DOE Office of Scientific and Technical Information (OSTI.GOV)
A, Popescu I; Lobo, J; Sawkey, D
2014-06-15
Purpose: To simulate and measure radiation backscattered into the monitor chamber of a TrueBeam linac; establish a rigorous framework for absolute dose calculations for TrueBeam Monte Carlo (MC) simulations through a novel approach, taking into account the backscattered radiation and the actual machine output during beam delivery; improve agreement between measured and simulated relative output factors. Methods: The ‘monitor backscatter factor’ is an essential ingredient of a well-established MC absolute dose formalism (the MC equivalent of the TG-51 protocol). This quantity was determined for the 6 MV, 6X FFF, and 10X FFF beams by two independent Methods: (1) MC simulationsmore » in the monitor chamber of the TrueBeam linac; (2) linac-generated beam record data for target current, logged for each beam delivery. Upper head MC simulations used a freelyavailable manufacturer-provided interface to a cloud-based platform, allowing use of the same head model as that used to generate the publicly-available TrueBeam phase spaces, without revealing the upper head design. The MC absolute dose formalism was expanded to allow direct use of target current data. Results: The relation between backscatter, number of electrons incident on the target for one monitor unit, and MC absolute dose was analyzed for open fields, as well as a jaw-tracking VMAT plan. The agreement between the two methods was better than 0.15%. It was demonstrated that the agreement between measured and simulated relative output factors improves across all field sizes when backscatter is taken into account. Conclusion: For the first time, simulated monitor chamber dose and measured target current for an actual TrueBeam linac were incorporated in the MC absolute dose formalism. In conjunction with the use of MC inputs generated from post-delivery trajectory-log files, the present method allows accurate MC dose calculations, without resorting to any of the simplifying assumptions previously made in the TrueBeam MC literature. This work has been partially funded by Varian Medical Systems.« less
Golden beam data for proton pencil-beam scanning.
Clasie, Benjamin; Depauw, Nicolas; Fransen, Maurice; Gomà, Carles; Panahandeh, Hamid Reza; Seco, Joao; Flanz, Jacob B; Kooy, Hanne M
2012-03-07
Proton, as well as other ion, beams applied by electro-magnetic deflection in pencil-beam scanning (PBS) are minimally perturbed and thus can be quantified a priori by their fundamental interactions in a medium. This a priori quantification permits an optimal reduction of characterizing measurements on a particular PBS delivery system. The combination of a priori quantification and measurements will then suffice to fully describe the physical interactions necessary for treatment planning purposes. We consider, for proton beams, these interactions and derive a 'Golden' beam data set. The Golden beam data set quantifies the pristine Bragg peak depth-dose distribution in terms of primary, multiple Coulomb scatter, and secondary, nuclear scatter, components. The set reduces the required measurements on a PBS delivery system to the measurement of energy spread and initial phase space as a function of energy. The depth doses are described in absolute units of Gy(RBE) mm² Gp⁻¹, where Gp equals 10⁹ (giga) protons, thus providing a direct mapping from treatment planning parameters to integrated beam current. We used these Golden beam data on our PBS delivery systems and demonstrated that they yield absolute dosimetry well within clinical tolerance.
Non-perturbative measurement of low-intensity charged particle beams
NASA Astrophysics Data System (ADS)
Fernandes, M.; Geithner, R.; Golm, J.; Neubert, R.; Schwickert, M.; Stöhlker, T.; Tan, J.; Welsch, C. P.
2017-01-01
Non-perturbative measurements of low-intensity charged particle beams are particularly challenging to beam diagnostics due to the low amplitude of the induced electromagnetic fields. In the low-energy antiproton decelerator (AD) and the future extra low energy antiproton rings at CERN, an absolute measurement of the beam intensity is essential to monitor the operation efficiency. Superconducting quantum interference device (SQUID) based cryogenic current comparators (CCC) have been used for measuring slow charged beams in the nA range, showing a very good current resolution. But these were unable to measure fast bunched beams, due to the slew-rate limitation of SQUID devices and presented a strong susceptibility to external perturbations. Here, we present a CCC system developed for the AD machine, which was optimised in terms of its current resolution, system stability, ability to cope with short bunched beams, and immunity to mechanical vibrations. This paper presents the monitor design and the first results from measurements with a low energy antiproton beam obtained in the AD in 2015. These are the first CCC beam current measurements ever performed in a synchrotron machine with both coasting and short bunched beams. It is shown that the system is able to stably measure the AD beam throughout the entire cycle, with a current resolution of 30 {nA}.
NASA Astrophysics Data System (ADS)
Dudarev, E. F.; Pochivalova, G. P.; Proskurovskii, D. I.; Rotshtein, V. P.; Markov, A. B.
1996-03-01
A technique for determination of residual stresses at various distances from the irradiated surface is proposed. It is established for iron and molybdenum that compressive stresses are set up under irradiation by low-energy high-current electron beams and that their values decrease sharply with increasing distance from the surface. The residual stresses are much smaller in absolute magnitude than those operating during irradiation. It is shown that the change in resistance to microplastic deformation on irradiation with low-energy high-current electron beams is governed not only by formation of a gradient dislocation substructure in the surface layer, but also by the residual stresses and the appearance of the Bauschinger effect.
Coherent production of ρ - mesons in charged current antineutrino-neon interactions in BEBC
NASA Astrophysics Data System (ADS)
Marage, P.; Aderholz, M.; Allport, P.; Armenise, N.; Baton, J. P.; Berggren, M.; Bertrand, D.; Brisson, V.; Bullock, F. W.; Burkot, W.; Calicchio, M.; Clayton, E. F.; Coghen, T.; Cooper-Sarkar, A. M.; Erriquez, O.; Fitch, P. J.; Guy, J.; Hamisi, F.; Hulth, P. O.; Jones, G. T.; Kasper, P.; Katz, U. F.; Klein, H.; Matsinos, E.; Middleton, R. P.; Miller, D. B.; Mobayyen, M. M.; Morrison, D. R. O.; Neveu, M.; O'Neale, S. W.; Parker, M. A.; Petiau, P.; Sacton, J.; Sansum, R. A.; Schmitz, N.; Simopoulou, E.; Vallée, C.; Varvell, K.; Vayaki, A.; Venus, W.; Wachsmuth, H.; Wells, J.; Wittek, W.
1987-09-01
Coherent production of ρ - mesons in charged current antineutrino interactions on neon nuclei is studied in the BEBC bubble chamber exposed to the CERN SPS wide band beam. The cross section is measured to be (95±25)·10-40 cm2 per neon nucleus, averaged over the beam energy spectrum. The distributions of kinematical variables and the absolute value of the cross section are in agreement with theoretical predictions based on the CVC hypothesis and the vector meson dominance model.
Temperature response of several scintillator materials to light ions
NASA Astrophysics Data System (ADS)
Rodríguez-Ramos, M.; Jiménez-Ramos, M. C.; García-Muñoz, M.; García López, J.
2017-07-01
Ion beam induced luminescence has been used to study the response of scintillator screens of Y2O3:Eu3+ (P56) and SrGa2S4:Eu2+ (TG-Green) when irradiated with light ions (protons, deuterium and helium particles). The absolute efficiency of the samples has been studied as a function of the ion energy (with energies up to 3.5 MeV), the beam current and the operating temperature. The evolution of the scintillator yield with ion fluence has been carried out for all the scintillators to estimate radiation damage. Finally, measurements of the decay time of these materials using a system of pulsed beam accelerated particles have been done. Among the screens under study, the TG-Green is the best suited material, in terms of absolute efficiency, temporal response and degradation with ion dose, for fast-ion loss detectors in fusion devices.
Comparison of IPSM 1990 photon dosimetry code of practice with IAEA TRS‐398 and AAPM TG‐51.
Henríquez, Francisco Cutanda
2009-01-01
Several codes of practice for photon dosimetry are currently used around the world, supported by different organizations. A comparison of IPSM 1990 with both IAEA TRS‐398 and AAPM TG‐51 has been performed. All three protocols are based on the calibration of ionization chambers in terms of standards of absorbed dose to water, as it is the case with other modern codes of practice. This comparison has been carried out for photon beams of nominal energies: 4 MV, 6 MV, 8 MV, 10 MV and 18 MV. An NE 2571 graphite ionization chamber was used in this study, cross‐calibrated against an NE 2611A Secondary Standard, calibrated in the National Physical Laboratory (NPL). Absolute dose in reference conditions was obtained using each of these three protocols including: beam quality indices, beam quality conversion factors both theoretical and NPL experimental ones, correction factors for influence quantities and absolute dose measurements. Each protocol recommendations have been strictly followed. Uncertainties have been obtained according to the ISO Guide to the Expression of Uncertainty in Measurement. Absorbed dose obtained according to all three protocols agree within experimental uncertainty. The largest difference between absolute dose results for two protocols is obtained for the highest energy: 0.7% between IPSM 1990 and IAEA TRS‐398 using theoretical beam quality conversion factors. PACS number: 87.55.tm
Wang, G; Wu, K; Hu, H; Li, G; Wang, L J
2016-10-01
To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.
NASA Astrophysics Data System (ADS)
Wang, G.; Wu, K.; Hu, H.; Li, G.; Wang, L. J.
2016-10-01
To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.
Absolute calibration of optical flats
Sommargren, Gary E.
2005-04-05
The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.
NASA Astrophysics Data System (ADS)
Qian, Jie; Cheng, Wei; Cao, Zhaoyuan; Chen, Xinjian; Mo, Jianhua
2017-02-01
Phase-resolved Doppler optical coherence tomography (PR-D-OCT) is a functional OCT imaging technique that can provide high-speed and high-resolution depth-resolved measurement on flow in biological materials. However, a common problem with conventional PR-D-OCT is that this technique often measures the flow motion projected onto the OCT beam path. In other words, it needs the projection angle to extract the absolute velocity from PR-D-OCT measurement. In this paper, we proposed a novel dual-beam PR-D-OCT method to measure absolute flow velocity without separate measurement on the projection angle. Two parallel light beams are created in sample arm and focused into the sample at two different incident angles. The images produced by these two beams are encoded to different depths in single B-scan. Then the Doppler signals picked up by the two beams together with the incident angle difference can be used to calculate the absolute velocity. We validated our approach in vitro on an artificial flow phantom with our home-built 1060 nm swept source OCT. Experimental results demonstrated that our method can provide an accurate measurement of absolute flow velocity with independency on the projection angle.
Spectral and spatial shaping of a laser-produced ion beam for radiation-biology experiments
NASA Astrophysics Data System (ADS)
Pommarel, L.; Vauzour, B.; Mégnin-Chanet, F.; Bayart, E.; Delmas, O.; Goudjil, F.; Nauraye, C.; Letellier, V.; Pouzoulet, F.; Schillaci, F.; Romano, F.; Scuderi, V.; Cirrone, G. A. P.; Deutsch, E.; Flacco, A.; Malka, V.
2017-03-01
The study of radiation biology on laser-based accelerators is most interesting due to the unique irradiation conditions they can produce, in terms of peak current and duration of the irradiation. In this paper we present the implementation of a beam transport system to transport and shape the proton beam generated by laser-target interaction for in vitro irradiation of biological samples. A set of four permanent magnet quadrupoles is used to transport and focus the beam, efficiently shaping the spectrum and providing a large and relatively uniform irradiation surface. Real time, absolutely calibrated, dosimetry is installed on the beam line, to enable shot-to-shot control of dose deposition in the irradiated volume. Preliminary results of cell sample irradiation are presented to validate the robustness of the full system.
NASA Astrophysics Data System (ADS)
Gerstmayr, Johannes; Irschik, Hans
2008-12-01
In finite element methods that are based on position and slope coordinates, a representation of axial and bending deformation by means of an elastic line approach has become popular. Such beam and plate formulations based on the so-called absolute nodal coordinate formulation have not yet been verified sufficiently enough with respect to analytical results or classical nonlinear rod theories. Examining the existing planar absolute nodal coordinate element, which uses a curvature proportional bending strain expression, it turns out that the deformation does not fully agree with the solution of the geometrically exact theory and, even more serious, the normal force is incorrect. A correction based on the classical ideas of the extensible elastica and geometrically exact theories is applied and a consistent strain energy and bending moment relations are derived. The strain energy of the solid finite element formulation of the absolute nodal coordinate beam is based on the St. Venant-Kirchhoff material: therefore, the strain energy is derived for the latter case and compared to classical nonlinear rod theories. The error in the original absolute nodal coordinate formulation is documented by numerical examples. The numerical example of a large deformation cantilever beam shows that the normal force is incorrect when using the previous approach, while a perfect agreement between the absolute nodal coordinate formulation and the extensible elastica can be gained when applying the proposed modifications. The numerical examples show a very good agreement of reference analytical and numerical solutions with the solutions of the proposed beam formulation for the case of large deformation pre-curved static and dynamic problems, including buckling and eigenvalue analysis. The resulting beam formulation does not employ rotational degrees of freedom and therefore has advantages compared to classical beam elements regarding energy-momentum conservation.
Progress toward a new beam measurement of the neutron lifetime
NASA Astrophysics Data System (ADS)
Hoogerheide, Shannon Fogwell; BL2 Collaboration
2017-01-01
Neutron beta decay is the simplest example of nuclear beta decay. A precise value of the neutron lifetime is important for consistency tests of the Standard Model and Big Bang Nucleosynthesis models. The beam neutron lifetime method requires the absolute counting of the decay protons in a neutron beam of precisely known flux. Recent work has resulted in improvements in both the neutron and proton detection systems that should permit a significant reduction in systematic uncertainties. A new measurement of the neutron lifetime using the beam method is underway at the National Institute of Standards and Technology Center for Neutron Research. The projected uncertainty of this new measurement is 1 s. An overview of the measurement, its current status, and the technical improvements will be discussed.
NASA Astrophysics Data System (ADS)
Musgrave, M. M.; Baeßler, S.; Balascuta, S.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Chupp, T. E.; Cianciolo, V.; Crawford, C.; Craycraft, K.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Grammer, K.; Greene, G. L.; Hamblen, J.; Hayes, C.; Huffman, P.; Jiang, C.; Kucuker, S.; McCrea, M.; Mueller, P. E.; Penttilä, S. I.; Snow, W. M.; Tang, E.; Tang, Z.; Tong, X.; Wilburn, W. S.
2018-07-01
Accurately measuring the neutron beam polarization of a high flux, large area neutron beam is necessary for many neutron physics experiments. The Fundamental Neutron Physics Beamline (FnPB) at the Spallation Neutron Source (SNS) is a pulsed neutron beam that was polarized with a supermirror polarizer for the NPDGamma experiment. The polarized neutron beam had a flux of ∼ 109 neutrons per second per cm2 and a cross sectional area of 10 × 12 cm2. The polarization of this neutron beam and the efficiency of a RF neutron spin rotator installed downstream on this beam were measured by neutron transmission through a polarized 3He neutron spin-filter. The pulsed nature of the SNS enabled us to employ an absolute measurement technique for both quantities which does not depend on accurate knowledge of the phase space of the neutron beam or the 3He polarization in the spin filter and is therefore of interest for any experiments on slow neutron beams from pulsed neutron sources which require knowledge of the absolute value of the neutron polarization. The polarization and spin-reversal efficiency measured in this work were done for the NPDGamma experiment, which measures the parity violating γ-ray angular distribution asymmetry with respect to the neutron spin direction in the capture of polarized neutrons on protons. The experimental technique, results, systematic effects, and applications to neutron capture targets are discussed.
Space environment simulation and sensor calibration facility
NASA Astrophysics Data System (ADS)
Engelhart, Daniel P.; Patton, James; Plis, Elena; Cooper, Russell; Hoffmann, Ryan; Ferguson, Dale; Hilmer, Robert V.; McGarity, John; Holeman, Ernest
2018-02-01
The Mumbo space environment simulation chamber discussed here comprises a set of tools to calibrate a variety of low flux, low energy electron and ion detectors used in satellite-mounted particle sensors. The chamber features electron and ion beam sources, a Lyman-alpha ultraviolet lamp, a gimbal table sensor mounting system, cryogenic sample mount and chamber shroud, and beam characterization hardware and software. The design of the electron and ion sources presented here offers a number of unique capabilities for space weather sensor calibration. Both sources create particle beams with narrow, well-characterized energetic and angular distributions with beam diameters that are larger than most space sensor apertures. The electron and ion sources can produce consistently low fluxes that are representative of quiescent space conditions. The particle beams are characterized by 2D beam mapping with several co-located pinhole aperture electron multipliers to capture relative variation in beam intensity and a large aperture Faraday cup to measure absolute current density.
Space environment simulation and sensor calibration facility.
Engelhart, Daniel P; Patton, James; Plis, Elena; Cooper, Russell; Hoffmann, Ryan; Ferguson, Dale; Hilmer, Robert V; McGarity, John; Holeman, Ernest
2018-02-01
The Mumbo space environment simulation chamber discussed here comprises a set of tools to calibrate a variety of low flux, low energy electron and ion detectors used in satellite-mounted particle sensors. The chamber features electron and ion beam sources, a Lyman-alpha ultraviolet lamp, a gimbal table sensor mounting system, cryogenic sample mount and chamber shroud, and beam characterization hardware and software. The design of the electron and ion sources presented here offers a number of unique capabilities for space weather sensor calibration. Both sources create particle beams with narrow, well-characterized energetic and angular distributions with beam diameters that are larger than most space sensor apertures. The electron and ion sources can produce consistently low fluxes that are representative of quiescent space conditions. The particle beams are characterized by 2D beam mapping with several co-located pinhole aperture electron multipliers to capture relative variation in beam intensity and a large aperture Faraday cup to measure absolute current density.
Experimental Estimating Deflection of a Simple Beam Bridge Model Using Grating Eddy Current Sensors
Lü, Chunfeng; Liu, Weiwen; Zhang, Yongjie; Zhao, Hui
2012-01-01
A novel three-point method using a grating eddy current absolute position sensor (GECS) for bridge deflection estimation is proposed in this paper. Real spatial positions of the measuring points along the span axis are directly used as relative reference points of each other rather than using any other auxiliary static reference points for measuring devices in a conventional method. Every three adjacent measuring points are defined as a measuring unit and a straight connecting bar with a GECS fixed on the center section of it links the two endpoints. In each measuring unit, the displacement of the mid-measuring point relative to the connecting bar measured by the GECS is defined as the relative deflection. Absolute deflections of each measuring point can be calculated from the relative deflections of all the measuring units directly without any correcting approaches. Principles of the three-point method and displacement measurement of the GECS are introduced in detail. Both static and dynamic experiments have been carried out on a simple beam bridge model, which demonstrate that the three-point deflection estimation method using the GECS is effective and offers a reliable way for bridge deflection estimation, especially for long-term monitoring. PMID:23112583
Experimental estimating deflection of a simple beam bridge model using grating eddy current sensors.
Lü, Chunfeng; Liu, Weiwen; Zhang, Yongjie; Zhao, Hui
2012-01-01
A novel three-point method using a grating eddy current absolute position sensor (GECS) for bridge deflection estimation is proposed in this paper. Real spatial positions of the measuring points along the span axis are directly used as relative reference points of each other rather than using any other auxiliary static reference points for measuring devices in a conventional method. Every three adjacent measuring points are defined as a measuring unit and a straight connecting bar with a GECS fixed on the center section of it links the two endpoints. In each measuring unit, the displacement of the mid-measuring point relative to the connecting bar measured by the GECS is defined as the relative deflection. Absolute deflections of each measuring point can be calculated from the relative deflections of all the measuring units directly without any correcting approaches. Principles of the three-point method and displacement measurement of the GECS are introduced in detail. Both static and dynamic experiments have been carried out on a simple beam bridge model, which demonstrate that the three-point deflection estimation method using the GECS is effective and offers a reliable way for bridge deflection estimation, especially for long-term monitoring.
Absolute detector calibration using twin beams.
Peřina, Jan; Haderka, Ondřej; Michálek, Václav; Hamar, Martin
2012-07-01
A method for the determination of absolute quantum detection efficiency is suggested based on the measurement of photocount statistics of twin beams. The measured histograms of joint signal-idler photocount statistics allow us to eliminate an additional noise superimposed on an ideal calibration field composed of only photon pairs. This makes the method superior above other approaches presently used. Twin beams are described using a paired variant of quantum superposition of signal and noise.
Frequency locking of compact laser-diode modules at 633 nm
NASA Astrophysics Data System (ADS)
Nölleke, Christian; Leisching, Patrick; Blume, Gunnar; Jedrzejczyk, Daniel; Pohl, Johannes; Feise, David; Sahm, Alexander; Paschke, Katrin
2018-02-01
This work reports on a compact diode-laser module emitting at 633 nm. The emission frequency can be tuned with temperature and current, while optical feedback of an internal DBR grating ensures single-mode operation. The laser diode is integrated into a micro-fabricated package, which includes optics for beam shaping, a miniaturized optical isolator, and a vapor cell as frequency reference. The achieved absolute frequency stability is below 10-8 , while the output power can be more than 10 mW. This compact absolute frequency-stabilized laser system can replace gas lasers and may be integrated in future quantum technology devices.
NASA Astrophysics Data System (ADS)
Rich, D. R.; Bowman, J. D.; Crawford, B. E.; Delheij, P. P. J.; Espy, M. A.; Haseyama, T.; Jones, G.; Keith, C. D.; Knudson, J.; Leuschner, M. B.; Masaike, A.; Masuda, Y.; Matsuda, Y.; Penttilä, S. I.; Pomeroy, V. R.; Smith, D. A.; Snow, W. M.; Szymanski, J. J.; Stephenson, S. L.; Thompson, A. K.; Yuan, V.
2002-04-01
The capability of performing accurate absolute measurements of neutron beam polarization opens a number of exciting opportunities in fundamental neutron physics and in neutron scattering. At the LANSCE pulsed neutron source we have measured the neutron beam polarization with an absolute accuracy of 0.3% in the neutron energy range from 40 meV to 10 eV using an optically pumped polarized 3He spin filter and a relative transmission measurement technique. 3He was polarized using the Rb spin-exchange method. We describe the measurement technique, present our results, and discuss some of the systematic effects associated with the method.
Veligdan, James T.
1993-01-01
Atmospheric effects on sighting measurements are compensated for by adjusting any sighting measurements using a correction factor that does not depend on atmospheric state conditions such as temperature, pressure, density or turbulence. The correction factor is accurately determined using a precisely measured physical separation between two color components of a light beam (or beams) that has been generated using either a two-color laser or two lasers that project different colored beams. The physical separation is precisely measured by fixing the position of a short beam pulse and measuring the physical separation between the two fixed-in-position components of the beam. This precisely measured physical separation is then used in a relationship that includes the indexes of refraction for each of the two colors of the laser beam in the atmosphere through which the beam is projected, thereby to determine the absolute displacement of one wavelength component of the laser beam from a straight line of sight for that projected component of the beam. This absolute displacement is useful to correct optical measurements, such as those developed in surveying measurements that are made in a test area that includes the same dispersion effects of the atmosphere on the optical measurements. The means and method of the invention are suitable for use with either single-ended systems or a double-ended systems.
Relative and absolute level populations in beam-foil-excited neutral helium
NASA Technical Reports Server (NTRS)
Davidson, J.
1975-01-01
Relative and absolute populations of 19 levels in beam-foil-excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n to the -3rd power, but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range from 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. The overpopulation decreases with increasing principal quantum number.
Single crystal CVD diamond membranes as Position Sensitive X-ray Detector
NASA Astrophysics Data System (ADS)
Desjardins, K.; Menneglier, C.; Pomorski, M.
2017-12-01
Transparent X-ray Beam Position Monitor (XBPM) has been specifically developed for low energy X-ray beamlines (1.4 keV < E < 5 keV) allowing to transmit more than 80% of 2 keV energy beam. The detector is based on a free-standing single crystal CVD diamond membrane of 4 μm thickness with position-sensitive DLC (Diamond-Like Carbon) resistive electrodes in duo-lateral configuration. The measured X-ray beam induced current (XBIC) due to the interaction of X-rays with diamond membrane allows precise monitoring of the absolute beam flux and the beam position (by the reconstruction of its center-of-gravity) at beam transmissions reaching 95%. This detector has been installed at SOLEIL synchrotron on the SIRIUS beamline monochromator output and it has shown charge collection efficiency (CCE) reaching 100% with no lag-effects and excellent beam intensity sensitivity monitoring. X-ray beam mapping of the detector showed an XBIC response inhomogeneity of less than 10% across the membrane, corresponding mainly to the measured variation of the diamond plate thickness. The measured beam position resolution is at sub-micron level depending on the beam flux and the readout electronics bandwidth.
Beam-plasma instabilities and the beam-plasma discharge
NASA Technical Reports Server (NTRS)
Kellogg, P. J.; Boswell, R. W.
1986-01-01
Using a new waves on magnetized beams and turbulence (WOMBAT) 0-450 eV electron gun, measurements bearing on the generation of beam-plasma discharge (BPD) are made. The new gun has a narrower divergence angle than the old, and the BPD ignition current is found to be proportional to the cross-sectional area of the plasma. The high-frequency instabilities are identified with the two Trivelpiece-Gould modes, (1959). The upper frequency is identified as a Cerenkov resonance with the upper Trivelpiece-Gould mode, and the lower frequency with a cyclotron resonance with the lower mode, in agreement with theoretical expectations. Convective growth rates are found to be small. A mechanism involving the conversion of a convective instability to an absolute one by trapping of the unstable waves in the density perturbations of the low-frequency waves, is suggested for the low-frequency wave control of the onset of the high frequency precursors to the BPD.
Measuring The Neutron Lifetime to One Second Using in Beam Techniques
NASA Astrophysics Data System (ADS)
Mulholland, Jonathan; NIST In Beam Lifetime Collaboration
2013-10-01
The decay of the free neutron is the simplest nuclear beta decay and is the prototype for charged current semi-leptonic weak interactions. A precise value for the neutron lifetime is required for consistency tests of the Standard Model and is an essential parameter in the theory of Big Bang Nucleosynthesis. A new measurement of the neutron lifetime using the in-beam method is planned at the National Institute of Standards and Technology Center for Neutron Research. The systematic effects associated with the in-beam method are markedly different than those found in storage experiments utilizing ultracold neutrons. Experimental improvements, specifically recent advances in the determination of absolute neutron fluence, should permit an overall uncertainty of 1 second on the neutron lifetime. The technical improvements in the in-beam technique, and the path toward improving the precision of the new measurement will be discussed.
Laser interferometry method for absolute measurement of the acceleration of gravity
NASA Technical Reports Server (NTRS)
Hudson, O. K.
1971-01-01
Gravimeter permits more accurate and precise absolute measurement of g without reference to Potsdam values as absolute standards. Device is basically Michelson laser beam interferometer in which one arm is mass fitted with corner cube reflector.
Status of the NIST Penning-Trap Neutron Lifetime Measurement
NASA Astrophysics Data System (ADS)
Snow, W. M.; Fei, X.; Chowdhuri, Z.; Dewey, M. S.; Gilliam, D.; Nico, J. S.; Greene, G. L.
1998-10-01
The decay rate of the free neutron is important input for Big-Bang Nucleosynthesis calculations of the primordial ^4He abundance in the universe(T. P. Walker et al, Astrophys. J. 376, 51 (1991).) and for tests of the electroweak model in the charged-current sector(I. S. Towner, Nucl. Phys. A540, 478 (1992).). We will describe an experiment in progress at NIST to measure the neutron decay rate. The technique uses a Penning trap to trap and count protons from in-beam neutron decay(J. Byrne et al., Phys. Rev. Lett. 65, 289 (1990).) and an absolutely calibrated beam monitor to measure the neutron density in the beam(R. D. Scott et al., Nucl. Inst. Meth. A362, 151 (1995).). We will present data taken in the spring and summer of 1998.
Vauzour, B; Santos, J J; Debayle, A; Hulin, S; Schlenvoigt, H-P; Vaisseau, X; Batani, D; Baton, S D; Honrubia, J J; Nicolaï, Ph; Beg, F N; Benocci, R; Chawla, S; Coury, M; Dorchies, F; Fourment, C; d'Humières, E; Jarrot, L C; McKenna, P; Rhee, Y J; Tikhonchuk, V T; Volpe, L; Yahia, V
2012-12-21
We present experimental and numerical results on intense-laser-pulse-produced fast electron beams transport through aluminum samples, either solid or compressed and heated by laser-induced planar shock propagation. Thanks to absolute K(α) yield measurements and its very good agreement with results from numerical simulations, we quantify the collisional and resistive fast electron stopping powers: for electron current densities of ≈ 8 × 10(10) A/cm(2) they reach 1.5 keV/μm and 0.8 keV/μm, respectively. For higher current densities up to 10(12)A/cm(2), numerical simulations show resistive and collisional energy losses at comparable levels. Analytical estimations predict the resistive stopping power will be kept on the level of 1 keV/μm for electron current densities of 10(14)A/cm(2), representative of the full-scale conditions in the fast ignition of inertially confined fusion targets.
Beam profile measurement on HITU transducers using a thermal intensity sensor technique
NASA Astrophysics Data System (ADS)
Wilkens, V.; Sonntag, S.; Jenderka, K.-V.
2011-02-01
Thermal intensity sensors based on the transformation of the incident ultrasonic energy into heat inside a small cylindrical absorber have been developed at PTB in the past, in particular to determine the acoustic output of medical diagnostic ultrasound equipment. Currently, this sensor technique is being expanded to match the measurement challenges of high intensity therapeutic ultrasound (HITU) fields. At the high acoustic power levels as utilized in the clinical application of HITU transducers, beam characterization using hydrophones is critical due to the possible damage of the sensitive and expensive measurement devices. Therefore, the low-cost and robust thermal sensors developed offer a promising alternative for the determination of high intensity output beam profiles. A sensor prototype with a spatial resolution of 0.5 mm was applied to the beam characterization of an HITU transducer operated at several driving amplitude levels. Axial beam plots and lateral profiles at focus were acquired. The absolute continuous wave output power was, in addition, determined using a radiation force balance.
Absolute calibration of sniffer probes on Wendelstein 7-X
NASA Astrophysics Data System (ADS)
Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.
2016-08-01
Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m2 per MW injected beam power is measured.
Absolute calibration of sniffer probes on Wendelstein 7-X.
Moseev, D; Laqua, H P; Marsen, S; Stange, T; Braune, H; Erckmann, V; Gellert, F; Oosterbeek, J W
2016-08-01
Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m(2) per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m(2) per MW injected beam power is measured.
Electron beam collimation with a photon MLC for standard electron treatments
NASA Astrophysics Data System (ADS)
Mueller, S.; Fix, M. K.; Henzen, D.; Frei, D.; Frauchiger, D.; Loessl, K.; Stampanoni, M. F. M.; Manser, P.
2018-01-01
Standard electron treatments are currently still performed using standard or molded patient-specific cut-outs placed in the electron applicator. Replacing cut-outs and electron applicators with a photon multileaf collimator (pMLC) for electron beam collimation would make standard electron treatments more efficient and would facilitate advanced treatment techniques like modulated electron radiotherapy (MERT) and mixed beam radiotherapy (MBRT). In this work, a multiple source Monte Carlo beam model for pMLC shaped electron beams commissioned at a source-to-surface distance (SSD) of 70 cm is extended for SSDs of up to 100 cm and validated for several Varian treatment units with field sizes typically used for standard electron treatments. Measurements and dose calculations agree generally within 3% of the maximal dose or 2 mm distance to agreement. To evaluate the dosimetric consequences of using pMLC collimated electron beams for standard electron treatments, pMLC-based and cut-out-based treatment plans are created for a left and a right breast boost, a sternum, a testis and a parotid gland case. The treatment plans consist of a single electron field, either alone (1E) or in combination with two 3D conformal tangential photon fields (1E2X). For each case, a pMLC plan with similar treatment plan quality in terms of dose homogeneity to the target and absolute mean dose values to the organs at risk (OARs) compared to a cut-out plan is found. The absolute mean dose to an OAR is slightly increased for pMLC-based compared to cut-out-based 1E plans if the OAR is located laterally close to the target with respect to beam direction, or if a 6 MeV electron beam is used at an extended SSD. In conclusion, treatment plans using cut-out collimation can be replaced by plans of similar treatment plan quality using pMLC collimation with accurately calculated dose distributions.
A Penning sputter ion source with very low energy spread
NASA Astrophysics Data System (ADS)
Nouri, Z.; Li, R.; Holt, R. A.; Rosner, S. D.
2010-03-01
We have developed a version of the Frankfurt Penning ion source that produces ion beams with very low energy spreads of ˜3 eV, while operating in a new discharge mode characterized by very high pressure, low voltage, and high current. The extracted ions also comprise substantial metastable and doubly charged species. Detailed studies of the operating parameters of the source showed that careful adjustment of the magnetic field and gas pressure is critical to achieving optimum performance. We used a laser-fluorescence method of energy analysis to characterize the properties of the extracted ion beam with a resolving power of 1×10 4, and to measure the absolute ion beam energy to an accuracy of 4 eV in order to provide some insight into the distribution of plasma potential within the ion source. This characterization method is widely applicable to accelerator beams, though not universal. The low energy spread, coupled with the ability to produce intense ion beams from almost any gas or conducting solid, make this source very useful for high-resolution spectroscopic measurements on fast-ion beams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyoden, Tomoaki, E-mail: kyouden@nc-toyama.ac.jp; Naruki, Shoji; Akiguchi, Shunsuke
Two-beam multipoint laser Doppler velocimetry (two-beam MLDV) is a non-invasive imaging technique able to provide an image of two-dimensional blood flow and has potential for observing cancer as previously demonstrated in a mouse model. In two-beam MLDV, the blood flow velocity can be estimated from red blood cells passing through a fringe pattern generated in the skin. The fringe pattern is created at the intersection of two beams in conventional LDV and two-beam MLDV. Being able to choose the depth position is an advantage of two-beam MLDV, and the position of a blood vessel can be identified in a three-dimensionalmore » space using this technique. Initially, we observed the fringe pattern in the skin, and the undeveloped or developed speckle pattern generated in a deeper position of the skin. The validity of the absolute velocity value detected by two-beam MLDV was verified while changing the number of layers of skin around a transparent flow channel. The absolute velocity value independent of direction was detected using the developed speckle pattern, which is created by the skin construct and two beams in the flow channel. Finally, we showed the relationship between the signal intensity and the fringe pattern, undeveloped speckle, or developed speckle pattern based on the skin depth. The Doppler signals were not detected at deeper positions in the skin, which qualitatively indicates the depth limit for two-beam MLDV.« less
Method and apparatus for making absolute range measurements
Allison, S.W.; Cates, M.R.; Key, W.S.; Sanders, A.J.; Earl, D.D.
1999-06-22
This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through an object which causes it to be split (hereinafter referred to as a beam splitter''), and then to a target. The beam is reflected from the target onto a screen containing an aperture spaced a known distance from the beam splitter. The aperture is sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector, spaced a known distance from the screen. The detector detects the central intensity of the beam. The distance from the object which causes the beam to be split to the target can then be calculated based upon the known wavelength, aperture radius, beam intensity, and distance from the detector to the screen. Several apparatus embodiments are disclosed for practicing the method embodiments of the present invention. 9 figs.
Laboratory Studies in UV and EUV Solar Physics
NASA Technical Reports Server (NTRS)
Parkinson, William
2003-01-01
The Ion Beam Experiment at the Center for Astrophysics is dedicated to the study of ion-electron collision processes of importance in solar physics. A paper describing our most recent measurement 'Absolute cross section for Si(2+)(3s3p(sup 3)Rho (sup 0) yields 3s3p(sup 1)Rho(sup 0)) electron-impact excitation' was published during the past year. Dr. Paul Janzen received his PhD. from the Harvard Physics Department on the basis of this and other work, such as the new electron cyclotron resonance (ECR) ion source. The ion source is producing stable beams with large currents for our present work on C(2+), and it also produces stable beams with large currents of more highly charged systems, for future work on systems such as O(4+). The past year has been focussed on our current program to measure absolute cross sections for Electron Impact Excitation (EIE) in C(2+), one of the primary ions used for probing the solar transition region. C(2+) beams produced by the ion source have been transported to the interaction region of the experiment, where the collisions are studied, and Visiting Scientist Dr. Adrian Daw is currently collecting data to measure the C(2+)(2s2p(sup 3)Rho(sup 0) yields 2p(sup 2)(sup 3)Rho) EIE cross section as a function of collision energy, under the guidance of Drs. John Kohl, Larry Gardner and Bill Parkinson. Also this year, modifications were made to the ECR ion source in order to produce greater currents of highly charged ions. Testing of the ion source was completed. Modifications were designed to extend the photon detection capabilities of the apparatus to shorter UV wavelengths, or EUV. Following the work on C(2+)(2s2p(sup 3)Pho(sup 0) yields 2p(sup 2)(sup 3)Rho), the extended UV detection capabilities will be used to measure the C(2+)(2s(sup 2)(sup 1)S yields 2s2p(sup 1)Rho(sup 0)) EIE cross section. The EUV modifications complement those of the new ion source, by enabling detection of EUV light generated by high charge state ions and putting us in a position to measure the excitation cross sections for more highly charged ions as well.
Design considerations and validation of the MSTAR absolute metrology system
NASA Astrophysics Data System (ADS)
Peters, Robert D.; Lay, Oliver P.; Dubovitsky, Serge; Burger, Johan; Jeganathan, Muthu
2004-08-01
Absolute metrology measures the actual distance between two optical fiducials. A number of methods have been employed, including pulsed time-of-flight, intensity-modulated optical beam, and two-color interferometry. The rms accuracy is currently limited to ~5 microns. Resolving the integer number of wavelengths requires a 1-sigma range accuracy of ~0.1 microns. Closing this gap has a large pay-off: the range (length measurement) accuracy can be increased substantially using the unambiguous optical phase. The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. In this paper, we present recent experiments that use dispersed white light interferometry to independently validate the zero-point of the system. We also describe progress towards reducing the size of optics, and stabilizing the laser wavelength for operation over larger target ranges. MSTAR is a general-purpose tool for conveniently measuring length with much greater accuracy than was previously possible, and has a wide range of possible applications.
Design, test, and calibration of an electrostatic beam position monitor
NASA Astrophysics Data System (ADS)
Cohen-Solal, Maurice
2010-03-01
The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM) are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton) facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.
NASA Astrophysics Data System (ADS)
Lees, A.; Koettig, T.; Fernandes, M.; Tan, J.
2017-02-01
The Cryogenic Current Comparator (CCC) is installed in the low-energy Antiproton Decelerator (AD) at CERN to make an absolute measurement of the beam intensity. Operating below 4.2 K, it is based on a superconducting quantum interference device (SQUID) and employs a superconducting niobium shield to supress magnetic field components not linked to the beam current. The AD contains no permanent cryogenic infrastructure so the local continuous liquefaction of helium using a pulse-tube is required; limiting the available cooling power to 0.69 W at 4.2K. Due to the sensitivity of the SQUID to variations in magnetic fields, the CCC is highly sensitive to mechanical vibration which is limited to a minimum by the support systems of the cryostat. This article presents the cooling system of the cryostat and discusses the design challenges overcome to minimise the transmission of vibration to the CCC while operating within the cryogenic limits imposed by the cooling system.
Method and apparatus for making absolute range measurements
Earl, Dennis D [Knoxville, TN; Allison, Stephen W [Knoxville, TN; Cates, Michael R [Oak Ridge, TN; Sanders, Alvin J [Knoxville, TN
2002-09-24
This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through a screen at least partially opaque at the wavelength. The screen has an aperture sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector spaced some distance from the screen. The detector detects the central intensity of the beam as well as a set of intensities displaced from a center of the aperture. The distance from the source to the target can then be calculated based upon the known wavelength, aperture radius, and beam intensity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moseev, D., E-mail: dmitry.moseev@ipp.mpg.de; Laqua, H. P.; Marsen, S.
Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up tomore » 340 kW/m{sup 2} per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m{sup 2} per MW injected beam power is measured.« less
Absolute surface reconstruction by slope metrology and photogrammetry
NASA Astrophysics Data System (ADS)
Dong, Yue
Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.
SU-F-T-492: The Impact of Water Temperature On Absolute Dose Calibration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Islam, N; Podgorsak, M; Roswell Park Cancer Institute, Buffalo, NY
Purpose: The Task Group 51 (TG 51) protocol prescribes that dose calibration of photon beams be done by irradiating an ionization chamber in a water tank at pre-defined depths. Methodologies are provided to account for variations in measurement conditions by applying correction factors. However, the protocol does not completely account for the impact of water temperature. It is well established that water temperature will influence the density of air in the ion chamber collecting volume. Water temperature, however, will also influence the size of the collecting volume via thermal expansion of the cavity wall and the density of the watermore » in the tank. In this work the overall effect of water temperature on absolute dosimetry has been investigated. Methods: Dose measurements were made using a Farmer-type ion chamber for 6 and 23 MV photon beams with water temperatures ranging from 10 to 40°C. A reference ion chamber was used to account for fluctuations in beam output between successive measurements. Results: For the same beam output, the dose determined using TG 51 was dependent on the temperature of the water in the tank. A linear regression of the data suggests that the dependence is statistically significant with p-values of the slope equal to 0.003 and 0.01 for 6 and 23 MV beams, respectively. For a 10 degree increase in water phantom temperature, the absolute dose determined with TG 51 increased by 0.27% and 0.31% for 6 and 23 MV beams, respectively. Conclusion: There is a measurable effect of water temperature on absolute dose calibration. To account for this effect, a reference temperature can be defined and a correction factor applied to account for deviations from this reference temperature during beam calibration. Such a factor is expected to be of similar magnitude to most of the existing TG 51 correction factors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saenz, D; Gutierrez, A
Purpose: The ScandiDos Discover has obtained FDA clearance and is now clinically released. We studied the essential attenuation and beam hardening components as well as tested the diode array’s ability to detect changes in absolute dose and MLC leaf positions. Methods: The ScandiDos Discover was mounted on the heads of an Elekta VersaHD and a Varian 23EX. Beam attenuation measurements were made at 10 cm depth for 6 MV and 18 MV beam energies. The PDD(10) was measured as a metric for the effect on beam quality. Next, a plan consisting of two orthogonal 10 × 10 cm2 fields wasmore » used to adjust the dose per fraction by scaling monitor units to test the absolute dose detection sensitivity of the Discover. A second plan (conformal arc) was then delivered several times independently on the Elekta VersaHD. Artificially introduced MLC position errors in the four central leaves were then added. The errors were incrementally increased from 1 mm to 4 mm and back across seven control points. Results: The absolute dose measured at 10 cm depth decreased by 1.2% and 0.7% for 6 MV and 18 MV beam with the Discover, respectively. Attenuation depended slightly on the field size but only changed the attenuation by 0.1% across 5 × 5 cm{sup 2} and 20 − 20 cm{sup 2} fields. The change in PDD(10) for a 10 − 10 cm{sup 2} field was +0.1% and +0.6% for 6 MV and 18 MV, respectively. Changes in monitor units from −5.0% to 5.0% were faithfully detected. Detected leaf errors were within 1.0 mm of intended errors. Conclusion: A novel in-vivo dosimeter monitoring the radiation beam during treatment was examined through its attenuation and beam hardening characteristics. The device tracked with changes in absolute dose as well as introduced leaf position deviations.« less
Das, R K; Li, Z; Perera, H; Williamson, J F
1996-06-01
Practical dosimeters in brachytherapy, such as thermoluminescent dosimeters (TLD) and diodes, are usually calibrated against low-energy megavoltage beams. To measure absolute dose rate near a brachytherapy source, it is necessary to establish the energy response of the detector relative to that of the calibration energy. The purpose of this paper is to assess the accuracy of Monte Carlo photon transport (MCPT) simulation in modelling the absolute detector response as a function of detector geometry and photon energy. We have exposed two different sizes of TLD-100 (LiF chips) and p-type silicon diode detectors to calibrated 60Co, HDR source (192Ir) and superficial x-ray beams. For the Scanditronix electron-field diode, the relative detector response, defined as the measured detector readings per measured unit of air kerma, varied from 38.46 V cGy-1 (40 kVp beam) to 6.22 V cGy-1 (60Co beam). Similarly for the large and small chips the same quantity varied from 2.08-3.02 nC cGy-1 and 0.171-0.244 nC cGy-1, respectively. Monte Carlo simulation was used to calculate the absorbed dose to the active volume of the detector per unit air kerma. If the Monte Carlo simulation is accurate, then the absolute detector response, which is defined as the measured detector reading per unit dose absorbed by the active detector volume, and is calculated by Monte Carlo simulation, should be a constant. For the diode, the absolute response is 5.86 +/- 0.15 (V cGy-1). For TLDs of size 3 x 3 x 1 mm3 the absolute response is 2.47 +/- 0.07 (nC cGy-1) and for TLDs of 1 x 1 x 1 mm3 it is 0.201 +/- 0.008 (nC cGy-1). From the above results we can conclude that the absolute response function of detectors (TLDs and diodes) is directly proportional to absorbed dose by the active volume of the detector and is independent of beam quality.
237Np absolute delayed neutron yield measurements
NASA Astrophysics Data System (ADS)
Doré, D.; Ledoux, X.; Nolte, R.; Gagnon-Moisan, F.; Thulliez, L.; Litaize, O.; Roettger, S.; Serot, O.
2017-09-01
237Np absolute delayed neutron yields have been measured at different incident neutron energies from 1.5 to 16 MeV. The experiment was performed at the Physikalisch-Technische Bundesanstalt (PTB) facility where the Van de Graaff accelerator and the cyclotron CV28 delivered 9 different neutron energy beams using p+T, d+D and d+T reactions. The detection system is made up of twelve 3He tubes inserted into a polyethylene cylinder. In this paper, the experimental setup and the data analysis method are described. The evolution of the absolute DN yields as a function of the neutron incident beam energies are presented and compared to experimental data found in the literature and data from the libraries.
Method and apparatus for making absolute range measurements
Allison, Stephen W.; Cates, Michael R.; Key, William S.; Sanders, Alvin J.; Earl, Dennis D.
1999-01-01
This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through an object which causes it to be split (hereinafter referred to as a "beamsplitter"), and then to a target. The beam is reflected from the target onto a screen containing an aperture spaced a known distance from the beamsplitter. The aperture is sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector, spaced a known distance from the screen. The detector detects the central intensity of the beam. The distance from the object which causes the beam to be split to the target can then be calculated based upon the known wavelength, aperture radius, beam intensity, and distance from the detector to the screen. Several apparatus embodiments are disclosed for practicing the method embodiments of the present invention.
Murray, Louise; Mason, Joshua; Henry, Ann M; Hoskin, Peter; Siebert, Frank-Andre; Venselaar, Jack; Bownes, Peter
2016-08-01
To estimate the risks of radiation-induced rectal and bladder cancers following low dose rate (LDR) and high dose rate (HDR) brachytherapy as monotherapy for localised prostate cancer and compare to external beam radiotherapy techniques. LDR and HDR brachytherapy monotherapy plans were generated for three prostate CT datasets. Second cancer risks were assessed using Schneider's concept of organ equivalent dose. LDR risks were assessed according to a mechanistic model and a bell-shaped model. HDR risks were assessed according to a bell-shaped model. Relative risks and excess absolute risks were estimated and compared to external beam techniques. Excess absolute risks of second rectal or bladder cancer were low for both LDR (irrespective of the model used for calculation) and HDR techniques. Average excess absolute risks of rectal cancer for LDR brachytherapy according to the mechanistic model were 0.71 per 10,000 person-years (PY) and 0.84 per 10,000 PY respectively, and according to the bell-shaped model, were 0.47 and 0.78 per 10,000 PY respectively. For HDR, the average excess absolute risks for second rectal and bladder cancers were 0.74 and 1.62 per 10,000 PY respectively. The absolute differences between techniques were very low and clinically irrelevant. Compared to external beam prostate radiotherapy techniques, LDR and HDR brachytherapy resulted in the lowest risks of second rectal and bladder cancer. This study shows both LDR and HDR brachytherapy monotherapy result in low estimated risks of radiation-induced rectal and bladder cancer. LDR resulted in lower bladder cancer risks than HDR, and lower or similar risks of rectal cancer. In absolute terms these differences between techniques were very small. Compared to external beam techniques, second rectal and bladder cancer risks were lowest for brachytherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renaud, James; Seuntjens, Jan; Sarfehnia, Arman
Purpose: To evaluate the intrinsic and absorbed-dose energy dependence of a small-scale graphite calorimeter probe (GPC) developed for use as a routine clinical dosimeter. The influence of charge deposition on the response of the GPC was also assessed by performing absolute dosimetry in clinical linac-based electron beams. Methods: Intrinsic energy dependence was determined by performing constant-temperature calorimetry dose measurements in a water-equivalent solid phantom, under otherwise reference conditions, in five high-energy photon (63.5 < %dd(10){sub X} < 76.3), and five electron (2.3 cm < R{sub 50} < 8.3 cm) beams. Reference dosimetry was performed for all beams in question usingmore » an Exradin A19 ion chamber with a calibration traceable to national standards. The absorbed-dose component of the overall energy dependence was calculated using the EGSnrc egs-chamber user code. Results: A total of 72 measurements were performed with the GPC, resulting in a standard error on the mean absorbed dose of better than 0.3 % for all ten beams. For both the photon and electron beams, no statistically-significant energy dependence was observed experimentally. Peak-to-peak, variations in the relative response of the GPC across all beam qualities of a given radiation type were on the order of 1 %. No effects, either transient or permanent, were attributable to the charge deposited by the electron beams. Conclusions: The GPC’s apparent energy-independence, combined with its well-established linearity and dose rate independence, make it a potentially useful dosimetry system capable measuring photon and electron doses in absolute terms at the clinical level.« less
Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates
NASA Astrophysics Data System (ADS)
Fournier, P.; Crosbie, J. C.; Cornelius, I.; Berkvens, P.; Donzelli, M.; Clavel, A. H.; Rosenfeld, A. B.; Petasecca, M.; Lerch, M. L. F.; Bräuer-Krisch, E.
2016-07-01
Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency’s TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called ‘current ramping’ method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirayama, S; Takayanagi, T; Fujii, Y
2014-06-15
Purpose: To present the validity of our beam modeling with double and triple Gaussian dose kernels for spot scanning proton beams in Nagoya Proton Therapy Center. This study investigates the conformance between the measurements and calculation results in absolute dose with two types of beam kernel. Methods: A dose kernel is one of the important input data required for the treatment planning software. The dose kernel is the 3D dose distribution of an infinitesimal pencil beam of protons in water and consists of integral depth doses and lateral distributions. We have adopted double and triple Gaussian model as lateral distributionmore » in order to take account of the large angle scattering due to nuclear reaction by fitting simulated inwater lateral dose profile for needle proton beam at various depths. The fitted parameters were interpolated as a function of depth in water and were stored as a separate look-up table for the each beam energy. The process of beam modeling is based on the method of MDACC [X.R.Zhu 2013]. Results: From the comparison results between the absolute doses calculated by double Gaussian model and those measured at the center of SOBP, the difference is increased up to 3.5% in the high-energy region because the large angle scattering due to nuclear reaction is not sufficiently considered at intermediate depths in the double Gaussian model. In case of employing triple Gaussian dose kernels, the measured absolute dose at the center of SOBP agrees with calculation within ±1% regardless of the SOBP width and maximum range. Conclusion: We have demonstrated the beam modeling results of dose distribution employing double and triple Gaussian dose kernel. Treatment planning system with the triple Gaussian dose kernel has been successfully verified and applied to the patient treatment with a spot scanning technique in Nagoya Proton Therapy Center.« less
NASA Astrophysics Data System (ADS)
Das, Rajarshi
The Tokai to Kamioka (T2K) Experiment is a long-baseline neutrino oscillation experiment located in Japan with the primary goal to measure precisely multiple neutrino flavor oscillation parameters. An off-axis muon neutrino beam peaking at 600 MeV is generated at the JPARC facility and directed towards the 50 kiloton Super-Kamiokande (SK) water Cherenkov detector located 295 km away. Measurements from a Near Detector that is 280m downstream of the neutrino beam target are used to constrain uncertainties in the beam flux prediction and neutrino interaction rates. We present a selection of inclusive charged current neutrino interactions on water. We used several sub-detectors in the ND280 complex, including a Pi-Zero detector (P0D) that has alternating planes of plastic scintillator and water bag layers, a time projection chamber (TPC) and fine-grained detector (FGD) to detect and reconstruct muons from neutrino charged current events. We use a statistical subtraction method with the water-in and water-out inclusive selection to extract a flux-averaged, ν_μ induced, charged current inclusive cross section. We also outline the evaluation of systematic uncertainties. We find an absolute cross section of ⟨σ⟩=(6.37 ± 0.157(stat.) (-1.060/+0.910(sys.)) x 10-39 (cm. 2/H2O nucleon). This is the first ν_μ charged current inclusive cross section measurement on water.
Detailed characterisation of the incident neutron beam on the TOSCA spectrometer
NASA Astrophysics Data System (ADS)
Pinna, Roberto S.; Rudić, Svemir; Capstick, Matthew J.; McPhail, David J.; Pooley, Daniel E.; Howells, Gareth D.; Gorini, Giuseppe; Fernandez-Alonso, Felix
2017-10-01
We report a detailed characterisation of the incident neutron beam on the TOSCA spectrometer. A bespoke time-of-flight neutron monitor has been designed, constructed and used to perform extensive spatially resolved measurements of the absolute neutron flux and its underlying time structure at the instrument sample position. The obtained data give a quantitative understanding of the current instrument beyond neutronic simulations and provide a baseline in order to assess the performance of the upgraded instrument. At an average proton current-on-target of 153 μA (ISIS Target Station 1; at the time of measurements) we have found that the wavelength-integrated neutron flux (from 0.28 Å to 4.65 Å) at the position of the TOSCA instrument sample (spatially averaged across the 3 × 3cm2 surface centred around (0,0) position) is approximately 1 . 2 × 106 neutrons cm-2s-1, while the whole beam has a homogeneous distribution across the 3 . 0 × 3 . 5cm2 sample surface. The spectra reproduced the well-known shape of the neutrons moderated by the room temperature water moderator and exhibit a neutron flux of 7 . 3 × 105 neutrons cm-2s-1Å-1 at 1 Å.
Primary invasive squamous carcinoma of the vagina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pride, G.L.; Schultz, A.E.; Chuprevich, T.W.
1979-02-01
Forty-three cases of primary vaginal squamous cell cancer were treated at the University of Wisconsin Hospital between 1956 and 1971. These cases comprised of 1.2% of patients admitted to the University Hospital with female genital tract cancer. Evidence is presented to support a modification of the currently accepted FIGO staging system for vaginal carcinoma (Stage II disease). Radiation therapy using both external beam and brachyradium equivalents or interstitial implantation of suitable isotopes was an effective method for the treatment of patients having early and locally advanced invasive vaginal cancer. The 5-year absolute survival rate for the entire series was 37.2%.more » Absolute survival rate by modified FIGO clinical staging was 66% for Stages I and IIA, 31% for Stage IIB, 25% for Stage III, and 0% for Stage IV.« less
The progress about measurements of the proton beam characteristics of the JUNA 400 kV accelerator
NASA Astrophysics Data System (ADS)
Wang, Shuo; Li, Kuoang
2018-04-01
China JinPing underground Laboratory (CJPL) was established inside the tunnels piercing Jinping Mountain in Sichuan Province, China, which can provide an ideal environment for low background experiment. Jinping Underground laboratory for Nuclear Astrophysics (JUNA) is one of the major research programs in CJPL. A new 400 kV accelerator, with high current based on an ECR source, will be installed into CJPL for the study of key nuclear reactions in astrophysics. The beam characteristics of the accelerator, like absolute energy, energy spread, and long-term energy stability, will be determined by several well-known resonance and non-resonance reactions. Due to the new accelerator still being under construction, the resonance reaction of 27Al(p, γ)28Si and non-resonance 12C(p, γ)13N were studied at the 320 kV high-voltage platform of Institute of Modern Physics in Lanzhou, China. The energy spread of proton beam is about 1.0 keV and the long-term energy stability of proton beam is better than ±200eV during 4 hours measurement.
Dosimetric uncertainty in prostate cancer proton radiotherapy.
Lin, Liyong; Vargas, Carlos; Hsi, Wen; Indelicato, Daniel; Slopsema, Roelf; Li, Zuofeng; Yeung, Daniel; Horne, Dave; Palta, Jatinder
2008-11-01
The authors we evaluate the uncertainty in proton therapy dose distribution for prostate cancer due to organ displacement, varying penumbra width of proton beams, and the amount of rectal gas inside the rectum. Proton beam treatment plans were generated for ten prostate patients with a minimum dose of 74.1 cobalt gray equivalent (CGE) to the planning target volume (PTV) while 95% of the PTV received 78 CGE. Two lateral or lateral oblique proton beams were used for each plan. The authors we investigated the uncertainty in dose to the rectal wall (RW) and the bladder wall (BW) due to organ displacement by comparing the dose-volume histograms (DVH) calculated with the original or shifted contours. The variation between DVHs was also evaluated for patients with and without rectal gas in the rectum for five patients who had 16 to 47 cc of visible rectal gas in their planning computed tomography (CT) imaging set. The uncertainty due to the varying penumbra width of the delivered protons for different beam setting options on the proton delivery system was also evaluated. For a 5 mm anterior shift, the relative change in the RW volume receiving 70 CGE dose (V70) was 37.9% (5.0% absolute change in 13.2% of a mean V70). The relative change in the BW volume receiving 70 CGE dose (V70) was 20.9% (4.3% absolute change in 20.6% of a mean V70) with a 5 mm inferior shift. A 2 mm penumbra difference in beam setting options on the proton delivery system resulted in the relative variations of 6.1% (0.8% absolute change) and 4.4% (0.9% absolute change) in V70 of RW and BW, respectively. The data show that the organ displacements produce absolute DVH changes that generally shift the entire isodose line while maintaining the same shape. The overall shape of the DVH curve for each organ is determined by the penumbra and the distance of the target in beam's eye view (BEV) from the block edge. The beam setting option producing a 2 mm sharper penumbra at the isocenter can reduce the magnitude of maximal doses to the RW by 2% compared to the alternate option utilizing the same block margin of 7 mm. The dose to 0.1 cc of the femoral head on the distal side of the lateral-posterior oblique beam is increased by 25 CGE for a patient with 25 cc of rectal gas. Variation in the rectal and bladder wall DVHs due to uncertainty in the position of the organs relative to the location of sharp dose falloff gradients should be accounted for when evaluating treatment plans. The proton beam delivery option producing a sharper penumbra reduces maximal doses to the rectal wall. Lateral-posterior oblique beams should be avoided in patients prone to develop a large amount of rectal gas.
Sub-nanometer periodic nonlinearity error in absolute distance interferometers
NASA Astrophysics Data System (ADS)
Yang, Hongxing; Huang, Kaiqi; Hu, Pengcheng; Zhu, Pengfei; Tan, Jiubin; Fan, Zhigang
2015-05-01
Periodic nonlinearity which can result in error in nanometer scale has become a main problem limiting the absolute distance measurement accuracy. In order to eliminate this error, a new integrated interferometer with non-polarizing beam splitter is developed. This leads to disappearing of the frequency and/or polarization mixing. Furthermore, a strict requirement on the laser source polarization is highly reduced. By combining retro-reflector and angel prism, reference and measuring beams can be spatially separated, and therefore, their optical paths are not overlapped. So, the main cause of the periodic nonlinearity error, i.e., the frequency and/or polarization mixing and leakage of beam, is eliminated. Experimental results indicate that the periodic phase error is kept within 0.0018°.
Measurement of the Neutron Lifetime Using a Proton Trap
NASA Astrophysics Data System (ADS)
Dewey, M. S.; Gilliam, D. M.; Nico, J. S.; Wietfeldt, F. E.; Fei, X.; Snow, W. M.; Greene, G. L.; Pauwels, J.; Eykens, R.; Lamberty, A.; van Gestel, J.
2003-10-01
We report a new measurement of the neutron decay lifetime by the absolute counting of in-beam neutrons and their decay protons. Protons were confined in a quasi-Penning trap and counted with a silicon detector. The neutron beam fluence was measured by capture in a thin 6LiF foil detector with known absolute efficiency. The combination of these simultaneous measurements gives the neutron lifetime: τn=(886.8±1.2[stat]±3.2[syst]) s. The systematic uncertainty is dominated by uncertainties in the mass of the 6LiF deposit and the 6Li(n,t) cross section. This is the most precise measurement of the neutron lifetime to date using an in-beam method.
Absolute wind measurements in the lower thermosphere of Venus using infrared heterodyne spectroscopy
NASA Technical Reports Server (NTRS)
Goldstein, Jeffrey J.
