Evolution of brain-body allometry in Lake Tanganyika cichlids.
Tsuboi, Masahito; Kotrschal, Alexander; Hayward, Alexander; Buechel, Severine Denise; Zidar, Josefina; Løvlie, Hanne; Kolm, Niclas
2016-07-01
Brain size is strongly associated with body size in all vertebrates. This relationship has been hypothesized to be an important constraint on adaptive brain size evolution. The essential assumption behind this idea is that static (i.e., within species) brain-body allometry has low ability to evolve. However, recent studies have reported mixed support for this view. Here, we examine brain-body static allometry in Lake Tanganyika cichlids using a phylogenetic comparative framework. We found considerable variation in the static allometric intercept, which explained the majority of variation in absolute and relative brain size. In contrast, the slope of the brain-body static allometry had relatively low variation, which explained less variation in absolute and relative brain size compared to the intercept and body size. Further examination of the tempo and mode of evolution of static allometric parameters confirmed these observations. Moreover, the estimated evolutionary parameters indicate that the limited observed variation in the static allometric slope could be a result of strong stabilizing selection. Overall, our findings suggest that the brain-body static allometric slope may represent an evolutionary constraint in Lake Tanganyika cichlids. © 2016 The Author(s).
2010-01-01
Background Brain size is a key adaptive trait. It is often assumed that increasing brain size was a general evolutionary trend in primates, yet recent fossil discoveries have documented brain size decreases in some lineages, raising the question of how general a trend there was for brains to increase in mass over evolutionary time. We present the first systematic phylogenetic analysis designed to answer this question. Results We performed ancestral state reconstructions of three traits (absolute brain mass, absolute body mass, relative brain mass) using 37 extant and 23 extinct primate species and three approaches to ancestral state reconstruction: parsimony, maximum likelihood and Bayesian Markov-chain Monte Carlo. Both absolute and relative brain mass generally increased over evolutionary time, but body mass did not. Nevertheless both absolute and relative brain mass decreased along several branches. Applying these results to the contentious case of Homo floresiensis, we find a number of scenarios under which the proposed evolution of Homo floresiensis' small brain appears to be consistent with patterns observed along other lineages, dependent on body mass and phylogenetic position. Conclusions Our results confirm that brain expansion began early in primate evolution and show that increases occurred in all major clades. Only in terms of an increase in absolute mass does the human lineage appear particularly striking, with both the rate of proportional change in mass and relative brain size having episodes of greater expansion elsewhere on the primate phylogeny. However, decreases in brain mass also occurred along branches in all major clades, and we conclude that, while selection has acted to enlarge primate brains, in some lineages this trend has been reversed. Further analyses of the phylogenetic position of Homo floresiensis and better body mass estimates are required to confirm the plausibility of the evolution of its small brain mass. We find that for our dataset the Bayesian analysis for ancestral state reconstruction is least affected by inclusion of fossil data suggesting that this approach might be preferable for future studies on other taxa with a poor fossil record. PMID:20105283
Groh, Claudia; Kelber, Christina; Grübel, Kornelia; Rössler, Wolfgang
2014-01-01
Hymenoptera possess voluminous mushroom bodies (MBs), brain centres associated with sensory integration, learning and memory. The mushroom body input region (calyx) is organized in distinct synaptic complexes (microglomeruli, MG) that can be quantified to analyse body size-related phenotypic plasticity of synaptic microcircuits in these small brains. Leaf-cutting ant workers (Atta vollenweideri) exhibit an enormous size polymorphism, which makes them outstanding to investigate neuronal adaptations underlying division of labour and brain miniaturization. We particularly asked how size-related division of labour in polymorphic workers is reflected in volume and total numbers of MG in olfactory calyx subregions. Whole brains of mini, media and large workers were immunolabelled with anti-synapsin antibodies, and mushroom body volumes as well as densities and absolute numbers of MG were determined by confocal imaging and three-dimensional analyses. The total brain volume and absolute volumes of olfactory mushroom body subdivisions were positively correlated with head widths, but mini workers had significantly larger MB to total brain ratios. Interestingly, the density of olfactory MG was remarkably independent from worker size. Consequently, absolute numbers of olfactory MG still were approximately three times higher in large compared with mini workers. The results show that the maximum packing density of synaptic microcircuits may represent a species-specific limit to brain miniaturization. PMID:24807257
Kabadayi, Can; Taylor, Lucy A; von Bayern, Auguste M P; Osvath, Mathias
2016-04-01
Overriding motor impulses instigated by salient perceptual stimuli represent a fundamental inhibitory skill. Such motor self-regulation facilitates more rational behaviour, as it brings economy into the bodily interaction with the physical and social world. It also underlies certain complex cognitive processes including decision making. Recently, MacLean et al. (MacLean et al. 2014 Proc. Natl Acad. Sci. USA 111, 2140-2148. (doi:10.1073/pnas.1323533111)) conducted a large-scale study involving 36 species, comparing motor self-regulation across taxa. They concluded that absolute brain size predicts level of performance. The great apes were most successful. Only a few of the species tested were birds. Given birds' small brain size-in absolute terms-yet flexible behaviour, their motor self-regulation calls for closer study. Corvids exhibit some of the largest relative avian brain sizes-although small in absolute measure-as well as the most flexible cognition in the animal kingdom. We therefore tested ravens, New Caledonian crows and jackdaws in the so-called cylinder task. We found performance indistinguishable from that of great apes despite the much smaller brains. We found both absolute and relative brain volume to be a reliable predictor of performance within Aves. The complex cognition of corvids is often likened to that of great apes; our results show further that they share similar fundamental cognitive mechanisms.
The coevolution of innovation and technical intelligence in primates
Street, Sally E.; Whalen, Andrew; Laland, Kevin N.
2016-01-01
In birds and primates, the frequency of behavioural innovation has been shown to covary with absolute and relative brain size, leading to the suggestion that large brains allow animals to innovate, and/or that selection for innovativeness, together with social learning, may have driven brain enlargement. We examined the relationship between primate brain size and both technical (i.e. tool using) and non-technical innovation, deploying a combination of phylogenetically informed regression and exploratory causal graph analyses. Regression analyses revealed that absolute and relative brain size correlated positively with technical innovation, and exhibited consistently weaker, but still positive, relationships with non-technical innovation. These findings mirror similar results in birds. Our exploratory causal graph analyses suggested that technical innovation shares strong direct relationships with brain size, body size, social learning rate and social group size, whereas non-technical innovation did not exhibit a direct relationship with brain size. Nonetheless, non-technical innovation was linked to brain size indirectly via diet and life-history variables. Our findings support ‘technical intelligence’ hypotheses in linking technical innovation to encephalization in the restricted set of primate lineages where technical innovation has been reported. Our findings also provide support for a broad co-evolving complex of brain, behaviour, life-history, social and dietary variables, providing secondary support for social and ecological intelligence hypotheses. The ability to gain access to difficult-to-extract, but potentially nutrient-rich, resources through tool use may have conferred on some primates adaptive advantages, leading to selection for brain circuitry that underlies technical proficiency. PMID:26926276
The coevolution of innovation and technical intelligence in primates.
