as a potential therapeutic target for cancer therapy. The aim of the study was to investigate CD147 expression in non-small cell lung cancer (NSCLC), and evaluate its correlation with cisplatin-based chemotherapy resistance. In this study, we examined immunohistochemically the expression of CD147 in 118 advanced NSCLC cases treated with cisplatin-based chemotherapy, and then the association of CD147 expression with clinicopathological characteristics was analyzed. Furthermore, RNA interference approach was used to silence CD147 expression in a cisplatin-resistant human lung cancer cell line A549/DDP, and the inhibition effect of cisplatin on tumor cells was assayed by MTT. In the overall series, positive CD147 expression was observed in 101/118 (85.6%) cases. A membranous CD147 pattern was identified in 76/101 (75.2%) of CD147 positive tumors. CD147 membranous expression,but not the overall CD147 expression, was associated with poor response to cisplatin-based chemotherapies and a poor prognosis in advanced NSCLC patients. In vitro results showed that silencing CD147 increased the proliferation inhibitory effect of cisplatin to A549/DDP cells. In conclusion, our study indicated that membranous CD147 expression is a predictive factor of the response to cisplatin-based chemotherapies, and the use of CD147-targeted therapeutic adjuvants might be considered in the treatment of advanced NSCLC patients.

  9. [The expression and significance of CD(276) and CD(133) in colorectal cancer and precancerous lesions].

    PubMed

    Lu, G F; Huang, L N; Ren, J L; Hu, G M; Zheng, Z H; Wu, J X; Zhu, Y P; Tang, F A

    2018-06-01

    In order to study the significance of CD(276) and CD(133) in the development and progression of colorectal cancer (CRC), the expression of CD(276) and CD(133) was detected by immunohistochemistry in CRC and precancerous lesions. The results showed that the intensity of CD(276) and CD(133) in CRC samples was higher than that in adenoma group and non-adenoma group. CD(276) and CD(133) single and double positive expression were significantly correlated with CRC lymph node metastasis, distant metastasis and survival. CD(276) and CD(133) are significantly correlated to the development and progression of CRC and associated with poor prognosis.

  10. CD3-T cell receptor modulation is selectively induced in CD8 but not CD4 lymphocytes cultured in agar.

    PubMed Central

    Oudrhiri, N; Farcet, J P; Gourdin, M F; M'Bemba, E; Gaulard, P; Katz, A; Divine, M; Galazka, A; Reyes, F

    1990-01-01

    The CD3-T cell receptor (TcR) complex is central to the immune response. Upon binding by specific ligands, internalized CD3-TcR molecules increase, and either T cell response or unresponsiveness may ensue depending on the triggering conditions. Using semi-solid agar culture, we have shown previously that quiescent CD4 but not CD8 lymphocytes generate clonal colonies under phytohaemagglutinin stimulation. Here we have demonstrated that the agar induces selective CD3-TcR modulation in the CD8 and not in the CD4 subset. CD8 lymphocytes preactivated in liquid culture and recultured in agar with exogenous recombinant interleukin-2 generate colonies with a modulated CD3-TcR surface expression. The peptides composing the CD3-TcR complex are synthesized in CD8 colonies as well as in CD4; however, the CD3 gamma chain is phosphorylated at a higher level in CD8 colonies. A component of the agar polymer, absent in agarose, appears to be the ligand that induces differential CD3-TcR modulation in the CD8 subset. In contrast to agar culture, CD8 colonies can be derived from quiescent CD8 lymphocytes in agarose. These CD8 colonies express unmodulated CD-TcR. CD3-TcR modulation with anti-CD3 monoclonal antibody prior to culturing in agarose inhibits the colony formation. We conclude that given triggering conditions can result in both CD3-TcR modulation and inhibition of the proliferative response selectively in the CD8 lymphocyte subset and not in the CD4. Images Fig. 3 Fig. 4 Fig. 5 PMID:2146997

  11. CD44 Gene Polymorphisms in Breast Cancer Risk and Prognosis: A Study in North Indian Population

    PubMed Central

    Tulsyan, Sonam; Agarwal, Gaurav; Lal, Punita; Agrawal, Sushma; Mittal, Rama Devi; Mittal, Balraj

    2013-01-01

    Background Cell surface biomarker CD44 plays an important role in breast cancer cell growth, differentiation, invasion, angiogenesis and tumour metastasis. Therefore, we aimed to investigate the role of CD44 gene polymorphisms in breast cancer risk and prognosis in North Indian population. Materials & Methods A total of 258 breast cancer patients and 241 healthy controls were included in the case-control study for risk prediction. According to RECIST, 114 patients who received neo-adjuvant chemotherapy were recruited for the evaluation of breast cancer prognosis. We examined the association of tagging SNP (rs353639) of Hapmap Gujrati Indians in Houston (GIH population) in CD44 gene along with a significant reported SNP (rs13347) in Chinese population by genotyping using Taqman allelic discrimination assays. Statistical analysis was done using SPSS software, version 17. In-silico analysis for prediction of functional effects was done using F-SNP and FAST-SNP. Results No significant association of both the genetic variants of the CD44 gene polymorphisms was found with breast cancer risk. On performing univariate analysis with clinicopathological characteristics and treatment response, we found significant association of genotype (CT+TT) of rs13347 polymorphism with earlier age of onset (P = 0.029, OR = 0.037). However, significance was lost in multivariate analysis. For rs353639 polymorphism, significant association was seen with clinical tumour size, both at the genotypic (AC+CC) (P = 0.039, OR = 3.02) as well as the allelic (C) (P = 0.042, OR = 2.87) levels. On performing multivariate analysis, increased significance of variant genotype (P = 0.017, OR = 4.29) and allele (P = 0.025, OR = 3.34) of rs353639 was found with clinical tumour size. In-silico analysis using F-SNP, showed altered transcriptional regulation for rs353639 polymorphism. Conclusions These findings suggest that CD44 rs353639 genetic variants may have

  12. CD56 Expression in Odontogenic Cysts and Tumors.

    PubMed

    Jaafari-Ashkavandi, Zohreh; Dehghani-Nazhvani, Ali; Razmjouyi, Faranak

    2014-01-01

    Background and aims. Odontogenic cysts and tumors have a wide spectrum of clinical characteristics that lead to the different management strategies. Since definite diagnosis is difficult in some cases, it has been suggested that CD56 may be a candidate marker for definitive diagnosis of some odontogenic tumors. The present study was designed to examine CD56 expression in lesions with histopathological similarities. Materials and methods. In this cross-sectional, analytical study the subjects were 22 ameloblastomas, 13 dentigerous cysts, 10 keratocystic odontogenic tumors (KCOT), 4 adenomatoid odontogenic tumors (AOT), 3 orthokeratinized odonto-genic cysts, 3 calcifying odontogenic cysts (COC) and one glandular odontogenic cyst (GOC). All the samples were examined for CD56 immunoreactivity. Data were analyzed using chi-square test. Results. Twenty cases (91%) of ameloblastomas, 3 (75%) AOT, 4 (40%) KCOT and one case of GOC were positive for CD56. None of the dentigerous cysts, COC and orthokeratinized odontogenic cysts was CD56-positive. There was a significant difference in the CD56 expression between ameloblastoma and dentigerous cyst, as well as COC. Also, KCOT showed significantly higher expression than orthokeratinized odontogenic cyst. Conclusion. In this study CD56 expression was limited to the odontogenic tumors and more aggressive cystic lesions. This marker can be a useful aid for distinguishing cysts and tumors from similar lesions.

  13. A functional glycoproteomics approach identifies CD13 as a novel E-selectin ligand in breast cancer.

    PubMed

    Carrascal, M A; Silva, M; Ferreira, J A; Azevedo, R; Ferreira, D; Silva, A M N; Ligeiro, D; Santos, L L; Sackstein, R; Videira, P A

    2018-05-17

    The glycan moieties sialyl-Lewis-X and/or -A (sLe X/A ) are the primary ligands for E-selectin, regulating subsequent tumor cell extravasation into distant organs. However, the nature of the glycoprotein scaffolds displaying these glycans in breast cancer remains unclear and constitutes the focus of the present investigation. We isolated glycoproteins that bind E-selectin from the CF1_T breast cancer cell line, derived from a patient with ductal carcinoma. Proteins were identified using bottom-up proteomics approach by nanoLC-orbitrap LTQ-MS/MS. Data were curated using bioinformatics tools to highlight clinically relevant glycoproteins, which were validated by flow cytometry, Western blot, immunohistochemistry and in-situ proximity ligation assays in clinical samples. We observed that the CF1_T cell line expressed sLe X , but not sLe A and the E-selectin reactivity was mainly on N-glycans. MS and bioinformatics analysis of the targeted glycoproteins, when narrowed down to the most clinically relevant species in breast cancer, identified CD44 glycoprotein (HCELL) and CD13 as key E-selectin ligands. Additionally, the co-expression of sLe X -CD44 and sLe X -CD13 was confirmed in clinical breast cancer tissue samples. Both CD44 and CD13 glycoforms display sLe X in breast cancer and bind E-selectin, suggesting a key role in metastasis development. Such observations provide a novel molecular rationale for developing targeted therapeutics. While HCELL expression in breast cancer has been previously reported, this is the first study indicating that CD13 functions as an E-selectin ligand in breast cancer. This observation supports previous associations of CD13 with metastasis and draws attention to this glycoprotein as an anti-cancer target. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Task-shifting of CD4 T cell count monitoring by the touchscreen-based Muse™ Auto CD4/CD4% single-platform system for CD4 T cell numeration: Implication for decentralization in resource-constrained settings.

    PubMed

    Kouabosso, André; Mossoro-Kpinde, Christian Diamant; Bouassa, Ralph-Sydney Mboumba; Longo, Jean De Dieu; Mbeko Simaleko, Marcel; Grésenguet, Gérard; Bélec, Laurent

    2018-04-01

    The accuracy of CD4 T cell monitoring by the recently developed flow cytometry-based CD4 T cell counting Muse™ Auto CD4/CD4% Assay analyzer (EMD Millipore Corporation, Merck Life Sciences, KGaA, Darmstadt, Germany) was evaluated in trained lay providers against laboratory technicians. After 2 days of training on the Muse™ Auto CD4/CD4% analyzer, EDTA-blood samples from 6 HIV-positive and 4 HIV-negative individuals were used for CD4 T cell counting in triplicate in parallel by 12 trained lay providers as compared to 10 lab technicians. Mean number of CD4 T cells in absolute number was 829 ± 380 cells/μl by lay providers and 794 ± 409 cells/μl by technicians (P > 0.05); and in percentage 36.2 ± 14.8%CD4 by lay providers and 36.1 ± 15.0%CD4 by laboratory technician (P > 0.05). The unweighted linear regression and Passing-Bablok regression analyses on CD4 T cell results expressed in absolute count revealed moderate correlation between CD4 T cell counts obtained by lay providers and lab technicians. The mean absolute bias measured by Bland-Altman analysis between CD4 T cell/μl obtained by lay providers and lab technicians was -3.41 cells/μl. Intra-assay coefficient of variance (CV) of Muse™ Auto CD4/CD4% in absolute number was 10.1% by lay providers and 8.5% by lab technicians (P > 0.05), and in percentage 5.5% by lay providers and 4.4% by lab technicians (P > 0.05). The inter-assay CV of Muse™ Auto CD4/CD4% in absolute number was 13.4% by lay providers and 10.3% by lab technicians (P > 0.05), and in percentage 7.8% by lay providers and 6.9% by lab technicians (P > 0.05). The study demonstrates the feasibility of CD4 T cell counting using the alternative flow cytometer Muse™ Auto CD4/CD4% analyzer by trained lay providers and therefore the practical possibility of decentralization CD4 T cell counting to health community centers. Copyright © 2018. Published by Elsevier B.V.

  15. Expression and prognostic value of soluble CD97 and its ligand CD55 in intrahepatic cholangiocarcinoma.

    PubMed

    Meng, Ze-Wu; Liu, Min-Chao; Hong, Hai-Jie; Du, Qiang; Chen, Yan-Ling

    2017-03-01

    The incidence rate of intrahepatic cholangiocarcinoma is rising, and treatment options are limited. Therefore, new biological markers of intrahepatic cholangiocarcinoma are needed. Immunohistochemistry and enzyme-linked immunosorbent assay were applied to analyze the expressions of CD97, CD55, and soluble CD97 in 71 patients with intrahepatic cholangiocarcinoma and 10 patients with hepatolithiasis. CD97 and CD55 were not expressed in hepatolithiatic tissues, but positive expression was observed in 76.1% (54/71) and 70.4% (50/71) of intrahepatic cholangiocarcinoma patients. The univariate analyses indicated that the positive expressions of CD97 and CD55 were related to short intrahepatic cholangiocarcinoma survival of patients (both p = 0.001). Furthermore, CD97 and CD55 expressions and biliary soluble CD97 levels were significantly associated with histological grade (p = 0.004, 0.002, and 0.012, respectively), lymph node metastases (p = 0.020, 0.038, and 0.001, respectively), and venous invasion (p = 0.003, 0.002, and 0.001, respectively). The multivariate analyses indicated that lymph node metastases (hazard ratio: 2.407, p = 0.003), positive CD55 expression (hazard ratio: 4.096, p = 0.003), and biliary soluble CD97 levels (hazard ratio: 2.434, p = 0.002) were independent risk factors for the intrahepatic cholangiocarcinoma survival. The receiver operating characteristic (ROC) curve analysis indicated that when the cutoff values of biliary soluble CD97 were 1.15 U/mL, the diagnostic value for predicting lymph node metastasis had a sensitivity of 87.5% and a specificity of 51.3%. For intrahepatic cholangiocarcinoma patient death within 60 months at a cutoff value of 0.940 U/mL, the diagnostic value sensitivity was 89.3% and the specificity was 93.3%. Biliary soluble CD97 may be a new biological marker for early diagnosis, prediction of lymph node metastasis and poor prognosis, and discovery of a therapeutic target.

  16. Prognostic role of CD133 expression in colorectal cancer: a meta-analysis.

    PubMed

    Wang, Ke; Xu, Jianjun; Zhang, Junshu; Huang, Jian

    2012-12-05

    CD133 has been identified as a putative cancer stem cell marker in colorectal cancer (CRC). However, the clinical and prognostic significance of CD133 in CRC remains controversial. Publications were identified which assessed the clinical or prognostic significance of CD133 in CRC up to October 2012. A meta-analysis was performed to clarify the association between CD133 expression and clinical outcomes. A total of 12 studies met the inclusion criteria, and comprised 3652 cases. Analysis of these data showed that CD133 was not significantly associated with the depth of CRC invasion (odds ratio [OR] = 1.44, 95% confidence interval [CI]: 0.77-2.68, Z = 1.15, P = 0.252) or tumor differentiation (OR = 0.63, 95% CI: 0.28-1.46, Z = -1.06, P = 0.286). Also, there was no statistically significant association of CD133 with lymph node metastasis (OR = 1.16, 95% CI: 0.87-1.54, Z = 1.05, P = 0.315) or lymphatic invasion (OR = 1.08, 95% CI: 0.81-1.43, Z = 0.53, P = 0.594). However, in identified studies, overexpression of CD133 was highly correlated with reduced overall survival (relative risk [RR] = 2.14, 95% CI: 1.45-3.17, Z = 3.81, P = 0.0001). CD133 may play an important role in the progression of CRC, and overexpression of CD133 is closely related with poorer patient survival. If these findings are confirmed by well-designed prospective studies, CD133 may be a useful maker for clinical applications.

  17. CD40L Expression Allows CD8+ T Cells to Promote Their Own Expansion and Differentiation through Dendritic Cells

    PubMed Central

    Tay, Neil Q.; Lee, Debbie C. P.; Chua, Yen Leong; Prabhu, Nayana; Gascoigne, Nicholas R. J.; Kemeny, David M.

    2017-01-01

    CD8+ T cells play an important role in providing protective immunity against a wide range of pathogens, and a number of different factors control their activation. Although CD40L-mediated CD40 licensing of dendritic cells (DCs) by CD4+ T cells is known to be necessary for the generation of a robust CD8+ T cell response, the contribution of CD8+ T cell-expressed CD40L on DC licensing is less clear. We have previously shown that CD8+ T cells are able to induce the production of IL-12 p70 by DCs in a CD40L-dependent manner, providing some evidence that CD8+ T cell-mediated activation of DCs is possible. To better understand the role of CD40L on CD8+ T cell responses, we generated and characterized CD40L-expressing CD8+ T cells both in vitro and in vivo. We found that CD40L was expressed on 30–50% of effector CD8+ T cells when stimulated and that this expression was transient. The expression of CD40L on CD8+ T cells promoted the proliferation and differentiation of both the CD40L-expressing CD8+ T cells and the bystander effector CD8+ T cells. This process occurred via a cell-extrinsic manner and was mediated by DCs. These data demonstrate the existence of a mechanism where CD8+ T cells and DCs cooperate to maximize CD8+ T cell responses. PMID:29163545

  18. Hyaluronan, CD44, and Emmprin Regulate Lactate Efflux and Membrane Localization of Monocarboxylate Transporters in Human Breast Carcinoma Cells

    PubMed Central

    Slomiany, Mark G.; Grass, G. Daniel; Robertson, Angela D.; Yang, Xiao Y.; Maria, Bernard L.; Beeson, Craig; Toole, Bryan P.

    2013-01-01

    Interactions of hyaluronan with CD44 in tumor cells play important cooperative roles in various aspects of malignancy and drug resistance. Emmprin (CD147; basigin)is a cell surface glycoprotein of the immunoglobulin superfamily that is highly up-regulated in malignant cancer cells and stimulates hyaluronan production, as well as several downstream signaling pathways. Emmprin also interacts with various monocarboxylate transporters (MCT). Malignant cancer cells use the glycolytic pathway and require MCTs to efflux lactate that results from glycolysis. Glycolysis and lactate secretion contribute to malignant cell behaviors and drug resistance in tumor cells. In the present study, we find that perturbation of endogenous hyaluronan, using small hyaluronan oligosaccharides, rapidly inhibits lactate efflux from breast carcinoma cells; down-regulation of emmprin, using emmprin small interfering RNA, also results in decreased efflux. In addition, we find that CD44 coimmunoprecipitates with MCT1, MCT4, and emmprin and colocalizes with these proteins at the plasma membrane. Moreover, after treatment of the cells with hyaluronan oligosaccharides, CD44, MCT1, and MCT4 become localized intracellularly whereas emmprin remains at the cell membrane. Together, these data indicate that constitutive interactions among hyaluronan, CD44, and emmprin contribute to regulation of MCT localization and function in the plasma membrane of breast carcinoma cells. PMID:19176383

  19. B cell receptor accessory molecule CD79α: Characterisation and expression analysis in a cartilaginous fish, the spiny dogfish (Squalus acanthias)

    PubMed Central

    Li, Ronggai; Wang, Tiehui; Bird, Steve; Zou, Jun; Dooley, Helen; Secombes, Christopher J.

    2013-01-01

    CD79α (also known as Igα) is a component of the B cell antigen receptor complex and plays an important role in B cell signalling. The CD79α protein is present on the surface of B cells throughout their life cycle, and is absent on all other healthy cells, making it a highly reliable marker for B cells in mammals. In this study the spiny dogfish (Squalus acanthias) CD79α (SaCD79α) is described and its expression studied under constitutive and stimulated conditions. The spiny dogfish CD79α cDNA contains an open reading frame of 618 bp, encoding a protein of 205 amino acids. Comparison of the SaCD79α gene with that of other species shows that the gross structure (number of exons, exon/intron boundaries, etc.) is highly conserved across phylogeny. Additionally, analysis of the 5′ flanking region shows SaCD79α lacks a TATA box and possesses binding sites for multiple transcription factors implicated in its B cell-specific gene transcription in other species. Spiny dogfish CD79α is most highly expressed in immune tissues, such as spleen, epigonal and Leydig organ, and its transcript level significantly correlates with those of spiny dogfish immunoglobulin heavy chains. Additionally, CD79α transcription is up-regulated, to a small but significant degree, in peripheral blood cells following stimulation with pokeweed mitogen. These results strongly indicate that, as in mammals, spiny dogfish CD79α is expressed by shark B cells where it associates with surface-bound immunoglobulin to form a fully functional BCR, and thus may serve as a pan-B cell marker in future shark immunological studies. PMID:23454429

  20. B cell receptor accessory molecule CD79α: characterisation and expression analysis in a cartilaginous fish, the spiny dogfish (Squalus acanthias).

    PubMed

    Li, Ronggai; Wang, Tiehui; Bird, Steve; Zou, Jun; Dooley, Helen; Secombes, Christopher J

    2013-06-01

    CD79α (also known as Igα) is a component of the B cell antigen receptor complex and plays an important role in B cell signalling. The CD79α protein is present on the surface of B cells throughout their life cycle, and is absent on all other healthy cells, making it a highly reliable marker for B cells in mammals. In this study the spiny dogfish (Squalus acanthias) CD79α (SaCD79α) is described and its expression studied under constitutive and stimulated conditions. The spiny dogfish CD79α cDNA contains an open reading frame of 618 bp, encoding a protein of 205 amino acids. Comparison of the SaCD79α gene with that of other species shows that the gross structure (number of exons, exon/intron boundaries, etc.) is highly conserved across phylogeny. Additionally, analysis of the 5' flanking region shows SaCD79α lacks a TATA box and possesses binding sites for multiple transcription factors implicated in its B cell-specific gene transcription in other species. Spiny dogfish CD79α is most highly expressed in immune tissues, such as spleen, epigonal and Leydig organ, and its transcript level significantly correlates with those of spiny dogfish immunoglobulin heavy chains. Additionally, CD79α transcription is up-regulated, to a small but significant degree, in peripheral blood cells following stimulation with pokeweed mitogen. These results strongly indicate that, as in mammals, spiny dogfish CD79α is expressed by shark B cells where it associates with surface-bound immunoglobulin to form a fully functional BCR, and thus may serve as a pan-B cell marker in future shark immunological studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The Gene Expression Profile of CD11c+CD8α− Dendritic Cells in the Pre-Diabetic Pancreas of the NOD Mouse

    PubMed Central

    Beumer, Wouter; Welzen-Coppens, Jojanneke M. C.; van Helden-Meeuwsen, Cornelia G.; Gibney, Sinead M.; Drexhage, Hemmo A.; Versnel, Marjan A.

    2014-01-01

    Two major dendritic cell (DC) subsets have been described in the pancreas of mice: The CD11c+CD8α− DCs (strong CD4+ T cell proliferation inducers) and the CD8α+CD103+ DCs (T cell apoptosis inducers). Here we analyzed the larger subset of CD11c+CD8α− DCs isolated from the pancreas of pre-diabetic NOD mice for genome-wide gene expression (validated by Q-PCR) to elucidate abnormalities in underlying gene expression networks. CD11c+CD8α− DCs were isolated from 5 week old NOD and control C57BL/6 pancreas. The steady state pancreatic NOD CD11c+CD8α− DCs showed a reduced expression of several gene networks important for the prime functions of these cells, i.e. for cell renewal, immune tolerance induction, migration and for the provision of growth factors including those for beta cell regeneration. A functional in vivo BrdU incorporation test showed the reduced proliferation of steady state pancreatic DC. The reduced expression of tolerance induction genes (CD200R, CCR5 and CD24) was supported on the protein level by flow cytometry. Also previously published functional tests on maturation, immune stimulation and migration confirm the molecular deficits of NOD steady state DC. Despite these deficiencies NOD pancreas CD11c+CD8α− DCs showed a hyperreactivity to LPS, which resulted in an enhanced pro-inflammatory state characterized by a gene profile of an enhanced expression of a number of classical inflammatory cytokines. The enhanced up-regulation of inflammatory genes was supported by the in vitro cytokine production profile of the DCs. In conclusion, our data show that NOD pancreatic CD11c+CD8α− DCs show various deficiencies in steady state, while hyperreactive when encountering a danger signal such as LPS. PMID:25166904

  2. Bromelain treatment reduces CD25 expression on activated CD4+ T cells in vitro✩

    PubMed Central

    Secor, Eric R.; Singh, Anurag; Guernsey, Linda A.; McNamara, Jeff T.; Zhan, Lijun; Maulik, Nilanjana; Thrall, Roger S.

    2009-01-01

    Bromelain (Br), an extract from pineapple stem with cysteine protease activity, exerts anti-inflammatory effects in a number of inflammatory models. We have previously shown that Br treatment decreased activated CD4+ T cells and has a therapeutic role in an ovalbumin-induced murine model of allergic airway disease. The current study was designed to determine the effect of Br on CD4+ T cell activation, specifically the expression of CD25 in vitro. CD25 is up regulated upon T cell activation, found as a soluble fraction (sCD25) and is a therapeutic target in inflammation, autoimmunity and allergy. Br treatment of anti-CD3 stimulated CD4+ T cells reduced CD25 expression in a dose and time dependent manner. This reduction of CD25 was dependent on the proteolytic action of Br as the addition of E64 (a cysteine protease inhibitor) abrogated this response. The concentration of sCD25 was increased in supernatants of Br treated activated CD4+ T cells as compared to control cells, suggesting that Br proteolytically cleaved cell-surface CD25. This novel mechanism of action identifies how Br may exert its therapeutic benefits in inflammatory conditions. PMID:19162239

  3. CD32-Expressing CD4 T Cells Are Phenotypically Diverse and Can Contain Proviral HIV DNA.

    PubMed

    Martin, Genevieve E; Pace, Matthew; Thornhill, John P; Phetsouphanh, Chansavath; Meyerowitz, Jodi; Gossez, Morgane; Brown, Helen; Olejniczak, Natalia; Lwanga, Julianne; Ramjee, Gita; Kaleebu, Pontiano; Porter, Kholoud; Willberg, Christian B; Klenerman, Paul; Nwokolo, Nneka; Fox, Julie; Fidler, Sarah; Frater, John

    2018-01-01

    Efforts to both characterize and eradicate the HIV reservoir have been limited by the rarity of latently infected cells and the absence of a specific denoting biomarker. CD32a (FcγRIIa) has been proposed to be a marker for an enriched CD4 T cell HIV reservoir, but this finding remains controversial. Here, we explore the expression of CD32 on CD3 + CD4 + cells in participants from two primary HIV infection studies and identify at least three distinct phenotypes (CD32 low , CD32 + CD14 + , and CD32 high ). Of note, CD4 negative enrichment kits remove the majority of CD4 + CD32 + T cells, potentially skewing subsequent analyses if used. CD32 high CD4 T cells had higher levels of HLA-DR and HIV co-receptor expression than other subsets, compatible with their being more susceptible to infection. Surprisingly, they also expressed high levels of CD20, TCRαβ, IgD, and IgM (but not IgG), markers for both T cells and naïve B cells. Compared with other populations, CD32 low cells had a more differentiated memory phenotype and high levels of immune checkpoint receptors, programmed death receptor-1 (PD-1), Tim-3, and TIGIT. Within all three CD3 + CD4 + CD32 + phenotypes, cells could be identified in infected participants, which contained HIV DNA. CD32 expression on CD4 T cells did not correlate with HIV DNA or cell-associated HIV RNA (both surrogate measures of overall reservoir size) or predict time to rebound viremia following treatment interruption, suggesting that it is not a dominant biomarker for HIV persistence. Our data suggest that while CD32 + T cells can be infected with HIV, CD32 is not a specific marker of the reservoir although it might identify a population of HIV enriched cells in certain situations.

  4. The role of CD147 expression in prostate cancer: a systematic review and meta-analysis.

    PubMed

    Ye, Yun; Li, Su-Liang; Wang, Yao; Yao, Yang; Wang, Juan; Ma, Yue-Yun; Hao, Xiao-Ke

    2016-01-01

    There are a number of studies which show that expression of CD147 is increased significantly in prostate cancer (PCa). However, conflicting conclusions have also been reported by other researchers lately. In order to arrive at a clear conclusion, a meta-analysis of eligible studies was conducted. We searched PubMed, MEDLINE, Cochrane Library, and the China National Knowledge Infrastructure databases to identify all the published case-control studies on the relationship between the expression of CD147 and PCa until February 2016. In the end, a total of 930 patients in eight studies were included in the meta-analysis. CD147 expression in the PCa patients increased significantly (odds ratio [OR], 4.65; 95% confidence interval [CI], 3.52-6.14; Z=10.79; P<0.05), but there was obvious heterogeneity between studies (I (2)=92.9%, P<0.05). Subgroup analysis showed that positive expression of CD147 was associated with PCa among the Asian population (OR, 21.01; 95% CI, 12.88-34.28; Z=12.19; P<0.05). Furthermore, it was significantly related to TNM stage (OR, 0.24; 95% CI, 0.17-0.35; Z=7.74; P<0.05), Gleason score (OR, 0.41; 95% CI, 0.31-0.56; Z=5.62; P<0.05), differentiation grade (OR, 0.27; 95% CI, 0.13-0.56; Z=3.47; P<0.05), and pretreatment serum prostate-specific antigen level (OR, 0.07; 95% CI, 0.03-0.16; Z=6.47; P<0.05). Positive expression of CD147 was related to PCa, significant heterogeneity was not found between Asian studies, and the result became more significant. The positive expression of CD147 was significantly related to the clinicopathological characteristics of PCa. This suggests that CD147 plays an essential role in poor prognosis and recurrence prediction.

  5. CD10 and osteopontin expression in dentigerous cyst and ameloblastoma.

    PubMed

    Masloub, Shaimaa M; Abdel-Azim, Adel M; Elhamid, Ehab S Abd

    2011-05-24

    To investigate the expression of CD10 and osteopontin in dentigerous cyst and ameloblastoma and to correlate their expression with neoplastic potentiality of dentigerous cyst and local invasion and risk of local recurrence in ameloblastoma. CD10 and osteopontin expression was studied by means of immunohistochemistry in 9 cases of dentigerous cysts (DC) and 17 cases of ameloblastoma. There were 7 unicystic ameloblastoma (UCA) and 10 multicystic ameloblastoma (MCA). Positive cases were included in the statistical analysis, carried on the tabulated data using the Open Office Spreadsheet 3.2.1 under Linux operating system. Analysis of variance and correlation studies were performed using "R" under Linux operating system (R Development Core Team (2010). Tukey post-hoc test was also performed as a pair-wise test. The significant level was set at 0.05. High CD10 and osteopontin expression was observed in UCA and MCA, and low CD10 and osteopontin expression was observed in DC. Significant correlation was seen between CD10 and osteopontin expression and neoplastic potentiality of DC and local invasion and risk of recurrences in ameloblastoma. In DC, high CD10 and osteopontin expression may indicate the neoplastic potentiality of certain areas. In UCA & MCA, high CD10 and osteopontin expression may identify areas with locally invasive behavior and high risk of recurrence.

  6. Sequence variations and two levels of MCT1 and CD147 expression in red blood cells and gluteus muscle of horses.

    PubMed

    Koho, N M; Mykkänen, A K; Reeben, M; Raekallio, M R; Ilves, M; Pösö, A R

    2012-01-01

    MCT1-CD147 complex is the prime lactate transporter in mammalian plasma membranes. In equine red blood cells (RBCs), activity of the complex and expression of MCT1 and CD147 is bimodal; high in 70% and low in 30%. We studied whether sequence variations contribute to the bimodal expression of MCT1 and CD147. Samples of blood and cremaster muscle were collected in connection of castration from 24 horses. Additional gluteus muscle samples were collected from 15 Standardbreds of which seven were known to express low amounts of CD147 in RBCs. The cDNA of MCT1 and CD147 together with a promoter region of CD147 was sequenced. The amounts of MCT1 and CD147 expressed in RBC and muscle membranes were measured by Western blot and mRNA levels in muscles by qPCR. MCT1 and CD147 were expressed in 20 castrates, and in four only were traces found. Sequence variations found in MCT1 were not linked to MCT1 expression. In CD147 linked heterozygous single nucleotide polymorphisms (SNPs) 389A>G (Met(125)Val) and 990C>T (3'-UTR) were associated to low expression of CD147. Also a mutation 168A>G (Ile(51)Val) in CD147 was associated to low MCT1 and CD147 expression. Low MCT1 and CD147 mRNA levels in gluteus were found in Standardbreds with low CD147 expression in RBCs. The results suggest that sequence variations affect the expression level of CD147, but do not explain its bimodality. The levels of MCT1 and CD147 mRNA correlated with the expression of CD147 and suggest that bimodality of their expression is regulated at transcriptional level. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. 1α,25-dihydroxyvitamin D3 acts via transforming growth factor-β to up-regulate expression of immunosuppressive CD73 on human CD4+ Foxp3- T cells.