1990-01-01
The first absolute wind velocities above the Venusian cloud-tops were obtained using NASA/Goddard infrared heterodyne spectrometers at the NASA Infrared Telescope Facility (IRTF) and the McMath Solar Telescope. Beam-integrated Doppler displacements in the non-thermal emission core of (12)C(16)O2 10.33 micron R(8) sampled the line of sight projection of the lower thermospheric wind field (100 to 120 km). A field-usable Lamb-dip laser stabilization system, developed for spectrometer absolute frequency calibration to less than + or - 0.1 MHz, allowed S/N-limited line of sight velocity resolution at the 1 m/s level. The spectrometer's diffraction-limited beam (1.7 arc-second HPBW at McMath, 0.9 arc-second HPBW at IRTF), and 1 to 2 arc-second seeing, provided the spatial resolution necessary for circulation model discrimination. Qualitative analysis of beam-integrated winds provided definitive evidence of a dominant subsolar-antisolar circulation in the lower thermosphere. Beam-integrated winds were modelled with a 100x100 grid over the beam, incorporating beam spatial rolloff and across-the-beam gradients in non-thermal emission intensity, line of sight projection geometry, and horizontal wind velocity. Horizontal wind velocity was derived from a 2-parameter model wind field comprised of subsolar-antisolar and zonal components. Best-fit models indicated a dominant subsolar-antisolar flow with 120 m/s cross-terminator winds and a retrograde zonal component with a 25 m/s equatorial velocity. A review of all dynamical indicators above the cloud-tops allowed development of an integrated and self-consistent picture of circulation in the 70 to 200 km range.
NASA Astrophysics Data System (ADS)
Marini, C.; Agnello, R.; Duval, B. P.; Furno, I.; Howling, A. A.; Jacquier, R.; Karpushov, A. N.; Plyushchev, G.; Verhaegh, K.; Guittienne, Ph.; Fantz, U.; Wünderlich, D.; Béchu, S.; Simonin, A.
2017-03-01
A new generation of neutral beam systems will be required in future fusion reactors, such as DEMO, able to deliver high power (up to 50 MW) with high (800 keV or higher) neutral energy. Only negative ion beams may be able to attain this performance, which has encouraged a strong research focus on negative ion production from both surface and volumetric plasma sources. A novel helicon plasma source, based on the resonant birdcage network antenna configuration, is currently under study at the Swiss Plasma Centre before installation on the Cybele negative ion source at the Institute for Magnetic Fusion Research, CEA, Cadarache, France. This source is driven by up to 10 kW at 13.56 MHz, and is being tested on a linear resonant antenna ion device. Passive spectroscopic measurements of the first three Balmer lines α, β and γ and of the Fulcher-α bands were performed with an f/2 spectrometer, for both hydrogen and deuterium. Multiple viewing lines and an absolute intensity calibration were used to determine the plasma radiance profile, with a spatial resolution <3 mm. A minimum Fisher regularization algorithm was applied to obtain the absolute emissivity profile for each emission line for cylindrical symmetry, which was experimentally confirmed. An uncertainty estimate of the inverted profiles was performed using a Monte Carlo approach. Finally, a radiofrequency-compensated Langmuir probe was inserted to measured the electron temperature and density profiles. The absolute line emissivities are interpreted using the collisional-radiative code YACORA which estimates the degree of dissociation and the distribution of the atomic and molecular species, including the negative ion density. This paper reports the results of a power scan up to 5 kW in conditions satisfying Cybele requirements for the plasma source, namely a low neutral pressure, p≤slant 0.3 Pa and magnetic field B≤slant 150 G.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatchyn, Roman; /SLAC
2011-09-01
Recent numerical studies of Free Electron Lasers (FELs) operating in the Self Amplified Spontaneous Emission (SASE) regime indicate a large sensitivity of the gain to the degree of transverse overlap (and associated phase coherence) between the electron and photon beams traveling down the insertion device. Simulations of actual systems imply that accurate detection and correction for this relative loss of overlap, rather than correction for the absolute departure of the electron beam from a fixed axis, is the preferred function of an FEL amplifier's Beam Position Monitor (BPM) and corrector systems. In this note we propose a novel diffractive BPMmore » with the capability of simultaneously detecting and resolving the absolute (and relative) transverse positions and profiles of electron and x-ray beams co-propagating through an undulator. We derive the equations governing the performance of the BPM and examine its predicted performance for the SLAC Linac Coherent Light Source (LCLS), viz., for profiling multi-GeV electron bunches co-propagating with one-to-several-hundred keV x-ray beams. Selected research and development (r&d) tasks for fabricating and testing the proposed BPM are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randeniya, S; Mirkovic, D; Titt, U
2014-06-01
Purpose: In intensity modulated proton therapy (IMPT), energy dependent, protons per monitor unit (MU) calibration factors are important parameters that determine absolute dose values from energy deposition data obtained from Monte Carlo (MC) simulations. Purpose of this study was to assess the sensitivity of MC-computed absolute dose distributions to the protons/MU calibration factors in IMPT. Methods: A “verification plan” (i.e., treatment beams applied individually to water phantom) of a head and neck patient plan was calculated using MC technique. The patient plan had three beams; one posterior-anterior (PA); two anterior oblique. Dose prescription was 66 Gy in 30 fractions. Ofmore » the total MUs, 58% was delivered in PA beam, 25% and 17% in other two. Energy deposition data obtained from the MC simulation were converted to Gy using energy dependent protons/MU calibrations factors obtained from two methods. First method is based on experimental measurements and MC simulations. Second is based on hand calculations, based on how many ion pairs were produced per proton in the dose monitor and how many ion pairs is equal to 1 MU (vendor recommended method). Dose distributions obtained from method one was compared with those from method two. Results: Average difference of 8% in protons/MU calibration factors between method one and two converted into 27 % difference in absolute dose values for PA beam; although dose distributions preserved the shape of 3D dose distribution qualitatively, they were different quantitatively. For two oblique beams, significant difference in absolute dose was not observed. Conclusion: Results demonstrate that protons/MU calibration factors can have a significant impact on absolute dose values in IMPT depending on the fraction of MUs delivered. When number of MUs increases the effect due to the calibration factors amplify. In determining protons/MU calibration factors, experimental method should be preferred in MC dose calculations. Research supported by National Cancer Institute grant P01CA021239.« less
NASA Astrophysics Data System (ADS)
Chérigier, L.; Czarnetzki, U.; Luggenhölscher, D.; Schulz-von der Gathen, V.; Döbele, H. F.
1999-01-01
Absolute atomic hydrogen densities were measured in the gaseous electronics conference reference cell parallel plate reactor by Doppler-free two-photon absorption laser induced fluorescence spectroscopy (TALIF) at λ=205 nm. The capacitively coupled radio frequency discharge was operated at 13.56 MHz in pure hydrogen under various input power and pressure conditions. The Doppler-free excitation technique with an unfocused laser beam together with imaging the fluorescence radiation by an intensified charge coupled device camera allows instantaneous spatial resolution along the radial direction. Absolute density calibration is obtained with the aid of a flow tube reactor and titration with NO2. The influence of spatial intensity inhomogenities along the laser beam and subsequent fluorescence are corrected by TALIF in xenon. A full mapping of the absolute density distribution between the electrodes was obtained. The detection limit for atomic hydrogen amounts to about 2×1018 m-3. The dissociation degree is of the order of a few percent.
Active spectroscopic measurements using the ITER diagnostic system.
Thomas, D M; Counsell, G; Johnson, D; Vasu, P; Zvonkov, A
2010-10-01
Active (beam-based) spectroscopic measurements are intended to provide a number of crucial parameters for the ITER device being built in Cadarache, France. These measurements include the determination of impurity ion temperatures, absolute densities, and velocity profiles, as well as the determination of the plasma current density profile. Because ITER will be the first experiment to study long timescale (∼1 h) fusion burn plasmas, of particular interest is the ability to study the profile of the thermalized helium ash resulting from the slowing down and confinement of the fusion alphas. These measurements will utilize both the 1 MeV heating neutral beams and a dedicated 100 keV hydrogen diagnostic neutral beam. A number of separate instruments are being designed and built by several of the ITER partners to meet the different spectroscopic measurement needs and to provide the maximum physics information. In this paper, we describe the planned measurements, the intended diagnostic ensemble, and we will discuss specific physics and engineering challenges for these measurements in ITER.
Aad, G.; Abbott, B.; Abdallah, J.; ...
2011-04-27
Measurements of luminosity obtained using the ATLAS detector during early running of the Large Hadron Collider (LHC) at √s = 7 TeV are presented. The luminosity is independently determined using several detectors and multiple algorithms, each having different acceptances, systematic uncertainties and sensitivity to background. The ratios of the luminosities obtained from these methods are monitored as a function of time and of μ, the average number of inelastic interactions per bunch crossing. Residual time- and μ-dependence between the methods is less than 2% for 0 < μ < 2.5. Absolute luminosity calibrations, performed using beam separation scans, have amore » common systematic uncertainty of ±11%, dominated by the measurement of the LHC beam currents. After calibration, the luminosities obtained from the different methods differ by at most ±2%. The visible cross sections measured using the beam scans are compared to predictions obtained with the PYTHIA and PHOJET event generators and the ATLAS detector simulation.« less
NASA Technical Reports Server (NTRS)
Smith, Steven J.; Man, K.-F.; Chutjian, A.; Mawhorter, R. J.; Williams, I. D.
1991-01-01
Absolute cascade-free excitation cross-sections in an ion have been measured for the resonance 2S to 2P transition in Zn(+) using electron-energy-loss and merged electron-ion beams methods. Measurements were carried out at electron energies of below threshold to 6 times threshold. Comparisons are made with 2-, 5-, and 15-state close-coupling and distorted-wave theories. There is good agreement between experiment and the 15-state close-coupling cross-sections over the energy range of the calculations.
NASA Astrophysics Data System (ADS)
Tarrío, Diego; Prokofiev, Alexander V.; Gustavsson, Cecilia; Jansson, Kaj; Andersson-Sundén, Erik; Al-Adili, Ali; Pomp, Stephan
2017-09-01
Neutron-induced fission cross sections of 235U and 238U are widely used as standards for monitoring of neutron beams and fields. An absolute measurement of these cross sections at an absolute scale, i.e., versus the H(n,p) scattering cross section, is planned with the white neutron beam under construction at the Neutrons For Science (NFS) facility in GANIL. The experimental setup, based on PPACs and ΔE-ΔE-E telescopes containing Silicon and CsI(Tl) detectors, is described. The expected uncertainties are discussed.
Absolute Determination of High DC Voltages by Means of Frequency Measurement
NASA Astrophysics Data System (ADS)
Peier, Dirk; Schulz, Bernd
1983-01-01
A novel absolute measuring procedure is presented for the definition of fixed points of the voltage in the 100 kV range. The method is based on transit time measurements with accelerated electrons. By utilizing the selective interaction of a monoenergetic electron beam with the electromagnetic field of a special cavity resonator, the voltage is referred to fundamental constants and the base unit second. Possible balance voltages are indicated by a current detector. Experimental investigations are carried out with resonators in the normal conducting range. With a copper resonator operating at the temperature of boiling nitrogen (77 K), the relative uncertainty of the voltage points is estimated to be +/- 4 × 10-4. The technically realizable uncertainty can be reduced to +/- 1 × 10-5 by the proposed application of a superconducting niobium resonator. Thus this measuring device becomes suitable as a primary standard for the high-voltage range.
Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter.
Harty, P D; Lye, J E; Ramanathan, G; Butler, D J; Hall, C J; Stevenson, A W; Johnston, P N
2014-05-01
The absolute dose rate of the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter. The calorimetry results were compared to measurements from the existing free-air chamber, to provide a robust determination of the absolute dose in the synchrotron beam and provide confidence in the first implementation of a graphite calorimeter on a synchrotron medical beam line. The graphite calorimeter has a core which rises in temperature when irradiated by the beam. A collimated x-ray beam from the synchrotron with well-defined edges was used to partially irradiate the core. Two filtration sets were used, one corresponding to an average beam energy of about 80 keV, with dose rate about 50 Gy/s, and the second filtration set corresponding to average beam energy of 90 keV, with dose rate about 20 Gy/s. The temperature rise from this beam was measured by a calibrated thermistor embedded in the core which was then converted to absorbed dose to graphite by multiplying the rise in temperature by the specific heat capacity for graphite and the ratio of cross-sectional areas of the core and beam. Conversion of the measured absorbed dose to graphite to absorbed dose to water was achieved using Monte Carlo calculations with the EGSnrc code. The air kerma measurements from the free-air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. Absolute measurements of the IMBL dose rate were made using the graphite calorimeter and compared to measurements with the free-air chamber. The measurements were at three different depths in graphite and two different filtrations. The calorimetry measurements at depths in graphite show agreement within 1% with free-air chamber measurements, when converted to absorbed dose to water. The calorimetry at the surface and free-air chamber results show agreement of order 3% when converted to absorbed dose to water. The combined standard uncertainty is 3.9%. The good agreement of the graphite calorimeter and free-air chamber results indicates that both devices are performing as expected. Further investigations at higher dose rates than 50 Gy/s are planned. At higher dose rates, recombination effects for the free-air chamber are much higher and expected to lead to much larger uncertainties. Since the graphite calorimeter does not have problems associated with dose rate, it is an appropriate primary standard detector for the synchrotron IMBL x rays and is the more accurate dosimeter for the higher dose rates expected in radiotherapy applications.
Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range
NASA Astrophysics Data System (ADS)
Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L.
2006-10-01
The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si (Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3keV but has reduced sensitivity above 3keV (˜50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.
Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, F. J.; Knauer, J. P.; Anderson, D.
2006-10-15
The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this techniquemore » to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3 keV but has reduced sensitivity above 3 keV ({approx}50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.« less
Absolute empirical rate coefficient for the excitation of the 117.6 nm line in C III
NASA Astrophysics Data System (ADS)
Gardner, L. D.; Daw, A. N.; Janzen, P. H.; Atkins, N.; Kohl, J. L.
2005-05-01
We have measured the absolute cross sections for electron impact excitation (EIE) of C2+ (2s2p 3P° - 2p2 3P) for energies from below threshold to 17 eV above and derived EIE rate coefficients required for astrophysical applications. The uncertainty in the rate coefficient at a typical solar temperature of formation of C2+ is less than ± 6 %. Ions are produced in a 5 GHz Electron Cyclotron Resonance (ECR) ion source, extracted, formed into a beam, and transported to a collision chamber where they collide with electrons from an electron beam inclined at 45 degrees. The beams are modulated and the radiation from the decay of the excited ions at λ 117.6 nm is detected synchronously using an absolutely calibrated optical system that subtends slightly over π steradians. The fractional population of the C2+ metastable state in the incident ion beam has been determined experimentally to be 0.42 ± 0.03 (1.65 σ). At the reported ± 15 % total experimental uncertainty level (1.65 σ), the measured structure and absolute scale of the cross section are in fairly good agreement with 6-term close-coupling R-matrix calculations and 90-term R-matrix with pseudo-states calculations, although some minor differences are seen just above threshold. As density-sensitive line intensity ratios vary by only about a factor of 5 as the density changes by nearly a factor of 100, even a 30 % uncertainty in the excitation rate can lead to a factor of 3 error in density. This work is supported by NASA Supporting Research and Technology grants NAG5- 9516 and NAG5-12863 in Solar and Heliospheric Physics and by the Smithsonian Astrophysical Observatory.
ArtDeco: a beam-deconvolution code for absolute cosmic microwave background measurements
NASA Astrophysics Data System (ADS)
Keihänen, E.; Reinecke, M.
2012-12-01
We present a method for beam-deconvolving cosmic microwave background (CMB) anisotropy measurements. The code takes as input the time-ordered data along with the corresponding detector pointings and known beam shapes, and produces as output the harmonic aTlm, aElm, and aBlm coefficients of the observed sky. From these one can derive temperature and Q and U polarisation maps. The method is applicable to absolute CMB measurements with wide sky coverage, and is independent of the scanning strategy. We tested the code with extensive simulations, mimicking the resolution and data volume of Planck 30 GHz and 70 GHz channels, but with exaggerated beam asymmetry. We applied it to multipoles up to l = 1700 and examined the results in both pixel space and harmonic space. We also tested the method in presence of white noise. The code is released under the terms of the GNU General Public License and can be obtained from http://sourceforge.net/projects/art-deco/
NASA Technical Reports Server (NTRS)
Beck, S. M.
1975-01-01
A mobile self-contained Faraday cup system for beam current measurments of nominal 600 MeV protons was designed, constructed, and used at the NASA Space Radiation Effects Laboratory. The cup is of reentrant design with a length of 106.7 cm and an outside diameter of 20.32 cm. The inner diameter is 15.24 cm and the base thickness is 30.48 cm. The primary absorber is commercially available lead hermetically sealed in a 0.32-cm-thick copper jacket. Several possible systematic errors in using the cup are evaluated. The largest source of error arises from high-energy electrons which are ejected from the entrance window and enter the cup. A total systematic error of -0.83 percent is calculated to be the decrease from the true current value. From data obtained in calibrating helium-filled ion chambers with the Faraday cup, the mean energy required to produce one ion pair in helium is found to be 30.76 + or - 0.95 eV for nominal 600 MeV protons. This value agrees well, within experimental error, with reported values of 29.9 eV and 30.2 eV.
Optical Bench Interferometer - From LISA Pathfinder to NGO/eLISA
NASA Astrophysics Data System (ADS)
Taylor, A.; d'Arcio, L.; Bogenstahl, J.; Danzmann, K.; Diekmann, C.; Fitzsimons, E. D.; Gerberding, O.; Heinzel, G.; Hennig, J.-S.; Hogenhuis, H.; Killow, C. J.; Lieser, M.; Lucarelli, S.; Nikolov, S.; Perreur-Lloyd, M.; Pijnenburg, J.; Robertson, D. I.; Sohmer, A.; Tröbs, M.; Ward, H.; Weise, D.
2013-01-01
We present a short summary of some optical bench construction and alignment developments that build on experience gained during the LISA Pathfinder optical bench assembly. These include evolved fibre injectors, a new beam vector measurement system, and thermally stable mounting hardware. The beam vector measurement techniques allow the alignment of beams to targets with absolute accuracy of a few microns and 20 microradians. We also describe a newly designed ultra-low-return beam dump that is expected to be a crucial element in the control of ghost beams on the optical benches.
Laser Truss Sensor for Segmented Telescope Phasing
NASA Technical Reports Server (NTRS)
Liu, Duncan T.; Lay, Oliver P.; Azizi, Alireza; Erlig, Herman; Dorsky, Leonard I.; Asbury, Cheryl G.; Zhao, Feng
2011-01-01
A paper describes the laser truss sensor (LTS) for detecting piston motion between two adjacent telescope segment edges. LTS is formed by two point-to-point laser metrology gauges in a crossed geometry. A high-resolution (<30 nm) LTS can be implemented with existing laser metrology gauges. The distance change between the reference plane and the target plane is measured as a function of the phase change between the reference and target beams. To ease the bandwidth requirements for phase detection electronics (or phase meter), homodyne or heterodyne detection techniques have been used. The phase of the target beam also changes with the refractive index of air, which changes with the air pressure, temperature, and humidity. This error can be minimized by enclosing the metrology beams in baffles. For longer-term (weeks) tracking at the micron level accuracy, the same gauge can be operated in the absolute metrology mode with an accuracy of microns; to implement absolute metrology, two laser frequencies will be used on the same gauge. Absolute metrology using heterodyne laser gauges is a demonstrated technology. Complexity of laser source fiber distribution can be optimized using the range-gated metrology (RGM) approach.
Poster — Thur Eve — 72: Clinical Subtleties of Flattening-Filter-Free Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corns, Robert; Thomas, Steven; Huang, Vicky
2014-08-15
Flattening-filter-free (fff) beams offer superior dose rates, reducing treatment times for important techniques that utilize small field sizes, such as stereotactic ablative radiotherapy (SABR). The impact of ion collection efficiency (P{sub ion}) on the percent depth dose (PDD) has been discussed at length in the literature. Relative corrections of the order of l%–2% are possible. In the process of commissioning 6fff and 10fff beams, we identified a number of other important details that influence commissioning. We looked at the absolute dose difference between corrected and uncorrected PDD. We discovered a curve with a broad maximum between 10 and 20 cm.more » We wondered about the consequences of this PDD correction on the absolute dose calibration of the linac because the TG-51 protocol does not correct the PDD curve. The quality factor k{sub Q} depends on the PDD, so in principle, a correction to the PDD will alter the absolute calibration of the linac. Finally, there are other clinical tables, such as TMR, which are derived from PDD. Attention to details on how this computation is performed is important because different corrections are possible depending the method of calculation.« less
van Battum, L J; Hoffmans, D; Piersma, H; Heukelom, S
2008-02-01
This paper focuses on the accuracy, in absolute dose measurements, with GafChromicTM EBT film achievable in water for a 6 MV photon beam up to a dose of 2.3 Gy. Motivation is to get an absolute dose detection system to measure up dose distributions in a (water) phantom, to check dose calculations. An Epson 1680 color (red green blue) transmission flatbed scanner has been used as film scanning system, where the response in the red color channel has been extracted and used for the analyses. The influence of the flatbed film scanner on the film based dose detection process was investigated. The scan procedure has been optimized; i.e. for instance a lateral correction curve was derived to correct the scan value, up to 10%, as a function of optical density and lateral position. Sensitometric curves of different film batches were evaluated in portrait and landscape scan mode. Between various batches important variations in sensitometric curve were observed. Energy dependence of the film is negligible, while a slight variation in dose response is observed for very large angles between film surface and incident photon beam. Improved accuracy in absolute dose detection can be obtained by repetition of a film measurement to tackle at least the inherent presence of film inhomogeneous construction. We state that the overall uncertainty is random in absolute EBT film dose detection and of the order of 1.3% (1 SD) under the condition that the film is scanned in a limited centered area on the scanner and at least two films have been applied. At last we advise to check a new film batch on its characteristics compared to available information, before using that batch for absolute dose measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titt, U; Suzuki, K
Purpose: The PTCH is preparing the ocular proton beam nozzle for clinical use. Currently commissioning measurements are being performed using films, diodes and ionization chambers. In parallel, a Monte Carlo model of the beam line was created for integration into the automated Monte Carlo treatment plan computation system, MC{sup 2}. This work aims to compare Monte Carlo predictions to measured proton doses in order to validate the Monte Carlo model. Methods: A complete model of the double scattering ocular beam line has been created and is capable of simulating proton beams with a comprehensive set of beam modifying devices, includingmore » eleven different range modulator wheels. Simulations of doses in water were scored and compare to ion chamber measurements of depth doses, lateral dose profiles extracted from half beam block exposures of films, and diode measurements of lateral penumbrae at various depths. Results: All comparison resulted in an average relative entrance dose difference of less than 3% and peak dose difference of less than 2%. All range differences were smaller than 0.2 mm. The differences in the lateral beam profiles were smaller than 0.2 mm, and the differences in the penumbrae were all smaller than 0.4%. Conclusion: All available data shows excellent agreement of simulations and measurements. More measurements will have to be performed in order to completely and systematically validate the model. Besides simulating and measuring PDDs and lateral profiles of all remaining range modulator wheels, the absolute dosimetry factors in terms of number of source protons per monitor unit have to be determined.« less
NASA Technical Reports Server (NTRS)
Cohen, Martin; Witteborn, Fred C.; Roush, Ted; Bregman, Jesse; Wooden, Diane
1996-01-01
We describe our efforts to seek "closure" in our infrared absolute calibration scheme by comparing spectra of asteroids, absolutely calibrated through reference stars, with "Standard Thermal Models" and "Thermophysical Models" for these bodies. Our use of continuous 5-14 microns airborne spectra provides complete sampling of the rise to, and peak, of the infrared spectral energy distribution and constrains these models. Such models currently support the absolute calibration of ISO-PHOT at far-infrared wave- lengths (as far as 300 microns), and contribute to that of the Mid-Infrared Spectrometer on the "Infrared Telescope in Space" in the 6-12 microns region. The best match to our observed spectra of Ceres and Vesta is a, standard thermal model using a beaming factor of unity. We also report the presence of three emissivity features in Ceres which may complicate the traditional model extrapolation to the far-infrared from contemporaneous ground-based N-band photometry that is used to support calibration of, for example, ISO-PHOT. While identification of specific materials that cause these features is not made, we discuss families of minerals that may be responsible.
Fast Faraday Cup With High Bandwidth
Deibele, Craig E [Knoxville, TN
2006-03-14
A circuit card stripline Fast Faraday cup quantitatively measures the picosecond time structure of a charged particle beam. The stripline configuration maintains signal integrity, and stitching of the stripline increases the bandwidth. A calibration procedure ensures the measurement of the absolute charge and time structure of the charged particle beam.
Dissociative recombination measurements of NH{sup +} using an ion storage ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novotný, O.; Savin, D. W.; Berg, M.
We have investigated dissociative recombination (DR) of NH{sup +} with electrons using a merged beams configuration at the TSR heavy-ion storage ring located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany. We present our measured absolute merged-beams recombination rate coefficient for collision energies from 0 to 12 eV. From these data, we have extracted a cross section, which we have transformed to a plasma rate coefficient for the collisional plasma temperature range from T {sub pl} = 10 to 18,000 K. We show that the NH{sup +} DR rate coefficient data in current astrochemical models are underestimatedmore » by up to a factor of approximately nine. Our new data will result in predicted NH{sup +} abundances lower than those calculated by present models. This is in agreement with the sensitivity limits of all observations attempting to detect NH{sup +} in interstellar clouds.« less
NASA Astrophysics Data System (ADS)
Ranković, Miloš Lj.; Maljković, Jelena B.; Tökési, Károly; Marinković, Bratislav P.
2018-02-01
Measurements and calculations for electron elastic differential cross sections (DCS) of argon atom in the energy range from 40 to 300 eV are presented. DCS have been measured in the crossed beam arrangement of the electron spectrometer with an energy resolution of 0.5 eV and angular resolution of 1.5∘ in the range of scattering angles from 20∘ to 126∘. Both angular behaviour and energy dependence of DCS are obtained in a separate sets of experiments, while the absolute scale is achieved via relative flow method, using helium as a reference gas. All data is corrected for the energy transmission function, changes of primary electron beam current and target pressure, and effective path length (volume correction). DCSs are calculated in relativistic framework by expressing the Mott's cross sections in partial wave expansion. Our results are compared with other available data.
Photon-number statistics of twin beams: Self-consistent measurement, reconstruction, and properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peřina, Jan Jr.; Haderka, Ondřej; Michálek, Václav
2014-12-04
A method for the determination of photon-number statistics of twin beams using the joint signal-idler photocount statistics obtained by an iCCD camera is described. It also provides absolute quantum detection efficiency of the camera. Using the measured photocount statistics, quasi-distributions of integrated intensities are obtained. They attain negative values occurring in characteristic strips an a consequence of pairing of photons in twin beams.
Absolute calibration of neutron detectors on the C-2U advanced beam-driven FRC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magee, R. M., E-mail: rmagee@trialphaenergy.com; Clary, R.; Korepanov, S.
2016-11-15
In the C-2U fusion energy experiment, high power neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. The diagnosis of the fast ion pressure in these high-performance plasmas is therefore critical, and the measurement of the flux of neutrons from the deuterium-deuterium (D-D) fusion reaction is well suited to the task. Here we describe the absolute, in situ calibration of scintillation neutron detectors via two independent methods: firing deuterium beams into a high density gas target and calibration with a 2 × 10{sup 7} n/s AmBe source. The practical issues of each methodmore » are discussed and the resulting calibration factors are shown to be in good agreement. Finally, the calibration factor is applied to C-2U experimental data where the measured neutron rate is found to exceed the classical expectation.« less
Absolute calibration of neutron detectors on the C-2U advanced beam-driven FRC.
Magee, R M; Clary, R; Korepanov, S; Jauregui, F; Allfrey, I; Garate, E; Valentine, T; Smirnov, A
2016-11-01
In the C-2U fusion energy experiment, high power neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. The diagnosis of the fast ion pressure in these high-performance plasmas is therefore critical, and the measurement of the flux of neutrons from the deuterium-deuterium (D-D) fusion reaction is well suited to the task. Here we describe the absolute, in situ calibration of scintillation neutron detectors via two independent methods: firing deuterium beams into a high density gas target and calibration with a 2 × 10 7 n/s AmBe source. The practical issues of each method are discussed and the resulting calibration factors are shown to be in good agreement. Finally, the calibration factor is applied to C-2U experimental data where the measured neutron rate is found to exceed the classical expectation.
Absolute flux measurements for swift atoms
NASA Technical Reports Server (NTRS)
Fink, M.; Kohl, D. A.; Keto, J. W.; Antoniewicz, P.
1987-01-01
While a torsion balance in vacuum can easily measure the momentum transfer from a gas beam impinging on a surface attached to the balance, this measurement depends on the accommodation coefficients of the atoms with the surface and the distribution of the recoil. A torsion balance is described for making absolute flux measurements independent of recoil effects. The torsion balance is a conventional taut suspension wire design and the Young modulus of the wire determines the relationship between the displacement and the applied torque. A compensating magnetic field is applied to maintain zero displacement and provide critical damping. The unique feature is to couple the impinging gas beam to the torsion balance via a Wood's horn, i.e., a thin wall tube with a gradual 90 deg bend. Just as light is trapped in a Wood's horn by specular reflection from the curved surfaces, the gas beam diffuses through the tube. Instead of trapping the beam, the end of the tube is open so that the atoms exit the tube at 90 deg to their original direction. Therefore, all of the forward momentum of the gas beam is transferred to the torsion balance independent of the angle of reflection from the surfaces inside the tube.
Laboratory Studies in UV and EUV Solar Physics
NASA Technical Reports Server (NTRS)
Parkinson, W. H.; Wagner, William J. (Technical Monitor)
2002-01-01
The Ion Beam Experiment at the Center for Astrophysics is dedicated to the study of ion-electron collision processes of importance in solar physics. The analysis of measurements of Electron Impact Excitation (EIE) from the 3s3p(exp 3)P(exp o) metastable state to the 3s3p(exp 1)P state of Si(2+) was completed during the past year and a paper describing the results is available as a preprint. Our current program is directed at measuring absolute cross sections for dielectronic recombination (DR) and EIE in Si(3+), one of the primary ions used for probing the solar transition region. Our study of DR is particularly concerned with the effects of electric and magnetic fields on the recombination rates. Measurements of silicon ions with charge greater than n=2 have necessitated upgrading the experiment with a new ion source. The new source is also suitable for producing C(2+) beams to be used for measurements of EIE and DR for that system. The source is expected to be capable of producing beams of more highly charged systems as well.
NASA Astrophysics Data System (ADS)
Mulholland, Jonathan; NBL3 Collaboration
2014-09-01
The decay of the free neutron is the prototypical charged current semi-leptonic weak process. A precise value for the neutron lifetime is required for consistency tests of the Standard Model and is needed to predict the primordial He4 abundance from the theory of Big Bang Nucleosynthesis. Plans are being made for an in-beam measurement of the neutron lifetime with an anticipated 0.3s of uncertainty or better. This effort is part of a phased campaign of neutron lifetime measurements based at the NIST Center for Neutron Research, using the Sussex-ILL-NIST technique. Advances in neutron fluence measurement, used in to provide the best existing in-beam determination of the neutron lifetime, as well as new silicon detector technology, in use now at LANSCE, address the two largest contributors to the uncertainty of in-beam measurements-the statistical uncertainty associated with proton counting and the systematic uncertainty in the neutron fluence measurement. The experimental design and projected uncertainties for the 0.3s measurement will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, J.
Relative and absolute populations of 19 levels in beam-foil--excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n$sup -3$, but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. Themore » overpopulation decreases with increasing principal quantum number.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makufa, R; Bvochora-Nsingo, M; Karumekayi, T
2016-06-15
Purpose: The global burden of cancer is considerable, particularly in low and middle-income countries. Massachusetts General Hospital (MGH) and Botswana-Harvard AIDS Institute have partnered with the oncology community and government of Botswana to form BOTSOGO (BOTSwana Oncology Global Outreach) to address the rising burden of cancer in Botswana. Currently, radiation therapy (RT) is only available at a single linear accelerator (LINAC) in Gaborone Private Hospital (GPH). BOTSOGO worked to limit the absence of RT during a LINAC upgrade and ensure a safe transition to modern radiotherapy techniques. Methods: The existing Elekta Precise LINAC was decommissioned in November 2015 and replacedmore » with a new Elekta VERSA-HD with IMRT/VMAT/CBCT capability. Upgraded treatment planning and record-and-verify systems were also installed. Physicists from GPH and MGH collaborated during an intensive on-site visit in Botswana during the commissioning process. Measurements were performed using newly purchased Sun Nuclear equipment. Photon beams were matched with an existing model to minimize the time needed for beam modeling and machine down time. Additional remote peer review was also employed. Independent dosimetry was performed by irradiating OSLDs, which were subsequently analyzed at MGH. Results: Photon beam quality agreed with reference data within 0.2%. Electron beam data agreed with example clinical data within 3%. Absolute dose calibration was performed using both IAEA and AAPM protocols. Absolute dose measurements with OSLDs agreed within 5%. Quentry cloud-based software was installed to facilitate remote review of treatment plans. Patient treatments resumed in February 2016. The time without RT was reduced, therefore likely resulting in reduced patient morbidity/mortality. Conclusion: A global physics collaboration was utilized to commission a modern LINAC in a resource-constrained setting. This can be a useful model in other areas with limited resources. Further use of technology and on-site exchanges will facilitate the introduction of more advanced techniques in Botswana. We acknowledge funding support from the AAPM International Educational Activities Committee and the NCI Federal Share Proton Beam Program Income Grant.« less
SU-E-T-50: Automatic Validation of Megavoltage Beams Modeled for Clinical Use in Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melchior, M; Salinas Aranda, F; 21st Century Oncology, Ft. Myers, FL
2014-06-01
Purpose: To automatically validate megavoltage beams modeled in XiO™ 4.50 (Elekta, Stockholm, Sweden) and Varian Eclipse™ Treatment Planning Systems (TPS) (Varian Associates, Palo Alto, CA, USA), reducing validation time before beam-on for clinical use. Methods: A software application that can automatically read and analyze DICOM RT Dose and W2CAD files was developed using MatLab integrated development environment.TPS calculated dose distributions, in DICOM RT Dose format, and dose values measured in different Varian Clinac beams, in W2CAD format, were compared. Experimental beam data used were those acquired for beam commissioning, collected on a water phantom with a 2D automatic beam scanningmore » system.Two methods were chosen to evaluate dose distributions fitting: gamma analysis and point tests described in Appendix E of IAEA TECDOC-1583. Depth dose curves and beam profiles were evaluated for both open and wedged beams. Tolerance parameters chosen for gamma analysis are 3% and 3 mm dose and distance, respectively.Absolute dose was measured independently at points proposed in Appendix E of TECDOC-1583 to validate software results. Results: TPS calculated depth dose distributions agree with measured beam data under fixed precision values at all depths analyzed. Measured beam dose profiles match TPS calculated doses with high accuracy in both open and wedged beams. Depth and profile dose distributions fitting analysis show gamma values < 1. Relative errors at points proposed in Appendix E of TECDOC-1583 meet therein recommended tolerances.Independent absolute dose measurements at points proposed in Appendix E of TECDOC-1583 confirm software results. Conclusion: Automatic validation of megavoltage beams modeled for their use in the clinic was accomplished. The software tool developed proved efficient, giving users a convenient and reliable environment to decide whether to accept or not a beam model for clinical use. Validation time before beam-on for clinical use was reduced to a few hours.« less
NASA Technical Reports Server (NTRS)
Edwards, P. J.; Huang, X.; Li, Y. Q. (Editor); Wang, Y. Z. (Editor)
1996-01-01
We briefly review quantum mechanical and semi-classical descriptions of experiments which demonstrate the macroscopic violation of the three Cauchy-Schwarz inequalities: g(sup 2)(sub 11)(0) greater than or equal to 1; g(sup 2)(sub 11)(0) greater than or equal to g(sup 2)(sub 11)(t), (t approaches infinity); (the absolute value of g(sup 2)(sub 11)(0))(exp 2) less than or equal to g(sup 2)(sub 11)(0) g(sup 2)(sub 11)(0). Our measurements demonstrate the violation, at macroscopic intensities, of each of these inequalities. We show that their violation, although weak, can be demonstrated through photodetector current covariance measurements on correlated sub-Poissonian Poissonian, and super Poissonian light beams. Such beams are readily generated by a tandem array of infrared-emitting semiconductor junction diodes. Our measurements utilize an electrically coupled array of one or more infrared-emitting diodes, optically coupled to a detector array. The emitting array is operated in such a way as to generate highly correlated beams of variable photon Fano Factor. Because the measurements are made on time scales long compared with the first order coherence time and with detector areas large compared with the corresponding coherence areas, first order interference effects are negligible. The first and second inequalities are violated, as expected, when a sub-Poissonian light beam is split and the intensity fluctuations of the two split beams are measured by two photodetectors and subsequently cross-correlated. The third inequality is violated by bunched (as well as anti-bunched) beams of equal intensity provided the measured cross correlation coefficient exceeds (F - 1)/F, where F is the measured Fano Factor of each beam. We also investigate the violation for the case of unequal beams.
SU-F-T-345: Quasi-Dead Beams: Clinical Relevance and Implications for Automatic Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, R; Veltchev, I; Lin, T
Purpose: Beam direction selection for fixed-beam IMRT planning is typically a manual process. Severe dose-volume limits on critical structures in the thorax often result in atypical selection of beam directions as compared to other body sites. This work demonstrates the potential consequences as well as clinical relevance. Methods: 21 thoracic cases treated with 5–7 beam directions, 6 cases including non-coplanar arrangements, with fractional doses of 150–411cGy were analyzed. Endpoints included per-beam modulation scaling factor (MSF), variation from equal weighting, and delivery QA passing rate. Results: During analysis of patient-specific delivery QA a sub-standard passing rate was found for a singlemore » 5-field plan (90.48% of pixels evaluated passing 3% dose, 3mm DTA). During investigation it was found that a single beam demonstrated a MSF of 34.7 and contributed only 2.7% to the mean dose of the target. In addition, the variation from equal weighting for this beam was 17.3% absolute resulting in another beam with a MSF of 4.6 contributing 41.9% to the mean dose to the target; a variation of 21.9% from equal weighting. The average MSF for the remaining 20 cases was 4.0 (SD 1.8) with an average absolute deviation of 2.8% from equal weighting (SD 3.1%). Conclusion: Optimization in commercial treatment planning systems typically results in relatively equally weighted beams. Extreme variation from this can result in excessively high MSFs (very small segments) and potential decreases in agreement between planned and delivered dose distributions. In addition, the resultant beam may contribute minimal dose to the target (quasi-dead beam); a byproduct being increased treatment time and associated localization uncertainties. Potential ramifications exist for automatic planning algorithms should they allow for user-defined beam directions. Additionally, these quasi-dead beams may be embedded in the libraries for model-based systems potentially resulting in inefficient and less accurate deliveries.« less
A Spectroscopic Study of Impurity Behavior in Neutral-beam and Ohmically Heated TFTR Discharges
DOE R&D Accomplishments Database
Stratton, B. C.; Ramsey, A. T.; Boody, F. P.; Bush, C. E.; Fonck, R. J.; Groenbner, R. J.; Hulse, R. A.; Richards, R. K.; Schivell, J.
1987-02-01
Quantitative spectroscopic measurements of Z{sub eff}, impurity densities, and radiated power losses have been made for ohmic- and neutral-beam-heated TFTR discharges at a plasma current of 2.2 MA and toroidal field of 4.7 T. Variations in these quantities with line-average plasma density (anti n{sub e}) and beam power up to 5.6 MW are presented for discharges on a graphite movable limiter. A detailed discussion of the use of an impurity transport model to infer absolute impurity densities and radiative losses from line intensity and visible continuum measurements is given. These discharges were dominated by low-Z impurities with carbon having a considerably higher density than oxygen, except in high-anti n{sub e} ohmic discharges, where the densities of carbon and oxygen were comparable. Metallic impurity concentrations and radiative losses were small, resulting in hollow radiated power profiles and fractions of the input power radiated being 30 to 50% for ohmic heating and 30% or less with beam heating. Spectroscopic estimates of the radiated power were in good agreement with bolometrically measured values. Due to an increase in the carbon density, Z{sub eff} rose from 2.0 to 2.8 as the beam power increased from 0 to 5.6 MW, pointing to a potentially serious dilution of the neutron-producing plasma ions as the beam power increased. Both the low-Z and metallic impurity concentrations were approximately constant with minor radius, indicating no central impurity accumulation in these discharges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazalova-Carter, Magdalena; Liu, Michael; Palma, Bianey
2015-04-15
Purpose: To measure radiation dose in a water-equivalent medium from very high-energy electron (VHEE) beams and make comparisons to Monte Carlo (MC) simulation results. Methods: Dose in a polystyrene phantom delivered by an experimental VHEE beam line was measured with Gafchromic films for three 50 MeV and two 70 MeV Gaussian beams of 4.0–6.9 mm FWHM and compared to corresponding MC-simulated dose distributions. MC dose in the polystyrene phantom was calculated with the EGSnrc/BEAMnrc and DOSXYZnrc codes based on the experimental setup. Additionally, the effect of 2% beam energy measurement uncertainty and possible non-zero beam angular spread on MC dosemore » distributions was evaluated. Results: MC simulated percentage depth dose (PDD) curves agreed with measurements within 4% for all beam sizes at both 50 and 70 MeV VHEE beams. Central axis PDD at 8 cm depth ranged from 14% to 19% for the 5.4–6.9 mm 50 MeV beams and it ranged from 14% to 18% for the 4.0–4.5 mm 70 MeV beams. MC simulated relative beam profiles of regularly shaped Gaussian beams evaluated at depths of 0.64 to 7.46 cm agreed with measurements to within 5%. A 2% beam energy uncertainty and 0.286° beam angular spread corresponded to a maximum 3.0% and 3.8% difference in depth dose curves of the 50 and 70 MeV electron beams, respectively. Absolute dose differences between MC simulations and film measurements of regularly shaped Gaussian beams were between 10% and 42%. Conclusions: The authors demonstrate that relative dose distributions for VHEE beams of 50–70 MeV can be measured with Gafchromic films and modeled with Monte Carlo simulations to an accuracy of 5%. The reported absolute dose differences likely caused by imperfect beam steering and subsequent charge loss revealed the importance of accurate VHEE beam control and diagnostics.« less
Chen, Jiyun; Xu, Xiaomin; Huang, Zhimei; Luo, Yuan; Tang, Lijuan; Jiang, Jian-Hui
2018-01-02
A novel dNAD platform (BEAMing LAMP) by combining emulsion micro-reactors, single-molecule magnetic capture and on-bead loop-mediated isothermal amplification has been developed for DNA detection, which enables absolute and high-precision quantification of a target with a detection limit of 300 copies.
NuMI Beam Flux Studies for MINERvA
NASA Astrophysics Data System (ADS)
Aliaga Soplin, Leonidas
2012-03-01
MINERνA is a few-GeV neutrino scattering experiment which is required to understand the neutrino beam flux in order to make absolute cross section measurements. We have three techniques for constraining the flux: in situ measurements, external hadron production data and muon monitors. In this presentation I will discuss the details and our progress on these efforts.
SU-E-T-451: Accuracy and Application of the Standard Imaging W1 Scintillator Dosimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalski, M; McEwen, M
2014-06-01
Purpose: To evaluate the Standard Imaging W1 scintillator dosimeter in a range of clinical radiation beams to determine its range of possible applications. Methods: The W1 scintillator is a small perturbation-free dosimeter which is of interest in absolute and relative clinical dosimetry due to its small size and water equivalence. A single version of this detector was evaluated in Co-60 and linac photon and electron beams to investigate the following: linearity, sensitivity, precision, and dependence on electrometer type. In addition, depth-dose and cross-plane profiles were obtained in both photon and electron beams and compared with data obtained with wellbehaved ionizationmore » chambers. Results: In linac beams the precision and linearity was very impressive, with typical values of 0.3% and 0.1% respectively. Performance in a Co-60 beam was much poorer (approximately three times worse) and it is not clear whether this is due to the lower signal current or the effect of the continuous beam (rather than pulsed beam of the linac measurements). There was no significant difference in the detector reading when using either the recommended SI Supermax electrometer or two independent high-quality electrometers, except for low signal levels, where the Supermax exhibited an apparent threshold effect, preventing the measurement of the bremsstrahlung background in electron depth-dose curves. Comparisons with ion chamber measurements in linac beams were somewhat variable: good agreement was seen for cross-profiles (photon and electron beams) and electron beam depth-dose curves, generally within the 0.3% precision of the scintillator but systematic differences were observed as a function of measurement depth in photon beam depth-dose curves. Conclusion: A first look would suggest that the W1 scintillator has applications beyond small field dosimetry but performance appears to be limited to higher doserate and/or pulsed radiation beams. Further work is required to resolve discrepancies compared to ion chambers.« less
NASA Astrophysics Data System (ADS)
Das, R. K.; Li, Z.; Perera, H.; Williamson, J. F.
1996-06-01
Practical dosimeters in brachytherapy, such as thermoluminescent dosimeters (TLD) and diodes, are usually calibrated against low-energy megavoltage beams. To measure absolute dose rate near a brachytherapy source, it is necessary to establish the energy response of the detector relative to that of the calibration energy. The purpose of this paper is to assess the accuracy of Monte Carlo photon transport (MCPT) simulation in modelling the absolute detector response as a function of detector geometry and photon energy. We have exposed two different sizes of TLD-100 (LiF chips) and p-type silicon diode detectors to calibrated
, HDR source
and superficial x-ray beams. For the Scanditronix electron-field diode, the relative detector response, defined as the measured detector readings per measured unit of air kerma, varied from
(40 kVp beam) to
(
beam). Similarly for the large and small chips the same quantity varied from
and
, respectively. Monte Carlo simulation was used to calculate the absorbed dose to the active volume of the detector per unit air kerma. If the Monte Carlo simulation is accurate, then the absolute detector response, which is defined as the measured detector reading per unit dose absorbed by the active detector volume, and is calculated by Monte Carlo simulation, should be a constant. For the diode, the absolute response is
. For TLDs of size
the absolute response is
and for TLDs of
it is
. From the above results we can conclude that the absolute response function of detectors (TLDs and diodes) is directly proportional to absorbed dose by the active volume of the detector and is independent of beam quality.
Pérez, Darío G; Funes, Gustavo
2012-12-03
Under the Geometrics Optics approximation is possible to estimate the covariance between the displacements of two thin beams after they have propagated through a turbulent medium. Previous works have concentrated in long propagation distances to provide models for the wandering statistics. These models are useful when the separation between beams is smaller than the propagation path-regardless of the characteristics scales of the turbulence. In this work we give a complete model for these covariances, behavior introducing absolute limits to the validity of former approximations. Moreover, these generalizations are established for non-Kolmogorov atmospheric models.
Development of a PET cyclotron based irradiation setup for proton radiobiology
NASA Astrophysics Data System (ADS)
Ghithan, Sharif; Crespo, Paulo; do Carmo, S. J. C.; Ferreira Marques, Rui; Fraga, F. A. F.; Simões, Hugo; Alves, Francisco; Rachinhas, P. J. B. M.
2015-02-01
An out-of-yoke irradiation setup using the proton beam from a cyclotron that ordinary produces radioisotopes for positron emission tomography (PET) has been developed, characterized, calibrated and validated. The current from a 20 μm thick aluminum transmission foil is readout by home-made transimpedance electronics, providing online dose information. The main monitoring variables, delivered in real-time, include beam current, integrated charge and dose rate. Hence the dose and integrated current delivered at a given instant to an experimental setup can be computer-controlled with a shutter. In this work, we report on experimental results and Geant4 simulations of a setup which exploits for the first time the 18 MeV proton beam from a PET cyclotron to irradiate a selected region of a target using the developed irradiation system. By using this system, we are able to deliver a homogeneous beam on targets with 18 mm diameter, allowing to achieve the controlled irradiation of cell cultures located in biological multi-well dishes of 16 mm diameter. We found that the magnetic field applied inside the cyclotron plays a major role for achieving the referred to homogeneity. The quasi-Gaussian curve obtained by scanning the magnet current and measuring the corresponding dose rate must be measured before any irradiation procedure, with the shutter closed. At the optimum magnet current, which corresponds to the center of the Gaussian, a homogenous dose is observed over the whole target area. Making use of a rotating disk with a slit of 0.5 mm at a radius of 150 mm, we could measure dose rates on target ranging from 500 mGy/s down to 5 mGy/s. For validating the developed irradiation setup, several Gafchromic® EBT2 films were exposed to different values of dose. The absolute dose in the irradiated films were assessed in the 2D film dosimetry system of the Department of Radiotherapy of Coimbra University Hospital Center with a precision better than 2%. In the future, we plan to irradiate small animals, cell cultures, or other materials or samples.
Dynamic frequency-domain interferometer for absolute distance measurements with high resolution
NASA Astrophysics Data System (ADS)
Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua
2014-11-01
A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution.
Optical Johnson noise thermometry
Shepard, Robert L.; Blalock, Theron V.; Roberts, Michael J.; Maxey, Lonnie C.
1992-01-01
Method and device for direct, non-contact temperature measure of a body. A laser beam is reflected from the surface of the body and detected along with the Planck radiation. The detected signal is analyzed using signal correlation technique to generate an output signal proportional to the Johnson noise introduced into the reflected laser beam as a direct measure of the absolute temperature of the body.
Diverse Electron-Induced Optical Emissions from Space Observatory Materials at Low Temperatures
NASA Technical Reports Server (NTRS)
Dennison, J.R.; Jensen, Amberly Evans; Wilson, Gregory; Dekany, Justin; Bowers, Charles W.; Meloy, Robert
2013-01-01
Electron irradiation experiments have investigated the diverse electron-induced optical and electrical signatures observed in ground-based tests of various space observatory materials at low temperature. Three types of light emission were observed: (i); long-duration cathodoluminescence which persisted as long as the electron beam was on (ii) short-duration (<1 s) arcing, resulting from electrostatic discharge; and (iii) intermediate-duration (100 s) glow-termed "flares". We discuss how the electron currents and arcing-as well as light emission absolute intensity and frequency-depend on electron beam energy, power, and flux and the temperature and thickness of different bulk (polyimides, epoxy resins, and silica glasses) and composite dielectric materials (disordered SiO2 thin films, carbon- and fiberglass-epoxy composites, and macroscopically-conductive carbon-loaded polyimides). We conclude that electron-induced optical emissions resulting from interactions between observatory materials and the space environment electron flux can, in specific circumstances, make significant contributions to the stray light background that could possibly adversely affect the performance of space-based observatories.
Polf, Jerimy C; Panthi, Rajesh; Mackin, Dennis S; McCleskey, Matt; Saastamoinen, Antti; Roeder, Brian T; Beddar, Sam
2013-01-01
The purpose of this work was to characterize how prompt gamma (PG) emission from tissue changes as a function of carbon and oxygen concentration, and to assess the feasibility of determining elemental concentration in tissues irradiated with proton beams. For this study, four tissue-equivalent water-sucrose samples with differing densities and concentrations of carbon, hydrogen, and oxygen were irradiated with a 48 MeV proton pencil beam. The PG spectrum emitted from each sample was measured using a high-purity germanium detector, and the absolute detection efficiency of the detector, average beam current, and delivered dose distribution were also measured. Changes to the total PG emission from 12C (4.44 MeV) and 16O (6.13 MeV) per incident proton and per Gray of absorbed dose were characterized as a function of carbon and oxygen concentration in the sample. The intensity of the 4.44 MeV PG emission per incident proton was found to be nearly constant for all samples regardless of their carbon concentration. However, we found that the 6.13 MeV PG emission increased linearly with the total amount (in grams) of oxygen irradiated in the sample. From the measured PG data, we determined that 1.64 × 107 oxygen PGs were emitted per gram of oxygen irradiated per Gray of absorbed dose delivered with a 48 MeV proton beam. These results indicate that the 6.13 MeV PG emission from 16O is proportional to the concentration of oxygen in tissue irradiated with proton beams, showing that it is possible to determine the concentration of oxygen within tissues irradiated with proton beams by measuring 16O PG emission. PMID:23920051
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebron, S; Kahler, D; Liu, C
Purpose: To predict photon percentage depth dose (PDD) from profile due to a change in flattened (FF) and flattening-filter-free (FFF) beam quality. Methods: 6MV photon beam PDDs and profiles in a 3D water tank (3DW) and profiles in an ionization chamber array (ICP) were collected for different field sizes and depths with FF and FFF beams in a Versa HD (Elekta Ltd.). The energy was adjusted by changing the bending magnet current (BMC) ±15% from the clinical beam (6MV) in 5% increments. For baseline establishment, PDDs(depth≥3cm) were parameterized with bi-exponential functions and the PDD 20 to 10cm ratios (PDD{sub 20,10})more » were calculated. Then, the FF profile at 10cm from the central axis (Pr{sub 10}) and the slope of the FFF central linear region (SFFF) were calculated. Calibration curves were established: (1) change in Pr{sub 10} and SFFF as functions of the change in PDD{sub 20,10} and (2) change in PDD(depth=3, 15 and 30cm) as function of the change in PDD{sub 20,10}. The differences between Pr{sub 10} and SFFF from baseline were calculated and, from calibration curves, changes in PDD{sub 20,10} and PDD(depth=3, 15 and 30cm) were obtained. Then, absolute PDD(depth=3, 15 and 30cm) values were input into a least-square-optimization algorithm to calculate the bi-exponential function’s optimal coefficients and generate the PDD(depths≥3cm). Results: The change in PDD{sub 20,10} relative to baseline increased (<±4%) with BMC. Pr{sub 10} increased (±6%) and SFFF decreased (±11%) with BMC. Relative differences between measured and calculated (i.e. PDD calculation from Pr{sub 10} and SFFF) PDDs were less than 1%. Results apply to FF and FFF beams measured in 3DW and ICP. Conclusion: Pr{sub 10} and SFFF are more sensitive than PDD to changes in beam energy and PDD information can be accurately generated from them. With known 3DW and ICP profile relationship, ICP can be used to obtain PDD for current photon beam.« less
A novel EPID design for enhanced contrast and detective quantum efficiency
NASA Astrophysics Data System (ADS)
Rottmann, Joerg; Morf, Daniel; Fueglistaller, Rony; Zentai, George; Star-Lack, Josh; Berbeco, Ross
2016-09-01
Beams-eye-view imaging applications such as real-time soft-tissue motion estimation are hindered by the inherently low image contrast of electronic portal imaging devices (EPID) currently available for clinical use. We introduce and characterize a novel EPID design that provides substantially increased detective quantum efficiency (DQE), contrast-to-noise ratio (CNR) and sensitivity without degradation in spatial resolution. The prototype design features a stack of four conventional EPID layers combined with low noise integrated readout electronics. Each layer consists of a copper plate, a scintillator (\\text{G}{{\\text{d}}2}{{\\text{O}}2}{{\\text{S}}{}}\\text{:Tb} ) and a photodiode/TFT-switch (aSi:H). We characterize the prototype’s signal response to a 6 MV photon beam in terms of modulation transfer function (MTF), DQE and CNR. The presampled MTF is estimated using a slanted slit technique, the DQE is calculated from measured normalized noise power spectra (nNPS) and the MTF and CNR is estimated using a Las Vegas contrast phantom. The prototype has been designed and built to be interchangeable with the current clinical EPID on the Varian TrueBeam platform (AS-1200) in terms of size and data output specifications. Performance evaluation is conducted in absolute values as well as in relative terms using the Varian AS-1200 EPID as a reference detector. A fivefold increase of DQE(0) to about 6.7% was observed by using the four-layered design versus the AS-1200 reference detector. No substantial differences are observed between each layer’s individual MTF and the one for all four layers operating combined indicating that defocusing due to beam divergence is negligible. Also, using four layers instead of one increases the signal to noise ratio by a factor of 1.7.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, P.; Tambasco, M.; LaFontaine, R.
2014-08-15
Our goal is to compare the dosimetric accuracy of the Pinnacle-3 9.2 Collapsed Cone Convolution Superposition (CCCS) and the iPlan 4.1 Monte Carlo (MC) and Pencil Beam (PB) algorithms in an anthropomorphic lung phantom using measurement as the gold standard. Ion chamber measurements were taken for 6, 10, and 18 MV beams in a CIRS E2E SBRT Anthropomorphic Lung Phantom, which mimics lung, spine, ribs, and tissue. The plan implemented six beams with a 5×5 cm{sup 2} field size, delivering a total dose of 48 Gy. Data from the planning systems were computed at the treatment isocenter in the leftmore » lung, and two off-axis points, the spinal cord and the right lung. The measurements were taken using a pinpoint chamber. The best results between data from the algorithms and our measurements occur at the treatment isocenter. For the 6, 10, and 18 MV beams, iPlan 4.1 MC software performs the best with 0.3%, 0.2%, and 4.2% absolute percent difference from measurement, respectively. Differences between our measurements and algorithm data are much greater for the off-axis points. The best agreement seen for the right lung and spinal cord is 11.4% absolute percent difference with 6 MV iPlan 4.1 PB and 18 MV iPlan 4.1 MC, respectively. As energy increases absolute percent difference from measured data increases up to 54.8% for the 18 MV CCCS algorithm. This study suggests that iPlan 4.1 MC computes peripheral dose and target dose in the lung more accurately than the iPlan 4.1 PB and Pinnicale CCCS algorithms.« less
Long-distance quantum communication with atomic ensembles and linear optics.
Duan, L M; Lukin, M D; Cirac, J I; Zoller, P
2001-11-22
Quantum communication holds promise for absolutely secure transmission of secret messages and the faithful transfer of unknown quantum states. Photonic channels appear to be very attractive for the physical implementation of quantum communication. However, owing to losses and decoherence in the channel, the communication fidelity decreases exponentially with the channel length. Here we describe a scheme that allows the implementation of robust quantum communication over long lossy channels. The scheme involves laser manipulation of atomic ensembles, beam splitters, and single-photon detectors with moderate efficiencies, and is therefore compatible with current experimental technology. We show that the communication efficiency scales polynomially with the channel length, and hence the scheme should be operable over very long distances.
NASA Astrophysics Data System (ADS)
Emani, Naresh Kumar; Khaidarov, Egor; Paniagua-Domínguez, Ramón; Fu, Yuan Hsing; Valuckas, Vytautas; Lu, Shunpeng; Zhang, Xueliang; Tan, Swee Tiam; Demir, Hilmi Volkan; Kuznetsov, Arseniy I.
2017-11-01
The dielectric nanophotonics research community is currently exploring transparent material platforms (e.g., TiO2, Si3N4, and GaP) to realize compact high efficiency optical devices at visible wavelengths. Efficient visible-light operation is key to integrating atomic quantum systems for future quantum computing. Gallium nitride (GaN), a III-V semiconductor which is highly transparent at visible wavelengths, is a promising material choice for active, nonlinear, and quantum nanophotonic applications. Here, we present the design and experimental realization of high efficiency beam deflecting and polarization beam splitting metasurfaces consisting of GaN nanostructures etched on the GaN epitaxial substrate itself. We demonstrate a polarization insensitive beam deflecting metasurface with 64% and 90% absolute and relative efficiencies. Further, a polarization beam splitter with an extinction ratio of 8.6/1 (6.2/1) and a transmission of 73% (67%) for p-polarization (s-polarization) is implemented to demonstrate the broad functionality that can be realized on this platform. The metasurfaces in our work exhibit a broadband response in the blue wavelength range of 430-470 nm. This nanophotonic platform of GaN shows the way to off- and on-chip nonlinear and quantum photonic devices working efficiently at blue emission wavelengths common to many atomic quantum emitters such as Ca+ and Sr+ ions.
NASA Astrophysics Data System (ADS)
Esteves, David; Sterling, Nicholas; Aguilar, Alex; Kilcoyne, A. L. David; Phaneuf, Ronald; Bilodeau, Rene; Red, Eddie; McLaughlin, Brendan; Norrington, Patrick; Balance, Connor
2009-05-01
Numerical simulations show that derived elemental abundances in astrophysical nebulae can be uncertain by factors of two or more due to atomic data uncertainties alone, and of these uncertainties, absolute photoionization cross sections are the most important. Absolute single photoionization cross sections for Se^3+ ions have been measured from 42 eV to 56 eV at the ALS using the merged beams photo-ion technique. Theoretical photoionization cross section calculations were also performed for these ions using the state-of-the-art fully relativistic Dirac R-matrix code (DARC). The calculations show encouraging agreement with the experimental measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flumerfelt, Eric Lewis
2015-08-01
The NOvA (NuMI Off-axis v e [nu_e] Appearance) Experiment is a long-baseline accelerator neutrino experiment currently in its second year of operations. NOvA uses the Neutrinos from the Main Injector (NuMI) beam at Fermilab, and there are two main off-axis detectors: a Near Detector at Fermilab and a Far Detector 810 km away at Ash River, MN. The work reported herein is in support of the NOvA Experiment, through contributions to the development of data acquisition software, providing an accurate, absolute-scale energy calibration for electromagnetic showers in NOvA detector elements, crucial to the primary electron neutrino search, and through anmore » initial evaluation of the cosmic background rate in the NOvA Far Detector, which is situated on the surface without significant overburden. Additional support work for the NOvA Experiment is also detailed, including DAQ Server Administration duties and a study of NOvA’s sensitivity to neutrino oscillations into a “sterile” state.« less
NASA Astrophysics Data System (ADS)
Murray, Louise J.; Thompson, Christopher M.; Lilley, John; Cosgrove, Vivian; Franks, Kevin; Sebag-Montefiore, David; Henry, Ann M.