Navarrete, Ana F; Reader, Simon M; Street, Sally E; Whalen, Andrew; Laland, Kevin N
2016-03-19
In birds and primates, the frequency of behavioural innovation has been shown to covary with absolute and relative brain size, leading to the suggestion that large brains allow animals to innovate, and/or that selection for innovativeness, together with social learning, may have driven brain enlargement. We examined the relationship between primate brain size and both technical (i.e. tool using) and non-technical innovation, deploying a combination of phylogenetically informed regression and exploratory causal graph analyses. Regression analyses revealed that absolute and relative brain size correlated positively with technical innovation, and exhibited consistently weaker, but still positive, relationships with non-technical innovation. These findings mirror similar results in birds. Our exploratory causal graph analyses suggested that technical innovation shares strong direct relationships with brain size, body size, social learning rate and social group size, whereas non-technical innovation did not exhibit a direct relationship with brain size. Nonetheless, non-technical innovation was linked to brain size indirectly via diet and life-history variables. Our findings support 'technical intelligence' hypotheses in linking technical innovation to encephalization in the restricted set of primate lineages where technical innovation has been reported. Our findings also provide support for a broad co-evolving complex of brain, behaviour, life-history, social and dietary variables, providing secondary support for social and ecological intelligence hypotheses. The ability to gain access to difficult-to-extract, but potentially nutrient-rich, resources through tool use may have conferred on some primates adaptive advantages, leading to selection for brain circuitry that underlies technical proficiency. © 2016 The Author(s).
MacLean, Evan L.; Hare, Brian; Nunn, Charles L.; Addessi, Elsa; Amici, Federica; Anderson, Rindy C.; Aureli, Filippo; Baker, Joseph M.; Bania, Amanda E.; Barnard, Allison M.; Boogert, Neeltje J.; Brannon, Elizabeth M.; Bray, Emily E.; Bray, Joel; Brent, Lauren J. N.; Burkart, Judith M.; Call, Josep; Cantlon, Jessica F.; Cheke, Lucy G.; Clayton, Nicola S.; Delgado, Mikel M.; DiVincenti, Louis J.; Fujita, Kazuo; Herrmann, Esther; Hiramatsu, Chihiro; Jacobs, Lucia F.; Jordan, Kerry E.; Laude, Jennifer R.; Leimgruber, Kristin L.; Messer, Emily J. E.; de A. Moura, Antonio C.; Ostojić, Ljerka; Picard, Alejandra; Platt, Michael L.; Plotnik, Joshua M.; Range, Friederike; Reader, Simon M.; Reddy, Rachna B.; Sandel, Aaron A.; Santos, Laurie R.; Schumann, Katrin; Seed, Amanda M.; Sewall, Kendra B.; Shaw, Rachael C.; Slocombe, Katie E.; Su, Yanjie; Takimoto, Ayaka; Tan, Jingzhi; Tao, Ruoting; van Schaik, Carel P.; Virányi, Zsófia; Visalberghi, Elisabetta; Wade, Jordan C.; Watanabe, Arii; Widness, Jane; Young, Julie K.; Zentall, Thomas R.; Zhao, Yini
2014-01-01
Cognition presents evolutionary research with one of its greatest challenges. Cognitive evolution has been explained at the proximate level by shifts in absolute and relative brain volume and at the ultimate level by differences in social and dietary complexity. However, no study has integrated the experimental and phylogenetic approach at the scale required to rigorously test these explanations. Instead, previous research has largely relied on various measures of brain size as proxies for cognitive abilities. We experimentally evaluated these major evolutionary explanations by quantitatively comparing the cognitive performance of 567 individuals representing 36 species on two problem-solving tasks measuring self-control. Phylogenetic analysis revealed that absolute brain volume best predicted performance across species and accounted for considerably more variance than brain volume controlling for body mass. This result corroborates recent advances in evolutionary neurobiology and illustrates the cognitive consequences of cortical reorganization through increases in brain volume. Within primates, dietary breadth but not social group size was a strong predictor of species differences in self-control. Our results implicate robust evolutionary relationships between dietary breadth, absolute brain volume, and self-control. These findings provide a significant first step toward quantifying the primate cognitive phenome and explaining the process of cognitive evolution. PMID:24753565
Coevolution of cultural intelligence, extended life history, sociality, and brain size in primates
Street, Sally E.; Navarrete, Ana F.; Laland, Kevin N.
2017-01-01
Explanations for primate brain expansion and the evolution of human cognition and culture remain contentious despite extensive research. While multiple comparative analyses have investigated variation in brain size across primate species, very few have addressed why primates vary in how much they use social learning. Here, we evaluate the hypothesis that the enhanced reliance on socially transmitted behavior observed in some primates has coevolved with enlarged brains, complex sociality, and extended lifespans. Using recently developed phylogenetic comparative methods we show that, across primate species, a measure of social learning proclivity increases with absolute and relative brain volume, longevity (specifically reproductive lifespan), and social group size, correcting for research effort. We also confirm relationships of absolute and relative brain volume with longevity (both juvenile period and reproductive lifespan) and social group size, although longevity is generally the stronger predictor. Relationships between social learning, brain volume, and longevity remain when controlling for maternal investment and are therefore not simply explained as a by-product of the generally slower life history expected for larger brained species. Our findings suggest that both brain expansion and high reliance on culturally transmitted behavior coevolved with sociality and extended lifespan in primates. This coevolution is consistent with the hypothesis that the evolution of large brains, sociality, and long lifespans has promoted reliance on culture, with reliance on culture in turn driving further increases in brain volume, cognitive abilities, and lifespans in some primate lineages. PMID:28739950
Brain size and encephalization in early to Mid-Pleistocene Homo.
Rightmire, G Philip
2004-06-01
Important changes in the brain have occurred during the course of human evolution. Both absolute and relative size increases can be documented for species of Homo, culminating in the appearance of modern humans. One species that is particularly well-represented by fossil crania is Homo erectus. The mean capacity for 30 individuals is 973 cm(3). Within this group there is substantial variation, but brain size increases slightly in specimens from later time periods. Other Middle Pleistocene crania differ from those of Homo erectus. Characters of the facial skeleton, vault, and cranial base suggest that fossils from sites such as Arago Cave in France, the Sima de los Huesos in Spain, Bodo in Ethiopia, Broken Hill in Zambia, and perhaps Dali in China belong to the taxon Homo heidelbergensis. Ten of these mid-Quaternary hominins have brains averaging 1,206 cm(3) in volume, and many fall beyond the limits of size predicted for Homo erectus of equivalent age. When orbit height is used to construct an index of relative brain size, it is apparent that the (significant) increase in volume documented for the Middle Pleistocene individuals is not simply a consequence of larger body mass. Encephalization quotient values confirm this finding. These changes in absolute and relative brain size can be taken as further corroborative evidence for a speciation event, in which Homo erectus produced a daughter lineage. It is probable that Homo heidelbergensis originated in Africa or western Eurasia and then ranged widely across the Old World. Archaeological traces indicate that these populations differed in their technology and behavior from earlier hominins. Copyright 2003 Wiley-Liss, Inc.