    PubMed

    Mann, Elizabeth H; Chambers, Emma S; Chen, Yin-Huai; Richards, David F; Hawrylowicz, Catherine M

    2015-11-01

    Vitamin D deficiency is associated with increased incidence and severity of various immune-mediated diseases. Active vitamin D (1α,25-dihydroxyvitamin D3; 1,25(OH)2 D3) up-regulates CD4(+) T-cell expression of the purine ectonucleotidase CD39, a molecule that is associated with the generation of anti-inflammatory adenosine. Here we aimed to investigate the direct impact of 1,25(OH)2 D3 on expression of the downstream ecto-5'-nucleotidase CD73 by human CD4 T cells, and components of the transforming growth factor-β (TGF-β) pathway, which have been implicated in the modulation of CD73 by murine T cells. At 10(-8) to 10(-7) m, 1,25(OH)2 D3 significantly increased expression of CD73 on peripheral human CD4(+) T cells. Although 1,25(OH)2 D3 did not affect the mRNA expression of latent TGF-β1 , 1,25(OH)2 D3 did up-regulate expression of TGF-β-associated molecules [latency-associated peptide (LAP), glycophorin A repetitions predominant (GARP), GP96, neuropilin-1, thrombospondin-1 and αv integrin] which is likely to have contributed to the observed enhancement in TGF-β bioactivity. CD73 was highly co-expressed with LAP and GARP following 1,25(OH)2 D3 treatment, but unexpectedly, each of these cell surface molecules was expressed primarily on CD4(+) Foxp3(-) T cells, rather than CD4(+) Foxp3(+) T cells. Notably, neutralization of TGF-β significantly impaired 1,25(OH)2 D3-mediated induction of CD73. Collectively, we show that 1,25(OH)2 D3 enhances expression of CD73 on CD4(+) Foxp3(-) T cells in a process that is at least partially TGF-β-dependent. These data reveal an additional contributing mechanism by which vitamin D may be protective in immune-mediated disease. © 2015 John Wiley & Sons Ltd.

  8. 44 CFR 6.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Definitions. 6.2 Section 6.2 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY... those concerning education, financial transactions, medical history, and criminal or employment history...

  9. Expression of CD73 slows down migration of skin dendritic cells, affecting the sensitization phase of contact hypersensitivity reactions in mice.

    PubMed

    Neuberger, A; Ring, S; Silva-Vilches, C; Schrader, J; Enk, A; Mahnke, K

    2017-09-01

    Application of haptens to the skin induces release of immune stimulatory ATP into the extracellular space. This "danger" signal can be converted to immunosuppressive adenosine (ADO) by the action of the ectonucleotidases CD39 and CD73, expressed by skin and immune cells. Thus, the expression and regulation of CD73 by skin derived cells may have crucial influence on the outcome of contact hypersensitivity (CHS) reactions. To investigate the role of CD73 expression during 2,4,6-trinitrochlorobenzene (TNCB) induced CHS reactions. Wild type (wt) and CD73 deficient mice were subjected to TNCB induced CHS. In the different mouse strains the resulting ear swelling reaction was recorded along with a detailed phenotypic analysis of the skin migrating subsets of dendritic cells (DC). In CD73 deficient animals the motility of DC was higher as compared to wt animals and in particular after sensitization we found increased migration of Langerin + DC from skin to draining lymph nodes (LN). In the TNCB model this led to a stronger sensitization as indicated by increased frequency of interferon-γ producing T cells in the LN and an increased ear thickness after challenge. CD73 derived ADO production slows down migration of Langerin + DC from skin to LN. This may be a crucial mechanism to avoid over boarding immune reactions against haptens. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  10. Cyclophilin B induces integrin-mediated cell adhesion by a mechanism involving CD98-dependent activation of protein kinase C-delta and p44/42 mitogen-activated protein kinases.

    PubMed

    Melchior, Aurélie; Denys, Agnès; Deligny, Audrey; Mazurier, Joël; Allain, Fabrice

    2008-02-01

    Initially identified as a cyclosporin-A binding protein, cyclophilin B (CyPB) is an inflammatory mediator that induces adhesion of T lymphocytes to fibronectin, by a mechanism dependent on CD147 and alpha 4 beta 1 integrins. Recent findings have suggested that another cell membrane protein, CD98, may cooperate with CD147 to regulate beta1 integrin functions. Based on these functional relationships, we examined the contribution of CD98 in the pro-adhesive activity of CyPB, by utilizing the responsive promonocyte cell line THP-1. We demonstrated that cross-linking CD98 with CD98-AHN-18 antibody mimicked the responses induced by CyPB, i.e. homotypic aggregation, integrin-mediated adhesion to fibronectin and activation of p44/42 MAPK. Consistent with previous data, immunoprecipitation confirmed the existence of a heterocomplex wherein CD147, CD98 and beta1 integrins were associated. We then demonstrated that CyPB-induced cell adhesion and p44/42 MAPK activation were dependent on the participation of phosphoinositide 3-kinase and subsequent activation of protein kinase C-delta. Finally, silencing the expression of CD98 by RNA interference potently reduced CyPB-induced cell responses, thus confirming the role of CD98 in the pro-adhesive activity of CyPB. Altogether, our results support a model whereby CyPB induces integrin-mediated adhesion via interaction with a multimolecular unit formed by the association between CD147, CD98 and beta1 integrins.

  11. Monoclonal antibody 1.6.1 against human MPL receptor allows HSC enrichment of CB and BM CD34(+)CD38(-) populations.

    PubMed

    Petit Cocault, Laurence; Fleury, Maud; Clay, Denis; Larghero, Jérôme; Vanneaux, Valérie; Souyri, Michèle

    2016-04-01

    Thrombopoietin (TPO) and its receptor Mpl (CD110) play a crucial role in the regulation of hematopoietic stem cells (HSCs). Functional study of Mpl-expressing HSCs has, however, been hampered by the lack of efficient monoclonal antibodies, explaining the very few data available on Mpl(+) HSCs during human embryonic development and after birth. Investigating the main monoclonal antibodies used so far to sort CD110(+) cells from cord blood (CB) and adult bone marrow (BM), we found that only the recent monoclonal antibody 1.6.1 engineered by Immunex Corporation was specific. Using in vitro functional assays, we found that this antibody can be used to sort a CD34(+)CD38(-)CD110(+) population enriched in hematopoietic progenitor stem cells, both in CB and in adult BM. In vivo injection into NSG mice further indicated that the CB CD34(+)CD38(-)CD110(+) population is highly enriched in HSCs compared with both CD34(+)CD38(-)CD110(-) and CD34(+)CD38(-) populations. Together our results validate MAb1.6.1 as an important tool, which has so far been lacking, in the HSC field. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  12. Heterogeneous expression and regulation of CD40 in human hepatocellular carcinoma.

    PubMed

    Holub, Margareta; Zakeri, Schaker M; Lichtenberger, Cornelia; Pammer, Johannes; Paolini, Pierre; Leifeld, Ludger; Rockenschaub, Susanne; Wolschek, Markus F; Steger, Günther; Willheim, Martin; Gangl, Alfred; Reinisch, Walter

    2003-02-01

    CD40, a member of the tumour necrosis factor receptor family, plays a major role in adaptive immune responses and contributes to cancer surveillance. Conflicting results have been reported recently on the expression and function of CD40 in carcinomas. The aim of the present study was to investigate the role of CD40 in human hepatoma. CD40 expression was examined in hepatomas and derived cell lines by immunohistochemistry, flow cytometry and reverse transcriptase polymerase chain reaction. We investigated in hepatoma cell lines the regulation of CD40 by pro-inflammatory cytokines and the effects of its ligation with soluble CD40L on the expression of co-stimulatory and pro-apoptotic cell-surface molecules and survival. CD40 was detected with a similar frequency of about 40% in hepatoma specimens and derived cell lines but not in normal hepatocytes. Tumour necrosis factor alpha and its combination with interferon gamma upregulated CD40 only in intrinsically positive cell lines. CD40 ligation had no effect on cell viability or surface expression of CD54, CD80, CD86 or CD95. CD40 is expressed variably in human hepatoma and enhanced by distinct pro-inflammatory cytokines. The lack of detectable effects of CD40 ligation does not support a major role of this molecule in hepatocellular carcinoma biology.

  13. Peculiar Expression of CD3-Epsilon in Kidney of Ginbuna Crucian Carp.

    PubMed

    Miyazawa, Ryuichiro; Murata, Norifumi; Matsuura, Yuta; Shibasaki, Yasuhiro; Yabu, Takeshi; Nakanishi, Teruyuki

    2018-01-01

    TCR/CD3 complex is composed of the disulfide-linked TCR-αβ heterodimer that recognizes the antigen as a peptide presented by the MHC, and non-covalently paired CD3γε- and δε-chains together with disulfide-linked ζ-chain homodimers. The CD3 chains play key roles in T cell development and T cell activation. In the present study, we found nor or extremely lower expression of CD3ε in head- and trunk-kidney lymphocytes by flow cytometric analysis, while CD3ε was expressed at the normal level in lymphocytes from thymus, spleen, intestine, gill, and peripheral blood. Furthermore, CD4-1 + and CD8α + T cells from kidney express Zap-70, but not CD3ε, while the T cells from other tissues express both Zap-70 and CD3ε, although expression of CD3ε was low. Quantitative analysis of mRNA expression revealed that the expression level of T cell-related genes including tcrb, cd3 ε, zap-70 , and lck in CD4-1 + and CD8α + T cells was not different between kidney and spleen. Western blot analysis showed that CD3ε band was detected in the cell lysates of spleen but not kidney. To be interested, CD3ε-positive cells greatly increased after 24 h in in vitro culture of kidney leukocytes. Furthermore, expression of CD3ε in both transferred kidney and spleen leukocytes was not detected or very low in kidney, while both leukocytes expressed CD3ε at normal level in spleen when kidney and spleen leukocytes were injected into the isogeneic recipient. Lower expression of CD3ε was also found in kidney T lymphocytes of goldfish and carp. These results indicate that kidney lymphocytes express no or lower level of CD3ε protein in the kidney, although the mRNA of the gene was expressed. Here, we discuss this phenomenon from the point of function of kidney as reservoir for T lymphocytes in teleost, which lacks lymph node and bone marrow.

  14. Peripheral T-Cell Lymphoma with Aberrant Expression of CD19, CD20, and CD79a: Case Report and Literature Review

    PubMed Central

    Matnani, Rahul G.; Stewart, Rachel L.; Pulliam, Joseph; Jennings, Chester D.; Kesler, Melissa

    2013-01-01

    A case of lymphoma of T-cell derivation with aberrant expression of three B-cell lineage markers (CD19, CD20, and CD79a), which was diagnosed on a left axillary excision, is described. Immunohistochemical studies and flow cytometry analysis demonstrated neoplastic cells expressing CD3, CD19, CD20, and CD79a with absence of CD4, CD8, CD10, CD30, CD34, CD56, CD68, TDT, MPO, PAX-5, and surface immunoglobulin. Gene rearrangement studies performed on paraffin blocks demonstrated monoclonal T-cell receptor gamma chain rearrangement with no evidence of clonal heavy chain rearrangement. The neoplastic cells were negative for Epstein-Barr virus (EBV) or Human Herpes Virus 8 (HHV-8). At the time of diagnosis, the PET scan demonstrated hypermetabolic neoplastic cells involving the left axilla, bilateral internal jugular areas, mediastinum, right hilum, bilateral lungs, and spleen. However, bone marrow biopsy performed for hemolytic anemia revealed normocellular bone marrow with trilineage maturation. The patient had no evidence of immunodeficiency or infection with EBV or HHV-8. This is the first reported case of a mature T-cell lymphoma with aberrant expression of three B-cell lineage markers. The current report also highlights the need for molecular gene rearrangement studies to determine the precise lineage of ambiguous neoplastic clones. PMID:24066244

  15. Hypothermia inhibits expression of CD11b (MAC-1) and CD162 (PSGL-1) on monocytes during extracorporeal circulation.

    PubMed

    Swoboda, Stefanie; Gruettner, Joachim; Lang, Siegfried; Wendel, Hans-Peter; Beyer, Martin E; Griesel, Eva; Hoffmeister, Hans-Martin; Walter, Thomas

    2013-01-01

    The aim of the present study was to investigate the effect of different hypothermic temperatures on the expression of cellular adhesion molecules on leukocytes. Circulation of blood from six volunteers was performed in an extracorporeal circulation model at 36°C, 28°C and 18°C for 30 minutes. Expression of CD11b, CD54 and CD162 on monocytes was measured using flow cytometry. Expression of CD11b significantly decreased at 18°C and at 28°C compared to 36°C. A significant reduction of CD162 expression was found at 18°C compared to 28°C and 36°C and at 28°C compared to 36°C. No association was found between temperature and expression of CD54. Expression of CD11b and CD162 on monocytes has a temperature-dependent regulation, with decreased expression during hypothermia, which may result in an inhibition of leukocyte-endothelial and leukocyte-platelet interaction. This beneficial effect may influence the extracorporeal circulation-related inflammatory response and tissue damage.

  16. Comparision of Immunohistochemical Expression of CD10 in Odontogenic Cysts

    PubMed Central

    Munisekhar, M.S.; Suri, Charu; Rajalbandi, Santosh Kumar; M.R., Pradeep; Gothe, Pavan

    2014-01-01

    Background: Expression of CD10 has been documented in various tumors like nasopharyngeal carcinoma, gastric carcinoma, squamous cell carcinoma, odontogenic tumors. Aim: To evaluate and compare CD10 expression in odontogenic cysts like radicular cyst, dentigerous cyst and odontogenic keratocyst (OKC). Materials and Methods: Total 60 cases were included in the study, comprising 20 cases each of radicular, dentigerous and odontogenic keratocyst. Each case was evaluated and compared for immunohistochemical expression of CD10. Results obtained were statistically analysed using ANOVA test followed by post hoc test Tukey-Kramer Multiple Comparisons Test for continuous variable and Chi-square test for discrete variable. Results: More number of cases showing sub-epithelial stromal CD10 expression were found in OKC among the cysts. Conclusion: CD10 expression was more in OKC compared to radicular and dentigerous cysts. PMID:25584313

  17. The DC-SIGN-CD56 interaction inhibits the anti-dendritic cell cytotoxicity of CD56 expressing cells.

    PubMed

    Nabatov, Alexey A; Raginov, Ivan S

    2015-01-01

    This study aimed to clarify interactions of the pattern-recognition receptor DC-SIGN with cells from the HIV-infected peripheral blood lymphocyte cultures. Cells from control and HIV-infected peripheral blood lymphocyte cultures were tested for the surface expression of DC-SIGN ligands. The DC-SIGN ligand expressing cells were analyzed for the role of DC-SIGN-ligand interaction in their functionality. In the vast majority of experiments HIV-infected lymphocytes did not express detectable DC-SIGN ligands on their cell surfaces. In contrast, non-infected cells, carrying NK-specific marker CD56, expressed cell surface DC-SIGN ligands. The weakly polysialylated CD56 was identified as a novel DC-SIGN ligand. The treatment of DC-SIGN expressing dendritic cells with anti-DC-SIGN antibodies increased the anti-dendritic cell cytotoxicity of CD56(pos) cells. The treatment of CD56(pos) cells with a peptide, blocking the weakly polysialylated CD56-specifc trans-homophilic interactions, inhibited their anti-dendritic cells cytotoxicity. The interaction between DC-SIGN and CD56 inhibits homotypic intercellular interactions of CD56(pos) cells and protects DC-SIGN expressing dendritic cells against CD56(pos) cell-mediated cytotoxicity. This finding can have an impact on the development of approaches to HIV infection and cancer therapy as well as in transplantation medicine.

  18. A Re-evaluation of CD22 Expression by Human Lung Cancer

    PubMed Central

    Pop, Laurentiu M.; Barman, Stephen; Shao, Chunli; Poe, Jonathan C.; Venturi, Guglielmo M.; Shelton, John M.; Pop, Iliodora V.; Gerber, David E.; Girard, Luc; Liu, Xiao-yun; Behrens, Carmen; Rodriguez-Canales, Jaime; Liu, Hui; Wistuba, Ignacio I.; Richardson, James A.; Minna, John D.; Tedder, Thomas F.; Vitetta, Ellen S.

    2014-01-01

    CD22 is a transmembrane glycoprotein expressed by mature B cells. It inhibits signal transduction by the B cell receptor and its co-receptor CD19. Recently it was reported that most human lung cancer cells and cell lines express CD22 making it an important new lung cancer therapeutic target (Can Res 72:5556, 2012). The objective of our studies was to independently validate these results with the goal of testing the efficacy of our CD22 immunotoxins on lung cancer cell lines. As determined by qRT-PCR analysis, we found that levels of CD22 mRNA in a panel of human lung cancer cell lines were 200–60,000- fold lower than those observed in the human CD22+ Burkitt’s lymphoma cells, Daudi. Using flow cytometry with a panel of CD22 monoclonal antibodies and Western blot analyses, we could not detect surface or intracellular expression of CD22 protein in a panel of lung cancer cell lines. In addition, the in vitro proliferation of the lung tumor cell lines was not affected by CD22 antibodies or our highly potent anti-CD22 immunotoxin. By contrast, CD22+ Daudi cells expressed high levels of CD22 mRNA and protein and were sensitive to our CD22 immunotoxin. Importantly, primary non-small cell lung cancers from over 250 patient specimens did not express detectable levels of CD22 protein as assessed by immunohistochemistry. We conclude that CD22 is not expressed at measurable levels on the surface of lung cancer cells and that these cells can not be killed by anti-CD22 immunotoxins. PMID:24395821

  19. Blockade of Notch3 inhibits the stem-like property and is associated with ALDH1A1 and CD44 via autophagy in non-small lung cancer.

    PubMed

    Ma, Yuanyuan; Li, Mingzhen; Si, Jiahui; Xiong, Ying; Lu, Fangliang; Zhang, Jianzhi; Zhang, Liyi; Zhang, Panpan; Yang, Yue

    2016-06-01

    Acquired resistance to standard chemotherapy causes treatment failure in patients with local advanced and advanced non-small lung cancer (NSCLC). Cancer stem cells (CSCs) are a small subpopulation within cancer that is thought to be resistant to conventional chemotherapy. The Notch pathway is one of the most intensively studied for putative therapeutic targets of CSCs in solid tumors. In our study, suppression of Notch3 decreased colony and sphere formation of stem-like property in lung cancer cells. In addition, Notch3 expression was demonstrated to be upregulated in the patients with chemoresistance and related to poor prognosis of NSCLC patients. Our results also showed that CSC markers ALDH1A1 and CD44 were highly expressed in NSCLC patients with chemoresistance and these two markers were positively correlated with Notch3 expression in lung cancer specimens from TCGA database. Furthermore, the lung cancer cells with drug resistance were shown to be associated with activation of autophagy. All the data support a crucial role of Notch3 in the increase of stem-like property in NSCLC cells that might be associated with upregulation of ALDH1A1 and CD44 and activation of autophagy.

  20. Expression and function of CD8 alpha/beta chains on rat and human mast cells.

    PubMed

    Kim, Mi-Sun; Kim, Sung-Hoon; Lee, Hye-Jung; Kim, Hyung-Min

    2004-03-01

    The expression and functional role of CD8 glycoprotein, a marker of cytotoxic/suppressor T lymphocytes and NK cells, were not studied on freshly isolated connective tissue type rat peritoneal mast cells, a rat mucosal type mast cell line (RBL 2H3), or human mast cell line (HMC-1). We used the reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis, immunohistochemistry and enzyme-linked immunosorbent assay. RT-PCR and Western blot analysis identified the presence of CD8 alpha/beta chains on the mast cells, and immunohistochemistry confirmed CD8alpha expression on rat or human mast cells. Functional studies demonstrated that stimulation of CD8 alpha/beta chains on rat mast cells induced the secretion of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6), which are regarded as important mediators during infection. However, co-stimulation with stem cell factor had no effect on CD8-induced mediator secretion. Our findings demonstrate novel biological roles of CD8 molecules in mast cells.

  1. IL-4 and IL-13 mediated down-regulation of CD8 expression levels can dampen anti-viral CD8⁺ T cell avidity following HIV-1 recombinant pox viral vaccination.

    PubMed

    Wijesundara, Danushka K; Jackson, Ronald J; Tscharke, David C; Ranasinghe, Charani

    2013-09-23

    We have shown that mucosal HIV-1 recombinant pox viral vaccination can induce high, avidity HIV-specific CD8(+) T cells with reduced interleukin (IL)-4 and IL-13 expression compared to, systemic vaccine delivery. In the current study how these cytokines act to regulate anti-viral CD8(+) T, cell avidity following HIV-1 recombinant pox viral prime-boost vaccination was investigated. Out of a panel of T cell avidity markers tested, only CD8 expression levels were found to be enhanced on, KdGag197-205 (HIV)-specific CD8(+) T cells obtained from IL-13(-/-), IL-4(-/-) and signal transducer and, activator of transcription of 6 (STAT6)(-/-) mice compared to wild-type (WT) controls following, vaccination. Elevated CD8 expression levels in this instance also correlated with polyfunctionality, (interferon (IFN)-γ, tumour necorsis factor (TNF)-α and IL-2 production) and the avidity of HIVspecific CD8(+) T cells. Furthermore, mucosal vaccination and vaccination with the novel adjuvanted IL-13 inhibitor (i.e. IL-13Rα2) vaccines significantly enhanced CD8 expression levels on HIV-specific CD8(+), T cells, which correlated with avidity. Using anti-CD8 antibodies that blocked CD8 availability on CD8(+), T cells, it was established that CD8 played an important role in increasing HIV-specific CD8(+) T cell avidity and polyfunctionality in IL-4(-/-), IL-13(-/-) and STAT6(-/-) mice compared to WT controls, following vaccination. Collectively, our data demonstrate that IL-4 and IL-13 dampen CD8 expression levels on anti-viral CD8(+) T cells, which can down-regulate anti-viral CD8(+) T cell avidity and, polyfunctionality following HIV-1 recombinant pox viral vaccination. These findings can be exploited to, design more efficacious vaccines not only against HIV-1, but many chronic infections where high, avidity CD8(+) T cells help protection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Virus-specific CD8+ T cells infiltrate melanoma lesions and retain function independent of PD-1 expression

    PubMed Central

    Erkes, Dan A.; Smith, Corinne J.; Wilski, Nicole A.; Caldeira-Dantas, Sofia; Mohgbeli, Toktam; Snyder, Christopher M.

    2017-01-01

    It is well known that CD8+ tumor infiltrating lymphocytes (TIL) are correlated with positive prognoses in cancer patients and used to determine efficacy of immune therapies. While it is generally assumed that CD8+ TIL will be tumor associated antigen (TAA)-specific, it is unknown whether CD8+ T cells with specificity for common pathogens also infiltrate tumors. If so, the presence of these T cells could alter the interpretation of prognostic and diagnostic TIL assays. We compared TAA-specific and virus-specific CD8+ T cells in the same tumors using murine cytomegalovirus (MCMV), a herpesvirus that causes a persistent/latent infection, and Vaccinia virus (VacV), a poxvirus that is cleared by the host. Virus-specific CD8+ TIL migrated into cutaneous melanoma lesions during acute infection with either virus, as well as after a cleared VacV infection, and during a persistent/latent MCMV infection. Virus-specific TILs developed independent of viral antigen in the tumor and interestingly, expressed low or intermediate levels of full-length PD-1 in the tumor environment. Importantly, PD-1 expression could be markedly induced by antigen, but did not correlate with dysfunction for virus-specific TIL, in sharp contrast to TAA-specific TIL in the same tumors. These data suggest that CD8+ TIL can reflect an individual's immune status, rather than exclusively representing TAA-specific T cells, and that PD-1 expression on CD8+ TIL is not always associated with repeated antigen encounter or dysfunction. Thus, functional virus-specific CD8+ TIL could skew the results of prognostic or diagnostic TIL assays. PMID:28202614

  3. Expression of CD43 in chronic lymphoproliferative leukemias.

    PubMed

    Sorigue, Marc; Juncà, Jordi; Sarrate, Edurne; Grau, Javier

    2018-01-01

    CD43 has been used on histological samples for the differential diagnosis of lymphoproliferative disorders but there is scarce data on its use by flow cytometry (FC). We set out to characterize the expression of CD43 by FC in B-cell lymphoproliferative disorders and to determine its possible role in the differential diagnosis of these malignancies. We analyzed the expression of CD43 in clonal B-cell lymphoproliferative disorders with exclusive peripheral blood and/or bone marrow involvement based on their Moreau chronic lymphocytic leukemia (CLL) score with particular emphasis on Moreau CLL score 3 (MS3) cases, which often present a diagnostic challenge. The cohort included 433 CLL (score 4-5), 34 MS3 and 166 lymphoproliferative disorders with lower scores. Generally, the higher the Moreau CLL score, the higher CD43-positivity (425/443 [96%] for CLL, 23/34 [67%] for MS3 and 18/166 [11%] for cases with lower scores). MS3 cases constituted 5.4% of all cases and were more frequently CD5, CD200, CD43-positive and had del(q13) than score 0-2 cases. Among MS3 cases, del(13q) cases were predominantly CD43-positive (12/13). The frequency of CD43-positivity increases sharply with the Moreau score. MS3 cases seem to include both CLL and non-CLL lymphoproliferative disorders and CD43 could aid in the differential diagnosis between the two. However, studies analyzing the correlation between CD43 expression and the underlying biologic changes of these cases are warranted. © 2017 International Clinical Cytometry Society. © 2017 International Clinical Cytometry Society.

  4. Altered expression of CD45 isoforms in differentiation of acute myeloid leukemia.

    PubMed

    Miyachi, H; Tanaka, Y; Gondo, K; Kawada, T; Kato, S; Sasao, T; Hotta, T; Oshima, S; Ando, Y

    1999-11-01

    Specific expression of different CD45 isoforms can be seen in various stages of differentiation of normal nucleated hematopoietic cells. Association of membrane expression of CD45 isoforms and differential levels of leukemia cells was studied in 91 cases with de novo acute myeloid leukemia (AML). Membrane expression of CD45RA and CD45RO was analyzed by flow cytometry and their expression patterns were compared with AML subtypes classified according to the French-American-British (FAB) classification. CD45RA was essentially expressed in all of the FAB myelocytic subtypes (M0-M3). Its expression in percentage was lower in the most differentiated subtype of AML (M3) when compared with other myelocytic subtypes. CD45RO expression was rarely observed in cases with myelocytic subtypes (1/56 cases of M0, M1, M2, and M3) except for the minimally differentiated myelocytic subtype (M0) or those with potential for differentiation to T-cell lineage where three of 12 cases showed CD45RO expression. When leukemia cells of an M3 case were differentiated to mature granulocytes by treatment of all-trans-retinoic acid, they showed increasing expression of CD45RO. In subtypes with a monocytic component (M4 and M5), both of CD45RA and CD45RO expression were observed and mutually exclusive. When 10 cases of M5 were subdivided by the differential level into undifferentiated (M5a) and differentiated monocytic leukemia (M5b), expression of CD45RA and CD45RO was strictly restricted to cases with M5a and M5b, respectively. These results suggest that CD45 isoform expression in AML characterizes differential levels both in myelocytic and monocytic lineages and specifically disturbed in each subtype. The assessment of CD45 isoform expression appears to provide an insight on biological characteristics and a useful supplementary test for differential diagnosis of AML subtypes. Copyright 1999 Wiley-Liss, Inc.

  5. T Cell Costimulation by CD6 Is Dependent on Bivalent Binding of a GADS/SLP-76 Complex.

    PubMed

    Breuning, Johannes; Brown, Marion H

    2017-06-01

    The cell surface receptor CD6 regulates T cell activation in both activating and inhibitory manners. The adaptor protein SLP-76 is recruited to the phosphorylated CD6 cytoplasmic Y662 residue during T cell activation, providing an activating signal to T cells. In this study, a biochemical approach identified the SH2 domain-containing adaptor protein GADS as the dominant interaction partner for the CD6 cytoplasmic Y629 residue. Functional experiments in human Jurkat and primary T cells showed that both mutations Y629F and Y662F abolished costimulation by CD6. In addition, a restraint on T cell activation by CD6 was revealed in primary T cells expressing CD6 mutated at Y629 and Y662. These data are consistent with a model in which bivalent recruitment of a GADS/SLP-76 complex is required for costimulation by CD6. Copyright © 2017 Breuning and Brown.

  6. Targeting cancer stem cells in breast cancer: potential anticancer properties of 6-shogaol and pterostilbene.

    PubMed

    Wu, Chi-Hao; Hong, Bo-Han; Ho, Chi-Tang; Yen, Gow-Chin

    2015-03-11

    Breast cancer stem cells (BCSCs) constitute a small fraction of the primary tumor that can self-renew and become a drug-resistant cell population, thus limiting the treatment effects of chemotherapeutic drugs. The present study evaluated the cytotoxic effects of five phytochemicals including 6-gingerol (6-G), 6-shogaol (6-S), 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone (5-HF), nobiletin (NOL), and pterostilbene (PTE) on MCF-7 breast cancer cells and BCSCs. The results showed that 6-G, 6-S, and PTE selectively killed BCSCs and had high sensitivity for BCSCs isolated from MCF-7 cells that expressed the surface antigen CD44(+)/CD24(-). 6-S and PTE induced cell necrosis phenomena such as membrane injury and bleb formation in BCSCs and inhibited mammosphere formation. In addition, 6-S and PTE increased the sensitivity of isolated BCSCs to chemotherapeutic drugs and significantly increased the anticancer activity of paclitaxel. Analysis of the underlying mechanism showed that 6-S and PTE decreased the expression of the surface antigen CD44 on BCSCs and promoted β-catenin phosphorylation through the inhibition of hedgehog/Akt/GSK3β signaling, thus decreasing the protein expression of downstream c-Myc and cyclin D1 and reducing BCSC stemness.