2015-02-01
Risks of radiation-induced second primary cancer following prostate radiotherapy using 3D-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), flattening filter free (FFF) and stereotactic ablative radiotherapy (SABR) were evaluated. Prostate plans were created using 10 MV 3D-CRT (78 Gy in 39 fractions) and 6 MV 5-field IMRT (78 Gy in 39 fractions), VMAT (78 Gy in 39 fractions, with standard flattened and energy-matched FFF beams) and SABR (42.7 Gy in 7 fractions with standard flattened and energy-matched FFF beams). Dose-volume histograms from pelvic planning CT scans of three prostate patients, each planned using all 6 techniques, were used to calculate organ equivalent doses (OED) and excess absolute risks (EAR) of second rectal and bladder cancers, and pelvic bone and soft tissue sarcomas, using mechanistic, bell-shaped and plateau models. For organs distant to the treatment field, chamber measurements recorded in an anthropomorphic phantom were used to calculate OEDs and EARs using a linear model. Ratios of OED give relative radiation-induced second cancer risks. SABR resulted in lower second cancer risks at all sites relative to 3D-CRT. FFF resulted in lower second cancer risks in out-of-field tissues relative to equivalent flattened techniques, with increasing impact in organs at greater distances from the field. For example, FFF reduced second cancer risk by up to 20% in the stomach and up to 56% in the brain, relative to the equivalent flattened technique. Relative to 10 MV 3D-CRT, 6 MV IMRT or VMAT with flattening filter increased second cancer risks in several out-of-field organs, by up to 26% and 55%, respectively. For all techniques, EARs were consistently low. The observed large relative differences between techniques, in absolute terms, were very low, highlighting the importance of considering absolute risks alongside the corresponding relative risks, since when absolute risks are very low, large relative risks become less meaningful. A calculated relative radiation-induced second cancer risk benefit from SABR and FFF techniques was theoretically predicted, although absolute radiation-induced second cancer risks were low for all techniques, and absolute differences between techniques were small.
Scoby, Cheyne M; Li, R K; Musumeci, P
2013-04-01
In this paper we report on a simple and robust method to measure the absolute temporal overlap of the laser and the electron beam at the sample based on the effect of a laser induced plasma on the electron beam transverse distribution, successfully extending a similar method from keV to MeV electron beams. By pumping a standard copper TEM grid to form the plasma, we gain timing information independent of the sample under study. In experiments discussed here the optical delay to achieve temporal overlap between the pump electron beam and probe laser can be determined with ~1 ps precision. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wijaikhum, A.; Schröder, D.; Schröter, S.; Gibson, A. R.; Niemi, K.; Friderich, J.; Greb, A.; Schulz-von der Gathen, V.; O'Connell, D.; Gans, T.
2017-11-01
The efficient generation of reactive oxygen species (ROS) in cold atmospheric pressure plasma jets (APPJs) is an increasingly important topic, e.g. for the treatment of temperature sensitive biological samples in the field of plasma medicine. A 13.56 MHz radio-frequency (rf) driven APPJ device operated with helium feed gas and small admixtures of oxygen (up to 1%), generating a homogeneous glow-mode plasma at low gas temperatures, was investigated. Absolute densities of ozone, one of the most prominent ROS, were measured across the 11 mm wide discharge channel by means of broadband absorption spectroscopy using the Hartley band centred at λ = 255 nm. A two-beam setup with a reference beam in Mach-Zehnder configuration is employed for improved signal-to-noise ratio allowing high-sensitivity measurements in the investigated single-pass weak-absorbance regime. The results are correlated to gas temperature measurements, deduced from the rotational temperature of the N2 (C 3 {{{\\Pi }}}u+ \\to B 3 {{{\\Pi }}}g+, υ = 0 \\to 2) optical emission from introduced air impurities. The observed opposing trends of both quantities as a function of rf power input and oxygen admixture are analysed and explained in terms of a zero-dimensional plasma-chemical kinetics simulation. It is found that the gas temperature as well as the densities of O and O2(b{}1{{{Σ }}}g+) influence the absolute O3 densities when the rf power is varied.
Künzler, Thomas; Fotina, Irina; Stock, Markus; Georg, Dietmar
2009-12-21
The dosimetric performance of a Monte Carlo algorithm as implemented in a commercial treatment planning system (iPlan, BrainLAB) was investigated. After commissioning and basic beam data tests in homogenous phantoms, a variety of single regular beams and clinical field arrangements were tested in heterogeneous conditions (conformal therapy, arc therapy and intensity-modulated radiotherapy including simultaneous integrated boosts). More specifically, a cork phantom containing a concave-shaped target was designed to challenge the Monte Carlo algorithm in more complex treatment cases. All test irradiations were performed on an Elekta linac providing 6, 10 and 18 MV photon beams. Absolute and relative dose measurements were performed with ion chambers and near tissue equivalent radiochromic films which were placed within a transverse plane of the cork phantom. For simple fields, a 1D gamma (gamma) procedure with a 2% dose difference and a 2 mm distance to agreement (DTA) was applied to depth dose curves, as well as to inplane and crossplane profiles. The average gamma value was 0.21 for all energies of simple test cases. For depth dose curves in asymmetric beams similar gamma results as for symmetric beams were obtained. Simple regular fields showed excellent absolute dosimetric agreement to measurement values with a dose difference of 0.1% +/- 0.9% (1 standard deviation) at the dose prescription point. A more detailed analysis at tissue interfaces revealed dose discrepancies of 2.9% for an 18 MV energy 10 x 10 cm(2) field at the first density interface from tissue to lung equivalent material. Small fields (2 x 2 cm(2)) have their largest discrepancy in the re-build-up at the second interface (from lung to tissue equivalent material), with a local dose difference of about 9% and a DTA of 1.1 mm for 18 MV. Conformal field arrangements, arc therapy, as well as IMRT beams and simultaneous integrated boosts were in good agreement with absolute dose measurements in the heterogeneous phantom. For the clinical test cases, the average dose discrepancy was 0.5% +/- 1.1%. Relative dose investigations of the transverse plane for clinical beam arrangements were performed with a 2D gamma-evaluation procedure. For 3% dose difference and 3 mm DTA criteria, the average value for gamma(>1) was 4.7% +/- 3.7%, the average gamma(1%) value was 1.19 +/- 0.16 and the mean 2D gamma-value was 0.44 +/- 0.07 in the heterogeneous phantom. The iPlan MC algorithm leads to accurate dosimetric results under clinical test conditions.
Coherent single pion production by antineutrino charged current interactions and test of PCAC
NASA Astrophysics Data System (ADS)
Marage, P.; Aderholz, M.; Allport, P.; Armenise, N.; Baton, J. P.; Berggren, M.; Bertrand, D.; Brisson, V.; Bullock, F. W.; Burkot, W.; Calicchio, M.; Clayton, E. F.; Coghen, T.; Cooper-Sarkar, A. M.; Erriquez, O.; Fitch, P. J.; Gerbier, G.; Guy, J.; Hamisi, F.; Hulth, P. O.; Jones, G. T.; Kasper, P.; Klein, H.; Middleton, R. P.; Miller, D. B.; Mobayyen, M. M.; Morrison, D. R. O.; Natali, S.; Neveu, M.; O'Neale, S. W.; Parker, M. A.; Petiau, P.; Sacton, J.; Sansum, R. A.; Simopoulou, E.; Vallée, C.; Varvell, K.; Vayaki, A.; Venus, W.; Wachsmuth, H.; Wells, J.; Wittek, W.
1986-06-01
The cross section for coherent production of a single π- meson in charged current antineutrino interactions on neon nuclei has been measured in BEBC to be (175±25) 10-40 cm2/neon nucleus, averaged over the energy spectrum of the antineutrino wide band beam at the CERN SPS; this corresponds to (0.9±0.1) % of the total charged currentbar v_μ cross section. The distributions of kinematical variables are in agreement with theoretical predictions based on the PCAC hypothesis and the meson dominance model; in particular, the Q 2 dependence is well described by a propagator containing a mass m=(1.35±0.18) GeV. The absolute value of the cross section is also in agreement with the model. This analysis thus provides a test of the PCAC hypothesis in the antineutrino energy range 5 150 GeV.
Anchoring historical sequences using a new source of astro-chronological tie-points
NASA Astrophysics Data System (ADS)
Dee, Michael W.; Pope, Benjamin J. S.
2016-08-01
The discovery of past spikes in atmospheric radiocarbon activity, caused by major solar energetic particle events, has opened up new possibilities for high-precision chronometry. The two spikes, or Miyake Events, have now been widely identified in tree-rings that grew in the years 775 and 994 CE. Furthermore, all other plant material that grew in these years would also have incorporated the anomalously high concentrations of radiocarbon. Crucially, some plant-based artefacts, such as papyrus documents, timber beams and linen garments, can also be allocated to specific positions within long, currently unfixed, historical sequences. Thus, Miyake Events represent a new source of tie-points that could provide the means for anchoring early chronologies to the absolute timescale. Here, we explore this possibility, outlining the most expeditious approaches, the current challenges and obstacles, and how they might best be overcome.
Development of procedures for programmable proximity aperture lithography
NASA Astrophysics Data System (ADS)
Whitlow, H. J.; Gorelick, S.; Puttaraksa, N.; Napari, M.; Hokkanen, M. J.; Norarat, R.
2013-07-01
Programmable proximity aperture lithography (PPAL) with MeV ions has been used in Jyväskylä and Chiang Mai universities for a number of years. Here we describe a number of innovations and procedures that have been incorporated into the LabView-based software. The basic operation involves the coordination of the beam blanker and five motor-actuated translators with high accuracy, close to the minimum step size with proper anti-collision algorithms. By using special approaches, such writing calibration patterns, linearisation of position and careful backlash correction the absolute accuracy of the aperture size and position, can be improved beyond the standard afforded by the repeatability of the translator end-point switches. Another area of consideration has been the fluence control procedures. These involve control of the uniformity of the beam where different approaches for fluence measurement such as simultaneous aperture current and the ion current passing through the aperture using a Faraday cup are used. Microfluidic patterns may contain many elements that make-up mixing sections, reaction chambers, separation columns and fluid reservoirs. To facilitate conception and planning we have implemented a .svg file interpreter, that allows the use of scalable vector graphics files produced by standard drawing software for generation of patterns made up of rectangular elements.
Axial interaction free-electron laser
Carlsten, Bruce E.
1997-01-01
Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies.
Axial interaction free-electron laser
Carlsten, B.E.
1997-09-02
Electron orbits from a helical axial wiggler in an axial guide field are absolutely unstable as power is extracted from the particles. For off-axis beams an axial FEL mechanism exists when the axial electric field in a TM mode is wiggled to interact with the axial velocity of the electrons that form the beam. The interaction strength is comparable to that for helical FELs and is insensitive to beam orbit errors. The orbits for this mechanism are extremely stable in the absence of space charge and lead to high extraction efficiencies without particle phasing incoherence or interception. This interaction mechanism is suitable for use with intense annular electron beams for high power generation at microwave frequencies. 5 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippetto, D.; /Frascati; Sannibale, F.
2008-01-24
By analyzing the pulse to pulse intensity fluctuations of the radiation emitted by a charge particle in the incoherent part of the spectrum, it is possible to extract information about the spatial distribution of the beam. At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory, we have developed and tested a simple scheme based on this principle that allows for the absolute measurement of the bunch length. A description of the method and the experimental results are presented.
Absolute calibration of a charge-coupled device camera with twin beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meda, A.; Ruo-Berchera, I., E-mail: i.ruoberchera@inrim.it; Degiovanni, I. P.
2014-09-08
We report on the absolute calibration of a Charge-Coupled Device (CCD) camera by exploiting quantum correlation. This method exploits a certain number of spatial pairwise quantum correlated modes produced by spontaneous parametric-down-conversion. We develop a measurement model accounting for all the uncertainty contributions, and we reach the relative uncertainty of 0.3% in low photon flux regime. This represents a significant step forward for the characterization of (scientific) CCDs used in mesoscopic light regime.
NASA Astrophysics Data System (ADS)
Royo, Santiago; Arranz, Maria J.; Arasa, Josep; Cattoen, Michel; Bosch, Thierry
2005-02-01
The present works depicts a measurement technique intended to enhance the characterization procedures of the photometric emissions of automotive headlamps, with potential applications to any light source emission, either automotive or non-automotive. A CCD array with a precisely characterized optical system is used for sampling the luminance field of the headlamp just a few centimetres in front of it, by combining deflectometric techniques (yielding the direction of the light beams) and photometric techniques (yielding the energy travelling in each direction). The CCD array scans the measurement plane using a self-developed mechanical unit and electronics, and then image-processing techniques are used for obtaining the photometric behaviour of the headlamp in any given plane, in particular in the plane and positions required by current normative, but also on the road, on traffic signs, etc. An overview of the construction of the system, of the considered principle of measurement, and of the main calibrations performed on the unit is presented. First results concerning relative measurements are presented compared both to reference data from a photometric tunnel and from a plane placed 5m away from the source. Preliminary results for the absolute photometric calibration of the system are also presented for different illumination beams of different headlamps (driving and passing beam).
Depth encoded three-beam swept source Doppler optical coherence tomography
NASA Astrophysics Data System (ADS)
Wartak, Andreas; Haindl, Richard; Trasischker, Wolfgang; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K.
2016-03-01
A novel approach for investigation of human retinal and choroidal blood flow by the means of multi-channel swept source Doppler optical coherence tomography (SS-D-OCT) system is being developed. We present preliminary in vitro measurement results for quantification of the 3D velocity vector of scatterers in a flow phantom. The absolute flow velocity of moving scatterers can be obtained without prior knowledge of flow orientation. In contrast to previous spectral domain (SD-) D-OCT investigations, that already proved the three-channel D-OCT approach to be suitable for in vivo retinal blood flow evaluation, this current work aims for a similar functional approach by means of a differing technique. To the best of our knowledge, this is the first three-channel D-OCT setup featuring a wavelength tunable laser source. Furthermore, we present a modification of our setup allowing a reduction of the former three active illumination channels to one active illumination channel and two passive channels, which only probe the illuminated sample. This joint aperture (JA) approach provides the advantage of not having to divide beam power among three beams to meet corresponding laser safety limits. The in vitro measurement results regarding the flow phantom show good agreement between theoretically calculated and experimentally obtained flow velocity values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groetz, J.-E., E-mail: jegroetz@univ-fcomte.fr; Mavon, C.; Fromm, M.
2014-08-15
We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™and FLUKA). Measurements of airmore » kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.« less
Characterization of the NEPOMUC primary and remoderated positron beams at different energies
NASA Astrophysics Data System (ADS)
Stanja, J.; Hergenhahn, U.; Niemann, H.; Paschkowski, N.; Sunn Pedersen, T.; Saitoh, H.; Stenson, E. V.; Stoneking, M. R.; Hugenschmidt, C.; Piochacz, C.
2016-08-01
We report on the characterization of the positron beam provided at the open beam port of the NEPOMUC facility at the Heinz Maier-Leibnitz Zentrum (MLZ) Garching. The absolute positron flux of the primary beam at 400 eV and 1 keV kinetic energy and of the remoderated beam at 5, 12 and 22 eV were determined. Energy-dependent intensities in the range of (1 - 5) ·108e+ / s and (2 - 6) ·107e+ / s have been observed for the primary and remoderated beam, respectively. We attribute the significant losses for the primary beam, in comparison with the expected value, to the non-adiabatic positron guiding in the beam line. We also measured the longitudinal energy distribution of the remoderated beam, yielding an energy spread below 3.3 eV. The mean transverse energy of the remoderated beam, determined from measurements in different final magnetic fields, was found to be below 1.3 eV. These results are likely to apply to the NEPOMUC beam delivered to other user stations.
Tanguay, J; Hou, X; Buckley, K; Schaffer, P; Bénard, F; Ruth, T J; Celler, A
2015-05-21
Cyclotron production of (99m)Tc through the (100)Mo(p,2n) (99m)Tc reaction channel is actively being investigated as an alternative to reactor-based (99)Mo generation by nuclear fission of (235)U. An exciting aspect of this approach is that it can be implemented using currently-existing cyclotron infrastructure to supplement, or potentially replace, conventional (99m)Tc production methods that are based on aging and increasingly unreliable nuclear reactors. Successful implementation will require consistent production of large quantities of high-radionuclidic-purity (99m)Tc. However, variations in proton beam currents and the thickness and isotopic composition of enriched (100)Mo targets, in addition to other irradiation parameters, may degrade reproducibility of both radionuclidic purity and absolute (99m)Tc yields. The purpose of this article is to present a method for quantifying relationships between random variations in production parameters, including (100)Mo target thicknesses and proton beam currents, and reproducibility of absolute (99m)Tc yields (defined as the end of bombardment (EOB) (99m)Tc activity). Using the concepts of linear error propagation and the theory of stochastic point processes, we derive a mathematical expression that quantifies the influence of variations in various irradiation parameters on yield reproducibility, quantified in terms of the coefficient of variation of the EOB (99m)Tc activity. The utility of the developed formalism is demonstrated with an example. We show that achieving less than 20% variability in (99m)Tc yields will require highly-reproducible target thicknesses and proton currents. These results are related to the service rate which is defined as the percentage of (99m)Tc production runs that meet the minimum daily requirement of one (or many) nuclear medicine departments. For example, we show that achieving service rates of 84.0%, 97.5% and 99.9% with 20% variations in target thicknesses requires producing on average 1.2, 1.5 and 1.9 times the minimum daily activity requirement. The irradiation parameters that would be required to achieve these service rates are described. We believe the developed formalism will aid in the development of quality-control criteria required to ensure consistent supply of large quantities of high-radionuclidic-purity cyclotron-produced (99m)Tc.
NASA Astrophysics Data System (ADS)
Tanguay, J.; Hou, X.; Buckley, K.; Schaffer, P.; Bénard, F.; Ruth, T. J.; Celler, A.
2015-05-01
Cyclotron production of 99mTc through the 100Mo(p,2n) 99mTc reaction channel is actively being investigated as an alternative to reactor-based 99Mo generation by nuclear fission of 235U. An exciting aspect of this approach is that it can be implemented using currently-existing cyclotron infrastructure to supplement, or potentially replace, conventional 99mTc production methods that are based on aging and increasingly unreliable nuclear reactors. Successful implementation will require consistent production of large quantities of high-radionuclidic-purity 99mTc. However, variations in proton beam currents and the thickness and isotopic composition of enriched 100Mo targets, in addition to other irradiation parameters, may degrade reproducibility of both radionuclidic purity and absolute 99mTc yields. The purpose of this article is to present a method for quantifying relationships between random variations in production parameters, including 100Mo target thicknesses and proton beam currents, and reproducibility of absolute 99mTc yields (defined as the end of bombardment (EOB) 99mTc activity). Using the concepts of linear error propagation and the theory of stochastic point processes, we derive a mathematical expression that quantifies the influence of variations in various irradiation parameters on yield reproducibility, quantified in terms of the coefficient of variation of the EOB 99mTc activity. The utility of the developed formalism is demonstrated with an example. We show that achieving less than 20% variability in 99mTc yields will require highly-reproducible target thicknesses and proton currents. These results are related to the service rate which is defined as the percentage of 99mTc production runs that meet the minimum daily requirement of one (or many) nuclear medicine departments. For example, we show that achieving service rates of 84.0%, 97.5% and 99.9% with 20% variations in target thicknesses requires producing on average 1.2, 1.5 and 1.9 times the minimum daily activity requirement. The irradiation parameters that would be required to achieve these service rates are described. We believe the developed formalism will aid in the development of quality-control criteria required to ensure consistent supply of large quantities of high-radionuclidic-purity cyclotron-produced 99mTc.
NASA Astrophysics Data System (ADS)
Chiu, Joshua; Pierce, Marlon; Braunstein, Steve E.; Theodosopoulos, Philip V.; McDermott, Michael W.; Sneed, Penny K.; Ma, Lijun
2016-10-01
Sharp dose fall-off is the hallmark of brain radiosurgery for the purpose of delivering high dose radiation to the target while minimizing peripheral dose to regional normal brain tissue. In this study, a technique was developed to enhance the peripheral dose gradient by magnifying the total number of beams focused toward each isocenter through pre-programmed patient head tilting. This technique was tested in clinical settings on a dedicated brain radiosurgical system (GKPFX, Gamma Knife Perfexion, Elekta Oncology) by comparing dosimetry as well as delivery efficiency for 20 radiosurgical cases previously treated with the system. The 3-fold beam number enhancement (BNE) treatment plans were found to produce nearly identical target volume coverage (absolute value < 0.5%, P > 0.2) and dose conformity (BNE CI = 1.41 ± 0.22 versus 1.41 ± 0.11, P > 0.99) as the original treatment plans. The total beam-on time for the 3-fold BNE treatment plans were also found to be comparable (<0.5 min or 2%) with those of the original treatment plans for all the cases. However, BNE treatment plans significantly improved the mean gradient index (BNE GI = 2.94 ± 0.27 versus original GI = 2.98 ± 0.28 P < 0.0001) and low-level isodose volumes, e.g. 20-50% prescribed isodose volumes, by 1.7%-3.9% (P < 0.03). With further 4-5-fold increase in the total number of beams, the absolute gradient index can decrease by as much as -0.5 in absolute value or -20% for a treatment. In conclusion, BNE via patient head tilt has been demonstrated to be a clinically suitable and efficient technique for physically sharpening the peripheral dose gradient for brain radiosurgery. This work was presented in part at the 2015 ISRS Congress in Yokohama Japan.
Absolute Position of Targets Measured Through a Chamber Window Using Lidar Metrology Systems
NASA Technical Reports Server (NTRS)
Kubalak, David; Hadjimichael, Theodore; Ohl, Raymond; Slotwinski, Anthony; Telfer, Randal; Hayden, Joseph
2012-01-01
Lidar is a useful tool for taking metrology measurements without the need for physical contact with the parts under test. Lidar instruments are aimed at a target using azimuth and elevation stages, then focus a beam of coherent, frequency modulated laser energy onto the target, such as the surface of a mechanical structure. Energy from the reflected beam is mixed with an optical reference signal that travels in a fiber path internal to the instrument, and the range to the target is calculated based on the difference in the frequency of the returned and reference signals. In cases when the parts are in extreme environments, additional steps need to be taken to separate the operator and lidar from that environment. A model has been developed that accurately reduces the lidar data to an absolute position and accounts for the three media in the testbed air, fused silica, and vacuum but the approach can be adapted for any environment or material. The accuracy of laser metrology measurements depends upon knowing the parameters of the media through which the measurement beam travels. Under normal conditions, this means knowledge of the temperature, pressure, and humidity of the air in the measurement volume. In the past, chamber windows have been used to separate the measuring device from the extreme environment within the chamber and still permit optical measurement, but, so far, only relative changes have been diagnosed. The ability to make accurate measurements through a window presents a challenge as there are a number of factors to consider. In the case of the lidar, the window will increase the time-of-flight of the laser beam causing a ranging error, and refract the direction of the beam causing angular positioning errors. In addition, differences in pressure, temperature, and humidity on each side of the window will cause slight atmospheric index changes and induce deformation and a refractive index gradient within the window. Also, since the window is a dispersive media, the effect of both phase and group indices have to be considered. Taking all these factors into account, a method was developed to measure targets through multiple regions of different materials and produce results that are absolute measurements of target position in three-dimensional space, rather than simply relative position. The environment in which the lidar measurements are taken must be broken down into separate regions of interest and each region solved for separately. In this case, there were three regions of interest: air, fused silica, and vacuum. The angular position of the target inside the chamber is solved using only phase index and phase velocity, while the ranging effects due to travel from air to glass to vacuum/air are solved with group index and group velocity. When all parameters are solved simultaneously, an absolute knowledge of the position of each target within an environmental chamber can be derived. Novel features of this innovation include measuring absolute position of targets through multiple dispersive and non-dispersive media, deconstruction of lidar raw data from a commercial off-the-shelf unit into reworkable parameters, and use of group velocities to reduce range data. Measurement of structures within a vacuum chamber or other harsh environment, such as a furnace, may now be measured as easily as if they were in an ambient laboratory. This analysis permits transformation of the raw data into absolute spatial units (e.g., mm). This technique has also been extended to laser tracker, theodolite, and cathetometer measurements through refractive media.
NASA Astrophysics Data System (ADS)
Kuess, Peter; Böhlen, Till T.; Lechner, Wolfgang; Elia, Alessio; Georg, Dietmar; Palmans, Hugo
2017-12-01
Large area ionization chambers (LAICs) can be used to measure output factors of narrow beams. Dose area product measurements are proposed as an alternative to central-axis point dose measurements. Using such detectors requires detailed information on the uniformity of the response along the sensitive area. Eight LAICs were investigated in this study: four of type PTW-34070 (LAICThick) and four of type PTW-34080 (LAICThin). Measurements were performed in an x-ray unit using peak voltages of 100-200 kVp and a collimated beam of 3.1 mm (FWHM). The LAICs were moved with a step size of 5 mm to measure the chamber response at lateral positions. To account for beam positions where only a fraction of the beam impinged within the sensitive area of the LAICs, a corrected response was calculated which was the basis to calculate the relative response. The impact of a heterogeneous LAIC response, based on the obtained response maps was henceforth investigated for proton pencil beams and small field photon beams. A pronounced heterogeneity of the responses was observed in the investigated LAICs. The response of LAICThick generally decreased with increasing radius, resulting in a response correction of up to 5%. This correction was more pronounced and more diverse (up to 10%) for LAICThin. Considering a proton pencil beam the systematic offset for reference dosimetry was 2.4-4.1% for LAICThick and -9.5 to 9.4% for LAICThin. For relative dosimetry (e.g. integral depth-dose curves) systematic response variation by 0.8-1.9% were found. For a decreasing photon field size the systematic offset for absolute dose measurements showed a 2.5-4.5% overestimation of the response for 6 × 6 mm2 field sizes for LAICThick. For LAICThin the response varied even over a range of 20%. This study highlights the need for chamber-dependent response maps when using LAICs for absolute and relative dosimetry with proton pencil beams or small photon beams.
Bucciolini, M; Russo, S; Banci Buonamici, F; Pini, S; Silli, P
2002-07-01
A 6 MV photon beam from Linac SL75-5 has been collimated with a new micromultileaf device that is able to shape the field in the two orthogonal directions with four banks of leaves. This is the first clinical installation of the collimator and in this paper the dosimetric characterization of the system is reported. The dosimetric parameters required by the treatment planning system used for the dose calculation in the patient are: tissue maximum ratios, output factors, transmission and leakage of the leaves, penumbra values. Ionization chambers, silicon diode, radiographic films, and LiF thermoluminescent dosimeters have been employed for measurements of absolute dose and beam dosimetric data. Measurements with different dosimeters supply results in reasonable agreement among them and consistent with data available in literature for other models of micromultileaf collimator; that permits the use of the measured parameters for clinical applications. The discrepancies between results obtained with the different detectors (around 2%) for the analyzed parameters can be considered an indication of the accuracy that can be reached by current stereotactic dosimetry.
Cross sections for H(-) and Cl(-) production from HCl by dissociative electron attachment
NASA Technical Reports Server (NTRS)
Orient, O. J.; Srivastava, S. K.
1985-01-01
A crossed target beam-electron beam collision geometry and a quadrupole mass spectrometer have been used to conduct dissociative electron attachment cross section measurements for the case of H(-) and Cl(-) production from HCl. The relative flow technique is used to determine the absolute values of cross sections. A tabulation is given of the attachment energies corresponding to various cross section maxima. Error sources contributing to total errors are also estimated.
Characterization of the Exradin W1 scintillator for use in radiotherapy.
Carrasco, P; Jornet, N; Jordi, O; Lizondo, M; Latorre-Musoll, A; Eudaldo, T; Ruiz, A; Ribas, M
2015-01-01
To evaluate the main characteristics of the Exradin W1 scintillator as a dosimeter and to estimate measurement uncertainties when used in radiotherapy. We studied the calibration procedure, energy and modality dependence, short-term repeatability, dose-response linearity, angular dependence, temperature dependence, time to reach thermal equilibrium, dose-rate dependence, water-equivalent depth of the effective measurement point, and long-term stability. An uncertainty budget was derived for relative and absolute dose measurements in photon and electron beams. Exradin W1 showed a temperature dependence of -0.225% °C(-1). The loss of sensitivity with accumulated dose decreased with use. The sensitivity of Exradin W1 was energy independent for high-energy photon and electron beams. All remaining dependencies of Exradin W1 were around or below 0.5%, leading to an uncertainty budget of about 1%. When a dual channel electrometer with automatic trigger was not used, timing effects became significant, increasing uncertainties by one order of magnitude. The Exradin W1 response is energy independent for high energy x-rays and electron beams, and only one calibration coefficient is needed. A temperature correction factor should be applied to keep uncertainties around 2% for absolute dose measurements and around 1% for relative measurements in high-energy photon and electron beams. The Exradin W1 scintillator is an excellent alternative to detectors such as diodes for relative dose measurements.
VizieR Online Data Catalog: WISE/NEOWISE Mars-crossing asteroids (Ali-Lagoa+, 2017)
NASA Astrophysics Data System (ADS)
Ali-Lagoa, V.; Delbo, M.
2017-07-01
We fitted the near-Earth asteroid thermal model of Harris (1998, Icarus, 131, 29) to WISE/NEOWISE thermal infrared data (see, e.g., Mainzer et al. 2011ApJ...736..100M, and Masiero et al. 2014, Cat. J/ApJ/791/121). The table contains the best-fitting values of size and beaming parameter. We note that the beaming parameter is a strictly positive quantity, but a negative sign is given to indicate whenever we could not fit it and had to assume a default value. We also provide the visible geometric albedos computed from the diameter and the tabulated absolute magnitudes. Minimum relative errors of 10, 15, and 20 percent should be considered for size, beaming parameter and albedo in those cases for which the beaming parameter could be fitted. Otherwise, the minimum relative errors in size and albedo increase to 20 and 40 percent (see, e.g., Mainzer et al. 2011ApJ...736..100M). The asteroid absolute magnitudes and slope parameters retrieved from the Minor Planet Center (MPC) are included, as well as the number of observations used in each WISE band (nW2, nW3, nW4) and the corresponding average values of heliocentric and geocentric distances and phase angle of the observations. The ephemerides were retrieved from the MIRIADE service (http://vo.imcce.fr/webservices/miriade/?ephemph). (1 data file).
Progress toward a new beam measurement of the neutron lifetime
NASA Astrophysics Data System (ADS)
Hoogerheide, Shannon Fogwell
2016-09-01
Neutron beta decay is the simplest example of nuclear beta decay. A precise value of the neutron lifetime is important for consistency tests of the Standard Model and Big Bang Nucleosysnthesis models. The beam neutron lifetime method requires the absolute counting of the decay protons in a neutron beam of precisely known flux. Recent work has resulted in improvements in both the neutron and proton detection systems that should permit a significant reduction in systematic uncertainties. A new measurement of the neutron lifetime using the beam method will be performed at the National Institute of Standards and Technology Center for Neutron Research. The projected uncertainty of this new measurement is 1 s. An overview of the measurement and the technical improvements will be discussed.
Lawford, Catherine E.
2014-01-01
This work develops a technique for kilovoltage cone‐beam CT (CBCT) dosimetry that incorporates both point dose and integral dose in the form of dose length product, and uses readily available radiotherapy equipment. The dose from imaging protocols for a range of imaging parameters and treatment sites was evaluated. Conventional CT dosimetry using 100 mm long pencil chambers has been shown to be inadequate for the large fields in CBCT and has been replaced in this work by a combination of point dose and integral dose. Absolute dose measurements were made with a small volume ion chamber at the central slice of a radiotherapy phantom. Beam profiles were measured using a linear diode array large enough to capture the entire imaging field. These profiles were normalized to absolute dose to form dose line integrals, which were then weighted with radial depth to form the DLPCBCT. This metric is analogous to the standard dose length product (DLP), but derived differently to suit the unique properties of CBCT. Imaging protocols for head and neck, chest, and prostate sites delivered absolute doses of 0.9, 2.2, and 2.9 cGy to the center of the phantom, and DLPCBCT of 28.2, 665.1, and 565.3 mGy.cm, respectively. Results are displayed as dose per 100 mAs and as a function of key imaging parameters such as kVp, mAs, and collimator selection in a summary table. DLPCBCT was found to correlate closely with the dimension of the imaging region and provided a good indication of integral dose. It is important to assess integral dose when determining radiation doses to patients using CBCT. By incorporating measured beam profiles and DLP, this technique provides a CBCT dosimetry in radiotherapy phantoms and allows the prediction of imaging dose for new CBCT protocols. PACS number: 87.57.uq PMID:25207398
Scandurra, Daniel; Lawford, Catherine E
2014-07-08
This work develops a technique for kilovoltage cone-beam CT (CBCT) dosimetry that incorporates both point dose and integral dose in the form of dose length product, and uses readily available radiotherapy equipment. The dose from imaging protocols for a range of imaging parameters and treatment sites was evaluated. Conventional CT dosimetry using 100 mm long pencil chambers has been shown to be inadequate for the large fields in CBCT and has been replaced in this work by a combination of point dose and integral dose. Absolute dose measurements were made with a small volume ion chamber at the central slice of a radiotherapy phantom. Beam profiles were measured using a linear diode array large enough to capture the entire imaging field. These profiles were normalized to absolute dose to form dose line integrals, which were then weighted with radial depth to form the DLPCBCT. This metric is analogous to the standard dose length product (DLP), but derived differently to suit the unique properties of CBCT. Imaging protocols for head and neck, chest, and prostate sites delivered absolute doses of 0.9, 2.2, and 2.9 cGy to the center of the phantom, and DLPCBCT of 28.2, 665.1, and 565.3mGy.cm, respectively. Results are displayed as dose per 100 mAs and as a function of key imaging parameters such as kVp, mAs, and collimator selection in a summary table. DLPCBCT was found to correlate closely with the dimension of the imaging region and provided a good indication of integral dose. It is important to assess integral dose when determining radiation doses to patients using CBCT. By incorporating measured beam profiles and DLP, this technique provides a CBCT dosimetry in radiotherapy phantoms and allows the prediction of imaging dose for new CBCT protocols.
First absolute wind measurements in the middle atmosphere of Mars
NASA Astrophysics Data System (ADS)
Lellouch, Emmanuel; Goldstein, Jeffrey J.; Bougher, Stephen W.; Paubert, Gabriel; Rosenqvist, Jan
1991-12-01
The first absolute wind measurements in the middle atmosphere of Mars (40-70 km) were obtained from Doppler shifts in the J = 2-1 CO transition at 230.538 GHz. During the 1988 opposition, this line was observed at 100 kHz resolution with the IRAM 30 m telescope. The 12-arcsec FWHM beam of the facility allowed spatial resolution of the Martian disk (23.8 arcsec). The high S/N of the data allowed measurement of winds with a 1-sigma absolute line-of-sight accuracy of 20 m/s. The measurements, performed during southern summer solstice, stress the Southern Hemisphere and clearly indicate a global easterlies flow. If modeled by a broad easterly jet with a maximum centered at 20 S, and extending 80 deg in latitude, the jet core velocity is found to have a chi-sq minimum at 160 m/s, generally consistent with predictions for broad summer easterly jets near 50 km as proposed by theoretical models. If the flow is modeled instead by a planet-wide solid rotator zonal flow which is restricted to the Southern Hemisphere or equatorial regions, the velocity of the easterlies is nearly the same. These wind measurements, together with the temperature measurements of Deming et al. (1986), provide the first experimental rough picture of the middle atmosphere circulation of Mars, in general agreement with the Jaquin axisymmetric middle atmosphere model and the current Mars GCM model of Pollack et al. (1990).
Laboratory Studies in UV and EUV Solar Physics
NASA Technical Reports Server (NTRS)
Wagner, William J. (Technical Monitor); Kohl, John L.
2005-01-01
A new 5 GHZ Electron Cyclotron Resonance (ECR) ion source for SAO's Ion Beam Experiment was designed, built and tested. Absolute cross sections were measured for electron impact excitation (EIE) in C(2+) (2s2p (3)P(sup o) - 2p(sup 2) (3)P), and empirical EIE rate coefficients were derived. The absolute cross section for EIE in Si(2+) (3s3p (3)P(sup o) - 3s3p (1)P(sup o)) was measured, and our experimental values for absolute cross sections for EIE in C(3+) (2s (2)S - 2p (2)P(sup o)) were reanalyzed and compared to values obtained by other experimental methods and by theory. In addition, a paper was published. The development and testing of the new ion source, the Si(2+) EIE measurements, and the reevaluation of the cross sections for C(3+) resulted from the Ph.D. research of Paul H. Janzen who completed the degree requirements for the Harvard University Department of Physics in 2002. John Kohl served as the Ph.D.Thesis Advisor. Because of delays in bringing the new ion source on line, the measurements of EIE in C(2+) (2s2p (3)P(sup o) - (2)p(sup 2) (3)P) were not completed until 2004. Preparations for measurements of EIE in C(2+) (1s(sup 2) (1)S - 2s2p (1)P(sup o)) are currently underway.
Absolute cross sections of the 86Sr(α,n)89Zr reaction at energies of astrophysical interest
NASA Astrophysics Data System (ADS)
Oprea, Andreea; Glodariu, Tudor; Filipescu, Dan; Gheorghe, Ioana; Mitu, Andreea; Boromiza, Marian; Bucurescu, Dorel; Costache, Cristian; Cata-Danil, Irina; Florea, Nicoleta; Ghita, Dan Gabriel; Ionescu, Alina; Marginean, Nicolae; Marginean, Raluca; Mihai, Constantin; Mihai, Radu; Negret, Alexandru; Nita, Cristina; Olacel, Adina; Pascu, Sorin; Sotty, Cristophe; Suvaila, Rares; Stan, Lucian; Stroe, Lucian; Serban, Andreea; Stiru, Irina; Toma, Sebastian; Turturica, Andrei; Ujeniuc, Sorin
2017-09-01
Absolute cross sections for the 86Sr(α,n)89Zr reaction at energies close to the Gamow window are reported. Three thin SrF2 targets were irradiated using the 9 MV Tandem facility in IFIN-HH Bucharest that delivered α beams for the activation process. Two high-purity Germanium detectors were used to measure the induced activity of 89Zr in a low background environment. The experimental results are in very good agreement with Hauser-Feshbach statistical model calculations performed with the TALYS code.
Multibeam antenna study, phase 1
NASA Technical Reports Server (NTRS)
Bellamy, J. L.
1972-01-01
A multibeam antenna concept was developed for providing spot beam coverage of the contiguous 48 states. The selection of a suitable antenna concept for the multibeam application and an experimental evaluation of the antenna concept selected are described. The final analysis indicates that the preferred concept is a dual-antenna, circular artificial dielectric lens. A description of the analytical methods is provided, as well as a discussion of the absolute requirements placed on the antenna concepts. Finally, a comparative analysis of reflector antenna off-axis beam performance is presented.
Wigner distribution function of Hermite-cosine-Gaussian beams through an apertured optical system.
Sun, Dong; Zhao, Daomu
2005-08-01
By introducing the hard-aperture function into a finite sum of complex Gaussian functions, the approximate analytical expressions of the Wigner distribution function for Hermite-cosine-Gaussian beams passing through an apertured paraxial ABCD optical system are obtained. The analytical results are compared with the numerically integrated ones, and the absolute errors are also given. It is shown that the analytical results are proper and that the calculation speed for them is much faster than for the numerical results.
Neutron beam characterization measurements at the Manuel Lujan Jr. neutron scattering center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mocko, Michal; Muhrer, Guenter; Daemen, Luke L
We have measured the neutron beam characteristics of neutron moderators at the Manuel Lujan Jr. Neutron Scattering Center at LANSCE. The absolute thermal neutron flux, energy spectra and time emission spectra were measured for the high resolution and high intensity decoupled water, partially coupled liquid hydrogen and partially coupled water moderators. The results of our experimental study will provide an insight into aging of different target-moderator-reflector-shield components as well as new experimental data for benchmarking of neutron transport codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X; Rosenfield, J; Dong, X
2016-06-15
Purpose: Rotational total skin electron irradiation (RTSEI) is used in the treatment of cutaneous T-cell lymphoma. Due to inter-film uniformity variations the dosimetry measurement of a large electron beam of a very low energy is challenging. This work provides a method to improve the accuracy of flatness and symmetry for a very large treatment field of low electron energy used in dual beam RTSEI. Methods: RTSEI is delivered by dual angles field a gantry of ±20 degrees of 270 to cover the upper and the lower halves of the patient body with acceptable beam uniformity. The field size is inmore » the order of 230cm in vertical height and 120 cm in horizontal width and beam energy is a degraded 6 MeV (6 mm of PMMA spoiler). We utilized parallel plate chambers, Gafchromic films and OSLDs as a measuring devices for absolute dose, B-Factor, stationary and rotational percent depth dose and beam uniformity. To reduce inter-film dosimetric variation we introduced a new specific correction method to analyze beam uniformity. This correction method uses some image processing techniques combining film value before and after radiation dose to compensate the inter-variation dose response differences among films. Results: Stationary and rotational depth of dose demonstrated that the Rp is 2 cm for rotational and the maximum dose is shifted toward the surface (3mm). The dosimetry for the phantom showed that dose uniformity reduced to 3.01% for the vertical flatness and 2.35% for horizontal flatness after correction thus achieving better flatness and uniformity. The absolute dose readings of calibrated films after our correction matched with the readings from OSLD. Conclusion: The proposed correction method for Gafchromic films will be a useful tool to correct inter-film dosimetric variation for the future clinical film dosimetry verification in very large fields, allowing the optimizations of other parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, J; Braunstein, S; McDermott, M
Purpose: Sharp dose fall-off is the hallmark of brain radiosurgery to deliver a high dose of radiation to the target while minimizing dose to normal brain tissue. In this study, we developed a technique for the purpose of enhancing the peripheral dose gradient by magnifying the total number of beams focused toward each isocenter via patient head tilt and simultaneous beam intensity modulations. Methods: Computer scripting for the proposed beam number enhancement (BNE) technique was developed. The technique was tested and then implemented on a clinical treatment planning system for a dedicated brain radiosurgical system (GK Perfexion, Elekta Oncology). Tomore » study technical feasibility and dosimetric advantages of the technique, we compared treatment planning quality and delivery efficiency for 20 radiosurgical cases previously treated at our institution. These cases included relatively complex treatments such as acoustic schwannoma, meningioma, brain metastasis and mesial temporal lobe epilepsy. Results: The BNE treatment plans were found to produce nearly identical target volume coverage (absolute value < 0.5%, P > 0.2) and dose conformity (BNE CI= 1.41±0.15 versus 1.41±0.20, P>0.9) as the original treatment plans. The total beam-on time for theBNE treatment plans were comparable (within 1.0 min or 1.8%) with those of the original treatment plans for all the cases. However, BNE treatment plans significantly improved the mean gradient index (BNE GI = 2.9±0.3 versus original GI =3.0±0.3 p<0.0001) and low-level isodose volumes, e.g. 20-50% prescribed isodose volumes, by 2.0% to 5.0% (p<0.02). Furthermore, with 4 to 5-fold increase in the total number of beams, the GI decreased by as much as 20% or 0.5 in absolute values. Conclusion: BNE via head tilt and simultaneous beam intensity modulation is an effective and efficient technique that physically sharpens the peripheral dose gradient for brain radiosurgery.« less
12 CFR 1229.9 - Discretionary actions applicable to significantly undercapitalized Banks.
Code of Federal Regulations, 2011 CFR
2011-01-01
... absolute dollar amount, as a percentage of current obligations or in any other form chosen by the Director...-balance sheet obligations. Such reduction may be stated in an absolute dollar amount, as a percentage of... absolute dollar amount, as a percentage of current assets or in any other form chosen by the Director; (4...
12 CFR 1229.9 - Discretionary actions applicable to significantly undercapitalized Banks.
Code of Federal Regulations, 2010 CFR
2010-01-01
... absolute dollar amount, as a percentage of current obligations or in any other form chosen by the Director...-balance sheet obligations. Such reduction may be stated in an absolute dollar amount, as a percentage of... absolute dollar amount, as a percentage of current assets or in any other form chosen by the Director; (4...
An evaluation of krypton propellant in Hall thrusters
NASA Astrophysics Data System (ADS)
Linnell, Jesse Allen
Due to its high specific impulse and low price, krypton has long sparked interest as an alternate Hall thruster propellant. Unfortunately at the moment, krypton's relatively poor performance precludes it as a legitimate option. This thesis presents a detailed investigation into krypton operation in Hall thrusters. These findings suggest that the performance gap can be decreased to 4% and krypton can finally become a realistic propellant option. Although krypton has demonstrated superior specific impulse, the xenon-krypton absolute efficiency gap ranges between 2 and 15%. A phenomenological performance model indicates that the main contributors to the efficiency gap are propellant utilization and beam divergence. Propellant utilization and beam divergence have relative efficiency deficits of 5 and 8%, respectively. A detailed characterization of internal phenomena is conducted to better understand the xenon-krypton efficiency gap. Krypton's large beam divergence is found to be related to a defocusing equipotential structure and a weaker magnetic field topology. Ionization processes are shown to be linked to the Hall current, the magnetic mirror topology, and the perpendicular gradient of the magnetic field. Several thruster design and operational suggestions are made to optimize krypton efficiency. Krypton performance is optimized for discharge voltages above 500 V and flow rates corresponding to an a greater than 0.015 mg/(mm-s), where alpha is a function of flow rate and discharge channel dimensions (alpha = m˙alphab/Ach). Performance can be further improved by increasing channel length or decreasing channel width for a given flow rate. Also, several magnetic field design suggestions are made to enhance ionization and beam focusing. Several findings are presented that improve the understanding of general Hall thruster physics. Excellent agreement is shown between equipotential lines and magnetic field lines. The trim coil is shown to enhance beam focusing, ionization processes, and electron dynamics. Electron mobility and the Hall parameter are studied and compared to different mobility models. Azimuthal electron current is studied using a fluid and particle drift approach. Analyses of several magnetic field features are conducted and simple tools are suggested for the development of future Hall thrusters. These findings have strong implications for future Hall thruster design, lifetimes, and modeling.
Towards an In-Beam Measurement of the Neutron Lifetime to 1 Second
NASA Astrophysics Data System (ADS)
Mulholland, Jonathan
2014-03-01
A precise value for the neutron lifetime is required for consistency tests of the Standard Model and is an essential parameter in the theory of Big Bang Nucleosynthesis. A new measurement of the neutron lifetime using the in-beam method is planned at the National Institute of Standards and Technology Center for Neutron Research. The systematic effects associated with the in-beam method are markedly different than those found in storage experiments utilizing ultracold neutrons. Experimental improvements, specifically recent advances in the determination of absolute neutron fluence, should permit an overall uncertainty of 1 second on the neutron lifetime. The dependence of the primordial mass fraction on the neutron lifetime, technical improvements of the in-beam technique, and the path toward improving the precision of the new measurement will be discussed.
Measurement of the muon beam direction and muon flux for the T2K neutrino experiment
NASA Astrophysics Data System (ADS)
Suzuki, K.; Aoki, S.; Ariga, A.; Ariga, T.; Bay, F.; Bronner, C.; Ereditato, A.; Friend, M.; Hartz, M.; Hiraki, T.; Ichikawa, A. K.; Ishida, T.; Ishii, T.; Juget, F.; Kikawa, T.; Kobayashi, T.; Kubo, H.; Matsuoka, K.; Maruyama, T.; Minamino, A.; Murakami, A.; Nakadaira, T.; Nakaya, T.; Nakayoshi, K.; Otani, M.; Oyama, Y.; Patel, N.; Pistillo, C.; Sakashita, K.; Sekiguchi, T.; Suzuki, S. Y.; Tada, S.; Yamada, Y.; Yamamoto, K.; Yokoyama, M.
2015-05-01
The Tokai-to-Kamioka (T2K) neutrino experiment measures neutrino oscillations by using an almost pure muon neutrino beam produced at the J-PARC accelerator facility. The T2K muon monitor was installed to measure the direction and stability of the muon beam which is produced in conjunction with the muon neutrino beam. The systematic error in the muon beam direction measurement was estimated, using data and MC simulation, to be 0.28 mrad. During beam operation, the proton beam has been controlled using measurements from the muon monitor and the direction of the neutrino beam has been tuned to within 0.3 mrad with respect to the designed beam-axis. In order to understand the muon beam properties, measurement of the absolute muon yield at the muon monitor was conducted with an emulsion detector. The number of muon tracks was measured to be (4.06± 0.05± 0.10)× 10^4cm^{-2} normalized with 4× 10^{11} protons on target with 250 kA horn operation. The result is in agreement with the prediction, which is corrected based on hadron production data.
Clark, Ross A; Paterson, Kade; Ritchie, Callan; Blundell, Simon; Bryant, Adam L
2011-03-01
Commercial timing light systems (CTLS) provide precise measurement of athletes running velocity, however they are often expensive and difficult to transport. In this study an inexpensive, wireless and portable timing light system was created using the infrared camera in Nintendo Wii hand controllers (NWHC). System creation with gold-standard validation. A Windows-based software program using NWHC to replicate a dual-beam timing gate was created. Firstly, data collected during 2m walking and running trials were validated against a 3D kinematic system. Secondly, data recorded during 5m running trials at various intensities from standing or flying starts were compared to a single beam CTLS and the independent and average scores of three handheld stopwatch (HS) operators. Intraclass correlation coefficient and Bland-Altman plots were used to assess validity. Absolute error quartiles and percentage of trials in absolute error threshold ranges were used to determine accuracy. The NWHC system was valid when compared against the 3D kinematic system (ICC=0.99, median absolute error (MAR)=2.95%). For the flying 5m trials the NWHC system possessed excellent validity and precision (ICC=0.97, MAR<3%) when compared with the CTLS. In contrast, the NWHC system and the HS values during standing start trials possessed only modest validity (ICC<0.75) and accuracy (MAR>8%). A NWHC timing light system is inexpensive, portable and valid for assessing running velocity. Errors in the 5m standing start trials may have been due to erroneous event detection by either the commercial or NWHC-based timing light systems. Copyright © 2010 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Guinement, L; Marchesi, V; Veres, A; Lacornerie, T; Buchheit, I; Peiffert, D
2013-01-01
To develop an external quality control procedure for CyberKnife(®) beams. This work conducted in Nancy, has included a test protocol initially drawn by the medical physicist of Nancy and Lille in collaboration with Equal-Estro Laboratory. A head and neck anthropomorphic phantom and a water-equivalent homogeneous cubic plastic test-object, so-called "MiniCube", have been used. Powder and solid thermoluminescent dosimeters as well as radiochromic films have been used to perform absolute and relative dose studies, respectively. The comparison between doses calculated by Multiplan treatment planning system and measured doses have been studied in absolute dose. The dose distributions measured with films and treatment planning system calculations have been compared via the gamma function, configured with different tolerance criteria. This work allowed, via solid thermoluminescent dosimeter measurements, verifying the beam reliability with a reproducibility of 1.7 %. The absolute dose measured in the phantom irradiated by the seven participating centres has shown an error inferior to the standard tolerance limits (± 5 %), for most of participating centres. The relative dose measurements performed at Nancy and by the Equal-Estro laboratory allowed defining the most adequate parameters for gamma index (5 %/2mm--with at least 95 % of pixels satisfying acceptability criteria: γ<1). These parameters should be independent of the film analysis software. This work allowed defining a dosimetric external quality control for CyberKnife(®) systems, based on a reproducible irradiation plan through measurements performed with thermoluminescent dosimeters and radiochromic films. This protocol should be validated by a new series of measurement and taking into account the lessons of this work. Copyright © 2013 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Absolute dose calculations for Monte Carlo simulations of radiotherapy beams.
Popescu, I A; Shaw, C P; Zavgorodni, S F; Beckham, W A
2005-07-21
Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 x 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 x 10(13) +/- 1.0% electrons incident on the target and a total dose of 20.87 cGy +/- 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.
NASA Astrophysics Data System (ADS)
Subhash, Hrebesh M.; Choudhury, Niloy; Jacques, Steven L.; Wang, Ruikang K.; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.
2012-01-01
Direct measurement of absolute vibration parameters from different locations within the mammalian organ of Corti is crucial for understanding the hearing mechanics such as how sound propagates through the cochlea and how sound stimulates the vibration of various structures of the cochlea, namely, basilar membrane (BM), recticular lamina, outer hair cells and tectorial membrane (TM). In this study we demonstrate the feasibility a modified phase-sensitive spectral domain optical coherence tomography system to provide subnanometer scale vibration information from multiple angles within the imaging beam. The system has the potential to provide depth resolved absolute vibration measurement of tissue microstructures from each of the delay-encoded vibration images with a noise floor of ~0.3nm at 200Hz.
Exploration of spherical torus physics in the NSTX device
NASA Astrophysics Data System (ADS)
Ono, M.; Kaye, S. M.; Peng, Y.-K. M.; Barnes, G.; Blanchard, W.; Carter, M. D.; Chrzanowski, J.; Dudek, L.; Ewig, R.; Gates, D.; Hatcher, R. E.; Jarboe, T.; Jardin, S. C.; Johnson, D.; Kaita, R.; Kalish, M.; Kessel, C. E.; Kugel, H. W.; Maingi, R.; Majeski, R.; Manickam, J.; McCormack, B.; Menard, J.; Mueller, D.; Nelson, B. A.; Nelson, B. E.; Neumeyer, C.; Oliaro, G.; Paoletti, F.; Parsells, R.; Perry, E.; Pomphrey, N.; Ramakrishnan, S.; Raman, R.; Rewoldt, G.; Robinson, J.; Roquemore, A. L.; Ryan, P.; Sabbagh, S.; Swain, D.; Synakowski, E. J.; Viola, M.; Williams, M.; Wilson, J. R.; NSTX Team
2000-03-01
The National Spherical Torus Experiment (NSTX) is being built at Princeton Plasma Physics Laboratory to test the fusion physics principles for the spherical torus concept at the MA level. The NSTX nominal plasma parameters are R0 = 85 cm, a = 67 cm, R/a >= 1.26, Bt = 3 kG, Ip = 1 MA, q95 = 14, elongation κ <= 2.2, triangularity δ <= 0.5 and a plasma pulse length of up to 5 s. The plasma heating/current drive tools are high harmonic fast wave (6 MW, 5 s), neutral beam injection (5 MW, 80 keV, 5 s) and coaxial helicity injection. Theoretical calculations predict that NSTX should provide exciting possibilities for exploring a number of important new physics regimes, including very high plasma β, naturally high plasma elongation, high bootstrap current fraction, absolute magnetic well and high pressure driven sheared flow. In addition, the NSTX programme plans to explore fully non-inductive plasma startup as well as a dispersive scrape-off layer for heat and particle flux handling.
NASA Astrophysics Data System (ADS)
Abe, K.; Adam, J.; Aihara, H.; Akiri, T.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bojechko, C.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; De Rosa, G.; Danko, I.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duboyski, T.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haegel, L.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Hearty, C.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Huang, K.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Intonti, R. A.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; King, S.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Kolaceke, A.; Koga, T.; Konaka, A.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Ma, W. Y.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakamura, K. D.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pickering, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Riccio, C.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J. D.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaikhiev, A.; Shaker, F.; Shaw, D.; Shiozawa, M.; Shirahige, T.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Still, B.; Stewart, T.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vallari, Z.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration
2015-12-01
This paper reports a measurement by the T2K experiment of the νμ charged current quasielastic (CCQE) cross section on a carbon target with the off-axis detector based on the observed distribution of muon momentum (pμ) and angle with respect to the incident neutrino beam (θμ). The flux-integrated CCQE cross section was measured to be ⟨σ ⟩=(0.83 ±0.12 )×10-38 cm2 . The energy dependence of the CCQE cross section is also reported. The axial mass, MAQE, of the dipole axial form factor was extracted assuming the Smith-Moniz CCQE model with a relativistic Fermi gas nuclear model. Using the absolute (shape-only) pμ-cos θμ distribution, the effective MAQE parameter was measured to be 1.2 6-0.18+0.21 GeV /c2 (1.4 3-0.22+0.28 GeV /c2 ).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tulej, M., E-mail: marek.tulej@space.unibe.ch; Meyer, S.; Lüthi, M.
2015-08-15
High-energy e{sup –} and π{sup –} were measured by the multichannel plate (MCP) detector at the PiM1 beam line of the High Intensity Proton Accelerator Facilities located at the Paul Scherrer Institute, Villigen, Switzerland. The measurements provide the absolute detection efficiencies for these particles: 5.8% ± 0.5% for electrons in the beam momenta range 17.5–300 MeV/c and 6.0% ± 1.3% for pions in the beam momenta range 172–345 MeV/c. The pulse height distribution determined from the measurements is close to an exponential function with negative exponent, indicating that the particles penetrated the MCP material before producing the signal somewhere insidemore » the channel. Low charge extraction and nominal gains of the MCP detector observed in this study are consistent with the proposed mechanism of the signal formation by penetrating radiation. A very similar MCP ion detector will be used in the Neutral Ion Mass (NIM) spectrometer designed for the JUICE mission of European Space Agency (ESA) to the Jupiter system, to perform measurements of the chemical composition of the Galilean moon exospheres. The detection efficiency for penetrating radiation determined in the present studies is important for the optimisation of the radiation shielding of the NIM detector against the high-rate and high-energy electrons trapped in Jupiter’s magnetic field. Furthermore, the current studies indicate that MCP detectors can be useful to measure high-energy particle beams at high temporal resolution.« less
Photoionization of the Buckminsterfullerene Cation.
Douix, Suzie; Duflot, Denis; Cubaynes, Denis; Bizau, Jean-Marc; Giuliani, Alexandre
2017-01-05
Photoionization of a buckminsterfullerene ion is investigated using an ion trap and a merged beam setup coupled to synchrotron radiation beamlines and compared to theoretical calculations. Absolute measurements derived from the ion trap experiment allow discrepancies concerning the photoionization cross section of C 60 + to be solved.
NASA Astrophysics Data System (ADS)
Ruiz, C. L.; Chandler, G. A.; Cooper, G. W.; Fehl, D. L.; Hahn, K. D.; Leeper, R. J.; McWatters, B. R.; Nelson, A. J.; Smelser, R. M.; Snow, C. S.; Torres, J. A.
2012-10-01
The 350-keV Cockroft-Walton accelerator at Sandia National laboratory's Ion Beam facility is being used to calibrate absolutely a total DT neutron yield diagnostic based on the 63Cu(n,2n)62Cu(β+) reaction. These investigations have led to first-order uncertainties approaching 5% or better. The experiments employ the associated-particle technique. Deuterons at 175 keV impinge a 2.6 μm thick erbium tritide target producing 14.1 MeV neutrons from the T(d,n)4He reaction. The alpha particles emitted are measured at two angles relative to the beam direction and used to infer the neutron flux on a copper sample. The induced 62Cu activity is then measured and related to the neutron flux. This method is known as the F-factor technique. Description of the associated-particle method, copper sample geometries employed, and the present estimates of the uncertainties to the F-factor obtained are given.
Ruiz, C L; Chandler, G A; Cooper, G W; Fehl, D L; Hahn, K D; Leeper, R J; McWatters, B R; Nelson, A J; Smelser, R M; Snow, C S; Torres, J A
2012-10-01
The 350-keV Cockroft-Walton accelerator at Sandia National laboratory's Ion Beam facility is being used to calibrate absolutely a total DT neutron yield diagnostic based on the (63)Cu(n,2n)(62)Cu(β+) reaction. These investigations have led to first-order uncertainties approaching 5% or better. The experiments employ the associated-particle technique. Deuterons at 175 keV impinge a 2.6 μm thick erbium tritide target producing 14.1 MeV neutrons from the T(d,n)(4)He reaction. The alpha particles emitted are measured at two angles relative to the beam direction and used to infer the neutron flux on a copper sample. The induced (62)Cu activity is then measured and related to the neutron flux. This method is known as the F-factor technique. Description of the associated-particle method, copper sample geometries employed, and the present estimates of the uncertainties to the F-factor obtained are given.
Discrete distributed strain sensing of intelligent structures
NASA Technical Reports Server (NTRS)
Anderson, Mark S.; Crawley, Edward F.
1992-01-01
Techniques are developed for the design of discrete highly distributed sensor systems for use in intelligent structures. First the functional requirements for such a system are presented. Discrete spatially averaging strain sensors are then identified as satisfying the functional requirements. A variety of spatial weightings for spatially averaging sensors are examined, and their wave number characteristics are determined. Preferable spatial weightings are identified. Several numerical integration rules used to integrate such sensors in order to determine the global deflection of the structure are discussed. A numerical simulation is conducted using point and rectangular sensors mounted on a cantilevered beam under static loading. Gage factor and sensor position uncertainties are incorporated to assess the absolute error and standard deviation of the error in the estimated tip displacement found by numerically integrating the sensor outputs. An experiment is carried out using a statically loaded cantilevered beam with five point sensors. It is found that in most cases the actual experimental error is within one standard deviation of the absolute error as found in the numerical simulation.
NASA Astrophysics Data System (ADS)
Kyoden, Tomoaki; Akiguchi, Shunsuke; Tajiri, Tomoki; Andoh, Tsugunobu; Hachiga, Tadashi
2017-11-01
The development of a system for in vivo visualization of occluded distal blood vessels for diabetic patients is the main target of our research. We herein describe two-beam multipoint laser Doppler velocimetry (MLDV), which measures the instantaneous multipoint flow velocity and can be used to observe the blood flow velocity in peripheral blood vessels. By including a motorized stage to shift the measurement points horizontally and in the depth direction while measuring the velocity, the path of the blood vessel in the skin could be observed using blood flow velocity in three-dimensional space. The relationship of the signal power density between the blood vessel and the surrounding tissues was shown and helped us identify the position of the blood vessel. Two-beam MLDV can be used to simultaneously determine the absolute blood flow velocity distribution and identify the blood vessel position in skin.