Fatouh, Ahmed M; Elshafeey, Ahmed H; Abdelbary, Ahmed
2017-01-01
Purpose Agomelatine is a novel antidepressant drug suffering from an extensive first-pass metabolism leading to a diminished absolute bioavailability. The aim of the study is: first to enhance its absolute bioavailability, and second to increase its brain delivery. Methods To achieve these aims, the nasal route was adopted to exploit first its avoidance of the hepatic first-pass metabolism to increase the absolute bioavailability, and second the direct nose-to-brain pathway to enhance the brain drug delivery. Solid lipid nanoparticles were selected as a drug delivery system to enhance agomelatine permeability across the blood–brain barrier and therefore its brain delivery. Results The optimum solid lipid nanoparticles have a particle size of 167.70 nm ±0.42, zeta potential of −17.90 mV ±2.70, polydispersity index of 0.12±0.10, entrapment efficiency % of 91.25%±1.70%, the percentage released after 1 h of 35.40%±1.13% and the percentage released after 8 h of 80.87%±5.16%. The pharmacokinetic study of the optimized solid lipid nanoparticles revealed a significant increase in each of the plasma peak concentration, the AUC(0–360 min) and the absolute bioavailability compared to that of the oral suspension of Valdoxan® with the values of 759.00 ng/mL, 7,805.69 ng⋅min/mL and 44.44%, respectively. The optimized solid lipid nanoparticles gave a drug-targeting efficiency of 190.02, which revealed more successful brain targeting by the intranasal route compared with the intravenous route. The optimized solid lipid nanoparticles had a direct transport percentage of 47.37, which indicates a significant contribution of the direct nose-to-brain pathway in the brain drug delivery. Conclusion The intranasal administration of agomelatine solid lipid nanoparticles has effectively enhanced both the absolute bioavailability and the brain delivery of agomelatine. PMID:28684900
Neuronal factors determining high intelligence.
Dicke, Ursula; Roth, Gerhard
2016-01-05
Many attempts have been made to correlate degrees of both animal and human intelligence with brain properties. With respect to mammals, a much-discussed trait concerns absolute and relative brain size, either uncorrected or corrected for body size. However, the correlation of both with degrees of intelligence yields large inconsistencies, because although they are regarded as the most intelligent mammals, monkeys and apes, including humans, have neither the absolutely nor the relatively largest brains. The best fit between brain traits and degrees of intelligence among mammals is reached by a combination of the number of cortical neurons, neuron packing density, interneuronal distance and axonal conduction velocity--factors that determine general information processing capacity (IPC), as reflected by general intelligence. The highest IPC is found in humans, followed by the great apes, Old World and New World monkeys. The IPC of cetaceans and elephants is much lower because of a thin cortex, low neuron packing density and low axonal conduction velocity. By contrast, corvid and psittacid birds have very small and densely packed pallial neurons and relatively many neurons, which, despite very small brain volumes, might explain their high intelligence. The evolution of a syntactical and grammatical language in humans most probably has served as an additional intelligence amplifier, which may have happened in songbirds and psittacids in a convergent manner. © 2015 The Author(s).
Bretillon, L; Lütjohann, D; Ståhle, L; Widhe, T; Bindl, L; Eggertsen, G; Diczfalusy, U; Björkhem, I
2000-05-01
We have previously presented evidence that most of the 24S-hydroxycholesterol present in the circulation originates from the brain and that most of the elimination of this oxysterol occurs in the liver. Plasma 24S-hydroxycholesterol levels decline by a factor of about 5 during the first decades of life. The concentration of the enzyme cholesterol 24S-hydroxylase in the brain is, however, about constant from the first year of life, and reduced enzyme levels thus cannot explain the decreasing plasma levels during infancy. In the present work we tested the hypothesis that the plasma levels of 24S-hydroxycholesterol may reflect the size of the brain relative to the capacity of the liver to eliminate the substance. It is shown here that the age-dependent changes in absolute as well as cholesterol-related plasma level of 24S-hydroxycholesterol closely follow the changes in the ratio between estimated brain weight and estimated liver volume. The size of the brain is increased only about 50% whereas the size of the liver is increased by about 6-fold after the age of 1 year. Liver volume is known to be highly correlated to body surface, and in accordance with this the absolute as well as the cholesterol-related plasma level of 24S-hydroxycholesterol was found to be highly inversely correlated to body surface in 77 healthy subjects of varying ages (r(2) = 0.74). Two chondrodystrophic dwarves with normal size of the brain but with markedly reduced body area had increased levels of 24S-hydroxycholesterol when related to age but normal levels when related to body surface. It is concluded that the balance between cerebral production and hepatic metabolism is a critical determinant for plasma levels of 24S-hydroxycholesterol at different ages and that endocrinological factors are less important. The results are discussed in relation to the possibility to use 24S-hydroxycholesterol in the circulation as a marker for cholesterol homeostasis in the brain.
Brain architecture and social complexity in modern and ancient birds.