  7. Gastric mucin expression in Helicobacter pylori-related, nonsteroidal anti-inflammatory drug-related and idiopathic ulcers

    PubMed Central

    Boltin, Doron; Halpern, Marisa; Levi, Zohar; Vilkin, Alex; Morgenstern, Sara; Ho, Samuel B; Niv, Yaron

    2012-01-01

    AIM: To determine the pattern of secreted mucin expression in Helicobacter pylori (H. pylori)-related, nonsteroidal anti-inflammatory drug (NSAID)-related and idiopathic gastric ulcers. METHODS: We randomly selected 92 patients with H. pylori-associated (n = 30), NSAID-associated (n = 18), combined H. pylori and NSAID-associated gastric ulcers (n = 24), and patients with idiopathic gastric ulcers (n = 20). Immunohistochemistry for T-cell CD4/CD8, and for mucin 5AC (MUC5AC) and mucin 6 (MUC6), was performed on sections of the mucosa from the ulcer margin. Inflammation score was assessed according to the Sydney system. RESULTS: MUC5AC was expressed on the surface epithelium (98.9%) and neck glands (98.9%) with minimal expression in the deep glands (6.5%). MUC6 was strongly expressed in the deep glands (97.8%), variable in the neck glands (19.6%) and absent in the surface epithelium (0%). The pattern of mucin expression in idiopathic ulcer margins was not different from the expression in ulcers associated with H. pylori, NSAIDs, or combined H. pylori and NSAIDs. CD4/CD8 ratio was higher in H. pylori-positive patients (P = 0.009). Idiopathic ulcers are associated with hospitalized patients and have higher bleeding and mortality rates. CONCLUSION: Idiopathic ulcers have a unique clinical profile. Gastric mucin expression in idiopathic gastric ulcers is unchanged compared with H. pylori and/or NSAID-associated ulcers. PMID:22969235

  8. VCAM-1 expression is upregulated by CD34+/CD133+-stem cells derived from septic patients

    PubMed Central

    Remmé, Christoph; Betzen, Christian; Tönshoff, Burkhard; Yard, Benito A.; Beck, Grietje; Rafat, Neysan

    2018-01-01

    CD34+/CD133+- cells are a bone marrow derived stem cell population, which presumably contain vascular progenitor cells and are associated with improved vascular repair. In this study, we investigated whether the adhesion molecules ICAM-1 (intercellular adhesion molecule-1), VCAM-1 (vascular adhesion molecule-1), E-selectin und L-selectin, which are involved in homing of vascular stem cells, are upregulated by CD34+/CD133+-stem cells from septic patients and would be associated with improved clinical outcome. Peripheral blood mononuclear cells from intensive care unit (ICU) patients with (n = 30) and without sepsis (n = 10), and healthy volunteers (n = 15) were isolated using Ficoll density gradient centrifugation. The expression of VCAM-1, ICAM-1, E-selectin and L-selectin was detected on CD34+/CD133+-stem cells by flow cytometry. The severity of disease was assessed by the Simplified Acute Physiology Score (SAPS) II. Serum concentrations of vascular endothelial growth factor (VEGF) and angiopoietin (Ang)-2 were determined by Enzyme-linked immunosorbent assay. The expression of VCAM-1, ICAM-1, E-selectin and L-selectin by CD34+/CD133+-stem cells was significantly upregulated in septic patients, and correlated with sepsis severity. Furthermore, high expression of VCAM-1 by CD34+/CD133+-stem cells revealed a positive association with mortalitiy (p<0.05). Furthermore, significantly higher serum concentrations of VEGF and Ang-2 were found in septic patients, however none showed a strong association with survival. Our data suggest, that VCAM-1 upregulation on CD34+/CD133+-stem cells could play a crucial role in their homing in the course of sepsis. An increase in sepsis severity resulted in both and increase in CD34+/CD133+-stem cells and VCAM-1-expression by those cells, which might reflect an increase in need for vascular repair. PMID:29601599

  9. Loss of CXCR6 coreceptor usage characterizes pathogenic lentiviruses

    PubMed Central

    Wetzel, Katherine S.; Yi, Yanjie; Bauer, Anya M.; Bibollet-Ruche, Frederic; Hahn, Beatrice H.; Paiardini, Mirko; Silvestri, Guido; Peeters, Martine; Collman, Ronald G.

    2018-01-01

    Pandemic HIV-1 originated from the cross-species transmission of SIVcpz, which infects chimpanzees, while SIVcpz itself emerged following the cross-species transmission and recombination of monkey SIVs, with env contributed by the SIVgsn/mus/mon lineage that infects greater spot-nosed, mustached and mona monkeys. SIVcpz and HIV-1 are pathogenic in their respective hosts, while the phenotype of their SIVgsn/mus/mon ancestors is unknown. However, two well-studied SIV infected natural hosts, sooty mangabeys (SMs) and African green monkeys (AGMs), typically remain healthy despite high viral loads; these species express low levels of the canonical coreceptor CCR5, and recent work shows that CXCR6 is a major coreceptor for SIV in these hosts. It is not known what coreceptors were used by the precursors of SIVcpz, whether coreceptor use changed during emergence of the SIVcpz/HIV-1 lineage, and what T cell subsets express CXCR6 in natural hosts. Using species-matched coreceptors and CD4, we show here that SIVcpz uses only CCR5 for entry and, like HIV-1, cannot use CXCR6. In contrast, SIVmus efficiently uses both CXCR6 and CCR5. Coreceptor selectivity was determined by Env, with CXCR6 use abrogated by Pro326 in the V3 crown, which is absent in monkey SIVs but highly conserved in SIVcpz/HIV-1. To characterize which cells express CXCR6, we generated a novel antibody that recognizes CXCR6 of multiple primate species. Testing lymphocytes from SM, the best-studied natural host, we found that CXCR6 is restricted to CD4+ effector memory cells, and is expressed by a sub-population distinct from those expressing CCR5. Thus, efficient CXCR6 use, previously identified in SM and AGM infection, also characterizes a member of the SIV lineage that gave rise to SIVcpz/HIV-1. Loss of CXCR6 usage by SIVcpz may have altered its cell tropism, shifting virus from CXCR6-expressing cells that may support replication without disrupting immune function or homeostasis, towards CCR5-expressing cells

  10. Retrofit of CD-6 (Smith) impeller in fermentation vessels.

    PubMed

    Junker, B H; Mann, Z; Hunt, G

    2000-10-01

    We extended prior studies on the influence of impeller type on fermentation performance to include a novel low-power-number, high-efficiency radial flow impeller, the CD-6, possessing six curved blades on a disk turbine. Dual impeller combinations of CD-6/CD-6, CD-6/Maxflo T, and CD-6/HE-3 were compared with Rushton/Rushton and Maxflo T/Maxflo T base cases. Qualitative comparisons of unaerated and aerated power draw in both water and glycerol were conducted. These suggested minimal power drops with aeration for dual CD-6 impellers and hybrids containing the CD-6 impeller design. We also examined fermentation performance for Streptomyces and Glarea secondary metabolite fermentations. A qualitative comparison of the data suggested that dual CD-6 impellers and hybrids containing the CD-6 impeller design resulted in reasonable power draws, improved mass transfer rates with airflow increases, and acceptable peak titers. These arrangements may warrant further study under a wider range of production conditions.

  11. Unique CD44 intronic SNP is associated with tumor grade in breast cancer: a case control study and in silico analysis.

    PubMed

    Esmaeili, Rezvan; Abdoli, Nasrin; Yadegari, Fatemeh; Neishaboury, Mohamadreza; Farahmand, Leila; Kaviani, Ahmad; Majidzadeh-A, Keivan

    2018-01-01

    CD44 encoded by a single gene is a cell surface transmembrane glycoprotein. Exon 2 is one of the important exons to bind CD44 protein to hyaluronan. Experimental evidences show that hyaluronan-CD44 interaction intensifies the proliferation, migration, and invasion of breast cancer cells. Therefore, the current study aimed at investigating the association between specific polymorphisms in exon 2 and its flanking region of CD44 with predisposition to breast cancer. In the current study, 175 Iranian female patients with breast cancer and 175 age-matched healthy controls were recruited in biobank, Breast Cancer Research Center, Tehran, Iran. Single nucleotide polymorphisms of CD44 exon 2 and its flanking were analyzed via polymerase chain reaction and gene sequencing techniques. Association between the observed variation with breast cancer risk and clinico-pathological characteristics were studied. Subsequently, bioinformatics analysis was conducted to predict potential exonic splicing enhancer (ESE) motifs changed as the result of a mutation. A unique polymorphism of the gene encoding CD44 was identified at position 14 nucleotide upstream of exon 2 (A37692→G) by the sequencing method. The A > G polymorphism exhibited a significant association with higher-grades of breast cancer, although no significant relation was found between this polymorphism and breast cancer risk. Finally, computational analysis revealed that the intronic mutation generated a new consensus-binding motif for the splicing factor, SC35, within intron 1. The current study results indicated that A > G polymorphism was associated with breast cancer development; in addition, in silico analysis with ESE finder prediction software showed that the change created a new SC35 binding site.

  12. CD137 ligand reverse signaling skews hematopoiesis towards myelopoiesis during aging.

    PubMed

    Tang, Qianqiao; Koh, Liang Kai; Jiang, Dongsheng; Schwarz, Herbert

    2013-09-01

    CD137 is a costimulatory molecule expressed on activated T cells. Its ligand, CD137L, is expressed on the surface of hematopoietic progenitor cells, and upon binding to CD137 induces reverse signaling into hematopoietic progenitor cells promoting their activation, proliferation and myeloid differentiation. Since aging is associated with an increasing number of myeloid cells we investigated the role of CD137 and CD137L on myelopoiesis during aging. Comparing 3 and 12 months old WT, CD137‐/‐ and CD137L‐/‐ mice we found significantly more granulocytes and monocytes in the bone marrow of older WT mice, while this age‐dependent increase was absent in CD137‐/‐ and CD137L‐/‐ mice. Instead, the bone marrow of 12 months old CD137‐/‐ and CD137L‐/‐ mice was characterized by an accumulation of hematopoietic progenitor cells, suggesting that the differentiation of hematopoietic progenitor cells became arrested in the absence of CD137L signaling. CD137L signaling is initiated by activated CD137‐expressing, CD4+ T cells. These data identify a novel molecular mechanisms underlying immune aging by demonstrating that CD137‐expressing CD4+ T cells in the bone marrow engage CD137L on hematopoietic progenitor cells, and that this CD137L signaling biases hematopoiesis towards myelopoiesis during aging.

  13. Toll-like receptors 2, 4, and 9 expressions over the entire clinical and immunopathological spectrum of American cutaneous leishmaniasis due to Leishmania (V.) braziliensis and Leishmania (L.) amazonensis

    PubMed Central

    Campos, Marliane Batista; Lima, Luciana Vieira do Rêgo; de Lima, Ana Carolina Stocco; Vasconcelos dos Santos, Thiago; Ramos, Patrícia Karla Santos; Gomes, Claudia Maria de Castro

    2018-01-01

    Leishmania (V.) braziliensis and Leishmania(L.) amazonensis are the most pathogenic agents of American Cutaneous Leishmaniasis in Brazil, causing a wide spectrum of clinical and immunopathological manifestations, including: localized cutaneous leishmaniasis (LCLDTH+/++), borderline disseminated cutaneous leishmaniasis (BDCLDTH±), anergic diffuse cutaneous leishmaniasis (ADCLDTH-), and mucosal leishmaniasis (MLDTH++++). It has recently been demonstrated, however, that while L. (V.) braziliensis shows a clear potential to advance the infection from central LCL (a moderate T-cell hypersensitivity form) towards ML (the highest T-cell hypersensitivity pole), L. (L.) amazonensis drives the infection in the opposite direction to ADCL (the lowest T-cell hypersensitivity pole). This study evaluated by immunohistochemistry the expression of Toll-like receptors (TLRs) 2, 4, and 9 and their relationships with CD4 and CD8 T-cells, and TNF-α, IL-10, and TGF-β cytokines in that disease spectrum. Biopsies of skin and mucosal lesions from 43 patients were examined: 6 cases of ADCL, 5 of BDCL, and 11 of LCL caused byL. (L.) amazonensis; as well as 10 cases of LCL, 4 of BDCL, and 6 of ML caused byL. (V.) braziliensis. CD4+ T-cells demonstrated their highest expression in ML and, in contrast, their lowest in ADCL. CD8+ T-cells also showed their lowest expression in ADCL as compared to the other forms of the disease. TNF-α+showed increased expression from ADCL to ML, while IL-10+and TGF-β+ showed increased expression in the opposite direction, from ML to ADCL. With regards to TLR2, 4, and 9 expressions, strong interactions of TLR2 and 4 with clinical forms associated with L. (V.) braziliensis were observed, while TLR9, in contrast, showed a strong interaction with clinical forms linked to L. (L.) amazonensis. These findings strongly suggest the ability of L. (V.) braziliensis and L. (L.) amazonensis to interact with those TLRs to promote a dichotomous T-cell immune response in ACL

  14. Correlation of the expression of CD32 and CD180 receptors on CLL cells and MEC1 cell line.

    PubMed

    Tsertsvadze, T; Mitskevich, N; Ghirdaladze, D; Porakishvili, N

    2015-03-01

    Chronic Lymphocytic Leukemia (CLL) presents with clonal expansion and accumulation of CD5+CD19+CD23+ cells in peripheral lymphoid organs and tissues and in bone marrow. CLL is supposedly driven by exogenous and/or endogenous (auto)antigen(s) and there is increasing evidence that CLL cells receive microenvironmental signals which support their growth, survival and expansion in vivo. We have previously shown that powerful signals are received by CLL cells through CD180 orphan toll-like receptor. Additional accessory signals could be generated through FcγRII (CD32), since both are expressed on CLL cells as well as on control B cells. Here we studied correlation of the expression of CD32 and CD180 on CLL cells as well as on MEC1 cell line. Peripheral blood mononuclear cells (PBMC) from CLL patients and age-matched healthy volunteers were separated, stained with appropriate antibodies to CD19, CD32 and CD180 and analysed by flow cytometry. CD32 and CD180 expression on MEC1 cells was studied at different time-points. The data was statistically analysed using the Mann-Whitney non-parametrical test. Our data indicates that expression of CD32 is significantly increased on CLL cells compared to control B cells as well as in long-term MEC1 cell culture. In contrast, CD180 expression on MEC1 cells significantly decreased throughout 0-96h of MEC1 cell culture. We have recently shown that CD180 ligation can redirect sIgM-mediated signaling from pro-survival to pro-apoptotic. This data indicates that a drop in the expression of CD180 on cycling CLL cells might lead to a weakening of this effect and enhance further survival and expansion of CLL cells in proliferative centres of lymphoid tissues. Since MEC1 cells are derived from a CLL patient with mutated IGVH genes (M-CLL) negative correlation between CD180 and CD32 expression on cycling MEC1 cells could be limited to M-CLL.

  15. Human Uterine Leiomyoma Stem/Progenitor Cells Expressing CD34 and CD49b Initiate Tumors In Vivo

    PubMed Central

    Ono, Masanori; Moravek, Molly B.; Coon, John S.; Navarro, Antonia; Monsivais, Diana; Dyson, Matthew T.; Druschitz, Stacy A.; Malpani, Saurabh S.; Serna, Vanida A.; Qiang, Wenan; Chakravarti, Debabrata; Kim, J. Julie; Bulun, Serdar E.

    2015-01-01

    Context: Uterine leiomyoma is the most common benign tumor in reproductive-age women. Using a dye-exclusion technique, we previously identified a side population of leiomyoma cells exhibiting stem cell characteristics. However, unless mixed with mature myometrial cells, these leiomyoma side population cells did not survive or grow well in vitro or in vivo. Objective: The objective of this study was to identify cell surface markers to isolate leiomyoma stem/progenitor cells. Design: Real-time PCR screening was used to identify cell surface markers preferentially expressed in leiomyoma side population cells. In vitro colony-formation assay and in vivo tumor-regeneration assay were used to demonstrate functions of leiomyoma stem/progenitor cells. Results: We found significantly elevated CD49b and CD34 gene expression in side population cells compared with main population cells. Leiomyoma cells were sorted into three populations based on the expression of CD34 and CD49b: CD34+/CD49b+, CD34+/CD49b−, and CD34−/CD49b− cells, with the majority of the side population cells residing in the CD34+/CD49b+ fraction. Of these populations, CD34+/CD49b+ cells expressed the lowest levels of estrogen receptor-α, progesterone receptor, and α-smooth muscle actin, but the highest levels of KLF4, NANOG, SOX2, and OCT4, confirming their more undifferentiated status. The stemness of CD34+/CD49b+ cells was also demonstrated by their strongest in vitro colony-formation capacity and in vivo tumor-regeneration ability. Conclusions: CD34 and CD49b are cell surface markers that can be used to enrich a subpopulation of leiomyoma cells possessing stem/progenitor cell properties; this technique will accelerate efforts to develop new therapies for uterine leiomyoma. PMID:25658015

  16. Allergen-specific responses of CD19(+)CD5(+)Foxp3(+) regulatory B cells (Bregs) and CD4(+)Foxp3(+) regulatory T cell (Tregs) in immune tolerance of cow milk allergy of late eczematous reactions.

    PubMed

    Noh, Joonyong; Noh, Geunwoong; Kim, Hyuk Soon; Kim, A-Ram; Choi, Wahn Soo

    2012-01-01

    Foxp3-expressing cells among CD19(+)CD5(+) B cells were identified as regulatory B cells. Food allergy manifesting as late eczematous reactions is regarded as a non-IgE-mediated food allergy. The diagnosis for milk allergy manifesting as late eczematous reactions was made on the basis of the findings obtained from a double-blind placebo-controlled food challenge in patients with atopic dermatitis. Twelve patients with milk allergy and 12 patients who could tolerate milk were selected. On casein stimulation, the CD19(+)CD5(+)Foxp3(+) B cell (Breg) fraction in CD5(+) B cells decreased from 4.4±1.1% to 3.1±0.7% (P=0.047, n=12) in the milk allergy group and increased from 4.4±1.3% to 5.2±1.4% (P=0.001, n=10) in the milk-tolerant group. On the other hand, on allergen stimulation, the number of CD4(+)Foxp3(+) regulatory T cells (Tregs) in the milk allergy group and milk-tolerant group increased from 2.6±0.7% to 3.4±0.6% (P=0.014, n=9) and from 2.7±1.0% to 3.5±1.0% (P=0.038, n=10), respectively. In conclusion, allergen-specific responses of Bregs, rather than those of Tregs, seem to influence the immune responses (i.e., allergy or tolerance) to a food allergen. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. [The significances of peripheral neutrophils CD(55) and myeloperoxidase expression in patients with myeloperoxidase-specific anti-neutrophil cytoplasmic antibody associated vasculitis].

    PubMed

    Zhou, X L; Zheng, M J; Shuai, Z W; Zhang, L; Zhang, M M; Chen, S Y

    2017-06-01

    Objective: To investigate the expression of CD(55) and myeloperoxidase (MPO) on neutrophils in patients with MPO-specific anti-neutrophil cytoplasmic antibody associated vasculitis(MPO-AAV), and analyze the relationship between the expression and clinical manifestation. Methods: Forty untreated patients with active MPO-AAV (patient group) and 30 healthy volunteers (control group) were enrolled in this study. The CD(55) on neutrophils and both membrane and cytoplasmic MPO were detected by flow cytometry. Serum fragment-from the activated complement factor B(Ba) and MPO were measured by ELISA. The clinical activity of vasculitis was valued by Birmingham vasculitis activity score-version 3(BVAS-V3). The significance of laboratory data was evaluated by Spearman correlation test and multivariate linear regression analysis. Results: (1)The mean fluorescence intensity(MFI) of CD(55) expressed on neutrophils was significantly higher than that in control group[4 068.6±2 306.0 vs 2 999.5±1 504.9, P =0.033]. Similar results of serum MPO and Ba in patient group were found compared to controls [500.0(381.0, 612.7) IU/L vs 286.9(225.5, 329.1) IU/L, P <0.001; 35.2(25.2, 79.5) ng/L vs 18.0(15.0, 28.0) ng/L, P <0.001], respectively. However, MIF of cytoplasmic MPO in patients was significantly lower than that of control group(1 577.1±1 175.9 vs 3 105.3±2 323.0, P =0.003) . (2) In patient group, cytoplasmic intensity of MPO was negatively associated with the serum levels of MPO( r =-0.710, P <0.001) and Ba ( r =-0.589, P =0.001). Moreover, serum MPO was positively associated with serum Ba( r =0.691, P <0.001). Membrane intensity of CD(55) on neutrophils was positively correlated with patient age ( r =0.514, P =0.001), C reactive protein ( r =0.376, P =0.018), peripheral neutrophils count ( r =0.485, P =0.001) and BVAS-V3 ( r =0.484, P =0.002), whereas negative correlation between membrane CD(55) and disease duration was seen ( r =-0.403, P =0.01). (3) The result of multiple

  18. The Chemokine Receptor CXCR6 Is Required for the Maintenance of Liver Memory CD8+ T Cells Specific for Infectious Pathogens

    PubMed Central

    Tse, Sze-Wah; Radtke, Andrea J.; Espinosa, Diego A.; Cockburn, Ian A.; Zavala, Fidel

    2014-01-01

    It is well established that immunization with attenuated malaria sporozoites induces CD8+ T cells that eliminate parasite-infected hepatocytes. Liver memory CD8+ T cells induced by immunization with parasites undergo a unique differentiation program and have enhanced expression of CXCR6. Following immunization with malaria parasites, CXCR6-deficient memory CD8+ T cells recovered from the liver display altered cell-surface expression markers as compared to their wild-type counterparts, but they exhibit normal cytokine secretion and expression of cytotoxic mediators on a per-cell basis. Most importantly, CXCR6-deficient CD8+ T cells migrate to the liver normally after immunization with Plasmodium sporozoites or vaccinia virus, but a few weeks later their numbers severely decrease in this organ, losing their capacity to inhibit malaria parasite development in the liver. These studies are the first to show that CXCR6 is critical for the development and maintenance of protective memory CD8+ T cells in the liver. PMID:24823625

  19. Stat6 activity-related Th2 cytokine profile and tumor growth advantage of human colorectal cancer cells in vitro and in vivo.

    PubMed

    Li, Ben Hui; Xu, Shuang Bing; Li, Feng; Zou, Xiao Guang; Saimaiti, Abudukeyoumu; Simayi, Dilixia; Wang, Ying Hong; Zhang, Yan; Yuan, Jia; Zhang, Wen Jie

    2012-03-01

    Signal transducer and activator of transcription 6 (Stat6) is critical in Th2 polarization of immune cells and active Stat6 activity has been suggested in anti-tumor immunity in animal models. The present study aims at investigating the impact of natural Stat6 activity on tumor microenvironment in human colorectal cancer cells in vitro and in vivo. Using colorectal cancer cell lines HT-29 and Caco-2 whose IL-4/Stat6 activities were known and nude mice as a model, we examined correlative relationships between Stat6 activities and gene expression profiles together with cellular behaviors in vitro and in vivo. HT-29 cells carrying active Stat6 signaling displayed spontaneous expression profiles favoring Th2 cytokines, cell cycle promotion, anti-apoptosis and pro-metastasis with increased mRNA levels of IL-4, IL-13, GATA-3, CDK4, CD44v6 and S100A4 using RT-PCR. In contrast, Caco-2 cells carrying defective Stat6 signaling exhibited spontaneous expression profiles favoring Th1 and Th17 cytokines, cell cycle inhibition, pro-apoptosis and anti-metastasis with elevated mRNA expression of IFNγ, TNFα, IL-12A, IL-17, IL-23, T-bet, CDKN1A, CDKNIB, CDKN2A and NM23-H1. Xenograft tumors of Stat6-active HT-29 cells showed a growth advantage over those of Stat6-defective Caco-2 cells. Furthermore, mice bearing HT-29 tumors expressed increased levels of Th2 cytokines IL-4 and IL-5 in the blood and pro-growth and/or pro-metastasis proteins CDK4 and CD44v6 in the tumor. To the contrary, mice bearing Caco-2 tumors expressed heightened levels of Th1 cytokines IFNγ and TNF in the blood and pro-apoptosis and anti-metastatic proteins p53 and p27(kip1) in the tumor. Colorectal cancer cells carrying active Stat6 signaling may create a microenvironment favoring Th2 cytokines and promoting expression of genes related to pro-growth, pro-metastasis and anti-apoptosis, which leads to a tumor growth advantage in vivo. These findings may imply why Stat6 pathway is constitutively activated in a

  20. Viruses within the Flaviviridae Decrease CD4 Expression and Inhibit HIV Replication in Human CD4+ Cells1

    PubMed Central

    Xiang, Jinhua; McLinden, James H.; Rydze, Robert A.; Chang, Qing; Kaufman, Thomas M.; Klinzman, Donna; Stapleton, Jack T.

    2013-01-01

    Viral infections alter host cell homeostasis and this may lead to immune evasion and/or interfere with the replication of other microbes in coinfected hosts. Two flaviviruses are associated with a reduction in HIV replication or improved survival in HIV-infected people (dengue virus (DV) and GB virus type C (GBV-C)). GBV-C infection and expression of the GBV-C nonstructural protein 5A (NS5A) and the DV NS5 protein in CD4+ T cells inhibit HIV replication in vitro. To determine whether the inhibitory effect on HIV replication is conserved among other flaviviruses and to characterize mechanism(s) of HIV inhibition, the NS5 proteins of GBV-C, DV, hepatitis C virus, West Nile virus, and yellow fever virus (YFV; vaccine strain 17D) were expressed in CD4+ T cells. All NS5 proteins inhibited HIV replication. This correlated with decreased steady-state CD4 mRNA levels and reduced cell surface CD4 protein expression. Infection of CD4+ T cells and macrophages with YFV (17D vaccine strain) also inhibited HIV replication and decreased CD4 gene expression. In contrast, mumps virus was not inhibited by the expression of flavivirus NS5 protein or by YFV infection, and mumps infection did not alter CD4 mRNA or protein levels. In summary, CD4 gene expression is decreased by all human flavivirus NS5 proteins studied. CD4 regulation by flaviviruses may interfere with innate and adaptive immunity and contribute to in vitro HIV replication inhibition. Characterization of the mechanisms by which flaviviruses regulate CD4 expression may lead to novel therapeutic strategies for HIV and immunological diseases. PMID:19923460

  1. Extracellular NGFR Spacers Allow Efficient Tracking and Enrichment of Fully Functional CAR-T Cells Co-Expressing a Suicide Gene

    PubMed Central

    Casucci, Monica; Falcone, Laura; Camisa, Barbara; Norelli, Margherita; Porcellini, Simona; Stornaiuolo, Anna; Ciceri, Fabio; Traversari, Catia; Bordignon, Claudio; Bonini, Chiara; Bondanza, Attilio

    2018-01-01

    Chimeric antigen receptor (CAR)-T cell immunotherapy is at the forefront of innovative cancer therapeutics. However, lack of standardization of cellular products within the same clinical trial and lack of harmonization between different trials have hindered the clear identification of efficacy and safety determinants that should be unveiled in order to advance the field. With the aim of facilitating the isolation and in vivo tracking of CAR-T cells, we here propose the inclusion within the CAR molecule of a novel extracellular spacer based on the low-affinity nerve-growth-factor receptor (NGFR). We screened four different spacer designs using as target antigen the CD44 isoform variant 6 (CD44v6). We successfully generated NGFR-spaced CD44v6 CAR-T cells that could be efficiently enriched with clinical-grade immuno-magnetic beads without negative consequences on subsequent expansion, immuno-phenotype, in vitro antitumor reactivity, and conditional ablation when co-expressing a suicide gene. Most importantly, these cells could be tracked with anti-NGFR monoclonal antibodies in NSG mice, where they expanded, persisted, and exerted potent antitumor effects against both high leukemia and myeloma burdens. Similar results were obtained with NGFR-enriched CAR-T cells specific for CD19 or CEA, suggesting the universality of this strategy. In conclusion, we have demonstrated that the incorporation of the NGFR marker gene within the CAR sequence allows for a single molecule to simultaneously work as a therapeutic and selection/tracking gene. Looking ahead, NGFR spacer enrichment might allow good manufacturing procedures-manufacturing of standardized CAR-T cell products with high therapeutic potential, which could be harmonized in different clinical trials and used in combination with a suicide gene for future application in the allogeneic setting. PMID:29619024

  2. CD 10 expression intensity in various grades and stages of urothelial carcinoma of urinary bladder.

    PubMed

    Atique, Muhammad; Abbasi, Muhammad Sajjad; Jamal, Shahid; Khadim, Muhammad Tahir; Akhtar, Farhan; Jamal, Nighat

    2014-05-01

    To evaluate CD10 expression in urothelial carcinoma of the urinary bladder and the association of immunohistochemical (IHC) CD10 expression intensity with grade and stage. Descriptive cross-sectional analytical study. Armed Forces Institute of Pathology, Rawalpindi, from January to December 2011. Fifty consecutive cases of urothelial bladder carcinomas, obtained through transurethral resections, were included in this study. Hematoxylin-eosin (HE) stained sections from each case were re-evaluated histopathologically according to WHO 2004 grading system. The TNM system was used for pathologic staging. On selected slides IHC CD10 marker was applied and a semiquantitative scoring for its expression based on the percentage of positive cells and intensity was performed. Data was entered and analysed on SPSS version 17. Fisher's exact test was used to compare grades, stages of urothelial carcinoma with CD 10 expression and age groups. P < 0.05 was taken as level of significance. Urothelial carcinoma was more common in males. The male to female ratio was 9:1. The older patients > 50 years had higher grade and stage as compared to the younger patients. All cases of high grade urothelial carcinoma showed higher positivity for CD 10. Twenty cases (86.95%) of high grade urothelial carcinoma were positive with +2 immunostaining while 3 cases (13.04 %) were positive with +1 staining. None of the tumors of stage pTa was positive for CD 10 expression. Of all patients with stage pT 1 tumor, 1 case (5.3%) was CD 10 negative and 17 cases (89.9%) were CD 10 positive having +1 staining with 5 - 50% staining and 1 case (5.3%) had +2 staining with more then 50% expression. Out of all patients with stage pT 2, no tumor was CD 10 negative, 3 (13.6%) patients were CD 10 positive with +1 staining and 19 (86.4%) with stage pT 2 tumor had stained positive with +2 staining. CD 10 expression was greater in high grade and invasive urothelial carcinomas; it may be associated with tumor progression

  3. Induction of CD69 expression by cagPAI-positive Helicobacter pylori infection

    PubMed Central

    Mori, Naoki; Ishikawa, Chie; Senba, Masachika

    2011-01-01

    AIM: To investigate and elucidate the molecular mechanism that regulates inducible expression of CD69 by Helicobacter pylori (H. pylori) infection. METHODS: The expression levels of CD69 in a T-cell line, Jurkat, primary human peripheral blood mononuclear cells (PBMCs), and CD4+ T cells, were assessed by immunohistochemistry, reverse transcription polymerase chain reaction, and flow cytometry. Activation of CD69 promoter was detected by reporter gene. Nuclear factor (NF)-κB activation in Jurkat cells infected with H. pylori was evaluated by electrophoretic mobility shift assay. The role of NF-κB signaling in H. pylori-induced CD69 expression was analyzed using inhibitors of NF-κB and dominant-negative mutants. The isogenic mutants with disrupted cag pathogenicity island (cagPAI) and virD4 were used to elucidate the role of cagPAI-encoding type IV secretion system and CagA in CD69 expression. RESULTS: CD69 staining was detected in mucosal lymphocytes and macrophages in specimens of patients with H. pylori-positive gastritis. Although cagPAI-positive H. pylori and an isogenic mutant of virD4 induced CD69 expression, an isogenic mutant of cagPAI failed to induce this in Jurkat cells. H. pylori also induced CD69 expression in PBMCs and CD4+ T cells. The activation of the CD69 promoter by H. pylori was mediated through NF-κB. Transfection of dominant-negative mutants of IκBs, IκB kinases, and NF-κB-inducing kinase inhibited H. pylori-induced CD69 activation. Inhibitors of NF-κB suppressed H. pylori-induced CD69 mRNA expression. CONCLUSION: The results suggest that H. pylori induces CD69 expression through the activation of NF-κB. cagPAI might be relevant in the induction of CD69 expression in T cells. CD69 in T cells may play a role in H. pylori-induced gastritis. PMID:21990950

  4. Mouse CD23 regulates monocyte activation through an interaction with the adhesion molecule CD11b/CD18.

    PubMed

    Lecoanet-Henchoz, S; Plater-Zyberk, C; Graber, P; Gretener, D; Aubry, J P; Conrad, D H; Bonnefoy, J Y

    1997-09-01

    CD23 is expressed on a variety of hemopoietic cells. Recently, we have reported that blocking CD23 interactions in a murine model of arthritis resulted in a marked improvement of disease severity. Here, we demonstrate that CD11b, the alpha chain of the beta 2 integrin adhesion molecule complex CD11b/CD18 expressed on monocytes interacts with CD23. Using a recombinant fusion protein (ZZ-CD23), murine CD23 was shown to bind to peritoneal macrophages and peripheral blood cells isolated from mice as well as the murine macrophage cell line, RAW. The interactions between mouse ZZ-CD23 and CD11b/CD18-expressing cells were significantly inhibited by anti-CD11b monoclonal antibodies. A functional consequence was then demonstrated by inducing an up-regulation of interleukin-6 (IL-6) production following ZZ-CD23 incubation with monocytes. The addition of Fab fragments generated from the monoclonal antibody CD11b impaired this cytokine production by 50%. Interestingly, a positive autocrine loop was identified as IL-6 was shown to increase CD23 binding to macrophages. These results demonstrate that similar to findings using human cells, murine CD23 binds to the surface adhesion molecule, CD11b, and these interactions regulate biological activities of murine myeloid cells.