NASA Astrophysics Data System (ADS)
Ladroit, Yoann; Lamarche, Geoffroy; Pallentin, Arne
2018-06-01
Obtaining absolute seafloor backscatter measurements from hydrographic multibeam echosounders is yet to be achieved. We propose a low-cost experiment to calibrate the various acquisition modes of a 30-kHz Kongsberg EM 302 multibeam echosounder in a range of water depths. We use a 38-kHz Simrad EK60 calibrated fisheries split-beam echosounder mounted at 45° angle on the vessel's hull as a reference for the calibration. The processing to extract seafloor backscatter from the EK60 requires bottom detection, ray tracing and motion compensation to obtain acceptable geo-referenced backscatter measurements from this non-hydrographic system. Our experiment was run in Cook Strait, New Zealand, on well-known seafloor patches in shallow, mid, and deep-water depths. Despite acquisition issues due to weather, our results demonstrate the strong potential of such an approach to obtain system's absolute calibration which is required for quantitative use of backscatter strength data.
The fundamental parameter method applied to X-ray fluorescence analysis with synchrotron radiation
NASA Astrophysics Data System (ADS)
Pantenburg, F. J.; Beier, T.; Hennrich, F.; Mommsen, H.
1992-05-01
Quantitative X-ray fluorescence analysis applying the fundamental parameter method is usually restricted to monochromatic excitation sources. It is shown here, that such analyses can be performed as well with a white synchrotron radiation spectrum. To determine absolute elemental concentration values it is necessary to know the spectral distribution of this spectrum. A newly designed and tested experimental setup, which uses the synchrotron radiation emitted from electrons in a bending magnet of ELSA (electron stretcher accelerator of the university of Bonn) is presented. The determination of the exciting spectrum, described by the given electron beam parameters, is limited due to uncertainties in the vertical electron beam size and divergence. We describe a method which allows us to determine the relative and absolute spectral distributions needed for accurate analysis. First test measurements of different alloys and standards of known composition demonstrate that it is possible to determine exact concentration values in bulk and trace element analysis.
Absolute photon-flux measurements in the vacuum ultraviolet
NASA Technical Reports Server (NTRS)
Samson, J. A. R.; Haddad, G. N.
1974-01-01
Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.
NASA Astrophysics Data System (ADS)
Lye, J. E.; Harty, P. D.; Butler, D. J.; Crosbie, J. C.; Livingstone, J.; Poole, C. M.; Ramanathan, G.; Wright, T.; Stevenson, A. W.
2016-06-01
The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3-5% higher than the calorimetry, within the stated uncertainties.
Kohno, Ryosuke; Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi
2011-04-04
We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth-dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high-bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L-shaped bolus. The dose reproducibility, angular dependence and depth-dose response were evaluated using a 190 MeV proton beam. Depth-output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose-weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L-shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors.
Hotta, Kenji; Matsuura, Taeko; Matsubara, Kana; Nishioka, Shie; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi
2011-01-01
We experimentally evaluated the proton beam dose reproducibility, sensitivity, angular dependence and depth‐dose relationships for a new Metal Oxide Semiconductor Field Effect Transistor (MOSFET) detector. The detector was fabricated with a thinner oxide layer and was operated at high‐bias voltages. In order to accurately measure dose distributions, we developed a practical method for correcting the MOSFET response to proton beams. The detector was tested by examining lateral dose profiles formed by protons passing through an L‐shaped bolus. The dose reproducibility, angular dependence and depth‐dose response were evaluated using a 190 MeV proton beam. Depth‐output curves produced using the MOSFET detectors were compared with results obtained using an ionization chamber (IC). Since accurate measurements of proton dose distribution require correction for LET effects, we developed a simple dose‐weighted correction method. The correction factors were determined as a function of proton penetration depth, or residual range. The residual proton range at each measurement point was calculated using the pencil beam algorithm. Lateral measurements in a phantom were obtained for pristine and SOBP beams. The reproducibility of the MOSFET detector was within 2%, and the angular dependence was less than 9%. The detector exhibited a good response at the Bragg peak (0.74 relative to the IC detector). For dose distributions resulting from protons passing through an L‐shaped bolus, the corrected MOSFET dose agreed well with the IC results. Absolute proton dosimetry can be performed using MOSFET detectors to a precision of about 3% (1 sigma). A thinner oxide layer thickness improved the LET in proton dosimetry. By employing correction methods for LET dependence, it is possible to measure absolute proton dose using MOSFET detectors. PACS number: 87.56.‐v
Note: An absolute X-Y-Θ position sensor using a two-dimensional phase-encoded binary scale
NASA Astrophysics Data System (ADS)
Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan
2018-04-01
This Note presents a new absolute X-Y-Θ position sensor for measuring planar motion of a precision multi-axis stage system. By analyzing the rotated image of a two-dimensional phase-encoded binary scale (2D), the absolute 2D position values at two separated points were obtained and the absolute X-Y-Θ position could be calculated combining these values. The sensor head was constructed using a board-level camera, a light-emitting diode light source, an imaging lens, and a cube beam-splitter. To obtain the uniform intensity profiles from the vignette scale image, we selected the averaging directions deliberately, and higher resolution in the angle measurement could be achieved by increasing the allowable offset size. The performance of a prototype sensor was evaluated in respect of resolution, nonlinearity, and repeatability. The sensor could resolve 25 nm linear and 0.001° angular displacements clearly, and the standard deviations were less than 18 nm when 2D grid positions were measured repeatedly.
Synthetic Hounsfield units from spectral CT data
NASA Astrophysics Data System (ADS)
Bornefalk, Hans
2012-04-01
Beam-hardening-free synthetic images with absolute CT numbers that radiologists are used to can be constructed from spectral CT data by forming ‘dichromatic’ images after basis decomposition. The CT numbers are accurate for all tissues and the method does not require additional reconstruction. This method prevents radiologists from having to relearn new rules-of-thumb regarding absolute CT numbers for various organs and conditions as conventional CT is replaced by spectral CT. Displaying the synthetic Hounsfield unit images side-by-side with images reconstructed for optimal detectability for a certain task can ease the transition from conventional to spectral CT.
Controlling hollow relativistic electron beam orbits with an inductive current divider
Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.; ...
2015-02-06
A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I 1), while the outer conductor carries the remainder (I 2). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I 2-I 1), while the average force on the envelope (the beam width) is proportional to the beam current I b = (I 2more » + I 1). The values of I 1 and I 2 depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. As a result, solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.« less
Dose computation for therapeutic electron beams
NASA Astrophysics Data System (ADS)
Glegg, Martin Mackenzie
The accuracy of electron dose calculations performed by two commercially available treatment planning computers, Varian Cadplan and Helax TMS, has been assessed. Measured values of absorbed dose delivered by a Varian 2100C linear accelerator, under a wide variety of irradiation conditions, were compared with doses calculated by the treatment planning computers. Much of the motivation for this work was provided by a requirement to verify the accuracy of calculated electron dose distributions in situations encountered clinically at Glasgow's Beatson Oncology Centre. Calculated dose distributions are required in a significant minority of electron treatments, usually in cases involving treatment to the head and neck. Here, therapeutic electron beams are subject to factors which may cause non-uniformity in the distribution of dose, and which may complicate the calculation of dose. The beam shape is often irregular, the beam may enter the patient at an oblique angle or at an extended source to skin distance (SSD), tissue inhomogeneities can alter the dose distribution, and tissue equivalent material (such as wax) may be added to reduce dose to critical organs. Technological advances have allowed the current generation of treatment planning computers to implement dose calculation algorithms with the ability to model electron beams in these complex situations. These calculations have, however, yet to be verified by measurement. This work has assessed the accuracy of calculations in a number of specific instances. Chapter two contains a comparison of measured and calculated planar electron isodose distributions. Three situations were considered: oblique incidence, incidence on an irregular surface (such as that which would be arise from the use of wax to reduce dose to spinal cord), and incidence on a phantom containing a small air cavity. Calculations were compared with measurements made by thermoluminescent dosimetry (TLD) in a WTe electron solid water phantom. Chapter three assesses the planning computers' ability to model electron beam penumbra at extended SSD. Calculations were compared with diode measurements in a water phantom. Further measurements assessed doses in the junction region produced by abutting an extended SSD electron field with opposed photon fields. Chapter four describes an investigation of the size and shape of the region enclosed by the 90% isodose line when produced by limiting the electron beam with square and elliptical apertures. The 90% isodose line was chosen because clinical treatments are often prescribed such that a given volume receives at least 90% dose. Calculated and measured dose distributions were compared in a plane normal to the beam central axis. Measurements were made by film dosimetry. While chapters two to four examine relative doses, chapter five assesses the accuracy of absolute dose (or output) calculations performed by the planning computers. Output variation with SSD and field size was examined. Two further situations already assessed for the distribution of relative dose were also considered: an obliquely incident field, and a field incident on an irregular surface. The accuracy of calculations was assessed against criteria stipulated by the International Commission on Radiation Units and Measurement (ICRU). The Varian Cadplan and Helax TMS treatment planning systems produce acceptable accuracy in the calculation of relative dose from therapeutic electron beams in most commonly encountered situations. When interpreting clinical dose distributions, however, knowledge of the limitations of the calculation algorithm employed by each system is required in order to identify the minority of situations where results are not accurate. The calculation of absolute dose is too inaccurate to implement in a clinical environment. (Abstract shortened by ProQuest.).
Production of negative ions by dissociative electron attachment to SO2
NASA Technical Reports Server (NTRS)
Orient, O. J.; Srivastava, S. K.
1983-01-01
Dissociative electron attachment cross section measurements for the production of O(-), S(-), and SO(-) have been performed utilizing a crossed target SO2 molecule beam-electron beam geometry. The relative flow technique is employed to determine the absolute values of cross sections. The attachment energies corresponding to various cross section maxima are: 4.30 and 7.1 eV for O(-)/SO2; 4.0, 7.5, and 8.9 eV for S(-)/SO2, and 4.7 and 7.5 eV for SO(-)/SO2.
β -delayed neutron emission from 85Ga
NASA Astrophysics Data System (ADS)
Miernik, K.; Rykaczewski, K. P.; Grzywacz, R.; Gross, C. J.; Madurga, M.; Miller, D.; Stracener, D. W.; Batchelder, J. C.; Brewer, N. T.; Korgul, A.; Mazzocchi, C.; Mendez, A. J.; Liu, Y.; Paulauskas, S. V.; Winger, J. A.; Wolińska-Cichocka, M.; Zganjar, E. F.
2018-05-01
Decay of 85Ga was studied by means of β -neutron-γ spectroscopy. A pure beam of 85Ga was produced at the Holifield Radioactive Ion Beam Facility using a resonance ionization laser ion source and a high-resolution electromagnetic separator. The β -delayed neutron emission probability was measured for the first time, yielding 70(5)%. An upper limit of 0.1% for β -delayed two-neutron emission was also experimentally established for the first time. A detailed decay scheme including absolute γ -ray intensities was obtained. Results are compared with theoretical β -delayed emission models.
Some services of the Time and Frequency Division of the National Bureau of Standards
NASA Technical Reports Server (NTRS)
Barnes, J. A.
1973-01-01
The Time and Frequency Division of the National Bureau of Standards (NBS) provides several services to the general public. The radio broadcasts of WWV, WWVH, and WWVB supply reliable, unambiguous time signals to many users. The NBS telephone time-of-day service attracts several hundreds of thousands of calls each year. Periodically, the NBS provides courses on specific topics relating to time and frequency technology. In addition to numerous technical papers published each year, the NBS has prepared the first volume of a comprehensive monograph on time and frequency. The results of research in the Time and Frequency Division of the NBS have had significant impact. An active TV time system capable of serving most of the U.S. currently awaits a ruling by the FCC on a petition filed last year on behalf of the NBS by the Department of Commerce. Three more recent developments are: (1) a TV frequency comparator (patent applied for); (2) a method to perform an independent (absolute) frequency evaluation of commercial cesium beam oscillators; and (3) a method of removing one source of frequency drift in commercial cesium beam oscillators.
NASA Astrophysics Data System (ADS)
Hernández-Bello, Jimmy; D'Souza, Derek; Rossenberg, Ivan
2002-08-01
A method to determine the electron beam energy and an electron audit based on the current IPEM electron Code of Practice has been devised. During the commissioning on the new Varian 2100CD linear accelerator in The Middlesex Hospital, two methods were devised for the determination of electron energy. The first method involves the use of a two-depth method, whereby the ratio of ionisation (presented as a percentage) measured by an ion chamber at two depths in solid water is used to compare against the baseline ionisation depth value for that energy. The second method involves the irradiation of an X-ray film in solid water to obtain a depth dose curve and, hence determine the half value depth and practical range of the electrons. The results showed that the two-depth method has a better accuracy, repeatability, reliability and consistency than the X-ray method. The results for the electron audit showed that electron absolute outputs are obtained from ionisation measurements in solid water, where the energy-range parameters such as practical range and the depth at which ionisation is 50% of that at the maximum for the depth-ionisation curve are determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sommerville, M; Tambasco, M; Poirier, Y
2015-06-15
Purpose: To experimentally validate a rotational kV x-ray source characterization technique by computing CT dose in an anthropomorphic thorax phantom using an in-house dose computation algorithm (kVDoseCalc). Methods: The lateral variation in incident energy spectra of a GE Optima big bore CT scanner was found by measuring the HVL along the internal, full bow-tie filter axis. The HVL and kVp were used to generate the x-ray spectra using Spektr software, while beam fluence was derived by dividing the integral product of the spectra and in-air mass-energy absorption coefficients by in-air dose measurements along the bow-tie filter axis. Beams produced bymore » the GE Optima scanner were modeled at 80 and 140 kVp tube settings. kVDoseCalc calculates dose by solving the linear Boltzmann transport equation using a combination of deterministic and stochastic methods. Relative doses in an anthropomorphic thorax phantom (E2E SBRT Phantom) irradiated by the GE Optima scanner were measured using a (0.015 cc) PTW Freiburg ionization chamber, and compared to computations from kVDoseCalc. Results: The agreement in relative dose between dose computation and measurement for points of interest (POIs) within the primary path of the beam was within experimental uncertainty for both energies, however points outside the primary beam were not. The average absolute percent difference for POIs within the primary path of the beam was 1.37% and 5.16% for 80 and 140 kVp, respectively. The minimum and maximum absolute percent difference for both energies and all POIs within the primary path of the beam was 0.151% and 6.41%, respectively. Conclusion: The CT x-ray source characterization technique based on HVL measurements and kVp can be used to accurately compute CT dose in an anthropomorphic thorax phantom.« less
NASA Astrophysics Data System (ADS)
Schumacher, David; Sharma, Ravi; Grager, Jan-Carl; Schrapp, Michael
2018-07-01
Photon counting detectors (PCD) offer new possibilities for x-ray micro computed tomography (CT) in the field of non-destructive testing. For large and/or dense objects with high atomic numbers the problem of scattered radiation and beam hardening severely influences the image quality. This work shows that using an energy discriminating PCD based on CdTe allows to address these problems by intrinsically reducing both the influence of scattering and beam hardening. Based on 2D-radiographic measurements it is shown that by energy thresholding the influence of scattered radiation can be reduced by up to in case of a PCD compared to a conventional energy-integrating detector (EID). To demonstrate the capabilities of a PCD in reducing beam hardening, cupping artefacts are analyzed quantitatively. The PCD results show that the higher the energy threshold is set, the lower the cupping effect emerges. But since numerous beam hardening correction algorithms exist, the results of the PCD are compared to EID results corrected by common techniques. Nevertheless, the highest energy thresholds yield lower cupping artefacts than any of the applied correction algorithms. As an example of a potential industrial CT application, a turbine blade is investigated by CT. The inner structure of the turbine blade allows for comparing the image quality between PCD and EID in terms of absolute contrast, as well as normalized signal-to-noise and contrast-to-noise ratio. Where the absolute contrast can be improved by raising the energy thresholds of the PCD, it is found that due to lower statistics the normalized contrast-to-noise-ratio could not be improved compared to the EID. These results might change to the contrary when discarding pre-filtering of the x-ray spectra and thus allowing more low-energy photons to reach the detectors. Despite still being in the early phase in technological progress, PCDs already allow to improve CT image quality compared to conventional detectors in terms of scatter and beam hardening reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilpatrick, John D.
2014-03-24
This presentation includes slides on Conditions; Sternglass states; H+ beam interacts with a W sense wire – Sternglass theory for SE current; Observed H+ beam at 03WS001 location; Jan 23 data; H- beam at 03WS001 location, Jan 23 data, Sternglass theory for SE current; H- beam at 03WS001 location; Jan 23 data; H+ beam at 04WS001 location, Jan 23 data, Sternglass theory for SE current; H+ beam at 04WS001 location; Jan 23 data; H- beam at 10WS001 location, Nov 17, 2013 data, Sternglass theory for SE current; H- beam at 10WS001 location; Nov 17, 2013 data; H- beam at 11WS001more » location, Nov 17, 2013 data, Sternglass theory for SE current; and lastly H- beam at 11WS001 location; Nov 17, 2013 data.« less
Current-limited electron beam injection
NASA Technical Reports Server (NTRS)
Stenzel, R. L.
1977-01-01
The injection of an electron beam into a weakly collisional, magnetized background plasma was investigated experimentally. The injected beam was energetic and cold, the background plasma was initially isothermal. Beam and plasma dimensions were so large that the system was considered unbounded. The temporal and spatial evolution of the beam-plasma system was dominated by collective effects. High-frequency electrostatic instabilities rapidly thermalized the beam and heated the background electrons. The injected beam current was balanced by a return current consisting of background electrons drifting toward the beam source. The drift between electrons and ions gave rise to an ion acoustic instability which developed into strong three-dimensional turbulence. It was shown that the injected beam current was limited by the return current which is approximately given by the electron saturation current. Non-Maxwellian electron distribution functions were observed.
Sánchez-Doblado, F; Andreo, P; Capote, R; Leal, A; Perucha, M; Arráns, R; Núñez, L; Mainegra, E; Lagares, J I; Carrasco, E
2003-07-21
Absolute dosimetry with ionization chambers of the narrow photon fields used in stereotactic techniques and IMRT beamlets is constrained by lack of electron equilibrium in the radiation field. It is questionable that stopping-power ratio in dosimetry protocols, obtained for broad photon beams and quasi-electron equilibrium conditions, can be used in the dosimetry of narrow fields while keeping the uncertainty at the same level as for the broad beams used in accelerator calibrations. Monte Carlo simulations have been performed for two 6 MV clinical accelerators (Elekta SL-18 and Siemens Mevatron Primus), equipped with radiosurgery applicators and MLC. Narrow circular and Z-shaped on-axis and off-axis fields, as well as broad IMRT configured beams, have been simulated together with reference 10 x 10 cm2 beams. Phase-space data have been used to generate 3D dose distributions which have been compared satisfactorily with experimental profiles (ion chamber, diodes and film). Photon and electron spectra at various depths in water have been calculated, followed by Spencer-Attix (delta = 10 keV) stopping-power ratio calculations which have been compared to those used in the IAEA TRS-398 code of practice. For water/air and PMMA/air stopping-power ratios, agreements within 0.1% have been obtained for the 10 x 10 cm2 fields. For radiosurgery applicators and narrow MLC beams, the calculated s(w,air) values agree with the reference within +/-0.3%, well within the estimated standard uncertainty of the reference stopping-power ratios (0.5%). Ionization chamber dosimetry of narrow beams at the photon qualities used in this work (6 MV) can therefore be based on stopping-power ratios data in dosimetry protocols. For a modulated 6 MV broad beam used in clinical IMRT, s(w,air) agrees within 0.1% with the value for 10 x 10 cm2, confirming that at low energies IMRT absolute dosimetry can also be based on data for open reference fields. At higher energies (24 MV) the difference in s(w,air) was up to 1.1%, indicating that the use of protocol data for narrow beams in such cases is less accurate than at low energies, and detailed calculations of the dosimetry parameters involved should be performed if similar accuracy to that of 6 MV is sought.
Absolute dose calculations for Monte Carlo simulations of radiotherapy beams
NASA Astrophysics Data System (ADS)
Popescu, I. A.; Shaw, C. P.; Zavgorodni, S. F.; Beckham, W. A.
2005-07-01
Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 × 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 × 1013 ± 1.0% electrons incident on the target and a total dose of 20.87 cGy ± 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.
Controlling hollow relativistic electron beam orbits with an inductive current divider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.
2015-02-15
A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I{sub 2}-I{sub 1}), while the average force on the envelope (the beam width) is proportional to the beam current I{sub b} = (I{sub 2} + I{sub 1}). Themore » values of I{sub 1} and I{sub 2} depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. Solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.« less
Electron-Beam-Induced Current | Materials Science | NREL
Electron-Beam-Induced Current Electron-Beam-Induced Current Photo of a GaAsP-on-Si solar cell. EBIC measure electron-beam-induced current (EBIC). In presence of an electrostatic field (p-n junction
Method for measuring and controlling beam current in ion beam processing
Kearney, Patrick A.; Burkhart, Scott C.
2003-04-29
A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.
NASA Astrophysics Data System (ADS)
Didkovsky, Leonid; Wieman, Seth; Woods, Thomas
2016-10-01
The Extreme ultraviolet Spectrophotometer (ESP), one of the channels of SDO's Extreme ultraviolet Variability Experiment (EVE), measures solar irradiance in several EUV and soft x-ray (SXR) bands isolated using thin-film filters and a transmission diffraction grating, and includes a quad-diode detector positioned at the grating zeroth-order to observe in a wavelength band from about 0.1 to 7.0 nm. The quad diode signal also includes some contribution from shorter wavelength in the grating's first-order and the ratio of zeroth-order to first-order signal depends on both source geometry, and spectral distribution. For example, radiometric calibration of the ESP zeroth-order at the NIST SURF BL-2 with a near-parallel beam provides a different zeroth-to-first-order ratio than modeled for solar observations. The relative influence of "uncalibrated" first-order irradiance during solar observations is a function of the solar spectral irradiance and the locations of large Active Regions or solar flares. We discuss how the "uncalibrated" first-order "solar" component and the use of variable solar reference spectra affect determination of absolute SXR irradiance which currently may be significantly overestimated during high solar activity.
Intensity stabilisation of optical pulse sequences for coherent control of laser-driven qubits
NASA Astrophysics Data System (ADS)
Thom, Joseph; Yuen, Ben; Wilpers, Guido; Riis, Erling; Sinclair, Alastair G.
2018-05-01
We demonstrate a system for intensity stabilisation of optical pulse sequences used in laser-driven quantum control of trapped ions. Intensity instability is minimised by active stabilisation of the power (over a dynamic range of > 104) and position of the focused beam at the ion. The fractional Allan deviations in power were found to be <2.2 × 10^{-4} for averaging times from 1 to 16,384 s. Over similar times, the absolute Allan deviation of the beam position is <0.1 μm for a 45 {μ }m beam diameter. Using these residual power and position instabilities, we estimate the associated contributions to infidelity in example qubit logic gates to be below 10^{-6} per gate.
Resonant charge transfer in He/+/-He collisions studied with the merging-beams technique
NASA Technical Reports Server (NTRS)
Rundel, R. D.; Nitz, D. E.; Smith, K. A.; Geis, M. W.; Stebbings, R. F.
1979-01-01
Absolute cross sections are reported for the resonant charge-transfer reaction He(+) + He yields He + He(+) at collision energies between 0.1 and 187 eV. The results, obtained using a new merging-beam apparatus are in agreement both with theory and with measurements made using other experimental techniques. The experimentally determined cross sections between 0.5 and 187 eV fall about a line given by sigma exp 1/2(sq-A) = 5.09-2.99 lnW, where W is the collision energy in eV. Considerable attention is paid to the configuration and operation of the apparatus. Tests and calculations which confirm the interpretation of the experimental data in a merging-beam experiment are discussed.
NASA Astrophysics Data System (ADS)
He, Xiaozhong; Pang, Jian; Chen, Nan; Li, Qin; Dai, Wenhua; Ma, Chaofan; Zhao, Liangchao; Gao, Feng; Dai, Zhiyong
2017-06-01
The authors previously reported that the axial B-dots can be used to directly measure the beam tilt and demonstrated that the axial B-dots are applicable to a coaxial calibration stand. In this study, a combined B-dot monitor composed of four axial B-dot loops and four azimuthal ones is tested for the simultaneous measurement of the time-varying beam current, beam offset, and beam tilt at the output of the injector of the DRAGON-I induction linac. In the experiments, the beam offset and beam tilt at the position of the monitor are proportionally adjusted using a pair of steering coils. Eight waveforms acquired from the B-dot monitor are analyzed to reconstruct the time-varying beam current, beam offset, and beam tilt. The original signals of both the azimuthal B-dot and the axial B-dot ports change significantly with respect to the current applied to the steering coils. The measured beam tilt is linearly dependent on the current applied to the steering coils and agrees well with the measured beam offset.
NASA Astrophysics Data System (ADS)
Ries, Thomas C.
1995-05-01
Two new movable beam intensity profile monitors have been installed into the TRIUMF Parity Experiment 497 Beamlines. Each unit serves two functions. Firstly, the beam median position, in a plane normal to the beam, is detected by split plate Secondary Emission Monitors. This information is used to lock the beam into the position of the movable monitor to within a few μm's via high band width ferrite core steering magnets operating in tandem in a closed loop servo feedback control system. Secondly, the beam profile and intensity is detected via a multi-wire secondary emission non-movable monitor, where the data provides high precision values regarding centroidal positions and profiles. The centroid position of the beam is statistically determined to an accuracy of ±10 μm from a data record length of 1 second. The design of each device adheres to strict standards of mechanically rigid construction. The split plate SEM accuracy and repeatability is better than 15 μm with an absolute resolution limit of 0.4 μm. Maximum travel is 2 inches in the vertical plane. Since the device is mechanically modular and both degrees of freedom are combined into a single mechanical unit, fast and easy handling is possible for maintenance in radioactive areas. The actuators are dc servo motors with tachometers driven by linear servo power amplifiers. These amplifiers are used in lieu of pulse width modulated amps to eliminate noise produced by the switching circuits. Position sensing is done by variable reluctance type absolute rotary encoders providing 16 bit resolution over the full range of travel. Positioning is done manually using a self centring potentiometer on the control panel that provides a ± velocity command signal to the power amplifiers. This configuration ensures good controllability over a very large range of positioning speeds hence making 0.4 μm incremental positioning possible, as well as, fast relocations over large relative distances. The precision movement and jitter was measured in the laboratory. Examples will be given of the monitor use with beam.
Evaluation of a GEM and CAT-based detector for radiation therapy beam monitoring
NASA Astrophysics Data System (ADS)
Brahme, A.; Danielsson, M.; Iacobaeus, C.; Ostling, J.; Peskov, V.; Wallmark, M.
2000-11-01
We are developing a radiation therapy beam monitor for the Karolinska Institute. This monitor will consist of two consecutive detectors confined in one gas chamber: a "keV-photon detector", which will allow diagnostic quality visualization of the patient, and a "MeV-photon detector", that will measure the absolute intensity of the therapy beam and its position with respect to the patient. Both detectors are based on highly radiation resistant gas and solid photon to electron converters, combined with GEMs and a CAT as amplification structures. We have performed systematic studies of the high-rate characteristics of the GEM and the CAT, as well as tested the electron transfer through these electron multipliers and various types of converters. The tests show that the GEM and the CAT satisfy all requirements for the beam monitoring system. As a result of these studies we successfully developed and tested a full section of the beam monitor equipped with a MeV-photon converter placed between the GEM and the CAT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, K. K.; Tsai, H. -E.; Barber, S. K.
Control of the properties of laser-plasma-accelerated electron beams that were injected along a shock-induced density downramp through precision tailoring of the density profile was demonstrated using a 1.8 J, 45 fs laser interacting with a mm-scale gas jet. The effects on the beam spatial profile, steering, and absolute energy spread of the density region before the shock and tilt of the shock were investigated experimentally and with particle-in-cell simulations. By adjusting these density parameters, the electron beam quality was controlled and improved while the energy (30-180 MeV) and energy spread (2-11 MeV) were independently tuned. Simple models that are inmore » good agreement with the experimental results are proposed to explain these relationships, advancing the understanding of downramp injection. In conclusion, this technique allows for high-quality electron beams with percent-level energy spread to be tailored based on the application.« less
Swanson, K. K.; Tsai, H. -E.; Barber, S. K.; ...
2017-05-30
Control of the properties of laser-plasma-accelerated electron beams that were injected along a shock-induced density downramp through precision tailoring of the density profile was demonstrated using a 1.8 J, 45 fs laser interacting with a mm-scale gas jet. The effects on the beam spatial profile, steering, and absolute energy spread of the density region before the shock and tilt of the shock were investigated experimentally and with particle-in-cell simulations. By adjusting these density parameters, the electron beam quality was controlled and improved while the energy (30-180 MeV) and energy spread (2-11 MeV) were independently tuned. Simple models that are inmore » good agreement with the experimental results are proposed to explain these relationships, advancing the understanding of downramp injection. In conclusion, this technique allows for high-quality electron beams with percent-level energy spread to be tailored based on the application.« less
NASA Astrophysics Data System (ADS)
Takada, M.; Kamada, S.; Suda, M.; Fujii, R.; Nakamura, M.; Hoshi, M.; Sato, H.; Endo, S.; Hamano, T.; Arai, S.; Higashimata, A.
2012-10-01
We developed a real-time and non-destructive method of beam profile measurement on a target under large beam current irradiation, and without any complex radiation detectors or electrical circuits. We measured the beam profiles on a target by observing the target temperature using an infrared-radiation thermometer camera. The target temperatures were increased and decreased quickly by starting and stopping the beam irradiation within 1 s in response speed. Our method could trace beam movements rapidly. The beam size and position were calibrated by measuring O-ring heat on the target. Our method has the potential to measure beam profiles at beam current over 1 mA for proton and deuteron with the energy around 3 MeV and allows accelerator operators to adjust the beam location during beam irradiation experiments without decreasing the beam current.
Particle-in-cell simulations of electron beam control using an inductive current divider
Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; ...
2015-11-18
Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam’s return current. The current divider concept was proposed and studied theoretically in a previous publication [Phys. Plasmas 22, 023107 (2015)] A central post carries a portion of the return current (I 1) while the outer conductor carries the remainder (I 2) with the injected beam current given by I b=I 1+I 2. The simulations are in agreement with the theory whichmore » predicts that the total force on the beam trajectory is proportional to (I 2-I 1) and the force on the beam envelope is proportional to I b. For a fixed central post, the beam trajectory is controlled by varying the outer conductor radius which changes the inductance in the return-current path. The simulations show that the beam emittance is approximately constant as the beam propagates through the current divider to the target. As a result, independent control over both the current density and the beam angle at the target is possible by choosing the appropriate return-current geometry.« less
Unified beam splitter of fused silica grating under the second Bragg incidence.
Sun, Zhumei; Zhou, Changhe; Cao, Hongchao; Wu, Jun
2015-11-01
A unified design for a 1×2 beam splitter of dielectric rectangular transmission gratings under the second Bragg incidence is theoretically investigated for TE- and TM-polarized light. The empirical equations of the relative grating parameters (ratio of the absolute one to incidence wavelength) for this design are also obtained with the simplified modal method (SMM). The influences of polarization of incident light and relative grating parameters on the performance of the beam splitter are thoroughly studied based on the SMM and rigorous coupled-wave analysis. Two specific gratings are demonstrated with an even split and high diffraction efficiency (>94% for TE polarization and >97% for the TM counterpart). The unified profiles of the 1×2 beam splitter are independent from the incidence wavelength since the refractive index of fused silica is roughly a constant over a wide range of wavelengths, which should be promising for future applications.
Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude
Bogaty, J.M.; Clifft, B.E.; Bollinger, L.M.
1995-08-08
A beam current limiter is disclosed for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity. 6 figs.
Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude
Bogaty, John M.; Clifft, Benny E.; Bollinger, Lowell M.
1995-01-01
A beam current limiter for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity.
Marafini, M; Paramatti, R; Pinci, D; Battistoni, G; Collamati, F; De Lucia, E; Faccini, R; Frallicciardi, P M; Mancini-Terracciano, C; Mattei, I; Muraro, S; Piersanti, L; Rovituso, M; Rucinski, A; Russomando, A; Sarti, A; Sciubba, A; Solfaroli Camillocci, E; Toppi, M; Traini, G; Voena, C; Patera, V
2017-02-21
Nowadays there is a growing interest in particle therapy treatments exploiting light ion beams against tumors due to their enhanced relative biological effectiveness and high space selectivity. In particular promising results are obtained by the use of 4 He projectiles. Unlike the treatments performed using protons, the beam ions can undergo a fragmentation process when interacting with the atomic nuclei in the patient body. In this paper the results of measurements performed at the Heidelberg Ion-Beam Therapy center are reported. For the first time the absolute fluxes and the energy spectra of the fragments-protons, deuterons, and tritons-produced by 4 He ion beams of 102, 125 and 145 MeV u -1 energies on a poly-methyl methacrylate target were evaluated at different angles. The obtained results are particularly relevant in view of the necessary optimization and review of the treatment planning software being developed for clinical use of 4 He beams in clinical routine and the relative bench-marking of Monte Carlo algorithm predictions.
NASA Astrophysics Data System (ADS)
Marafini, M.; Paramatti, R.; Pinci, D.; Battistoni, G.; Collamati, F.; De Lucia, E.; Faccini, R.; Frallicciardi, P. M.; Mancini-Terracciano, C.; Mattei, I.; Muraro, S.; Piersanti, L.; Rovituso, M.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Solfaroli Camillocci, E.; Toppi, M.; Traini, G.; Voena, C.; Patera, V.
2017-02-01
Nowadays there is a growing interest in particle therapy treatments exploiting light ion beams against tumors due to their enhanced relative biological effectiveness and high space selectivity. In particular promising results are obtained by the use of 4He projectiles. Unlike the treatments performed using protons, the beam ions can undergo a fragmentation process when interacting with the atomic nuclei in the patient body. In this paper the results of measurements performed at the Heidelberg Ion-Beam Therapy center are reported. For the first time the absolute fluxes and the energy spectra of the fragments—protons, deuterons, and tritons—produced by 4He ion beams of 102, 125 and 145 MeV u-1 energies on a poly-methyl methacrylate target were evaluated at different angles. The obtained results are particularly relevant in view of the necessary optimization and review of the treatment planning software being developed for clinical use of 4He beams in clinical routine and the relative bench-marking of Monte Carlo algorithm predictions.
Beam-dynamic effects at the CMS BRIL van der Meer scans
NASA Astrophysics Data System (ADS)
Babaev, A.
2018-03-01
The CMS Beam Radiation Instrumentation and Luminosity Project (BRIL) is responsible for the simulation and measurement of luminosity, beam conditions and radiation fields in the CMS experiment. The project is engaged in operating and developing new detectors (luminometers), adequate for the experimental conditions associated with high values of instantaneous luminosity delivered by the CERN LHC . BRIL operates several detectors based on different physical principles and technologies. Precise and accurate measurements of the delivered luminosity is of paramount importance for the CMS physics program. The absolute calibration of luminosity is achieved by the van der Meer method, which is carried out under specially tailored conditions. This paper presents models used to simulate of beam-dynamic effects arising due to the electromagnetic interaction of colliding bunches. These effects include beam-beam deflection and dynamic-β effect. Both effects are important to luminosity measurements and influence calibration constants at the level of 1-2%. The simulations are carried out based on 2016 CMS van der Meer scan data for proton-proton collisions at a center-of-mass energy of 13 TeV.
Precision atomic beam density characterization by diode laser absorption spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxley, Paul; Wihbey, Joseph
2016-09-15
We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident lasermore » light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10{sup −5} are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10{sup 4} atoms cm{sup −3}. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.« less
Precision atomic beam density characterization by diode laser absorption spectroscopy.
Oxley, Paul; Wihbey, Joseph
2016-09-01
We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 -5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm -3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.
Advanced capabilities and applications of a sputter-RBS system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brijs, B.; Deleu, J.; Beyer, G.
1999-06-10
In previous experiments, sputter-RBS{sup 1} has proven to be an ideal tool to study the interaction of low energy ions. This contribution employs the same methodology to identify surface contamination induced during sputtering and to the determine absolute sputter yields. In the first experiment ERDA analysis was used to study the evolution of Hydrogen contamination during sputter-RBS experiments. Since the determination of Hydrogen concentration in very thin near surface layers is frequently limited by the presence of a strong surface peak of Hydrogen originating from adsorbed contamination of the residual vacuum, removal of this contamination would increase the sensitivity formore » Hydrogen detection in the near sub surface drastically. Therefore low energy (12 keV) Argon sputtering was used to remove the Hydrogen surface peak. However enhanced Hydrogen adsorption was observed related to the Ar dose. This experiment shows that severe vacuum conditions and the use of high current densities/sputter yields are a prerequisite for an efficient detection of Hydrogen in the near surface layers. In the second experiment, an attempt was made to determine the sputter yield of Cu during low energy (12 keV) Oxygen bombardment. In order to determine the accumulated dose of the low energy ion beam, a separate Faraday cup in combination with a remote controlled current have been added to the existing sputter-RBS set-up. Alternating sputtering and RBS analysis seem to be an adequate tool for the determination of the absolute sputter yield of Cu and this as well in the as under steady state conditions.« less
Relativistic Electron Beams, Forward Thomson Scattering, and ``Raman'' Scattering
NASA Astrophysics Data System (ADS)
Simon, A.
1999-11-01
Experiments at LLE (see abstract by D. Hicks at this meeting) show that surprisingly high potentials (+0.5 to 2.0 MV) develop in plasmas irradiated by high-energy lasers. The highly conducting plasma will be a near equipotential and should attract return-current electrons in a radial beam-like distribution, especially in the outer low-density regions. This will initiate the BOT instability, creating large plasma waves with phase velocities close to c. Coherent Thomson scattering of the interaction beam from these waves must occur primarily in the forward direction. This will appear to be ``backward SRS'' upon reflection from a critical surface. We will show that the resulting spectrum is fairly broad and at short wavelengths. Collisional absorption of the scattered EM wave limits the reflectivity to low values (depending on the density scale length). Thus, a distinct difference exists between the spectrum for thick targets (nc surface present) and thin targets (gasbags, etc., from which primarily a narrow absolute-SRS backward emission occurs, at the peak density). The thick-target, reflected-wave angular distribution will be concentrated in the backward direction. The corresponding plasma-wave k-vector will be a fraction of k_0. The variation of the spectrum with potential and angle will be discussed. Comparison will be made with recent results at LLE and LLNL. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, UR, and NYSERDA.
Absolute wind velocities in the lower thermosphere of Venus using infrared heterodyne spectroscopy
NASA Technical Reports Server (NTRS)
Goldstein, Jeffrey J.; Mumma, Michael J.; Kostiuk, Theodor; Deming, Drake; Espenak, Fred; Zipoy, David
1991-01-01
NASA's IR Telescope Facility and the McMath Solar Telescope have yielded absolute wind velocities in the Venus thermosphere for December 1985 to March 1987 with sufficient spatial resolution for circulation model discrimination. A qualitative analysis of beam-integrated winds indicates subsolar-to-antisolar circulation in the lower thermosphere; horizontal wind velocity was derived from a two-parameter model wind field of subsolar-antisolar and zonal components. A unique model fit common to all observing periods possessed 120 m/sec subsolar-antisolar and 25 m/sec zonal retrograde components, consistent with the Bougher et al. (1986, 1988) hydrodynamical models for 110 km.
Particle-in-cell simulations of electron beam control using an inductive current divider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.
2015-11-15
Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam's return current. The current divider concept was proposed and studied theoretically in a previous publication [Swanekamp et al., Phys. Plasmas 22, 023107 (2015)]. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}) with the injected beam current given by I{sub b} = I{sub 1} + I{sub 2}. The simulations are in agreement withmore » the theory which predicts that the total force on the beam trajectory is proportional to (I{sub 2}−I{sub 1}) and the force on the beam envelope is proportional to I{sub b}. Independent control over both the current density and the beam angle at the target is possible by choosing the appropriate current-divider geometry. The root-mean-square (RMS) beam emittance (ε{sub RMS}) varies as the beam propagates through the current divider to the target. For applications where control of the beam trajectory is desired and the current density at the target is similar to the current density at the entrance foil, there is a modest 20% increase in ε{sub RMS} at the target. For other applications where the beam is pinched to a current density ∼5 times larger at the target, ε{sub RMS} is 2–3 times larger at the target.« less
Method of automatic measurement and focus of an electron beam and apparatus therefore
Giedt, W.H.; Campiotti, R.
1996-01-09
An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding is disclosed. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined. 12 figs.
Method of automatic measurement and focus of an electron beam and apparatus therefor
Giedt, Warren H.; Campiotti, Richard
1996-01-01
An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined.
Impact of spot charge inaccuracies in IMPT treatments.
Kraan, Aafke C; Depauw, Nicolas; Clasie, Ben; Giunta, Marina; Madden, Tom; Kooy, Hanne M
2017-08-01
Spot charge is one parameter of pencil-beam scanning dose delivery system whose accuracy is typically high but whose required value has not been investigated. In this work we quantify the dose impact of spot charge inaccuracies on the dose distribution in patients. Knowing the effect of charge errors is relevant for conventional proton machines, as well as for new generation proton machines, where ensuring accurate charge may be challenging. Through perturbation of spot charge in treatment plans for seven patients and a phantom, we evaluated the dose impact of absolute (up to 5× 10 6 protons) and relative (up to 30%) charge errors. We investigated the dependence on beam width by studying scenarios with small, medium and large beam sizes. Treatment plan statistics included the Γ passing rate, dose-volume-histograms and dose differences. The allowable absolute charge error for small spot plans was about 2× 10 6 protons. Larger limits would be allowed if larger spots were used. For relative errors, the maximum allowable error size for small, medium and large spots was about 13%, 8% and 6% for small, medium and large spots, respectively. Dose distributions turned out to be surprisingly robust against random spot charge perturbation. Our study suggests that ensuring spot charge errors as small as 1-2% as is commonly aimed at in conventional proton therapy machines, is clinically not strictly needed. © 2017 American Association of Physicists in Medicine.
Absolute dose determination in high-energy electron beams: Comparison of IAEA dosimetry protocols
Sathiyan, S.; Ravikumar, M.
2008-01-01
In this study, absorbed doses were measured and compared for high-energy electrons (6, 9, 12, 16, and 20 MeV) using International Atomic Energy Agency (IAEA), Technical Reports Series No. 277 (TRS), TRS 381, and TRS 398 dosimetry protocols. Absolute dose measurements were carried out using FC65-G Farmer chamber and Nordic Association of Clinical Physicists (NACP) parallel plate chamber with DOSE1 electrometer in WP1-D water phantom for reference field size of 15 × 15 cm2 at 100 cm source-to-surface distance. The results show that the difference between TRS 398 and TRS 381 was about 0.24% to 1.3% depending upon the energy, and the maximum difference between TRS 398 and TRS 277 was 1.5%. The use of cylindrical chamber in electron beam gives the maximum dose difference between the TRS 398 and TRS 277 in the order of 1.4% for energies above 10 MeV (R50 > 4 g/cm2). It was observed that the accuracy of dose estimation was better with the protocols based on the water calibration procedures, as no conversion quantities are involved for conversion of dose from air to water. The cross-calibration procedure of parallel plate chamber with high-energy electron beams is recommended as it avoids pwall correction factor entering into the determination of kQ,Qo. PMID:19893700
NASA Technical Reports Server (NTRS)
Ulich, B. L.; Rhodes, P. J.; Davis, J. H.; Hollis, J. M.
1980-01-01
Careful observations have been made at 86.1 GHz to derive the absolute brightness temperatures of the sun (7914 + or - 192 K), Venus (357.5 + or - 13.1 K), Jupiter (179.4 + or - 4.7 K), and Saturn (153.4 + or - 4.8 K) with a standard error of about three percent. This is a significant improvement in accuracy over previous results at millimeter wavelengths. A stable transmitter and novel superheterodyne receiver were constructed and used to determine the effective collecting area of the Millimeter Wave Observatory (MWO) 4.9-m antenna relative to a previously calibrated standard gain horn. The thermal scale was set by calibrating the radiometer with carefully constructed and tested hot and cold loads. The brightness temperatures may be used to establish an absolute calibration scale and to determine the antenna aperture and beam efficiencies of other radio telescopes at 3.5-mm wavelength.
NASA Astrophysics Data System (ADS)
Eleftherakis, Dimitrios; Berger, Laurent; Le Bouffant, Naig; Pacault, Anne; Augustin, Jean-Marie; Lurton, Xavier
2018-06-01
The calibration of multibeam echosounders for backscatter measurements can be conducted efficiently and accurately using data from surveys over a reference natural area, implying appropriate measurements of the local absolute values of backscatter. Such a shallow area (20-m mean depth) has been defined and qualified in the Bay of Brest (France), and chosen as a reference area for multibeam systems operating at 200 and 300 kHz. The absolute reflectivity over the area was measured using a calibrated single-beam fishery echosounder (Simrad EK60) tilted at incidence angles varying between 0° and 60° with a step of 3°. This reference backscatter level is then compared to the average backscatter values obtained by a multibeam echosounder (here a Kongsberg EM 2040-D) at a close frequency and measured as a function of angle; the difference gives the angular bias applicable to the multibeam system for recorded level calibration. The method is validated by checking the single- and multibeam data obtained on other areas with sediment types different from the reference area.
π0 mass reconstruction in NOvA Far Detector.
NASA Astrophysics Data System (ADS)
Edayath, Sijith
2017-01-01
NOvA is a long-baseline neutrino oscillation experiment with functionally identical, segmented, tracking calorimeter Near and Far detectors. The detectors lie 14.6 mrad off-axis from the Fermilab NuMI beam, with a well-defined peak in neutrino energy at 2 GeV. The absolute calibration of the energy scale of the detectors is a major systematic uncertainty in long-baseline oscillation search in NOvA. Neutrino detectors make use of some standard candles for absolute energy calibration. Stopping muon energy distributions, Michel electron energy distributions, and invariant π0 mass are among them. In this talk, we cover NOvA's use of a new method to identify π0 with cosmic origins in the NOvA Far Detector. We employ a computer vision based particle identifier using convolutional neural networks (CVN) to identify π0s, complementing an existing strategy to identify π0 from the neutrino beam using more traditional methods in the Near Detector. Registered for PhD at Cochin University of Science and Technology, India and doing research in NOvA experiment at Fermilab.
Stability analysis of flexible wind turbine blades using finite element method
NASA Technical Reports Server (NTRS)
Kamoulakos, A.
1982-01-01
Static vibration and flutter analysis of a straight elastic axis blade was performed based on a finite element method solution. The total potential energy functional was formulated according to linear beam theory. The inertia and aerodynamic loads were formulated according to the blade absolute acceleration and absolute velocity vectors. In vibration analysis, the direction of motion of the blade during the first out-of-lane and first in-plane modes was examined; numerical results involve NASA/DOE Mod-0, McCauley propeller, north wind turbine and flat plate behavior. In flutter analysis, comparison cases were examined involving several references. Vibration analysis of a nonstraight elastic axis blade based on a finite element method solution was performed in a similar manner with the straight elastic axis blade, since it was recognized that a curved blade can be approximated by an assembly of a sufficient number of straight blade elements at different inclinations with respect to common system of axes. Numerical results involve comparison between the behavior of a straight and a curved cantilever beam during the lowest two in-plane and out-of-plane modes.
Optical monitoring of ion beam Y-Ba-Cu-O sputtering
NASA Astrophysics Data System (ADS)
Klein, J. D.; Yen, A.
1990-11-01
The emission spectra resulting from ion beam sputtering a Y-Ba-Cu-O target were observed as a function of beam voltage and beam current. The spectra were relatively clean with several peaks readily attributed to each of Y, Ba, and Ar. Monitoring of copper and oxygen was more difficult with a single CuO peak and one O peak evident. The intensities of the cation peaks were linear with respect to beam voltage above 400 V. Since target current was found not to be directly proportional to beam current, target power was defined as the product of beam voltage and target current. The response of cation peak height to changes in target power was linear and similar for variations of either beam voltage or target current.
Kron, T; McNiven, A; Witruk, B; Kenny, M; Battista, J
2006-12-01
Plane parallel ionization chambers are an important tool for dosimetry and absolute calibration of electron beams used for radiotherapy. Most dosimetric protocols require corrections for recombination and polarity effects, which are to be determined experimentally as they depend on chamber design and radiation quality. Both effects were investigated in electron beams from a linear accelerator (Varian 21CD) for a set of four tissue equivalent plane parallel ionization chambers customized for the present research by Standard Imaging (Madison WI). All four chambers share the same design and air cavity dimensions, differing only in the diameter of their collecting electrode and the corresponding width of the guard ring. The diameters of the collecting electrodes were 2 mm, 4 mm, 10 mm and 20 mm. Measurements were taken using electron beams of nominal energy 6 to 20 MeV in a 10 cm x 10 cm field size with a SSD of 100 cm at various depths in a Solid Water slab phantom. No significant variation of recombination effect was found with radiation quality, depth of measurement or chamber design. However, the polarity effect exceeded 5% for the chambers with small collecting electrode for an effective electron energy below 4 MeV at the point of measurement. The magnitude of the effect increased with decreasing electron energy in the phantom. The polarity correction factor calculated following AAPM protocol TG51 ranged from approximately 1.00 for the 20.0 mm chamber to less than 0.95 for the 2 mm chamber at 4.1 cm depth in a electron beam of nominally 12 MeV. By inverting the chamber it could be shown that the polarity effect did not depend on the polarity of the electrode first traversed by the electron beam. Similarly, the introduction of an air gap between the overlying phantom layer and the chambers demonstrated that the angular distribution of the electrons at the point of measurement had a lesser effect on the polarity correction than the electron energy itself. The magnitude of the absolute difference between charge collected at positive and negative polarity was found to correlate with the area of the collecting electrode which is consistent with the explanation that differences in thickness of the collecting electrodes and the number of electrons stopped in them contribute significantly to the polarity effect. Overall, the polarity effects found in the present study would have a negligible effect on electron beam calibration at a measurement depth recommended by most calibration protocols. However, the present work tested the corrections under extreme conditions thereby aiming at greater understanding of the mechanism underlying the correction factors for these chambers. This may lead to better chamber design for absolute dosimetry and electron beam characterization with less reliance on empirical corrections.
Optical Johnson noise thermometry
NASA Technical Reports Server (NTRS)
Shepard, R. L.; Blalock, T. V.; Maxey, L. C.; Roberts, M. J.; Simpson, M. L.
1989-01-01
A concept is being explored that an optical analog of the electrical Johnson noise may be used to measure temperature independently of emissivity. The concept is that a laser beam may be modulated on reflection from a hot surface by interaction of the laser photons with the thermally agitated conduction electrons or the lattice phonons, thereby adding noise to the reflected laser beam. If the reflectance noise can be detected and quantified in a background of other noise in the optical and signal processing systems, the reflectance noise may provide a noncontact measurement of the absolute surface temperature and may be independent of the surface's emissivity.
Multibeam Stimulated Raman Scattering in Inertial Confinement Fusion Conditions.
Michel, P; Divol, L; Dewald, E L; Milovich, J L; Hohenberger, M; Jones, O S; Hopkins, L Berzak; Berger, R L; Kruer, W L; Moody, J D
2015-07-31
Stimulated Raman scattering from multiple laser beams arranged in a cone sharing a common daughter wave is investigated for inertial confinement fusion (ICF) conditions in a inhomogeneous plasma. It is found that the shared electron plasma wave (EPW) process, where the lasers collectively drive the same EPW, can lead to an absolute instability when the electron density reaches a matching condition dependent on the cone angle of the laser beams. This mechanism could explain recent experimental observations of hot electrons at early times in ICF experiments, at densities well below quarter critical when two plasmon decay is not expected to occur.
Cold and intense OH radical beam sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ploenes, Ludger; Meerakker, Sebastiaan Y. T. van de; Haas, Dominik
2016-05-15
We present the design and performance of two supersonic radical beam sources: a conventional pinhole-discharge source and a dielectric barrier discharge (DBD) source, both based on the Nijmegen pulsed valve. Both designs have been characterized by discharging water molecules seeded in the rare gases Ar, Kr, or Xe. The resulting OH radicals have been detected by laser-induced fluorescence. The measured OH densities are (3.0 ± 0.6) × 10{sup 11} cm{sup -3} and (1.0 ± 0.5) × 10{sup 11} cm{sup -3} for the pinhole-discharge and DBD sources, respectively. The beam profiles for both radical sources show a relative longitudinal velocity spreadmore » of about 10%. The absolute rotational ground state population of the OH beam generated from the pinhole-discharge source has been determined to be more than 98%. The DBD source even produces a rotationally colder OH beam with a population of the ground state exceeding 99%. For the DBD source, addition of O{sub 2} molecules to the gas mixture increases the OH beam density by a factor of about 2.5, improves the DBD valve stability, and allows to tune the mean velocity of the radical beam.« less
High-flux source of low-energy neutral beams using reflection of ions from metals
NASA Technical Reports Server (NTRS)
Cuthbertson, John W.; Motley, Robert W.; Langer, William D.
1992-01-01
Reflection of low-energy ions from surfaces can be applied as a method of producing high-flux beams of low-energy neutral particles, and is an important effect in several areas of plasma technology, such as in the edge region of fusion devices. We have developed a beam source based on acceleration and reflection of ions from a magnetically confined coaxial RF plasma source. The beam provides a large enough flux to allow the energy distribution of the reflected neutrals to be measured despite the inefficiency of detection, by means of an electrostatic cylindrical mirror analyzer coupled with a quadrupole mass spectrometer. Energy distributions have been measured for oxygen, nitrogen, and inert gas ions incident with from 15 to 70 eV reflected from amorphous metal surfaces of several compositions. For ions of lighter atomic mass than the reflecting metal, reflected beams have peaked energy distributions; beams with the peak at 4-32 eV have been measured. The energy and mass dependences of the energy distributions as well as measurements of absolute flux, and angular distribution and divergence are reported. Applications of the neutral beams produced are described.
Current Reversals of an Underdamped Brownian Particle in an Asymmetric Deformable Potential
NASA Astrophysics Data System (ADS)
Cai, Chun-Chun; Liu, Jian-Li; Chen, Hao; Li, Feng-Guo
2018-03-01
Transport of an underdamped Brownian particle in a one-dimensional asymmetric deformable potential is investigated in the presence of both an ac force and a static force, respectively. From numerical simulations, we obtain the current average velocity. The current reversals and the absolute negative mobility are presented. The increasing of the deformation of the potential can cause the absolute negative mobility to be suppressed and even disappear. When the static force is small, the increase of the potential deformation suppresses the absolute negative mobility. When the force is large, the absolute negative mobility disappears. In particular, when the potential deformation is equal to 0.015, the two current reversals present with the increasing of the force. Remarkably, when the potential deformation is small, there are three current reversals with the increasing of the friction coefficient and the average velocity presents a oscillation behavior. Supported in part by the National Natural Science Foundation of China under Grant Nos. 11575064 and 11175067, and the Natural Science Foundation of Guangdong Province under Grant No. 2016A030313433
NASA Astrophysics Data System (ADS)
Qi, Li; Zhu, Jiang; Hancock, Aneeka M.; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D.; Chen, Zhongping
2017-02-01
Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it not only relates to the properties of the laser and the scattering particles, but also relates to the geometry of both directions of the laser beam and the flow. In this paper, focusing on the analysis of cerebral hemodynamics, we presents a method to quantify the total absolute blood flow velocity in middle cerebral artery (MCA) based on volumetric vessel reconstruction from pure DOCT images. A modified region growing segmentation method is first used to localize the MCA on successive DOCT B-scan images. Vessel skeletonization, followed by an averaging gradient angle calculation method, is then carried out to obtain Doppler angles along the entire MCA. Once the Doppler angles are determined, the absolute blood flow velocity of each position on the MCA is easily found. Given a seed point position on the MCA, our approach could achieve automatic quantification of the fully distributed absolute BFV. Based on experiments conducted using a swept-source optical coherence tomography system, our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches in the rodent brain.
Dynamic characteristics of a 30-centimeter mercury ion thruster
NASA Technical Reports Server (NTRS)
Serafini, J. S.; Mantenieks, M. A.; Rawlin, V. K.
1975-01-01
The present work reports on measurements of the fluctuations in the beam current, discharge current, neutralizer keeper current, and discharge voltage of a 30-cm ion thruster made with 60Hz laboratory-type power supplies. The intensities of the fluctuations (ratio of the root-mean-square magnitude to time-average quantity) were found to depend significantly on the beam and magnetic baffle currents. The shape of the frequency spectra of the discharge plasma fluctuations was related to the beam and magnetic baffle currents. The predominant peaks of the beam and discharge current spectra occurred at frequencies less than 30 kilohertz. This discharge chamber resonance could be attributable to ion-acoustic wave phenomena. Cross-correlations of the discharge and beam currents indicated that the dependence on the magnetic baffle current was strong. The measurements revealed that the discharge current fluctuations directly contribute to the beam current fluctuations and that the power supply characteristics can modify these fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vauzour, B.; Laboratoire d'Optique Appliquée, ENSTA-CNRS-Ecole Polytechnique, UMR 7639, 91761 Palaiseau; Debayle, A.
2014-03-15
We present results on laser-driven relativistic electron beam propagation through aluminum samples, which are either solid and cold or compressed and heated by laser-induced shock. A full numerical description of fast electron generation and transport is found to reproduce the experimental absolute K{sub α} yield and spot size measurements for varying target thicknesses, and to sequentially quantify the collisional and resistive electron stopping powers. The results demonstrate that both stopping mechanisms are enhanced in compressed Al samples and are attributed to the increase in the medium density and resistivity, respectively. For the achieved time- and space-averaged electronic current density, 〈j{submore » h}〉∼8×10{sup 10} A/cm{sup 2} in the samples, the collisional and resistive stopping powers in warm and compressed Al are estimated to be 1.5 keV/μm and 0.8 keV/μm, respectively. By contrast, for cold and solid Al, the corresponding estimated values are 1.1 keV/μm and 0.6 keV/μm. Prospective numerical simulations involving higher j{sub h} show that the resistive stopping power can reach the same level as the collisional one. In addition to the effects of compression, the effect of the transient behavior of the resistivity of Al during relativistic electron beam transport becomes progressively more dominant, and for a significantly high current density, j{sub h}∼10{sup 12} A/cm{sup 2}, cancels the difference in the electron resistive stopping power (or the total stopping power in units of areal density) between solid and compressed samples. Analytical calculations extend the analysis up to j{sub h}=10{sup 14} A/cm{sup 2} (representative of the full-scale fast ignition scenario of inertial confinement fusion), where a very rapid transition to the Spitzer resistivity regime saturates the resistive stopping power, averaged over the electron beam duration, to values of ∼1 keV/μm.« less
SU-D-213-06: Dosimetry of Modulated Electron Radiation Therapy Using Fricke Gel Dosimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gawad, M Abdel; Elgohary, M; Hassaan, M
Purpose: Modulated electron radiation therapy (MERT) has been proposed as an effective modality for treatment of superficial targets. MERT utilizes multiple beams of different energies which are intensity modulated to deliver optimized dose distribution. Energy independent dosimeters are thus needed for quantitative evaluations of MERT dose distributions and measurements of absolute doses delivered to patients. Thus in the current work we study the feasibility of Fricke gel dosimeters in MERT dosimetry. Methods: Batches of radiation sensitive Fricke gel is fabricated and poured into polymethyl methacrylate cuvettes. The samples were irradiated in solid water phantom and a thick layer of bolusmore » was used as a buildup. A spectrophotometer system was used for measuring the color changes (the absorbance) before and after irradiation and then we calculate net absorbance. We constructed calibration curves to relate the measured absorbance in terms of absorbed dose for all available electron energies. Dosimetric measurements were performed for mixed electron beam delivery and we also performed measurement for segmented field delivery with the dosimeter placed at the junction of two adjacent electron beams of different energies. Dose measured by our gel dosimetry is compared to that calculation from our precise treatment planning system. We also initiated a Monte Carlo study to evaluate the water equivalence of our dosimeters. MCBEAM and MCSIM codes were used for treatment head simulation and phantom dose calculation. PDDs and profiles were calculated for electron beams incident on a phantom designed with 1cm slab of Fricke gel. Results: The calibration curves showed no observed energy dependence with all studied electron beam energies. Good agreement was obtained between dose calculated and that obtained by gel dosimetry. Monte Carlo results illustrated the tissue equivalency of our Gel dosimeters. Conclusion: Fricke Gel dosimeters represent a good option for the dosimetric quality assurance prior to MERT application.« less
A CBCT study of the gravity-induced movement in rotating rabbits
NASA Astrophysics Data System (ADS)
Barber, Jeffrey; Shieh, Chun-Chien; Counter, William; Sykes, Jonathan; Bennett, Peter; Ahern, Verity; Corde, Stéphanie; Heng, Soo-Min; White, Paul; Jackson, Michael; Liu, Paul; Keall, Paul J.; Feain, Ilana
2018-05-01
Fixed-beam radiotherapy systems with subjects rotating about a longitudinal (horizontal) axis are subject to gravity-induced motion. Limited reports on the degree of this motion, and any deformation, has been reported previously. The purpose of this study is to quantify the degree of anatomical motion caused by rotating a subject around a longitudinal axis, using cone-beam CT (CBCT). In the current study, a purpose-made longitudinal rotating was aligned to a Varian TrueBeam kV imaging system. CBCT images of three live rabbits were acquired at fixed rotational offsets of the cradle. Rigid and deformable image registrations back to the original position were used to quantify the motion experienced by the subjects under rotation. In the rotation offset CBCTs, the mean magnitude of rigid translations was 5.7 ± 2.7 mm across all rabbits and all rotations. The translation motion was reproducible between multiple rotations within 2.1 mm, 1.1 mm, and 2.8 mm difference for rabbit 1, 2, and 3, respectively. The magnitude of the mean and absolute maximum deformation vectors were 0.2 ± 0.1 mm and 5.4 ± 2.0 mm respectively, indicating small residual deformations after rigid registration. In the non-rotated rabbit 4DCBCT, respiratory diaphragm motion up to 5 mm was observed, and the variation in respiratory motion as measured from a series of 4DCBCT scans acquired at each rotation position was small. The principle motion of the rotated subjects was rigid translational motion. The deformation of the anatomy under rotation was found to be similar in scale to normal respiratory motion. This indicates imaging and treatment of rotated subjects with fixed-beam systems can use rigid registration as the primary mode of motion estimation. While the scaling of deformation from rabbits to humans is uncertain, these proof-of-principle results indicate promise for fixed-beam treatment systems.