Burish, Mark J; Kueh, Hao Yuan; Wang, Samuel S-H
2004-01-01
Vertebrate brains vary tremendously in size, but differences in form are more subtle. To bring out functional contrasts that are independent of absolute size, we have normalized brain component sizes to whole brain volume. The set of such volume fractions is the cerebrotype of a species. Using this approach in mammals we previously identified specific associations between cerebrotype and behavioral specializations. Among primates, cerebrotypes are linked principally to enlargement of the cerebral cortex and are associated with increases in the complexity of social structure. Here we extend this analysis to include a second major vertebrate group, the birds. In birds the telencephalic volume fraction is strongly correlated with social complexity. This correlation accounts for almost half of the observed variation in telencephalic size, more than any other behavioral specialization examined, including the ability to learn song. A prominent exception to this pattern is owls, which are not social but still have very large forebrains. Interpolating the overall correlation for Archaeopteryx, an ancient bird, suggests that its social complexity was likely to have been on a par with modern domesticated chickens. Telencephalic volume fraction outperforms residuals-based measures of brain size at separating birds by social structure. Telencephalic volume fraction may be an anatomical substrate for social complexity, and perhaps cognitive ability, that can be generalized across a range of vertebrate brains, including dinosaurs. Copyright 2004 S. Karger AG, Basel
Chojnacka, Dominika; Isler, Karin; Barski, Jaroslaw Jerzy; Bshary, Redouan
2015-01-01
It is currently widely accepted that the complexity of a species’ social life is a major determinant of its brain complexity, as predicted by the social brain hypothesis. However, it remains a challenge to explain what social complexity exactly is and what the best corresponding measures of brain anatomy are. Absolute and relative size of the brain and of the neocortex have often been used as a proxy to predict cognitive performance. Here, we apply the logic of the social brain hypothesis to marine cleaning mutualism involving the genus Labroides. These wrasses remove ectoparasites from ‘client’ reef fish. Conflict occurs as wrasse prefer client mucus over ectoparasites, where mucus feeding constitutes cheating. As a result of this conflict, cleaner wrasse show remarkable Machiavellian-like behaviour. Using own data as well as available data from the literature, we investigated whether the general brain anatomy of Labroides provides any indication that their Machiavellian behaviour is associated with a more complex brain. Neither data set provided evidence for an increased encephalisation index compared to other wrasse species. Published data on relative sizes of brain parts in 25 species of the order Perciformes suggests that only the diencephalon is relatively enlarged in Labroides dimidiatus. This part contains various nuclei of the social decision making network. In conclusion, gross brain anatomy yields little evidence for the hypothesis that strategic behaviour in cleaning selects for larger brains, while future research should focus on more detailed aspects like the sizes of specific nuclei as well as their cryoarchitectonic structure and connectivity. PMID:26263490
Chojnacka, Dominika; Isler, Karin; Barski, Jaroslaw Jerzy; Bshary, Redouan
2015-01-01
It is currently widely accepted that the complexity of a species' social life is a major determinant of its brain complexity, as predicted by the social brain hypothesis. However, it remains a challenge to explain what social complexity exactly is and what the best corresponding measures of brain anatomy are. Absolute and relative size of the brain and of the neocortex have often been used as a proxy to predict cognitive performance. Here, we apply the logic of the social brain hypothesis to marine cleaning mutualism involving the genus Labroides. These wrasses remove ectoparasites from 'client' reef fish. Conflict occurs as wrasse prefer client mucus over ectoparasites, where mucus feeding constitutes cheating. As a result of this conflict, cleaner wrasse show remarkable Machiavellian-like behaviour. Using own data as well as available data from the literature, we investigated whether the general brain anatomy of Labroides provides any indication that their Machiavellian behaviour is associated with a more complex brain. Neither data set provided evidence for an increased encephalisation index compared to other wrasse species. Published data on relative sizes of brain parts in 25 species of the order Perciformes suggests that only the diencephalon is relatively enlarged in Labroides dimidiatus. This part contains various nuclei of the social decision making network. In conclusion, gross brain anatomy yields little evidence for the hypothesis that strategic behaviour in cleaning selects for larger brains, while future research should focus on more detailed aspects like the sizes of specific nuclei as well as their cryoarchitectonic structure and connectivity.
de Sousa, Alexandra A.; Proulx, Michael J.
2014-01-01
An overall relationship between brain size and cognitive ability exists across primates. Can more specific information about neural function be gleaned from cortical area volumes? Numerous studies have found significant relationships between brain structures and behaviors. However, few studies have speculated about brain structure-function relationships from the microanatomical to the macroanatomical level. Here we address this problem in comparative neuroanatomy, where the functional relevance of overall brain size and the sizes of cortical regions have been poorly understood, by considering comparative psychology, with measures of visual acuity and the perception of visual illusions. We outline a model where the macroscopic size (volume or surface area) of a cortical region (such as the primary visual cortex, V1) is related to the microstructure of discrete brain regions. The hypothesis developed here is that an absolutely larger V1 can process more information with greater fidelity due to having more neurons to represent a field of space. This is the first time that the necessary comparative neuroanatomical research at the microstructural level has been brought to bear on the issue. The evidence suggests that as the size of V1 increases: the number of neurons increases, the neuron density decreases, and the density of neuronal connections increases. Thus, we describe how information about gross neuromorphology, using V1 as a model for the study of other cortical areas, may permit interpretations of cortical function. PMID:25009469
Multivariate Meta-Analysis of Brain-Mass Correlations in Eutherian Mammals
Steinhausen, Charlene; Zehl, Lyuba; Haas-Rioth, Michaela; Morcinek, Kerstin; Walkowiak, Wolfgang; Huggenberger, Stefan
2016-01-01
The general assumption that brain size differences are an adequate proxy for subtler differences in brain organization turned neurobiologists toward the question why some groups of mammals such as primates, elephants, and whales have such remarkably large brains. In this meta-analysis, an extensive sample of eutherian mammals (115 species distributed in 14 orders) provided data about several different biological traits and measures of brain size such as absolute brain mass (AB), relative brain mass (RB; quotient from AB and body mass), and encephalization quotient (EQ). These data were analyzed by established multivariate statistics without taking specific phylogenetic information into account. Species with high AB tend to (1) feed on protein-rich nutrition, (2) have a long lifespan, (3) delayed sexual maturity, and (4) long and rare pregnancies with small litter sizes. Animals with high RB usually have (1) a short life span, (2) reach sexual maturity early, and (3) have short and frequent gestations. Moreover, males of species with high RB also have few potential sexual partners. In contrast, animals with high EQs have (1) a high number of potential sexual partners, (2) delayed sexual maturity, and (3) rare gestations with small litter sizes. Based on these correlations, we conclude that Eutheria with either high AB or high EQ occupy positions at the top of the network of food chains (high trophic levels). Eutheria of low trophic levels can develop a high RB only if they have small body masses. PMID:27746724
Birds have primate-like numbers of neurons in the forebrain
Olkowicz, Seweryn; Kocourek, Martin; Lučan, Radek K.; Porteš, Michal; Fitch, W. Tecumseh; Herculano-Houzel, Suzana; Němec, Pavel
2016-01-01
Some birds achieve primate-like levels of cognition, even though their brains tend to be much smaller in absolute size. This poses a fundamental problem in comparative and computational neuroscience, because small brains are expected to have a lower information-processing capacity. Using the isotropic fractionator to determine numbers of neurons in specific brain regions, here we show that the brains of parrots and songbirds contain on average twice as many neurons as primate brains of the same mass, indicating that avian brains have higher neuron packing densities than mammalian brains. Additionally, corvids and parrots have much higher proportions of brain neurons located in the pallial telencephalon compared with primates or other mammals and birds. Thus, large-brained parrots and corvids have forebrain neuron counts equal to or greater than primates with much larger brains. We suggest that the large numbers of neurons concentrated in high densities in the telencephalon substantially contribute to the neural basis of avian intelligence. PMID:27298365
Eggers, R; Haug, H; Fischer, D
1984-01-01
The studies here reported were performed on the prosencephalons of 12 human brains between 37 and 86 years of age having no signs of neuropathological alteration. The evaluation was carried out on serial frontal sections with a mean thickness of 5 mm with stereological point counting procedures for volume and surface area. The results were mainly given in relative values since the range of variation is very high and the sample small. The aging process was evaluated with the aid of a linear regression function. The stereological investigation regarding the absolute values of volume and surface area (border face) of the macroscopical brain parts show a high interindividual variability. However, the relative volume of brain parts shows only small variations. Changes during aging could consequently only be revealed with the help of the relative values. The relative volumes and surface areas of the frontal lobe and the prosencephalic ganglia decrease with aging, while the parieto-occipital lobe and the striate cortex increase. However, if we refer these relative increases to the absolute decrease of brain volume, corresponding changes cannot be found in the parieto-occipital lobe until old age. The shrinkage of the frontal lobe, of the centrum semiovale and of the prosencephalic ganglia exceeds 10%. In the grays it is probably accompanied by a loss of neurons. The relative sizes of the surface area do not change significantly during aging with exception of the frontal cortex. The thickness of the cortex remains probably constant. The size of lateral ventricles increases with aging.