  5. The ThPOK transcription factor differentially affects the development and function of self-specific CD8(+) T cells and regulatory CD4(+) T cells.

    PubMed

    Twu, Yuh-Ching; Teh, Hung-Sia

    2014-03-01

    The zinc finger transcription factor ThPOK plays a crucial role in CD4 T-cell development and CD4/CD8 lineage decision. In ThPOK-deficient mice, developing T cells expressing MHC class II-restricted T-cell receptors are redirected into the CD8 T-cell lineage. In this study, we investigated whether the ThPOK transgene affected the development and function of two additional types of T cells, namely self-specific CD8 T cells and CD4(+) FoxP3(+) T regulatory cells. Self-specific CD8 T cells are characterized by high expression of CD44, CD122, Ly6C, 1B11 and proliferation in response to either IL-2 or IL-15. The ThPOK transgene converted these self-specific CD8 T cells into CD4 T cells. The converted CD4(+) T cells are no longer self-reactive, lose the characteristics of self-specific CD8 T cells, acquire the properties of conventional CD4 T cells and survive poorly in peripheral lymphoid organs. By contrast, the ThPOK transgene promoted the development of CD4(+) FoxP3(+) regulatory T cells resulting in an increased recovery of CD4(+) FoxP3(+) regulatory T cells that expressed higher transforming growth factor-β-dependent suppressor activity. These studies indicate that the ThPOK transcription factor differentially affects the development and function of self-specific CD8 T cells and CD4(+) FoxP3(+) regulatory T cells. © 2013 John Wiley & Sons Ltd.

  6. The role of CD147 expression in prostate cancer: a systematic review and meta-analysis

    PubMed Central

    Ye, Yun; Li, Su-Liang; Wang, Yao; Yao, Yang; Wang, Juan; Ma, Yue-Yun; Hao, Xiao-Ke

    2016-01-01

    Background There are a number of studies which show that expression of CD147 is increased significantly in prostate cancer (PCa). However, conflicting conclusions have also been reported by other researchers lately. In order to arrive at a clear conclusion, a meta-analysis of eligible studies was conducted. Materials and methods We searched PubMed, MEDLINE, Cochrane Library, and the China National Knowledge Infrastructure databases to identify all the published case–control studies on the relationship between the expression of CD147 and PCa until February 2016. In the end, a total of 930 patients in eight studies were included in the meta-analysis. Results CD147 expression in the PCa patients increased significantly (odds ratio [OR], 4.65; 95% confidence interval [CI], 3.52–6.14; Z=10.79; P<0.05), but there was obvious heterogeneity between studies (I2=92.9%, P<0.05). Subgroup analysis showed that positive expression of CD147 was associated with PCa among the Asian population (OR, 21.01; 95% CI, 12.88–34.28; Z=12.19; P<0.05). Furthermore, it was significantly related to TNM stage (OR, 0.24; 95% CI, 0.17–0.35; Z=7.74; P<0.05), Gleason score (OR, 0.41; 95% CI, 0.31–0.56; Z=5.62; P<0.05), differentiation grade (OR, 0.27; 95% CI, 0.13–0.56; Z=3.47; P<0.05), and pretreatment serum prostate-specific antigen level (OR, 0.07; 95% CI, 0.03–0.16; Z=6.47; P<0.05). Conclusion Positive expression of CD147 was related to PCa, significant heterogeneity was not found between Asian studies, and the result became more significant. The positive expression of CD147 was significantly related to the clinicopathological characteristics of PCa. This suggests that CD147 plays an essential role in poor prognosis and recurrence prediction. PMID:27536064

  7. Targeted delivery of CD44s-siRNA by ScFv overcomes de novo resistance to cetuximab in triple negative breast cancer.

    PubMed

    Fu, Wenyan; Sun, Hefen; Zhao, Yang; Chen, Mengting; Yang, Lipeng; Yang, Xueli; Jin, Wei

    2018-05-16

    The overexpression of EGFR often occurs in TNBC, and the anti-EGFR receptor antibody cetuximab is used widely to treat metastatic cancer in the clinic. However, EGFR-targeted therapies have been developed for TNBC without clinical success. In this study, we show that impaired EGFR degradation is crucial for resistance to cetuximab, which depends on the cell surface molecule CD44. To further investigate the role of CD44 in EGFR signaling and its treatment potential, we developed a targeting fusion protein composed of an anti-EGFR scFv generated from cetuximab and truncated protamine, called Ce-tP. CD44 siRNA can be specifically delivered into EGFR-positive TNBC cells by Ce-tP. Efficient knockdown of CD44 and suppression of both EGFR and downstream signaling by the Ce-tP/siRNA complex were observed in EGFR-positive TNBC cells. More importantly, our results also showed that targeted delivery of siRNA specific for CD44 can efficiently overcome resistance to EGFR targeting in TNBC cells both in vitro and in vivo. Overall, our results establish a new principle to achieve EGFR inhibition in TNBC and limit drug resistance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. CXCR6 identifies a putative population of retained human lung T cells characterised by co-expression of activation markers.

    PubMed

    Morgan, Angela J; Guillen, Cristina; Symon, Fiona A; Birring, Surinder S; Campbell, James J; Wardlaw, Andrew J

    2008-01-01

    Expressions of activation markers have been described on the surface of T cells in the blood and the lung in both health and disease. We have studied the distribution of activation markers on human lung T cells and have found that only certain populations exist. Importantly, the presence or absence of some markers appears to predict those of others, in particular cells which express CD103 also express CD49a and CD69, whereas cells which do not express CD69 also do not express CD49a or CD103. In view of the paucity of activation marker expression in the peripheral blood, we have hypothesised that these CD69+, CD49a+, and CD103+ (triple positive) cells are retained in the lung, possess effector function (IFNgamma secretion) and express particular chemokine receptors which allow them to be maintained in this environment. We have found that the ability of the triple negative cells to secrete IFNgamma is significantly less than the triple positive cells, suggesting that the expression of activation markers can highlight a highly specialised effector cell. We have studied the expression of 14 chemokine receptors and have found that the most striking difference between the triple negative cells and the triple positive cells is the expression of CXCR6 with 12.8+/-9.8% of triple negative cells expressing CXCR6 compared to 89.5+/-5.5% of triple positive cells. We propose therefore that CXCR6 may play an important role in the retention of T cells within the lung.

  9. Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts.

    PubMed

    Zhong, Yinan; Zhang, Jian; Cheng, Ru; Deng, Chao; Meng, Fenghua; Xie, Fang; Zhong, Zhiyuan

    2015-05-10

    The existence of drug resistance poses a major obstacle for the treatment of various malignant human cancers. Here, we report on reduction-sensitive reversibly crosslinked hyaluronic acid (HA) nanoparticles based on HA-Lys-LA conjugates (Lys: l-lysine methyl ester, LA: lipoic acid) for active targeting delivery of doxorubicin (DOX) to CD44+ breast cancers in vitro and in vivo, effectively overcoming drug resistance (ADR). HA-Lys-LA with degrees of substitution of 5, 10 and 28% formed robust nano-sized nanoparticles (152-219nm) following auto-crosslinking. DOX-loaded crosslinked nanoparticles revealed inhibited DOX release under physiological conditions while fast drug release in the presence of 10mM glutathione (GSH). Notably, MTT assays showed that DOX-loaded crosslinked HA-Lys-LA10 nanoparticles possessed an apparent targetability and a superior antitumor activity toward CD44 receptor overexpressing DOX-resistant MCF-7 human breast cancer cells (MCF-7/ADR). The in vivo pharmacokinetics and biodistribution studies in MCF-7/ADR tumor xenografts in nude mice showed that DOX-loaded crosslinked HA-Lys-LA10 nanoparticles had a prolonged circulation time and a remarkably high accumulation in the tumor (12.71%ID/g). Notably, DOX-loaded crosslinked HA-Lys-LA10 nanoparticles exhibited effective inhibition of tumor growth while continuous tumor growth was observed for mice treated with free drug. The Kaplan-Meier survival curves showed that in contrast to control groups, all mice treated with DOX-loaded crosslinked HA-Lys-LA10 nanoparticles survived over an experimental period of 44days. Importantly, DOX-loaded crosslinked HA nanoparticles caused low side effects. The reversibly crosslinked hyaluronic acid nanoparticles with excellent biocompatibility, CD44-targetability, and effective reversal of drug resistance have a great potential in cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Human papillomavirus E6 protein enriches the CD55(+) population in cervical cancer cells, promoting radioresistance and cancer aggressiveness.

    PubMed

    Leung, Thomas Ho-Yin; Tang, Hermit Wai-Man; Siu, Michelle Kwan-Yee; Chan, David Wai; Chan, Karen Kar-Loen; Cheung, Annie Nga-Yin; Ngan, Hextan Yuen-Sheung

    2018-02-01

    Accumulating evidence indicates that the human papillomavirus (HPV) E6 protein plays a crucial role in the development of cervical cancer. Subpopulations of cells that reside within tumours are responsible for tumour resistance to cancer therapy and recurrence. However, the identity of such cells residing in cervical cancer and their relationship with the HPV-E6 protein have not been identified. Here, we isolated sphere-forming cells, which showed self-renewal ability, from primary cervical tumours. Gene expression profiling revealed that cluster of differentiation (CD) 55 was upregulated in primary cervical cancer sphere cells. Flow-cytometric analysis detected abundant CD55(+) populations among a panel of HPV-positive cervical cancer cell lines, whereas few CD55(+) cells were found in HPV-negative cervical cancer and normal cervical epithelial cell lines. The CD55(+) subpopulation isolated from the C33A cell line showed significant sphere-forming ability and enhanced tumourigenicity, cell migration, and radioresistance. In contrast, the suppression of CD55 in HPV-positive CaSki cells inhibited tumourigenicity both in vitro and in vivo, and sensitized cells to radiation treatment. In addition, ectopic expression of the HPV-E6 protein in HPV-negative cervical cancer cells dramatically enriched the CD55(+) subpopulation. CRISPR/Cas9 knockout of CD55 in an HPV-E6-overexpressing stable clone abolished the tumourigenic effects of the HPV-E6 protein. Taken together, our data suggest that HPV-E6 protein expression enriches the CD55(+) population, which contributes to tumourigenicity and radioresistance in cervical cancer cells. Targeting CD55 via CRISPR/Cas9 may represent a novel avenue for developing new strategies and effective therapies for the treatment of cervical cancer. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John

  11. Luteolin, a flavonoid, inhibits CD40 ligand expression by activated human basophils.

    PubMed

    Hirano, Toru; Arimitsu, Junsuke; Higa, Shinji; Naka, Tetsuji; Ogata, Atsushi; Shima, Yoshihito; Fujimoto, Minoru; Yamadori, Tomoki; Ohkawara, Tomoharu; Kuwabara, Yusuke; Kawai, Mari; Kawase, Ichiro; Tanaka, Toshio

    2006-01-01

    We have previously shown that flavonoids such as luteolin, apigenin and fisetin inhibit interleukin 4 and interleukin 13 production. In this study, we investigated whether luteolin can suppress CD40 ligand expression by basophils. A human basophilic cell line, KU812, was stimulated with A23187 and phorbol myristate acetate (PMA) with or without various concentrations of luteolin or other flavonoids for 12 h, and CD40 ligand expression was analyzed by FACS. The effect of luteolin on CD40 ligand mRNA expression was studied by semiquantitative reverse transcription PCR analysis. In addition, CD40 ligand expression was also measured in purified basophils that had been stimulated for 12 h with A23187 plus PMA with or without various concentrations of luteolin. CD40 ligand expression by KU812 cells was enhanced noticeably in response to A23187 and even more strikingly augmented by A23187 plus PMA. The expression was significantly suppressed by 10 or 30 microM of luteolin, whereas myricetin failed to inhibit. Reverse transcription PCR analyses demonstrated that luteolin inhibited CD40 ligand mRNA expression by stimulated KU812 cells. Of the six flavonoids examined, luteolin, apigenin, fisetin and quercetin at 30 microM showed a significant inhibitory effect on CD40 ligand expression. The incubation of purified basophils with A23187 plus PMA significantly enhanced CD40 ligand expression, and the presence of luteolin again had an inhibitory effect. Luteolin inhibits CD40 ligand expression by activated basophils.

  12. Forced expression of the Ikaros 6 isoform in human placental blood CD34(+) cells impairs their ability to differentiate toward the B-lymphoid lineage.

    PubMed

    Tonnelle, C; Bardin, F; Maroc, C; Imbert, A M; Campa, F; Dalloul, A; Schmitt, C; Chabannon, C

    2001-11-01

    Studies in mice suggest that the Ikaros (Ik) gene encodes several isoforms and is a critical regulator of hematolymphoid differentiation. Little is known on the role of Ikaros in human stem cell differentiation. Herein, the biological consequences of the forced expression of Ikaros 6 (Ik6) in human placental blood CD34(+) progenitors are evaluated. Ik6 is one of the isoforms produced from the Ikaros premessenger RNA by alternative splicing and is thought to behave as a dominant negative isoform of the gene product because it lacks the DNA binding domain present in transcriptionally active isoforms. The results demonstrate that human cord blood CD34(+) cells that express high levels of Ik6 as a result of retrovirally mediated gene transfer have a reduced capacity to produce lymphoid B cells in 2 independent assays: (1) in vitro reinitiation of human hematopoiesis during coculture with the MS-5 murine stromal cell line and (2) xenotransplantation in nonobese diabetic-severe combined immunodeficient mice. These results suggest that Ikaros plays an important role in stem cell commitment in humans and that the balance between the different isoforms is a key element of this regulatory system; they support the hypothesis that posttranscriptional events can participate in the control of human hematopoietic differentiation.

  13. A novel CD44-binding peptide from the pro-matrix metalloproteinase-9 hemopexin domain impairs adhesion and migration of chronic lymphocytic leukemia (CLL) cells.

    PubMed

    Ugarte-Berzal, Estefanía; Bailón, Elvira; Amigo-Jiménez, Irene; Albar, Juan Pablo; García-Marco, José A; García-Pardo, Angeles

    2014-05-30

    (pro)MMP-9 binds to CLL cells through the PEX9 domain and contributes to CLL progression. To biochemically characterize this interaction and identify potential therapeutic targets, we prepared GST-PEX9 forms containing structural blades B1B2 or B3B4. We recently described a sequence in blade B4 (P3 sequence) that bound α4β1 integrin and partially impaired cell adhesion and migration. We have now studied the possible contribution of the B1B2 region to cell interaction with PEX9. CLL cells bound to GST-B1B2 and CD44 was the primary receptor. GST-B1B2 inhibited CLL cell migration as effectively as GST-B3B4. Overlapping synthetic peptides spanning the B1B2 region identified the sequence FDAIAEIGNQLYLFKDGKYW, present in B1 and contained in peptide P6, as the most effective site. P6 inhibited cell adhesion to PEX9 in a dose-dependent manner and with an IC50 value of 90 μM. P6 also inhibited cell adhesion to hyaluronan but had no effect on adhesion to VCAM-1 (α4β1 integrin ligand), confirming its specific interaction with CD44. Spatial localization analyses mapped P6 to the central cavity of PEX9, in close proximity to the previously identified P3 sequence. Both P6 and P3 equally impaired cell adhesion to (pro)MMP-9. Moreover, P6 synergistically cooperated with P3, resulting in complete inhibition of CLL cell binding to PEX9, chemotaxis, and transendothelial migration. Thus, P6 is a novel sequence in PEX9 involved in cell-PEX9/(pro)MMP-9 binding by interacting with CD44. Targeting both sites, P6 and P3, should efficiently prevent (pro)MMP-9 binding to CLL cells and its pathological consequences. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. High Cell Surface Expression of CD4 Allows Distinction of CD4+CD25+ Antigen-specific Effector T Cells from CD4+CD25+ Regulatory T Cells in Murine Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Li, Jinzhu; Ridgway, William; Fathman, C. Garrison; Tse, Harley Y.; Shaw, Michael K.

    2008-01-01

    Analysis of T regulatory cells (Treg) and T effector cells (Teff) in experimental autoimmune encephalomyelitis is complicated by the fact that both cell types express CD4 and CD25. We demonstrate that encephalitogenic T cells, following antigen recognition, up regulate cell surface expression of CD4. The CD4high sub-population contains all of the antigen response as shown by proliferation and cytokine secretion, and only these cells are capable of transferring EAE to naive animals. On the other hand, a FACS separable CD25+ sub-population of cells displayed consistent levels of CD4 prior to and after antigen stimulation. These cells displayed characteristics of Treg, such as expressing high levels of the Foxp3 gene and the ability to suppress mitogenic T cell responses. PMID:17920698

  15. Soluble expression of disulfide-bonded C-type lectin like domain of human CD93 in the cytoplasm of Escherichia coli.

    PubMed

    Nativel, Brice; Figuester, Audrey; Andries, Jessica; Planesse, Cynthia; Couprie, Joël; Gasque, Philippe; Viranaicken, Wildriss; Iwema, Thomas

    2016-12-01

    CD93 belongs to the group XIV C-type lectin like domain (CTLD) and is closely related to thrombomodulin (CD141). Although CD93 is known to be involved in the regulation of cell adhesion and phagocytosis, its role in innate immunity remains to be fully investigated. Critically, published data about CD141 suggest that CD93 CTLD could be involved in the control of inflammation. In order to address further functional and structural analyses, we expressed human CD93 CTLD with several disulfide bonds in an E. coli expression system. As the E. coli cytoplasm is a reducing compartment, production of disulfide-bond proteins remains a challenge. Hence, we decided to over express CD93 CTLD in commercially available strains of E. coli and co-expressed a sulfhydryl oxidase (Erv1p) and a disulfide isomerase (DsbC). This strategy led to high yield expression of a native form of CD93 CTLD. NMR studies revealed that Ca 2+ was not able to bind to CD93 CTLD. We also showed that the recombinant protein could alter LPS pro-inflammatory activity on THP1. This work provides new tool for further functional and structural studies to decipher the functions associated to the CTLD of CD93. This approach may also be used for others members of the group XIV C-type lectin like domain (CD141, CD248 and CLec14A). Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Trigger-happy resident memory CD4+ T cells inhabit the human lungs.

    PubMed

    Oja, A E; Piet, B; Helbig, C; Stark, R; van der Zwan, D; Blaauwgeers, H; Remmerswaal, E B M; Amsen, D; Jonkers, R E; Moerland, P D; Nolte, M A; van Lier, R A W; Hombrink, P

    2018-05-01

    Resident memory T cells (T RM ) reside in the lung epithelium and mediate protective immunity against respiratory pathogens. Although lung CD8 + T RM have been extensively characterized, the properties of CD4 + T RM remain unclear. Here we determined the transcriptional signature of CD4 + T RM , identified by the expression of CD103, retrieved from human lung resection material. Various tissue homing molecules were specifically upregulated on CD4 + T RM , whereas expression of tissue egress and lymph node homing molecules were low. CD103 + T RM expressed low levels of T-bet, only a small portion expressed Eomesodermin (Eomes), and although the mRNA levels for Hobit were increased, protein expression was absent. On the other hand, the CD103 + T RM showed a Notch signature. CD4 + CD103 + T RM constitutively expressed high transcript levels of numerous cytotoxic mediators that was functionally reflected by a fast recall response, magnitude of cytokine production, and a high degree of polyfunctionality. Interestingly, the superior cytokine production appears to be because of an accessible interferon-γ (IFNγ) locus and was partially because of rapid translation of preformed mRNA. Our studies provide a molecular understanding of the maintenance and potential function of CD4 + T RM in the human lung. Understanding the specific properties of CD4 + T RM is required to rationally improve vaccine design.

  17. Effect of CMV and Aging on the Differential Expression of CD300a, CD161, T-bet, and Eomes on NK Cell Subsets.

    PubMed

    Lopez-Sejas, Nelson; Campos, Carmen; Hassouneh, Fakhri; Sanchez-Correa, Beatriz; Tarazona, Raquel; Pera, Alejandra; Solana, Rafael

    2016-01-01

    Natural killer (NK) cells are innate lymphoid cells involved in the defense against virus-infected cells and tumor cells. NK cell phenotype and function is affected with age and cytomegalovirus (CMV) latent infection. Aging affects the frequency and phenotype of NK cells, and CMV infection also contributes to these alterations. Thus, a reduction of CD56 bright NK cell subpopulation associated with age and an expansion of memory-like NK cells CD56 dim CD57 + NKG2C + probably related to CMV seropositivity have been described. NK cells express T-bet and Eomes transcription factors that are necessary for the development of NK cells. Here, we analyze the effect of age and CMV seropositivity on the expression of CD300a and CD161 inhibitory receptors, and T-bet and Eomes transcription factors in NK cell subsets defined by the expression of CD56 and CD57. CD300a is expressed by the majority of NK cells. CD56 bright NK cells express higher levels of CD300a than CD56 dim NK cells. An increase in the expression of CD300a was associated with age, whereas a decreased expression of CD161 in CD56 dim NK cells was associated with CMV seropositivity. In CD56 dim NK cells, an increased percentage of CD57 + CD300a + and a reduction in the percentage of CD161 + CD300a + cells were found to be associated with CMV seropositivity. Regarding T-bet and Eomes transcription factors, CMV seropositivity was associated with a decrease of T-bet hi in CD56 dim CD57 + NK cells from young individuals, whereas Eomes expression was increased with CMV seropositivity in both CD56 bright and CD56 dim CD57 +/- (from middle age and young individuals, respectively) and was decreased with aging in all NK subsets from the three group of age. In conclusion, CMV infection and age induce significant changes in the expression of CD300a and CD161 in NK cell subsets defined by the expression of CD56 and CD57. T-bet and Eomes are differentially expressed on NK cell subsets, and their expression is affected by CMV

  18. BMP-non-responsive Sca1+ CD73+ CD44+ mouse bone marrow derived osteoprogenitor cells respond to combination of VEGF and BMP-6 to display enhanced osteoblastic differentiation and ectopic bone formation.

    PubMed

    Madhu, Vedavathi; Li, Ching-Ju; Dighe, Abhijit S; Balian, Gary; Cui, Quanjun

    2014-01-01

    Clinical trials on fracture repair have challenged the effectiveness of bone morphogenetic proteins (BMPs) but suggest that delivery of mesenchymal stem cells (MSCs) might be beneficial. It has also been reported that BMPs could not increase mineralization in several MSCs populations, which adds ambiguity to the use of BMPs. However, an exogenous supply of MSCs combined with vascular endothelial growth factor (VEGF) and BMPs is reported to synergistically enhance fracture repair in animal models. To elucidate the mechanism of this synergy, we investigated the osteoblastic differentiation of cloned mouse bone marrow derived MSCs (D1 cells) in vitro in response to human recombinant proteins of VEGF, BMPs (-2, -4, -6, -9) and the combination of VEGF with BMP-6 (most potent BMP). We further investigated ectopic bone formation induced by MSCs pre-conditioned with VEGF, BMP-6 or both. No significant increase in mineralization, phosphorylation of Smads 1/5/8 and expression of the ALP, COL1A1 and osterix genes was observed upon addition of VEGF or BMPs alone to the cells in culture. The lack of CD105, Alk1 and Alk6 expression in D1 cells correlated with poor response to BMPs indicating that a greater care in the selection of MSCs is necessary. Interestingly, the combination of VEGF and BMP-6 significantly increased the expression of ALP, COL1A1 and osterix genes and D1 cells pre-conditioned with VEGF and BMP-6 induced greater bone formation in vivo than the non-conditioned control cells or the cells pre-conditioned with either VEGF or BMP-6 alone. This enhanced bone formation by MSCs correlated with higher CADM1 expression and OPG/RANKL ratio in the implants. Thus, combined action of VEGF and BMP on MSCs enhances osteoblastic differentiation of MSCs and increases their bone forming ability, which cannot be achieved through use of BMPs alone. This strategy can be effectively used for bone repair.

  19. A CD133-expressing murine liver oval cell population with bilineage potential.

    PubMed

    Rountree, C Bart; Barsky, Lora; Ge, Shundi; Zhu, Judy; Senadheera, Shantha; Crooks, Gay M

    2007-10-01

    Although oval cells are postulated to be adult liver stem cells, a well-defined phenotype of a bipotent liver stem cell remains elusive. The heterogeneity of cells within the oval cell fraction has hindered lineage potential studies. Our goal was to identify an enriched population of bipotent oval cells using a combination of flow cytometry and single cell gene expression in conjunction with lineage-specific liver injury models. Expression of cell surface markers on nonparenchymal, nonhematopoietic (CD45-) cells were characterized. Cell populations were isolated by flow cytometry for gene expression studies. 3,5-Diethoxycarbonyl-1,4-dihydrocollidine toxic injury induced cell cycling and expansion specifically in the subpopulation of oval cells in the periportal zone that express CD133. CD133+CD45- cells expressed hepatoblast and stem cell-associated genes, and single cells coexpressed both hepatocyte and cholangiocyte-associated genes, indicating bilineage potential. CD133+CD45- cells proliferated in response to liver injury. Following toxic hepatocyte damage, CD133+CD45- cells demonstrated upregulated expression of the hepatocyte gene Albumin. In contrast, toxic cholangiocyte injury resulted in upregulation of the cholangiocyte gene Ck19. After 21-28 days in culture, CD133+CD45- cells continued to generate cells of both hepatocyte and cholangiocyte lineages. Thus, CD133 expression identifies a population of oval cells in adult murine liver with the gene expression profile and function of primitive, bipotent liver stem cells. In response to lineage-specific injury, these cells demonstrate a lineage-appropriate genetic response. Disclosure of potential conflicts of interest is found at the end of this article.

  20. [Cloning of human CD45 gene and its expression in Hela cells].

    PubMed

    Li, Jie; Xu, Tianyu; Wu, Lulin; Zhang, Liyun; Lu, Xiao; Zuo, Daming; Chen, Zhengliang

    2015-11-01

    To clone human CD45 gene PTPRC and establish Hela cells overexpressing recombinant human CD45 protein. The intact cDNA encoding human CD45 amplified using RT-PCR from the total RNA extracted from peripheral blood mononuclear cells (PBMCs) of a healthy donor was cloned into pMD-18T vector. The CD45 cDNA fragment amplified from the pMD-18T-CD45 by PCR was inserted to the coding region of the PcDNA3.1-3xflag vector, and the resultant recombinant expression vector PcDNA3.1-3xflag-CD45 was transfected into Hela cells. The expression of CD45 in Hela cells was detected by flow cytometry and Western blotting, and the phosphastase activity of CD45 was quantified using an alkaline phosphatase assay kit. The cDNA fragment of about 3 900 bp was amplified from human PBMCs and cloned into pMD-18T vector. The recombinant expression vector PcDNA3.1-3xflag-CD45 was constructed, whose restriction maps and sequence were consistent with those expected. The expression of CD45 in transfected Hela cells was detected by flow cytometry and Western blotting, and the expressed recombinant CD45 protein in Hela cells showed a phosphastase activity. The cDNA of human CD45 was successfully cloned and effectively expressed in Hela cells, which provides a basis for further exploration of the functions of CD45.

  1. Correlations between Transmembrane 4 L6 Family Member 5 (TM4SF5), CD151, and CD63 in Liver Fibrotic Phenotypes and Hepatic Migration and Invasive Capacities

    PubMed Central

    Kang, Minkyung; Ryu, Jihye; Lee, Doohyung; Lee, Mi-Sook; Kim, Hye-Jin; Nam, Seo Hee; Song, Haeng Eun; Choi, Jungeun; Lee, Gyu-Ho; Kim, Tai Young; Lee, Hansoo; Kim, Sang Jick; Ye, Sang-Kyu; Kim, Semi; Lee, Jung Weon

    2014-01-01

    Transmembrane 4 L6 family member 5 (TM4SF5) is overexpressed during CCl4-mediated murine liver fibrosis and in human hepatocellular carcinomas. The tetraspanins form tetraspanin-enriched microdomains (TEMs) consisting of large membrane protein complexes on the cell surface. Thus, TM4SF5 may be involved in the signal coordination that controls liver malignancy. We investigated the relationship between TM4SF5-positive TEMs with liver fibrosis and tumorigenesis, using normal Chang hepatocytes that lack TM4SF5 expression and chronically TGFβ1-treated Chang cells that express TM4SF5. TM4SF5 expression is positively correlated with tumorigenic CD151 expression, but is negatively correlated with tumor-suppressive CD63 expression in mouse fibrotic and human hepatic carcinoma tissues, indicating cooperative roles of the tetraspanins in liver malignancies. Although CD151 did not control the expression of TM4SF5, TM4SF5 appeared to control the expression levels of CD151 and CD63. TM4SF5 interacted with CD151, and caused the internalization of CD63 from the cell surface into late lysosomal membranes, presumably leading to terminating the tumor-suppressive functions of CD63. TM4SF5 could overcome the tumorigenic effects of CD151, especially cell migration and extracellular matrix (ECM)-degradation. Taken together, TM4SF5 appears to play a role in liver malignancy by controlling the levels of tetraspanins on the cell surface, and could provide a promising therapeutic target for the treatment of liver malignancies. PMID:25033048

  2. Expression of CD30 in patients with acute graft-versus-host disease.

    PubMed

    Chen, Yi-Bin; McDonough, Sean; Hasserjian, Robert; Chen, Heidi; Coughlin, Erin; Illiano, Christina; Park, In Sun; Jagasia, Madan; Spitzer, Thomas R; Cutler, Corey S; Soiffer, Robert J; Ritz, Jerome

    2012-07-19

    Acute GVHD (aGVHD) remains a major source of morbidity after allogeneic hematopoietic cell transplantation. CD30 is a cell-surface protein expressed on certain activated T cells. We analyzed CD30 expression on peripheral blood T-cell subsets and soluble CD30 levels in 26 patients at the time of presentation of aGVHD, before the initiation of treatment, compared with 27 patients after hematopoietic cell transplantation without aGVHD (NONE). Analysis by flow cytometry showed that patients with aGVHD had a greater percentage of CD30 expressing CD8(+) T cells with the difference especially pronounced in the central memory subset (CD8(+)CD45RO(+)CD62L(+)): GVHD median 12.4% (range, 0.8%-33.4%) versus NONE 2.1% (0.7%, 17.5%), P < .001. There were similar levels of CD30 expression in naive T cells, CD4(+) T cells, and regulatory (CD4(+)CD127(low)CD25(+)) T cells. Plasma levels of soluble CD30 were significantly greater in patients with GVHD: median 61.7 ng/mL (range, 9.8-357.1 ng/mL) versus 17.4 (range, 3.7-142.4 ng/mL) in NONE (P < .001). Immunohistochemical analysis of affected intestinal tissue showed many CD30(+) infiltrating lymphocytes present. These results suggest that CD30 expression on CD8(+) T-cell subsets or plasma levels of soluble CD30 may be a potential biomarker for aGVHD. CD30 may also represent a target for novel therapeutic approaches for aGVHD.