Dynamic characteristic of a 30-cm mercury ion thruster
NASA Technical Reports Server (NTRS)
Serafini, J. S.; Mantenieks, M. A.; Rawlin, V. K.
1975-01-01
Measurements of the fluctuations of the discharge and beam plasmas of a 30 centimeter ion thruster were performed using 60 Hertz laboratory type power supplies. The time-varying properties of the discharge voltage and current, the ion beam current, and neutralizer keeper current were measured. The intensities of the fluctuations were found to depend on the beam and magnetic baffle currents. The shape of the frequency spectra of the discharge plasma fluctuations was found to be related to the beam and magnetic baffle currents. The measurements indicated that the discharge current fluctuations directly contribute to the beam current fluctuations and that the power supply characteristics modify these fluctuations.
Simultaneous CARS and Interferometric Rayleigh Scattering
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel; Danehy, Paul M.; Grinstead, Keith D., Jr.; Tedder, Sarah; Cutler, Andrew D.
2006-01-01
This paper reports for the first time the combination of a dual-pump coherent anti-Stokes Raman scattering system with an interferometric Rayleigh scattering system (CARS - IRS) to provide time-resolved simultaneous measurement of multiple properties in combustion flows. The system uses spectrally narrow green (seeded Nd:YAG at 532 nm) and yellow (552.9 nm) pump beams and a spectrally-broad red (607 nm) beam as the Stokes beam. A spectrometer and a planar Fabry-Perot interferometer used in the imaging mode are used to record the spectrally broad CARS spectra and the spontaneous Rayleigh scattering spectra, respectively. Time-resolved simultaneous measurement of temperature, absolute mole fractions of N2, O2, and H2, and two components of velocity in a Hencken burner flame were performed to demonstrate the technique.
Reda, Ibrahim; Andreas, Afshin; Dooraghi, Mike; ...
2017-01-13
Shortwave radiometers such as pyranometers, pyrheliometers, and photovoltaic cells are calibrated with traceability to consensus reference, maintained by Absolute Cavity Radiometers (ACRs). The ACR is an open cavity with no window, and measures the extended broadband spectrum of the terrestrial direct solar beam irradiance, unlike shortwave radiometers that cover a limited range of the spectrum. The difference between the two spectral ranges may lead to calibration bias that can exceed 1%. This paper describes a method to reduce the calibration bias resulting from using broadband ACRs to calibrate shortwave radiometers, by using an ACR with Schott glass window to measuremore » the reference broadband shortwave irradiance in the terrestrial direct solar beam from 0.3 um to 3 um.« less
Preliminary measurements of plasma fluctuations in an 8-cm mercury ion thruster
NASA Technical Reports Server (NTRS)
Serafini, J. S.; Nakanishi, S.
1975-01-01
The rms magnitude, spectra, and cross correlations for the fluctuations in the beam current, the neutralizer keeper current, and the discharge current and voltage were measured for an 8-cm diameter, dished grid ion thruster for a beam current of 72 milliamps. The ratio of the rms magnitude of the fluctuations to the time-mean neutralizer keeper current was found to depend significantly on the neutralizer time-mean keeper current, the flow rate, and keeper hold diameter. The maxima of the spectra of the beam current fluctuations did not depend on the discharge fluctuations. It was found that: (1) the discharge current fluctuations do not directly contribute to the beam current fluctuations; and (2) the neutralizer contributions to the beam fluctuations are small (for good neutralizer-to-beam coupling) but not negligible and appear mostly in the higher frequency range measured.
NASA Technical Reports Server (NTRS)
Woodyard, James R.
1995-01-01
Multi-junction solar cells are attractive for space applications because they can be designed to convert a larger fraction of AMO into electrical power at a lower cost than single-junction cells. The performance of multi-junction cells is much more sensitive to the spectral irradiance of the illuminating source than single-junction cells. The design of high efficiency multi-junction cells for space applications requires matching the optoelectronic properties of the junctions to AMO spectral irradiance. Unlike single-junction cells, it is not possible to carry out quantum efficiency measurements using only a monochromatic probe beam and determining the cell short-circuit current assuming linearity of the quantum efficiency. Additionally, current-voltage characteristics can not be calculated from measurements under non-AMO light sources using spectral-correction methods. There are reports in the literature on characterizing the performance of multi junction cells by measuring and convoluting the quantum efficiency of each junction with the spectral irradiance; the technique is of limited value for the characterization of cell performance under AMO power-generating conditions. We report the results of research to develop instrumentation and techniques for characterizing multi junction solar cells for space . An integrated system is described which consists of a standard lamp, spectral radiometer, dual-source solar simulator, and personal computer based current-voltage and quantum efficiency equipment. The spectral radiometer is calibrated regularly using the tungsten-halogen standard lamp which has a calibration based on NIST scales. The solar simulator produces the light bias beam for current-voltage and cell quantum efficiency measurements. The calibrated spectral radiometer is used to 'fit' the spectral irradiance of the dual-source solar simulator to WRL AMO data. The quantum efficiency apparatus includes a monochromatic probe beam for measuring the absolute cell quantum efficiency at various voltage biases, including the voltage bias corresponding to the maximum-power point under AMO light bias. The details of the procedures to 'fit' the spectral irradiance to AMO will be discussed. An assessment of the role of the accuracy of the 'fit' of the spectral irradiance and probe beam intensity on measured cell characteristics will be presented. quantum efficiencies were measured with both spectral light bias and AMO light bias; the measurements show striking differences. Spectral irradiances were convoluted with cell quantum efficiencies to calculate cell currents as function of voltage. The calculated currents compare with measured currents at the 1% level. Measurements on a variety of multi-junction cells will be presented. The dependence of defects in junctions on cell quantum efficiencies measured under light and voltage bias conditions will be presented. Comments will be made on issues related to standards for calibration, and limitations of the instrumentation and techniques. Expeditious development of multi-junction solar cell technology for space presents challenges for cell characterization in the laboratory.
Non-thermal plasma instabilities induced by deformation of the electron energy distribution function
NASA Astrophysics Data System (ADS)
Dyatko, N. A.; Kochetov, I. V.; Napartovich, A. P.
2014-08-01
Non-thermal plasma is a key component in gas lasers, microelectronics, medical applications, waste gas cleaners, ozone generators, plasma igniters, flame holders, flow control in high-speed aerodynamics and others. A specific feature of non-thermal plasma is its high sensitivity to variations in governing parameters (gas composition, pressure, pulse duration, E/N parameter). This sensitivity is due to complex deformations of the electron energy distribution function (EEDF) shape induced by variations in electric field strength, electron and ion number densities and gas excitation degree. Particular attention in this article is paid to mechanisms of instabilities based on non-linearity of plasma properties for specific conditions: gas composition, steady-state and decaying plasma produced by the electron beam, or by an electric current pulse. The following effects are analyzed: the negative differential electron conductivity; the absolute negative electron mobility; the stepwise changes of plasma properties induced by the EEDF bi-stability; thermo-current instability and the constriction of the glow discharge column in rare gases. Some of these effects were observed experimentally and some of them were theoretically predicted and still wait for experimental confirmation.
NASA Technical Reports Server (NTRS)
Serafini, J. S.; Terdan, F. F.
1973-01-01
Measurements of the RMS magnitude, spectra and cross-correlations for the fluctuations in the beam, discharge and neutralizer keeper currents are presented for a 30-cm diameter dished grid ion thrustor for a range of magnetic baffle currents and up to 2.0 amperes beam current. The ratio of RMS to mean ion beam current varied from 0.04 to 0.23. The spectra of the amplitudes of the beam and discharge current fluctuations were taken up to 9 MHz and show that the predominant amplitudes occur at frequencies of 10 kHz or below. The fall-off with increasing frequency is rapid. Frequencies above 100 kHz the spectral levels are 45 kb or more below the maximum peak amplitudes. The cross-correlations revealed the ion beam fluctuations to have large radial and axial scales which implied that the beam fluctuates as a whole or 'in-phase.' The cross-correlations of the beam and neutralizer keeper current fluctuations indicated the neutralizer contributions to the beam fluctuations to be small, but not negligible. The mode of operation of the thrustor (values of beam and magnetic baffle currents) was significant in determining the RMS magnitude and spectral shape of the beam fluctuations. The major oscillations were not found to be directly dependent on the power conditioner inverter frequencies.
Towards neutron scattering experiments with sub-millisecond time resolution
Adlmann, F. A.; Gutfreund, Phillip; Ankner, John Francis; ...
2015-02-01
Neutron scattering techniques offer several unique opportunities in materials research. However, most neutron scattering experiments suffer from the limited flux available at current facilities. This limitation becomes even more severe if time-resolved or kinetic experiments are performed. A new method has been developed which overcomes these limitations when a reversible process is studied, without any compromise on resolution or beam intensity. We demonstrate that, by recording in absolute time the neutron detector events linked to an excitation, information can be resolved on sub-millisecond timescales. Specifically, the concept of the method is demonstrated by neutron reflectivity measurements in time-of-flight mode atmore » the Liquids Reflectometer located at the Spallation Neutron Source, Oak Ridge National Laboratory, Tennessee, USA, combined with in situ rheometry. Finally, the opportunities and limitations of this new technique are evaluated by investigations of a micellar polymer solution offering excellent scattering contrast combined with high sensitivity to shear.« less
Diffusion lengths of silicon solar cells from luminescence images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wuerfel, P.; Trupke, T.; Puzzer, T.
A method for spatially resolved measurement of the minority carrier diffusion length in silicon wafers and in silicon solar cells is introduced. The method, which is based on measuring the ratio of two luminescence images taken with two different spectral filters, is applicable, in principle, to both photoluminescence and electroluminescence measurements and is demonstrated experimentally by electroluminescence measurements on a multicrystalline silicon solar cell. Good agreement is observed with the diffusion length distribution obtained from a spectrally resolved light beam induced current map. In contrast to the determination of diffusion lengths from one single luminescence image, the method proposed heremore » gives absolute values of the diffusion length and, in comparison, it is much less sensitive to lateral voltage variations across the cell area as caused by local variations of the series resistance. It is also shown that measuring the ratio of two luminescence images allows distinguishing shunts or surface defects from bulk defects.« less
Effects of instrument imperfections on quantitative scanning transmission electron microscopy.
Krause, Florian F; Schowalter, Marco; Grieb, Tim; Müller-Caspary, Knut; Mehrtens, Thorsten; Rosenauer, Andreas
2016-02-01
Several instrumental imperfections of transmission electron microscopes are characterized and their effects on the results of quantitative scanning electron microscopy (STEM) are investigated and quantified using simulations. Methods to either avoid influences of these imperfections during acquisition or to include them in reference calculations are proposed. Particularly, distortions inflicted on the diffraction pattern by an image-aberration corrector can cause severe errors of more than 20% if not accounted for. A procedure for their measurement is proposed here. Furthermore, afterglow phenomena and nonlinear behavior of the detector itself can lead to incorrect normalization of measured intensities. Single electrons accidentally impinging on the detector are another source of error but can also be exploited for threshold-less calibration of STEM images to absolute dose, incident beam current determination and measurement of the detector sensitivity. Copyright © 2015 Elsevier B.V. All rights reserved.
Dynamics of a high-current relativistic electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strelkov, P. S., E-mail: strelkov@fpl.gpi.ru; Tarakanov, V. P., E-mail: karat@gmail.ru; Ivanov, I. E., E-mail: iei@fpl.gpi.ru
2015-06-15
The dynamics of a high-current relativistic electron beam is studied experimentally and by numerical simulation. The beam is formed in a magnetically insulated diode with a transverse-blade explosive-emission cathode. It is found experimentally that the radius of a 500-keV beam with a current of 2 kA and duration of 500 ns decreases with time during the beam current pulse. The same effect was observed in numerical simulations. This effect is explained by a change in the shape of the cathode plasma during the current pulse, which, according to calculations, leads to a change in the beam parameters, such as themore » electron pitch angle and the spread over the longitudinal electron momentum. These parameters are hard to measure experimentally; however, the time evolution of the radial profile of the beam current density, which can be measured reliably, coincides with the simulation results. This allows one to expect that the behavior of the other beam parameters also agrees with numerical simulations.« less
Evanescent-wave and ambient chiral sensing by signal-reversing cavity ringdown polarimetry.
Sofikitis, Dimitris; Bougas, Lykourgos; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Loppinet, Benoit; Rakitzis, T Peter
2014-10-02
Detecting and quantifying chirality is important in fields ranging from analytical and biological chemistry to pharmacology and fundamental physics: it can aid drug design and synthesis, contribute to protein structure determination, and help detect parity violation of the weak force. Recent developments employ microwaves, femtosecond pulses, superchiral light or photoionization to determine chirality, yet the most widely used methods remain the traditional methods of measuring circular dichroism and optical rotation. However, these signals are typically very weak against larger time-dependent backgrounds. Cavity-enhanced optical methods can be used to amplify weak signals by passing them repeatedly through an optical cavity, and two-mirror cavities achieving up to 10(5) cavity passes have enabled absorption and birefringence measurements with record sensitivities. But chiral signals cancel when passing back and forth through a cavity, while the ubiquitous spurious linear birefringence background is enhanced. Even when intracavity optics overcome these problems, absolute chirality measurements remain difficult and sometimes impossible. Here we use a pulsed-laser bowtie cavity ringdown polarimeter with counter-propagating beams to enhance chiral signals by a factor equal to the number of cavity passes (typically >10(3)); to suppress the effects of linear birefringence by means of a large induced intracavity Faraday rotation; and to effect rapid signal reversals by reversing the Faraday rotation and subtracting signals from the counter-propagating beams. These features allow absolute chiral signal measurements in environments where background subtraction is not feasible: we determine optical rotation from α-pinene vapour in open air, and from maltodextrin and fructose solutions in the evanescent wave produced by total internal reflection at a prism surface. The limits of the present polarimeter, when using a continuous-wave laser locked to a stable, high-finesse cavity, should match the sensitivity of linear birefringence measurements (3 × 10(-13) radians), which is several orders of magnitude more sensitive than current chiral detection limits and is expected to transform chiral sensing in many fields.
Studies of beam injection with a compensated bump and uncompensated bump in a synchrotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbar Fakhri, Ali; Prajapati, S. K.; Ghodke, A. D.
2013-08-15
Synchrotron radiation sources Indus-1 and Indus-2 have a synchrotron as the common injector. A three kicker compensated bump injection scheme was employed for beam injection into this synchrotron. The stored beam current in the synchrotron is higher, when all the three kickers are operated at the same current than when kickers are operated at currents required to generate compensated bump. Beam dynamics studies have been done to understand why this happens. Theoretical studies indicate that higher stored current in the later case is attributed to smaller residual oscillations of injected beam. These studies also reveal that if the angle ofmore » the injected beam during beam injection is kept varying, the performance could be further improved. This is experimentally confirmed by injecting the beam on rising part of the injection septum magnet current pulse.« less
WE-AB-209-08: Novel Beam-Specific Adaptive Margins for Reducing Organ-At-Risk Doses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsang, H; Kamerling, CP; Ziegenhein, P
2016-06-15
Purpose: Current practice of using 3D margins in radiotherapy with high-energy photon beams provides larger-than-required target coverage. According to the photon depth-dose curve, target displacements in beam direction result in minute changes in dose delivered. We exploit this behavior by generating margins on a per-beam basis which simultaneously account for the relative distance of the target and adjacent organs-at-risk (OARs). Methods: For each beam, we consider only geometrical uncertainties of the target location perpendicular to beam direction. By weighting voxels based on its proximity to an OAR, we generate adaptive margins that yield similar overall target coverage probability and reducedmore » OAR dose-burden, at the expense of increased target volume. Three IMRT plans, using 3D margins and 2D per-beam margins with and without adaptation, were generated for five prostate patients with a prescription dose Dpres of 78Gy in 2Gy fractions using identical optimisation constraints. Systematic uncertainties of 1.1, 1.1, 1.5mm in the LR, SI, and AP directions, respectively, and 0.9, 1.1, 1.0mm for the random uncertainties, were assumed. A verification tool was employed to simulate the effects of systematic and random errors using a population size of 50,000. The fraction of the population that satisfies or violates a given DVH constraint was used for comparison. Results: We observe similar target coverage across all plans, with at least 97.5% of the population meeting the D98%>95%Dpres constraint. When looking at the probability of the population receiving D5<70Gy for the rectum, we observed median absolute increases of 23.61% (range, 2.15%–27.85%) and 6.97% (range, 0.65%–17.76%) using per-beam margins with and without adaptation, respectively, relative to using 3D margins. Conclusion: We observed sufficient and similar target coverage using per-beam margins. By adapting each per-beam margin away from an OAR, we can further reduce OAR dose without significantly lowering target coverage probability by irradiating more less-important tissues. This work is supported by Cancer Research UK under Programme C33589/A19908. Research at ICR is also supported by Cancer Research UK under Programme C33589/A19727 and NHS funding to the NIHR Biomedical Research Centre at RMH and ICR.« less
A novel comparison of Møller and Compton electron-beam polarimeters
Magee, J. A.; Narayan, A.; Jones, D.; ...
2017-01-19
We have performed a novel comparison between electron-beam polarimeters based on Moller and Compton scattering. A sequence of electron-beam polarization measurements were performed at low beam currents (more » $<$ 5 $$\\mu$$A) during the $$Q_{\\rm weak}$$ experiment in Hall C at Jefferson Lab. These low current measurements were bracketed by the regular high current (180 $$\\mu$$A) operation of the Compton polarimeter. All measurements were found to be consistent within experimental uncertainties of 1% or less, demonstrating that electron polarization does not depend significantly on the beam current. This result lends confidence to the common practice of applying Moller measurements made at low beam currents to physics experiments performed at higher beam currents. Here, the agreement between two polarimetry techniques based on independent physical processes sets an important benchmark for future precision asymmetry measurements that require sub-1% precision in polarimetry.« less
A novel comparison of Møller and Compton electron-beam polarimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magee, J. A.; Narayan, A.; Jones, D.
We have performed a novel comparison between electron-beam polarimeters based on Moller and Compton scattering. A sequence of electron-beam polarization measurements were performed at low beam currents (more » $<$ 5 $$\\mu$$A) during the $$Q_{\\rm weak}$$ experiment in Hall C at Jefferson Lab. These low current measurements were bracketed by the regular high current (180 $$\\mu$$A) operation of the Compton polarimeter. All measurements were found to be consistent within experimental uncertainties of 1% or less, demonstrating that electron polarization does not depend significantly on the beam current. This result lends confidence to the common practice of applying Moller measurements made at low beam currents to physics experiments performed at higher beam currents. Here, the agreement between two polarimetry techniques based on independent physical processes sets an important benchmark for future precision asymmetry measurements that require sub-1% precision in polarimetry.« less
Measurements of high-current electron beams from X pinches and wire array Z pinches.
Shelkovenko, T A; Pikuz, S A; Blesener, I C; McBride, R D; Bell, K S; Hammer, D A; Agafonov, A V; Romanova, V M; Mingaleev, A R
2008-10-01
Some issues concerning high-current electron beam transport from the X pinch cross point to the diagnostic system and measurements of the beam current by Faraday cups are discussed. Results of computer simulation of electron beam propagation from the pinch to the Faraday cup give limits for the measured current for beams having different energy spreads. The beam is partially neutralized as it propagates from the X pinch to a diagnostic system, but within a Faraday cup diagnostic, space charge effects can be very important. Experimental results show evidence of such effects.
Blake, P; Swart, Ann Marie; Orton, J; Kitchener, H; Whelan, T; Lukka, H; Eisenhauer, E; Bacon, M; Tu, D; Parmar, M K B; Amos, C; Murray, C; Qian, W
2009-01-10
Early endometrial cancer with low-risk pathological features can be successfully treated by surgery alone. External beam radiotherapy added to surgery has been investigated in several small trials, which have mainly included women at intermediate risk of recurrence. In these trials, postoperative radiotherapy has been shown to reduce the risk of isolated local recurrence but there is no evidence that it improves recurrence-free or overall survival. We report the findings from the ASTEC and EN.5 trials, which investigated adjuvant external beam radiotherapy in women with early-stage disease and pathological features suggestive of intermediate or high risk of recurrence and death from endometrial cancer. Between July, 1996, and March, 2005, 905 (789 ASTEC, 116 EN.5) women with intermediate-risk or high-risk early-stage disease from 112 centres in seven countries (UK, Canada, Poland, Norway, New Zealand, Australia, USA) were randomly assigned after surgery to observation (453) or to external beam radiotherapy (452). A target dose of 40-46 Gy in 20-25 daily fractions to the pelvis, treating five times a week, was specified. Primary outcome measure was overall survival, and all analyses were by intention to treat. These trials were registered ISRCTN 16571884 (ASTEC) and NCT 00002807 (EN.5). After a median follow-up of 58 months, 135 women (68 observation, 67 external beam radiotherapy) had died. There was no evidence that overall survival with external beam radiotherapy was better than observation, hazard ratio 1.05 (95% CI 0.75-1.48; p=0.77). 5-year overall survival was 84% in both groups. Combining data from ASTEC and EN.5 in a meta-analysis of trials confirmed that there was no benefit in terms of overall survival (hazard ratio 1.04; 95% CI 0.84-1.29) and can reliably exclude an absolute benefit of external beam radiotherapy at 5 years of more than 3%. With brachytherapy used in 53% of women in ASTEC/EN.5, the local recurrence rate in the observation group at 5 years was 6.1%. Adjuvant external beam radiotherapy cannot be recommended as part of routine treatment for women with intermediate-risk or high-risk early-stage endometrial cancer with the aim of improving survival. The absolute benefit of external beam radiotherapy in preventing isolated local recurrence is small and is not without toxicity.
Silva, T F; Bonini, A L; Lima, R R; Maidana, N L; Malafronte, A A; Pascholati, P R; Vanin, V R; Martins, M N
2012-09-01
Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.
14 CFR 171.311 - Signal format requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... zero state of the data filed represents the lower limit of the absolute range of the coded parameter... transmitted as a “zero” DPSK signal lasting for a six-bit period (see Tables 4a and 4b). Table 4a—Approach... microsecond. T0=Time separation in microseconds between TO and FRO beam centers corresponding to zero degrees...
14 CFR 171.311 - Signal format requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... zero state of the data filed represents the lower limit of the absolute range of the coded parameter... transmitted as a “zero” DPSK signal lasting for a six-bit period (see Tables 4a and 4b). Table 4a—Approach... microsecond. T0=Time separation in microseconds between TO and FRO beam centers corresponding to zero degrees...
14 CFR 171.311 - Signal format requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... zero state of the data filed represents the lower limit of the absolute range of the coded parameter... transmitted as a “zero” DPSK signal lasting for a six-bit period (see Tables 4a and 4b). Table 4a—Approach... microsecond. T0=Time separation in microseconds between TO and FRO beam centers corresponding to zero degrees...
14 CFR 171.311 - Signal format requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... zero state of the data filed represents the lower limit of the absolute range of the coded parameter... transmitted as a “zero” DPSK signal lasting for a six-bit period (see Tables 4a and 4b). Table 4a—Approach... microsecond. T0=Time separation in microseconds between TO and FRO beam centers corresponding to zero degrees...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, P; Chang Gung University, Taoyuan, Taiwan; Huang, H
Purpose: In this study, we present an effective method to derive low dose envelope of the proton in-air spot fluence at beam positions other than the isocenter to reduce amount of measurements required for planning commission. Also, we demonstrate commissioning and validation results of this method to the Eclipse treatment planning system (version 13.0.29) for a Sumitomo dedicated proton line scanning beam nozzle. Methods: The in-air spot profiles at five beam-axis positions (±200, ±100 and 0 mm) were obtained in trigger mode using a MP3 Water tank (PTW-Freiburg) and a pinpoint ionization chamber (model 31014, PTW-Freiburg). Low dose envelope (belowmore » 1% of the center dose) of the spot profile at isocenter was obtained by repeated point measurements to minimize dosimetry uncertainty. The double Gaussian (DG) model was used to fit and obtain optimal σ1, σ2 and their corresponding weightings through our in-house MATLAB (Mathworks) program. σ1, σ2 were assumed to expand linearly along the beam axis from a virtual source position calculated by back projecting fitted sigmas from the single Gaussian (SG) model. Absolute doses in water were validated using an Advanced Markus chamber at the depth of 2cm with Pristine Peak (BP) R90d ranging from 5–32 cm for 10×10 cm2 scanned fields. The field size factors were verified with square fields from 2 to 20 cm at 2cm and before BP depth. Results: The absolute dose outputs were found to be within ±3%. For field size factor, the agreement between calculated and measurement were within ±2% at 2cm and ±3% before BP, except for the field size below 2×2 cm2. Conclusion: The double Gaussian model was found to be sufficient for characterizing the Sumitomo dedicated proton line scanning nozzle. With our effective double Gaussian fitting method, we are able to save significant proton beam time with acceptable output accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreyra, M; Salinas Aranda, F; Dodat, D
Purpose: To use end-to-end testing to validate a 6 MV high dose rate photon beam, configured for Eclipse AAA algorithm using Golden Beam Data (GBD), for SBRT treatments using RapidArc. Methods: Beam data was configured for Varian Eclipse AAA algorithm using the GBD provided by the vendor. Transverse and diagonals dose profiles, PDDs and output factors down to a field size of 2×2 cm2 were measured on a Varian Trilogy Linac and compared with GBD library using 2% 2mm 1D gamma analysis. The MLC transmission factor and dosimetric leaf gap were determined to characterize the MLC in Eclipse. Mechanical andmore » dosimetric tests were performed combining different gantry rotation speeds, dose rates and leaf speeds to evaluate the delivery system performance according to VMAT accuracy requirements. An end-to-end test was implemented planning several SBRT RapidArc treatments on a CIRS 002LFC IMRT Thorax Phantom. The CT scanner calibration curve was acquired and loaded in Eclipse. PTW 31013 ionization chamber was used with Keithley 35617EBS electrometer for absolute point dose measurements in water and lung equivalent inserts. TPS calculated planar dose distributions were compared to those measured using EPID and MapCheck, as an independent verification method. Results were evaluated with gamma criteria of 2% dose difference and 2mm DTA for 95% of points. Results: GBD set vs. measured data passed 2% 2mm 1D gamma analysis even for small fields. Machine performance tests show results are independent of machine delivery configuration, as expected. Absolute point dosimetry comparison resulted within 4% for the worst case scenario in lung. Over 97% of the points evaluated in dose distributions passed gamma index analysis. Conclusion: Eclipse AAA algorithm configuration of the 6 MV high dose rate photon beam using GBD proved efficient. End-to-end test dose calculation results indicate it can be used clinically for SBRT using RapidArc.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S; Driewer, J; Zheng, D
2015-06-15
Purpose: The purpose of this study is to investigate the LINAC repetition-rate (dose-rate) dependence of OCTAVIUS 1000SRS liquid ionization chamber (LIC) array for patient specific QA of SRT plans delivered with flattening-filter-free (FFF) beams. Methods: 1) The repetition-rate dependence of 1000SRS was measured in a phantom constructed with 5-cm solid water above and below the array for build-up and backscatter. A 0.3cc calibrated ion chamber was also placed along the central axis 2.3cm below the center chamber of the array for normalizing LINAC output fluctuation. The signals from the center chamber of the array under different repetition rates in themore » range of 400–2400 MU/min for 6xFFF and 10xFFF beams on a Varian TrueBeamSTx LINAC, normalized by the independent chamber readings, were analyzed for the array response dependence on repetition rates. 2) Twelve Step-and-shoot IMRS QA plans (6xFFF and 10xFFF) were delivered to the array under different repetition rates for analysis and comparison. 3) The absolute doses measured by the center chamber were compared to measurements using an independent ionization chamber with the identical setup, taken as the gold standard. 4) The correction factors based on the actual delivery repetition rate were applied to the measurements, and the results were compared again to the gold standard. Results: 1) The 1000SRS array exhibited repetition-rate dependence for FFF beams, up to 5% for 6xFFF and 10% for 10xFFF; 2) The array showed clinically-acceptable repetition-rate dependence for regular flattened beams; 3) This repetition-rate dependence significantly affected the measurement accuracy, thereby affecting IMRS QA results; 4) By applying an empirical repetition-rate correction, the corrected measurements agreed better with the gold standard ion chamber measurements. Conclusion: OCTAVIUS 1000SRS LIC array exhibited considerable repetition-rate dependence for FFF beams, which will affect the accuracy of the absolute QA measurements, especially for IMRS plans with the step-and-shoot technique.« less
Characterizing ICF Neutron Diagnostics on the nTOF line at SUNY Geneseo
NASA Astrophysics Data System (ADS)
Simone, Angela; Padalino, Stephen; Turner, Ethan; Ginnane, Mary Kate; Dubois, Natalie; Fletcher, Kurtis; Giordano, Michael; Lawson-Keister, Patrick; Harrison, Hannah; Visca, Hannah; Sangster, Craig; Regan, Sean
2014-10-01
Charged particle beams from the Geneseo 1.7 MV tandem Pelletron accelerator produce nuclear reactions that emit neutrons in the range of 0.5 to 17.9 MeV via the d(d,n)3He and 11B(d,n)12C reactions. The neutron energy and flux can be adjusted by controlling the accelerator beam current and potential. This adjustable neutron source makes it possible to calibrate ICF and HEDP neutron scintillator diagnostics. However, gamma rays which are often present during an accelerator-based calibration are difficult to differentiate from neutron signals in scintillators. To identify neutrons from gamma rays and to determine their energy, a permanent neutron time-of-flight (nTOF) line is being constructed. By detecting the scintillator signal in coincidence with an associated charged particle (ACP) produced in the reaction, the identity of the neutron can be known and its energy determined by time of flight. Using a 100% efficient surface barrier detector to count the ACPs, the absolute efficiency of the scintillator as a function of neutron energy can be determined. This is done by determining the ratio of the ACP counts in the singles spectrum to coincidence counts for matched solid angles of the SBD and scintillator. Funded in part by a LLE contract through the DOE.
Zhang, A; Critchley, S; Monsour, P A
2016-12-01
The aim of the present study was to assess the current adoption of cone beam computed tomography (CBCT) and panoramic radiography (PR) machines across Australia. Information regarding registered CBCT and PR machines was obtained from radiation regulators across Australia. The number of X-ray machines was correlated with the population size, the number of dentists, and the gross state product (GSP) per capita, to determine the best fitting regression model(s). In 2014, there were 232 CBCT and 1681 PR machines registered in Australia. Based on absolute counts, Queensland had the largest number of CBCT and PR machines whereas the Northern Territory had the smallest number. However, when based on accessibility in terms of the population size and the number of dentists, the Australian Capital Territory had the most CBCT machines and Western Australia had the most PR machines. The number of X-ray machines correlated strongly with both the population size and the number of dentists, but not with the GSP per capita. In 2014, the ratio of PR to CBCT machines was approximately 7:1. Projected increases in either the population size or the number of dentists could positively impact on the adoption of PR and CBCT machines in Australia. © 2016 Australian Dental Association.
NASA Astrophysics Data System (ADS)
Blancard, C.; Cubaynes, D.; Guilbaud, S.; Bizau, J.-M.
2018-01-01
Resonant single photoionization cross sections of Fen+ (n = 6 to 10) ions have been measured in absolute values using a merged-beams setup at the SOLEIL synchrotron radiation facility. Photon energies were between about 710 and 780 eV, covering the range of the 2p–3d transitions. The experimental cross sections are compared to calculations we performed using a multi-configuration Dirac–Fock code and the OPAS code dedicated to radiative opacity calculations. Comparisons are also done with the Chandra X-ray observatory NGC 3783 spectra and with the results of previously published calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, H; Dolly, S; Zhao, T
Purpose: A prototype reconstruction algorithm that can provide direct electron density (ED) images from single energy CT scans is being currently developed by Siemens Healthcare GmbH. This feature can eliminate the need for kV specific calibration curve for radiation treatemnt planning. An added benefit is that beam-hardening artifacts are also reduced on direct-ED images due to the underlying material decomposition. This study is to quantitatively analyze the reduction of beam-hardening artifacts on direct-ED images and suggest additional clinical usages. Methods: HU and direct-ED images were reconstructed on a head phantom scanned on a Siemens Definition AS CT scanner at fivemore » tube potentials of 70kV, 80kV, 100kV, 120kV and 140kV respectively. From these images, mean, standard deviation (SD), and local NPS were calculated for regions of interest (ROI) of same locations and sizes. A complete analysis of beam-hardening artifact reduction and image quality improvement was conducted. Results: Along with the increase of tube potentials, ROI means and SDs decrease on both HU and direct-ED images. The mean value differences between HU and direct-ED images are up to 8% with absolute value of 2.9. Compared to that on HU images, the SDs are lower on direct-ED images, and the differences are up to 26%. Interestingly, the local NPS calculated from direct-ED images shows consistent values in the low spatial frequency domain for images acquired from all tube potential settings, while varied dramatically on HU images. This also confirms the beam -hardening artifact reduction on ED images. Conclusions: The low SDs on direct-ED images and relative consistent NPS values in the low spatial frequency domain indicate a reduction of beam-hardening artifacts. The direct-ED image has the potential to assist in more accurate organ contouring, and is a better fit for the desired purpose of CT simulations for radiotherapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pak, S.; Sites, J.R.
A Kaufman-type broad beam ion source, used for sputtering and etching purposes, has been operated with Ar, Kr,O/sub 2/ and N/sub 2/ gas inputs over a wide range of beam energies (200-1200 eV) and gas flow rates (1-10 sccm). The maximum ion beam current density for each gas saturates at about 2.5 mA/sq. cm. as gas flow is increased. The discharge threshold voltage necessary to produce a beam and the beam efficiency (beam current/molecular current), however, varied considerably. Kr had the lowest threshold and highest efficiency, Ar next, then N/sub 2/ and O/sub 2/. The ion beam current varied onlymore » weakly with beam energy for low gas flow rates, but showed a factor of two increase when the gas flow was higher.« less
Photoionization and Photofragmentation of the Endohedral Xe C60+ Molecular Ion
NASA Astrophysics Data System (ADS)
Aryal, Nagendra Bahadur
An experimental study of photoionization and fragmentation of the Xe C 60+ endohedral molecular ion is presented in the photon energy range of the well-known Xe 4d giant resonance, and evidence of redistribution of the Xe 4d oscillator strength in photon energy due to multipath interference is reported. Experiments were conducted at undulator beamline 10.0.1 of the Advanced Light Source (ALS) using the merged-beams technique. Prior to these measurements, macroscopic samples containing endohedral Xe C60 were prepared using a setup developed at the ALS. Endohedral Xe C60 yields as high as 2.5x10 -4 were synthesized and a pure Xe C60+ ion beam current of up to 5.5 pA was obtained for the merged-beams experiments. Cross sections were measured in the photon energy range 60 - 150 eV in 0.5 eV steps for single, double, and triple photoionization of endohedral Xe C 60+ accompanied by the loss of n pairs of carbon atoms yielding Xe C60-2n2+ (n = 0, 1), Xe C60-2n 3+ (n = 0, 1, 2, 3), and Xe C584+ photoion products. Reference absolute cross-section measurements were made for empty C60+ for the corresponding reaction channels. The spectroscopic measurements with Xe C60+ were placed onto an absolute scale by normalization to the reference cross sections for C60+ in ranges of photon energies where the Xe 4d contributions were negligible. Results for single photoionization and fragmentation of Xe C60+ show no evidence of the presence of the caged Xe atom. The measurements of double and triple photoionization with fragmentation of Xe C60+ exhibit prominent signatures of the Xe 4d resonance and together account for 6.6 +/- 1.5 of the total Xe 4d oscillator strength of 10. Compared to that for a free Xe atom, the Xe oscillator strength in Xe C60+ is redistributed in photon energy due to multipath interference of outgoing Xe 4d photoelectron waves that may be transmitted or reflected by the spherical C60+ molecular cage, yielding so-called confinement resonances. The experimental data are compared with numerous theoretical predictions for this novel single-molecule photoelectron interferometer system. The comparison indicates that the interference structure is sensitive to the geometry of the molecular cage.
The fading American dream: Trends in absolute income mobility since 1940.
Chetty, Raj; Grusky, David; Hell, Maximilian; Hendren, Nathaniel; Manduca, Robert; Narang, Jimmy
2017-04-28
We estimated rates of "absolute income mobility"-the fraction of children who earn more than their parents-by combining data from U.S. Census and Current Population Survey cross sections with panel data from de-identified tax records. We found that rates of absolute mobility have fallen from approximately 90% for children born in 1940 to 50% for children born in the 1980s. Increasing Gross Domestic Product (GDP) growth rates alone cannot restore absolute mobility to the rates experienced by children born in the 1940s. However, distributing current GDP growth more equally across income groups as in the 1940 birth cohort would reverse more than 70% of the decline in mobility. These results imply that reviving the "American dream" of high rates of absolute mobility would require economic growth that is shared more broadly across the income distribution. Copyright © 2017, American Association for the Advancement of Science.
Electron-beam irradiation-induced gate oxide degradation
NASA Astrophysics Data System (ADS)
Cho, Byung Jin; Chong, Pei Fen; Chor, Eng Fong; Joo, Moon Sig; Yeo, In Seok
2000-12-01
Gate oxide degradation induced by electron-beam irradiation has been studied. A large increase in the low-field excess leakage current was observed on irradiated oxides and this was very similar to electrical stress-induced leakage currents. Unlike conventional electrical stress-induced leakage currents, however, electron-beam induced leakage currents exhibit a power law relationship with fluency without any signs of saturation. It has also been found that the electron-beam neither accelerates nor initiates quasibreakdown of the ultrathin gate oxide. Therefore, the traps generated by electron-beam irradiation do not contribute to quasibreakdown, only to the leakage current.
Hydrodynamic coupling of two sharp-edged beams vibrating in a viscous fluid
Intartaglia, Carmela; Soria, Leonardo; Porfiri, Maurizio
2014-01-01
In this paper, we study flexural vibrations of two thin beams that are coupled through an otherwise quiescent viscous fluid. While most of the research has focused on isolated beams immersed in placid fluids, inertial and viscous hydrodynamic coupling is ubiquitous across a multitude of engineering and natural systems comprising arrays of flexible structures. In these cases, the distributed hydrodynamic loading experienced by each oscillating structure is not only related to its absolute motion but is also influenced by its relative motion with respect to the neighbouring structures. Here, we focus on linear vibrations of two identical beams for low Knudsen, Keulegan–Carpenter and squeeze numbers. Thus, we describe the fluid flow using unsteady Stokes hydrodynamics and we propose a boundary integral formulation to compute pertinent hydrodynamic functions to study the fluid effect. We validate the proposed theoretical approach through experiments on centimetre-size compliant cantilevers that are subjected to underwater base-excitation. We consider different geometric arrangements, beam interdistances and excitation frequencies to ascertain the model accuracy in terms of the relevant non-dimensional parameters. PMID:24511249
Studies on space charge neutralization and emittance measurement of beam from microwave ion source.
Misra, Anuraag; Goswami, A; Sing Babu, P; Srivastava, S; Pandit, V S
2015-11-01
A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (∼5 mA at 75 keV), it is possible to reduce the beam spot size by ∼34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results.
Studies on space charge neutralization and emittance measurement of beam from microwave ion source
NASA Astrophysics Data System (ADS)
Misra, Anuraag; Goswami, A.; Sing Babu, P.; Srivastava, S.; Pandit, V. S.
2015-11-01
A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (˜5 mA at 75 keV), it is possible to reduce the beam spot size by ˜34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results.
Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks
NASA Astrophysics Data System (ADS)
Pace, D. C.; Austin, M. E.; Bardoczi, L.; Collins, C. S.; Crowley, B.; Davis, E.; Du, X.; Ferron, J.; Grierson, B. A.; Heidbrink, W. W.; Holcomb, C. T.; McKee, G. R.; Pawley, C.; Petty, C. C.; Podestà, M.; Rauch, J.; Scoville, J. T.; Spong, D. A.; Thome, K. E.; Van Zeeland, M. A.; Varela, J.; Victor, B.
2018-05-01
An engineering upgrade to the neutral beam system at the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic ( E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2 MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities and results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.
Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Austin, Max E.; Bardoczi, Laszlo; Collins, Cami S.
Here, an engineering upgrade to the neutral beam system at the DIII-D tokamak enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic (E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities andmore » results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.« less
Dynamic neutral beam current and voltage control to improve beam efficacy in tokamaks
Austin, Max E.; Bardoczi, Laszlo; Collins, Cami S.; ...
2018-04-20
Here, an engineering upgrade to the neutral beam system at the DIII-D tokamak enables time-dependent programming of the beam voltage and current. Initial application of this capability involves pre-programmed beam voltage and current injected into plasmas that are known to be susceptible to instabilities that are driven by energetic (E ≥ 40 keV) beam ions. These instabilities, here all Alfvén eigenmodes (AEs), increase the transport of the beam ions beyond a classical expectation based on particle drifts and collisions. Injecting neutral beam power, P beam ≥ 2MW, at reduced voltage with increased current reduces the drive for Alfvénic instabilities andmore » results in improved ion confinement. In lower-confinement plasmas, this technique is applied to eliminate the presence of AEs across the mid-radius of the plasmas. Simulations of those plasmas indicate that the mode drive is decreased and the radial extent of the remaining modes is reduced compared to a higher beam voltage case. In higher-confinement plasmas, this technique reduces AE activity in the far edge and results in an interesting scenario of beam current drive improving as the beam voltage reduces from 80 kV to 65 kV.« less
Filamentation instability of a fast electron beam in a dielectric target.
Debayle, A; Tikhonchuk, V T
2008-12-01
High-intensity laser-matter interaction is an efficient method for high-current relativistic electron beam production. At current densities exceeding a several kA microm{-2} , the beam propagation is maintained by an almost complete current neutralization by the target electrons. In such a geometry of two oppositely directed flows, beam instabilities can develop, depending on the target and the beam parameters. The present paper proposes an analytical description of the filamentation instability of an electron beam propagating through an insulator target. It is shown that the collisionless and resistive instabilities enter into competition with the ionization instability. This latter process is dominant in insulator targets where the field ionization by the fast beam provides free electrons for the neutralization current.
The fragmentation of 670A MeV neon-20 as a function of depth in water. I. Experiment
NASA Technical Reports Server (NTRS)
Schimmerling, W.; Miller, J.; Wong, M.; Rapkin, M.; Howard, J.; Spieler, H. G.; Jarret, B. V.
1989-01-01
We present the final analysis of an experiment to study the interaction of a beam of 670A MeV neon ions incident on a water column set to different thicknesses. The atomic number Z (and, in some cases, the isotopic mass A) of primary beam particles and of the products of nuclear interactions emerging from the water column close to the central axis of the beam was obtained for nuclei between Be (Z = 4) and Ne (Z = 10) using a time-of-flight telescope to measure the velocity and a set of silicon detectors to measure the energy loss of each particle. The fluence of particles of a given charge was obtained and normalized to the incident beam intensity. Corrections were made for accidental coincidences between multiple particles triggering the TOF telescope and for interactions in the detector. The background due to beam particles interacting in beam line elements upstream of the detector was calculated. Sources of experimental artifacts and background in particle identification experiments designed to characterize heavy ion beams for radiobiological research are summarized, and some of the difficulties inherent in this work are discussed. Complete tables of absolutely normalized fluence spectra as a function of LET are included for reference purposes.
Transverse field focused system
Anderson, O.A.
1983-06-01
It is an object of the invention to provide a transport apparatus for a high current negative-ion beam which will bend the beam around corners through a baffled path in a differential pump or a neutron trap. It is another object of the invention to provide a transport apparatus for a high current negative-ion beam which will allow gas molecules in the beam to exit outwardly from the transport apparatus. A further object of the invention is to provide a multi-stage accelerator for a high current negative-ion beam which will enable acceleration of the beam to very high energy levels with a minimum loss of current carrying capacity. A still further object of the invention is to provide an apparatus for transport or accelertion of a sheet beam of negative ions which is shaped to confine the beam against divergence or expansion.
Interferometric scanning optical microscope for surface characterization.
Offside, M J; Somekh, M G
1992-11-01
A phase-sensitive scanning optical microscope is described that can measure surface height changes down to 0.1 nm. This is achieved by using two heterodyne Michelson interferometers in parallel. One interferometer probes the sample with a tightly focused beam, and the second has a collimated beam that illuminates a large area of the surface, providing a large area on sample reference. This is facilitated by using a specially constructed objective lens that permits the relative areas illuminated by the two probe beams to be varied both arbitrarily and independently, thus ensuring an accurate absolute phase measurement. We subtracted the phase outputs from each interferometer to provide the sample phase information, canceling the phase noise resulting from microphonics in the process. Results from a prototype version of the microscope are presented that demonstrate the advantages of the system over existing techniques.
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
1996-01-01
A device for position encoding of a rotating shaft in which a polygonal mirror having a number of facets is mounted to the shaft and a monochromatic light beam is directed towards the facets. The facets of the polygonal mirror direct the light beam to a stand-alone low line density diffraction grating to diffract the monochromatic light beam into a number of diffracted light beams such that a number of light spots are created on a linear array detector. An analog-to-digital converter is connected to the linear array detector for reading the position of the spots on the linear array detector means. A microprocessor with memory is connected to the analog-to-digital converter to hold and manipulate the data provided by the analog-to-digital converter on the position of the spots and to compute the position of the shaft based upon the data from the analog-lo-digital converter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karas’, V. I., E-mail: karas@kipt.kharkov.ua; Kornilov, E. A.; Manuilenko, O. V.
2015-12-15
The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov–Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and inmore » the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.« less
NASA Astrophysics Data System (ADS)
Karas', V. I.; Kornilov, E. A.; Manuilenko, O. V.; Tarakanov, V. P.; Fedorovskaya, O. V.
2015-12-01
The dynamics of a high-current ion beam propagating in the drift gap of a linear induction accelerator with collective focusing is studied using 3D numerical simulations in the framework of the full system of the Vlasov-Maxwell equations (code KARAT). The ion beam is neutralized by a comoving electron beam in the current density and, partially, in space charge, since the velocities of electrons and ions differ substantially. The dynamics of the high-current ion beam is investigated for different versions of additional neutralization of its space charge. It is established that, for a given configuration of the magnetic field and in the presence of a specially programmed injection of additional electrons from the boundary opposite to the ion injection boundary, the angular divergence of the ion beam almost vanishes, whereas the current of the ion beam at the exit from the accelerator drift gap changes insignificantly and the beam remains almost monoenergetic.
NASA Astrophysics Data System (ADS)
Bertincourt, B.; Lagache, G.; Martin, P. G.; Schulz, B.; Conversi, L.; Dassas, K.; Maurin, L.; Abergel, A.; Beelen, A.; Bernard, J.-P.; Crill, B. P.; Dole, H.; Eales, S.; Gudmundsson, J. E.; Lellouch, E.; Moreno, R.; Perdereau, O.
2016-04-01
We compare the absolute gain photometric calibration of the Planck/HFI and Herschel/SPIRE instruments on diffuse emission. The absolute calibration of HFI and SPIRE each relies on planet flux measurements and comparison with theoretical far-infrared emission models of planetary atmospheres. We measure the photometric cross calibration between the instruments at two overlapping bands, 545 GHz/500 μm and 857 GHz/350 μm. The SPIRE maps used have been processed in the Herschel Interactive Processing Environment (Version 12) and the HFI data are from the 2015 Public Data Release 2. For our study we used 15 large fields observed with SPIRE, which cover a total of about 120 deg2. We have selected these fields carefully to provide high signal-to-noise ratio, avoid residual systematics in the SPIRE maps, and span a wide range of surface brightness. The HFI maps are bandpass-corrected to match the emission observed by the SPIRE bandpasses. The SPIRE maps are convolved to match the HFI beam and put on a common pixel grid. We measure the cross-calibration relative gain between the instruments using two methods in each field, pixel-to-pixel correlation and angular power spectrum measurements. The SPIRE/HFI relative gains are 1.047 (±0.0069) and 1.003 (±0.0080) at 545 and 857 GHz, respectively, indicating very good agreement between the instruments. These relative gains deviate from unity by much less than the uncertainty of the absolute extended emission calibration, which is about 6.4% and 9.5% for HFI and SPIRE, respectively, but the deviations are comparable to the values 1.4% and 5.5% for HFI and SPIRE if the uncertainty from models of the common calibrator can be discounted. Of the 5.5% uncertainty for SPIRE, 4% arises from the uncertainty of the effective beam solid angle, which impacts the adopted SPIRE point source to extended source unit conversion factor, highlighting that as a focus for refinement.
Kumar, Niraj; Pal, Dharmendra Kumar; Jadon, Arvind Singh; Pal, Udit Narayan; Rahaman, Hasibur; Prakash, Ram
2016-03-01
In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Niraj; Pal, Udit Narayan; Prakash, Ram
In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electronmore » beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.« less
Hu, Guoqing; Mizuguchi, Tatsuya; Zhao, Xin; Minamikawa, Takeo; Mizuno, Takahiko; Yang, Yuli; Li, Cui; Bai, Ming; Zheng, Zheng; Yasui, Takeshi
2017-01-01
A single, free-running, dual-wavelength mode-locked, erbium-doped fibre laser was exploited to measure the absolute frequency of continuous-wave terahertz (CW-THz) radiation in real time using dual THz combs of photo-carriers (dual PC-THz combs). Two independent mode-locked laser beams with different wavelengths and different repetition frequencies were generated from this laser and were used to generate dual PC-THz combs having different frequency spacings in photoconductive antennae. Based on the dual PC-THz combs, the absolute frequency of CW-THz radiation was determined with a relative precision of 1.2 × 10−9 and a relative accuracy of 1.4 × 10−9 at a sampling rate of 100 Hz. Real-time determination of the absolute frequency of CW-THz radiation varying over a few tens of GHz was also demonstrated. Use of a single dual-wavelength mode-locked fibre laser, in place of dual mode-locked lasers, greatly reduced the size, complexity, and cost of the measurement system while maintaining the real-time capability and high measurement precision. PMID:28186148
NASA Astrophysics Data System (ADS)
Chen, Shang; Kondo, Hiroki; Ishikawa, Kenji; Takeda, Keigo; Sekine, Makoto; Kano, Hiroyuki; Den, Shoji; Hori, Masaru
2011-01-01
For an innovation of molecular-beam-epitaxial (MBE) growth of gallium nitride (GaN), the measurements of absolute densities of N, H, and NH3 at the remote region of the radical source excited by plasmas have become absolutely imperative. By vacuum ultraviolet absorption spectroscopy (VUVAS) at a relatively low pressure of about 1 Pa, we obtained a N atom density of 9×1012 cm-3 for a pure nitrogen gas used, a H atom density of 7×1012 cm-3 for a gas composition of 80% hydrogen mixed with nitrogen gas were measured. The maximum density 2×1013 cm-3 of NH3 was measured by quadruple mass spectrometry (QMS) at H2/(N2+H2)=60%. Moreover, we found that N atom density was considerably affected by processing history, where the characteristic instability was observed during the pure nitrogen plasma discharge sequentially after the hydrogen-containing plasma discharge. These results indicate imply the importance of establishing radical-based processes to control precisely the absolute densities of N, H, and NH3 at the remote region of the radical source.
Absolute angular encoder based on optical diffraction
NASA Astrophysics Data System (ADS)
Wu, Jian; Zhou, Tingting; Yuan, Bo; Wang, Liqiang
2015-08-01
A new encoding method for absolute angular encoder based on optical diffraction was proposed in the present study. In this method, an encoder disc is specially designed that a series of elements are uniformly spaced in one circle and each element is consisted of four diffraction gratings, which are tilted in the directions of 30°, 60°, -60° and -30°, respectively. The disc is illuminated by a coherent light and the diffractive signals are received. The positions of diffractive spots are used for absolute encoding and their intensities are for subdivision, which is different from the traditional optical encoder based on transparent/opaque binary principle. Since the track's width in the disc is not limited in the diffraction pattern, it provides a new way to solve the contradiction between the size and resolution, which is good for minimization of encoder. According to the proposed principle, the diffraction pattern disc with a diameter of 40 mm was made by lithography in the glass substrate. A prototype of absolute angular encoder with a resolution of 20" was built up. Its maximum error was tested as 78" by comparing with a small angle measuring system based on laser beam deflection.
Calorimetry of electron beams and the calibration of dosimeters at high doses
NASA Astrophysics Data System (ADS)
Humphreys, J. C.; McLaughlin, W. L.
Graphite or metal calorimeters are used to make absolute dosimetric measurements of high-energy electron beams. These calibrated beams are then used to calibrate several types of dosimeters for high-dose applications such as medical-product sterilization, polymer modification, food processing, or electronic-device hardness testing. The electron beams are produced either as continuous high-power beams at approximately 4.5 MeV by d.c. type accelerators or in the energy range of approximately 8 to 50 MeV using pulsed microwave linear accelerators (linacs). The continuous beams are generally magnetically scanned to produce a broad, uniform radiation environment for the processing of materials of extended lateral dimensions. The higher-energy pulsed beams may also be scanned for processing applications or may be used in an unscanned, tightly-focused mode to produce maximum absorbed dose rates such as may be required for electronic-device radiation hardness testing. The calorimeters are used over an absorbed dose range of 10 2 to 10 4 Gy. Intercomparison studies are reported between National Institute of Standards and Technology (NIST) and UK National Physical Laboratory (NPL) graphite disk calorimeters at high doses, using the NPL 10-MeV linac, and agreement was found within 1.5%. It was also shown that the electron-beam responses of radiochromic film dosimeters and alanine pellet dosimeters can be accurately calibrated by comparison with calorimeter readings.
Radiometric Calibration of the NASA Advanced X-Ray Astrophysics Facility
NASA Technical Reports Server (NTRS)
Kellogg, Edwin M.
1999-01-01
We present the results of absolute calibration of the quantum efficiency of soft x-ray detectors performed at the PTB/BESSY beam lines. The accuracy goal is 1%. We discuss the implementation of that goal. These detectors were used as transfer standards to provide the radiometric calibration of the AXAF X-ray observatory, to be launched in April 1999.
Optical tweezers theory near a flat surface: a perturbative method
NASA Astrophysics Data System (ADS)
Flyvbjerg, Henrik; Dutra, Rafael S.; Maia Neto, Paolo A.; Nussenzveig, H. Moyses
We propose a perturbative calculation of the optical force exercised by a focused laser beam on a microsphere of arbitrary radius that is localized near a flat glass surface in a standard optical tweezers setup. Starting from the Mie-Debye representation for the electric field of a Gaussian laser beam, focused by an objective of high numerical aperture, we derive a recursive series that represents the multiple reflections that describe the reverberation of laser light between the microsphere and the glass slide. We present numerical results for the axial component of the optical force and the axial trap stiffness. Numerical results for a configuration typical in biological applications--a microsphere of 0.5 µm radius at a distance around 0.25 µm from the surface--show a 37 [1] Viana N B, Rocha M S. Mesquita O N, et al. (2007) Towards absolute calibration of optical tweezers. Phys Rev E 75:021914-1-14. [2] Dutra R S, Viana N B, Maia Neto P A, et al. (2014) Absolute calibration of forces in optical tweezers. Phys Rev A 90:013825-1-13. Rafael S. Dutra thanks the Brazilian ``Science without Borders'' program for a postdoctoral scholarship.
Eschner, Markus S; Zimmermann, Ralf
2011-07-01
This work describes a fast and reliable method for determination of photoionization cross-sections (PICS) by means of gas chromatography (GC) coupled to single-photon ionization mass spectrometry (SPI-MS). Photoionization efficiency (PIE) data for 69 substances was obtained at a photon energy of 9.8 ± 0.4 eV using an innovative electron-beam-pumped rare gas excimer light source (EBEL) filled with argon. The investigated analytes comprise 12 alkylbenzenes as well as 11 other substituted benzenes, 23 n-alkanes, ten polyaromatic hydrocarbons, seven aromatic heterocycles, and six polyaromatic heterocycles. Absolute PICS for each substance at 9.8 eV are calculated from the relative photoionization efficiencies of the compounds with respect to benzene, whose photoionization cross-section data is well known. Furthermore, a direct correlation between the type of benzene substituents and their absolute PICS is presented and discussed in depth. Finally, comparison of previously measured photoionization cross-sections for 20 substances shows good agreement with the data of the present work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koh, S.K.; Song, S.K.; Choi, W.K.
A Kaufman-type 5 cm convex gridded ion-beam source is characterized in terms of angle-resolved ion-beam current density and beam uniformity at various discharge currents, electromagnet currents, and acceleration potentials. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
2009-12-01
MINORITY CHARGE CARRIER DIFFUSION LENGTH IN GALLIUM NITRIDE NANOWIRES USING ELECTRON BEAM INDUCED CURRENT (EBIC) by Chiou Perng Ong December... Gallium Nitride Nanowires Using Electron Beam Induced Current (EBIC) 6. AUTHOR(S) Ong, Chiou Perng 5. FUNDING NUMBERS DMR 0804527 7. PERFORMING...CARRIER DIFFUSION LENGTH IN GALLIUM NITRIDE NANOWIRES USING ELECTRON BEAM INDUCED CURRENT (EBIC) Chiou Perng Ong Major, Singapore Armed Forces B
12 CFR 217.210 - Standardized measurement method for specific risk
Code of Federal Regulations, 2014 CFR
2014-01-01
... current fair value of the transaction plus the absolute value of the present value of all remaining... a securitization position and its credit derivative hedge has a specific risk add-on of zero if: (i... institution must multiply the absolute value of the current fair value of each net long or net short debt or...
12 CFR 3.210 - Standardized measurement method for specific risk
Code of Federal Regulations, 2014 CFR
2014-01-01
... purchased credit protection is capped at the current fair value of the transaction plus the absolute value... specific risk add-on of zero if: (i) The debt or securitization position is fully hedged by a total return... absolute value of the current fair value of each net long or net short debt or securitization position in...
Virtual cathode formations in nested-well configurations
NASA Astrophysics Data System (ADS)
Stephens, K. F.; Ordonez, C. A.; Peterkin, R. E.
1999-12-01
Complete transmission of an electron beam through a cavity is not possible if the current exceeds the space-charge limited current. The formation of a virtual cathode reflects some of the beam electrons and reduces the current transmitted through the cavity. Transients in the injected current have been shown to lower the transmitted current below the value predicted by the electrostatic Child-Langmuir law. The present work considers the propagation of an electron beam through a nested-well configuration. Electrostatic particle-in-cell simulations are used to demonstrate that ions can be trapped in the electric potential depression of an electron beam. Furthermore, the trapped ions can prevent the formation of a virtual cathode for beam currents exceeding the space-charge limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vainas, B.; Eliyahu, I.; Weissman, L.
2012-02-15
The ion source end of the Soreq Applied Research Accelerator Facility accelerator consists of a proton/deuteron ECR ion source and a low energy beam transport (LEBT) beam line. An observed reduction of the radio frequency quadrupole transmission with increase of the LEBT current prompted additional study of the LEBT beam properties. Numerous measurements have been made with the LEBT bream profiler wire biased by a variable voltage. Current-voltage characteristics in presence of the proton beam were measured even when the wire was far out of the beam. The current-voltage characteristic in this case strongly resembles an asymmetric diodelike characteristic, whichmore » is typical of Langmuir probes monitoring plasma. The measurement of biased wire currents, outside the beam, enables us to estimate the effective charge density in vacuum.« less
Wide-temperature integrated operational amplifier
NASA Technical Reports Server (NTRS)
Mojarradi, Mohammad (Inventor); Levanas, Greg (Inventor); Chen, Yuan (Inventor); Cozy, Raymond S. (Inventor); Greenwell, Robert (Inventor); Terry, Stephen (Inventor); Blalock, Benjamin J. (Inventor)
2009-01-01
The present invention relates to a reference current circuit. The reference circuit comprises a low-level current bias circuit, a voltage proportional-to-absolute temperature generator for creating a proportional-to-absolute temperature voltage (VPTAT), and a MOSFET-based constant-IC regulator circuit. The MOSFET-based constant-IC regulator circuit includes a constant-IC input and constant-IC output. The constant-IC input is electrically connected with the VPTAT generator such that the voltage proportional-to-absolute temperature is the input into the constant-IC regulator circuit. Thus the constant-IC output maintains the constant-IC ratio across any temperature range.