Endocranial Morphology of the Extinct North American Lion (Panthera atrox).
Cuff, Andrew R; Stockey, Christopher; Goswami, Anjali
2016-01-01
The extinct North American lion (Panthera atrox) is one of the largest felids (Mammalia, Carnivora) to have ever lived, and it is known from a plethora of incredibly well-preserved remains. Despite this abundance of material, there has been little research into its endocranial anatomy. CT scans of a skull of P. atrox from the Pleistocene La Brea Tar pits were used to generate the first virtual endocranium for this species and to elucidate previously unknown details of its brain size and gross structure, cranial nerves, and inner-ear morphology. Results show that its gross brain anatomy is broadly similar to that of other pantherines, although P. atrox displays less cephalic flexure than either extant lions or tigers, instead showing a brain shape that is reminiscent of earlier felids. Despite this unusual reduction in flexure, the estimated absolute brain size for this specimen is one of the largest reported for any felid, living or extinct. Its encephalization quotient (brain size as a fraction of the expected brain mass for a given body mass) is also larger than that of extant lions but similar to that of the other pantherines. The advent of CT scans has allowed nondestructive sampling of anatomy that cannot otherwise be studied in these extinct lions, leading to a more accurate reconstruction of endocranial morphology and its evolution. © 2017 S. Karger AG, Basel.
Schwartz, Gary T; Mahoney, Patrick; Godfrey, Laurie R; Cuozzo, Frank P; Jungers, William L; Randria, Gisèle F N
2005-12-01
Teeth grow incrementally and preserve within them a record of that incremental growth in the form of microscopic growth lines. Studying dental development in extinct and extant primates, and its relationship to adult brain and body size as well as other life history and ecological parameters (e.g., diet, somatic growth rates, gestation length, age at weaning), holds the potential to yield unparalleled insights into the life history profiles of fossil primates. Here, we address the absolute pace of dental development in Megaladapis edwardsi, a giant extinct lemur of Madagascar. By examining the microstructure of the first and developing second molars in a juvenile individual, we establish a chronology of molar crown development for this specimen (M1 CFT = 1.04 years; M2 CFT = 1.42 years) and determine its age at death (1.39 years). Microstructural data on prenatal M1 crown formation time allow us to calculate a minimum gestation length of 0.54 years for this species. Postnatal crown and root formation data allow us to estimate its age at M1 emergence (approximately 0.9 years) and to establish a minimum age for M2 emergence (>1.39 years). Finally, using reconstructions or estimates (drawn elsewhere) of adult body mass, brain size, and diet in Megaladapis, as well as the eruption sequence of its permanent teeth, we explore the efficacy of these variables in predicting the absolute pace of dental development in this fossil species. We test competing explanations of variation in crown formation timing across the order Primates. Brain size is the best single predictor of crown formation time in primates, but other variables help to explain the variation.
Ridgway, Sam H; Carlin, Kevin P; Van Alstyne, Kaitlin R; Hanson, Alicia C; Tarpley, Raymond J
2016-01-01
We compared mature dolphins with 4 other groupings of mature cetaceans. With a large data set, we found great brain diversity among 5 different taxonomic groupings. The dolphins in our data set ranged in body mass from about 40 to 6,750 kg and in brain mass from 0.4 to 9.3 kg. Dolphin body length ranged from 1.3 to 7.6 m. In our combined data set from the 4 other groups of cetaceans, body mass ranged from about 20 to 120,000 kg and brain mass from about 0.2 to 9.2 kg, while body length varied from 1.21 to 26.8 m. Not all cetaceans have large brains relative to their body size. A few dolphins near human body size have human-sized brains. On the other hand, the absolute brain mass of some other cetaceans is only one-sixth as large. We found that brain volume relative to body mass decreases from Delphinidae to a group of Phocoenidae and Monodontidae, to a group of other odontocetes, to Balaenopteroidea, and finally to Balaenidae. We also found the same general trend when we compared brain volume relative to body length, except that the Delphinidae and Phocoenidae-Monodontidae groups do not differ significantly. The Balaenidae have the smallest relative brain mass and the lowest cerebral cortex surface area. Brain parts also vary. Relative to body mass and to body length, dolphins also have the largest cerebellums. Cortex surface area is isometric with brain size when we exclude the Balaenidae. Our data show that the brains of Balaenidae are less convoluted than those of the other cetaceans measured. Large vascular networks inside the cranial vault may help to maintain brain temperature, and these nonbrain tissues increase in volume with body mass and with body length ranging from 8 to 65% of the endocranial volume. Because endocranial vascular networks and other adnexa, such as the tentorium cerebelli, vary so much in different species, brain size measures from endocasts of some extinct cetaceans may be overestimates. Our regression of body length on endocranial adnexa might be used for better estimates of brain volume from endocasts or from endocranial volume of living species or extinct cetaceans. © 2017 The Author(s) Published by S. Karger AG, Basel.
Ridgway, Sam H.; Carlin, Kevin P.; Van Alstyne, Kaitlin R.; Hanson, Alicia C.; Tarpley, Raymond J.