  3. Expression of CD30 in patients with acute graft-versus-host disease

    PubMed Central

    McDonough, Sean; Hasserjian, Robert; Chen, Heidi; Coughlin, Erin; Illiano, Christina; Park, In Sun; Jagasia, Madan; Spitzer, Thomas R.; Cutler, Corey S.; Soiffer, Robert J.; Ritz, Jerome

    2012-01-01

    Acute GVHD (aGVHD) remains a major source of morbidity after allogeneic hematopoietic cell transplantation. CD30 is a cell-surface protein expressed on certain activated T cells. We analyzed CD30 expression on peripheral blood T-cell subsets and soluble CD30 levels in 26 patients at the time of presentation of aGVHD, before the initiation of treatment, compared with 27 patients after hematopoietic cell transplantation without aGVHD (NONE). Analysis by flow cytometry showed that patients with aGVHD had a greater percentage of CD30 expressing CD8+ T cells with the difference especially pronounced in the central memory subset (CD8+CD45RO+CD62L+): GVHD median 12.4% (range, 0.8%-33.4%) versus NONE 2.1% (0.7%, 17.5%), P < .001. There were similar levels of CD30 expression in naive T cells, CD4+ T cells, and regulatory (CD4+CD127lowCD25+) T cells. Plasma levels of soluble CD30 were significantly greater in patients with GVHD: median 61.7 ng/mL (range, 9.8-357.1 ng/mL) versus 17.4 (range, 3.7-142.4 ng/mL) in NONE (P < .001). Immunohistochemical analysis of affected intestinal tissue showed many CD30+ infiltrating lymphocytes present. These results suggest that CD30 expression on CD8+ T-cell subsets or plasma levels of soluble CD30 may be a potential biomarker for aGVHD. CD30 may also represent a target for novel therapeutic approaches for aGVHD. PMID:22661699

  4. Transcriptome Analysis of Mycobacteria-Specific CD4+ T Cells Identified by Activation-Induced Expression of CD154.

    PubMed

    Kunnath-Velayudhan, Shajo; Goldberg, Michael F; Saini, Neeraj K; Johndrow, Christopher T; Ng, Tony W; Johnson, Alison J; Xu, Jiayong; Chan, John; Jacobs, William R; Porcelli, Steven A

    2017-10-01

    Analysis of Ag-specific CD4 + T cells in mycobacterial infections at the transcriptome level is informative but technically challenging. Although several methods exist for identifying Ag-specific T cells, including intracellular cytokine staining, cell surface cytokine-capture assays, and staining with peptide:MHC class II multimers, all of these have significant technical constraints that limit their usefulness. Measurement of activation-induced expression of CD154 has been reported to detect live Ag-specific CD4 + T cells, but this approach remains underexplored and, to our knowledge, has not previously been applied in mycobacteria-infected animals. In this article, we show that CD154 expression identifies adoptively transferred or endogenous Ag-specific CD4 + T cells induced by Mycobacterium bovis bacillus Calmette-Guérin vaccination. We confirmed that Ag-specific cytokine production was positively correlated with CD154 expression by CD4 + T cells from bacillus Calmette-Guérin-vaccinated mice and show that high-quality microarrays can be performed from RNA isolated from CD154 + cells purified by cell sorting. Analysis of microarray data demonstrated that the transcriptome of CD4 + CD154 + cells was distinct from that of CD154 - cells and showed major enrichment of transcripts encoding multiple cytokines and pathways of cellular activation. One notable finding was the identification of a previously unrecognized subset of mycobacteria-specific CD4 + T cells that is characterized by the production of IL-3. Our results support the use of CD154 expression as a practical and reliable method to isolate live Ag-specific CD4 + T cells for transcriptomic analysis and potentially for a range of other studies in infected or previously immunized hosts. Copyright © 2017 by The American Association of Immunologists, Inc.

  5. Prolactin improves hepatic steatosis via CD36 pathway.

    PubMed

    Zhang, Pengzi; Ge, Zhijuan; Wang, Hongdong; Feng, Wenhuan; Sun, Xitai; Chu, Xuehui; Jiang, Can; Wang, Yan; Zhu, Dalong; Bi, Yan

    2018-06-01

    Prolactin (PRL) is a multifunctional polypeptide with effects on metabolism, however, little is known about its effect on hepatic steatosis and lipid metabolism. Herein, we aimed to assess the role of PRL in the development of non-alcoholic fatty liver disease (NAFLD). The serum PRL levels of 456 patients with NAFLD, 403 controls without NAFLD diagnosed by ultrasound, and 85 individuals with liver histology obtained during metabolic surgery (44 female and 30 male patients with NAFLD and 11 age-matched non-NAFLD female individuals) were evaluated. The expression of the gene encoding the prolactin receptor (PRLR) and signalling molecules involved in hepatic lipid metabolism were evaluated in human liver and HepG2 cells. The effects of overexpression of PRLR or fatty acid translocase (FAT)/CD36 or knockdown of PRLR on hepatic lipid metabolism were tested in free fatty acid (FFA)-treated HepG2 cells. Circulating PRL levels were lower in individuals with ultrasound-diagnosed NAFLD (men: 7.9 [range, 5.9-10.3] µg/L; women: 8.7 [range, 6.1-12.4] µg/L) than those with non-NAFLD (men: 9.1 [range, 6.8-13.0] µg/L, p = 0.002; women: 11.6 [range, 8.2-16.1] µg/L, p <0.001). PRL levels in patients with biopsy-proven severe hepatic steatosis were lower compared with those with mild-to-moderate hepatic steatosis in both men (8.3 [range, 5.4-9.5] µg/L vs. 9.7 [range, 7.1-12.3] µg/L, p = 0.031) and women (8.5 [range, 4.2-10.6] µg/L vs. 9.8 [range, 8.2-15.7] µg/L, p = 0.027). Furthermore, hepatic PRLR gene expression was significantly reduced in patients with NAFLD and negatively correlated with CD36 gene expression. In FFA-induced HepG2 cells, PRL treatment or PRLR overexpression significantly reduced the expression of CD36 and lipid content, effects that were abrogated after silencing of PRLR. Furthermore, overexpression of CD36 significantly reduced the PRL-mediated improvement in lipid content. Our results reveal a novel association between the

  6. Role of CD14 in responses to clinical isolates of Escherichia coli: effects of K1 capsule expression.

    PubMed

    Metkar, Shalaka; Awasthi, Shanjana; Denamur, Erick; Kim, Kwang Sik; Gangloff, Sophie C; Teichberg, Saul; Haziot, Alain; Silver, Jack; Goyert, Sanna M

    2007-11-01

    Severe bacterial infections leading to sepsis or septic shock can be induced by bacteria that utilize different factors to drive pathogenicity and/or virulence, leading to disease in the host. One major factor expressed by all clinical isolates of gram-negative bacteria is lipopolysaccharide (LPS); a second factor expressed by some Escherichia coli strains is a K1 polysaccharide capsule. To determine the role of the CD14 LPS receptor in the pathogenic effects of naturally occurring E. coli, the responses of CD14-/- and CD14+/+ mice to three different isolates of E. coli obtained from sepsis patients were compared; two isolates express both smooth LPS and the K1 antigen, while the third isolate expresses only LPS and is negative for K1. An additional K1-positive isolate obtained from a newborn with meningitis and a K1-negative isogenic mutant of this strain were also used for these studies. CD14-/- mice were resistant to the lethal effects of the K1-negative isolates. This resistance was accompanied by significantly lower levels of systemic tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6) in these mice than in CD14+/+ mice, enhanced clearance of the bacteria, and significantly fewer additional gross symptoms. In contrast, CD14-/- mice were as sensitive as CD14+/+ mice to the lethal effects of the K1-positive isolates, even though they had significantly lower levels of TNF-alpha and IL-6 than CD14+/+ mice. These studies show that different bacterial isolates can use distinctly different mechanisms to cause disease and suggest that new, nonantibiotic therapeutics need to be directed against multiple targets.

  7. Prognostic implications of adhesion molecule expression in colorectal cancer.

    PubMed

    Seo, Kyung-Jin; Kim, Maru; Kim, Jeana

    2015-01-01

    Research on the expression of adhesion molecules, E-cadherin (ECAD), CD24, CD44 and osteopontin (OPN) in colorectal cancer (CRC) has been limited, even though CRC is one of the leading causes of cancer-related deaths. This study was conducted to evaluate the expression of adhesion molecules in CRC and to determine their relationships with clinicopathologic variables, and the prognostic significance. The expression of ECAD, CD24, CD44 and OPN was examined in 174 stage II and III CRC specimens by immunohistochemistry of TMA. Negative ECAD expression was significantly correlated with advanced nodal stage and poor tumor differentiation. Multivariate analysis showed that both negative expression of ECAD and positive expression of CD24 were independent prognostic factors for disease-free survival (DFS) in CRC patients (P<0.001, relative risk [RR] = 5.596, 95% CI = 2.712-11.549; P = 0.038, RR = 3.768, 95% CI = 1.077-13.185, respectively). However, for overall survival (OS), only ECAD negativity showed statistically significant results in multivariate analysis (P<0.001, RR = 4.819, 95% CI = 2.515-9.234). Positive expression of CD24 was associated with poor OS in univariate analysis but was of no prognostic value in multivariate analysis. In conclusion, our study suggests that among these four adhesion molecules, ECAD and CD24 expression can be considered independent prognostic factors. The role of CD44 and OPN may need further evaluation.

  8. Prognostic implications of adhesion molecule expression in colorectal cancer

    PubMed Central

    Seo, Kyung-Jin; Kim, Maru; Kim, Jeana

    2015-01-01

    Research on the expression of adhesion molecules, E-cadherin (ECAD), CD24, CD44 and osteopontin (OPN) in colorectal cancer (CRC) has been limited, even though CRC is one of the leading causes of cancer-related deaths. This study was conducted to evaluate the expression of adhesion molecules in CRC and to determine their relationships with clinicopathologic variables, and the prognostic significance. The expression of ECAD, CD24, CD44 and OPN was examined in 174 stage II and III CRC specimens by immunohistochemistry of TMA. Negative ECAD expression was significantly correlated with advanced nodal stage and poor tumor differentiation. Multivariate analysis showed that both negative expression of ECAD and positive expression of CD24 were independent prognostic factors for disease-free survival (DFS) in CRC patients (P<0.001, relative risk [RR] = 5.596, 95% CI = 2.712-11.549; P = 0.038, RR = 3.768, 95% CI = 1.077-13.185, respectively). However, for overall survival (OS), only ECAD negativity showed statistically significant results in multivariate analysis (P<0.001, RR = 4.819, 95% CI = 2.515-9.234). Positive expression of CD24 was associated with poor OS in univariate analysis but was of no prognostic value in multivariate analysis. In conclusion, our study suggests that among these four adhesion molecules, ECAD and CD24 expression can be considered independent prognostic factors. The role of CD44 and OPN may need further evaluation. PMID:26097606

  9. CD4+ Primary T Cells Expressing HCV-Core Protein Upregulate Foxp3 and IL-10, Suppressing CD4 and CD8 T Cells

    PubMed Central

    Aguado, Enrique; Garcia-Cozar, Francisco

    2014-01-01

    Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127lowPD-1highTIM-3high regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein. PMID:24465502

  10. CD52 is expressed on human mast cells and is a potential therapeutic target in Waldenstrom's Macroglobulinemia and mast cell disorders.

    PubMed

    Santos, Daniel Ditzel; Hatjiharissi, Evdoxia; Tournilhac, Olivier; Chemaly, Mariana Z A; Leleu, Xavier; Xu, Lian; Patterson, Christopher; Branagan, Andrew R; Manning, Robert J; Ho, Allen W; Hunter, Zachary R; Dimmock, Elizabeth A; Kutok, Jeffery L; Churchill, Winthrop H; Castells, Mariana C; Tai, Yu-Tzu; Anderson, Kenneth C; Treon, Steven P

    2006-05-01

    Alemtuzumab is a monoclonal antibody used in the treatment of CD52-expressing B-cell malignancies, including Waldenstrom's macroglobulinemia (WM). Recent studies demonstrate high levels of alemtuzumab activity in relapsed/refractory disease. One potential target of alemtuzumab is bone marrow mast cells (BMMCs), which provide growth and survival signaling for WM lymphoplasmacytic cells. We therefore examined BMMCs (FceRI+, CD117+) from WM and other mast cell (MC) disorders for expression of CD52. We identified cell surface antigen expression by multicolor flow cytometric analysis and found CD52 expressed on human mast-derived cell line-1 (HMC-1) and LAD2 MC lines, on BMMC from 13 of 15 patients with WM, and on BMMCs from 4 of 4 patients with systemic mastocytosis (SM). None of 4 healthy donors expressed CD52. Reverse-transcriptase polymerase chain reaction analysis confirmed CD52 expression in the HMC-1 and LAD2 MC lines, in BMMCs from 14 of 15 patients with WM, and 3 of 3 patients with SM. CD52 transcripts were also detected in BMMCs from 6 of 6 healthy donors, despite the absence of CD52 cell surface expression. Importantly, we observed high levels of alemtuzumab-mediated, antibody-dependent, cell-mediated cytotoxicity against LAD2 MCs and BMMCs from patients with WM and SM. These studies demonstrate that CD52 is widely expressed on human MCs and WM bone marrow lymphoplasmacytic cells and provide the preclinical rationale for the use of alemtuzumab in the treatment of WM and possibly other MC-related disorders.

  11. Expression of CD163 in the liver of patients with viral hepatitis.

    PubMed

    Hiraoka, Atsushi; Horiike, Norio; Akbar, Sk Md Fazle; Michitaka, Kojiro; Matsuyama, Takami; Onji, Morikazu

    2005-01-01

    CD163 is a marker of activated macrophages, and increased levels of soluble CD163 have been detected in sera obtained from patients with hepatitis. The aim of this study was to detect the expression of CD163 in the liver from patients with viral hepatitis. Frozen sections of liver specimens were obtained from 5 patients with acute viral hepatitis (AH) and from 23 patients with chronic viral hepatitis (CH). The expression of CD163 in the liver was determined immunohistochemically using monoclonal antibody to human CD163. Double immunostaining was done to assess those cell types that express CD163 in the liver. The frequencies of CD163-positive cells were significantly higher both in the portal areas and in the hepatic lobules in the liver of patients with AH compared to those with CH (p < 0.05). Double immunostaining revealed that most of the CD163-positive cells were macrophages and Kupffer cells, because they expressed CD68. The expression of CD163 was very low in endothelial cells and liver stellate cells. This study shows that macrophages are activated in hepatitis liver.

  12. Rosuvastatin Attenuates CD40L-Induced Downregulation of Extracellular Matrix Production in Human Aortic Smooth Muscle Cells via TRAF6-JNK-NF-κB Pathway

    PubMed Central

    Wang, Xiao-Lin; Zhou, Yuan-Li; Sun, Wei; Li, Li

    2016-01-01

    CD40L and statins exhibit pro-inflammatory and anti-inflammatory effects, respectively. They are both pleiotropic and can regulate extracellular matrix (ECM) degeneration in an atherosclerotic plaque. Statins can decrease both the CD40 expression and the resulting inflammation. However, the effects of CD40L and stains on atherosclerotic plaque ECM production and the underlying mechanisms are not well established. Moreover, prolyl-4-hydroxylase α1 (P4Hα1) is involved in collagen synthesis but its correlations with CD40L and statins are unknown. In the present study, CD40L suppressed P4Hα1 expression in human aortic smooth muscle cells (HASMCs) in a dose- and time-dependent manner, with insignificant changes in MMP2 expression and negative enzymatic activity of MMP9. CD40L increased TRAF6 expression, JNK phosphorylation, NF-κB nuclear translocation as well as DNA binding. Furthermore, silencing TRAF6, JNK or NF-κB genes abolished CD40L-induced suppression of P4Hα1. Lower NF-κB nuclear import rates were observed when JNK or TRAF6 silenced HASMCs were stimulated with CD40L compared to HASMCs with active JNK or TRAF6. Together, these results indicate that CD40L suppresses P4Hα1 expression in HASMCs by activating the TRAF6-JNK- NF-κB pathway. We also found that rosuvastatin inhibits CD40L-induced activation of the TRAF6-JNK- NF-κB pathway, thereby significantly rescuing the CD40L stimulated P4Hα1 inhibition. The results from this study will help find potential targets for stabilizing vulnerable atherosclerotic plaques. PMID:27120457

  13. CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection

    PubMed Central

    Pérez-Núñez, Daniel; García-Urdiales, Eduardo; Martínez-Bonet, Marta; Nogal, María L.; Barroso, Susana; Revilla, Yolanda; Madrid, Ricardo

    2015-01-01

    African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity. PMID:25915900

  14. CD2v Interacts with Adaptor Protein AP-1 during African Swine Fever Infection.

    PubMed

    Pérez-Núñez, Daniel; García-Urdiales, Eduardo; Martínez-Bonet, Marta; Nogal, María L; Barroso, Susana; Revilla, Yolanda; Madrid, Ricardo

    2015-01-01

    African swine fever virus (ASFV) CD2v protein is believed to be involved in virulence enhancement, viral hemadsorption, and pathogenesis, although the molecular mechanisms of the function of this viral protein are still not fully understood. Here we describe that CD2v localized around viral factories during ASFV infection, suggesting a role in the generation and/or dynamics of these viral structures and hence in disturbing cellular traffic. We show that CD2v targeted the regulatory trans-Golgi network (TGN) protein complex AP-1, a key element in cellular traffic. This interaction was disrupted by brefeldin A even though the location of CD2v around the viral factory remained unchanged. CD2v-AP-1 binding was independent of CD2v glycosylation and occurred on the carboxy-terminal part of CD2v, where a canonical di-Leu motif previously reported to mediate AP-1 binding in eukaryotic cells, was identified. This motif was shown to be functionally interchangeable with the di-Leu motif present in HIV-Nef protein in an AP-1 binding assay. However, we demonstrated that it was not involved either in CD2v cellular distribution or in CD2v-AP-1 binding. Taken together, these findings shed light on CD2v function during ASFV infection by identifying AP-1 as a cellular factor targeted by CD2v and hence elucidate the cellular pathways used by the virus to enhance infectivity.

  15. Characterization of CD31 expression on murine and human neonatal T lymphocytes during development and activation

    PubMed Central

    Fike, Adam J.; Nguyen, Linda T.; Kumova, Ogan K.; Carey, Alison J.

    2017-01-01

    Background CD31, expressed by the majority of the neonatal T cell pool, is involved in modulation of T-cell Receptor signalling by increasing the threshold for T cell activation. Therefore, CD31 could modulate neonatal tolerance and adaptive immune responses. Methods Lymphocytes were harvested from murine neonates at different ages, human late preterm and term cord blood, and adult peripheral blood. Human samples were activated over a five-day period to simulate acute inflammation. Mice were infected with influenza; lungs and spleens were harvested at days 6 and 9 post-infection and analyzed by flow cytometry. Results CD31 expressing neonatal murine CD4+ and CD8a+ T cells increase over the first week of life. Upon in vitro stimulation, human infants’ CD4+ and CD8a+ T cells shed CD31 faster in comparison to adults. In the context of acute infection, mice infected at 3-days old have an increased number of naive and activated CD31+ T lymphocytes at the site of infection at day 6 and 9 post-infection, as compared to 7-days old; however, the opposite is true in the periphery. Conclusion Differences in trafficking of CD31+ Cytotoxic T Lymphocytes (CTLs) during acute influenza infection could modulate tolerance and contribute to a dampened adaptive immune response in neonates. PMID:28355204

  16. Expression of the Na+/l- symporter (NIS) is markedly decreased or absent in gastric cancer and intestinal metaplastic mucosa of Barrett esophagus

    PubMed Central

    Altorjay, Áron; Dohán, Orsolya; Szilágyi, Anna; Paroder, Monika; Wapnir, Irene L; Carrasco, Nancy

    2007-01-01

    Background The sodium/iodide symporter (NIS) is a plasma membrane glycoprotein that mediates iodide (I-) transport in the thyroid, lactating breast, salivary glands, and stomach. Whereas NIS expression and regulation have been extensively investigated in healthy and neoplastic thyroid and breast tissues, little is known about NIS expression and function along the healthy and diseased gastrointestinal tract. Methods Thus, we investigated NIS expression by immunohistochemical analysis in 155 gastrointestinal tissue samples and by immunoblot analysis in 17 gastric tumors from 83 patients. Results Regarding the healthy Gl tract, we observed NIS expression exclusively in the basolateral region of the gastric mucin-producing epithelial cells. In gastritis, positive NIS staining was observed in these cells both in the presence and absence of Helicobacter pylori. Significantly, NIS expression was absent in gastric cancer, independently of its histological type. Only focal faint NIS expression was detected in the direct vicinity of gastric tumors, i.e., in the histologically intact mucosa, the expression becoming gradually stronger and linear farther away from the tumor. Barrett mucosa with junctional and fundic-type columnar metaplasia displayed positive NIS staining, whereas Barrett mucosa with intestinal metaplasia was negative. NIS staining was also absent in intestinalized gastric polyps. Conclusion That NIS expression is markedly decreased or absent in case of intestinalization or malignant transformation of the gastric mucosa suggests that NIS may prove to be a significant tumor marker in the diagnosis and prognosis of gastric malignancies and also precancerous lesions such as Barrett mucosa, thus extending the medical significance of NIS beyond thyroid disease. PMID:17214887

  17. CXCR6 marks a novel subset of T-betloEomeshi natural killer cells residing in human liver

    PubMed Central

    Stegmann, Kerstin A.; Robertson, Francis; Hansi, Navjyot; Gill, Upkar; Pallant, Celeste; Christophides, Theodoros; Pallett, Laura J.; Peppa, Dimitra; Dunn, Claire; Fusai, Giuseppe; Male, Victoria; Davidson, Brian R.; Kennedy, Patrick; Maini, Mala K.

    2016-01-01

    Natural killer cells (NK) are highly enriched in the human liver, where they can regulate immunity and immunopathology. We probed them for a liver-resident subset, distinct from conventional bone-marrow-derived NK. CXCR6+ NK were strikingly enriched in healthy and diseased liver compared to blood (p < 0.0001). Human hepatic CXCR6+ NK had an immature phenotype (predominantly CD56brightCD16−CD57−), and expressed the tissue-residency marker CD69. CXCR6+ NK produced fewer cytotoxic mediators and pro-inflammatory cytokines than the non-liver-specific CXCR6− fraction. Instead CXCR6+ NK could upregulate TRAIL, a key death ligand in hepatitis pathogenesis. CXCR6 demarcated liver NK into two transcriptionally distinct populations: T-bethiEomeslo(CXCR6−) and T-betloEomeshi(CXCR6+); the latter was virtually absent in the periphery. The small circulating CXCR6+ subset was predominantly T-bethiEomeslo, suggesting its lineage was closer to CXCR6− peripheral than CXCR6+ liver NK. These data reveal a large subset of human liver-resident T-betloEomeshi NK, distinguished by their surface expression of CXCR6, adapted for hepatic tolerance and inducible anti-viral immunity. PMID:27210614

  18. Distinctive CD8+ T cell and MHC class I signatures in polycythemia vera patients.

    PubMed

    Cardoso, Elsa M; Esgalhado, André J; Patrão, Luís; Santos, Mónica; Neves, Vasco Pinto; Martinez, Jorge; Patto, Maria Assunção Vaz; Silva, Helena; Arosa, Fernando A

    2018-05-22

    Polycythemia vera (PV) is a myeloproliferative neoplasm characterized by overproduction of red blood cells. We have performed a comprehensive characterization of blood immune cells for expression of naïve and memory receptors as well as β 2 m-associated and β 2 m-free MHC class I heavy chains, also known as closed and open conformers, respectively, in PV patients and age-matched controls (CTR). We show that the peripheral CD3 + CD8 + T cell pool in PV patients is clearly divided into two discrete populations, a more granular CD3 + CD8 high T cell population enriched in effector-memory CD45RA + T cells (CD8 + TEMRA) when compared to CTR (P < 0.001), and a less granular CD3 + CD8 int T cell population that is completely absent in the CTR group (78 vs. 0%, P < 0.001) and is a mixture of naïve (CD8 + T N ) and CD8 + TEMRA cells expressing intermediate levels of CD28, i.e., CD3 + CD8 int CD28 int . While the percentage of CD3 + CD8 int TN cells correlated positively with the number of erythrocytes, the percentage of CD3 + CD8 int TEMRA correlated negatively with the number of platelets. Finally, we report that PV patients' lymphocytes and monocytes display lower levels of closed (W6/32 + ) MHC-I conformers at the cell surface while exhibiting increased amounts of open (HC-10 + ) MHC-I conformers. The implications of this distinctive immune signature are discussed.

  19. NKp44 expression, phylogenesis and function in non-human primate NK cells

    PubMed Central

    De Maria, Andrea; Ugolotti, Elisabetta; Rutjens, Erik; Mazza, Stefania; Radic, Luana; Faravelli, Alessandro; Koopman, Gerrit; Di Marco, Eddi; Costa, Paola; Ensoli, Barbara; Cafaro, Aurelio; Mingari, Maria Cristina; Moretta, Lorenzo; Heeney, Jonathan

    2009-01-01

    Molecular and functional characterization of the natural cytotoxicity receptor (NCR) NKp44 in species other than Homo sapiens has been elusive, so far. Here, we provide complete phenotypic, molecular and functional characterization for NKp44 triggering receptor on Pan troglodytes NK cells, the closest human relative, and the analysis of NKp44-genomic locus and transcription in Macaca fascicularis. Similar to H. sapiens, NKp44 expression is detectable on chimpanzee NK cells only upon activation. However, basal NKp44 transcription is 5-fold higher in chimpanzees with lower differential increases upon cell activation compared with humans. Upon activation, an overall 12-fold lower NKp44 gene expression is observed in P. troglodytes compared with H. sapiens NK cells with only a slight reduction in NKp44 surface expression. Functional analysis of ‘in vitro’ activated purified NK cells confirms the NKp44 triggering potential compared with other major NCRs. These findings suggest the presence of a post-transcriptional regulation that evolved differently in H. sapiens. Analysis of cynomolgus NKp44-genomic sequence and transcription pattern showed very low levels of transcription with occurrence of out-of-frame transcripts and no surface expression. The present comparative analysis suggests that NKp44-genomic organization appears during macaque speciation, with considerable evolution of its transcriptional and post-transcriptional tuning. Thus, NKp44 may represent an NCR being only recently emerged during speciation, acquiring functional relevance only in non-human primates closest to H. sapiens. PMID:19147838

  20. Properties of human blood monocytes. I. CD91 expression and log orthogonal light scatter provide a robust method to identify monocytes that is more accurate than CD14 expression.

    PubMed

    Hudig, Dorothy; Hunter, Kenneth W; Diamond, W John; Redelman, Doug

    2014-03-01

    This study was designed to improve identification of human blood monocytes by using antibodies to molecules that occur consistently on all stages of monocyte development and differentiation. We examined blood samples from 200 healthy adults without clinically diagnosed immunological abnormalities by flow cytometry (FCM) with multiple combinations of antibodies and with a hematology analyzer (Beckman LH750). CD91 (α2 -macroglobulin receptor) was expressed only by monocytes and to a consistent level among subjects [mean median fluorescence intensity (MFI) = 16.2 ± 3.2]. Notably, only 85.7 ± 5.82% of the CD91(+) monocytes expressed high levels of the classical monocyte marker CD14, with some CD91(+) CD16(+) cells having negligible CD14, indicating that substantial FCM under-counts will occur when monocytes are identified by high CD14. CD33 (receptor for sialyl conjugates) was co-expressed with CD91 on monocytes but CD33 expression varied by nearly ten-fold among subjects (mean MFI = 17.4 ± 7.7). In comparison to FCM analyses, the hematology analyzer systematically over-counted monocytes and eosinophils while lymphocyte and neutrophil differential values generally agreed with FCM methods. CD91 is a better marker to identify monocytes than CD14 or CD33. Furthermore, FCM (with anti-CD91) identifies monocytes better than a currently used clinical CBC instrument. Use of anti-CD91 together with anti-CD14 and anti-CD16 supports the identification of the diagnostically significant monocyte populations with variable expression of CD14 and CD16. Copyright © 2013 Clinical Cytometry Society.

  1. Balance of CD8+ CD28+ / CD8+ CD28- T lymphocytes is vital for patients with ulcerative colitis.

    PubMed

    Dai, Shi-Xue; Wu, Gang; Zou, Ying; Feng, Yan-Ling; Liu, Hong-Bo; Feng, Jin-Shan; Chi, Hong-Gang; Lv, Ru-Xi; Zheng, Xue-Bao

    2013-01-01

    Immune balances are important for many diseases including ulcerative colitis (UC). This study aimed to explore the role of the balance between CD8+ CD28+ and CD8+ CD28- T lymphocytes for the immunological pathogenesis of UC. Sixteen patients with UC, 16 patients with irritable bowel syndrome (IBS) and 15 healthy volunteers were enrolled. The frequencies of CD8+ CD28+ and CD8+CD28- T lymphocytes in peripheral blood and colon tissue were tested using flow cytometry and immunofluorescent, respectively. The cytokines of the two lymphocytes were detected by protein chips and ELISA. The expression of the signal transducers, the JAK3 and STAT6, as well the transcription factors, the NFATc2 and GATA3, was all detected by both western blot and immunohistochemistry. For UC patients, the frequencies of CD8+ CD28+ T lymphocytes, together with the ratios of CD8+ CD28+ / CD8+ CD28- T lymphocytes in blood and colon tissue, were significantly lower than those in both IBS patients and healthy volunteers. But the frequencies of CD8+ CD28- T lymphocytes in blood and colon tissue of the UC patients were significantly higher than the other two groups. The concentration of IL-7 and -13, and the expression of JAK3 and STAT6 in UC patients, were significantly lower when compared with the other two groups. Conversely, the concentration of IL-12p40 and -15, and the expression of GATA3 and NFATc2 in UC patients, were significantly higher than both IBS and control group. The balance of CD8+ CD28+ / CD8+ CD28- T lymphocytes plays a vital role in UC, while the balance tilt towards CD8+ CD28+ T lymphocytes is beneficial for patients with UC.

  2. Prostate Cancer Stem Cell-Targeted Efficacy of a New-Generation Taxoid, SBT-1214 and Novel Polyenolic Zinc-Binding Curcuminoid, CMC2.24

    PubMed Central

    Botchkina, Galina I.; Zuniga, Edison S.; Rowehl, Rebecca H.; Park, Rosa; Bhalla, Rahuldev; Bialkowska, Agnieszka B.; Johnson, Francis; Golub, Lorne M.; Zhang, Yu; Ojima, Iwao; Shroyer, Kenneth R.

    2013-01-01

    Background Prostate cancer is the second leading cause of cancer death among men. Multiple evidence suggests that a population of tumor-initiating, or cancer stem cells (CSCs) is responsible for cancer development and exceptional drug resistance, representing a highly important therapeutic target. The present study evaluated CSC-specific alterations induced by new-generation taxoid SBT-1214 and a novel polyenolic zinc-binding curcuminoid, CMC2.24, in prostate CSCs. Principal Findings The CD133high/CD44high phenotype was isolated from spontaneously immortalized patient-derived PPT2 cells and highly metastatic PC3MM2 cells. Weekly treatment of the NOD/SCID mice bearing PPT2- and PC3MM3-induced tumors with the SBT-1214 led to dramatic suppression of tumor growth. Four of six PPT2 and 3 of 6 PC3MM2 tumors have shown the absence of viable cells in residual tumors. In vitro, SBT-1214 (100nM-1µM; for 72 hr) induced about 60% cell death in CD133high/CD44+/high cells cultured on collagen I in stem cell medium (in contrast, the same doses of paclitaxel increased proliferation of these cells). The cytotoxic effects were increased when SBT-1214 was combined with the CMC2.24. A stem cell-specific PCR array assay revealed that this drug combination mediated massive inhibition of multiple constitutively up-regulated stem cell-related genes, including key pluripotency transcription factors. Importantly, this drug combination induced expression of p21 and p53, which were absent in CD133high/CD44high cells. Viable cells that survived this treatment regimen were no longer able to induce secondary spheroids, exhibited significant morphological abnormalities and died in 2-5 days. Conclusions We report here that the SBT-1214 alone, or in combination with CMC2.24, possesses significant activity against prostate CD133high/CD44+/high tumor-initiating cells. This drug combination efficiently inhibits expression of the majority of stem cell-related genes and pluripotency transcription

  3. Increasing CACNA1C expression in placenta containing high Cd level: an implication of Cd toxicity.

    PubMed

    Phuapittayalert, Laorrat; Saenganantakarn, Phisid; Supanpaiboon, Wisa; Cheunchoojit, Supaporn; Hipkaeo, Wiphawi; Sakulsak, Natthiya

    2016-12-01

    Cadmium (Cd) has known to produce many adverse effects on organs including placenta. Many essential transporters are involved in Cd transport pathways such as DMT-1, ZIP as well as L-VDCC. Fourteen pregnant women participated and were divided into two groups: high and low Cd-exposed (H-Cd, L-Cd) groups on the basis of their residential areas, Cd concentrations in the blood (B-Cd), urine (U-Cd), and placenta (P-Cd). The results showed that the B-Cd and U-Cd were significantly increased in H-Cd group (p < 0.05). Interestingly, the P-Cd in H-Cd group was elevated (p < 0.05) and positively related to their B-Cd and U-Cd values (p < 0.05). However, the mean cord blood Cd (C-Cd) concentration in H-Cd group was not significantly increased about 2.5-fold when comparing to L-Cd group. To determine the Cd accumulation in placental tissues, metallothionein-1A (MT-1A) and metallothionein-2A (MT-2A) expressions were used as biomarkers. The results revealed that mean MT-1A and MT-2A mRNAs and MT-1/2 proteins were up-regulated in H-Cd group (p < 0.05). In addition, the Ca channel alpha 1C (CACNA1C) mRNA and protein expressions were noticeably elevated in H-Cd group (p < 0.05). From these findings, we suggested that CACNA1C might be implicated in Cd transport in human placenta.