Performance of an electron gun for a high-brightness X-ray generator.
Sugimura, Takashi; Ohsawa, Satoshi; Ikeda, Mitsuo
2008-05-01
A prototype thermionic electron gun for a high-brightness X-ray generator has been developed. Its extraction voltage and design current are 60 kV and 100 mA (DC), respectively. The X-ray generator aims towards a maximum brilliance of 60 kW mm(-2). The beam sizes at the rotating anticathode must therefore be within 1.0 mm x 0.1 mm and a small beam emittance is required. The fabricated electron gun optimizes an aperture grid and a Whenelt electrode. The performance of the prototype electron gun measured using pulsed-beam tests is as follows: maximum beam current, 85.7 mA; beam focus size at the rotating anticathode, 0.79 mm x 0.13 mm. In DC beam tests, FWHM beam sizes were measured to be 0.65 mm x 0.08 mm at the rotating anticathode with a beam current of 45 mA. The beam current recently reached approximately 60 mA with some thermal problems.
Detection of an electron beam in a high density plasma via an electrostatic probe
NASA Astrophysics Data System (ADS)
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki
2018-07-01
An electron beam is detected by a 1D floating potential probe array in a relatively high density (1012–1013 cm‑3) and low temperature (∼5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstrate the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.
Detection of an electron beam in a high density plasma via an electrostatic probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart
Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less
Detection of an electron beam in a high density plasma via an electrostatic probe
Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; ...
2018-05-08
Here, an electron beam is detected by a 1D floating potential probe array in a relatively high density (10 12–10 13 cm -3) and low temperature (~5 eV) plasma of the Magnetic Reconnection Experiment. Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstratemore » the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.« less
Influence of the electrode gap separation on the pseudospark-sourced electron beam generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, J., E-mail: junping.zhao@qq.com; State Key Laboratory of Electrical Insulation and Power Equipment, West Xianning Road, Xi'an 710049; Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG Scotland
Pseudospark-sourced electron beam is a self-focused intense electron beam which can propagate without any external focusing magnetic field. This electron beam can drive a beam-wave interaction directly or after being post-accelerated. It is especially suitable for terahertz radiation generation due to the ability of a pseudospark discharge to produce small size in the micron range and very high current density and bright electron beams. In this paper, a single-gap pseudospark discharge chamber has been built and tested with several electrode gap separations to explore the dependence of the pseudospark-sourced electron beam current on the discharge voltage and the electrode gapmore » separation. Experimental results show that the beam pulses have similar pulse width and delay time from the distinct drop of the applied voltage for smaller electrode gap separations but longer delay time for the largest gap separation used in the experiment. It has been found that the electron beam only starts to occur when the charging voltage is above a certain value, which is defined as the starting voltage of the electron beam. The starting voltage is different for different electrode gap separations and decreases with increasing electrode gap separation in our pseudospark discharge configuration. The electron beam current increases with the increasing discharge voltage following two tendencies. Under the same discharge voltage, the configuration with the larger electrode gap separation will generate higher electron beam current. When the discharge voltage is higher than 10 kV, the beam current generated at the electrode gap separation of 17.0 mm, is much higher than that generated at smaller gap separations. The ionization of the neutral gas in the main gap is inferred to contribute more to the current increase with increasing electrode gap separation.« less
Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility.
Adonin, A A; Hollinger, R
2014-02-01
In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De, Arijit K., E-mail: akde@lbl.gov; Fleming, Graham R., E-mail: grfleming@lbl.gov; Department of Chemistry, University of California at Berkeley, Berkeley, California 94702
2014-05-21
We present a novel experimental scheme for two-dimensional fluorescence-detected coherent spectroscopy (2D-FDCS) using a non-collinear beam geometry with the aid of “confocal imaging” of dynamic (population) grating and 27-step phase-cycling to extract the signal. This arrangement obviates the need for distinct experimental designs for previously developed transmission detected non-collinear two-dimensional coherent spectroscopy (2D-CS) and collinear 2D-FDCS. We also describe a novel method for absolute phasing of the 2D spectrum. We apply this method to record 2D spectra of a fluorescent dye in solution at room temperature and observe “spectral diffusion.”.
Pulse energy measurement at the SXR instrument
Moeller, Stefan; Brown, Garth; Dakovski, Georgi; ...
2015-04-14
A gas monitor detector was implemented and characterized at the Soft X-ray Research (SXR) instrument to measure the average, absolute and pulse-resolved photon flux of the LCLS beam in the energy range between 280 and 2000 eV. The detector is placed after the monochromator and addresses the need to provide reliable absolute pulse energy as well as pulse-resolved measurements for the various experiments at this instrument. This detector provides a reliable non-invasive measurement for determining flux levels on the samples in the downstream experimental chamber and for optimizing signal levels of secondary detectors and for the essential need of datamore » normalization. The design, integration into the instrument and operation are described, and examples of its performance are given.« less
Variable energy constant current accelerator structure
Anderson, O.A.
1988-07-13
A variable energy, constant current ion beam accelerator structure is disclosed comprising an ion source capable of providing the desired ions, a pre-accelerator for establishing an initial energy level, a matching/pumping module having means for focusing means for maintaining the beam current, and at least one main accelerator module for continuing beam focus, with means capable of variably imparting acceleration to the beam so that a constant beam output current is maintained independent of the variable output energy. In a preferred embodiment, quadrupole electrodes are provided in both the matching/pumping module and the one or more accelerator modules, and are formed using four opposing cylinder electrodes which extend parallel to the beam axis and are spaced around the beam at 90/degree/ intervals with opposing electrodes maintained at the same potential. 12 figs., 3 tabs.
Automated pinhole-aperture diagnostic for the current profiling of TWT electron beams
NASA Astrophysics Data System (ADS)
Wei, Yu-Xiang; Huang, Ming-Guang; Liu, Shu-Qing; Liu, Jin-Yue; Hao, Bao-Liang; Du, Chao-Hai; Liu, Pu-Kun
2013-02-01
The measurement system reported here is intended for use in determining the current density distribution of electron beams from Pierce guns for use in TWTs. The system was designed to automatically scan the cross section of the electron beam and collect the high-resolution data with a Faraday cup probe mounted on a multistage manipulator using the LabVIEW program. A 0.06 mm thick molybdenum plate with a pinhole and a Faraday cup mounted as a probe assembly was employed to sample the electron beam current with 0.5 µm space resolution. The thermal analysis of the probe with pulse beam heating was discussed. A 0.45 µP electron gun with the expected minimum beam radius 0.42 mm was measured and the three-dimensional current density distribution, beam envelope and phase space were presented.
High-current fast electron beam propagation in a dielectric target.
Klimo, Ondrej; Tikhonchuk, V T; Debayle, A
2007-01-01
Recent experiments demonstrate an efficient transformation of high intensity laser pulse into a relativistic electron beam with a very high current density exceeding 10(12) A cm(-2). The propagation of such a beam inside the target is possible if its current is neutralized. This phenomenon is not well understood, especially in dielectric targets. In this paper, we study the propagation of high current density electron beam in a plastic target using a particle-in-cell simulation code. The code includes both ionization of the plastic and collisions of newborn electrons. The numerical results are compared with a relatively simple analytical model and a reasonable agreement is found. The temporal evolution of the beam velocity distribution, the spatial density profile, and the propagation velocity of the ionization front are analyzed and their dependencies on the beam density and energy are discussed. The beam energy losses are mainly due to the target ionization induced by the self-generated electric field and the return current. For the highest beam density, a two-stream instability is observed to develop in the plasma behind the ionization front and it contributes to the beam energy losses.
The radiated electromagnetic field from collimated gamma rays and electron beams in air
NASA Astrophysics Data System (ADS)
Tumolillo, T. A.; Wondra, J. P.; Hobbs, W. E.; Smith, K.
1980-12-01
Nuclear weapons effects computer codes are used to study the electromagnetic field produced by gamma rays or by highly relativistic electron beams moving through the air. Consideration is given to large-area electron and gamma beams, small-area electron beams, variation of total beam current, variation of pressure in the beam channel, variation of the beam rise time, variation of beam radius, far-field radiated signals, and induced current on a system from a charged-particle beam. The work has application to system EMP coupling from nuclear weapons or charged-particle-beam weapons.
Current-Voltage Characteristic of Nanosecond - Duration Relativistic Electron Beam
NASA Astrophysics Data System (ADS)
Andreev, Andrey
2005-10-01
The pulsed electron-beam accelerator SINUS-6 was used to measure current-voltage characteristic of nanosecond-duration thin annular relativistic electron beam accelerated in vacuum along axis of a smooth uniform metal tube immersed into strong axial magnetic field. Results of these measurements as well as results of computer simulations performed using 3D MAGIC code show that the electron-beam current dependence on the accelerating voltage at the front of the nanosecond-duration pulse is different from the analogical dependence at the flat part of the pulse. In the steady-state (flat) part of the pulse), the measured electron-beam current is close to Fedosov current [1], which is governed by the conservation law of an electron moment flow for any constant voltage. In the non steady-state part (front) of the pulse, the electron-beam current is higher that the appropriate, for a giving voltage, steady-state (Fedosov) current. [1] A. I. Fedosov, E. A. Litvinov, S. Ya. Belomytsev, and S. P. Bugaev, ``Characteristics of electron beam formed in diodes with magnetic insulation,'' Soviet Physics Journal (A translation of Izvestiya VUZ. Fizika), vol. 20, no. 10, October 1977 (April 20, 1978), pp.1367-1368.
Generation of a pulsed low-energy electron beam using the channel spark device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgarhy, M. A. I., E-mail: elgarhy@azhar.edu.eg; Hassaballa, S. E.; Rashed, U. M.
2015-12-15
For the generation of low-energy electron beam, the design and characteristics of channel spark discharge (CSD) operating at a low voltage are presented in this paper. The discharge voltage, discharge current, X-ray emissions, and electron beam current were experimentally determined. The effects of the applied voltage, working gas pressure, and external capacitance on the CSD and beam parameters were measured. At an applied voltage of 11 kV, an oxygen gas pressure of 25 mTorr, and an external capacitance of 16.45 nF, the maximum measured current was 900 A. The discharge current increased with the increase in the pressure and capacitance,more » while its periodic time decreased with the increase in the pressure. Two types of the discharge were identified and recorded: the hollow cathode discharge and the conduction discharge. A Faraday cup was used to measure the beam current. The maximum measured beam current was 120 A, and the beam signal exhibited two peaks. The increase in both the external capacitance and the applied discharge voltage increased the maximum electron beam current. The electron-beam pulse time decreased with the increase in the gas pressure at a constant voltage and increased with the decrease in the applied discharge voltage. At an applied voltage of 11 kV and an oxygen gas pressure of 15 mTorr, the maximum beam energy was 2.8 keV. The X-ray signal intensity decreased with the increase in the gas pressure and increased with the increase in the capacitance.« less
Code of Federal Regulations, 2012 CFR
2012-01-01
... covered debt instrument that is subject to a non-zero specific risk capital charge. (A) For covered debt... indices. (iii) An organization must multiply the absolute value of the current market value of each net... multiply the absolute value of the current market value of each net long or short covered equity position...
NASA Astrophysics Data System (ADS)
Andrade, E.; Canto, C. E.; Rocha, M. F.
2017-09-01
The absolute energy of an ion beam produced by an accelerator is usually determined by an electrostatic or magnetic analyzer, which in turn must be calibrated. Various methods for accelerator energy calibration are extensively reported in the literature, like nuclear reaction resonances, neutron threshold, and time of flight, among others. This work reports on a simple method to calibrate the magnet associated to a vertical 5.5 MV Van de Graaff accelerator. The method is based on bombarding with deuteron beams a thick carbon target and measuring with a surface barrier detector the particle energy spectra produced. The analyzer magnetic field is measured for each spectrum and the beam energy is deduced by the best fit of the simulation of the spectrum with the SIMNRA code that includes 12C(d,p0)13C nuclear cross sections.
Photoionization research on atomic beams. 2: The photoionization cross section of atomic oxygen
NASA Technical Reports Server (NTRS)
Comes, F. J.; Speier, F.; Elzer, A.
1982-01-01
An experiment to determine the absolute value of the photo-ionization cross section of atomic oxygen is described. The atoms are produced in an electrical discharge in oxygen gas with 1% hydrogen added. In order to prevent recombination a crossed beam technique is employed. The ions formed are detected by a time-of-flight mass spectrometer. The concentration of oxygen atoms in the beam is 57%. The measured photoionization cross section of atomic oxygen is compared with theoretical data. The results show the participation of autoionization processes in ionization. The cross section at the autoionizing levels detected is considerably higher than the absorption due to the unperturbed continuum. Except for wavelengths where autoionization occurs, the measured ionization cross section is in fair agreement with theory. This holds up to 550 A whereas for shorter wavelengths the theoretical values are much higher.
Measurement of neutrino flux from neutrino-electron elastic scattering
Park, J.; Aliaga, L.; Altinok, O.; ...
2016-06-10
Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently, a measurement of this process in an accelerator-based ν μ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI ν μ fluxmore » from 9% to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.« less
Measurement of neutrino flux from neutrino-electron elastic scattering
NASA Astrophysics Data System (ADS)
Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration
2016-06-01
Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.
The atom-molecule reaction D plus H2 yields HD plus H studied by molecular beams
NASA Technical Reports Server (NTRS)
Geddes, J.; Krause, H. F.; Fite, W. L.
1972-01-01
Collisions between deuterium atoms and hydrogen molecules were studied in a modulated crossed beam experiment. The relative signal intensity and the signal phase for the product HD from reactive collisions permitted determination of both the angular distribution and HD mean velocity as a function of angle. From these a relative differential reactive scattering cross section in center-of-mass coordinates was deduced. The experiment indicates that reactively formed HD which has little or no internal excitation departs from the collision anisotropically, with maximum amplitude 180 deg from the direction of the incident D beam in center-of-mass coordinates, which shows that the D-H-H reacting configuration is short-lived compared to its rotation time. Non reactive scattering of D by H2 was used to assign absolute values to the differential reactive scattering cross sections.
Absolute calibration of Phase Contrast Imaging on HL-2A tokamak
NASA Astrophysics Data System (ADS)
Yu, Yi; Gong, Shaobo; Xu, Min; Wu, Yifan; Yuan, Boda; Ye, Minyou; Duan, Xuru; HL-2A Team Team
2017-10-01
Phase contrast imaging (PCI) has recently been developed on HL-2A tokamak. In this article we present the calibration of this diagnostic. This system is to diagnose chord integral density fluctuations by measuring the phase shift of a CO2 laser beam with a wavelength of 10.6 μm when the laser beam passes through plasma. Sound waves are used to calibrate PCI diagnostic. The signal series in different PCI channels show a pronounced modulation of incident laser beam by the sound wave. Frequency-wavenumber spectrum is achieved. Calibrations by sound waves with different frequencies exhibit a maximal wavenumber response of 12 cm-1. The conversion relationship between the chord integral plasma density fluctuation and the signal intensity is 2.3-1013 m-2/mV, indicating a high sensitivity. Supported by the National Magnetic Confinement Fusion Energy Research Project (Grant No.2015GB120002, 2013GB107001).
Beam-return current systems in solar flares
NASA Technical Reports Server (NTRS)
Spicer, D. S.; Sudan, R. N.
1984-01-01
It is demonstrated that the common assumption made in solar flare beam transport theory that the beam-accompanied return current is purely electrostatically driven is incorrect, and that the return current is both electrostatically and inductively driven, in accordance with Lenz's law, with the inductive effects dominating for times greater than a few plasma periods. In addition, it is shown that a beam can only exist in a solar plasma for a finite time which is much smaller than the inductive return current dissipation time. The importance of accounting for the role of the acceleration mechanism in forming the beam is discussed. In addition, the role of return current driven anomalous resistivity and its subsequent anomalous Joule heating during the flare process is elucidated.
2009-01-01
Summary Background Early endometrial cancer with low-risk pathological features can be successfully treated by surgery alone. External beam radiotherapy added to surgery has been investigated in several small trials, which have mainly included women at intermediate risk of recurrence. In these trials, postoperative radiotherapy has been shown to reduce the risk of isolated local recurrence but there is no evidence that it improves recurrence-free or overall survival. We report the findings from the ASTEC and EN.5 trials, which investigated adjuvant external beam radiotherapy in women with early-stage disease and pathological features suggestive of intermediate or high risk of recurrence and death from endometrial cancer. Methods Between July, 1996, and March, 2005, 905 (789 ASTEC, 116 EN.5) women with intermediate-risk or high-risk early-stage disease from 112 centres in seven countries (UK, Canada, Poland, Norway, New Zealand, Australia, USA) were randomly assigned after surgery to observation (453) or to external beam radiotherapy (452). A target dose of 40–46 Gy in 20–25 daily fractions to the pelvis, treating five times a week, was specified. Primary outcome measure was overall survival, and all analyses were by intention to treat. These trials were registered ISRCTN 16571884 (ASTEC) and NCT 00002807 (EN.5). Findings After a median follow-up of 58 months, 135 women (68 observation, 67 external beam radiotherapy) had died. There was no evidence that overall survival with external beam radiotherapy was better than observation, hazard ratio 1·05 (95% CI 0·75–1·48; p=0·77). 5-year overall survival was 84% in both groups. Combining data from ASTEC and EN.5 in a meta-analysis of trials confirmed that there was no benefit in terms of overall survival (hazard ratio 1·04; 95% CI 0·84–1·29) and can reliably exclude an absolute benefit of external beam radiotherapy at 5 years of more than 3%. With brachytherapy used in 53% of women in ASTEC/EN.5, the local recurrence rate in the observation group at 5 years was 6·1%. Interpretation Adjuvant external beam radiotherapy cannot be recommended as part of routine treatment for women with intermediate-risk or high-risk early-stage endometrial cancer with the aim of improving survival. The absolute benefit of external beam radiotherapy in preventing isolated local recurrence is small and is not without toxicity. Funding Medical Research Council, National Cancer Research Network, National Cancer Institute of Canada, with funds from the Canadian Cancer Society. PMID:19070891
Characterization of scintillator materials for fast-ion loss detectors in nuclear fusion reactors
NASA Astrophysics Data System (ADS)
Jiménez-Ramos, M. C.; García López, J.; García-Muñoz, M.; Rodríguez-Ramos, M.; Carmona Gázquez, M.; Zurro, B.
2014-08-01
In fusion plasma reactors, fast ion generated by heating systems and fusion born particles must be well confined. The presence of magnetohydrodynamic (MHD) instabilities can lead to a significant loss of these ions, which may reduce drastically the heating efficiency and may cause damage to plasma facing components in the vacuum vessel. In order to understand the physics underlying the fast ion loss mechanism, scintillator based detectors have been installed in several fusion devices. In this work we present the absolute photon yield and its degradation with ion fluence in terms of the number of photons emitted per incident ion of several scintillators thin coatings: SrGa2S4:Eu2+ (TG-Green), Y3Al5O12:Ce3+ (P46) and Y2O3:Eu3+ (P56) when irradiated with light ions of different masses (deuterium ions, protons and α-particles) at energies between approximately 575 keV and 3 MeV. The photon yield will be discussed in terms of the energy deposited by the particles into the scintillator. For that, the actual composition and thickness of the thin layers were determined by Rutherford Backscattering Spectrometry (RBS). A collimator with 1 mm of diameter, which defines the beam size for the experiments, placed at the entrance of the chamber. An electrically isolated sample holder biased to +300 V to collect the secondary electrons, connected to a digital current integrator (model 439 by Ortec) to measure the incident beam current. A home made device has been used to store the real-time evolution of the beam current in a computer file allowing the correction of the IL yields due to the current fluctuations. The target holder is a rectangle of 150 × 112 mm2 and can be tilted. The X and Y movements are controlled through stepping motors, which permits a fine control of the beam spot positioning as well as the study of several samples without venting the chamber. A silica optical fiber of 1 mm diameter fixed to the vacuum chamber, which collects the light from the scintillators. The solid angle subtended by the fiber is ∼2.2 × 10-5 sr. The final element is a compact and high sensitive spectrometer, QE6500 (Ocean Optics Inc.) with a 2D area detector which allow us to measure simultaneously in the range of 200-1100 nm with a spectral resolution ∼1-2 nm. The measured signals were analyzed and stored with the SpectraSuite software [6]. The absolute calibration of the optical system described above was carried out with a HL-2000-CAL Tungsten Halogen Calibration Standard light source which provides absolute intensity values (in μW/cm2/nm) at the fiber port at wavelengths from 360-1050 nm.The beam fluxes used to irradiate the phosphors were ∼ 1012 p/cm2s- for the IL yields determination, and up to ten times higher for the degradation analyses.The Rutherford Backscattering Spectrometry (RBS) measurements of the screens were accomplished in the same vacuum chamber using protons at 3 MeV and 5 MeV. Two different energies were employed due to the large difference between the thicknesses of the samples. The proton beam intensity was 10 nA and the beam size 1 mm of diameter. The analysis were performed with a Passivated Implanted Planar Silicon (PIPS) detector of 300 mm2, positioned at 150° and with a 10 μm thick aluminized mylar foil placed at the detector surface to avoid the light emitted by the scintillators. The RBS spectra were analyzed using the SIMNRA code [7].The scintillators investigated in this work were selected according to their availability, radiation hardness, fast response, and/or prior use in plasma diagnostics. In this paper, three different kinds of materials have been analyzed. The TG-Green (so called by the manufacturer, Sarnoff Corporation, USA) is a Eu doped SrGa2S4 powder substrate with density of 3.65 g/cm3, and presents an emission at 540 nm with a very short decay time.≈490 ns [8]. A TG-Green scintillator coating has been applied, for the first time, to a fusion plasma diagnostics for the detection of fast-particle losses on the AUG tokamak [9,10]. The same material supplied by other manufacturer (CIEMAT) has been used to compare the yields for both samples. We will refer to these screens as TGa and TGb for the corresponding to Sarnoff Co. and CIEMAT, respectively. The P46 is a rare earth oxide Y3Al5O12 (YAG) doped with Ce by 0.15% CeO2, manufactured by Proxitronic GmbH, Germany. The luminescence emission consists in a broad peak, centered at 550 nm with a stated decay time constant of 70 ns. [11]. The P46 has been widely applied to fusion plasma diagnostic and in particular to fast-ion loss detection on several devices such as TFTR and NSTX [12,13]. Finally, the P56 scintillator is a Eu doped Y2O3 powder substrate, Y2O3:Eu3+, manufactured by AST Corporation, England. Although this material has a high efficiency, its light emission has a long decay time of 2 ms [14], making the P56 unsuitable to follow the frequency of the MHD fluctuations.The samples were deposited using different processes directly by the manufacturers on 2 mm thick stainless steel plates. It is important to remind that reflections on the substrate may contribute to a luminescence enhancement of the thin scintillator screens. Therefore, the screens under study here as well as the experimental set-up were designed to mimic the real operation of a fast-ion loss detector.
Correlation of ion and beam current densities in Kaufman thrusters.
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1973-01-01
In the absence of direct impingement erosion, electrostatic thruster accelerator grid lifetime is defined by the charge exchange erosion that occurs at peak values of the ion beam current density. In order to maximize the thrust from an engine with a specified grid lifetime, the ion beam current density profile should therefore be as flat as possible. Knauer (1970) has suggested this can be achieved by establishing a radial plasma uniformity within the thruster discharge chamber; his tests with the radial field thruster provide an example of uniform plasma properties within the chamber and a flat ion beam profile occurring together. It is shown that, in particular, the ion density profile within the chamber determines the beam current density profile, and that a uniform ion density profile at the screen grid end of the discharge chamber should lead to a flat beam current density profile.
Dove prism based rotating dual beam bidirectional Doppler OCT
Blatter, Cedric; Coquoz, Séverine; Grajciar, Branislav; Singh, Amardeep S. G.; Bonesi, Marco; Werkmeister, René M.; Schmetterer, Leopold; Leitgeb, Rainer A.
2013-01-01
Traditional Doppler OCT is highly sensitive to motion artifacts due to the dependence on the Doppler angle. This limits its accuracy in clinical practice. To overcome this limitation, we use a bidirectional dual beam technique equipped with a novel rotating scanning scheme employing a Dove prism. The volume is probed from two distinct illumination directions with variable controlled incidence plane, allowing for reconstruction of the true flow velocity at arbitrary vessel orientations. The principle is implemented with Swept Source OCT at 1060nm with 100,000 A-Scans/s. We apply the system to resolve pulsatile retinal absolute blood velocity by performing segment scans around the optic nerve head and circumpapillary scan time series. PMID:23847742
NASA Astrophysics Data System (ADS)
Ontalba Salamanca, M. Á.; Gómez-Tubío, B.; Ortega-Feliu, I.; Respaldiza, M. Á.; Luisa de la Bandera, M.; Ovejero Zappino, G.; Bouzas, A.; Gómez-Morón, A.
2006-08-01
This paper presents the study of a set of Punic gold items (400 B.C.), from the Museum of Cádiz (Spain). An external beam set-up has been employed for the absolutely non-destructive analysis of the objects. PIXE spectrometry has been performed in order to characterize the metallic alloys and the manufacturing techniques. Compositional differences have been found and soldering procedures have been identified. By comparison with the rings and other coetaneous jewellery, the presence of palladium in the bulk alloy of the earrings can be pointed out. The geographical provenance of the palladium-bearing gold is discussed based on geological and archaeological considerations.
Ekdahl, Jr., Carl A.; Frost, Charles A.
1986-01-01
An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.
Ekdahl, C.A. Jr.; Frost, C.A.
1984-11-13
An intense relativistic electron beam current monitor for a gas neutralized beam transport line includes a first foil for conducting plasma current to the wall where it is measured as it traverses an inductive loop formed by a cavity in the wall. An insulator foil separates the first foil from a second conducting foil which returns the current to the plasma environment.
A NEW DIFFERENTIAL AND ERRANT BEAM CURRENT MONITOR FOR THE SNS* ACCELERATOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blokland, Willem; Peters, Charles C
2013-01-01
A new Differential and errant Beam Current Monitor (DBCM) is being implemented for both the Spallation Neutron Source's Medium Energy Beam Transport (MEBT) and the Super Conducting Linac (SCL) accelerator sections. These new current monitors will abort the beam when the difference between two toroidal pickups exceeds a threshold. The MEBT DBCM will protect the MEBT chopper target, while the SCL DBCM will abort beam to minimize fast beam losses in the SCL cavities. The new DBCM will also record instances of errant beam, such as beam dropouts, to assist in further optimization of the SNS Accelerator. A software Errantmore » Beam Monitor was implemented on the regular BCM hardware to study errant beam pulses. The new system will take over this functionality and will also be able to abort beam on pulse-to-pulse variations. Because the system is based on the FlexRIO hardware and programmed in LabVIEW FPGA, it will be able to abort beam in about 5 us. This paper describes the development, implementation, and initial test results of the DBCM, as well as errant beam examples.« less
Bibliography of Soviet Laser Developments, Number 60, July - August 1982.
1983-07-15
KLDVAD, 7/82, 10417) 155. Sagitov, S.l. (1). Mirrors for the ultraviolet and infrared regions of the spectrum. Tr 1, 118-164. 7. Detectors 156. Andryukhina...23 5. Beam Splitter9.......................................24 6. Mirrors..............................................24 7. Detectors ...E.D., K.S. Kyabilin, and 0.1. Fedyanin (1). Absolute sensitivity of pyroelectric detectors . Fizicheskiy institut AN SSSR. Preprint, no. 23.7, 1982
Improvements on the accuracy of beam bugs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y.J.; Fessenden, T.
1998-08-17
At LLNL resistive wall monitors are used to measure the current and position used on ETA-II show a droop in signal due to a fast redistribution time constant of the signals. This paper presents the analysis and experimental test of the beam bugs used for beam current and position measurements in and after the fast kicker. It concludes with an outline of present and future changes that can be made to improve the accuracy of these beam bugs. of intense electron beams in electron induction linacs and beam transport lines. These, known locally as ''beam bugs'', have been used throughoutmore » linear induction accelerators as essential diagnostics of beam current and location. Recently, the development of a fast beam kicker has required improvement in the accuracy of measuring the position of beams. By picking off signals at more than the usual four positions around the monitor, beam position measurement error can be greatly reduced. A second significant source of error is the mechanical variation of the resistor around the bug.« less
Improvements on the accuracy of beam bugs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y J; Fessenden, T
1998-09-02
At LLNL resistive wall monitors are used to measure the current and position used on ETA-II show a droop in signal due to a fast redistribution time constant of the signals. This paper presents the analysis and experimental test of the beam bugs used for beam current and position measurements in and after the fast kicker. It concludes with an outline of present and future changes that can be made to improve the accuracy of these beam bugs. of intense electron beams in electron induction linacs and beam transport lines. These, known locally as "beam bugs", have been used throughoutmore » linear induction accelerators as essential diagnostics of beam current and location. Recently, the development of a fast beam kicker has required improvement in the accuracy of measuring the position of beams. By picking off signals at more than the usual four positions around the monitor, beam position measurement error can be greatly reduced. A second significant source of error is the mechanical variation of the resistor around the bug.« less
Performance of an electron gun for a high-brightness X-ray generator
Sugimura, Takashi; Ohsawa, Satoshi; Ikeda, Mitsuo
2008-01-01
A prototype thermionic electron gun for a high-brightness X-ray generator has been developed. Its extraction voltage and design current are 60 kV and 100 mA (DC), respectively. The X-ray generator aims towards a maximum brilliance of 60 kW mm−2. The beam sizes at the rotating anticathode must therefore be within 1.0 mm × 0.1 mm and a small beam emittance is required. The fabricated electron gun optimizes an aperture grid and a Whenelt electrode. The performance of the prototype electron gun measured using pulsed-beam tests is as follows: maximum beam current, 85.7 mA; beam focus size at the rotating anticathode, 0.79 mm × 0.13 mm. In DC beam tests, FWHM beam sizes were measured to be 0.65 mm × 0.08 mm at the rotating anticathode with a beam current of 45 mA. The beam current recently reached ∼60 mA with some thermal problems. PMID:18421153
The Resistive-Wall Instability in Multipulse Linear Induction Accelerators
Ekdahl, Carl
2017-05-01
The resistive-wall instability results from the Lorentz force on the beam due to the beam image charge and current. If the beam pipe is perfectly conducting, the electric force due to the image charge attracts the beam to the pipe wall, and the magnetic force due to the image current repels the beam from the wall. For a relativistic beam, these forces almost cancel, leaving a slight attractive force, which is easily overcome by external magnetic focusing. However, if the beam pipe is not perfectly conducting, the magnetic field due to the image current decays on a magnetic-diffusion time scale.more » If the beam pulse is longer than the magnetic diffusion time, the repulsion of the beam tail will be weaker than the repulsion of the beam head. In the absence of an external focusing force, this causes a head-to-tail sweep of the beam toward the wall. This instability is usually thought to be a concern only for long-pulse relativistic electron beams. However, with the advent of multipulse, high current linear induction accelerators, the possibility of pulse-to-pulse coupling of this instability should be investigated. Lastly, we have explored pulse-to-pulse coupling using the linear accelerator model for Dual Axis Radiography for Hydrodynamic Testing beam dynamics code, and we present the results of this paper.« less
The Resistive-Wall Instability in Multipulse Linear Induction Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl
The resistive-wall instability results from the Lorentz force on the beam due to the beam image charge and current. If the beam pipe is perfectly conducting, the electric force due to the image charge attracts the beam to the pipe wall, and the magnetic force due to the image current repels the beam from the wall. For a relativistic beam, these forces almost cancel, leaving a slight attractive force, which is easily overcome by external magnetic focusing. However, if the beam pipe is not perfectly conducting, the magnetic field due to the image current decays on a magnetic-diffusion time scale.more » If the beam pulse is longer than the magnetic diffusion time, the repulsion of the beam tail will be weaker than the repulsion of the beam head. In the absence of an external focusing force, this causes a head-to-tail sweep of the beam toward the wall. This instability is usually thought to be a concern only for long-pulse relativistic electron beams. However, with the advent of multipulse, high current linear induction accelerators, the possibility of pulse-to-pulse coupling of this instability should be investigated. Lastly, we have explored pulse-to-pulse coupling using the linear accelerator model for Dual Axis Radiography for Hydrodynamic Testing beam dynamics code, and we present the results of this paper.« less
Oh, S K; Song, C G; Jang, T; Kim, Kwang-Choong; Jo, Y J; Kwak, J S
2013-03-01
This study examined the effect of electron-beam (E-beam) irradiation on the AIGaN/GaN HEMTs for the reduction of gate leakage. After E-beam irradiation, the gate leakage current significantly decreased from 2.68 x 10(-8) A to 4.69 x 10(-9) A at a drain voltage of 10 V. The maximum drain current density of the AIGaN/GaN HEMTs with E-beam irradiation increased 14%, and the threshold voltage exhibited a negative shift, when compared to that of the AIGaN/GaN HEMTs before E-beam irradiation. These results strongly suggest that the reduction of gate leakage current resulted from neutralization nitrogen vacancies and removing of oxygen impurities.
Compensation of orbit distortion due to quadrupole motion using feed-forward control at KEK ATF
NASA Astrophysics Data System (ADS)
Bett, D. R.; Charrondière, C.; Patecki, M.; Pfingstner, J.; Schulte, D.; Tomás, R.; Jeremie, A.; Kubo, K.; Kuroda, S.; Naito, T.; Okugi, T.; Tauchi, T.; Terunuma, N.; Burrows, P. N.; Christian, G. B.; Perry, C.
2018-07-01
The high luminosity requirement for a future linear collider sets a demanding limit on the beam quality at the Interaction Point (IP). One potential source of luminosity loss is the motion of the ground itself. The resulting misalignments of the quadrupole magnets cause distortions to the beam orbit and hence an increase in the beam emittance. This paper describes a technique for compensating this orbit distortion by using seismometers to monitor the misalignment of the quadrupole magnets in real-time. The first demonstration of the technique was achieved at the Accelerator Test Facility (ATF) at KEK in Japan. The feed-forward system consisted of a seismometer-based quadrupole motion monitoring system, an FPGA-based feed-forward processor and a stripline kicker plus associated electronics. Through the application of a kick calculated from the position of a single quadruple, the system was able to remove about 80% of the component of the beam jitter that was correlated to the motion of the quadrupole. As a significant fraction of the orbit jitter in the ATF final focus is due to sources other than quadrupole misalignment, this amounted to an approximately 15% reduction in the absolute beam jitter.
Development of a hard x-ray wavefront sensor for the EuXFEL
NASA Astrophysics Data System (ADS)
Berujon, Sebastien; Ziegler, Eric; Cojocaru, Ruxandra; Martin, Thierry
2017-05-01
We present developments on a hard X-ray wavefront sensing instrument for characterizing and monitoring the beam of the European X-ray Free Electron Lasers (EuXFEL). The pulsed nature of the intense X-ray beam delivered by this new class of facility gives rise to strong challenges for the optics and their diagnostic. In the frame of the EUCALL project Work Package 7, we are developing a sensor able to observe the beam in the X-ray energy range [8-40] keV without altering it. The sensor is based on the speckle tracking principle and employs two semi-transparent optics optimized such that their X-ray absorption is reduced. Furthermore, this instrument requires a scattering object with small random features placed in the beam and two cameras to record images of the beam at two different propagation distances. The analysis of the speckle pattern and its distortion from one image to the other allows absolute or differential wavefront recovery from pulse to pulse. Herein, we introduce the stakes and challenges of wavefront sensing at an XFEL source and explain the strategies adopted to fulfil the high requirements set by such a source.
Development of a portable graphite calorimeter for radiation dosimetry.
Sakama, Makoto; Kanai, Tatsuaki; Fukumura, Akifumi
2008-01-01
We developed and performance-tested a portable graphite calorimeter designed to measure the absolute dosimetry of various beams including heavy-ion beams, based on a flexible and convenient means of measurement. This measurement system is fully remote-controlled by the GPIB system. This system uses a digital PID (Proportional, Integral, Derivative) control method based on the LabVIEW software. It was possible to attain stable conditions in a shorter time by this system. The standard deviation of the measurements using the calorimeter was 0.79% at a dose rate of 0.8 Gy/min in 17 calorimeter runs for a (60)Co photon beam. The overall uncertainties for the absorbed dose to graphite and water of the (60)Co photon beam using the developed calorimeter were 0.89% and 1.35%, respectively. Estimations of the correction factors due to vacuum gaps, impurities in the core, the dose gradient and the radiation profile were included in the uncertainties. The absorbed doses to graphite and water irradiated by the (60)Co photon beam were compared with dosimetry measurements obtained using three ionization chambers. The absorbed doses to graphite and water estimated by the two dosimetry methods agreed within 0.1% and 0.3%, respectively.
Solenoid transport of beams with current-dependent initial conditions
Harris, J. R.; Poole, B. R.; Lewellen, J. W.
2017-09-06
We present that intense charged particle beams will generally be formed with an initial correlation between their longitudinal properties, including longitudinal variations in current, and their transverse properties, including their radius and divergence. This is due to the competition between the transverse focusing fields in the beam source and the time-varying space charge forces in the beam. In DC electron guns where the current modulation is slow compared to the electron transit time, the nature of these correlations was previously shown to depend on the gun geometry, exhibiting a linear dependence of the beam radius and divergence on the beammore » current at the gun exit. Here, we extend the previous work to study the transport of beams with such correlation in uniform and periodic solenoid channels. For each transport channel configuration studied, the transverse envelope equation is used to calculate the envelope of 101 beam slices differing in their slice currents, as well as initial radius and divergence (due to their dependence on slice current). For each channel configuration, these calculations are performed 546 times, with each of these iterations considering a different degree of correlation between the radius and divergence, and the slice current. It is found that some degree of correlation between the initial radius and slice current actually aids in beam transport, and the required strength of correlation can be estimated with simple models. Finally, increasing the degree of correlation between the initial divergence and slice current is generally counterproductive, and the degree of sensitivity to such correlations depends on the design of the transport channel.« less
Solenoid transport of beams with current-dependent initial conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, J. R.; Poole, B. R.; Lewellen, J. W.
We present that intense charged particle beams will generally be formed with an initial correlation between their longitudinal properties, including longitudinal variations in current, and their transverse properties, including their radius and divergence. This is due to the competition between the transverse focusing fields in the beam source and the time-varying space charge forces in the beam. In DC electron guns where the current modulation is slow compared to the electron transit time, the nature of these correlations was previously shown to depend on the gun geometry, exhibiting a linear dependence of the beam radius and divergence on the beammore » current at the gun exit. Here, we extend the previous work to study the transport of beams with such correlation in uniform and periodic solenoid channels. For each transport channel configuration studied, the transverse envelope equation is used to calculate the envelope of 101 beam slices differing in their slice currents, as well as initial radius and divergence (due to their dependence on slice current). For each channel configuration, these calculations are performed 546 times, with each of these iterations considering a different degree of correlation between the radius and divergence, and the slice current. It is found that some degree of correlation between the initial radius and slice current actually aids in beam transport, and the required strength of correlation can be estimated with simple models. Finally, increasing the degree of correlation between the initial divergence and slice current is generally counterproductive, and the degree of sensitivity to such correlations depends on the design of the transport channel.« less
Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation
Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy
2012-01-01
Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276
Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.
Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy
2012-12-14
Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.
NASA Astrophysics Data System (ADS)
Bliokh, Yu. P.; Nusinovich, G. S.; Shkvarunets, A. G.; Carmel, Y.
2004-10-01
Plasma-assisted slow-wave oscillators (pasotrons) operate without external magnetic fields, which makes these devices quite compact and lightweight. Beam focusing in pasotrons is provided by ions, which appear in the device due to the impact ionization of a neutral gas by beam electrons. Typically, the ionization time is on the order of the rise time of the beam current. This means that, during the rise of the current, beam focusing by ions becomes stronger. Correspondingly, a beam of electrons, which was initially diverging radially due to the self-electric field, starts to be focused by ions, and this focus moves towards the gun as the ion density increases. This feature makes the self-excitation of electromagnetic (em) oscillations in pasotrons quite different from practically all other microwave sources where em oscillations are excited by a stationary electron beam. The process of self-excitation of em oscillations has been studied both theoretically and experimentally. It is shown that in pasotrons, during the beam current rise the amount of current entering the interaction space and the beam coupling to the em field vary. As a result, the self-excitation can proceed faster than in conventional microwave sources with similar operating parameters such as the operating frequency, cavity quality-factor and the beam current and voltage.
12 CFR Appendix C to Part 325 - Risk-Based Capital for State Non-Member Banks: Market Risk
Code of Federal Regulations, 2012 CFR
2012-01-01
... instrument is a covered debt instrument that is subject to a non-zero specific risk capital charge. (A) For... indices. (iii) A bank must multiply the absolute value of the current market value of each net long or... conversion. (iii)(A) A bank must multiply the absolute value of the current market value of each net long or...
Luo, Guang-Wen; Qi, Zhen-Yu; Deng, Xiao-Wu; Rosenfeld, Anatoly
2014-05-01
To explore the feasibility of pulsed current annealing in reusing metal oxide semiconductor field-effect transistor (MOSFET) dosimeters for in vivo intensity modulated radiation therapy (IMRT) dosimetry. Several MOSFETs were irradiated at d(max) using a 6 MV x-ray beam with 5 V on the gate and annealed with zero bias at room temperature. The percentage recovery of threshold voltage shift during multiple irradiation-annealing cycles was evaluated. Key dosimetry characteristics of the annealed MOSFET such as the dosimeter's sensitivity, reproducibility, dose linearity, and linearity of response within the dynamic range were investigated. The initial results of using the annealed MOSFETs for IMRT dosimetry practice were also presented. More than 95% of threshold voltage shift can be recovered after 24-pulse current continuous annealing in 16 min. The mean sensitivity degradation was found to be 1.28%, ranging from 1.17% to 1.52%, during multiple annealing procedures. Other important characteristics of the annealed MOSFET remained nearly consistent before and after annealing. Our results showed there was no statistically significant difference between the annealed MOSFETs and their control samples in absolute dose measurements for IMRT QA (p = 0.99). The MOSFET measurements agreed with the ion chamber results on an average of 0.16% ± 0.64%. Pulsed current annealing provides a practical option for reusing MOSFETs to extend their operational lifetime. The current annealing circuit can be integrated into the reader, making the annealing procedure fully automatic.
Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Asai, Tomohiko; Inomoto, Michiaki; Ono, Yasushi
2012-08-01
We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 10(17) m(-3), i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nayak, B., E-mail: biswaranjan.nayak1@gmail.com; Acharya, S.; Rajawat, R. K.
2016-01-15
A high power pulsed radio frequency electron linac is designed by BARC, India to accelerate 30 MeV, 10 A, 10 ns beam for neutron-time-of-flight applications. It will be used as a neutron generator and will produce ∼10{sup 12}–10{sup 13} n/s. It is essential to reduce the beam instability caused by space charge effect and the beam cavity interaction. In this paper, the wakefield losses in the accelerating section due to bunch of RMS (Root mean square) length 2 mm (at the gun exit) is analysed. Loss and kick factors are numerically calculated using CST wakefield solver. Both the longitudinal and transverse wake potentialsmore » are incorporated in beam dynamics code ELEGANT to find the transverse emittance growth of the beam propagating through the linac. Beam loading effect is examined by means of numerical computation carried out in ASTRA code. Beam break up start current has been estimated at the end of the linac which arises due to deflecting modes excited by the high current beam. At the end, transverse beam dynamics of such high current beam has been analysed.« less
NASA Astrophysics Data System (ADS)
Hara, Toru; Kondo, Chikara; Inagaki, Takahiro; Togawa, Kazuaki; Fukami, Kenji; Nakazawa, Shingo; Hasegawa, Taichi; Morimoto, Osamu; Yoshioka, Masamichi; Maesaka, Hirokazu; Otake, Yuji; Tanaka, Hitoshi
2018-04-01
The parallel operation of multiple beam lines is an important means to expand the opportunity of user experiments at x-ray free-electron laser (XFEL) facilities. At SPring-8 Angstrom free-electron laser (SACLA), the multi-beam-line operation had been tested using two beam lines, but transverse coherent synchrotron radiation (CSR) effects at a dogleg beam transport severely limited the laser performance. To suppress the CSR effects, a new beam optics based on two double bend achromat (DBA) structures was introduced for the dogleg. After the replacement of the beam optics, high peak current bunches of more than 10 kA are now stably transported through the dogleg and the laser pulse output is increased by a factor of 2-3. In the multi-beam-line operation of SACLA, the electron beam parameters, such as the beam energy and peak current, can be adjusted independently for each beam line. Thus the laser output can be optimized and wide spectral tunability is ensured for all beam lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joo, Youngdo, E-mail: Ydjoo77@postech.ac.kr; Yu, Inha; Park, Insoo
After three years of upgrading work, the Pohang Light Source-II (PLS-II) is now successfully operating. The final quantitative goal of PLS-II is a top-up user-service operation with beam current of 400 mA to be completed by the end of 2014. During the beam store test up to 400 mA in the storage ring (SR), it was observed that the vacuum pressure around the radio frequency (RF) window of the superconducting cavity rapidly increases over the interlock level limiting the availability of the maximum beam current storing. Although available beam current is enhanced by setting a higher RF accelerating voltage, it is bettermore » to keep the RF accelerating voltage as low as possible in the long time top-up operation. We investigated the cause of the window vacuum pressure increment by studying the changes in the electric field distribution at the superconducting cavity and waveguide according to the beam current. In our simulation, an equivalent physical modeling was developed using a finite-difference time-domain code. The simulation revealed that the electric field amplitude at the RF window is exponentially increased as the beam current increases, thus this high electric field amplitude causes a RF breakdown at the RF window, which comes with the rapid increase of window vacuum pressure. The RF accelerating voltage of PLS-II RF system was set to 4.95 MV, which was estimated using the maximum available beam current that works as a function of RF voltage, and the top-up operation test with the beam current of 400 mA was successfully carried out.« less
Parameterization of photon beam dosimetry for a linear accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebron, Sharon; Barraclough, Brendan; Lu, Bo
2016-02-15
Purpose: In radiation therapy, accurate data acquisition of photon beam dosimetric quantities is important for (1) beam modeling data input into a treatment planning system (TPS), (2) comparing measured and TPS modeled data, (3) the quality assurance process of a linear accelerator’s (Linac) beam characteristics, (4) the establishment of a standard data set for comparison with other data, etcetera. Parameterization of the photon beam dosimetry creates a data set that is portable and easy to implement for different applications such as those previously mentioned. The aim of this study is to develop methods to parameterize photon beam dosimetric quantities, includingmore » percentage depth doses (PDDs), profiles, and total scatter output factors (S{sub cp}). Methods: S{sub cp}, PDDs, and profiles for different field sizes, depths, and energies were measured for a Linac using a cylindrical 3D water scanning system. All data were smoothed for the analysis and profile data were also centered, symmetrized, and geometrically scaled. The S{sub cp} data were analyzed using an exponential function. The inverse square factor was removed from the PDD data before modeling and the data were subsequently analyzed using exponential functions. For profile modeling, one halfside of the profile was divided into three regions described by exponential, sigmoid, and Gaussian equations. All of the analytical functions are field size, energy, depth, and, in the case of profiles, scan direction specific. The model’s parameters were determined using the minimal amount of measured data necessary. The model’s accuracy was evaluated via the calculation of absolute differences between the measured (processed) and calculated data in low gradient regions and distance-to-agreement analysis in high gradient regions. Finally, the results of dosimetric quantities obtained by the fitted models for a different machine were also assessed. Results: All of the differences in the PDDs’ buildup and the profiles’ penumbra regions were less than 2 and 0.5 mm, respectively. The differences in the low gradient regions were 0.20% ± 0.20% (<1% for all) and 0.50% ± 0.35% (<1% for all) for PDDs and profiles, respectively. For S{sub cp} data, all of the absolute differences were less than 0.5%. Conclusions: This novel analytical model with minimum measurement requirements was proved to accurately calculate PDDs, profiles, and S{sub cp} for different field sizes, depths, and energies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
POZDEYEV,E.; BEN-ZVI, I.; CAMERON, P.
2007-06-25
The ERL Prototype project is currently under development at the Brookhaven National Laboratory. The ERL is expected to demonstrate energy recovery of high-intensity beams with a current of up to a few hundred milliamps, while preserving the emittance of bunches with a charge of a few nanocoulombs produced by a high-current SRF gun. To successfully accomplish this task the machine will include beam diagnostics that will be used for accurate characterization of the three dimensional beam phase space at the injection and recirculation energies, transverse and longitudinal beam matching, orbit alignment, beam current measurement, and machine protection. This paper outlinesmore » requirements on the ERL diagnostics and describes its setup and modes of operation.« less
Electron beam transport with current above the Alfven--Lawson limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al'terkop, B.A.; Sokulin, A.Y.; Tarakanov, V.P.
1989-08-01
The quasisteady state of a magnetized electron beam with a current above the Alfven-Lawson limit in a cylindrical waveguide of finite length is analyzed. The distribution of the electrostatic field, the limiting current, and the critical length of the waveguide are found in a two-dimensional system. The basic characteristics of the beam for the injection of a current above the limit---the position of the virtual cathode, the beam thickness, and the current which can be transported---are determined. The current which can be transported may exceed the theoretical limit. The accuracy of the analytic results is confirmed by comparison with themore » results of experiments and numerical simulations.« less
Improved determination of the neutron lifetime.
Yue, A T; Dewey, M S; Gilliam, D M; Greene, G L; Laptev, A B; Nico, J S; Snow, W M; Wietfeldt, F E
2013-11-27
The most precise determination of the neutron lifetime using the beam method was completed in 2005 and reported a result of τ(n)=(886.3±1.2[stat]±3.2[syst]) s. The dominant uncertainties were attributed to the absolute determination of the fluence of the neutron beam (2.7 s). The fluence was measured with a neutron monitor that counted the neutron-induced charged particles from absorption in a thin, well-characterized 6Li deposit. The detection efficiency of the monitor was calculated from the areal density of the deposit, the detector solid angle, and the evaluated nuclear data file, ENDF/B-VI 6Li(n,t)4He thermal neutron cross section. In the current work, we measure the detection efficiency of the same monitor used in the neutron lifetime measurement with a second, totally absorbing neutron detector. This direct approach does not rely on the 6Li(n,t)4He cross section or any other nuclear data. The detection efficiency is consistent with the value used in 2005 but is measured with a precision of 0.057%, which represents a fivefold improvement in the uncertainty. We verify the temporal stability of the neutron monitor through ancillary measurements, allowing us to apply the measured neutron monitor efficiency to the lifetime result from the 2005 experiment. The updated lifetime is τ(n)=(887.7±1.2[stat]±1.9[syst]) s.
NASA Technical Reports Server (NTRS)
McGarry, Jan
2015-01-01
NASA's Next Generation Satellite Laser Ranging (NGSLR) station is the prototype for NASA's Satellite Laser Ranging (SLR) systems which will be deployed around the world in the coming decade. The NGSLR system will be an autonomous, photon-counting SLR station with an expected absolute range accuracy of better than one centimeter and a normal point (time-averaged) range precision better than one millimeter. The system provides continuous (weather permitting), 24 hour tracking coverage to an existing constellation of approximately two dozen artificial satellites equipped with passive retroreflector arrays, using pulsed, 532 nm, class IV laser systems. Current details on the approved laser systems can be found in the Appendix 1 of this document. This safety plan addresses the potential hazards to emitted laser radiation, which can occur both inside and outside the shelter. Hazards within the shelter are mitigated through posted warning signs, activated warning lights, procedural controls, personal protective equipment (PPE), laser curtains, beam blocking systems, interlock controls, pre-configured laser control settings, and other controls discussed in this document. Since the NGSLR is a satellite tracking system, laser hazards exist outside the shelter to personnel on the shelter roof and to passing aircraft. Potential exposure to personnel outside the system is mitigated through the use of posted warning signs, access control, procedural controls, a stairwell interlock, beam attenuation/blocking devices, and a radar based aircraft detection system.
Schwarz, S; Baumann, T M; Kittimanapun, K; Lapierre, A; Snyder, A
2014-02-01
The Electron Beam Ion Trap (EBIT) in NSCL's reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT's superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm(2) has been reached when the EBIT magnet was operated at 4 T.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarz, S., E-mail: schwarz@nscl.msu.edu; Baumann, T. M.; Kittimanapun, K.
The Electron Beam Ion Trap (EBIT) in NSCL’s reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT’s superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assessmore » the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm{sup 2} has been reached when the EBIT magnet was operated at 4 T.« less
A High Peak Current Source for the CEBAF Injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yunn, Byung; Sinclair, Charles; Krafft, Geoffrey
1992-07-01
The CEBAF accelerator can drive high power IR and UV FELs, if a high peak current source is added to the existing front end. We present a design for a high peak current injector which is compatible with simultaneous operation of the accelerator for cw nulear physics (NP) beam. The high peak current injector provides 60 A peak current in 2 psec long bunches carrying 120 pC charge at 7.485 MHz. At 10 MeV that beam is combined with 5 MeV NP beam (0.13pC, 2 psec long bunches at 1497 MHz) in an energy combination chicane for simultaneous acceleration inmore » the injector linac. The modifications to the low-energy NP transport are described. Results of optical and beam dynamics calculations for both high peak current and NP beams in combined operation are presented.« less
High current polarized electron source for future eRHIC
NASA Astrophysics Data System (ADS)
Wang, Erdong
2018-05-01
The high current and high bunch charge polarized electron source is essential for cost reduction of Linac-Ring (L-R) eRHIC. In the baseline design, electron beam from multiple guns (probably 4-8) will be combined using deflection plates or accumulate ring. Each gun aims to deliver electron beam with 10 mA average current and 5.3 nC bunch charge. With total 50 mA and 5.3 nC electron beam, this beam combining design could use for generating positron too. The gun has been designed, fabricated and expected to start commissioning by the mid of this year. In this paper, we will present the DC gun design parameters and beam combine schemes. Also, we will describe the details of gun design and the strategies to demonstrate high current high charge polarized electron beam from this source.
Generation of Low-Energy High-Current Electron Beams in Plasma-Anode Electron Guns
NASA Astrophysics Data System (ADS)
Ozur, G. E.; Proskurovsky, D. I.
2018-01-01
This paper is a review of studies on the generation of low-energy high-current electron beams in electron guns with a plasma anode and an explosive-emission cathode. The problems related to the initiation of explosive electron emission under plasma and the formation and transport of high-current electron beams in plasma-filled systems are discussed consecutively. Considerable attention is given to the nonstationary effects that occur in the space charge layers of plasma. Emphasis is also placed on the problem of providing a uniform energy density distribution over the beam cross section, which is of critical importance in using electron beams of this type for surface treatment of materials. Examples of facilities based on low-energy high-current electron beam sources are presented and their applications in materials science and practice are discussed.
SU-E-T-468: Implementation of the TG-142 QA Process for Seven Linacs with Enhanced Beam Conformance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woollard, J; Ayan, A; DiCostanzo, D
2015-06-15
Purpose: To develop a TG-142 compliant QA process for 7 Varian TrueBeam linear accelerators (linacs) with enhanced beam conformance and dosimetrically matched beam models. To ensure consistent performance of all 7 linacs, the QA process should include a common set of baseline values for use in routine QA on all linacs. Methods: The TG 142 report provides recommended tests, tolerances and frequencies for quality assurance of medical accelerators. Based on the guidance provided in the report, measurement tests were developed to evaluate each of the applicable parameters listed for daily, monthly and annual QA. These tests were then performed onmore » each of our 7 new linacs as they came on line at our institution. Results: The tolerance values specified in TG-142 for each QA test are either absolute tolerances (i.e. ±2mm) or require a comparison to a baseline value. The results of our QA tests were first used to ensure that all 7 linacs were operating within the suggested tolerance values provided in TG −142 for those tests with absolute tolerances and that the performance of the linacs was adequately matched. The QA test results were then used to develop a set of common baseline values for those QA tests that require comparison to a baseline value at routine monthly and annual QA. The procedures and baseline values were incorporated into a spreadsheets for use in monthly and annual QA. Conclusion: We have developed a set of procedures for daily, monthly and annual QA of our linacs that are consistent with the TG-142 report. A common set of baseline values was developed for routine QA tests. The use of this common set of baseline values for comparison at monthly and annual QA will ensure consistent performance of all 7 linacs.« less
Sensitivity of Beam Parameters to a Station C Solenoid Scan on Axis II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulze, Martin E.
Magnet scans are a standard technique for determining beam parameters in accelerators. Beam parameters are inferred from spot size measurements using a model of the beam optics. The sensitivity of the measured beam spot size to the beam parameters is investigated for typical DARHT Axis II beam energies and currents. In a typical S4 solenoid scan, the downstream transport is tuned to achieve a round beam at Station C with an envelope radius of about 1.5 cm with a very small divergence with S4 off. The typical beam energy and current are 16.0 MeV and 1.625 kA. Figures 1-3 showmore » the sensitivity of the bean size at Station C to the emittance, initial radius and initial angle respectively. To better understand the relative sensitivity of the beam size to the emittance, initial radius and initial angle, linear regressions were performed for each parameter as a function of the S4 setting. The results are shown in Figure 4. The measured slope was scaled to have a maximum value of 1 in order to present the relative sensitivities in a single plot. Figure 4 clearly shows the beam size at the minimum of the S4 scan is most sensitive to emittance and relatively insensitive to initial radius and angle as expected. The beam emittance is also very sensitive to the beam size of the converging beam and becomes insensitive to the beam size of the diverging beam. Measurements of the beam size of the diverging beam provide the greatest sensitivity to the initial beam radius and to a lesser extent the initial beam angle. The converging beam size is initially very sensitive to the emittance and initial angle at low S4 currents. As the S4 current is increased the sensitivity to the emittance remains strong while the sensitivity to the initial angle diminishes.« less
Neutrino flux prediction at MiniBooNE
NASA Astrophysics Data System (ADS)
Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Martin, P. S.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Nelson, R. H.; Nguyen, V. T.; Nienaber, P.; Nowak, J. A.; Ouedraogo, S.; Patterson, R. B.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; van de Water, R.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.
2009-04-01
The booster neutrino experiment (MiniBooNE) searches for νμ→νe oscillations using the O(1GeV) neutrino beam produced by the booster synchrotron at the Fermi National Accelerator Laboratory). The booster delivers protons with 8 GeV kinetic energy (8.89GeV/c momentum) to a beryllium target, producing neutrinos from the decay of secondary particles in the beam line. We describe the Monte Carlo simulation methods used to estimate the flux of neutrinos from the beam line incident on the MiniBooNE detector for both polarities of the focusing horn. The simulation uses the Geant4 framework for propagating particles, accounting for electromagnetic processes and hadronic interactions in the beam line materials, as well as the decay of particles. The absolute double differential cross sections of pion and kaon production in the simulation have been tuned to match external measurements, as have the hadronic cross sections for nucleons and pions. The statistical precision of the flux predictions is enhanced through reweighting and resampling techniques. Systematic errors in the flux estimation have been determined by varying parameters within their uncertainties, accounting for correlations where appropriate.
Beam dynamics simulation of HEBT for the SSC-linac injector
NASA Astrophysics Data System (ADS)
Li, Xiao-Ni; Yuan, You-Jin; Xiao, Chen; He, Yuan; Wang, Zhi-Jun; Sheng, Li-Na
2012-11-01
The SSC-linac (a new injector for the Separated Sector Cyclotron) is being designed in the HIRFL (Heavy Ion Research Facility in Lanzhou) system to accelerate 238U34+ from 3.72 keV/u to 1.008 MeV/u. As a part of the SSC-linac injector, the HEBT (high energy beam transport) has been designed by using the TRACE-3D code and simulated by the 3D PIC (particle-in-cell) Track code. The total length of the HEBT is about 12 meters and a beam line of about 6 meters are shared with the exiting beam line of the HIRFL system. The simulation results show that the particles can be delivered efficiently in the HEBT and the particles at the exit of the HEBT well match the acceptance of the SSC for further acceleration. The dispersion is eliminated absolutely in the HEBT. The space-charge effect calculated by the Track code is inconspicuous. According to the simulation, more than 60 percent of the particles from the ion source can be transported into the acceptance of the SSC.
Vectorial structures of linear-polarized Butterfly-Gauss vortex beams in the far zone
NASA Astrophysics Data System (ADS)
Cheng, Ke; Zhou, Yan; Lu, Gang; Yao, Na; Zhong, Xianqiong
2018-05-01
By introducing the Butterfly catastrophe to optics, the far-zone vectorial structures of Butterfly-Gauss beam with vortex and non-vortex are studied using the angular spectrum representation and stationary phase method. The influence of topological charge, linear-polarized angle, off-axis distance and scaling length on the far-zone vectorial structures, especially in the Poynting vector and angular momentum density of the corresponding beam is emphasized. The results show that the embedded optical vortex at source plane lead to special dark zones in the far zone, where the number of dark zone equals the absolute value of topological charge of optical vortex. Furthermore, the symmetry and direction of the special dark zones can be controlled by off-axis distance and scaling length, respectively. The linear-polarized angle adjusts only the Poynting vectors of TE and TM terms, but it does not affect those of whole beam. Finally, the vectorial expressions also indicate that the total angular momentum density is certainly zero owing to the far-zone stable structures rather than rotation behaviors.