2017-01-01
We compared mature dolphins with 4 other groupings of mature cetaceans. With a large data set, we found great brain diversity among 5 different taxonomic groupings. The dolphins in our data set ranged in body mass from about 40 to 6,750 kg and in brain mass from 0.4 to 9.3 kg. Dolphin body length ranged from 1.3 to 7.6 m. In our combined data set from the 4 other groups of cetaceans, body mass ranged from about 20 to 120,000 kg and brain mass from about 0.2 to 9.2 kg, while body length varied from 1.21 to 26.8 m. Not all cetaceans have large brains relative to their body size. A few dolphins near human body size have human-sized brains. On the other hand, the absolute brain mass of some other cetaceans is only one-sixth as large. We found that brain volume relative to body mass decreases from Delphinidae to a group of Phocoenidae and Monodontidae, to a group of other odontocetes, to Balaenopteroidea, and finally to Balaenidae. We also found the same general trend when we compared brain volume relative to body length, except that the Delphinidae and Phocoenidae-Monodontidae groups do not differ significantly. The Balaenidae have the smallest relative brain mass and the lowest cerebral cortex surface area. Brain parts also vary. Relative to body mass and to body length, dolphins also have the largest cerebellums. Cortex surface area is isometric with brain size when we exclude the Balaenidae. Our data show that the brains of Balaenidae are less convoluted than those of the other cetaceans measured. Large vascular networks inside the cranial vault may help to maintain brain temperature, and these nonbrain tissues increase in volume with body mass and with body length ranging from 8 to 65% of the endocranial volume. Because endocranial vascular networks and other adnexa, such as the tentorium cerebelli, vary so much in different species, brain size measures from endocasts of some extinct cetaceans may be overestimates. Our regression of body length on endocranial adnexa might be used for better estimates of brain volume from endocasts or from endocranial volume of living species or extinct cetaceans. PMID:28122370
Kuo, Yung-Chih; Wang, Cheng-Ting
2014-07-01
A liposomal system with surface lactoferrin (Lf) was developed for delivering neuron growth factor (NGF) across the blood-brain barrier (BBB) and improving the viability of neuron-like SK-N-MC cells with deposited β-amyloid peptide (Aβ). The Lf-grafted liposomes carrying NGF (Lf/NGF-liposomes) were applied to a monolayer of human brain-microvascular endothelial cells (HBMECs) regulated by human astrocytes (HAs) and to fibrillar Aβ1-42-insulted SK-N-MC cells. An increase in cholesterol mole percentage enhanced the particle size, absolute value of zeta potential, and physical stability, however, reduced the entrapment efficiency and release rate of NGF. In addition, an increase in Lf concentration increased the particle size, surface nitrogen percentage, NGF permeability across the BBB, and viability of HBMECs, HAs, and SK-N-MC cells, however, decreased the absolute value of zeta potential, surface phosphorus percentage, and loading efficiency of Lf. After treating with Lf/NGF-liposomes, a higher Aβ concentration yielded a lower survival of SK-N-MC cells. The current Lf/NGF-liposomes are efficacious drug carriers to target the BBB and inhibit the Aβ-induced neurotoxicity as potential pharmacotherapy for Alzheimer's disease. Copyright © 2014 Elsevier Ltd. All rights reserved.
[The impact of malnutrition on brain development, intelligence and school work performance].
Leiva Plaza, B; Inzunza Brito, N; Pérez Torrejón, H; Castro Gloor, V; Jansana Medina, J M; Toro Díaz, T; Almagiá Flores, A; Navarro Díaz, A; Urrutia Cáceres, M S; Cervilla Oltremari, J; Ivanovic Marincovich, D
2001-03-01
The findings from several authors confirm that undernutrition at an early age affects brain growth and intellectual quotient. Most part of students with the lowest scholastic achievement scores present suboptimal head circumference (anthropometric indicator of past nutrition and brain development) and brain size. On the other hand, intellectual quotient measured through intelligence tests (Weschler-R, or the Raven Progressives Matrices Test) has been described positively and significantly correlated with brain size measured by magnetic resonance imaging (MRI); in this respect, intellectual ability has been recognized as one of the best predictors of scholastic achievement. Considering that education is the change lever for the improvement of the quality of life and that the absolute numbers of undernourished children have been increasing in the world, is of major relevance to analyse the long-term effects of undernutrition at an early age. The investigations related to the interrelationships between nutritional status, brain development, intelligence and scholastic achievement are of greatest importance, since nutritional problems affect the lowest socioeconomic stratum with negative consequences manifested in school-age, in higher levels of school dropout, learning problems and a low percentage of students enrolling into higher education. This limits the development of people by which a clear economic benefit to increase adult productivity for government policies might be successful preventing childhood malnutrition.
From chemotaxis to the cognitive map: The function of olfaction
Jacobs, Lucia F.
2012-01-01
A paradox of vertebrate brain evolution is the unexplained variability in the size of the olfactory bulb (OB), in contrast to other brain regions, which scale predictably with brain size. Such variability appears to be the result of selection for olfactory function, yet there is no obvious concordance that would predict the causal relationship between OB size and behavior. This discordance may derive from assuming the primary function of olfaction is odorant discrimination and acuity. If instead the primary function of olfaction is navigation, i.e., predicting odorant distributions in time and space, variability in absolute OB size could be ascribed and explained by variability in navigational demand. This olfactory spatial hypothesis offers a single functional explanation to account for patterns of olfactory system scaling in vertebrates, the primacy of olfaction in spatial navigation, even in visual specialists, and proposes an evolutionary scenario to account for the convergence in olfactory structure and function across protostomes and deuterostomes. In addition, the unique percepts of olfaction may organize odorant information in a parallel map structure. This could have served as a scaffold for the evolution of the parallel map structure of the mammalian hippocampus, and possibly the arthropod mushroom body, and offers an explanation for similar flexible spatial navigation strategies in arthropods and vertebrates. PMID:22723365
Mosaic and Concerted Evolution in the Visual System of Birds
Gutiérrez-Ibáñez, Cristián; Iwaniuk, Andrew N.; Moore, Bret A.; Fernández-Juricic, Esteban; Corfield, Jeremy R.; Krilow, Justin M.; Kolominsky, Jeffrey; Wylie, Douglas R.