  4. CD133 expression in oral lichen planus correlated with the risk for progression to oral squamous cell carcinoma.

    PubMed

    Sun, Lili; Feng, Jinqiu; Ma, Lihua; Liu, Wei; Zhou, Zengtong

    2013-12-01

    Oral lichen planus (OLP) is a potentially malignant disorder associated with an increased risk for progression to oral squamous cell carcinoma (OSCC). The objective of this study to determine protein expression of cancer stem cell marker CD133 in tissue samples of patients with OLP and evaluate the correlation between CD133 expression and the risk of progression to OSCC. In this longitudinal case-control study, a total of 110 patients with OLP who received a mean follow-up of 56 months were enrolled, including 100 patients who did not progress to OSCC and 10 patients who had progressed to OSCC. CD133 expression was determined using immunohistochemistry in samples from these patients. Analysis of 10 cases of normal oral mucosa and 6 cases of postmalignant OSCC form previously diagnosed OLP was also performed. The results showed that CD133 expression was observed in 29% cases of nonprogressing OLP and in 80% cases of progressing OLP (P = .002). CD133 was not expressed in normal oral mucosa, but it positively expressed in the 100% cases of OSCC. Logistic regression analysis revealed that the risk of malignant progression in the patients with CD133-positive expression was significantly higher than those with CD133 negativity (odds ratio, 9.79; 95% confidence interval, 1.96-48.92; P = .005). Collectively, CD133 expression was significantly associated with malignant progression in a longitudinal series of patients with OLP. Our findings suggested that CD133 may serve as a novel candidate biomarker for risk assessment of malignant potential of OLP. © 2013.

  5. Expression of CD16, CD18 and CD56 in tributyltin-exposed human natural killer cells.

    PubMed

    Whalen, Margaret M; Ghazi, Sabah; Loganathan, Bommanna G; Hatcher, Frank

    2002-02-20

    Tributyltin (TBT) was produced in large quantities for use in wood preservation, marine antifouling paints, disinfection of circulating industrial cooling waters and slime control in paper mills. TBT is found in dairy products, meat and fish. We and others have shown that there are measurable levels of TBT in human blood. BTs appear to increase the risk of cancer and viral infections in exposed individuals. In previous studies, we demonstrated that the NK-cytotoxic function of lymphocytes was greatly diminished after a 1-h exposure to 300 nM TBT or a 24-h exposure to 200 nM TBT. Inhibition induced by a 1-h exposure to 300 nM TBT continues even after removal of the compound. There is also decreased ability of NK cells to bind to tumor target cells when they have been exposed to 200 nM TBT for 24 h. This loss of binding function is not seen when NK cells are exposed to 300 nM TBT for 1 h. However, NK cells exposed to 300 nM TBT for 1 h and then incubated in TBT-free media for 24, 48 or 96 h, show a significant loss of tumor-binding function by 96 h. The effects of TBT on cell surface molecules that are crucial to NK cell function is investigated. The data indicate there is a loss of expression of CD16 and CD56 on NK cells exposed to 200 nM TBT for 24 h. There is no decrease in expression of any of the markers studied when NK cells are exposed to 300 nM TBT for 1 h, consistent with the fact that a 1-h exposure has no effect on the ability of NK cells to bind to tumor targets. However, when NK cells are exposed to 300 nM TBT followed by 24, 48 or 96 h incubations in TBT-free media, there is a significant loss of CD16 and CD18 expression after 24 h and of CD16 and CD56 expression after 48 and 96 h.

  6. Expression of MIF and CD74 in leukemic cell lines: correlation to DR expression destiny.

    PubMed

    Georgouli, Mirella; Papadimitriou, Lina; Glymenaki, Maria; Patsaki, Valia; Athanassakis, Irene

    2016-06-01

    Invariant chain (Ii) or CD74 is a non-polymorphic glycoprotein, which apart from its role as a chaperone dedicated to MHCII molecules, is known to be a high-affinity receptor for macrophage migration inhibitory factor (MIF). The present study aimed to define the roles of CD74 and MIF in the immune surveillance escape process. Towards this direction, the cell lines HL-60, Raji, K562 and primary pre-B leukemic cells were examined for expression and secretion of MIF. Flow cytometry analysis detected high levels of MIF and intracellular/membrane CD74 expression in all leukemic cells tested, while MIF secretion was shown to be inversely proportional to intracellular HLA-DR (DR) expression. In the MHCII-negative cells, IFN-γ increased MIF expression and induced its secretion in HL-60 and K562 cells, respectively. In K562 cells, CD74 (Iip33Iip35) was shown to co-precipitate with HLA-DOβ (DOβ), inhibiting thus MIF or DR binding. Induced expression of DOα in K562 (DOα-DOβ+) cells in different transfection combinations decreased MIF expression and secretion, while increasing surface DR expression. Thus, MIF could indeed be part of the antigen presentation process.

  7. HIERARCHICAL ORGANIZATION OF OSTEOBLASTS REVEALS THE SIGNIFICANT ROLE OF CD166 IN HEMATOPOIETIC STEM CELL MAINTANANCE AND FUNCTION

    PubMed Central

    Chitteti, Brahmananda R.; Cheng, Ying-Hua; Kacena, Melissa A.; Srour, Edward F.

    2013-01-01

    The role of osteoblasts (OB) in maintaining hematopoietic stem cells (HSC) in their niche is well elucidated, but the exact definition, both phenotypically and hierarchically of OB responsible for these functions is not clearly known. We previously demonstrated that OB maturational status influences HSC function whereby immature OB with high Runx2 expression promote hematopoietic expansion. Here, we show that Activated Leukocyte Cell Adhesion Molecule (ALCAM) or CD166 expression on OB is directly correlated with Runx2 expression and high hematopoiesis enhancing activity (HEA). Fractionation of OB with lineage markers: Sca1, osteopontin (OPN), CD166, CD44, and CD90 revealed that Lin-Sca1-OPN+CD166+ cells (CD166+) and their subpopulations fractionated with CD44 and CD90 expressed high levels of Runx2 and low levels of osteocalcin (OC) demonstrating the relatively immature status of these cells. Conversely, the majority of the Lin-Sca1-OPN+CD166− cells (CD166−) expressed high OC levels suggesting that CD166− OB are more mature. In vitro hematopoietic potential of LSK cells co-cultured for 7 days with fresh OB or OB pre-cultured for 1, 2, or 3 weeks declined precipitously with increasing culture duration concomitant with loss of CD166 expression. Importantly, LSK cells co-cultured with CD166+CD44+CD90+ OB maintained their in vivo repopulating potential through primary and secondary transplantation, suggesting that robust HEA activity is best mediated by immature CD166+ OB with high Runx2 and low OC expression. These studies begin to define the hierarchical organization of osteoblastic cells and provide a more refined definition of OB that can mediate HEA. PMID:23369988

  8. Targeting CD6 for the treatment of experimental autoimmune uveitis.

    PubMed

    Zhang, Lingjun; Li, Yan; Qiu, Wen; Bell, Brent A; Dvorina, Nina; Baldwin, William M; Singer, Nora; Kern, Timothy; Caspi, Rachel R; Fox, David A; Lin, Feng

    2018-06-01

    CD6 is emerging as a new target for treating many pathological conditions in which T cells are integrally involved, but even the latest data from studies of CD6 gene engineered mice were still contradictory. To address this issue, we studied experimental autoimmune uveitis (EAU), a model of autoimmune uveitis, in wild-type (WT) and CD6 knockout (KO) mice. After EAU induction in WT and CD6 KO mice, we evaluated ocular inflammation and compared retinal antigen-specific T-cell responses using scanning laser ophthalmoscopy, spectral-domain optical coherence tomography, histopathology, and T cell recall assays. Uveitogenic T cells from WT and CD6 KO mice were adoptively transferred into WT naïve mice to confirm the impact of CD6 on T cells. In addition, we immunized CD6 KO mice with recombinant CD6 protein to develop mouse anti-mouse CD6 monoclonal antibodies (mAbs) in which functional antibodies exhibiting cross-reactivity with human CD6 were screened and identified for treatment studies. In CD6 KO mice with EAU, we found significantly decreased retinal inflammation and reduced autoreactive T-cell responses, and confirmed the impaired uveitogenic capacity of T cells from these mice in an adoptive transfer experiment. Notably, one of these cross-reactive mAbs significantly ameliorated retinal inflammation in EAU induced by the adoptive transfer of uveitogenic T cells. Together, these data strongly suggest that CD6 plays a previously unknown, but pivotal role in autoimmune uveitis, and may be a promising new treatment target for this blinding disease. In addition, the newly developed mouse anti-mouse/human CD6 mAbs could be valuable tools for testing CD6-targeted therapies in other mouse models of human diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. CD117 expression in operable oesophageal squamous cell carcinomas predicts worse clinical outcome

    PubMed Central

    Fan, Huijie; Yuan, Yuan; Wang, Junsheng; Zhou, Fuyou; Zhang, Mingzhi; Giercksky, Karl-Erik; Nesland, Jahn M; Suo, Zhenhe

    2013-01-01

    Aims To investigate the aberrant expression of CD117 in oesophageal squamous cell carcinoma (SCC) and its prognostic significance. Methods and results Immunohistochemical staining for CD117 was performed on tissue microarray and routine tissue sections from 157 oesophageal SCC patients and 10 normal oesophageal epithelia adjacent to tumour. The positive rate of CD117 expression was 29.9% in oesophageal SCC tissues, whereas no CD117 expression was detected in the 10 normal oesophageal epithelia. CD117 expression was significantly associated with T stage (P < 0.001), distant metastasis (P = 0.015), lymph node metastasis (P = 0.019), and clinical stage (P = 0.021). Progression-free survival in the patients with CD117-positive tumours was shorter than that in the patients with CD117-negative tumours (P = 0.010). In univariate analyses, CD117 expression was the most significant factor for overall survival of oesophageal SCC patients (P < 0.001), followed by lymph node metastasis (P = 0.001), T stage (P = 0.002), clinical stage (P = 0.006), distant metastasis (P = 0.020), and histological grade (P = 0.027). Multivariate analyses verified that CD117 expression was an independent prognostic marker for oesophageal SCC patients (P = 0.002). In addition, CD117 expression predicted poorer survival in patients without distant metastases. Conclusions CD117 expression in operable oesophageal SCC may be a valuable prognostic marker, and detection of its expression in clinical samples may be useful in defining a subclass of oesophageal SCCs with extremely poor clinical outcome, which may require a specially targeted treatment modality. PMID:23570416

  10. AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges

    PubMed Central

    Gardner, Matthew R.; Kattenhorn, Lisa M.; Kondur, Hema R.; von Schaewen, Markus; Dorfman, Tatyana; Chiang, Jessica J.; Haworth, Kevin G.; Decker, Julie M.; Alpert, Michael D.; Bailey, Charles C.; Neale, Ernest S.; Fellinger, Christoph H.; Joshi, Vinita R.; Fuchs, Sebastian P.; Martinez-Navio, Jose M.; Quinlan, Brian D.; Yao, Annie Y.; Mouquet, Hugo; Gorman, Jason; Zhang, Baoshan; Poignard, Pascal; Nussenzweig, Michel C.; Burton, Dennis R.; Kwong, Peter D.; Piatak, Michael; Lifson, Jeffrey D.; Gao, Guangping; Desrosiers, Ronald C.; Evans, David T.; Hahn, Beatrice H.; Ploss, Alexander; Cannon, Paula M.; Seaman, Michael S.; Farzan, Michael

    2015-01-01

    Long-term in vivo expression of a broad and potent entry inhibitor could circumvent the need for a conventional vaccine for HIV-1. Adeno-associated virus (AAV) vectors can stably express HIV-1 broadly neutralizing antibodies (bNAbs)1,2. However even the best bNAbs neutralize 10–50% of HIV-1 isolates inefficiently (IC80 > 5 μg/ml), suggesting that high concentrations of these antibodies would be necessary to achieve general protection3–6. Here we show that eCD4-Ig, a fusion of CD4-Ig with a small CCR5-mimetic sulfopeptide, binds avidly and cooperatively to the HIV-1 envelope glycoprotein (Env) and is more potent than the best bNAbs (geometric mean IC50 < 0.05 μg/ml). Because eCD4-Ig binds only conserved regions of Env, it is also much broader than any bNAb. For example, eCD4-Ig efficiently neutralized 100% of a diverse panel of neutralization-resistant HIV-1, HIV-2, and SIV isolates, including a comprehensive set of isolates resistant to the CD4-binding site bNAbs VRC01, NIH45-46, and 3BNC117. Rhesus macaques inoculated with an AAV vector stably expressed 17 to 77 μg/ml of fully functional rhesus eCD4-Ig for 40 weeks, and these macaques were protected from multiple infectious challenges with SHIV-AD8. Rhesus eCD4-Ig was also markedly less immunogenic than rhesus forms of four well characterized bNAbs. Our data suggest that AAV-delivered eCD4-Ig can function like an effective HIV-1 vaccine. PMID:25707797

  11. Mycobacterium tuberculosis PPE44 (Rv2770c) is involved in response to multiple stresses and promotes the macrophage expression of IL-12 p40 and IL-6 via the p38, ERK, and NF-κB signaling axis.

    PubMed

    Yu, Zhaoxiao; Zhang, Chenhui; Zhou, Mingliang; Li, Qiming; Li, Hui; Duan, Wei; Li, Xue; Feng, Yonghong; Xie, Jianping

    2017-09-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a formidable threat to global public health. The successful intracellular persistence of M. tuberculosis significantly contributes to the intractability of tuberculosis. Proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) are mycobacterial exclusive protein families that widely reported to be involved in the bacterial virulence, physiology and interaction with host. Rv2770c (PPE44), a predicted virulence factor, was up-regulated upon the infected guinea pig lungs. To investigate the role of Rv2770c, we heterologously expressed the PPE44 in the nonpathogenic fast-growing M. smegmatis strain. Subcellular location analysis demonstrated that Rv2770c is a cell wall associated protein, suggestive of a potential candidate involved in host-pathogen interaction. The Rv2770c can enhance M. smegmatis survival within macrophages and under stresses such as H 2 O 2 , SDS, diamide exposure, and low pH condition. M. smegmatis expressing Rv2770c is more virulent as testified by the increased death of macrophages and the increased expression of interlukin-6 (IL-6) and interlukin-12p40 (IL-12p40). Moreover, Rv2770c altered the secretion of IL-6 and IL-12p40 of macrophages via NF-κB, ERK1/2 and p38 MAPK axis. Taken together, this study implicated that Rv2770c was a virulent factor actively engaged in the interaction with host macrophage. Copyright © 2017. Published by Elsevier B.V.

  12. The CD44-initiated pathway of T-cell extravasation uses VLA-4 but not LFA-1 for firm adhesion

    PubMed Central

    Siegelman, Mark H.; Stanescu, Diana; Estess, Pila

    2000-01-01

    Leukocytes extravasate from the blood in response to physiologic or pathologic demands by means of complementary ligand interactions between leukocytes and endothelial cells. The multistep model of leukocyte extravasation involves an initial transient interaction (“rolling” adhesion), followed by secondary (firm) adhesion. We recently showed that binding of CD44 on activated T lymphocytes to endothelial hyaluronan (HA) mediates a primary adhesive interaction under shear stress, permitting extravasation at sites of inflammation. The mechanism for subsequent firm adhesion has not been elucidated. Here we demonstrate that the integrin VLA-4 is used in secondary adhesion after CD44-mediated primary adhesion of human and mouse T cells in vitro, and by mouse T cells in an in vivo model. We show that clonal cell lines and polyclonally activated normal T cells roll under physiologic shear forces on hyaluronate and require VCAM-1, but not ICAM-1, as ligand for subsequent firm adhesion. This firm adhesion is also VLA-4 dependent, as shown by antibody inhibition. Moreover, in vivo short-term homing experiments in a model dependent on CD44 and HA demonstrate that superantigen-activated T cells require VLA-4, but not LFA-1, for entry into an inflamed peritoneal site. Thus, extravasation of activated T cells initiated by CD44 binding to HA depends upon VLA-4–mediated firm adhesion, which may explain the frequent association of these adhesion receptors with diverse chronic inflammatory processes. PMID:10712440

  13. Macrophage Migration Inhibitory Factor Mediates Proliferative GN via CD74

    PubMed Central

    Djudjaj, Sonja; Lue, Hongqi; Rong, Song; Papasotiriou, Marios; Klinkhammer, Barbara M.; Zok, Stephanie; Klaener, Ole; Braun, Gerald S.; Lindenmeyer, Maja T.; Cohen, Clemens D.; Bucala, Richard; Tittel, Andre P.; Kurts, Christian; Moeller, Marcus J.; Floege, Juergen; Ostendorf, Tammo

    2016-01-01

    Pathologic proliferation of mesangial and parietal epithelial cells (PECs) is a hallmark of various glomerulonephritides. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that mediates inflammation by engagement of a receptor complex involving the components CD74, CD44, CXCR2, and CXCR4. The proliferative effects of MIF may involve CD74 together with the coreceptor and PEC activation marker CD44. Herein, we analyzed the effects of local glomerular MIF/CD74/CD44 signaling in proliferative glomerulonephritides. MIF, CD74, and CD44 were upregulated in the glomeruli of patients and mice with proliferative glomerulonephritides. During disease, CD74 and CD44 were expressed de novo in PECs and colocalized in both PECs and mesangial cells. Stress stimuli induced MIF secretion from glomerular cells in vitro and in vivo, in particular from podocytes, and MIF stimulation induced proliferation of PECs and mesangial cells via CD74. In murine crescentic GN, Mif-deficient mice were almost completely protected from glomerular injury, the development of cellular crescents, and the activation and proliferation of PECs and mesangial cells, whereas wild-type mice were not. Bone marrow reconstitution studies showed that deficiency of both nonmyeloid and bone marrow–derived Mif reduced glomerular cell proliferation and injury. In contrast to wild-type mice, Cd74-deficient mice also were protected from glomerular injury and ensuing activation and proliferation of PECs and mesangial cells. Our data suggest a novel molecular mechanism and glomerular cell crosstalk by which local upregulation of MIF and its receptor complex CD74/CD44 mediate glomerular injury and pathologic proliferation in GN. PMID:26453615

  14. A new signal amplification strategy of photoelectrochemical immunoassay for highly sensitive interleukin-6 detection based on TiO2/CdS/CdSe dual co-sensitized structure.

    PubMed

    Fan, Gao-Chao; Ren, Xiao-Lin; Zhu, Cheng; Zhang, Jian-Rong; Zhu, Jun-Jie

    2014-09-15

    Dual co-sensitized structure of TiO2/CdS/CdSe was designed to develop a novel photoelectrochemical immunoassay for highly sensitive detection of human interleukin-6 (IL-6). To construct a sensing electrode, TiO2/CdS hybrid was prepared by successive adsorption and reaction of Cd(2+) and S(2-) ions on the surface of TiO2 and then was employed as matrix for immobilization of anti-IL-6 antibody, whereas CdSe QDs linked to IL-6 were used for signal amplification via the specific antibody-antigen immunoreaction between anti-IL-6 and IL-6-CdSe bioconjugate. Greatly enhanced sensitivity for IL-6 detection was derived from the new co-sensitization signal amplification strategy. First, the TiO2/CdS/CdSe co-sensitized structure extended the absorption range to long wavelength of white light, which adequately utilized the light energy. Second, the TiO2/CdS/CdSe co-sensitized structure possessed stepwise band-edge levels favoring ultrafast transfer of photogenerated electrons and significantly prompted the photoelectrochemical performance. Besides, the introduction of CdSe effectively prevented the recombination of photogenerated electrons in the conduction band of CdS, further causing an enhanced photocurrent. Accordingly, upon the co-sensitization strategy, a novel immunoassay based on the competitive binding of anti-IL-6 antibody with IL-6 antigen and IL-6-CdSe bioconjugate was developed, and it exhibited a wide linear range from 1.0 pg/mL to 100 ng/mL with a low detection limit of 0.38 pg/mL for IL-6 detection. The proposed co-sensitization strategy presented high sensitivity, reproducibility, specificity and stability, and also opened up a new promising platform for detection of other biomarkers. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. 6 CFR 13.44 - Right to administrative offset.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Right to administrative offset. 13.44 Section 13.44 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY PROGRAM FRAUD CIVIL REMEDIES § 13.44 Right to administrative offset. The amount of any penalty or assessment that has become...

  16. Targeted and controlled drug delivery system loading artersunate for effective chemotherapy on CD44 overexpressing cancer cells.

    PubMed

    Tran, Tuan Hiep; Nguyen, Tuan Duc; Van Nguyen, Han; Nguyen, Hanh Thuy; Kim, Jong Oh; Yong, Chul Soon; Nguyen, Chien Ngoc

    2016-05-01

    Poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles with negative surface charge were reversed to positive by cationic surfactant-DDAB before being coated with an anionic polymer, hyaluronic acid, to improve their site-specific intracellular delivery against CD44 receptor overexpressing cancer cells. Incorporating artesunate (ART)-a promising anticancer drug into PLGA/HA nanoparticles, is expected not only to overcome its poor aqueous solubility and stability but also enhance the activities. The obtained particles were characterized by dynamic light scattering, zeta potential measurements, and transmission electron microscopy (TEM). Cancer cell internalization of the NPs was evaluated by flow cytometry and cytotoxicity of the NPs was tested by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay. PLGA/HA nanoparticles showed greater extent of cellular uptake to SCC-7 and MCF-7 cells, indicating their affinity with CD44 receptor-mediated endocytosis. Almost 60 % of ART was released into the outer media after 48 h. In vitro fluorescence sorting demonstrated that PLGA/HA had highly efficient targeting and accumulation into CD44 receptor overexpression cells. The significant reduction in cell viability as well as greater induction of apoptosis suggested a potential in anticancer therapy of ART loaded PLGA/HA.

  17. The SHH/Gli axis regulates CD90-mediated liver cancer stem cell function by activating the IL6/JAK2 pathway.

    PubMed

    Zhang, Ketao; Che, Siyao; Pan, Chuzhi; Su, Zheng; Zheng, Shangyou; Yang, Shanglin; Zhang, Huayao; Li, Wenda; Wang, Weidong; Liu, Jianping

    2018-05-02

    The cell surface antigen CD90 has recently been established as a promising marker for liver cancer stem cells. This study aimed to investigate potential implications of SHH/Gli signalling in CD90+ liver cancer stem cells. Correlation of the expression of SHH signalling components and CD90 in liver cancer cells and clinical tissues, as well as in enriched CD90+ liver cancer stem cells and the TCGA database, were analysed by quantitative RT-PCR, Western blotting and flow cytometry. Functional analysis was conducted by siRNA-mediated CD90, Gli1 and Gli3 gene knockdown, SHH treatment and application of the JAK2 inhibitor AZD1480 and IL6 neutralizing antibody in CD90+ liver cancer stem cells, followed by cell proliferation, migration, sphere formation and tumorigenicity assays. CD90 expression exhibited a high positive correlation with Gli1 and Gli3 in multiple liver cancer cell lines and human cancerous liver tissues, both of which showed a significant increase in liver cancer. Analysis of TCGA data revealed an association of CD90, Gli1 and Gli3 with a short overall survival and positive correlation between CD90 expression and Gli3 expression level. The stem cell potentials of CD90+ 97L liver cancer cells were greatly impaired by Gli1/3 knockdown with siRNA but enhanced by SHH treatment. Application of the JAK2 inhibitor AZD1480 and IL6 neutralizing antibody showed the CD90 and SHH/Gli-regulated liver cancer stem cell functions were mediated by the IL6/JAK2/STAT3 pathway. The stem cell properties of CD90+ liver cancer cells are regulated by the downstream SHH/Gli and IL6/JAK2/STAT3 signalling pathways. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  18. Retinol as a micronutrients related to cervical local immunity: The expression of tumor necrosis factor-alpha specifically stimulated with E6 epitope of human papillomavirus type-16 and ratio of CD4+/CD8+ T cell in natural history of cervical cancer

    NASA Astrophysics Data System (ADS)

    Utami, T. W.; Aziz, M. F.; Ibrahim, F.; Andrijono

    2017-08-01

    Retinol is one of the antioxidant micronutrients that plays essential roles in the immune system, by preventing the persistence of modulating CD4+ and CD8+ T cells and cytokines production. Tumor Necrosis Factor-Alpha (TNF-α) is an acute pro-inflammatory cytokine which has many crucial roles in controlling HPV. In contrast, when persistent infection occurs, TNF-α induces carcinogenesis. The ratio of CD4+ cells to CD8+ T cells and adequate TNF-α production in acute HPV infection are key points for clearance. The aim of this research is to analyze the sufficiency level of retinol deposit, the expression of TNF-α, and the ratio of CD4+: CD8+ T cells in a normal cervix, clearance and persistent HPV subclinical infection, and cervical cancer group. The sufficiency level of retinol deposit was analyzed from peripheral blood using the ELISA method. The cervico-vaginal secretions, which were incubated for 24 hours, were stimulated specifically by E6 epitope HPV type-16, measuring TNF-α expression semi-quantitatively by the ELISpot method and CD4+/CD8+ T cells quantitatively by flowcytometry method. The sufficient level of retinol deposit in a normal cervix, clearance HPV subclinical infection, persistent, and cervical cancer group was 85%, 75% (OR 1.89), 33.3% (OR 11.33), and 75% (OR 1.89), respectively. The expression of TNF-α in normal cervix group was 10%, while for cervical cancer it was 75% (OR 27.00; p < 0.001). There was no expression in clearance and persistent HPV subclinical infection groups. A high ratio of CD4+: CD8+ T cells in the normal cervix and cervical cancer group was 10% and 25% (OR 0.33). There was no high ratio of CD4+: CD8+ T cells in clearance (OR 1.22) and persistent (OR 0.95) HPV subclinical infection groups. This study was able to prove that the normal cervix group has the highest retinol deposit sufficiency level and the cervical cancer group has the highest TNF-α expression (OR 27; p < 0.001). The lowest of retinol deposit sufficiency

  19. Hyaluronic acid-modified polyamidoamine dendrimer G5-entrapped gold nanoparticles delivering METase gene inhibits gastric tumor growth via targeting CD44+ gastric cancer cells.

    PubMed

    Li, Yi-Fan; Zhang, Hou-Ting; Xin, Lin

    2018-06-01

    Gastric cancer (GC) is the second most common leading cause of cancer-related death. Cancer stem cell (CSC) with the mark of CD44 played an important role in GC. rMETase was wildly exploited as chemotherapeutic option for GC. Polymers synthetic nanoparticle drug delivery systems have been commonly used for cancer therapy. With the decorating of Hyaluronic acid (HA), a receptor of CD44, nanoparticles exhibit with good biocompatibility and aqueous solubility. The characteristic of nanoparticles (NPs) was analyzed by TEM and DLS. The viability and proliferation of GC cells were examined by MTT assays. The levels of CD44, Cyt C, and c-caspase 3 were examined by Western blot. The level of ROS was measured by DCFH-DA assays. The morphology of tissues was detected using hematoxylin-eosin (H&E) stain. Nude mice xenograft models were used to evaluate the effect of HA-PAMAM-Au-METase on GC. The transfection of rMETase carried by HA-G5 PAMAM-Au visibly inhibited the proliferation and tumorsphere formation of GC cells through obviously enhancing METase activity. Elevation of METase activity suppressed the proliferation of CD44(+) GC cells through down-regulating MET in cellular supernatant that resulted in the increase of Cyc C and ROS levels. The number of CD44(+) GC cells in nude mice injected with G5 PAMAM-Au-METase decorated by HA was markly declined resulting in the inhibition of tumor growth. HA-G5 PAMAM-Au-METase significantly suppressed tumor growth of GC by targeted damaging the mitochondrial function of CD44(+) gastric CSCs.

  20. Decreased expression of cell adhesion genes in cancer stem-like cells isolated from primary oral squamous cell carcinomas.

    PubMed

    Mishra, Amrendra; Sriram, Harshini; Chandarana, Pinal; Tanavde, Vivek; Kumar, Rekha V; Gopinath, Ashok; Govindarajan, Raman; Ramaswamy, S; Sadasivam, Subhashini

    2018-05-01

    The goal of this study was to isolate cancer stem-like cells marked by high expression of CD44, a putative cancer stem cell marker, from primary oral squamous cell carcinomas and identify distinctive gene expression patterns in these cells. From 1 October 2013 to 4 September 2015, 76 stage III-IV primary oral squamous cell carcinoma of the gingivobuccal sulcus were resected. In all, 13 tumours were analysed by immunohistochemistry to visualise CD44-expressing cells. Expression of CD44 within The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma RNA-sequencing data was also assessed. Seventy resected tumours were dissociated into single cells and stained with antibodies to CD44 as well as CD45 and CD31 (together referred as Lineage/Lin). From 45 of these, CD44 + Lin - and CD44 - Lin - subpopulations were successfully isolated using fluorescence-activated cell sorting, and good-quality RNA was obtained from 14 such sorted pairs. Libraries from five pairs were sequenced and the results analysed using bioinformatics tools. Reverse transcription quantitative polymerase chain reaction was performed to experimentally validate the differential expression of selected candidate genes identified from the transcriptome sequencing in the same 5 and an additional 9 tumours. CD44 was expressed on the surface of poorly differentiated tumour cells, and within the The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma samples, its messenger RNA levels were higher in tumours compared to normal. Transcriptomics revealed that 102 genes were upregulated and 85 genes were downregulated in CD44 + Lin - compared to CD44 - Lin - cells in at least 3 of the 5 tumours sequenced. The upregulated genes included those involved in immune regulation, while the downregulated genes were enriched for genes involved in cell adhesion. Decreased expression of PCDH18, MGP, SPARCL1 and KRTDAP was confirmed by reverse transcription quantitative polymerase chain reaction. Lower expression of

  1. CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver.

    PubMed

    Stegmann, Kerstin A; Robertson, Francis; Hansi, Navjyot; Gill, Upkar; Pallant, Celeste; Christophides, Theodoros; Pallett, Laura J; Peppa, Dimitra; Dunn, Claire; Fusai, Giuseppe; Male, Victoria; Davidson, Brian R; Kennedy, Patrick; Maini, Mala K

    2016-05-23

    Natural killer cells (NK) are highly enriched in the human liver, where they can regulate immunity and immunopathology. We probed them for a liver-resident subset, distinct from conventional bone-marrow-derived NK. CXCR6+ NK were strikingly enriched in healthy and diseased liver compared to blood (p < 0.0001). Human hepatic CXCR6+ NK had an immature phenotype (predominantly CD56(bright)CD16-CD57-), and expressed the tissue-residency marker CD69. CXCR6+ NK produced fewer cytotoxic mediators and pro-inflammatory cytokines than the non-liver-specific CXCR6- fraction. Instead CXCR6+ NK could upregulate TRAIL, a key death ligand in hepatitis pathogenesis. CXCR6 demarcated liver NK into two transcriptionally distinct populations: T-bet(hi)Eomes(lo)(CXCR6-) and T-bet(lo)Eomes(hi)(CXCR6+); the latter was virtually absent in the periphery. The small circulating CXCR6+ subset was predominantly T-bet(hi)Eomes(lo), suggesting its lineage was closer to CXCR6- peripheral than CXCR6+ liver NK. These data reveal a large subset of human liver-resident T-bet(lo)Eomes(hi) NK, distinguished by their surface expression of CXCR6, adapted for hepatic tolerance and inducible anti-viral immunity.