Tilt angle measurement with a Gaussian-shaped laser beam tracking
NASA Astrophysics Data System (ADS)
Šarbort, Martin; Řeřucha, Šimon; Jedlička, Petr; Lazar, Josef; Číp, Ondrej
2014-05-01
We have addressed the challenge to carry out the angular tilt stabilization of a laser guiding mirror which is intended to route a laser beam with a high energy density. Such an application requires good angular accuracy as well as large operating range, long term stability and absolute positioning. We have designed an instrument for such a high precision angular tilt measurement based on a triangulation method where a laser beam with Gaussian profile is reflected off the stabilized mirror and detected by an image sensor. As the angular deflection of the mirror causes a change of the beam spot position, the principal task is to measure the position on the image chip surface. We have employed a numerical analysis of the Gaussian intensity pattern which uses the nonlinear regression algorithm. The feasibility and performance of the method were tested by numeric modeling as well as experimentally. The experimental results indicate that the assembled instrument achieves a measurement error of 0.13 microradian in the range +/-0.65 degrees over the period of one hour. This corresponds to the dynamic range of 1:170 000.
Results from E ∥B Neutral Particle Analyzer and Calibration Ion Beam System on C-2U
NASA Astrophysics Data System (ADS)
Clary, Ryan; Roquemore, A.; Kolmogorov, A.; Ivanov, A.; Korepanov, S.; Magee, R.; Medley, S.; Smirnov, A.; Tiunov, M.; TAE Team
2015-11-01
C-2U is a a high-confinement, advanced beam driven FRC which aims to sustain the configuration for > 5 ms, in excess of typical MHD and fast particle instability times, as well as fast particle slowing down times. Fast particle dynamics are critical to C-2U performance and several diagnostics have been deployed to characterize the fast particle population, including neutron and proton detectors, an electrostatic neutral particle analyzer, and neutral particle bolometers. To increase our understanding of fast particle behavior and supplement existing diagnostics an E ∥B NPA was acquired from PPPL which simultaneously measures H0 and D0 flux between 2 and 22 keV with high energy resolution. In addition, a small, high purity, ion beam system has been constructed and tested to calibrate absolutely fast particle detectors. Here we report results of measurements from the E ∥B analyzer on C-2U and inferred fast particle behavior, as well as the status of the calibration ion beam system.
Huang, Yun-Qing; You, Jing-Qing; Zhang, Junsheng; Sun, Wenjian; Ding, Li; Feng, Yu-Qi
2011-10-14
We developed a convenient method by coupling frontal elution paper chromatography with desorption corona beam ionization mass spectrometry (DCBI-MS) for rapid determination of chlorphenamine added in herbal medicines or dietary supplements. In this method, the ethanol extract of the herbal products was spotted directly onto an isosceles triangular filter paper sheet, and then the paper sheet was developed under strong elution condition with the sample zone migrating at the solvent front. The analyte was finally condensed at the V-shaped tip which could then be placed under the visible plasma beam of DCBI for ionization. The overall procedure took less than 5 min. The frontal elution paper chromatography on a triangular plate used in this work improved the signal intensity of chlorphenamine by 30-fold due to the analyte condensing at the tip and the reduction of the background suppression. Furthermore, the paper sheet also functioned as a filter in the analysis of solid or powder samples, which can increase the analytical throughput by omitting the step of centrifugation. The proposed method in current study was successfully applied in the determination of chlorphenamine in herbal medicines. Chlorphenamine was detected in four of the twelve types of herbal medicines examined in this study. The limit of detection was 200 ng/mL (2.0 ng absolute) in full-scan positive-ion mode and the linear range was from 5.0 μg/mL to 50 μg/mL with satisfactory linear coefficient (R(2) (the square of the correlation coefficient)=0.895). Good reproducibility was achieved with relative standard deviations (RSDs) less than 15.0% and the recoveries of chlorphenamine ranged from 84.3 to 90.6%. Copyright © 2011 Elsevier B.V. All rights reserved.
A new evaluation method of electron optical performance of high beam current probe forming systems.
Fujita, Shin; Shimoyama, Hiroshi
2005-10-01
A new numerical simulation method is presented for the electron optical property analysis of probe forming systems with point cathode guns such as cold field emitters and the Schottky emitters. It has long been recognized that the gun aberrations are important parameters to be considered since the intrinsically high brightness of the point cathode gun is reduced due to its spherical aberration. The simulation method can evaluate the 'threshold beam current I(th)' above which the apparent brightness starts to decrease from the intrinsic value. It is found that the threshold depends on the 'electron gun focal length' as well as on the spherical aberration of the gun. Formulas are presented to estimate the brightness reduction as a function of the beam current. The gun brightness reduction must be included when the probe property (the relation between the beam current l(b) and the probe size on the sample, d) of the entire electron optical column is evaluated. Formulas that explicitly consider the gun aberrations into account are presented. It is shown that the probe property curve consists of three segments in the order of increasing beam current: (i) the constant probe size region, (ii) the brightness limited region where the probe size increases as d approximately I(b)(3/8), and (iii) the angular current intensity limited region in which the beam size increases rapidly as d approximately I(b)(3/2). Some strategies are suggested to increase the threshold beam current and to extend the effective beam current range of the point cathode gun into micro ampere regime.
Swept Frequency Laser Metrology System
NASA Technical Reports Server (NTRS)
Zhao, Feng (Inventor)
2010-01-01
A swept frequency laser ranging system having sub-micron accuracy that employs multiple common-path heterodyne interferometers, one coupled to a calibrated delay-line for use as an absolute reference for the ranging system. An exemplary embodiment uses two laser heterodyne interferometers to create two laser beams at two different frequencies to measure distance and motions of target(s). Heterodyne fringes generated from reflections off a reference fiducial X(sub R) and measurement (or target) fiducial X(sub M) are reflected back and are then detected by photodiodes. The measured phase changes Delta phi(sub R) and Delta phi (sub m) resulting from the laser frequency swept gives target position. The reference delay-line is the only absolute reference needed in the metrology system and this provides an ultra-stable reference and simple/economical system.
Orsila, Lasse; Härkönen, Antti; Hyyti, Janne; Guina, Mircea; Steinmeyer, Günter
2014-08-01
Measurement of nonlinear optical reflectivity of saturable absorber devices is discussed. A setup is described that enables absolute accuracy of reflectivity measurements better than 0.3%. A repeatability within 0.02% is shown for saturable absorbers with few-percent modulation depth. The setup incorporates an in situ knife-edge characterization of beam diameters, making absolute reflectivity estimations and determination of saturation fluences significantly more reliable. Additionally, several measures are discussed to substantially improve the reliability of the reflectivity measurements. At its core, the scheme exploits the limits of state-of-the-art digital lock-in technology but also greatly benefits from a fiber-based master-oscillator power-amplifier source, the use of an integrating sphere, and simultaneous comparison with a linear reflectivity standard.
Safe operating conditions for NSLS-II Storage Ring Frontends commissioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seletskiy, S.; Amundsen, C.; Ha, K.
2015-04-02
The NSLS-II Storage Ring Frontends are designed to safely accept the synchrotron radiation fan produced by respective insertion device when the electron beam orbit through the ID is locked inside the predefined Active Interlock Envelope. The Active Interlock is getting enabled at a particular beam current known as AI safe current limit. Below such current the beam orbit can be anywhere within the limits of the SR beam acceptance. During the FE commissioning the beam orbit is getting intentionally disturbed in the particular ID. In this paper we explore safe operating conditions for the Frontends commissioning.
Maximum current density and beam brightness achievable by laser-driven electron sources
NASA Astrophysics Data System (ADS)
Filippetto, D.; Musumeci, P.; Zolotorev, M.; Stupakov, G.
2014-02-01
This paper discusses the extension to different electron beam aspect ratio of the Child-Langmuir law for the maximum achievable current density in electron guns. Using a simple model, we derive quantitative formulas in good agreement with simulation codes. The new scaling laws for the peak current density of temporally long and transversely narrow initial beam distributions can be used to estimate the maximum beam brightness and suggest new paths for injector optimization.
NASA Astrophysics Data System (ADS)
Prieto, José Emilio; Zucchiatti, Alessandro; Galán, Patricia; Prieto, Pilar
2017-09-01
X-ray production differential cross sections induced by C and Si ions with energies from 1 MeV/u down to 0.25 MeV/u, produced by the CMAM 5 MV tandem accelerator, have been measured for thin targets of Ti, Fe, Zn, Nb, Ru and Ta in a direct way. X-rays have been detected by a fully characterized silicon drift diode and beam currents have been measured by a system of two Faraday cups. Measured cross sections agree in general with previously published results. The ECPSSR theory with the united atoms correction gives absolute values close to the experimental ones for all the studied elements excited by C ions and for Ta, Nb and Ru excited by Si ions. For Ti, Fe and Zn excited by Si, the matching with theory is poor since even the ionization cross section is below the measured data.
NASA Technical Reports Server (NTRS)
Kwong, Victor H. S.
1996-01-01
Charge transfer at electron-volt energies between multiply charged atomic ions and neutral atoms and molecules is of considerable importance in astrophysics, plasma physics, and in particular, fusion plasmas. In the year covered by this report, several major tasks were completed. These include: (1) the re-calibration of the ion gauge to measure the absolute particle densities of H2, He, N2, and CO for our current measurements; (2) the analysis of data for charge transfer reactions of N(exp 2 plus) ion and He, H2, N2, and CO; (3) measurement and data analysis of the charge transfer reaction of (Fe(exp 2 plus) ion and H2; (4) charge transfer measurement of Fe(exp 2 plus) ion and H2; and (5) redesign and modification of the ion detection and data acquisition system for the low energy beam facility (reflection time of flight mass spectrometer) dedicated to the study of state select charge transfer.
Kuchnir, M.; Mills, F.E.
1984-09-28
A current sensor for measuring the dc component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivities in the nano-ampere range.
Kuchnir, Moyses; Mills, Frederick E.
1987-01-01
A current sensor for measuring the DC component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivites in the nano-ampere range.
Measurements from a Compact Cost-Effective Beamline for the THC14 PET Cyclotron
NASA Astrophysics Data System (ADS)
Dehnel, M. P.; Theroux, J.; Christensen, T.; Stewart, T. M.; Roeder, M.; Sirot, P.; Fasse, D.; Brasile, J. P.; Raoult, F.; Buckley, K.
2009-03-01
The THC14 PET Cyclotron produced by THALES specifies two compact cost-effective beamlines for high current PET radioisotope production. The design and development of the beamline system was reported previously in NIM B 261 (2007) pp 809-812. This paper describes the successful testing of this compact beamline at the first installation. A series of measurement data are presented starting from low current scintillator image data, higher current beam diagnostic data (baffles, collimators, targets) and finally a simultaneous dual beam run on Faraday Cups. The beamline system has proven to be a flexible and valuable tool for optimizing high current beam intensity distribution on target in a well-instrumented manner. This ability to tailor the beam characteristics for the target is particularly important as high power targets are developed which can handle very high beam currents.
The Electrical Structure of Discharges Modified by Electron Beams
NASA Astrophysics Data System (ADS)
Haas, F. A.; Braithwaite, N. St. J.
1997-10-01
Injection of an electron beam into a low pressure plasma modifies both the electrical structure and the distributions of charged particle energies. The electrical structure is investigated here in a one-dimensional model by representing the discharge as two collisionless sheaths with a monenergetic electron beam, linked by a quasi-neutral collisional region. The latter is modelled by fluid equations in which the beam current decreases with position. Since the electrodes are connected by an external conductor this implies through Kirchoff's laws that the thermal electron current must correspondingly increase with position. Given the boundary conditions and beam input at the first electrode then the rest of the system is uniquely described. The model reveals the dependence of the sheath potentials at the emitting and absorbing surfaces on the beam current. The model is relevant to externally injected beams and to electron beams originating from secondary processes on surfaces exposed to the plasma.
Microsecond Electron Beam Source with Electron Energy Up to 400 Kev and Plasma Anode
NASA Astrophysics Data System (ADS)
Abdullin, É. N.; Basov, G. F.; Shershnev, S.
2017-12-01
A new high-power source of electrons with plasma anode for producing high-current microsecond electron beams with electron energy up to 400 keV has been developed, manufactured, and put in operation. To increase the cross section and pulse current duration of the beam, a multipoint explosive emission cathode is used in the electron beam source, and the beam is formed in an applied external guiding magnetic field. The Marx generator with vacuum insulation is used as a high-voltage source. Electron beams with electron energy up to 300-400 keV, current of 5-15 kA, duration of 1.5-3 μs, energy up to 4 kJ, and cross section up to 150 cm2 have been produced. The operating modes of the electron beam source are realized in which the applied voltage is influenced weakly on the current. The possibility of source application for melting of metal surfaces is demonstrated.
NASA Astrophysics Data System (ADS)
Yu, Zhongliang; Zhao, Yulong; Sun, Lu; Tian, Bian; Jiang, Zhuangde
2013-01-01
The paper presents a piezoresistive absolute micro pressure sensor, which is of great benefits for altitude location. In this investigation, the design, fabrication, and test of the sensor are involved. By analyzing the stress distribution of sensitive elements using finite element method, a novel structure through the introduction of sensitive beams into traditional bossed diaphragm is built up. The proposed configuration presents its advantages in terms of high sensitivity and high overload resistance compared with the conventional bossed diaphragm and flat diaphragm structures. Curve fittings of surface stress and deflection based on ANSYS simulation results are performed to establish the equations about the sensor. Nonlinear optimization by MATLAB is carried out to determine the structure dimensions. The output signals in both static and dynamic environments are evaluated. Silicon bulk micromachining technology is utilized to fabricate the sensor prototype, and the fabrication process is discussed. Experimental results demonstrate the sensor features a high sensitivity of 11.098 μV/V/Pa in the operating range of 500 Pa at room temperature, and a high overload resistance of 200 times overpressure to promise its survival under atmosphere. Due to the excellent performance above, the sensor can be applied in measuring the absolute micro pressure lower than 500 Pa.
Return currents in solar flares - Collisionless effects
NASA Technical Reports Server (NTRS)
Rowland, H. L.; Vlahos, L.
1985-01-01
If the primary, precipitating electrons in a solar flare are unstable to beam plasma interactions, it is shown that strong Langmuir turbulence can seriously modify the way in which a return current is carried by the background plasma. In particular, the return (or reverse) current will not be carried by the bulk of the electrons, but by a small number of high velocity electrons. For beam/plasma densities greater than 0.01, this can reduce the effects of collisions on the return current. For higher density beams where the return current could be unstable to current driven instabilities, the effects of strong turbulence anomalous resistivity is shown to prevent the appearance of such instabilities. Again in this regime, how the return current is carried is determined by the beam generated strong turbulence.
Digital Signal Processing and Generation for a DC Current Transformer for Particle Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zorzetti, Silvia
2013-01-01
The thesis topic, digital signal processing and generation for a DC current transformer, focuses on the most fundamental beam diagnostics in the field of particle accelerators, the measurement of the beam intensity, or beam current. The technology of a DC current transformer (DCCT) is well known, and used in many areas, including particle accelerator beam instrumentation, as non-invasive (shunt-free) method to monitor the DC current in a conducting wire, or in our case, the current of charged particles travelling inside an evacuated metal pipe. So far, custom and commercial DCCTs are entirely based on analog technologies and signal processing, whichmore » makes them inflexible, sensitive to component aging, and difficult to maintain and calibrate.« less
Yu, Deyang; Liu, Junliang; Xue, Yingli; Zhang, Mingwu; Cai, Xiaohong; Hu, Jianjun; Dong, Jinmei; Li, Xin
2015-11-01
A 128-channel picoammeter system is constructed based on instrumentation amplifiers. Taking advantage of a high electric potential and narrow bandwidth in DC energetic charged beam measurements, a current resolution better than 5 fA can be achieved. Two sets of 128-channel strip electrodes are implemented on printed circuit boards and are employed for ion and electron beam current distribution measurements. Tests with 60 keV O(3+) ions and 2 keV electrons show that it can provide exact boundaries when a positive charged particle beam current distribution is measured.
Limiting current of intense electron beams in a decelerating gap
NASA Astrophysics Data System (ADS)
Nusinovich, G. S.; Beaudoin, B. L.; Thompson, C.; Karakkad, J. A.; Antonsen, T. M.
2016-02-01
For numerous applications, it is desirable to develop electron beam driven efficient sources of electromagnetic radiation that are capable of producing the required power at beam voltages as low as possible. This trend is limited by space charge effects that cause the reduction of electron kinetic energy and can lead to electron reflection. So far, this effect was analyzed for intense beams propagating in uniform metallic pipes. In the present study, the limiting currents of intense electron beams are analyzed for the case of beam propagation in the tubes with gaps. A general treatment is illustrated by an example evaluating the limiting current in a high-power, tunable 1-10 MHz inductive output tube (IOT), which is currently under development for ionospheric modification. Results of the analytical theory are compared to results of numerical simulations. The results obtained allow one to estimate the interaction efficiency of IOTs.
mA beam acceleration efforts on 100 MeV H- cyclotron at CIAE
NASA Astrophysics Data System (ADS)
Zhang, Tianjue; An, Shizhong; Lv, Yinlong; Ge, Tao; Jia, Xianlu; Ji, Bin; Yin, Zhiguo; Pan, Gaofeng; Cao, Lei; Guan, Fengping; Yang, Jianjun; Li, Zhenguo; Zhao, Zhenlu; Wu, Longcheng; Zhang, He; Wang, Jingfeng; Zhang, Yiwang; Liu, Jingyuan; Li, Shiqiang; Lu, Xiaotong; Liu, Zhenwei; Li, Yaoqian; Guo, Juanjuan; Cao, Xuelong; Guan, Leilei; Wang, Fei; Wang, Yang; Yang, Guang; Zhang, Suping; Hou, Shigang; Wang, Feng
2017-09-01
Various technologies for high current compact H- cyclotron have been developed at CIAE since 1990s. A 375 μA proton beam was extracted from a 30 MeV compact H- cyclotron CYCIAE-30 at the end of 1994. A central region model cyclotron CYCIAE-CRM was developed for the design verification of a 100 MeV high current compact H- cyclotron CYCIAE-100. It is also a 10 MeV proton machine as a prototype for PET application. A 430 μA beam was achieved in 2009. The first beam was extracted from the CYCIAE-100 cyclotron on July 4, 2014, the operation stability has been improved and beam current has been increased gradually. A 1.1 mA proton beam was measured on the internal target in July 2016. The effort for an increasing of proton beam has continued till now. In this paper, the effort on several aspects for mA beam development will be presented, including the multi-cusp source, buncher, matching from the energy of the injected beam, vertical beam line and central region, beam loading of the RF system and instrumentation for beam diagnostics etc.
Simulated cosmic microwave background maps at 0.5 deg resolution: Unresolved features
NASA Technical Reports Server (NTRS)
Kogut, A.; Hinshaw, G.; Bennett, C. L.
1995-01-01
High-contrast peaks in the cosmic microwave background (CMB) anisotropy can appear as unresolved sources to observers. We fit simluated CMB maps generated with a cold dark matter model to a set of unresolved features at instrumental resolution 0.5 deg-1.5 deg to derive the integral number density per steradian n (greater than absolute value of T) of features brighter than threshold temperature absolute value of T and compare the results to recent experiments. A typical medium-scale experiment observing 0.001 sr at 0.5 deg resolution would expect to observe one feature brighter than 85 micro-K after convolution with the beam profile, with less than 5% probability to observe a source brighter than 150 micro-K. Increasing the power-law index of primordial density perturbations n from 1 to 1.5 raises these temperature limits absolute value of T by a factor of 2. The MSAM features are in agreement with standard cold dark matter models and are not necessarily evidence for processes beyond the standard model.
SU-F-T-480: Evaluation of the Role of Varian Machine Performance Check (MPC) in Our Daily QA Routine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juneja, B; Gao, S; Balter, P
2016-06-15
Purpose: (A) To assess the role of Varian MPC in our daily QA routine, and (B) evaluate the accuracy and precision of MPC. Methods: The MPC was performed weekly, for five months, on a Varian TrueBeam for five photon (6x, 10x, 15x, 6xFFF, and 10xFFF) and electron (6e, 9e, 12e, 16e, and 20e) energies. Output results were compared to those determined with an ionization chamber (TN30001, PTW-Freiburg) in plastic and a daily check device (DQA3, Sun Nuclear). Consistency of the Mechanical measurements over five months was analyzed and compared to monthly IsoCal results. Results: The MPC randomly showed large deviationsmore » (3–7%) that disappeared upon reacquisition. The MPC output closely matched monthly ion chamber and DQA3 measurements. The maximum and mean absolute difference between monthly and MPC was 1.18% and 0.28±0.21% for all energies. The maximum and mean absolute difference between DQA3 and MPC was 3.26% and 0.85±0.61%. The results suggest the MPC is comparable to the DQA3 for measuring output. The DQA3 provides wedge output, flatness, symmetry, and energy constancy checks, which are missing from the current implementation of the MPC. However, the MPC provides additional mechanical tests, such as size of the radiation isocenter (0.33±0.02 mm) and its coincidence with MV and kV isocenters (0.17±0.05 and 0.21±0.03 mm). It also provides positional accuracy of individual jaws (maximum σ, 0.33mm), all the MLC leaves (0.08mm), gantry (0.05°) and collimator (0.13°) rotation angles, and couch positioning (0.11mm) accuracy. MPC mechanical tests could replace our current daily on-board imaging QA routine and provide some additional QA not currently performed. Conclusion: MPC has the potential to be a valuable tool that facilitates reliable daily QA including many mechanical tests that are not currently performed. This system can add to our daily QA, but further development would be needed to fully replace our current Daily QA device.« less
Analysis and manipulation of the induced changes in the state of polarization by mirror scanners.
Petrova-Mayor, Anna; Knudsen, Sarah
2017-05-20
The induced polarization effects of metal-coated mirrors were studied in the configurations of one- and two-mirror lidar scanners as a function of azimuth and elevation angles. The theoretical results were verified experimentally for three types of mirrors (custom enhanced gold, off-the-shelf protected gold, and protected aluminum). A method was devised and tested to maintain a desired polarization state (linear or circular) of the transmit beam for all pointing directions by means of rotating wave plates in the transmit and detection paths. Alternatively, the mirror coating can be optimized to preserve the linear polarization state of the transmitted beam. The compensation methods will enable ground-based scanning lidars to produce absolutely calibrated depolarization measurements.
Accelerated radiation damage testing of x-ray mask membrane materials
NASA Astrophysics Data System (ADS)
Seese, Philip A.; Cummings, Kevin D.; Resnick, Douglas J.; Yanof, Arnold W.; Johnson, William A.; Wells, Gregory M.; Wallace, John P.
1993-06-01
An accelerated test method and resulting metrology data are presented to show the effects of x- ray radiation on various x-ray mask membrane materials. A focused x-ray beam effectively reduces the radiation time to 1/5 of that required by normal exposure beam flux. Absolute image displacement results determined by this method indicate imperceptible movement for boron-doped silicon and silicon carbide membranes at a total incident dose of 500 KJ/cm2, while image displacement for diamond is 50 nm at 150 KJ/cm2 and silicon nitride is 70 nm at 36 KJ/cm2. Studies of temperature rise during the radiation test and effects of the high flux radiation, i.e., reciprocity tests, demonstrate the validity of this test method.
Study of muon-induced neutron production using accelerator muon beam at CERN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Y.; Lin, C. J.; Ochoa-Ricoux, J. P.
2015-08-17
Cosmogenic muon-induced neutrons are one of the most problematic backgrounds for various underground experiments for rare event searches. In order to accurately understand such backgrounds, experimental data with high-statistics and well-controlled systematics is essential. We performed a test experiment to measure muon-induced neutron production yield and energy spectrum using a high-energy accelerator muon beam at CERN. We successfully observed neutrons from 160 GeV/c muon interaction on lead, and measured kinetic energy distributions for various production angles. Works towards evaluation of absolute neutron production yield is underway. This work also demonstrates that the setup is feasible for a future large-scale experimentmore » for more comprehensive study of muon-induced neutron production.« less
A technique to measure the size of particles in laser Doppler velocimetry applications
NASA Technical Reports Server (NTRS)
Hess, C. F.
1985-01-01
A method to measure the size of particles in Laser Doppler Velocimeter (LDV) applications is discussed. Since in LDV the velocity of the flow is assocated with the velocity of particles to establish how well they follow the flow, in the present method the interferometric probe volume is surrounded by a larger beam of different polarization or wavelength. The particle size is then measured from the absolute intensity scattered from the large beam by particles crossing the fringes. Experiments using polystrene particles between 1.1 and 3.3 microns and larger glass beads are reported. It is shown that the method has an excellent size resolution and its accuracy is better than 10% for the particle size studied.
Cross sections for direct and dissociative ionization of NH3 and CS2 by electron impact
NASA Technical Reports Server (NTRS)
Rao, M. V. V. S.; Srivastava, S. K.
1991-01-01
A crossed electron beam-molecular beam collision geometry is used to measure cross sections for the production of positive ions by electron impact on NH3 and CS2. Ionization cross-section data for NH3 and the values of various cross sections are presented, as well as ionization efficiency curves for CS2. Considerable differences are found between the various results on NH3. The present values are close to the data of Djuric et al. (1981). The semiempirical calculations of Hare and Meath (1987) differ considerably in the absolute values of cross sections. Discrepancies were observed in comparisons of cross sections of other fragment ions resulting from the ionization and dissociate ionization of NH3.
NASA Astrophysics Data System (ADS)
Arutyunov, Yu A.; Bagan, A. A.; Gerasimov, V. B.; Golyanov, A. V.; Ogluzdin, Valerii E.; Sugrobov, V. A.; Khizhnyak, A. I.
1990-04-01
Theoretical analyses and experimental studies are made of transient stimulated thermal scattering in a thermal nonlinear medium subjected to a field of counterpropagating quasiplane waves. The equations for the counterpropagating four-beam interaction are solved analytically for pairwise counterpropagating scattered waves using the constant pump wave intensity approximation. The conditions for the occurrence of an absolute instability of the scattered waves are determined and the angular dependence of their increment is obtained; these results are in good agreement with experimental data. An investigation is reported of the dynamics of spiky lasing in a laser with resonators coupled by a dynamic hologram in which stimulated thermal scattering is a source of radiation initiating lasing in the system as a whole.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilar, J.; Andres, J. de; Lucas, J. M.
2012-11-27
Different reactive processes taking place in collisions between alkali ions and neutral i-C{sub 3}H{sub 7}Cl molecules in the low (center of mass frame) energy range have been studied using an octopole radiofrequency guided-ion-beam apparatus developed in our laboratory. Cross-section energy dependences for all these reactions have been obtained in absolute units. Ab initio electronic structure calculations for those colliding systems evolving on the ground single potential surface have given relevant information on the main topological features of the surfaces. For some of the reactions a dynamic study by 'on the fly' trajectories has complemented the available experimental and electronic structuremore » information.« less
System for tomographic determination of the power distribution in electron beams
Elmer, John W.; Teruya, Alan T.; O'Brien, Dennis W.
1995-01-01
A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0.degree. to 360.degree. and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment.
System for tomographic determination of the power distribution in electron beams
Elmer, J.W.; Teruya, A.T.; O`Brien, D.W.
1995-11-21
A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0{degree} to 360{degree} and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figs.
SU-E-T-145: Beam Characteristics of Flattening Filter Free Beams Including Low Dose Rate Setting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uehara, K; Ogata, T; Nakayama, M
2015-06-15
Purpose: In commissioning of volumetric modulated arc therapy (VMAT), it is necessary to evaluate the beam characteristics of various dose rate settings with potential to use. The aim of this study is to evaluate the beam characteristics of flattened and flattening filter free (FFF) including low dose rate setting. Methods: We used a Varian TrueBeam with Millennium 120 MLC. Both 6 and 10 MV beams with or without flattening filter were used for this study. To evaluate low-dose rate FFF beams, specially-designed leaf sequence files control out-of-field MLC leaf pair at constant dose rate ranging from 80 to 400 MU/min.more » For dose rate from 80 MU/min to the maximum usable value of all energies, beam output were measured using ionization chamber (CC04, IBA). The ionization chamber was inserted into water equivalent phantom (RT3000-New, R-tech), and the phantom was set with SAD of 100cm. The beam profiles were performed using the 2D diode array (Profiler2, Sun Nuclear). The SSD was set to 90cm and a combined 30cmx30cmx9cm phantom which consisted of solid water slabs was put on the device. All measurement were made using 100MU irradiation for 10cmx10cm jaw-defined field size with a gantry angle of 0°. Results: In all energies, the dose rate dependences with beam output and variation coefficient were within 0.2% and 0.07%, respectively. The flatness and symmetry exhibited small variations (flatness ≤0.1 point and symmetry≤0.3 point at absolute difference). Conclusion: We had studied the characteristics of flattened and FFF beam over the 80 MU/min. Our results indicated that the beam output and profiles of FFF of TrueBeam linac were highly stable at low dose rate setting.« less
Auger electron spectroscopy at high spatial resolution and nA primary beam currents
NASA Technical Reports Server (NTRS)
Todd, G.; Poppa, H.; Moorhead, D.; Bales, M.
1975-01-01
An experimental Auger microprobe system is described which incorporates a field-emission electron gun and total beam currents in the nanoampere range. The distinguishing characteristics of this system include a large multistation UHV specimen chamber, pulse counting and fully digital Auger signal-processing techniques, and digital referencing methods to eliminate the effects of beam instabilities. Some preliminary results obtained with this system are described, and it is concluded that field-emission electron sources can be used for high-resolution Auger electron spectroscopy with primary-beam spots of less than 100 nm and beam currents of the order of 1 nA.
Absolute geostrophic currents over the SR02 section south of Africa in December 2009
NASA Astrophysics Data System (ADS)
Tarakanov, Roman
2017-04-01
The structure of the absolute geostrophic currents is investigated on the basis of CTD-, SADCP- and LADCP-data over the hydrographic section occupied south of Africa from the Good Hope Cape to 57° S along the Prime Meridian, and on the basis of satellite data on absolute dynamic topography (ADT) produced by Ssalto/Duacs and distributed by Aviso, with a support from Cnes (http://www.aviso.altimetry.fr/duacs/). Thus the section crossed the subtropical zone (at the junction of the subtropical gyres of the Indian and Atlantic oceans), the Antarctic Circumpolar Current (ACC) and terminated at the northern periphery of the Weddell Gyre. A total of 87 stations were occupied here with CTD-, and LADCP-profiling in the entire water column. The distance between stations was 20 nautical miles. Absolute geostrophic currents were calculated between each pair of CTD-stations with barotropic correction based on two methods: by SADCP data and by ADT at these stations. The subtropical part of the section crossed a large segment of the Agulhas meander, already separated from the current and disintegrating into individual eddies. In addition, smaller formed cyclones and anticyclones of the Agulhas Current were also observed in this zone. These structural elements of the upper layer of the ocean currents do not penetrate deeper than 1000-1500 m. Oppositely directed barotropic currents with velocities up to 30 cm/s were observed below these depths extending to the ocean bottom. Such large velocities agree well with the data of the bottom tracking of Lowered ADCP. Only these data were the reliable results of LADCP measurements because of the high transparency of the deep waters of the subtropical zone. The total transport of absolute geostrophic currents in the section is estimated as 144 and 179 Sv to the east, based on the SADCP and ADT barotropic correction, respectively. A transport of 4 (2) Sv to the east was observed on the northern periphery of the Weddell Gyre, 187 (182) Sv to the east was in the ACC zone (up to Subtropical front), 47 (5) Sv to the west was in the subtropical zone. The total transport of abyssal barotropic currents in the subtropical zone was 18 to the west (7 to the east).
Collisionless effects on beam-return current systems in solar flares
NASA Technical Reports Server (NTRS)
Vlahos, L.; Rowland, H. L.
1985-01-01
A theoretical study of the beam-return current system (BRCS) in solar flares shows that the precipitating electrons modify the way in which the return current (RC) is carried by the background plasma. In particular it is found that the RC is not carried by the bulk of the electrons but by a small number of high-velocity electrons. For beam/plasma densities exceeding approximately 0.001, this can reduce the effects of collisions and heating by the RC. For higher-density beams, where the RC could be unstable to current-driven instabilities, the effects of strong turbulence anomalous resistivity prevent the appearance of such instabilities. The main conclusion is that the BRCS is interconnected, and that the beam-generated strong turbulence determines how the RC is carried.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, O.; Ben-Zvi, I.; Degen, C.
Two electron beams from two activated bulk GaAs photocathodes were successfully combined during the recent beam test of the High Current High Polarization Electron gun for eRHIC. The beam test took place in Stangenes Industries in Palo Alto, CA, where the cathodes were placed in diagonally opposite locations inside the high voltage shroud. No significant cross talking between the cathodes was found for the pertinent vacuum and low average current operation, which is very promising towards combining multiple beams for higher average current. This paper describes the cathode preparation, transport and cathode performance in the gun for the combining test,more » including the QE and lifetimes of the photocathodes at various steps of the experiment.« less
Propagation of electron beams in space
NASA Technical Reports Server (NTRS)
Ashour-Abdalla, M.; Okuda, H.
1988-01-01
Particle simulations were performed in order to study the effects of beam plasma interaction and the propagation of an electron beam in a plasma with a magnetic field. It is found that the beam plasma instability results in the formation of a high energy tail in the electron velocity distribution which enhances the mean free path of the beam electrons. Moreover, the simulations show that when the beam density is much smaller than the ambient plasma density, currents much larger than the thermal return current can be injected into a plasma.
NASA Astrophysics Data System (ADS)
Chander, Gyanesh; Helder, Dennis L.; Malla, Rimy; Micijevic, Esad; Mettler, Cory J.
2007-09-01
The Landsat archive provides more than 35 years of uninterrupted multispectral remotely sensed data of Earth observations. Since 1972, Landsat missions have carried different types of sensors, from the Return Beam Vidicon (RBV) camera to the Enhanced Thematic Mapper Plus (ETM+). However, the Thematic Mapper (TM) sensors on Landsat 4 (L4) and Landsat 5 (L5), launched in 1982 and 1984 respectively, are the backbone of an extensive archive. Effective April 2, 2007, the radiometric calibration of L5 TM data processed and distributed by the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) was updated to use an improved lifetime gain model, based on the instrument's detector response to pseudo-invariant desert site data and cross-calibration with the L7 ETM+. However, no modifications were ever made to the radiometric calibration procedure of the Landsat 4 (L4) TM data. The L4 TM radiometric calibration procedure has continued to use the Internal Calibrator (IC) based calibration algorithms and the post calibration dynamic ranges, as previously defined. To evaluate the "current" absolute accuracy of these two sensors, image pairs from the L5 TM and L4 TM sensors were compared. The number of coincident image pairs in the USGS EROS archive is limited, so the scene selection for the cross-calibration studies proved to be a challenge. Additionally, because of the lack of near-simultaneous images available over well-characterized and traditionally used calibration sites, alternate sites that have high reflectance, large dynamic range, high spatial uniformity, high sun elevation, and minimal cloud cover were investigated. The alternate sites were identified in Yuma, Iraq, Egypt, Libya, and Algeria. The cross-calibration approach involved comparing image statistics derived from large common areas observed eight days apart by the two sensors. This paper summarizes the average percent differences in reflectance estimates obtained between the two sensors. The work presented in this paper is a first step in understanding the current performance of L4 TM absolute calibration and potentially serves as a platform to revise and improve the radiometric calibration procedures implemented for the processing of L4 TM data.
Chander, G.; Helder, D.L.; Malla, R.; Micijevic, E.; Mettler, C.J.
2007-01-01
The Landsat archive provides more than 35 years of uninterrupted multispectral remotely sensed data of Earth observations. Since 1972, Landsat missions have carried different types of sensors, from the Return Beam Vidicon (RBV) camera to the Enhanced Thematic Mapper Plus (ETM+). However, the Thematic Mapper (TM) sensors on Landsat 4 (L4) and Landsat 5 (L5), launched in 1982 and 1984 respectively, are the backbone of an extensive archive. Effective April 2, 2007, the radiometric calibration of L5 TM data processed and distributed by the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) was updated to use an improved lifetime gain model, based on the instrument's detector response to pseudo-invariant desert site data and cross-calibration with the L7 ETM+. However, no modifications were ever made to the radiometric calibration procedure of the Landsat 4 (L4) TM data. The L4 TM radiometric calibration procedure has continued to use the Internal Calibrator (IC) based calibration algorithms and the post calibration dynamic ranges, as previously defined. To evaluate the "current" absolute accuracy of these two sensors, image pairs from the L5 TM and L4 TM sensors were compared. The number of coincident image pairs in the USGS EROS archive is limited, so the scene selection for the cross-calibration studies proved to be a challenge. Additionally, because of the lack of near-simultaneous images available over well-characterized and traditionally used calibration sites, alternate sites that have high reflectance, large dynamic range, high spatial uniformity, high sun elevation, and minimal cloud cover were investigated. The alternate sites were identified in Yuma, Iraq, Egypt, Libya, and Algeria. The cross-calibration approach involved comparing image statistics derived from large common areas observed eight days apart by the two sensors. This paper summarizes the average percent differences in reflectance estimates obtained between the two sensors. The work presented in this paper is a first step in understanding the current performance of L4 TM absolute calibration and potentially serves as a platform to revise and improve the radiometric calibration procedures implemented for the processing of L4 TM data.
Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H
2015-11-01
A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.
Variable energy constant current accelerator structure
Anderson, Oscar A.
1990-01-01
A variable energy, constant current ion beam accelerator structure is disclosed comprising an ion source capable of providing the desired ions, a pre-accelerator for establishing an initial energy level, a matching/pumping module having means for focusing means for maintaining the beam current, and at least one main accelerator module for continuing beam focus, with means capable of variably imparting acceleration to the beam so that a constant beam output current is maintained independent of the variable output energy. In a preferred embodiment, quadrupole electrodes are provided in both the matching/pumping module and the one or more accelerator modules, and are formed using four opposing cylinder electrodes which extend parallel to the beam axis and are spaced around the beam at 90.degree. intervals with opposing electrodes maintained at the same potential. Adjacent cylinder electrodes of the quadrupole structure are maintained at different potentials to thereby reshape the cross section of the charged particle beam to an ellipse in cross section at the mid point along each quadrupole electrode unit in the accelerator modules. The beam is maintained in focus by alternating the major axis of the ellipse along the x and y axis respectively at adjacent quadrupoles. In another embodiment, electrostatic ring electrodes may be utilized instead of the quadrupole electrodes.
Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K
2014-02-01
An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.
NASA Technical Reports Server (NTRS)
Neubert, Torsten; Banks, Peter M.
1990-01-01
Analytical calculations and experimental observations relating to the interaction with the Earth's upper atmosphere of electron beams emitted from low altitude spacecraft are presented. The problem is described by two coupled nonlinear differential equations in the up-going (along a magnetic field line) and down-going differential energy flux. The equations are solved numerically, using the MSIS atmospheric model and the IRI ionospheric model. The results form the model compare well with recent observations from the CHARGE 2 sounding rocket experiment. Two aspects of the beam-neutral atmosphere interaction are discussed. First, the limits on the electron beam current that can be emitted from a spacecraft without substantial spacecraft charging are investigated. This is important because the charging of the spacecraft to positive potentials limits the current and the escape energy of the beam electrons and thereby limits the ionization of the neutral atmosphere. As an example, we find from CHARGE 2 observations and from the model calculations that below about 180 km, secondary electrons generated through the ionization of the neutral atmosphere by 1 to 10 keV electron beams from sounding rockets, completely balance the beam current, thereby allowing the emission of very high beam currents. Second, the amount of plasma production in the beam-streak is discussed. Results are shown for selected values of the beam energy, spacecraft velocity, and spacecraft altitude.
Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation.
Han, B X; Kalvas, T; Tarvainen, O; Welton, R F; Murray, S N; Pennisi, T R; Santana, M; Stockli, M P
2012-02-01
The H(-) injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with ∼38 mA beam current in the linac at 60 Hz with a pulse length of up to ∼1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.
Renner, Franziska
2016-09-01
Monte Carlo simulations are regarded as the most accurate method of solving complex problems in the field of dosimetry and radiation transport. In (external) radiation therapy they are increasingly used for the calculation of dose distributions during treatment planning. In comparison to other algorithms for the calculation of dose distributions, Monte Carlo methods have the capability of improving the accuracy of dose calculations - especially under complex circumstances (e.g. consideration of inhomogeneities). However, there is a lack of knowledge of how accurate the results of Monte Carlo calculations are on an absolute basis. A practical verification of the calculations can be performed by direct comparison with the results of a benchmark experiment. This work presents such a benchmark experiment and compares its results (with detailed consideration of measurement uncertainty) with the results of Monte Carlo calculations using the well-established Monte Carlo code EGSnrc. The experiment was designed to have parallels to external beam radiation therapy with respect to the type and energy of the radiation, the materials used and the kind of dose measurement. Because the properties of the beam have to be well known in order to compare the results of the experiment and the simulation on an absolute basis, the benchmark experiment was performed using the research electron accelerator of the Physikalisch-Technische Bundesanstalt (PTB), whose beam was accurately characterized in advance. The benchmark experiment and the corresponding Monte Carlo simulations were carried out for two different types of ionization chambers and the results were compared. Considering the uncertainty, which is about 0.7 % for the experimental values and about 1.0 % for the Monte Carlo simulation, the results of the simulation and the experiment coincide. Copyright © 2015. Published by Elsevier GmbH.
NASA Astrophysics Data System (ADS)
Salguero, Francisco Javier; Arráns, Rafael; Atriana Palma, Bianey; Leal, Antonio
2010-03-01
The purpose of this paper is to assess the feasibility of delivering intensity- and energy-modulated electron radiation treatment (MERT) by a photon multileaf collimator (xMLC) and to evaluate the improvements obtained in shallow head and neck (HN) tumors. Four HN patient cases covering different clinical situations were planned by MERT, which used an in-house treatment planning system that utilized Monte Carlo dose calculation. The cases included one oronasal, two parotid and one middle ear tumors. The resulting dose-volume histograms were compared with those obtained from conventional photon and electron treatment techniques in our clinic, which included IMRT, electron beam and mixed beams, most of them using fixed-thickness bolus. Experimental verification was performed with plane-parallel ionization chambers for absolute dose verification, and a PTW ionization chamber array and radiochromic film for relative dosimetry. A MC-based treatment planning system for target with compromised volumes in depth and laterally has been validated. A quality assurance protocol for individual MERT plans was launched. Relative MC dose distributions showed a high agreement with film measurements and absolute ion chamber dose measurements performed at a reference point agreed with MC calculations within 2% in all cases. Clinically acceptable PTV coverage and organ-at-risk sparing were achieved by using the proposed MERT approach. MERT treatment plans, based on delivery of intensity-modulated electron beam using the xMLC, for superficial head and neck tumors, demonstrated comparable or improved PTV dose homogeneity with significantly lower dose to normal tissues. The clinical implementation of this technique will be able to offer a viable alternative for the treatment of shallow head and neck tumors.
Scotti, A.; Butman, B.; Beardsley, R.C.; Alexander, P.S.; Anderson, S.
2005-01-01
The algorithm used to transform velocity signals from beam coordinates to earth coordinates in an acoustic Doppler current profiler (ADCP) relies on the assumption that the currents are uniform over the horizontal distance separating the beams. This condition may be violated by (nonlinear) internal waves, which can have wavelengths as small as 100-200 m. In this case, the standard algorithm combines velocities measured at different phases of a wave and produces horizontal velocities that increasingly differ from true velocities with distance from the ADCP. Observations made in Massachusetts Bay show that currents measured with a bottom-mounted upward-looking ADCP during periods when short-wavelength internal waves are present differ significantly from currents measured by point current meters, except very close to the instrument. These periods are flagged with high error velocities by the standard ADCP algorithm. In this paper measurements from the four spatially diverging beams and the backscatter intensity signal are used to calculate the propagation direction and celerity of the internal waves. Once this information is known, a modified beam-to-earth transformation that combines appropriately lagged beam measurements can be used to obtain current estimates in earth coordinates that compare well with pointwise measurements. ?? 2005 American Meteorological Society.
Man, Zhongsheng; Bai, Zhidong; Zhang, Shuoshuo; Li, Jinjian; Li, Xiaoyu; Ge, Xiaolu; Zhang, Yuquan; Fu, Shenggui
2018-06-01
The tight focusing properties of optical fields combining a spiral phase and cylindrically symmetric state of polarization are presented. First, we theoretically analyze the mathematical characterization, Stokes parameters, and Poincaré sphere representations of arbitrary cylindrical vector (CV) vortex beams. Then, based on the vector diffraction theory, we derive and build an integrated analytical model to calculate the electromagnetic field and Poynting vector distributions of the input CV vortex beams. The calculations reveal that a generalized CV vortex beam can generate a sharper focal spot than that of a radially polarized (RP) plane beam in the focal plane. Besides, the focal size decrease accompanies its elongation along the optical axis. Hence, it seems that there is a trade-off between the transverse and axial resolutions. In addition, under the precondition that the absolute values between polarization order and topological charge are equal, a higher-order CV vortex can also achieve a smaller focal size than an RP plane beam. Further, the intensity for the sidelobe admits a significant suppression. To give a deep understanding of the peculiar focusing properties, the magnetic field and Poynting vector distributions are also demonstrated in detail. These properties may be helpful in applications such as optical trapping and manipulation of particles and superresolution microscopy imaging.
Tryggestad, E; Armour, M; Iordachita, I; Verhaegen, F; Wong, J W
2011-01-01
Our group has constructed the small animal radiation research platform (SARRP) for delivering focal, kilo-voltage radiation to targets in small animals under robotic control using cone-beam CT guidance. The present work was undertaken to support the SARRP’s treatment planning capabilities. We have devised a comprehensive system for characterizing the radiation dosimetry in water for the SARRP and have developed a Monte Carlo dose engine with the intent of reproducing these measured results. We find that the SARRP provides sufficient therapeutic dose rates ranging from 102 to 228 cGy min−1 at 1 cm depth for the available set of high-precision beams ranging from 0.5 to 5 mm in size. In terms of depth–dose, the mean of the absolute percentage differences between the Monte Carlo calculations and measurement is 3.4% over the full range of sampled depths spanning 0.5–7.2 cm for the 3 and 5 mm beams. The measured and computed profiles for these beams agree well overall; of note, good agreement is observed in the profile tails. Especially for the smallest 0.5 and 1 mm beams, including a more realistic description of the effective x-ray source into the Monte Carlo model may be important. PMID:19687532
NASA Astrophysics Data System (ADS)
Saha, Ardhendu; Datta, Arijit; Kaman, Surjit
2018-03-01
A proposal toward the enhancement in the sensitivity of a multimode interference-based fiber optic liquid-level sensor is explored analytically using a zero-order Bessel-Gauss (BG) beam as the input source. The sensor head consists of a suitable length of no-core fiber (NCF) sandwiched between two specialty high-order mode fibers. The coupling efficiency of various order modes inside the sensor structure is assessed using guided-mode propagation analysis and the performance of the proposed sensor has been benchmarked against the conventional sensor using a Gaussian beam. Furthermore, the study has been corroborated using a finite-difference beam propagation method in Lumerical's Mode Solutions software to investigate the propagation of the zero-order BG beam inside the sensor structure. Based on the simulation outcomes, the proposed scheme yields a maximum absolute sensitivity of up to 3.551 dB / mm and a sensing resolution of 2.816 × 10 - 3 mm through the choice of an appropriate length of NCF at an operating wavelength of 1.55 μm. Owing to this superior sensing performance, the reported sensing technology expedites an avenue to devise a high-performance fiber optic-level sensor that finds profound implication in different physical, biological, and chemical sensing purposes.
Tryggestad, E; Armour, M; Iordachita, I; Verhaegen, F; Wong, J W
2009-09-07
Our group has constructed the small animal radiation research platform (SARRP) for delivering focal, kilo-voltage radiation to targets in small animals under robotic control using cone-beam CT guidance. The present work was undertaken to support the SARRP's treatment planning capabilities. We have devised a comprehensive system for characterizing the radiation dosimetry in water for the SARRP and have developed a Monte Carlo dose engine with the intent of reproducing these measured results. We find that the SARRP provides sufficient therapeutic dose rates ranging from 102 to 228 cGy min(-1) at 1 cm depth for the available set of high-precision beams ranging from 0.5 to 5 mm in size. In terms of depth-dose, the mean of the absolute percentage differences between the Monte Carlo calculations and measurement is 3.4% over the full range of sampled depths spanning 0.5-7.2 cm for the 3 and 5 mm beams. The measured and computed profiles for these beams agree well overall; of note, good agreement is observed in the profile tails. Especially for the smallest 0.5 and 1 mm beams, including a more realistic description of the effective x-ray source into the Monte Carlo model may be important.
System for tomographic determination of the power distribution in electron beams
Elmer, J.W.; Teruya, A.T.; O'Brien, D.W.
1995-01-17
A tomographic technique is disclosed for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0[degree] to 360[degree] and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figures.
Hirano, Y; Kiyama, S; Koguchi, H; Sakakita, H
2014-02-01
Spontaneous self-focusing of ion beam with high current density (Jc ∼ 2 mA/cm(2), Ib ∼ 65 mA) in low energy region (∼150 eV) is observed in a hydrogen ion beam extracted from an ordinary bucket type ion source with three electrodes having concave shape (acceleration, deceleration, and grounded electrodes). The focusing appears abruptly in the beam energy region over ∼135-150 eV, and the Jc jumps up from 0.7 to 2 mA/cm(2). Simultaneously a strong electron flow also appears in the beam region. The electron flow has almost the same current density. Probably these electrons compensate the ion space charge and suppress the beam divergence.
Fujiwara, Y; Hirano, Y; Kiyama, S; Nakamiya, A; Koguchi, H; Sakakita, H
2014-02-01
The self-focusing phenomenon has been observed in a high current density and low energy ion beam. In order to study the mechanism of this phenomenon, a special designed double probe to measure the electron density and temperature is installed into the chamber where the high current density ion beam is injected. Electron density profile is successfully measured without the influence of the ion beam components. Estimated electron temperature and density are ∼0.9 eV and ∼8 × 10(8) cm(-3) at the center of ion beam cross section, respectively. It was found that a large amount of electrons are spontaneously accumulated in the ion beam line in the case of self-forcing state.
Optimization methodology for the global 10 Hz orbit feedback in RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chuyu; Hulsart, R.; Mernick, K.
To combat beam oscillations induced by triplet vibrations at the Relativistic Heavy Ion Collider (RHIC), a global orbit feedback system was developed and applied at injection and top energy in 2011, and during beam acceleration in 2012. Singular Value Decomposition (SVD) was employed to determine the strengths and currents of the applied corrections. The feedback algorithm was optimized for different magnetic configurations (lattices) at fixed beam energies and during beam acceleration. While the orbit feedback performed well since its inception, corrector current transients and feedback-induced beam oscillations were observed during the polarized proton program in 2015. In this paper, wemore » present the feedback algorithm, the optimization of the algorithm for various lattices and the solution adopted to mitigate the observed current transients during beam acceleration.« less
Instrument for spatially resolved simultaneous measurements of forces and currents in particle beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spethmann, A., E-mail: spethmann@physik.uni-kiel.de; Trottenberg, T., E-mail: trottenberg@physik.uni-kiel.de; Kersten, H., E-mail: kersten@physik.uni-kiel.de
The article presents a device for spatially resolved and simultaneous measurements of forces and currents in particle beams, especially in beams composed of ions and neutral atoms. The forces are exerted by the impinging beam particles on a plane circular conductive target plate of 20 mm diameter mounted on a pendulum with electromagnetic force compensation. The force measurement in the micronewton range is achieved by electromagnetic compensation by means of static Helmholtz coils and permanent magnets attached to the pendulum. Exemplary measurements are performed in the 1.2 keV beam of a broad beam ion source. The simultaneous measurements of forcesmore » and currents onto the same target are compared with each other and with Faraday cup measurements.« less
Optimization methodology for the global 10 Hz orbit feedback in RHIC
Liu, Chuyu; Hulsart, R.; Mernick, K.; ...
2018-05-08
To combat beam oscillations induced by triplet vibrations at the Relativistic Heavy Ion Collider (RHIC), a global orbit feedback system was developed and applied at injection and top energy in 2011, and during beam acceleration in 2012. Singular Value Decomposition (SVD) was employed to determine the strengths and currents of the applied corrections. The feedback algorithm was optimized for different magnetic configurations (lattices) at fixed beam energies and during beam acceleration. While the orbit feedback performed well since its inception, corrector current transients and feedback-induced beam oscillations were observed during the polarized proton program in 2015. In this paper, wemore » present the feedback algorithm, the optimization of the algorithm for various lattices and the solution adopted to mitigate the observed current transients during beam acceleration.« less
Elmer, John W.; Teruya, Alan T.; O'Brien, Dennis W.
1996-01-01
A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0.degree. to 360.degree. and the waveforms are recorded by a digitizing storage oscilloscope. Two-din-tensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment.
Annular Focused Electron/Ion Beams for Combining High Spatial Resolution with High Probe Current.
Khursheed, Anjam; Ang, Wei Kean
2016-10-01
This paper presents a proposal for reducing the final probe size of focused electron/ion beam columns that are operated in a high primary beam current mode where relatively large final apertures are used, typically required in applications such as electron beam lithography, focused ion beams, and electron beam spectroscopy. An annular aperture together with a lens corrector unit is used to replace the conventional final hole-aperture, creating an annular ring-shaped primary beam. The corrector unit is designed to eliminate the first- and second-order geometric aberrations of the objective lens, and for the same probe current, the final geometric aberration limited spot size is predicted to be around a factor of 50 times smaller than that of the corresponding conventional hole-aperture beam. Direct ray tracing simulation is used to illustrate how a three-stage core lens corrector can be used to eliminate the first- and second-order geometric aberrations of an electric Einzel objective lens.
NASA Technical Reports Server (NTRS)
Jackson, F. C.; Walton, W. T.; Baker, P. L.
1982-01-01
A microwave radar technique for remotely measuring the vector wave number spectrum of the ocean surface is described. The technique, which employs short-pulse, noncoherent radars in a conical scan mode near vertical incidence, is shown to be suitable for both aircraft and satellite application, the technique was validated at 10 km aircraft altitude, where we have found excellent agreement between buoy and radar-inferred absolute wave height spectra.
Controlling Electron Backstreaming Phenomena Through the Use of a Transverse Magnetic Field
NASA Technical Reports Server (NTRS)
Foster, John E.; Patterson, Michael J.
2002-01-01
DEEP-SPACE mission propulsion requirements can be satisfied by the use of high specific impulse systems such as ion thrusters. For such missions. however. the ion thruster will be required to provide thrust for long periods of time. To meet the long operation time and high-propellant throughput requirements, thruster lifetime must be increased. In general, potential ion thruster failure mechanisms associated with long-duration thrusting can be grouped into four areas: (1) ion optics failure; (2) discharge cathode failure; (3) neutralizer failure; and (4) electron backstreaming caused by accelerator grid aperture enlargement brought on by accelerator grid erosion. The work presented here focuses on electron backstreaming. which occurs when the potential at the center of an accelerator grid aperture is insufficient to prevent the backflow of electrons into the ion thruster. The likelihood of this occurring depends on ion source operation time. plasma density, and grid voltages, as accelerator grid apertures enlarge as a result of erosion. Electrons that enter the gap between the high-voltage screen and accelerator grids are accelerated to the energies approximately equal to the beam voltage. This energetic electron beam (typically higher than 1 kV) can damage not only the ion source discharge cathode assembly. but also any of the discharge surfaces upstream of the ion acceleration optics that the electrons happen to impact. Indeed. past backstreaming studies have shown that near the backstreaming limit, which corresponds to the absolute value of the accelerator grid voltage below which electrons can backflow into the thruster, there is a rather sharp rise in temperature at structures such as the cathode keeper electrode. In this respect operation at accelerator grid voltages near the backstreaming limit is avoided. Generally speaking, electron backstreaming is prevented by operating the accelerator grid at a sufficiently negative voltage to ensure a sufficiently negative aperture center potential. This approach can provide the necessary margin assuming an expected aperture enlargement. Operation at very negative accelerator grid voltages, however, enhances ion charge-exchange and direct impingement erosion of the accelerator grid. The focus of the work presented here is the mitigation of electron backstreaming by the use of a magnetic field. The presence of a magnetic field oriented perpendicular to the thruster axis can significantly decrease the magnitude of the backflowing electron current by significantly reducing the electron diffusion coefficient. Negative ion sources utilize this principle to reduce the fraction of electrons in the negative ion beam. The focus of these efforts has been on the attenuation of electron current diffusing from the discharge plasma into the negative ion extraction optics by placing the transverse magnetic field upstream of the extraction electrodes. In contrast. in the case of positive ion sources such as ion thrusters, the approach taken in the work presented here is to apply the transverse field downstream of the ion extraction system so as to prevent electrons from flowing back into the source. It was found in the work presented here that the magnetic field also reduces the absolute value of the electron backstreaming limit voltage. In this respect. the applied transverse magnetic field provides two mechanisms for electron backstreaming mitigation: (1) electron current attenuation and (2) backstreaming limit voltage shift. Such a shift to less negative voltages can lead to reduced accelerator grid erosion rates.
Method of Manufacturing a Micromechanical Oscillating Mass Balance
NASA Technical Reports Server (NTRS)
Altemir, David A. (Inventor)
1999-01-01
A micromechanical oscillating mass balance and method adapted for measuring minute quantities of material deposited at a selected location, such as during a vapor deposition process. The invention comprises a vibratory composite beam which includes a dielectric layer sandwiched between two conductive layers.The beam is positioned in a magnetic field. An alternating current passes through one conductive layers, the beam oscillates, inducing an output current in the second conductive layer, which is analyzed to determine the resonant frequency of the beam. As material is deposited on the beam, the mass of the beam increases and the resonant frequency of the beam shifts, and the mass added is determined.
Micromechanical Oscillating Mass Balance
NASA Technical Reports Server (NTRS)
Altemir, David A. (Inventor)
1997-01-01
A micromechanical oscillating mass balance and method adapted for measuring minute quantities of material deposited at a selected location, such as during a vapor deposition process. The invention comprises a vibratory composite beam which includes a dielectric layer sandwiched between two conductive layers. The beam is positioned in a magnetic field. An alternating current passes through one conductive layers, the beam oscillates, inducing an output current in the second conductive layer, which is analyzed to determine the resonant frequency of the beam. As material is deposited on the beam, the mass of the beam increases and the resonant frequency of the beam shifts, and the mass added is determined.
Constantin, Dragoş E; Fahrig, Rebecca; Keall, Paul J
2011-07-01
Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approach in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29n-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the inline configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72n and 2.01 n-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34n and 0.35n-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field.
Constantin, Dragoş E.; Fahrig, Rebecca; Keall, Paul J.
2011-01-01
Purpose: Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. Methods: Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approach in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. Results: For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29π-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the in-line configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72π and 2.01π-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34π and 0.35π-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. Conclusions: 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field. PMID:21859019
NASA Technical Reports Server (NTRS)
Winglee, Robert M.
1991-01-01
The objective was to conduct large scale simulations of electron beams injected into space. The study of the active injection of electron beams from spacecraft is important, as it provides valuable insight into the plasma beam interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional (three velocity) particle simulations with collisional processes included are used to show how these different and often coupled processes can be used to enhance beam propagation from the spacecraft. To understand the radial expansion mechanism of an electron beam injected from a highly charged spacecraft, two dimensional particle-in-cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge build-up at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.
NASA Technical Reports Server (NTRS)
1991-01-01
The object was to conduct large scale simulations of electron beams injected into space. The study of active injection of electron beams from spacecraft is important since it provides valuable insight into beam-plasma interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw return current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional particle simulations with collisional processes included are used to show how these different and often coupled processes can be utilized to enhance beam propagation from the spacecraft. To understand the radical expansion of mechanism of an electron beam from a highly charged spacecraft, two dimensional particle in cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge buildup at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.
Full-beam performances of a PET detector with synchrotron therapeutic proton beams.
Piliero, M A; Pennazio, F; Bisogni, M G; Camarlinghi, N; Cerello, P G; Del Guerra, A; Ferrero, V; Fiorina, E; Giraudo, G; Morrocchi, M; Peroni, C; Pirrone, G; Sportelli, G; Wheadon, R
2016-12-07
Treatment quality assessment is a crucial feature for both present and next-generation ion therapy facilities. Several approaches are being explored, based on prompt radiation emission or on PET signals by [Formula: see text]-decaying isotopes generated by beam interactions with the body. In-beam PET monitoring at synchrotron-based ion therapy facilities has already been performed, either based on inter-spill data only, to avoid the influence of the prompt radiation, or including both in-spill and inter-spill data. However, the PET images either suffer of poor statistics (inter-spill) or are more influenced by the background induced by prompt radiation (in-spill). Both those problems are expected to worsen for accelerators with improved duty cycle where the inter-spill interval is reduced to shorten the treatment time. With the aim of assessing the detector performance and developing techniques for background reduction, a test of an in-beam PET detector prototype was performed at the CNAO synchrotron-based ion therapy facility in full-beam acquisition modality. Data taken with proton beams impinging on PMMA phantoms showed the system acquisition capability and the resulting activity distribution, separately reconstructed for the in-spill and the inter-spill data. The coincidence time resolution for in-spill and inter-spill data shows a good agreement, with a slight deterioration during the spill. The data selection technique allows the identification and rejection of most of the background originated during the beam delivery. The activity range difference between two different proton beam energies (68 and 72 MeV) was measured and found to be in sub-millimeter agreement with the expected result. However, a slightly longer (2 mm) absolute profile length is obtained for in-spill data when compared to inter-spill data.