2014-01-01
Two main models have been proposed to explain how the relative size of neural structures varies through evolution. In the mosaic evolution model, individual brain structures vary in size independently of each other, whereas in the concerted evolution model developmental constraints result in different parts of the brain varying in size in a coordinated manner. Several studies have shown variation of the relative size of individual nuclei in the vertebrate brain, but it is currently not known if nuclei belonging to the same functional pathway vary independently of each other or in a concerted manner. The visual system of birds offers an ideal opportunity to specifically test which of the two models apply to an entire sensory pathway. Here, we examine the relative size of 9 different visual nuclei across 98 species of birds. This includes data on interspecific variation in the cytoarchitecture and relative size of the isthmal nuclei, which has not been previously reported. We also use a combination of statistical analyses, phylogenetically corrected principal component analysis and evolutionary rates of change on the absolute and relative size of the nine nuclei, to test if visual nuclei evolved in a concerted or mosaic manner. Our results strongly indicate a combination of mosaic and concerted evolution (in the relative size of nine nuclei) within the avian visual system. Specifically, the relative size of the isthmal nuclei and parts of the tectofugal pathway covary across species in a concerted fashion, whereas the relative volume of the other visual nuclei measured vary independently of one another, such as that predicted by the mosaic model. Our results suggest the covariation of different neural structures depends not only on the functional connectivity of each nucleus, but also on the diversity of afferents and efferents of each nucleus. PMID:24621573
Dadwal, Parvati; Mahmud, Neemat; Sinai, Laleh; Azimi, Ashkan; Fatt, Michael; Wondisford, Fredric E; Miller, Freda D; Morshead, Cindi M
2015-08-11
The development of cell replacement strategies to repair the injured brain has gained considerable attention, with a particular interest in mobilizing endogenous neural stem and progenitor cells (known as neural precursor cells [NPCs]) to promote brain repair. Recent work demonstrated metformin, a drug used to manage type II diabetes, promotes neurogenesis. We sought to determine its role in neural repair following brain injury. We find that metformin administration activates endogenous NPCs, expanding the size of the NPC pool and promoting NPC migration and differentiation in the injured neonatal brain in a hypoxia-ischemia (H/I) injury model. Importantly, metformin treatment following H/I restores sensory-motor function. Lineage tracking reveals that metformin treatment following H/I causes an increase in the absolute number of subependyma-derived NPCs relative to untreated H/I controls in areas associated with sensory-motor function. Hence, activation of endogenous NPCs is a promising target for therapeutic intervention in childhood brain injury models. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Parikh, Rajesh H; Patel, Ravish J
2016-01-01
Amyotrophic Lateral Sclerosis (ALS), a motor neuron disease (MND), is a progressive neurodegenerative disorder characterized by the deterioration of both upper and lower motor neurons. Only one drug (riluzole) has been approved for the treatment of ALS. Riluzole is a BCS class II drug having 60% absolute bioavailability. It is a substrate of P-glycoprotein and BBB restricts its entry in brain. This investigation was aimed to develop O/W nanoemulsion system of riluzole to improve its brain bioavailability. Riluzole loaded nanoemulsion was prepared by phase titration method. It was consisting of 3% w/w Sefsol 218, 28.3% w/w Tween 80:Carbitol (1:1) and 68.7% w/w water. It was characterized for drop size, drop size distribution, transmittance, viscosity, pH, zeta potential, conductivity and nasal ciliotoxicity study. Thermodynamic stability and room temperature stability of prepared nanoemulsion formulation were evaluated. Pharmacokinetic and brain uptake study was carried out using albino rats (wistar) post intranasal and oral administration. Riluzole loaded nanoemulsion was having a drop size of 23.92±0.52 nm. It was free from nasal ciliotoxicity and stable for three months. Brain uptake of riluzole post intranasal administration of riluzole loaded nanoemulsion was significantly (P <4.10 × 10-6) higher when it was compared with oral administration of riluzole loaded nanoemulsion. This study indicates that nanoemulsion of riluzole for intranasal administration could be a promising approach for the treatment of ALS to minimize the dose of riluzole in order to avoid dose related adverse events.
Brain volumetric changes and cognitive ageing during the eighth decade of life
Dickie, David Alexander; Cox, Simon R.; Valdes Hernandez, Maria del C.; Corley, Janie; Royle, Natalie A.; Pattie, Alison; Aribisala, Benjamin S.; Redmond, Paul; Muñoz Maniega, Susana; Taylor, Adele M.; Sibbett, Ruth; Gow, Alan J.; Starr, John M.; Bastin, Mark E.; Wardlaw, Joanna M.; Deary, Ian J.
2015-01-01
Abstract Later‐life changes in brain tissue volumes—decreases in the volume of healthy grey and white matter and increases in the volume of white matter hyperintensities (WMH)—are strong candidates to explain some of the variation in ageing‐related cognitive decline. We assessed fluid intelligence, memory, processing speed, and brain volumes (from structural MRI) at mean age 73 years, and at mean age 76 in a narrow‐age sample of older individuals (n = 657 with brain volumetric data at the initial wave, n = 465 at follow‐up). We used latent variable modeling to extract error‐free cognitive levels and slopes. Initial levels of cognitive ability were predictive of subsequent brain tissue volume changes. Initial brain volumes were not predictive of subsequent cognitive changes. Brain volume changes, especially increases in WMH, were associated with declines in each of the cognitive abilities. All statistically significant results were modest in size (absolute r‐values ranged from 0.114 to 0.334). These results build a comprehensive picture of macrostructural brain volume changes and declines in important cognitive faculties during the eighth decade of life. Hum Brain Mapp 36:4910–4925, 2015. © 2015 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc PMID:26769551
Resting-State Oscillatory Activity in Children Born Small for Gestational Age: An MEG Study
Boersma, Maria; de Bie, Henrica M. A.; Oostrom, Kim J.; van Dijk, Bob W.; Hillebrand, Arjan; van Wijk, Bernadette C. M.; Delemarre-van de Waal, Henriëtte A.; Stam, Cornelis J.
2013-01-01
Growth restriction in utero during a period that is critical for normal growth of the brain, has previously been associated with deviations in cognitive abilities and brain anatomical and functional changes. We measured magnetoencephalography (MEG) in 4- to 7-year-old children to test if children born small for gestational age (SGA) show deviations in resting-state brain oscillatory activity. Children born SGA with postnatally spontaneous catch-up growth [SGA+; six boys, seven girls; mean age 6.3 year (SD = 0.9)] and children born appropriate for gestational age [AGA; seven boys, three girls; mean age 6.0 year (SD = 1.2)] participated in a resting-state MEG study. We calculated absolute and relative power spectra and used non-parametric statistics to test for group differences. SGA+ and AGA born children showed no significant differences in absolute and relative power except for reduced absolute gamma band power in SGA children. At the time of MEG investigation, SGA+ children showed significantly lower head circumference (HC) and a trend toward lower IQ, however there was no association of HC or IQ with absolute or relative power. Except for reduced absolute gamma band power, our findings suggest normal brain activity patterns at school age in a group of children born SGA in which spontaneous catch-up growth of bodily length after birth occurred. Although previous findings suggest that being born SGA alters brain oscillatory activity early in neonatal life, we show that these neonatal alterations do not persist at early school age when spontaneous postnatal catch-up growth occurs after birth. PMID:24068993
NASA Astrophysics Data System (ADS)
Hallacoglu, Bertan; Sassaroli, Angelo M.; Rosenberg, Irwin H.; Troen, Aron; Fantini, Sergio
2011-02-01
Structural abnormalities in brain microvasculature are commonly associated with Alzheimer's Disease and other dementias. However, the extent to which structural microvascular abnormalities cause functional impairments in brain circulation and thereby to cognitive impairment is unclear. Non-invasive, near-infrared spectroscopy (NIRS) methods can be used to determine the absolute hemoglobin concentration and saturation in brain tissue, from which additional parameters such as cerebral blood volume (a theoretical correlate of brain microvascular density) can be derived. Validating such NIRS parameters in animal models, and understanding their relationship to cognitive function is an important step in the ultimate application of these methods to humans. To this end we applied a non-invasive multidistance NIRS method to determine the absolute concentration and saturation of cerebral hemoglobin in rat, by separately measuring absorption and reduced scattering coefficients without relying on pre- or post-correction factors. We applied this method to study brain circulation in folate deficient rats, which express brain microvascular pathology1 and which we have shown to develop cognitive impairment.2 We found absolute brain hemoglobin concentration ([HbT]) and oxygen saturation (StO2) to be significantly lower in folate deficient rats (n=6) with respect to control rats (n=5) (for [HbT]: 73+/-10 μM vs. 95+/-14 μM for StO2: 55%+/-7% vs. 66% +/-4%), implicating microvascular pathology and diminished oxygen delivery as a mechanism of cognitive impairment. More generally, our study highlights how noninvasive, absolute NIRS measurements can provide unique insight into the pathophysiology of Vascular Cognitive Impairment. Applying this method to this and other rat models of cognitive impairment will help to validate physiologically meaningful NIRS parameters for the ultimate goal of studying cerebral microvascular disease and cognitive decline in humans.