  2. A method for the generation of ectromelia virus (ECTV) recombinants: in vivo analysis of ECTV vCD30 deletion mutants.

    PubMed

    Alejo, Ali; Saraiva, Margarida; Ruiz-Argüello, Maria Begoña; Viejo-Borbolla, Abel; de Marco, Mar Fernández; Salguero, Francisco Javier; Alcami, Antonio

    2009-01-01

    Ectromelia virus (ECTV) is the causative agent of mousepox, a lethal disease of mice with similarities to human smallpox. Mousepox progression involves replication at the initial site of infection, usually the skin, followed by a rapid spread to the secondary replicative organs, spleen and liver, and finally a dissemination to the skin, where the typical rash associated with this and other orthopoxviral induced diseases appears. Case fatality rate is genetically determined and reaches up to 100% in susceptible mice strains. Like other poxviruses, ECTV encodes a number of proteins with immunomodulatory potential, whose role in mousepox progression remains largely undescribed. Amongst these is a secreted homologue of the cellular tumour necrosis factor receptor superfamily member CD30 which has been proposed to modulate a Th1 immune response in vivo. To evaluate the contribution of viral CD30 (vCD30) to virus pathogenesis in the infected host, we have adapted a novel transient dominant method for the selection of recombinant ECTVs. Using this method, we have generated an ECTV vCD30 deletion mutant, its corresponding revertant control virus as well as a virus encoding the extracellular domain of murine CD30. These viruses contain no exogenous marker DNA sequences in their genomes, as opposed to other ECTVs reported up to date. We show that the vCD30 is expressed as a secreted disulfide linked trimer and that the absence of vCD30 does not impair mousepox induced fatality in vivo. Replacement of vCD30 by a secreted version of mouse CD30 caused limited attenuation of ECTV. The recombinant viruses generated may be of use in the study of the role of the cellular CD30-CD30L interaction in the development of the immune response. The method developed might be useful for the construction of ECTV mutants for the study of additional genes.

  3. Increased Expression of Complement Regulators CD55 and CD59 on Peripheral Blood Cells in Patients with EAHEC O104:H4 Infection

    PubMed Central

    Ullrich, Sebastian; Fraedrich, Katharina; Schulze zur Wiesch, Julian; Fründt, Thorben; Tiegs, Gisa; Lohse, Ansgar; Lüth, Stefan

    2013-01-01

    Background An outbreak of Shiga Toxin 2 (Stx-2) producing enterohemorrhagic and enteroaggregative E.coli (EAHEC) O104H4 infection in May 2011 caused enterocolitis and an unprecedented high 22% rate of hemolytic uremic syndrome (HUS). The monoclonal anti-C5 antibody Eculizumab (ECU) has been used experimentally in EAHEC patients with HUS but treatment efficacy is uncertain. ECU can effectively prevent hemolysis in paroxysmal nocturnal hemoglobinuria (PNH) caused by a lack of complement-regulating CD55 and CD59 on blood cells. We hypothesized a low expression of CD55 and CD59, as seen in PNH, might correlate with HUS development in EAHEC patients. Methods 76 EAHEC patients (34 only gastrointestinal symptoms [GI], 23: HUS, 19: HUS and neurological symptoms [HUS/N]) and 12 healthy controls (HC) were tested for the expression of CD55 and CD59 on erythrocytes and leukocytes retrospectively. Additionally, the effect of Stx-2 on CD55 and CD59 expression on erythrocytes and leukocytes was studied ex vivo. Results CD55 expression on erythrocytes was similar in all patient groups and HC while CD59 showed a significantly higher expression in HUS and HUS/N patients compared to HC and the GI group. CD55 and CD59 expression on leukocytes and their subsets was significantly higher in all patient groups compared to HC regardless of treatment type. However, CD59 expression on erythrocytes was significantly higher in HUS and HUS/N patients treated combined with plasma separation (PS) and ECU compared to HC. Adding Stx-2 ex vivo had no effect on CD55 and CD59 expression on leukocytes from HC or patients. Conclusion HUS evolved independently from CD55 and CD59 expression on peripheral blood cells in EAHEC O104:H4 infected patients. Our data do not support a role for CD55 and CD59 in HUS development during EAHEC O104:H4 infection and point to a different mechanism within the complement system for HUS development in EAHEC patients. PMID:24086391

  4. 44 CFR 6.85 - Reproduction fees.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Reproduction fees. 6.85... HOMELAND SECURITY GENERAL IMPLEMENTATION OF THE PRIVACY ACT OF 1974 Fees § 6.85 Reproduction fees. (a... over 81/2 x 14 inches or whose physical characteristics do not permit reproduction by routine...

  5. 44 CFR 6.85 - Reproduction fees.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Reproduction fees. 6.85... HOMELAND SECURITY GENERAL IMPLEMENTATION OF THE PRIVACY ACT OF 1974 Fees § 6.85 Reproduction fees. (a... over 81/2 x 14 inches or whose physical characteristics do not permit reproduction by routine...

  6. 44 CFR 6.57 - Judicial review.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Judicial review. 6.57 Section 6.57 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND... District Court in which the requestor resides or has his or her principal place of business or in which the...

  7. Elevated expression of CD93 promotes angiogenesis and tumor growth in nasopharyngeal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Lili; Tang, Mingming; Zhang, Qicheng

    2016-08-05

    CD93, also known as the complement component C1q receptor (C1qRp), has been reported to promote the progression of some cancer types. However, the expression and physiological significance of CD93 in nasopharyngeal carcinoma (NPC) remain largely elusive. In this study, we first examined the expression of CD93 in NPC and experimentally manipulated its expression. We observed that vascular CD93 expression is elevated in NPC and is correlated with T classification, N classification, distant metastasis, clinical stage and poor prognosis (all P < 0.05). In addition, overexpression of CD93 promoted angiogenesis in vitro. What’s more, we found that CD93 was highly expressed in NPC tissuesmore » and cells, and the regulation of CD93 on cell proliferation was determined by cell counting kit (CCK)-8 assay and cell cycle analyses. Our findings provide unique insight into the pathogenesis of NPC and underscore the need to explore novel therapeutic targets such as CD93 to improve NPC treatment. -- Highlights: •This is the first research about the relationship between CD93 and nasopharyngeal carcinoma. •We explored the prognostic significance of vascular CD93 expression in nasopharyngeal carcinoma. •We researched on angiogenesis and cell proliferation of nasopharyngeal carcinoma and how CD93 affected them.« less

  8. Hyaluronan inhibits prostaglandin E2 production via CD44 in U937 human macrophages.

    PubMed

    Yasuda, Tadashi

    2010-03-01

    Prostaglandin E(2) (PGE(2)) is one of the key mediators of inflammation in affected joints of rheumatoid arthritis (RA). Intra-articular injection of high molecular weight hyaluronan (HA) into RA knee joints relieves arthritic pain. Although HA has been shown to inhibit PGE(2) production in cytokine-stimulated synovial fibroblasts, it remains unclear how HA suppresses PGE(2) production in activated cells. Furthermore, HA effect on macrophages has rarely been investigated in spite of their contribution to RA joint pathology. This study was aimed to investigate the inhibitory mechanism of HA on lipopolysaccharide (LPS)-stimulated PGE(2) production in U937 human macrophages. Stimulation of U937 macrophages with LPS enhanced PGE(2) production in association with increased protein levels of cyclooxygenase-2 (COX-2). Pretreatment with HA of 2,700 kDa resulted in suppression of the LPS-mediated induction of COX-2, leading to a decrease in PGE(2) production. Likewise, the LPS-stimulated PGE(2) production was inhibited by the pretreatment with a specific COX2 inhibitor, NS-398, or a specific inhibitor of nuclear factor (NF)-kappaB, BAY11-7085. HA also decreased the degree of phosphorylation and nuclear translocation of NF-kappaB enhanced by LPS. Fluorescence cytochemistry demonstrated that HA bound to CD44, the principal HA receptor, on U937 macrophages. Anti-CD44 antibody reversed the inhibitory effects of HA on the LPS-mediated increase in PGE(2) production, COX-2 induction, and activation of NF-kappaB. These results indicate that HA suppresses the LPS-stimulated PGE(2) production via CD44 through down-regulation of NF-kappaB. Administration of HA into RA joints may decrease PGE(2) production by activated macrophages, which could result in improvement of arthritic pain.

  9. Syntheses, crystal structures and photoluminescence properties of five Cd/Zn-organic frameworks

    NASA Astrophysics Data System (ADS)

    Li, Qing; Xue, Dong-Xu; Zhang, Yu-Feng; Zhang, Zong-Hui; Gao, Ziwei

    2018-07-01

    Luminescent metal-organic frameworks (MOFs) have displayed extensively potential applications for photocatalysis, photoluminescence, electroluminescence, chemical sensors et al. Herein, five new Cd/Zn-organic frameworks of [Cd(HL)C2H5OH] (1), [Cd(HL)(2,2‧-Bpy)H2O] (2), [Cd2(HL)2(Phen)2] (3), [Zn(HL)BIMB] (4), [Cd3(HL)3(4,4‧-Bpy)DMF]·(H2O) (5) have been deliberately constructed via solvothermal reactions of d10 transition metal salts, i.e. Cd(NO3)2•4H2O or Zn(NO3)2·6H2O, and a V-shaped semi-rigid organic linker of 4,4'-(hydroxymethanediyl) dibenzoic acid (H3L) along with the auxiliary poly-nitrogen ligands of 2,2‧-Bpy(2,2‧-bipyridine), Phen(phenanthroline), BIMB(1,1‧-benzene-1,4-diyldimethanediyl-bis-1H-imidazole) and 4,4‧-Bpy(4,4‧-bipyridine). The crystal structures of compounds 1-5 were precisely determined by single-crystal X-ray diffraction (SC-XRD), Powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR) and Thermogravimetic analysis (TGA). As revealed by SC-XRD, the isolated 1 presents a 2-periodic framework encompassing side-by-side channel-typed helical tubes. Compounds 2-4 display Z-shaped 1-periodic single chains, concomitant with twin chains and tubular structure, respectively. Interestingly, compound 5 demonstrates a two-fold interpenetrated 3-periodic skeleton in the presence of a rigid pillar of 4,4‧-Bpy. Additionally, photoluminescence properties of 1-5 were lastly investigated.

  10. 30 CFR 44.6 - Service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RULES OF PRACTICE FOR PETITIONS FOR MODIFICATION OF MANDATORY SAFETY STANDARDS General § 44.6 Service..., the Office of the Solicitor, Department of Labor. (b) All documents filed subsequent to a petition for... a petition for modification under these rules shall file proof of service in the form of a return...

  11. Selective resistance of CD44hi T cells to p53-dependent cell death results in persistence of immunologic memory after total body irradiation.

    PubMed

    Yao, Zhenyu; Jones, Jennifer; Kohrt, Holbrook; Strober, Samuel

    2011-10-15

    Our previous studies showed that treatment of mice with total body irradiation (TBI) or total lymphoid tissue irradiation markedly changes the balance of residual T cell subsets to favor CD4(+)CD44(hi) NKT cells because of the differential resistance of the latter subset to cell death. The object of the current study was to further elucidate the changed balance and mechanisms of differential radioresistance of T cell subsets after graded doses of TBI. The experimental results showed that CD4(+) T cells were markedly more resistant than CD8(+) T cells, and CD44(hi) T cells, including NKT cells and memory T cells, were markedly more resistant than CD44(lo) (naive) T cells. The memory T cells immunized to alloantigens persisted even after myeloablative (1000 cGy) TBI and were able to prevent engraftment of bone marrow transplants. Although T cell death after 1000 cGy was prevented in p53(-/-) mice, there was progressive T cell death in p53(-/-) mice at higher doses. Although p53-dependent T cell death changed the balance of subsets, p53-independent T cell death did not. In conclusion, resistance of CD44(hi) T cells to p53-dependent cell death results in the persistence of immunological memory after TBI and can explain the immune-mediated rejection of marrow transplants in sensitized recipients.

  12. Chemoresistance of CD133{sup +} colon cancer may be related with increased survivin expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Mi-Ra; Ji, Sun-Young; Mia-Jan, Khalilullah

    2015-07-31

    CD133, putative cancer stem cell marker, deemed to aid chemoresistance. However, this claim has been challenged recently and we previously reported that patients with CD133{sup +} colon cancer have benefit from 5-fluorouracil (5-FU) chemotherapy incontrast to no benefit in patients with CD133{sup −} cancer. To elucidate the role of CD133 expression in chemoresistance, we silenced the CD133 expression in a colon cancer cell line and determined its effect on the biological characteristics downstream. We comparatively analyzed the sequential changes of MDR1, ABCG2, AKT1 and survivin expression and the result of proliferation assay (WST-1 assay) with 5-FU treatment in CD133{sup +}more » and siRNA-induced CD133{sup −} cells, derived from Caco-2 colon cancer cell line. 5-FU treatment induced significantly increase of the mRNA expression of MDR1, ABCG2 and AKT1genes, but not protein level. CD133 had little to no effect on the mRNA and protein expression of these genes. However, survivin expression at mRNA and protein level were significantly increased in CD133{sup +} cells compared with siRNA-induced CD133-cells and Mock (not sorted CD133{sup +} cells) at 96 h after siRNA transfection. The cytotoxicity assay demonstrated notable increase of chemoresistance to 5-FU treatment (10 μM) in CD133{sup +} cells at 96 h after siRNA transfection. From this study, we conclude that CD133{sup +} cells may have chemoresistance to 5-FU through the mechanism which is related with survivin expression, instead of MDR1, ABCG2 and AKT1 expression. Therefore a survivin inhibitor can be a new target for effective treatment of CD133{sup +} colon cancer. - Highlights: • We evaluate the role of CD133 in chemoresistance of colon cancer. • We compared the chemoresistance of CD133{sup +} cells and siRNA-induced CD133{sup −} cells. • CD133 had little to no effect on MDR1, ABCG2 and AKT1 expression. • Survivin expression and chemoresistance were increased in CD133{sup +} colon

  13. Increased Protease-Activated Receptor-2 (PAR-2) Expression on CD14++CD16+ Peripheral Blood Monocytes of Patients with Severe Asthma

    PubMed Central

    Shrestha Palikhe, Nami; Nahirney, Drew; Laratta, Cheryl; Gandhi, Vivek Dipak; Vethanayagam, Dilini; Bhutani, Mohit; Mayers, Irvin

    2015-01-01

    Background Protease-Activated Receptor-2 (PAR-2), a G protein coupled receptor activated by serine proteases, is widely expressed in humans and is involved in inflammation. PAR-2 activation in the airways plays an important role in the development of allergic airway inflammation. PAR-2 expression is known to be upregulated in the epithelium of asthmatic subjects, but its expression on immune and inflammatory cells in patients with asthma has not been studied. Methods We recruited 12 severe and 24 mild/moderate asthmatics from the University of Alberta Hospital Asthma Clinics and collected baseline demographic information, medication use and parameters of asthma severity. PAR-2 expression on blood inflammatory cells was analyzed by flow cytometry. Results Subjects with severe asthma had higher PAR-2 expression on CD14++CD16+ monocytes (intermediate monocytes) and also higher percentage of CD14++CD16+PAR-2+ monocytes (intermediate monocytes expressing PAR-2) in blood compared to subjects with mild/moderate asthma. Receiver operating characteristics (ROC) curve analysis showed that the percent of CD14++CD16+PAR-2+ in peripheral blood was able to discriminate between patients with severe and those with mild/moderate asthma with high sensitivity and specificity. In addition, among the whole populations, subjects with a history of asthma exacerbations over the last year had higher percent of CD14++CD16+ PAR-2+ cells in peripheral blood compared to subjects without exacerbations. Conclusions PAR-2 expression is increased on CD14++CD16+ monocytes in the peripheral blood of subjects with severe asthma and may be a biomarker of asthma severity. Our data suggest that PAR-2 -mediated activation of CD14++CD16+ monocytes may play a role in the pathogenesis of severe asthma. PMID:26658828

  14. Increased Protease-Activated Receptor-2 (PAR-2) Expression on CD14++CD16+ Peripheral Blood Monocytes of Patients with Severe Asthma.

    PubMed

    Shrestha Palikhe, Nami; Nahirney, Drew; Laratta, Cheryl; Gandhi, Vivek Dipak; Vethanayagam, Dilini; Bhutani, Mohit; Mayers, Irvin; Cameron, Lisa; Vliagoftis, Harissios

    2015-01-01

    Protease-Activated Receptor-2 (PAR-2), a G protein coupled receptor activated by serine proteases, is widely expressed in humans and is involved in inflammation. PAR-2 activation in the airways plays an important role in the development of allergic airway inflammation. PAR-2 expression is known to be upregulated in the epithelium of asthmatic subjects, but its expression on immune and inflammatory cells in patients with asthma has not been studied. We recruited 12 severe and 24 mild/moderate asthmatics from the University of Alberta Hospital Asthma Clinics and collected baseline demographic information, medication use and parameters of asthma severity. PAR-2 expression on blood inflammatory cells was analyzed by flow cytometry. Subjects with severe asthma had higher PAR-2 expression on CD14++CD16+ monocytes (intermediate monocytes) and also higher percentage of CD14++CD16+PAR-2+ monocytes (intermediate monocytes expressing PAR-2) in blood compared to subjects with mild/moderate asthma. Receiver operating characteristics (ROC) curve analysis showed that the percent of CD14++CD16+PAR-2+ in peripheral blood was able to discriminate between patients with severe and those with mild/moderate asthma with high sensitivity and specificity. In addition, among the whole populations, subjects with a history of asthma exacerbations over the last year had higher percent of CD14++CD16+ PAR-2+ cells in peripheral blood compared to subjects without exacerbations. PAR-2 expression is increased on CD14++CD16+ monocytes in the peripheral blood of subjects with severe asthma and may be a biomarker of asthma severity. Our data suggest that PAR-2 -mediated activation of CD14++CD16+ monocytes may play a role in the pathogenesis of severe asthma.

  15. Communication about absent entities in great apes and human infants.

    PubMed

    Bohn, Manuel; Call, Josep; Tomasello, Michael

    2015-12-01

    There is currently debate about the extent to which non-linguistic beings such as human infants and great apes are capable of absent reference. In a series of experiments we investigated the flexibility and specificity of great apes' (N=36) and 12 month-old infants' (N=40) requests for absent entities. Subjects had the choice between requesting visible objects directly and using the former location of a depleted option to request more of these now-absent entities. Importantly, we systematically varied the quality of the present and absent options. We found that great apes as well as human infants flexibly adjusted their requests for absent entities to these contextual variations and only requested absent entities when the visible option was of lower quality than the absent option. These results suggest that the most basic cognitive capacities for absent reference do not depend on language and are shared by humans and their closest living relatives. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Multiple host defense defects in failure of C57BL/6 ep/ep (pale ear) mice to resolve visceral Leishmania donovani infection.

    PubMed Central

    Murray, H W; Hariprashad, J; McDermott, D F; Stoeckle, M Y

    1996-01-01

    Euthymic C57BL/L ep/ep (pale ear [PE]) mice halt the visceral replication of intracellular Leishmania donovani but fail to properly resolve infection. A previous study identified an isolated defect in tissue granuloma formation in these mice; CD4+ and CD8+ cell number, gamma interferon (IFN-gamma) production, and macrophage antimicrobial activity in vitro were all intact. New in vivo results reported here suggest a considerably more complex immune defect, with evidence indicating (i) enhanced control over L. donovani after transfer of normal C57BL/6 spleen cells, (ii) a partially suppressive Th2 cell-associated response mediated by interleukin-4 (IL-4) but not reversed by CD4+ cell depletion, (iii) absent responses to endogenous Th1 cell lymphokines (IFN-gamma and IL-2) but preserved responsiveness to endogenous tumor necrosis factor alpha, (iv) absent responses to exogenous treatment with recognized antileishmanial cytokines (IFN-gamma, IL-2, IL-12, and granulocyte-macrophage colony-stimulating factor [GM-CSF]) not corrected by transfer of C57BL/6 spleen cells, and (v) a deficient response to antimony chemotherapy. Defective hepatic granuloma formation was not corrected by transfer of C57BL/6 spleen cells or by anti-IL-4 administration. While treatment with IL-2 and GM-CSF modified the tissue reaction and induced selected effector cells to encase tissue macrophages, no antileishmanial activity resulted. Together, these observations suggest that the failure of PE mice to resolve visceral L. donovani infection likely represents expression of multiple suboptimal immune responses and/or partial defects, probably involving a combination of T-cell dysfunction, a Th2 cell response, and target cell (macrophage) hyporesponsiveness. PMID:8557335

  17. CD4-dependent characteristics of coreceptor use and HIV type 1 V3 sequence in a large population of therapy-naive individuals.

    PubMed

    Low, Andrew J; Marchant, David; Brumme, Chanson J; Brumme, Zabrina L; Dong, Winnie; Sing, Tobias; Hogg, Robert S; Montaner, Julio S G; Gill, Vikram; Cheung, Peter K; Harrigan, P Richard

    2008-02-01

    We investigated the associations between coreceptor use, V3 loop sequence, and CD4 count in a cross-sectional analysis of a large cohort of chronically HIV-infected, treatment-naive patients. HIV coreceptor usage was determined in the last pretherapy plasma sample for 977 individuals initiating HAART in British Columbia, Canada using the Monogram Trofile Tropism assay. Relative light unit (RLU) readouts from the Trofile assay, as well as HIV V3 loop sequence data, were examined as a function of baseline CD4 cell count for 953 (97%) samples with both phenotype and genotype data available. Median CCR5 RLUs were high for both R5 and X4-capable samples, while CXCR4 RLUs were orders of magnitude lower for X4 samples (p < 0.001). CCR5 RLUs in R5 samples (N = 799) increased with decreasing CD4 count (p < 0.001), but did not vary with plasma viral load (pVL) (p = 0.74). In X4 samples (N = 178), CCR5 RLUs decreased with decreasing CD4 count (p = 0.046) and decreasing pVL (p = 0.097), while CXCR4 RLUs increased with decreasing pVL (p = 0.0008) but did not vary with CD4 (p = 0.96). RLUs varied with the presence of substitutions at V3 loop positions 11, 25, and 6-8. The prevalence and impact of substitutions at codons 25 and 6-8 were CD4 dependent as was the presence of amino acid mixtures in the V3; substitutions at position 11 were CD4 independent. Assay RLU measures predictably vary with both immunological and virological parameters. The ability to predict X4 virus using genotypic determinants at positions 25 and 6-8 of the V3 loop is CD4 dependent, while position 11 appears to be CD4 independent.

  18. Expansion of CD11b+Ly6Ghigh and CD11b+CD49d+ myeloid cells with suppressive potential in mice with chronic inflammation and light-at-night-induced circadian disruption.

    PubMed

    Perfilyeva, Yuliya V; Abdolla, Nurshat; Ostapchuk, Yekaterina O; Tleulieva, Raikhan; Krasnoshtanov, Vladimir C; Belyaev, Nikolai N

    2017-08-01

    Myeloid-derived suppressor cells (MDSCs) are important negative regulators of immune processes in cancer and other pathological conditions. We suggested that MDSCs play a key role in pathogenesis of chronic inflammation, which precedes and, to a certain extent, induces carcinogenesis. The present study aimed at investigation of MDSCs arising during chronic inflammation and light-at-night (LN)-induced stress, which is shown to accelerate chronic diseases. 67 CD-1 mice and in vitro MDSC cultures. Adjuvant arthritis was induced by a subdermal injection of complete Freund's adjuvant. LN was induced by illumination of 750 lx at night. Flow cytometry for evaluation of cell phenotypes and MTT standard test for cell proliferation were used. Increased levels of splenic CD11b + Ly6G high and CD11b + CD49d + myeloid cells possessing suppressive potential in mice with adjuvant arthritis are shown. LN amplifies the process of CD11b + Ly6G high expansion in mice with adjuvant arthritis. Expression of CD62L and CD195 is elevated on the myeloid cells during exposure to LN. Our study raises the possibility that CD11b + Ly6G high and CD11b + CD49d + MDSCs play an important role in the induction of immunosuppressive environment typical for chronic inflammation. Also, LN can affect immune responses during chronic inflammation through recruitment of MDSCs from the bone marrow.

  19. [Recent Advances of Researches on Expression, Function and Regulation of CD22].

    PubMed

    Wu, Xiao-Jing; Shao, Zong-Hong

    2015-04-01

    CD22 is a type I transmembrane protein expressed on most mature B lymphocyte, and plays a significant role in signal transduction pathways. CD22 acts as a co-receptor of the B-cell receptor (BCR) that inhibits the BCR signaling by antigen-receptor interaction. The phosphorylation of CD22 can be triggered by cross-linking of CD22 with the BCR through antigen, then predominantly triggers the dephosphorylation and inactivation of downstream proteins and inhibit the BCR signaling. Autoimmune disease could be caused by the abnormal expression or dysfunction of CD22 which interrupts BCR signaling and then influences the quantity and function of B cells. The further study of the function and regulation of CD22 would help us understanding the pathogenesis of autoimmune disease and setting theoretical basis for its targeting treatment. In this article, the structure and expression of CD22, the ligands of CD22, the regulation of BCR and transmenbrane signaling, the effect of CD22 on B cells, and CD22 and autoimmune diseases were reviewed.

  20. Effect of Cage-Induced Stereotypies on Measures of Affective State and Recurrent Perseveration in CD-1 and C57BL/6 Mice

    PubMed Central

    Novak, Janja; Bailoo, Jeremy D.; Melotti, Luca; Würbel, Hanno

    2016-01-01

    Stereotypies are abnormal repetitive behaviour patterns that are highly prevalent in laboratory mice and are thought to reflect impaired welfare. Thus, they are associated with impaired behavioural inhibition and may also reflect negative affective states. However, in mice the relationship between stereotypies and behavioural inhibition is inconclusive, and reliable measures of affective valence are lacking. Here we used an exploration based task to assess cognitive bias as a measure of affective valence and a two-choice guessing task to assess recurrent perseveration as a measure of impaired behavioural inhibition to test mice with different forms and expression levels of stereotypic behaviour. We trained 44 CD-1 and 40 C57BL/6 female mice to discriminate between positively and negatively cued arms in a radial maze and tested their responses to previously inaccessible ambiguous arms. In CD-1 mice (i) mice with higher stereotypy levels displayed a negative cognitive bias and this was influenced by the form of stereotypy performed, (ii) negative cognitive bias was evident in back-flipping mice, and (iii) no such effect was found in mice displaying bar-mouthing or cage-top twirling. In C57BL/6 mice neither route-tracing nor bar-mouthing was associated with cognitive bias, indicating that in this strain these stereotypies may not reflect negative affective states. Conversely, while we found no relation of stereotypy to recurrent perseveration in CD-1 mice, C57BL/6 mice with higher levels of route-tracing, but not bar-mouthing, made more repetitive responses in the guessing task. Our findings confirm previous research indicating that the implications of stereotypies for animal welfare may strongly depend on the species and strain of animal as well as on the form and expression level of the stereotypy. Furthermore, they indicate that variation in stereotypic behaviour may represent an important source of variation in many animal experiments. PMID:27145080

  1. A Critical Role for CD200R Signaling in Limiting the Growth and Metastasis of CD200+ Melanoma.

    PubMed

    Liu, Jin-Qing; Talebian, Fatemeh; Wu, Lisha; Liu, Zhihao; Li, Ming-Song; Wu, Laichu; Zhu, Jianmin; Markowitz, Joseph; Carson, William E; Basu, Sujit; Bai, Xue-Feng

    2016-08-15

    CD200 is a cell surface glycoprotein that functions through engaging CD200R on cells of the myeloid lineage and inhibits their functions. Expression of CD200 was implicated in a variety of human cancer cells, including melanoma cells; however, its roles in tumor growth and immunity are not clearly understood. In this study, we used CD200R-deficient mice and the B16 tumor model to evaluate this issue. We found that CD200R-deficient mice exhibited accelerated growth of CD200(+), but not CD200(-), B16 tumors. Strikingly, CD200R-deficient mice receiving CD200(+) B16 cells i.v. exhibited massive tumor growth in multiple organs, including liver, lung, kidney, and peritoneal cavity, whereas the growth of the same tumors in wild-type mice was limited. CD200(+) tumors grown in CD200R-deficient mice contained higher numbers of CD11b(+)Ly6C(+) myeloid cells, exhibited increased expression of VEGF and HIF1α genes with increased angiogenesis, and showed significantly reduced infiltration of CD4(+) and CD8(+) T cells, presumably as the result of reduced expression of T cell chemokines, such as CXCL9 and CXCL16. The liver from CD200R-deficient mice, under metastatic growth of CD200(+) tumors, contained significantly increased numbers of CD11b(+)Gr1(-) myeloid cells and Foxp3(+) regulatory T cells and reduced numbers of NK cells. Liver T cells also had a reduced capacity to produce IFN-γ or TNF-α. Taken together, we revealed a critical role for CD200R signaling in limiting the growth and metastasis of CD200(+) tumors. Thus, targeting CD200R signaling may potentially interfere with the metastatic growth of CD200(+) tumors, like melanoma. Copyright © 2016 by The American Association of Immunologists, Inc.

  2. Hydroxychloroquine inhibits CD154 expression in CD4+ T lymphocytes of systemic lupus erythematosus through NFAT, but not STAT5, signaling.

    PubMed

    Wu, Shu-Fen; Chang, Chia-Bin; Hsu, Jui-Mei; Lu, Ming-Chi; Lai, Ning-Sheng; Li, Chin; Tung, Chien-Hsueh

    2017-08-09

    Overexpression of membranous CD154 in T lymphocytes has been found previously in systemic lupus erythematosus (SLE). Because hydroxychloroquine (HCQ) has been used frequently in the treatment of lupus, we sought to identify the effects of HCQ on CD154 and a possibly regulatory mechanism. CD4 + T cells were isolated from the blood of lupus patients. After stimulation with ionomycin or IL-15 and various concentrations of HCQ, expression of membranous CD154 and NFAT and STAT5 signaling were assessed. HCQ treatment had significant dose-dependent suppressive effects on membranous CD154 expression in ionomycin-activated T cells from lupus patients. Furthermore, HCQ inhibited intracellular sustained calcium storage release, and attenuated the nuclear translocation of NFATc2 and the expression of NFATc1. However, CD154 expressed through IL-15-mediated STAT5 signaling was not inhibited by HCQ treatment. HCQ inhibited NFAT signaling in activated T cells and blocked the expression of membranous CD154, but not STAT5 signaling. These findings provide a mechanistic insight into SLE in HCQ treatment.

  3. The tissue microlocalisation and cellular expression of CD163, VEGF, HLA-DR, iNOS, and MRP 8/14 is correlated to clinical outcome in NSCLC.