Intra-Beam Scattering, Impedance, and Instabilities in Ultimate Storage Rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bane, Karl; /SLAC
We have investigated collective effects in an ultimate storage ring, i.e. one with diffraction limited emittances in both planes, using PEP-X as an example. In an ultimate ring intra-beam scattering (IBS) sets the limit of current that can be stored. In PEP-X, a 4.5 GeV ring running round beams at 200 mA in 3300 bunches, IBS doubles the emittances to 11.5 pm at the design current. The Touschek lifetime is 11 hours. Impedance driven collective effects tend not to be important since the beam current is relatively low. We have investigated collective effects in PEP-X, an ultimate storage ring, i.e.more » one with diffraction limited emittances (at one angstrom wavelength) in both planes. In an ultimate ring intra-beam scattering (IBS) sets the limit of current that can be stored. In PEP-X, IBS doubles the emittances to 11.5 pm at the design current of 200 mA, assuming round beams. The Touschek lifetime is quite large in PEP-X, 11.6 hours, and - near the operating point - increases with decreasing emittance. It is, however, a very sensitive function of momentum acceptance. In an ultimate ring like PEP-X impedance driven collective effects tend not to be important since the beam current is relatively low. Before ultimate PEP-X can be realized, the question of how to run a machine with round beams needs serious study. For example, in this report we assumed that the vertical emittance is coupling dominated. It may turn out that using vertical dispersion is a preferable way to generate round beams. The choice will affect IBS and the Touschek effect.« less
Delamination detection in smart composite beams using Lamb waves
NASA Astrophysics Data System (ADS)
Ip, Kim-Ho; Mai, Yiu-Wing
2004-06-01
This paper presents a feasibility study on using Lamb waves to detect and locate through-width delamination in fiber-reinforced plastic beams. An active diagnostic system is proposed for clamped-free specimens. It consists of a piezoelectric patch and an accelerometer both mounted near the support. Such a system can locate damage in an absolute sense, that is, a priori knowledge on the response from pristine specimens is not required. The fundamental anti-symmetric Lamb wave mode is chosen as the diagnostic wave. It is generated by applying a voltage in the form of sinusoidal bursts to the piezoelectric patch. The proposed system was applied to locate delaminations in some fabricated Kevlar/epoxy beam specimens. With an appropriate actuating frequency, distortions of waveforms due to boundary reflections can be reduced. Based on their arrival times and the known propagating speed of Lamb waves, the delaminations can be located. The errors associated with the predicted damage positions range from 4.5% to 8.5%.
Nonimaging applications for microbolometer arrays
NASA Astrophysics Data System (ADS)
Picard, Francis; Jerominek, Hubert; Pope, Timothy D.; Zhang, Rose; Ngo, Linh P.; Tremblay, Bruno; Tasker, Nick; Grenier, Carol; Bilodeau, Ghislain; Cayer, Felix; Lehoux, Mario; Alain, Christine; Larouche, Carl; Savard, Simon
2001-10-01
In an effort to leverage uncooled microbolometer technology, testing of bolometer performance in various nonimaging applications has been performed. One of these applications makes use of an uncooled microbolometer array as the sensing element for a laser beam analyzer. Results of the characterization of cw CO2 laser beams with this analyzer are given. A comparison with the results obtained with a commercial laser beam analyzer is made. Various advantages specific to microbolometer arrays for this application are identified. A second application makes use of microbolometers for absolute temperature measurements. The experimental method and results are described. The technique's limitations and possible implementations are discussed. Finally, the third application evaluated is related to the rapidly expanding field of biometry. It consists of using a modified microbolometer array for fingerprint sensing. The basic approach allowing the use of microbolometers for such an application is discussed. The results of a proof-of-principle experiment are described. Globally, the described work illustrates the fact that microbolometer array fabrication technology can be exploited for many important applications other than IR imaging.
Study of Biological Pigments by Single Specimen Derivative Spectrophotometry
Goldstein, Jack M.
1970-01-01
The single specimen derivative (SSD) method provides an absolute absorption spectrum of a substance in the absence of a suitable reference. Both a reference and a measuring monochromatic beam pass through a single sample, and the specimen itself acts as its own reference. The two monochromatic beams maintain a fixed wavelength difference upon scanning, and the difference in absorbance of the two beams is determined. Thus, the resulting spectrum represents the first derivative of the conventional type absorption spectrum. Tissues and cell fractions have been examined at room and liquid N2 temperature and chromophoric molecules such as the mitochondrial cytochromes and blood pigments have been detectable in low concentrations. In the case of isolated cellular components, the observed effects of substrates and inhibitors confirm similar studies by conventional spectrophotometry. The extension of the SSD concept to the microscopic level has permitted the study of the tissue compartmentalization and function of cytochromes and other pigments within layered tissue. PMID:4392452
Optimization of solenoid based low energy beam transport line for high current H+ beams
NASA Astrophysics Data System (ADS)
Pande, R.; Singh, P.; Rao, S. V. L. S.; Roy, S.; Krishnagopal, S.
2015-02-01
A 20 MeV, 30 mA CW proton linac is being developed at BARC, Mumbai. This linac will consist of an ECR ion source followed by a Radio Frequency Quadrupole (RFQ) and Drift tube Linac (DTL). The low energy beam transport (LEBT) line is used to match the beam from the ion source to the RFQ with minimum beam loss and increase in emittance. The LEBT is also used to eliminate the unwanted ions like H2+ and H3+ from entering the RFQ. In addition, space charge compensation is required for transportation of such high beam currents. All this requires careful design and optimization. Detailed beam dynamics simulations have been done to optimize the design of the LEBT using the Particle-in-cell code TRACEWIN. We find that with careful optimization it is possible to transport a 30 mA CW proton beam through the LEBT with 100% transmission and minimal emittance blow up, while at the same time suppressing unwanted species H2+ and H3+ to less than 3.3% of the total beam current.
Photon scattering cross sections of H2 and He measured with synchrotron radiation
NASA Technical Reports Server (NTRS)
Ice, G. E.
1977-01-01
Total (elastic + inelastic) differential photon scattering cross sections have been measured for H2 gas and He, using an X-ray beam. Absolute measured cross sections agree with theory within the probable errors. Relative cross sections (normalized to theory at large S) agree to better than one percent with theoretical values calculated from wave functions that include the effect of electron-electron Coulomb correlation, but the data deviate significantly from theoretical independent-particle (e.g., Hartree-Fock) results. The ratios of measured absolute He cross sections to those of H2, at any given S, also agree to better than one percent with theoretical He-to-H2 cross-section ratios computed from correlated wave functions. It appears that photon scattering constitutes a very promising tool for probing electron correlation in light atoms and molecules.
Rarefied flow diagnostics using pulsed high-current electron beams
NASA Technical Reports Server (NTRS)
Wojcik, Radoslaw M.; Schilling, John H.; Erwin, Daniel A.
1990-01-01
The use of high-current short-pulse electron beams in low-density gas flow diagnostics is introduced. Efficient beam propagation is demonstrated for pressure up to 300 microns. The beams, generated by low-pressure pseudospark discharges in helium, provide extremely high fluorescence levels, allowing time-resolved visualization in high-background environments. The fluorescence signal frequency is species-dependent, allowing instantaneous visualization of mixing flowfields.
NASA Astrophysics Data System (ADS)
Myers, Neil Brubaker
The CHARGE-2 sounding rocket payload was designed to measure the transient and steady-state electrical charging of a space vehicle at low-Earth-orbit altitudes during the emission of a low-power electron beam from the vehicle. In addition to the electron gun, the payload contained several diagnostics to monitor plasma and waves resulting from the beam/space/vehicle interaction. The payload was separated into two sections, the larger section carried a 1-keV electron gun and was referred to as the mother vehicle. The smaller section, referred to as the daughter, was connected to the mother by an insulated, conducting tether and was deployed to a distance of up to 426 m across the geomagnetic field. Payload stabilization was obtained using thrusters that released cold nitrogen gas. In addition to performing electron beam experiments, the mother vehicle contained a high-voltage power supply capable of applying up to +450 V and 28 mA to the daughter through the tether. The 1-keV electron beam was generated at beam currents of 1 mA to 48 mA, measured at the exit aperture of the electron gun. Steady-state potentials of up to 560 V were measured for the mother vehicle. The daughter attained potentials of up to 1000 V relative to the background ionosphere and collected currents up to 6.5 mA. Thruster firings increased the current collection to the vehicle firing the thrusters and resulted in neutralization of the payload. The CHARGE-2 experiment was unique in that for the first time a comparison was made of the current collection between an electron beam-emitting vehicle and a non-emitting vehicle at high potential (400 V to 1000 V). The daughter current collection agreed well with the Parker-Murphy model, while the mother current collection always exceeded the Parker-Murphy limit and even exceeded the Langmuir-Blodgett predicted current below 240 km. The additional current collection of the mother is attributed to beam-plasma interaction. This additional source of collected current may be very important for successful electron beam emission at altitudes below 240 km.
Refined beam measurements on the SNS H- injector
NASA Astrophysics Data System (ADS)
Han, B. X.; Welton, R. F.; Murray, S. N.; Pennisi, T. R.; Santana, M.; Stinson, C. M.; Stockli, M. P.
2017-08-01
The H- injector for the SNS RFQ accelerator consists of an RF-driven, Cs-enhanced H- ion source and a compact, two-lens electrostatic LEBT. The LEBT output and the RFQ input beam current are measured by deflecting the beam on to an annular plate at the RFQ entrance. Our method and procedure have recently been refined to improve the measurement reliability and accuracy. The new measurements suggest that earlier measurements tended to underestimate the currents by 0-2 mA, but essentially confirm H- beam currents of 50-60 mA being injected into the RFQ. Emittance measurements conducted on a test stand featuring essentially the same H- injector setup show that the normalized rms emittance with 0.5% threshold (99% inclusion of the total beam) is in a range of 0.25-0.4 mm.mrad for a 50-60 mA beam. The RFQ output current is monitored with a BCM toroid. Measurements as well as simulations with the PARMTEQ code indicate an underperforming transmission of the RFQ since around 2012.
Detection and clearing of trapped ions in the high current Cornell photoinjector
Full, S.; Bartnik, A.; Bazarov, I. V.; ...
2016-03-03
Here, we have recently performed experiments to test the effectiveness of three ion-clearing strategies in the Cornell high intensity photoinjector: DC clearing electrodes, bunch gaps, and beam shaking. The photoinjector reaches a new regime of linac beam parameters where high continuous wave beam currents lead to ion trapping. Therefore ion mitigation strategies must be evaluated for this machine and other similar future high current linacs. We have developed several techniques to directly measure the residual trapped ions. Our two primary indicators of successful clearing are the amount of ion current removed by a DC clearing electrode, and the absence ofmore » bremsstrahlung radiation generated by beam-ion interactions. Measurements were taken for an electron beam with an energy of 5 MeV and continuous wave beam currents in the range of 1–20 mA. Several theoretical models have been developed to explain our data. Using them, we are able to estimate the clearing electrode voltage required for maximum ion clearing, the creation and clearing rates of the ions while employing bunch gaps, and the sinusoidal shaking frequency necessary for clearing via beam shaking. In all cases, we achieve a maximum ion clearing of at least 70% or higher, and in some cases our data is consistent with full ion clearing.« less
Improved Imaging With Laser-Induced Eddy Currents
NASA Technical Reports Server (NTRS)
Chern, Engmin J.
1993-01-01
System tests specimen of material nondestructively by laser-induced eddy-current imaging improved by changing method of processing of eddy-current signal. Changes in impedance of eddy-current coil measured in absolute instead of relative units.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darrow, Douglas
Brief "avalanches" of toroidal Alfven eigenmodes (TAEs) are observed in NSTX plasmas with several different n numbers simultaneously present. These affect the neutral beam ion distribution as evidenced by a concurrent drop in the neutron rate and, sometimes, beam ion loss. Guiding center orbit modeling has shown that the modes can transiently render portions of the beam ion phase space stochastic. The resulting redistribution of beam ions can also create a broader beam-driven current profile and produce other changes in the beam ion distribution function
Acceleration and stability of a high-current ion beam in induction fields
NASA Astrophysics Data System (ADS)
Karas', V. I.; Manuilenko, O. V.; Tarakanov, V. P.; Federovskaya, O. V.
2013-03-01
A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.
Ion energy spread and current measurements of the rf-driven multicusp ion source
NASA Astrophysics Data System (ADS)
Lee, Y.; Gough, R. A.; Kunkel, W. B.; Leung, K. N.; Perkins, L. T.; Pickard, D. S.; Sun, L.; Vujic, J.; Williams, M. D.; Wutte, D.
1997-03-01
Axial energy spread and useful beam current of positive ion beams have been carried out using a radio frequency (rf)-driven multicusp ion source. Operating the source with a 13.56 MHz induction discharge, the axial energy spread is found to be approximately 3.2 eV. The extractable beam current of the rf-driven source is found to be comparable to that of filament-discharge sources. With a 0.6 mm diameter extraction aperture, a positive hydrogen ion beam current density of 80 mA/cm2 can be obtained at a rf input power of 2.5 kW. The expected source lifetime is much longer than that of filament discharges.
Measurement of minority-carrier drift mobility in solar cells using a modulated electron beam
NASA Technical Reports Server (NTRS)
Othmer, S.; Hopkins, M. A.
1980-01-01
A determination of diffusivity on solar cells is here reported which utilizes a one dimensional treatment of diffusion under sinusoidal excitation. An intensity-modulated beam of a scanning electron microscope was used as a source of excitation. The beam was injected into the rear of the cell, and the modulated component of the induced terminal current was recovered phase sensitively. A Faraday cup to measure the modulated component of beam current was mounted next to the sample, and connected to the same electronics. A step up transformer and preamplifier were mounted on the sample holder. Beam currents on the order of 400-pA were used in order to minimize effects of high injection. The beam voltage was 34-kV, and the cell bias was kept at 0-V.
Defining the safe current limit for opening ID photon shutter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seletskiy, S.
The NSLS-II storage ring is protected from possible damage from insertion devices (IDs) synchrotron radiation by a dedicated active interlock system (AIS). It monitors electron beam position and angle and triggers beam drop if beam orbit exceeds the boundaries of pre-calculated active interlock envelope (AIE). The beamlines (BL) and beamline frontends (FE) are designed under assumption that the electron beam is interlocked within the AIE. For historic reasons the AIS engages the ID active interlock (AI-ID) at any non-zero beam current whenever the ID photon shutter (IDPS) is getting opened. Such arrangement creates major inconveniences for BLs commissioning. Apparently theremore » is some IDPS safe current limit (SCL) under which the IDPS can be opened without interlocking the e-beam. The goal of this paper is to find such limit.« less
Elmer, J.W.; Teruya, A.T.; O`Brien, D.W.
1996-09-10
A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams is disclosed. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees from 0{degree} to 360{degree} and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figs.
Anda, G; Dunai, D; Lampert, M; Krizsanóczi, T; Németh, J; Bató, S; Nam, Y U; Hu, G H; Zoletnik, S
2018-01-01
A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (<20 s) discharges. A set of new beam diagnostic and manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.
NASA Astrophysics Data System (ADS)
Anda, G.; Dunai, D.; Lampert, M.; Krizsanóczi, T.; Németh, J.; Bató, S.; Nam, Y. U.; Hu, G. H.; Zoletnik, S.
2018-01-01
A 60 keV neutral lithium beam system was designed and built up for beam emission spectroscopy measurement of edge plasma on the KSTAR and EAST tokamaks. The electron density profile and its fluctuation can be measured using the accelerated lithium beam-based emission spectroscopy system. A thermionic ion source was developed with a SiC heater to emit around 4-5 mA ion current from a 14 mm diameter surface. The ion optic is following the 2 step design used on other devices with small modifications to reach about 2-3 cm beam diameter in the plasma at about 4 m from the ion source. A newly developed recirculating sodium vapour neutralizer neutralizes the accelerated ion beam at around 260-280 °C even during long (<20 s) discharges. A set of new beam diagnostic and manipulation techniques are applied to allow optimization, aiming, cleaning, and beam modulation. The maximum 60 keV beam energy with 4 mA ion current was successfully reached at KSTAR and at EAST. Combined with an efficient observation system, the Li-beam diagnostic enables the measurement of the density profile and fluctuations on the plasma turbulence time scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirano, Y., E-mail: y.hirano@aist.go.jp, E-mail: hirano.yoichi@phys.cst.nihon-u.ac.jp; College of Science and Technologies, Nihon University, Chiyodaku, Tokyo 101-0897; Kiyama, S.
2015-11-15
A high current density (≈3 mA/cm{sup 2}) hydrogen ion beam source operating in an extremely low-energy region (E{sub ib} ≈ 150–200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E{sub ib} is being reduced. The radial profiles of the ion beam current density and the low temperature ion current densitymore » can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.« less
An X-band high-impedance relativistic klystron amplifier with an annular explosive cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Danni; Zhang, Jun, E-mail: zhangjun@nudt.edu.cn; Zhong, Huihuang
2015-11-15
The feasibility of employing an annular beam instead of a solid one in the X-band high-impedance relativistic klystron amplifier (RKA) is investigated in theory and simulation. Small-signal theory analysis indicates that the optimum bunching distance, fundamental current modulation depth, beam-coupling coefficient, and beam-loaded quality factor of annular beams are all larger than the corresponding parameters of solid beams at the same beam voltage and current. An annular beam RKA and a solid beam RKA with almost the same geometric parameters are compared in particle-in-cell simulation. Output microwave power of 100 MW, gain of 50 dB, and power conversion efficiency of 42% aremore » obtained in an annular beam RKA. The annular beam needs a 15% lower uniform guiding magnetic field than the solid beam. Our investigations demonstrate that we are able to use a simple annular explosive cathode immersed in a lower uniform magnetic field instead of a solid thermionic cathode in a complicated partially shielding magnetic field for designing high-impedance RKA, which avoids high temperature requirement, complicated electron-optical system, large area convergence, high current density, and emission uniformity for the solid beam. An equivalent method for the annular beam and the solid beam on bunching features is proposed and agrees with the simulation. The annular beam has the primary advantages over the solid beam that it can employ the immersing uniform magnetic field avoiding the complicated shielding magnetic field system and needs a lower optimum guiding field due to the smaller space charge effect.« less
Precision determination of absolute neutron flux
Yue, A. T.; Anderson, E. S.; Dewey, M. S.; ...
2018-06-08
A technique for establishing the total neutron rate of a highly-collimated monochromatic cold neutron beam was demonstrated using an alpha–gamma counter. The method involves only the counting of measured rates and is independent of neutron cross sections, decay chain branching ratios, and neutron beam energy. For the measurement, a target of 10B-enriched boron carbide totally absorbed the neutrons in a monochromatic beam, and the rate of absorbed neutrons was determined by counting 478 keV gamma rays from neutron capture on 10B with calibrated high-purity germanium detectors. A second measurement based on Bragg diffraction from a perfect silicon crystal was performedmore » to determine the mean de Broglie wavelength of the beam to a precision of 0.024%. With these measurements, the detection efficiency of a neutron monitor based on neutron absorption on 6Li was determined to an overall uncertainty of 0.058%. We discuss the principle of the alpha–gamma method and present details of how the measurement was performed including the systematic effects. We further describe how this method may be used for applications in neutron dosimetry and metrology, fundamental neutron physics, and neutron cross section measurements.« less
Yonai, Shunsuke; Arai, Chinatsu; Shimoyama, Kaoru; Fournier-Bidoz, Nathalie
2018-02-03
Radiochromic film is a very useful tool for 2D dosimetric measurements in radiotherapy because it is self-developing and has very high-spatial resolution. However, considerable care has to be taken in ion beam radiotherapy owing to the quenching effect of high-linear energy transfer (LET) radiation. In this study, the dose responses of GAFchromic EBT3 and EBT-XD films were experimentally investigated using the clinical carbon ion beam at the Heavy Ion Medical Accelerator in Chiba. Results showed that the relations between absorbed dose and net optical density could be expressed well using an equation proposed by Reinhardt (2015). The quenching effect was evaluated by determining their relative efficiencies for photon irradiation as a function of LET. A correction equation derived in this study allowed the absorbed dose to be determined in the small irradiation field used for carbon ion radiotherapy eye treatments. This study contributes to establishing an absolute dosimetry procedure for heavy ion beams using radiochromic film. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Harford, Steven T.; Gutierrez, Homero; Newman, Michael; Pierce, Robert; Quakenbush, Tim; Wallace, John; Bornstein, Michael
2014-03-01
Ball Aerospace & Technologies Corp. (BATC) has developed a Risley Beam Pointer (RBP) mechanism capable of agile slewing, accurate pointing and high bandwidth. The RBP is comprised of two wedged prisms that offer a wide Field of Regard (FOR) and may be manufactured and operated with diffraction limited optical quality. The tightly packaged mechanism is capable of steering a 4 inch beam over a 60° half angle cone with better than 60 μrad precision. Absolute accuracy of the beam steering is better than 1 mrad. The conformal nature of the RBP makes it an ideal mechanism for use on low altitude aircraft and unmanned aerial vehicles. Unique aspects of the opto-mechanical design include i) thermal compliance to maintain bearing preload and optical figure over a wide temperature range; and ii) packaging of a remote infrared sensor that periodically reports the temperature of both prisms for accurate determination of the index of refraction. The pointing control system operates each prism independently and employs an inner rate loop nested within an outer position loop. Mathematics for the transformation between line-of-sight coordinates and prism rotation are hosted on a 200 MHz microcontroller with just 516 KB of RAM.
Precision determination of absolute neutron flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yue, A. T.; Anderson, E. S.; Dewey, M. S.
A technique for establishing the total neutron rate of a highly-collimated monochromatic cold neutron beam was demonstrated using an alpha–gamma counter. The method involves only the counting of measured rates and is independent of neutron cross sections, decay chain branching ratios, and neutron beam energy. For the measurement, a target of 10B-enriched boron carbide totally absorbed the neutrons in a monochromatic beam, and the rate of absorbed neutrons was determined by counting 478 keV gamma rays from neutron capture on 10B with calibrated high-purity germanium detectors. A second measurement based on Bragg diffraction from a perfect silicon crystal was performedmore » to determine the mean de Broglie wavelength of the beam to a precision of 0.024%. With these measurements, the detection efficiency of a neutron monitor based on neutron absorption on 6Li was determined to an overall uncertainty of 0.058%. We discuss the principle of the alpha–gamma method and present details of how the measurement was performed including the systematic effects. We further describe how this method may be used for applications in neutron dosimetry and metrology, fundamental neutron physics, and neutron cross section measurements.« less
Relativistic Absolutism in Moral Education.
ERIC Educational Resources Information Center
Vogt, W. Paul
1982-01-01
Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)
Electron beam generation in the turbulent plasma of Z-pinch discharges
NASA Astrophysics Data System (ADS)
Vikhrev, Victor V.; Baronova, Elena O.
1997-05-01
Numerical modeling of the process of electron beam generation in z-pinch discharges are presented. The proposed model represents the electron beam generation under turbulent plasma conditions. Strong current distribution inhomogeneity in the plasma column has been accounted for the adequate generation process investigation. Electron beam is generated near the maximum of compression due to run away mechanism and it is not related with the current break effect.
Pointing and Jitter Control for the USNA Multi-Beam Combining System
2013-05-10
previous work, an adaptive H-infinity optimal controller has been developed to control a single beam using a beam position detector for feedback... turbulence and airborne particles, platform jitter, lack of feedback from the target , and current laser technology represent just a few of these...lasers. Solid state lasers, however, cannot currently provide high enough power levels to destroy a target using a single beam. On solid-state
Performance of the LANSCE H^- Source and Low Energy Transport at Higher Peak Current
NASA Astrophysics Data System (ADS)
Pillai, Chandra; Stevens, Ralph; Fitzgerald, Daniel; Garnett, Robert; Ingllas, William; Merrill, Frank; Rybarcyk, Larry; Sander, Oscar
1997-05-01
The Los Alamos Neutron Science Center (LANSCE) 800 MeV linac facility uses a multicusp field, surface ion source to produce H^- beam for delivery to the Proton Storage Ring (PSR) and to the Weapon Neutron Research (WNR) areas. The source typically operates at a duty factor of 9.4% delivering a peak current of about 14 mA into the 750 keV LEBT. Each beam macropulse is chopped to create a sequence of 360 ns pulse, each with a 100 ns ``extraction notch'' for injection into PSR. The average current delivered to the short-pulse spallation target is nominally 70μA. One goal of the present PSR upgrade projects is an increase in the average beam current to 200μA. This will be accomplished by a combination of increased repetition rate (to 30 Hz), upgraded PSR bunchers, and a brighter H^- ion source that will produce higher peak current with lower beam emittance. The present ion source and injector system was studied to investigate the beam qualities of the source and the performance of the low energy transpot. The performance of the ion source at higher currents and the change in beam parameters in the low energy transport compared to those in the standard source conditions will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yorita, T., E-mail: yorita@rcnp.osaka-u.ac.jp; Hatanaka, K.; Fukuda, M.
2014-02-15
An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] andmore » the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.« less
NASA Astrophysics Data System (ADS)
Kaya, Ismet I.; Eberl, Karl
2007-05-01
A three-terminal device formed by two electrostatic barriers crossing an asymmetrically patterned two-dimensional electron gas displays an unusual potential depression at the middle contact, yielding absolute negative resistance. The device displays momentum and current transfer ratios that far exceed unity. The observed reversal of the current or potential in the middle terminal can be interpreted as the analog of Bernoulli’s effect in a Fermi liquid. The results are explained by directional scattering of electrons in two dimensions.
NASA Astrophysics Data System (ADS)
Pavic, M.; Cunningham, S. A.; Challenor, P.; Duncan, L.
2003-04-01
Between 1993 and 2001 the UK has completed seven occupations of WOCE section SR1b from Burdwood Bank to Elephant Island across Drake Passage. The section consists of a minimum of 31 full depth CTD stations, shipboard ADCP measurements of currents in the upper 300m, and in three of the years full depth lowered ADCP measurements at each station. The section lies under the satellite track of ERS2. The satellite altimeter can determine the along track slope of the sea surface relative to a reference satellite pass once every 35 days. From this we can calculate the relative SSH slope or geostrophic surface current anomalies. If we measure simultaneously with any satellite pass, we can estimate the absolute surface geostrophic current for any subsequent pass. This says that by combining in situ absolute velocity measurements - the reference velocities with altimetry at one time the absolute geostrophic current can be estimated on any subsequent (or previous) altimeter pass. This is the method of Challenor et al. 1996, though they did not have the data to test this relationship. We have seven estimates of the surface reference velocity: one for each of the seven occupations of the WOCE line. The difference in any pair of reference velocities is predicted by the difference of the corresponding altimeter measurements. Errors in combining the satellite and hydrographic data are estimated by comparing pairs of these differences: errors arise from the in situ observations and from the altimetric measurements. Finally we produce our best estimates of eight years of absolute surface geostrophic currents and transport variability along WOCE section SR1 in Drake Passage.
Ginger: Measuring Gravitomagnetic Effects by Means of Light
NASA Astrophysics Data System (ADS)
Tartaglia, Angelo
2015-01-01
GINGER is a proposal for a new experiment aimed to the detection of the gravito-magnetic Lense-Thirring effect at the surface of the Earth. A three-dimensional set of ring lasers will be mounted on a rigid "monument". In a ring laser a light beam traveling counterclockwise is superposed to another beam traveling in the opposite sense. The anisotropy in the propagation leads to standing waves with slightly different frequencies in the two directions; the resulting beat frequency is proportional to the absolute rotation rate in space, including the gravito-magnetic drag. The experiment is planned to be built in the Gran Sasso National Laboratories in Italy and is based on an international collaboration among four Italian groups, the Technische Universität München and the University of Canterbury in Christchurch (NZ).
Development of a 20 mA negative hydrogen ion source for cyclotrons
NASA Astrophysics Data System (ADS)
Etoh, H.; Onai, M.; Arakawa, Y.; Aoki, Y.; Mitsubori, H.; Sakuraba, J.; Kato, T.; Mitsumoto, T.; Yajima, S.; Hatayama, A.; Okumura, Y.
2017-08-01
A cesiated DC negative ion source has been developed for proton cyclotrons in medical applications. A continuous H- beam of 23 mA was stably extracted at an arc power of 3 kW. The beam current gradually decreases with a constant arc power and without additional Cs injection and the decay rate was about 0.03 mA (0.14%) per hour. A feed-back control system that automatically adjusts the arc power to stabilize the beam current is able to keep the beam current constant at ±0.04 mA (±0.2%).
High responsivity secondary ion energy analyzer
NASA Astrophysics Data System (ADS)
Belov, A. S.; Chermoshentsev, D. A.; Gavrilov, S. A.; Frolov, O. T.; Netchaeva, L. P.; Nikulin, E. S.; Zubets, V. N.
2018-05-01
The degree of space charge compensation of a 70 mA, 400 keV pulsed hydrogen ion beam has been measured with the use of an electrostatic energy analyzer of secondary ions. The large azimuthal angle of the analyzer enables a high responsivity, defined as the ratio of the slow secondary ion current emerging from the partially-compensated ion beam to the fast ion beam current. We measured 84% space charge compensation of the ion beam. The current from the slow ions and the rise time from the degree of space charge compensation were measured and compared with expected values.
Brassey, Charlotte A.; Margetts, Lee; Kitchener, Andrew C.; Withers, Philip J.; Manning, Phillip L.; Sellers, William I.
2013-01-01
Classic beam theory is frequently used in biomechanics to model the stress behaviour of vertebrate long bones, particularly when creating intraspecific scaling models. Although methodologically straightforward, classic beam theory requires complex irregular bones to be approximated as slender beams, and the errors associated with simplifying complex organic structures to such an extent are unknown. Alternative approaches, such as finite element analysis (FEA), while much more time-consuming to perform, require no such assumptions. This study compares the results obtained using classic beam theory with those from FEA to quantify the beam theory errors and to provide recommendations about when a full FEA is essential for reasonable biomechanical predictions. High-resolution computed tomographic scans of eight vertebrate long bones were used to calculate diaphyseal stress owing to various loading regimes. Under compression, FEA values of minimum principal stress (σmin) were on average 142 per cent (±28% s.e.) larger than those predicted by beam theory, with deviation between the two models correlated to shaft curvature (two-tailed p = 0.03, r2 = 0.56). Under bending, FEA values of maximum principal stress (σmax) and beam theory values differed on average by 12 per cent (±4% s.e.), with deviation between the models significantly correlated to cross-sectional asymmetry at midshaft (two-tailed p = 0.02, r2 = 0.62). In torsion, assuming maximum stress values occurred at the location of minimum cortical thickness brought beam theory and FEA values closest in line, and in this case FEA values of τtorsion were on average 14 per cent (±5% s.e.) higher than beam theory. Therefore, FEA is the preferred modelling solution when estimates of absolute diaphyseal stress are required, although values calculated by beam theory for bending may be acceptable in some situations. PMID:23173199
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koester, Petra; Cecchetti, Carlo A.; Booth, Nicola
2015-02-15
The high-current fast electron beams generated in high-intensity laser-solid interactions require the onset of a balancing return current in order to propagate in the target material. Such a system of counter-streaming electron currents is unstable to a variety of instabilities such as the current-filamentation instability and the two-stream instability. An experimental study aimed at investigating the role of instabilities in a system of symmetrical counter-propagating fast electron beams is presented here for the first time. The fast electron beams are generated by double-sided laser-irradiation of a layered target foil at laser intensities above 10{sup 19 }W/cm{sup 2}. High-resolution X-ray spectroscopy ofmore » the emission from the central Ti layer shows that locally enhanced energy deposition is indeed achieved in the case of counter-propagating fast electron beams.« less
Drive beam stabilisation in the CLIC Test Facility 3
NASA Astrophysics Data System (ADS)
Malina, L.; Corsini, R.; Persson, T.; Skowroński, P. K.; Adli, E.
2018-06-01
The proposed Compact Linear Collider (CLIC) uses a high intensity, low energy drive beam to produce the RF power needed to accelerate a lower intensity main beam with 100 MV/m gradient. This scheme puts stringent requirements on drive beam stability in terms of phase, energy and current. The consequent experimental work was carried out in CLIC Test Facility CTF3. In this paper, we present a novel analysis technique in accelerator physics to find beam drifts and their sources in the vast amount of the continuously gathered signals. The instability sources are identified and adequately mitigated either by hardware improvements or by implementation and commissioning of various feedbacks, mostly beam-based. The resulting drive beam stability is of 0.2°@ 3 GHz in phase, 0.08% in relative beam energy and about 0.2% beam current. Finally, we propose a stabilisation concept for CLIC to guarantee the main beam stability.
Development of a beam line for radio-isotope production at the KOMAC
NASA Astrophysics Data System (ADS)
Kim, Han-Sung
2016-09-01
A new beam line of the 100-MeV proton linac at the KOMAC (Korea Multi-purpose Accelerator Complex), aiming for RI (radioisotope) production has been constructed reflecting the increasing demands for various RIs (radioisotopes), such as Sr-82 and Cu-67 for medical applications. Proton beam with beam energy of 100 MeV and an average current of 0.6 mA is directed to the 100-mm-diameter production target through a beam window made of aluminum-beryllium alloy. Major components of the newly-installed beam line include electromagnets for bending and focusing, beam diagnostic systems such as a BPM (beam position monitor) and a BCM (beam current monitor), and a vacuum pumping system based on an ion pump. In this paper, the design features and the installation of the RI-production beam line at the KOMAC are given.
Electron-Beam Produced Air Plasma: Optical Measurement of Beam Current
NASA Astrophysics Data System (ADS)
Vidmar, Robert; Stalder, Kenneth; Seeley, Megan
2006-10-01
Experiments to quantify the electron beam current and distribution of beam current in air plasma are discussed. The air plasma is produced by a 100-keV 10-mA electron beam source that traverses a transmission window into a chamber with air as a target gas. Air pressure is between 1 mTorr and 760 Torr. Strong optical emissions due to electron impact ionization are observed for the N2 2^nd positive line at 337.1 nm and the N2^+ 1^st negative line at 391.4 nm. Calibration of optical emissions using signals from the isolated transmission window and a Faraday plate are discussed. The calibrated optical system is then used to quantify the electron distribution in the air plasma.
Direct current H- source for the medicine accelerator (invited)
NASA Astrophysics Data System (ADS)
Belchenko, Yu.; Savkin, V.
2004-05-01
A compact cw hydrogen negative ion source having reliable operation and a simplified maintenance is developed at Budker Institute of Nuclear Physics for a tandem accelerator of boron capture neutron therapy installation. The source uses a Penning discharge with a hydrogen and cesium feed through the hollows in the cathodes. Discharge voltage is about 60-80 V, current 9 A, hydrogen pressure 4-5 Pa, magnetic field 0.05-0.1 T, and cesium seed <1 mg/h. Negative ions are mainly produced on the cesiated anode surface due to conversion of hydrogen atoms. An optimal anode temperature is 250-350 °C. Negative ion beam current is directly proportional to the discharge current and to the emission hole area. A triode system for the beam extraction and acceleration system is used. The flux of accompanying extracted electrons was decreased by filtering in the transverse magnetic field. This electron flux was intercepted to the special electrode, biased at 4 kV potential with respect to the anode. Source stable cw operation for several hour runs was multiply tested. A H- ion beam with current up to 8 mA, beam energy 23 keV was produced regularly. Negative ion current of heavy impurities had a value of about 3% of the total beam current. Beam normalized emittance is about 0.3 π mm mrad and emission current density -0.1 A/cm2. A built-in cathode heater provides the operation quick start.
NASA Astrophysics Data System (ADS)
Romanelli, G.; Krzystyniak, M.; Senesi, R.; Raspino, D.; Boxall, J.; Pooley, D.; Moorby, S.; Schooneveld, E.; Rhodes, N. J.; Andreani, C.; Fernandez-Alonso, F.
2017-09-01
The VESUVIO spectrometer at the ISIS pulsed neutron and muon source is a unique instrument amongst those available at neutron facilities. This is the only inverted-geometry neutron spectrometer accessing values of energy and wavevector transfer above tens of eV and {\\mathringA}-1 , respectively, and where deep inelastic neutron scattering experiments are routinely performed. As such, the procedure at the base of the technique has been previously described in an article published by this journal (Mayers and Reiter 2012 Meas. Sci. Technol. 23 045902). The instrument has recently witnessed an upsurge of interest due to a new trend to accommodate, within a single experiment, neutron diffraction and transmission measurements in addition to deep inelastic neutron scattering. This work presents a broader description of the instrument following these recent developments. In particular, we assess the absolute intensity and two-dimensional profile of the incident neutron beam and the capabilities of the backscattering diffraction banks. All results are discussed in the light of recent changes to the moderator viewed by the instrument. We find that VESUVIO has to be considered a high-resolution diffractometer as much as other diffractometers at ISIS, with a resolution as high as 2× 10-3 in backscattering. Also, we describe the extension of the wavelength range of the instrument to include lower neutron energies for diffraction measurements, an upgrade that could be readily applied to other neutron instruments as well.
Bright, A N; Yoshida, K; Tanaka, N
2013-01-01
Environmental transmission electron microscopy (ETEM) enables the study of catalytic and other reaction processes as they occur with Angstrom-level resolution. The microscope used is a dedicated ETEM (Titan ETEM, FEI Company) with a differential pumping vacuum system and apertures, allowing aberration corrected high-resolution transmission electron microscopy (HRTEM) imaging to be performed with gas pressures up to 20 mbar in the sample area and with significant advantages over membrane-type E-cell holders. The effect on image resolution of varying the nitrogen gas pressure, electron beam current density and total beam current were measured using information limit (Young's fringes) on a standard cross grating sample and from silicon crystal lattice imaging. As expected, increasing gas pressure causes a decrease in HRTEM image resolution. However, the total electron beam current also causes big changes in the image resolution (lower beam current giving better resolution), whereas varying the beam current density has almost no effect on resolution, a result that has not been reported previously. This behavior is seen even with zero-loss filtered imaging, which we believe shows that the drop in resolution is caused by elastic scattering at gas ions created by the incident electron beam. Suitable conditions for acquiring high resolution images in a gas environment are discussed. Lattice images at nitrogen pressures up to 16 mbar are shown, with 0.12 nm information transfer at 4 mbar. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Holak; Choe, Wonho; Lim, Youbong; Lee, Seunghun; Park, Sanghoo
2017-03-01
Magnetic field configuration is critical in Hall thrusters for achieving high performance, particularly in thrust, specific impulse, efficiency, etc. Ion beam features are also significantly influenced by magnetic field configurations. In two typical magnetic field configurations (i.e., co-current and counter-current configurations) of a cylindrical Hall thruster, ion beam characteristics are compared in relation to multiply charged ions. Our study shows that the co-current configuration brings about high ion current (or low electron current), high ionization rate, and small plume angle that lead to high thruster performance.
High-power laser interaction with low-density C–Cu foams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez, F.; Colvin, J. D.; May, M. J.
2015-11-15
We study the propagation of high-power laser beams in micro-structured carbon foams by monitoring the x-ray output from deliberately introduced Cu content. In particular, we characterize this phenomenon measuring absolute time-resolved x-ray yields, time-resolved x-ray imaging, and x-ray spectroscopy. New experimental results for C–Cu foams show a faster heat front velocity than simulation that assumed homogeneous plasma. We suggest the foam micro-structure may explain this trend.
High-power laser interaction with low-density C–Cu foams
Pérez, F.; Colvin, J. D.; May, M. J.; ...
2015-11-19
Here, we study the propagation of high-power laser beams in micro-structured carbon foams by monitoring the x-ray output from deliberately introduced Cu content. In particular, we characterize this phenomenon measuring absolute time-resolved x-ray yields, time-resolved x-ray imaging, and x-ray spectroscopy. New experimental results for C–Cu foams show a faster heat front velocity than simulation that assumed homogeneous plasma. We suggest the foam micro-structure may explain this trend.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sannibale, Fernando; Zolotorev, Max S.; Filippetto, Daniele
2007-06-22
By analysing the pulse to pulse intensity fluctuations ofthe radiation emitted by a charge particle in the incoherent part of thespectrum, it is possible to extract information about the spatialdistribution of the beam. At the Advanced Light Source (ALS) of theLawrence Berkeley National Laboratory, we have developed and tested asimple scheme based on this principle that allows for the absolutemeasurement of the bunch length. A description of the method and theexperimental results are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohsen, O.; Gonin, I.; Kephart, R.
High-power electron beams are sought-after tools in support to a wide array of societal applications. This paper investigates the production of high-power electron beams by combining a high-current field-emission electron source to a superconducting radio-frequency (SRF) cavity. We especially carry out beam-dynamics simulations that demonstrate the viability of the scheme to formmore » $$\\sim$$ 300 kW average-power electron beam using a 1+1/2-cell SRF gun.« less
Observations of ionospheric electron beams in the plasma sheet.
Zheng, H; Fu, S Y; Zong, Q G; Pu, Z Y; Wang, Y F; Parks, G K
2012-11-16
Electrons streaming along the magnetic field direction are frequently observed in the plasma sheet of Earth's geomagnetic tail. The impact of these field-aligned electrons on the dynamics of the geomagnetic tail is however not well understood. Here we report the first detection of field-aligned electrons with fluxes increasing at ~1 keV forming a "cool" beam just prior to the dissipation of energy in the current sheet. These field-aligned beams at ~15 R(E) in the plasma sheet are nearly identical to those commonly observed at auroral altitudes, suggesting the beams are auroral electrons accelerated upward by electric fields parallel (E([parallel])) to the geomagnetic field. The density of the beams relative to the ambient electron density is δn(b)/n(e)~5-13% and the current carried by the beams is ~10(-8)-10(-7) A m(-2). These beams in high β plasmas with large density and temperature gradients appear to satisfy the Bohm criteria to initiate current driven instabilities.
STATUS OF VARIOUS SNS DIAGNOSTIC SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blokland, Willem; Purcell, J David; Patton, Jeff
2007-01-01
The Spallation Neutron Source (SNS) accelerator systems are ramping up to deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. Enhancements or additions have been made to several instrument systems to support the ramp up in intensity, improve reliability, and/or add functionality. The Beam Current Monitors now support increased rep rates, the Harp system now includes charge density calculations for the target, and a new system has been created to collect data for the beam accounting and present the data over the web and to the operator consoles. The majority of themore » SNS beam instruments are PC-based and their configuration files are now managed through the Oracle relational database. A new version for the wire scanner software was developed to add features to correlate the scan with beam loss, parking in the beam, and measuring the longitudinal beam current. This software is currently being tested. This paper also includes data from the selected instruments.« less
Relativistic-electron-beam/target interaction in plasma channels
NASA Astrophysics Data System (ADS)
Halbleib, J. A., Sr.; Wright, T. P.
1980-08-01
A model describing the transport of relativistic electron beams in plasma channels and their subsequent interaction with solid targets is developed and applied to single-beam and multiple-beam configurations. For single beams the targets consist of planar tantalum foils and, in some cases, cusp fields on the transmission side of the foils are employed to improve beam/target coupling efficiency. In the multi-beam configurations, several beams are arranged in wagon-wheel fashion so as to converge upon cylindrical targets, consisting of either hollow tantalum or solid graphite cylinders, located at the hub. For 0.3-cm beam radii that are less than or equal to the channel radii, mean specific power depositions up to about 17 TW/g per MA of injected beam current are obtained for single beams; 12-beam results are typically an order-of-magnitude less. The corresponding enhancements are up to five times the collisional stopping power for either single or multiple beams. Substantial improvement is predicted for the multi-beam interaction should future channel technology permit transport at higher current densities in smaller channels.
Transport of a high brightness proton beam through the Munich tandem accelerator
NASA Astrophysics Data System (ADS)
Moser, M.; Greubel, C.; Carli, W.; Peeper, K.; Reichart, P.; Urban, B.; Vallentin, T.; Dollinger, G.
2015-04-01
Basic requirement for ion microprobes with sub-μm beam focus is a high brightness beam to fill the small phase space usually accepted by the ion microprobe with enough ion current for the desired application. We performed beam transport simulations to optimize beam brightness transported through the Munich tandem accelerator. This was done under the constraint of a maximum ion current of 10 μA that is allowed to be injected due to radiation safety regulations and beam power constrains. The main influence of the stripper foil in conjunction with intrinsic astigmatism in the beam transport on beam brightness is discussed. The calculations show possibilities for brightness enhancement by using astigmatism corrections and asymmetric filling of the phase space volume in the x- and y-direction.
NASA Astrophysics Data System (ADS)
Suresh, K.; Balaji, S.; Saravanan, K.; Navas, J.; David, C.; Panigrahi, B. K.
2018-02-01
We developed a simple, low cost user-friendly automated indirect ion beam fluence measurement system for ion irradiation and analysis experiments requiring indirect beam fluence measurements unperturbed by sample conditions like low temperature, high temperature, sample biasing as well as in regular ion implantation experiments in the ion implanters and electrostatic accelerators with continuous beam. The system, which uses simple, low cost, off-the-shelf components/systems and two distinct layers of in-house built softwarenot only eliminates the need for costly data acquisition systems but also overcomes difficulties in using properietry software. The hardware of the system is centered around a personal computer, a PIC16F887 based embedded system, a Faraday cup drive cum monitor circuit, a pair of Faraday Cups and a beam current integrator and the in-house developed software include C based microcontroller firmware and LABVIEW based virtual instrument automation software. The automatic fluence measurement involves two important phases, a current sampling phase lasting over 20-30 seconds during which the ion beam current is continuously measured by intercepting the ion beam and the averaged beam current value is computed. A subsequent charge computation phase lasting 700-900 seconds is executed making the ion beam to irradiate the samples and the incremental fluence received by the sampleis estimated usingthe latest averaged beam current value from the ion beam current sampling phase. The cycle of current sampling-charge computation is repeated till the required fluence is reached. Besides simplicity and cost-effectiveness, other important advantages of the developed system include easy reconfiguration of the system to suit customisation of experiments, scalability, easy debug and maintenance of the hardware/software, ability to work as a standalone system. The system was tested with different set of samples and ion fluences and the results were verified using Rutherford backscattering technique which showed the satisfactory functioning of the system. The accuracy of the fluence measurements is found to be less than 2% which meets the demands of the irradiation experiments undertaken using the developed set up. The system was incorporated for regular use at the existing ultra high vacuum (UHV) ion irradiation chamber of 1.7 MV Tandem accelerator and several ion implantation experiments on a variety of samples like SS304, D9, ODS alloys have been successfully carried out.
Analysis of warping deformation modes using higher order ANCF beam element
NASA Astrophysics Data System (ADS)
Orzechowski, Grzegorz; Shabana, Ahmed A.
2016-02-01
Most classical beam theories assume that the beam cross section remains a rigid surface under an arbitrary loading condition. However, in the absolute nodal coordinate formulation (ANCF) continuum-based beams, this assumption can be relaxed allowing for capturing deformation modes that couple the cross-section deformation and beam bending, torsion, and/or elongation. The deformation modes captured by ANCF finite elements depend on the interpolating polynomials used. The most widely used spatial ANCF beam element employs linear approximation in the transverse direction, thereby restricting the cross section deformation and leading to locking problems. The objective of this investigation is to examine the behavior of a higher order ANCF beam element that includes quadratic interpolation in the transverse directions. This higher order element allows capturing warping and non-uniform stretching distribution. Furthermore, this higher order element allows for increasing the degree of continuity at the element interface. It is shown in this paper that the higher order ANCF beam element can be used effectively to capture warping and eliminate Poisson locking that characterizes lower order ANCF finite elements. It is also shown that increasing the degree of continuity requires a special attention in order to have acceptable results. Because higher order elements can be more computationally expensive than the lower order elements, the use of reduced integration for evaluating the stress forces and the use of explicit and implicit numerical integrations to solve the nonlinear dynamic equations of motion are investigated in this paper. It is shown that the use of some of these integration methods can be very effective in reducing the CPU time without adversely affecting the solution accuracy.
Radial dependence of HF wave field strength in the BPD column. [Beam Plasma Discharge
NASA Technical Reports Server (NTRS)
Jost, R. J.; Anderson, H. R.; Bernstein, W.; Kellogg, P. J.
1982-01-01
The results of a recent set of RF frequency measurements of the beam plasma discharge (BPD) performed in order to determine a quantitative value for the field strength in the plasma frequency region of the spectrum are presented. The parallel and perpendicular components of the plasma wave electric fields inside the BPD column have comparable field strengths, on the order of 10 volts/m. The radial dependence of the field strength is very strong, decreasing by as much as 40 dB within one meter from the beam center, with the illumination or discharge column approximately one meter in diameter. The field strength inside the column increases as a function of distance along the beam at least for several meters from the gun aperture. The frequency and amplitude of the plasma wave increases with beam current. A particularly rapid increase in these parameters occurs as the beam current approaches the critical current.
Ultra-low current beams in UMER to model space-charge effects in high-energy proton and ion machines
NASA Astrophysics Data System (ADS)
Bernal, S.; Beaudoin, B.; Baumgartner, H.; Ehrenstein, S.; Haber, I.; Koeth, T.; Montgomery, E.; Ruisard, K.; Sutter, D.; Yun, D.; Kishek, R. A.
2017-03-01
The University of Maryland Electron Ring (UMER) has operated traditionally in the regime of strong space-charge dominated beam transport, but small-current beams are desirable to significantly reduce the direct (incoherent) space-charge tune shift as well as the tune depression. This regime is of interest to model space-charge effects in large proton and ion rings similar to those used in nuclear physics and spallation neutron sources, and also for nonlinear dynamics studies of lattices inspired on the Integrable Optics Test Accelerator (IOTA). We review the definitions of beam vs. space-charge intensities and discuss three methods for producing very small beam currents in UMER. We aim at generating 60µA - 1.0mA, 100 ns, 10 keV beams with normalized rms emittances of the order of 0.1 - 1.0µm.
BPM Breakdown Potential in the PEP-II B-factory Storage Ring Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weathersby, Stephen; Novokhatski, Alexander; /SLAC
2010-02-10
High current B-Factory BPM designs incorporate a button type electrode which introduces a small gap between the button and the beam chamber. For achievable currents and bunch lengths, simulations indicate that electric potentials can be induced in this gap which are comparable to the breakdown voltage. This study characterizes beam induced voltages in the existing PEP-II storage ring collider BPM as a function of bunch length and beam current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yousuke
2012-02-15
We measure the ion beam current and the plasma parameters by using the pulse mode microwave operation in the first stage of a tandem type ECRIS. The time averaged extracted ion beam current in the pulse mode operation is larger than that of the cw mode operation with the same averaged microwave power. The electron density n{sub e} in the pulse mode is higher and the electron temperature T{sub e} is lower than those of the cw mode operation. These plasma parameters are considered to cause in the increase of the ion beam current and are suitable to produce molecularmore » or cluster ions.« less
Plasma fluctuations in a Kaufman thruster
NASA Technical Reports Server (NTRS)
Serafini, J. S.; Terdan, F. F.
1973-01-01
Measurements of the RMS magnitude, spectra, and cross correlations for the fluctuations in the beam, discharge, and neutralizer keeper currents are presented for a 30 cm diameter dished grid ion thruster for a range of magnetic baffle currents. The ratio of RMS to mean ion beam current varied from 0.04 to 0.23. The spectra of the amplitudes of the beam and discharge current fluctuations were taken up to 9 MHz and show that the predominant amplitudes occur at frequencies of 10 kHz or below. The falloff with increasing frequency is rapid. Frequencies above 100 kHz the spectral levels are 45 kb or more below the maximum peak amplitudes. The cross correlations revealed the ion beam fluctuations to have large radial and axial scales.
Beam heating of thick targets for on-line mass separators
NASA Astrophysics Data System (ADS)
Eaton, T. W.; Ravn, H. L.; Isolde Collaboration
1987-05-01
Energy deposition computations have been made on a variety of target materials utilized for the production of radioisotopes by means of 600-MeV protons. Results have shown that, when a proton current of 100 μA is assumed, dispersed target materials, such as uranium carbide powder and magnesium oxide, are best able to withstand the energy absorption and consequent beam heating without the need of additional cooling. Modified foil targets of titanium, zirconium and tantalum also appear capable of withstanding a full beam current, whilst liquid metal targets in their present form appear to have limitations in terms of the maximum allowable beam current. A redesign of the target container is proposed which allows higher proton currents to be used with these targets also.
A new metric for assessing IMRT modulation complexity and plan deliverability.
McNiven, Andrea L; Sharpe, Michael B; Purdie, Thomas G
2010-02-01
To evaluate the utility of a new complexity metric, the modulation complexity score (MCS), in the treatment planning and quality assurance processes and to evaluate the relationship of the metric with deliverability. A multisite (breast, rectum, prostate, prostate bed, lung, and head and neck) and site-specific (lung) dosimetric evaluation has been completed. The MCS was calculated for each beam and the overall treatment plan. A 2D diode array (MapCHECK, Sun Nuclear, Melbourne, FL) was used to acquire measurements for each beam. The measured and planned dose (PINNACLE3, Phillips, Madison, WI) was evaluated using different percent differences and distance to agreement (DTA) criteria (3%/ 3 mm and 2%/ 1 mm) and the relationship between the dosimetric results and complexity (as measured by the MCS or simple beam parameters) assessed. For the multisite analysis (243 plans total), the mean MCS scores for each treatment site were breast (0.92), rectum (0.858), prostate (0.837), prostate bed (0.652), lung (0.631), and head and neck (0.356). The MCS allowed for compilation of treatment site-specific statistics, which is useful for comparing different techniques, as well as for comparison of individual treatment plans with the typical complexity levels. For the six plans selected for dosimetry, the average diode percent pass rate was 98.7% (minimum of 96%) for 3%/3 mm evaluation criteria. The average difference in absolute dose measurement between the planned and measured dose was 1.7 cGy. The detailed lung analysis also showed excellent agreement between the measured and planned dose, as all beams had a diode percentage pass rate for 3%/3 mm criteria of greater than 95.9%, with an average pass rate of 99.0%. The average absolute maximum dose difference for the lung plans was 0.7 cGy. There was no direct correlation between the MCS and simple beam parameters which could be used as a surrogate for complexity level (i.e., number of segments or MU). An evaluation criterion of 2%/ 1 mm reliably allowed for the identification of beams that are dosimetrically robust. In this study we defined a robust beam or plan as one that maintained a diode percentage pass rate greater than 90% at 2%/ 1 mm, indicating delivery that was deemed accurate when compared to the planned dose, even under stricter evaluation criterion. MCS and MU threshold criteria were determined by defining a required specificity of 1.0. A MCS threshold of 0.8 allowed for identification of robust deliverability with a sensitivity of 0.36. In contrast, MU had a lower sensitivity of 0.23 for a threshold of 50 MU. The MCS allows for a quantitative assessment of plan complexity, on a fixed scale, that can be applied to all treatment sites and can provide more information related to dose delivery than simple beam parameters. This could prove useful throughout the entire treatment planning and QA process.
Multi-Beam Surface Lidar for Lunar and Planetary Mapping
NASA Technical Reports Server (NTRS)
Bufton, Jack L.; Garvin, James B.
1998-01-01
Surface lidar techniques are now being demonstrated in low Earth orbit with a single beam of pulsed laser radiation at 1064 nm that profiles the vertical structure of Earth surface landforms along the nadir track of a spacecraft. In addition, a profiling laser altimeter, called MOLA, is operating in elliptical Martian orbit and returning surface topography data. These instruments form the basis for suggesting an improved lidar instrument that employs multiple beams for extension of sensor capabilities toward the goal of true, 3-dimensional mapping of the Moon or other similar planetary surfaces. In general the lidar waveform acquired with digitization of a laser echo can be used for laser distance measurement (i.e. range-to-the-surface) by time-of-flight measurement and for surface slope and shape measurements by examining the detailed lidar waveform. This is particularly effective when the intended target is the lunar surface or another planetary body free of any atmosphere. The width of the distorted return pulse is a first order measure of the surface incidence angle, a combination of surface slope and laser beam pointing. Assuming an independent and absolute (with respect to inertial space) measurement of laser beam pointing on the spacecraft, it is possible to derive a surface slope with-respect-to the mean planetary surface or its equipotential gravity surface. Higher-order laser pulse distortions can be interpreted in terms of the vertical relief of the surface or reflectivity variations within the area of the laser beam footprint on the surface.
NASA Technical Reports Server (NTRS)
Cook, S. R.; Hoffbauer, M. A.
1996-01-01
The first comprehensive measurements of the magnitude and direction of the forces exerted on surfaces by molecular beams are discussed and used to obtain information about the microscopic properties of the gas-surface interactions. This unique approach is not based on microscopic measurements of the scattered molecules. The reduced force coefficients are introduced as a new set of parameters that completely describe the macroscopic average momentum transfer to a surface by an incident molecular beam. By using a specialized torsion balance and molecular beams of N2, CO, CO2, and H2, the reduced force coefficients are determined from direct measurements of the force components exerted on surface of a solar panel array material, Kapton, SiO2-coated Kapton, and Z-93 as a function of the angle of incidence ranging from 0 degrees to 85 degrees. The absolute flux densities of the molecular beams were measured using a different torsion balance with a beam-stop that nullified the force of the scattered molecules. Standard time-of-flight techniques were used to determine the flux-weighted average velocities of the various molecular beams ranging from 1600 m/s to 4600 m/s. The reduced force coefficients can be used to directly obtain macroscopic average properties of the scattered molecules, such as the flux-weighted average velocity and translational energy, that can then be used to determine microscopic details concerning gas-surface interactions without the complications associated with averaging microscopic measurements.
NASA Astrophysics Data System (ADS)
Wang, Peng; Li, Xiao; Shang, YaPing; Xu, XiaoJun
2015-10-01
The fiber laser has very obvious advantages and broad applications in remote welding, 3D cutting and national defense compared with the traditional solid laser. But influenced by heat effect of gain medium, nonlinear effect, stress birefringence effect and other negative factors, it's very difficult to get high power linearly polarized laser just using a single laser. For these limitations a polarization-converting system is designed using beam shaping and combination technique which is able to transform naturally polarized laser to linearly polarized laser at real time to resolve difficulties of generating high-power linearly polarized laser from fiber lasers in this paper. The principle of the Gaussian beam changing into the hollow beam passing through two axicons and the combination of the Gaussian beam and the hollow beam is discussed. In the experimental verification the energy conversion efficiency reached 93.1% with a remarkable enhancement of the extinction ratio from 3% to 98% benefited from the high conversion efficiency of axicons and the system worked fine under high power conditions. The system also kept excellent far field divergence. The experiment phenomenon also agreed with the simulation quite well. The experiment proves that this polarization-converting system will not affect laser structure which controls easily and needs no feedback and controlling system with stable and reliable properties at the same time. It can absolutely be applied to the polarization-conversion of high power laser.
NASA Astrophysics Data System (ADS)
Birx, Daniel
1992-03-01
Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakar, Khomsaton Abu; Zulkafli,; Hashim, Siti A'aisah
2014-09-03
In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev butmore » at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD{sub 5}, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.« less
NASA Astrophysics Data System (ADS)
Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.
2016-07-01
Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.
Study of a high power hydrogen beam diagnostic based on secondary electron emission.
Sartori, E; Panasenkov, A; Veltri, P; Serianni, G; Pasqualotto, R
2016-11-01
In high power neutral beams for fusion, beam uniformity is an important figure of merit. Knowing the transverse power profile is essential during the initial phases of beam source operation, such as those expected for the ITER heating neutral beam (HNB) test facility. To measure it a diagnostic technique is proposed, based on the collection of secondary electrons generated by beam-surface and beam-gas interactions, by an array of positively biased collectors placed behind the calorimeter tubes. This measurement showed in the IREK test stand good proportionality to the primary beam current. To investigate the diagnostic performances in different conditions, we developed a numerical model of secondary electron emission, induced by beam particle impact on the copper tubes, and reproducing the cascade of secondary emission caused by successive electron impacts. The model is first validated against IREK measurements. It is then applied to the HNB case, to assess the locality of the measurement, the proportionality to the beam current density, and the influence of beam plasma.
Magnetic plasma confinement for laser ion source.
Okamura, M; Adeyemi, A; Kanesue, T; Tamura, J; Kondo, K; Dabrowski, R
2010-02-01
A laser ion source (LIS) can easily provide a high current beam. However, it has been difficult to obtain a longer beam pulse while keeping a high current. On occasion, longer beam pulses are required by certain applications. For example, more than 10 micros of beam pulse is required for injecting highly charged beams to a large sized synchrotron. To extend beam pulse width, a solenoid field was applied at the drift space of the LIS at Brookhaven National Laboratory. The solenoid field suppressed the diverging angle of the expanding plasma and the beam pulse was widened. Also, it was observed that the plasma state was conserved after passing through a few hundred gauss of the 480 mm length solenoid field.