    PubMed

    Ohri, Chandra M; Shikotra, Aarti; Green, Ruth H; Waller, David A; Bradding, Peter

    2011-01-01

    We have previously investigated the microlocalisation of M1 and M2 macrophages in NSCLC. This study investigated the non-macrophage (NM) expression of proteins associated with M1 and M2 macrophages in NSCLC. Using immunohistochemistry, CD68(+) macrophages and proteins associated with either a cytotoxic M1 phenotype (HLA-DR, iNOS, and MRP 8/14), or a non-cytotoxic M2 phenotype (CD163 and VEGF) were identified. NM expression of the markers was analysed in the islets and stroma of surgically resected tumours from 20 patients with extended survival (ES) (median 92.7 months) and 20 patients with poor survival (PS) (median 7.7 months). The NM expression of NM-HLA-DR (p<0.001), NM-iNOS (p = 0.02) and NM-MRP 8/14 (p = 0.02) was increased in ES compared to PS patients in the tumour islets. The tumour islet expression of NM-VEGF, was decreased in ES compared to PS patients (p<0.001). There was more NM-CD163 expression (p = 0.04) but less NM-iNOS (p = 0.002) and MRP 8/14 (p = 0.01) expression in the stroma of ES patients compared with PS patients. The 5-year survival for patients with above and below median NM expression of the markers in the islets was 74.9% versus 4.7% (NM-HLA-DR p<0.001), 65.0% versus 14.6% (NM-iNOS p = 0.003), and 54.3% versus 22.2% (NM-MRP 8/14 p = 0.04), as opposed to 34.1% versus 44.4% (NM-CD163 p = 0.41) and 19.4% versus 59.0% (NM-VEGF p = 0.001). Cell proteins associated with M1 and M2 macrophages are also expressed by other cell types in the tumour islets and stroma of patients with NSCLC. Their tissue and cellular microlocalisation is associated with important differences in clinical outcome.

  4. An intermediate level of CD161 expression defines a novel activated, inflammatory, and pathogenic subset of CD8+ T cells involved in multiple sclerosis.

    PubMed

    Nicol, Bryan; Salou, Marion; Vogel, Isabel; Garcia, Alexandra; Dugast, Emilie; Morille, Jeremy; Kilens, Stéphanie; Charpentier, Eric; Donnart, Audrey; Nedellec, Steven; Jacq-Foucher, Marylène; Le Frère, Fabienne; Wiertlewski, Sandrine; Bourreille, Arnaud; Brouard, Sophie; Michel, Laure; David, Laurent; Gourraud, Pierre-Antoine; Degauque, Nicolas; Nicot, Arnaud B; Berthelot, Laureline; Laplaud, David-Axel

    2018-03-01

    Several lines of evidence support a key role for CD8 + T cells in central nervous system tissue damage of patients with multiple sclerosis. However, the precise phenotype of the circulating CD8 + T cells that may be recruited from the peripheral blood to invade the CNS remains largely undefined to date. It has been suggested that IL-17 secreting CD8 (Tc17) T cells may be involved, and in humans these cells are characterized by the expression of CD161. We focused our study on a unique and recently described subset of CD8 T cells characterized by an intermediate expression of CD161 as its role in neuroinflammation has not been investigated to date. The frequency, phenotype, and function of CD8 + T cells with an intermediate CD161 expression level were characterized ex-vivo, in vitro, and in situ using RNAseq, RT-PCR, flow cytometry, TCR sequencing, and immunohistofluorescence of cells derived from healthy volunteers (n = 61), MS subjects (n = 90), as well as inflammatory (n = 15) and non-inflammatory controls (n = 6). We report here that CD8 + CD161 int T cells present characteristics of effector cells, up-regulate cell-adhesion molecules and have an increased ability to cross the blood-brain barrier and to secrete IL-17, IFNγ, GM-CSF, and IL-22. We further demonstrate that these cells are recruited and enriched in the CNS of MS subjects where they produce IL-17. In the peripheral blood, RNAseq, RT-PCR, high-throughput TCR repertoire analyses, and flow cytometry confirmed an increased effector and transmigration pattern of these cells in MS patients, with the presence of supernumerary clones compared to healthy controls. Our data demonstrate that intermediate levels of CD161 expression identifies activated and effector CD8 + T cells with pathogenic properties that are recruited to MS lesions. This suggests that CD161 may represent a biomarker and a valid target for the treatment of neuroinflammation. Copyright © 2017 The Authors. Published by Elsevier Ltd

  5. Activation of Peroxisome Proliferator-activated Receptor γ (PPARγ) and CD36 Protein Expression

    PubMed Central

    Yang, Xiaoxiao; Zhang, Wenwen; Chen, Yuanli; Li, Yan; Sun, Lei; Liu, Ying; Liu, Mengyang; Yu, Miao; Li, Xiaoju; Han, Jihong; Duan, Yajun

    2016-01-01

    Progesterone or its analog, one of components of hormone replacement therapy, may attenuate the cardioprotective effects of estrogen. However, the underlying mechanisms have not been fully elucidated. Expression of CD36, a receptor for oxidized LDL (oxLDL) that enhances macrophage/foam cell formation, is activated by the transcription factor peroxisome proliferator-activated receptor γ (PPARγ). CD36 also functions as a fatty acid transporter to influence fatty acid metabolism and the pathophysiological status of several diseases. In this study, we determined that progesterone induced macrophage CD36 expression, which is related to progesterone receptor (PR) activity. Progesterone enhanced cellular oxLDL uptake in a CD36-dependent manner. Mechanistically, progesterone increased PPARγ expression and PPARγ promoter activity in a PR-dependent manner and the binding of PR with the progesterone response element in the PPARγ promoter. Specific deletion of macrophage PPARγ (MφPPARγ KO) expression in mice abolished progesterone-induced macrophage CD36 expression and cellular oxLDL accumulation. We also determined that, associated with gestation and increased serum progesterone levels, CD36 and PPARγ expression in mouse adipose tissue, skeletal muscle, and peritoneal macrophages were substantially activated. Taken together, our study demonstrates that progesterone can play dual pathophysiological roles by activating PPARγ expression, in which progesterone increases macrophage CD36 expression and oxLDL accumulation, a negative effect on atherosclerosis, and enhances the PPARγ-CD36 pathway in adipose tissue and skeletal muscle, a protective effect on pregnancy. PMID:27226602

  6. Selective Matrix (Hyaluronan) Interaction with CD44 and RhoGTPase Signaling Promotes Keratinocyte Functions and Overcomes Age-related Epidermal Dysfunction

    PubMed Central

    Bourguignon, Lilly Y.W.; Wong, Gabriel; Xia, Weiliang; Man, Mao-Qiang; Holleran, Walter M.; Elias, Peter M.

    2013-01-01

    Background Mouse epidermal chronologic aging is closely associated with aberrant matrix (hyaluronan, HA) -size distribution/production and impaired keratinocyte proliferation/differentiation, leading to a marked thinning of the epidermis with functional consequence that causes a slower recovery of permeability barrier function. Objective The goal of this study is to demonstrate mechanism-based, corrective therapeutic strategies using topical applications of small HA (HAS) and/or large HA (HAL) [or a sequential small HA (HAS) and large HA(HAL) (HAs-»HAL) treatment] as well as RhoGTPase signaling perturbation agents to regulate HA/CD44-mediated signaling, thereby restoring normal epidermal function, and permeability barrier homeostasis in aged mouse skin. Methods A number of biochemical, cell biological/molecular, pharmacological and physiological approaches were used to investigate matrix HA-CD44-mediated RhoGTPase signaling in regulating epidermal functions and skin aging. Results In this study we demonstrated that topical application of small HA (HAS) promotes keratinocyte proliferation and increases skin thickness, while it fails to upregulate keratinocyte differentiation or permeability barrier repair in aged mouse skin. In contrast, large HA (HAL) induces only minimal changes in keratinocyte proliferation and skin thickness, but restores keratinocyte differentiation and improves permeability barrier function in aged epidermis. Since neither HAS nor HAL corrects these epidermal defects in aged CD44 knock-out mice, CD44 likely mediates HA-associated epidermal functions in aged mouse skin. Finally, blockade of Rho-kinase activity with Y27632 or protein kinase-Nγ activity with Ro31-8220 significantly decreased the HA (HAS or HAL)-mediated changes in epidermal function in aged mouse skin. Conclusion The results of our study show first that HA application of different sizes regulates epidermal proliferation, differentiation and barrier function in aged mouse skin

  7. The HLA-A2 Restricted T Cell Epitope HCV Core35–44 Stabilizes HLA-E Expression and Inhibits Cytolysis Mediated by Natural Killer Cells

    PubMed Central

    Nattermann, Jacob; Nischalke, Hans Dieter; Hofmeister, Valeska; Ahlenstiel, Golo; Zimmermann, Henning; Leifeld, Ludger; Weiss, Elisabeth H.; Sauerbruch, Tilman; Spengler, Ulrich

    2005-01-01

    Impaired activity of natural killer cells has been proposed as a mechanism contributing to viral persistence in hepatitis C virus (HCV) infection. Natural cytotoxicity is regulated by interactions of HLA-E with inhibitory CD94/NKG2A receptors on natural killer (NK) cells. Here, we studied whether HCV core encodes peptides that bind to HLA-E and inhibit natural cytotoxicity. We analyzed 30 HCV core-derived peptides. Peptide-induced stabilization of HLA-E expression was measured flow cytometrically after incubating HLA-E-transfected cells with peptides. NK cell function was studied with a 51chromium-release-assay. Intrahepatic HLA-E expression was analyzed by an indirect immunoperoxidase technique and flow cytometry of isolated cells using a HLA-E-specific antibody. We identified peptide aa35–44, a well-characterized HLA-A2 restricted T cell epitope, as a peptide stabilizing HLA-E expression and thereby inhibiting NK cell-mediated lysis. Blocking experiments confirmed that this inhibitory effect of peptide aa35–44 on natural cytotoxicity was mediated via interactions between CD94/NKG2A receptors and enhanced HLA-E expression. In line with these in vitro data we found enhanced intrahepatic HLA-E expression on antigen-presenting cells in HCV-infected patients. Our data indicate the existence of T cell epitopes that can be recognized by HLA-A2 and HLA-E. This dual recognition may contribute to viral persistence in hepatitis C. PMID:15681828

  8. Endoglin (CD105) expression in sinonasal polyposis.

    PubMed

    Ottaviano, Giancarlo; Cappellesso, Rocco; Mylonakis, Ioannis; Lionello, Marco; Favaretto, Niccolò; Giacomelli, Luciano; Spoladore, Cristiano; Marchese-Ragona, Rosario; Marino, Filippo; Staffieri, Alberto; Martini, Alessandro; Marioni, Gino

    2015-11-01

    Despite appropriate surgical therapy, 5-10 % of patients with chronic rhinosinusitis (CRS) and nasal polyps (NP) experience disease recurrences. It has been suggested that angiogenesis may relate to the pathogenesis and prognosis of CRS with NP. Endoglin (CD105) is a component of the receptor complex of transforming growth factor-beta, a pleiotropic cytokine that modulates angiogenesis. A series of patients treated surgically for CRS with NP was analyzed to assess the relationship between CD105 expression, main clinicopathological features, and recurrence rate. The immunohistochemical expression of CD105 was assessed in 70 patients consecutively operated for CRS with NP. In the univariate setting, the presence of CD105 (1/0) showed a trend towards a significant association with increasing NP dimensions (p = 0.054). Intensity of CD105 reaction was also significantly associated with NP size (0.04) and with an eosinophilic histology (p = 0.048). In our multivariate setting, only asthma (p = 0.016), hypereosinophilia (p = 0.022), and preoperative polyposis score (p = 0.046) retained their independent prognostic significance in relation to NP recurrence. Further efforts are needed to elucidate the biological, angiogenic and proliferative mechanisms behind recurrent NP. Our preliminary results support the clinical utility of extra postoperative care, in terms of closer follow-ups and medication with oral anti-histamines, topical and/or oral steroids, and antileukotrienes in patients with asthma, advanced nasal polyposis at presentation, and serum hypereosinophilia.

  9. Peritoneal Macrophage-Specific TNF-α Gene Silencing in LPS-Induced Acute Inflammation Model Using CD44 Targeting Hyaluronic Acid Nanoparticles.

    PubMed

    Kosovrasti, Verbena Y; Nechev, Lubomir V; Amiji, Mansoor M

    2016-10-03

    The main goal of this study was to evaluate tumor necrosis factor-alpha (TNF-α) gene silencing in peritoneal macrophages upon activation with lipopolysaccharide (LPS), using CD44-targeting hyaluronic acid (HA)-based nanoparticles encapsulating TNF-α-specific small interfering RNA (siTNF-α). HA nanoparticles were formulated by blending hyaluronic acid-poly(ethylene imine) (HA-PEI), hyaluronic acid-hexyl fatty acid (HA-C6), and hyaluronic acid-poly(ethylene glycol) (HA-PEG) in 3:2:1 weight ratio, and encapsulating siTNF-α to form spherical particles of 78-90 nm diameter. Following intraperitoneal (IP) administration in LPS-treated C57BL/6 mice, the nanoparticles were actively taken up by macrophages and led to a significant downregulation of peritoneal TNF-α level. Downregulation of peritoneal macrophage-specific TNF-α also had a significant impact on other pro-inflammatory cytokine and chemokine levels in the serum. The C57BL/6 group of mice challenged with 5 mg/kg LPS had a significantly higher survival rate when they were treated with 3 mg/kg siTNF-α, either prior or simultaneously with the LPS administration, as compared to the LPS-challenged mice, which were treated with controls including the scrambled siRNA formulation. Overall, the results of this study demonstrate that CD44 targeting HA nanoparticles can selectively deliver siTNF-α to peritoneal macrophages leading to downregulation of pro-inflammatory cytokines in the peritoneal fluid and in the serum. This RNAi strategy could potentially provide an important therapeutic modality for acute inflammatory diseases, such as septic shock.

  10. Expression of lactate transporters MCT1, MCT2 and CD147 in the red blood cells of three horse breeds: Finnhorse, Standardbred and Thoroughbred.

    PubMed

    Mykkänen, A K; Pösö, A R; McGowan, C M; McKane, S A

    2010-11-01

    In exercising horses, up to 50% of blood lactate is taken up into red blood cells (RBCs). Lactate transporter proteins MCT1, MCT2 and CD147 (an ancillary protein for MCT1) are expressed in the equine RBC membrane. In Standardbreds (SB), lactate transport activity is bimodally distributed and correlates with the amount of MCT1 and CD147. About 75% of SB studied have high lactate transport activity in RBCs. In other breeds, the distribution of lactate transport activity is unknown. To study whether similar bimodal distribution of MCT1 and CD147 is present also in the racing Finnhorse (FH) and Thoroughbred (TB) as in the SB and to study the distribution of MCT2 in all 3 breeds and to determine if there is a connection between MCT expression and performance markers in TB racehorses. Venous blood samples were taken from 118 FHs, 98 TBs and 44 SBs. Red blood cell membranes were purified and MCT1, MCT2 and CD147 measured by western blot. The amount of transporters was compared with TB performance markers. In TBs, the distribution of MCT1 was bimodal and in all breeds distribution of MCT2 unimodal. The amount of CD147 was clearly bimodal in FH and SB, with 85 and 82% expressing high amounts of CD147. In TBs, 88% had high expression of CD147 and 11% low expression, but one horse showed intermediate expression not apparent in FH or SB. Performance markers did not correlate with the amount of MCT1, MCT2 or CD147. High lactate transport activity was present in all 3 racing breeds, with the greatest proportion in the TB, followed by the racing FH, then SB. There was no significant statistical correlation found between lactate transporters in RBC membrane and markers of racing performance in the TB. © 2010 EVJ Ltd.

  11. Magnetic cell sorting purification of differentiated embryonic stem cells stably expressing truncated human CD4 as surface marker.

    PubMed

    David, Robert; Groebner, Michael; Franz, Wolfgang-Michael

    2005-04-01

    Embryonic stem (ES) cells offer great potential in regenerative medicine and tissue engineering. Clinical applications are still hampered by the lack of protocols for gentle, high-yield isolation of specific cell types for transplantation expressing no immunogenic markers. We describe labeling of stably transfected ES cells expressing a human CD4 molecule lacking its intracellular domain (DeltaCD4) under control of the phosphoglycerate kinase promoter for magnetic cell sorting (MACS). To track the labeled ES cells, we fused DeltaCD4 to an intracellular enhanced green fluorescent protein domain (DeltaCD4EGFP). We showed functionality of the membrane-bound fluorescent fusion protein and its suitability for MACS leading to purities greater than 97%. Likewise, expression of DeltaCD4 yielded up to 98.5% positive cells independently of their differentiation state. Purities were not limited by the initial percentage of DeltaCD4(+) cells, ranging from 0.6%-16%. The viability of MACS-selected cells was demonstrated by reaggregation and de novo formation of embryoid bodies developing all three germ layers. Thus, expression of DeltaCD4 in differentiated ES cells may enable rapid, high-yield purification of a desired cell type for tissue engineering and transplantation studies.

  12. Association of the expression of Th cytokines with peripheral CD4 and CD8 lymphocyte subsets after vaccination with FMD vaccine in Holstein young sires.

    PubMed

    Yang, Ling; Liu, Zhichao; Li, Jianbin; He, Kaili; Kong, Lingna; Guo, Runqing; Liu, Wenjiao; Gao, Yundong; Zhong, Jifeng

    2018-05-25

    High immune response (HIR) cows have a balanced and robust host defense and lower disease incidence, and immune response is more important to consider for selecting young sires than for selecting cows. The protective immune response against foot-and-mouth disease (FMD) virus infection is T-cell-independent in an animal experimental model. However, there is no convenient method to select young sires with a HIR to FMD virus. In this study, 39 healthy Holstein young sires were vaccinated with the trivalent (A, O and Asia 1) FMD vaccine, and T-lymphocyte subsets in peripheral blood lymphocytes (PBLs) were detected using flow cytometric analysis before and after vaccination. The expression of interferon-gamma (IFN-γ), interleukin-2 (IL-2), IL-4, and IL-6 mRNA in PBLs was analyzed after stimulation by lipopolysaccharide (LPS) or Concanavalin A (ConA) after vaccination. According to the percentage of CD4 + lymphocyte and CD4/CD8 ratio after vaccination for selecting the HIR young sires, the results showed that the percentages of CD3 + , CD4 + , CD3 + CD4 + lymphocytes and the CD4/CD8 ratio in the HIR group were higher compared to those in the medium immune response (MIR) and low immune response (LIR) groups before vaccination. Additionally, the percentage of CD4 + lymphocytes and the CD4/CD8 ratio after vaccination were positively associated with the expression level of IFN-γ mRNA in the PBLs after stimulation by LPS. In conclusion, the in vitro expression level of IFN-γ mRNA in the PBLs stimulated by LPS may serve as a parameter for selecting young sires with a HIR to FMD virus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. CD147 and matrix-metalloproteinase-2 expression in metastatic and non-metastatic uveal melanomas.

    PubMed

    Lüke, Julia; Vukoja, Vlatka; Brandenbusch, Tim; Nassar, Khaled; Rohrbach, Jens Martin; Grisanti, Salvatore; Lüke, Matthias; Tura, Aysegül

    2016-06-03

    Extracellular matrix remodelling regulated by matrix-metalloproteinase (MMP) inducer (CD147) is a crucial process during tumor cell invasion and regulation of blood supply. In this study, we evaluated the correlation of CD147 and MMP-2 expression with major prognostic factors for uveal melanoma and the development of metastasis. The expression of CD147 and MMP-2 was analyzed in 49 samples of uveal melanomas. Triple immunofluorescence stainings using markers against glial cells (GFAP), endothelial cells (CD34) and macrophages (CD68) were performed to further analyse the exact localisation of CD147 and MMP-2 positivity. In 28 cases clinical metastatic disease were found. The remaining 21 cases showed no signs of metastatic disease for an average follow-up of 10 years. Correlation analysis (Pearson correlation) was performed to analyse the association of CD147 and MMP-2 expression with known prognostic factors, vasculogenic mimicry (VM), the mature vasculature (von Willebrand Factor) and tumor induced angiogenesis (by means of Endoglin expression). CD147 and MMP-2 were expressed in 47 (96.0 %) of the uveal melanomas. CD147 up-regulation was significantly correlated with a higher MMP-2 expression. The overall expression analysis revealed no significant difference in the metastatic (p = 0.777) and non-metastatic subgroup (p = 0.585). No correlation of CD147 expression and any system of blood supply was evident. In the non-metastatic sub-group a significant correlation of clustered CD147 positive cells with largest basal diameter (p = 0.039), height (p = 0.047) and TNM-stage (p = 0.013) was evident. These data may indicate that CD147 regulates MMP-2 expression in uveal melanoma cells.

  14. Depletion of CD11c⁺ cells in the CD11c.DTR model drives expansion of unique CD64⁺ Ly6C⁺ monocytes that are poised to release TNF-α.

    PubMed

    Sivakumaran, Shivajanani; Henderson, Stephen; Ward, Sophie; Sousa, Pedro Santos E; Manzo, Teresa; Zhang, Lei; Conlan, Thomas; Means, Terry K; D'Aveni, Maud; Hermine, Olivier; Rubio, Marie-Thérèse; Chakraverty, Ronjon; Bennett, Clare L

    2016-01-01

    Dendritic cells (DCs) play a vital role in innate and adaptive immunities. Inducible depletion of CD11c(+) DCs engineered to express a high-affinity diphtheria toxin receptor has been a powerful tool to dissect DC function in vivo. However, despite reports showing that loss of DCs induces transient monocytosis, the monocyte population that emerges and the potential impact of monocytes on studies of DC function have not been investigated. We found that depletion of CD11c(+) cells from CD11c.DTR mice induced the expansion of a variant CD64(+) Ly6C(+) monocyte population in the spleen and blood that was distinct from conventional monocytes. Expansion of CD64(+) Ly6C(+) monocytes was independent of mobilization from the BM via CCR2 but required the cytokine, G-CSF. Indeed, this population was also expanded upon exposure to exogenous G-CSF in the absence of DC depletion. CD64(+) Ly6C(+) monocytes were characterized by upregulation of innate signaling apparatus despite the absence of inflammation, and an increased capacity to produce TNF-α following LPS stimulation. Thus, depletion of CD11c(+) cells induces expansion of a unique CD64(+) Ly6C(+) monocyte population poised to synthesize TNF-α. This finding will require consideration in experiments using depletion strategies to test the role of CD11c(+) DCs in immunity. © 2015 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. CD22 expression on blastic plasmacytoid dendritic cell neoplasms and reactivity of anti-CD22 antibodies to peripheral blood dendritic cells.

    PubMed

    Reineks, Edmunds Z; Osei, Ebenezer S; Rosenberg, Arlene; Auletta, Jeffrey; Meyerson, Howard J

    2009-07-01

    We identified CD22 expression on a blastic plasmacytoid dendritic cell (pDC) neoplasm presenting as a leukemia in a child. CD22 expression, as determined by the antibody s-HCL-1, was also noted on the neoplastic cells from three additional patients with blastic pDC tumors identified at our institution. Subsequently we determined that peripheral blood pDCs react with the s-HCL-1 antibody demonstrating that normal pDCs express CD22. Evaluation of five additional anti-CD22 antibodies indicated that staining of pDCs with these reagents was poor except for s-HCL-1. Therefore, the detection of CD22 on pDCs is best demonstrated with the use of this specific antibody clone. All anti-CD22 antibodies stained conventional DCs. We also evaluated the reactivity of the anti-CD22 antibodies with basophils and noted that the pattern of staining was similar to that seen with pDCs. The studies demonstrate that normal DCs and pDC neoplasms express CD22, and highlight clone specific differences in anti-CD22 antibody reactivity patterns on pDCs and basophils. (c) 2009 Clinical Cytometry Society.

  16. Mitochondrial Ca2+ and membrane potential, an alternative pathway for Interleukin 6 to regulate CD4 cell effector function

    PubMed Central

    Yang, Rui; Lirussi, Dario; Thornton, Tina M; Jelley-Gibbs, Dawn M; Diehl, Sean A; Case, Laure K; Madesh, Muniswamy; Taatjes, Douglas J; Teuscher, Cory; Haynes, Laura; Rincón, Mercedes

    2015-01-01

    IL-6 plays an important role in determining the fate of effector CD4 cells and the cytokines that these cells produce. Here we identify a novel molecular mechanism by which IL-6 regulates CD4 cell effector function. We show that IL-6-dependent signal facilitates the formation of mitochondrial respiratory chain supercomplexes to sustain high mitochondrial membrane potential late during activation of CD4 cells. Mitochondrial hyperpolarization caused by IL-6 is uncoupled from the production of ATP by oxidative phosphorylation. However, it is a mechanism to raise the levels of mitochondrial Ca2+ late during activation of CD4 cells. Increased levels of mitochondrial Ca2+ in the presence of IL-6 are used to prolong Il4 and Il21 expression in effector CD4 cells. Thus, the effect of IL-6 on mitochondrial membrane potential and mitochondrial Ca2+ is an alternative pathway by which IL-6 regulates effector function of CD4 cells and it could contribute to the pathogenesis of inflammatory diseases. DOI: http://dx.doi.org/10.7554/eLife.06376.001 PMID:25974216

  17. Low expression of CD39+/CD45RA+ on regulatory T cells (Treg) cells in type 1 diabetic children in contrast to high expression of CD101+/CD129+ on Treg cells in children with coeliac disease

    PubMed Central

    Åkesson, K; Tompa, A; Rydén, A; Faresjö, M

    2015-01-01

    Type 1 diabetes (T1D) and coeliac disease are both characterized by an autoimmune feature. As T1D and coeliac disease share the same risk genes, patients risk subsequently developing the other disease. This study aimed to investigate the expression of T helper (Th), T cytotoxic (Tc) and regulatory T cells (Treg) in T1D and/or coeliac disease children in comparison to healthy children. Subgroups of T cells (Th : CD4+ or Tc : CD8+); naive (CD27+CD28+CD45RA+CCR7+), central memory (CD27+CD28+CD45RA−CCR7+), effector memory (early differentiated; CD27+CD28+CD45RA−CCR7− and late differentiated; CD27−CD28−CD45RA−CCR7−), terminally differentiated effector cells (TEMRA; CD27−CD28−CD45RA+CCR7−) and Treg (CD4+CD25+FOXP3+CD127−) cells, and their expression of CD39, CD45RA, CD101 and CD129, were studied by flow cytometry in T1D and/or coeliac disease children or without any of these diseases (reference group). Children diagnosed with both T1D and coeliac disease showed a higher percentage of TEMRA CD4+ cells (P < 0·05), but lower percentages of both early and late effector memory CD8+ cells (P < 0·05) compared to references. Children with exclusively T1D had lower median fluorescence intensity (MFI) of forkhead box protein 3 (FoxP3) (P < 0·05) and also a lower percentage of CD39+ and CD45RA+ within the Treg population (CD4+CD25+FOXP3+CD127−) (P < 0·05). Children with exclusively coeliac disease had a higher MFI of CD101 (P < 0·01), as well as a higher percentage of CD129+ (P < 0·05), in the CD4+CD25hi lymphocyte population, compared to references. In conclusion, children with combined T1D and coeliac disease have a higher percentage of differentiated CD4+ cells compared to CD8+ cells. T1D children show signs of low CD39+/CD45RA+ Treg cells that may indicate loss of suppressive function. Conversely, children with coeliac disease show signs of CD101+/CD129+ Treg cells that may indicate suppressor activity. PMID:25421756

  18. CD30 expression utilization for the accuracy of classical Hodgkin's lymphoma staging.

    PubMed

    Flangea, Corina; Potencz, Elena; Mihăescu, Rodica; Anghel, A; Gîju, S; Motoc, Marilena; Dogaru, C

    2006-01-01

    The presence of Reed-Sternberg malignant cells is absolutely necessary for Hodgkin's lymphoma diagnostic, but it is not always sufficient because can be observed Reed-Sternberg-like cells in other malignant and benign diseases, too. The CD30 expression at Hodgkin and Reed-Sternberg level can give us supplementary information in differential diagnostic and can be used as progressive disease factor. Our study was composed from 63 cases histopathological diagnosed with Hodgkin's lymphoma and hospitalized in Hematology Department of County Hospital Timişoara. CD30 expression was immunohistochemical semi-quantitative evaluated using clone BerH2 as primary antibody and APAAP-New Fuchsin as visualization system. The increasing of CD30 expression occurs in the same time with advanced stages and the disease progression (p =0.001). For I and II stages CD30 expression does not overcome (-/+) category while the III and IV stages, all the cases are situated in (+/-) and (+) categories. No connection can be noticed between histological type and CD30 expression (p < or = 1). We consider that using this staining, although less used in Romania, must be done in all Hodgkin's lymphoma and Hodgkin's lymphoma-like cases. We say that because the main cause of relapses is represented by inadequate clinical staging and diagnostic. In our study, the increasing of CD30 expression is associated with advanced disease stage. We recommend reinvestigating and restaging all cases that was included into an incipient stages and they have a CD30 expression situated in (+/-) and (+) intervals because some lymph nodes could be overlooked.

  19. LncMAPK6 drives MAPK6 expression and liver TIC self-renewal.

    PubMed

    Huang, Guanqun; Jiang, Hui; He, Yueming; Lin, Ye; Xia, Wuzheng; Luo, Yuanwei; Liang, Min; Shi, Boyun; Zhou, Xinke; Jian, Zhixiang

    2018-05-15

    Liver tumor initiating cells (TICs) have self-renewal and differentiate capacities, and largely contribute to tumor initiation, metastasis and drug resistance. MAPK signaling is a critical pathway in many biological processes, while its role in liver TICs hasn't been explored. Online-available dataset was used for unbiased screening. Liver TICs were examined CD133 FACS or oncosphere formation. TIC self-renewal was detected by oncosphere formation and tumor initiation assay. LncRNA function was detected by loss of function or gain of function assays. The molecular mechanism of lncRNA was explored by RNA pulldown, RNA immunoprecipitation, ChIP, western blot and double FISH. Here, we examined the expression profiles of MAPK components (MAPKs, MAP2Ks, MAP3Ks, MAP4Ks), and found MAPK6 is most highly expressed in liver cancer samples. Moreover, a divergent lncRNA (long noncoding RNA) of MAPK6, termed lncMAPK6 here, is also overexpressed along with liver tumorigenesis. LncMAPK6 promotes liver tumor propagation and TIC self-renewal through MAPK6. LncMAPK6 interacts with and recruits RNA polymerase II to MAPK6 promoter, and finally activates the transcription of MAPK6. Through MAPK6 transcriptional regulation, lncMAPK6 drives MARK signaling activation. LncMAPK6-MAPK6 pathway can be used for liver TIC targeting. Altogether, lncMAPK6 promotes MARK signaling and the self-renewal of liver TICs through MAPK6 expression. MAPK6 was the most highly expressed MAPK component in liver cancer and liver TICs and lncMAPK6 participated in the transcriptional regulation of MAPK6in cis. This work revealed the importance role of MAPK signaling in liver TIC self-renewal and added a new layer for liver TIC and MAPK6 expression regulation.

  20. [Effects of lipopolysaccharides from various Porphyromonas on the expression of CD14 and TLRs in mouse osteoblast].

    PubMed

    Jia, Ge; Xue, Ming; Li, Ren; Lv, You; Qiu, Li-hong

    2011-12-01

    To observe the effect of lipopolysaccharides(LPS) extracted from Porphyromonas endodontalis(P.e) and Porphyromonas gingivals(P.g) on the expression of CD14 and TLRs in osteoblast. MC3T3-E1 cells were stimulated with 10μg/mL P.e-LPS and P.g-LPS. The change of CD14,TLR2 and TLR4 mRNA was observed at different time point (0,1,3,6,12,24h) using RT-PCR,and the expression of CD14,TLR2 and TLR4 protein was measured by flow cytometry at 24-hour. Statistical analysis was performed using one-way ANOVA and Dunnett t test with SPSS11.0 software package. MC3T3-E1 cells were stimulated with 10μg/mL P.e-LPS for 1h,the expression of CD14 and TLR4 mRNA increased significantly. There was no increase of TLR2 mRNA with stimulation of P.e-LPS. The CD14,TLR2 and TLR4 mRNA expression increased significantly after stimulation with 10μg/mL P.g-LPS. Flow cytometry showed that CD14 and TLR4 protein increased significantly after stimulation with 10μg/mL P.e-LPS. CD14,TLR2 and TLR4 protein increased significantly after treatment with 10μg/mL P.g-LPS. CD14,TLR4 receptors are involved in P.e-LPS effect and CD14,TLR2 and TLR4 receptors are involved in P.g-LPS effect in mouse osteoblast.