Hagiwara, Akifumi; Warntjes, Marcel; Hori, Masaaki; Andica, Christina; Nakazawa, Misaki; Kumamaru, Kanako Kunishima; Abe, Osamu; Aoki, Shigeki
2017-01-01
Abstract Conventional magnetic resonance images are usually evaluated using the image signal contrast between tissues and not based on their absolute signal intensities. Quantification of tissue parameters, such as relaxation rates and proton density, would provide an absolute scale; however, these methods have mainly been performed in a research setting. The development of rapid quantification, with scan times in the order of 6 minutes for full head coverage, has provided the prerequisites for clinical use. The aim of this review article was to introduce a specific quantification method and synthesis of contrast-weighted images based on the acquired absolute values, and to present automatic segmentation of brain tissues and measurement of myelin based on the quantitative values, along with application of these techniques to various brain diseases. The entire technique is referred to as “SyMRI” in this review. SyMRI has shown promising results in previous studies when used for multiple sclerosis, brain metastases, Sturge-Weber syndrome, idiopathic normal pressure hydrocephalus, meningitis, and postmortem imaging. PMID:28257339
Gittins, Rebecca; Harrison, Paul J
2004-03-15
There are an increasing number of quantitative morphometric studies of the human cerebral cortex, especially as part of comparative investigations of major psychiatric disorders. In this context, the present study had two aims. First, to provide quantitative data regarding key neuronal morphometric parameters in the anterior cingulate cortex. Second, to compare the results of conventional Nissl staining with those observed after immunostaining with NeuN, an antibody becoming widely used as a selective neuronal marker. We stained adjacent sections of area 24b from 16 adult brains with cresyl violet or NeuN. We measured the density of pyramidal and non-pyramidal neurons, and the size and shape of pyramidal neurons, in laminae II, III, Va, Vb and VI, using two-dimensional counting methods. Strong correlations between the two modes of staining were seen for all variables. However, NeuN gave slightly higher estimates of neuronal density and size, and a more circular perikaryal shape. Brain pH was correlated with neuronal size, measured with both methods, and with neuronal shape. Age and post-mortem interval showed no correlations with any parameter. These data confirm the value of NeuN as a tool for quantitative neuronal morphometric studies in routinely processed human brain tissue. Absolute values are highly correlated between NeuN and cresyl violet stains, but cannot be interchanged. NeuN may be particularly useful when it is important to distinguish small neurons from glia, such as in cytoarchitectural studies of the cerebral cortex in depression and schizophrenia.
Søgaard, Kirstine Kobberøe; Farkas, Dóra Körmendiné; Sørensen, Henrik Toft
2017-12-29
There is an ongoing debate on the possible association between infections in early childhood and subsequent cancer risk, but it remains unclear if a hospital admission for infection is associated with risk of childhood cancer diagnosis. We examined if a hospital-based diagnosis of pneumonia was a clinical marker of the three most common childhood cancers. Population-based cohort study. Denmark, hospital diagnoses, 1994-2013. Using national health registries, we compared the observed incidence of leukaemia, lymphoma and brain cancer among 83 935 children with a hospital-based pneumonia diagnosis with that expected among children in the general population. We calculated absolute cancer risks and standardised incidence ratios (SIRs) as a measure of relative risk. The cancer SIRs were substantially increased during the first 6 months of follow-up; lymphoid leukaemia: 6.2 (95% CI 3.5 to 10.3); myeloid leukaemia: 14.8 (95% CI 6.0 to 30.6); Hodgkin's lymphoma: 60.8 (95% CI 26.2 to 120), non-Hodgkin's lymphoma: 15.9 (95% CI 5.2 to 37.2) and brain cancer: 4.4 (95% CI 1.9 to 8.7). The 6-month absolute risks of leukaemia, lymphoma and brain cancer were all low, reaching 0.05% when combined. An increased risk persisted beyond 5 years for non-Hodgkin's lymphoma and brain cancer. However, the 5-year absolute cancer risk was 0.14%. The short-term incidence of leukaemia, lymphoma and brain cancer was higher than expected and persisted beyond 5 years for non-Hodgkin's lymphoma and brain cancer. However, the absolute cancer risk was low. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Hopkins, William D; Hopkins, Anna M; Misiura, Maria; Latash, Elitaveta M; Mareno, Mary Catherine; Schapiro, Steven J; Phillips, Kimberley A
2016-12-01
Increases brain size has been hypothesized to be inversely associated with the expression of behavioral and brain asymmetries within and between species. We tested this hypothesis by analyzing the relation between asymmetries in the planum temporale (PT) and different measures of the corpus callosum (CC) including surface area, streamline count as measured from diffusion tensor imaging, fractional anisotropy values and the ratio in the number of fibers to surface area in a sample of chimpanzees. We found that chimpanzees with larger PT asymmetries in absolute terms had smaller CC surface areas, fewer streamlines and a smaller ratio of fibers to surface area. These results were largely specific to male but not female chimpanzees. Our results partially support the hypothesis that brain asymmetries are linked to variation in corpus callosum morphology, although these associations may be sex-dependent. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bayesian Optimization for Neuroimaging Pre-processing in Brain Age Classification and Prediction
Lancaster, Jenessa; Lorenz, Romy; Leech, Rob; Cole, James H.
2018-01-01
Neuroimaging-based age prediction using machine learning is proposed as a biomarker of brain aging, relating to cognitive performance, health outcomes and progression of neurodegenerative disease. However, even leading age-prediction algorithms contain measurement error, motivating efforts to improve experimental pipelines. T1-weighted MRI is commonly used for age prediction, and the pre-processing of these scans involves normalization to a common template and resampling to a common voxel size, followed by spatial smoothing. Resampling parameters are often selected arbitrarily. Here, we sought to improve brain-age prediction accuracy by optimizing resampling parameters using Bayesian optimization. Using data on N = 2003 healthy individuals (aged 16–90 years) we trained support vector machines to (i) distinguish between young (<22 years) and old (>50 years) brains (classification) and (ii) predict chronological age (regression). We also evaluated generalisability of the age-regression model to an independent dataset (CamCAN, N = 648, aged 18–88 years). Bayesian optimization was used to identify optimal voxel size and smoothing kernel size for each task. This procedure adaptively samples the parameter space to evaluate accuracy across a range of possible parameters, using independent sub-samples to iteratively assess different parameter combinations to arrive at optimal values. When distinguishing between young and old brains a classification accuracy of 88.1% was achieved, (optimal voxel size = 11.5 mm3, smoothing kernel = 2.3 mm). For predicting chronological age, a mean absolute error (MAE) of 5.08 years was achieved, (optimal voxel size = 3.73 mm3, smoothing kernel = 3.68 mm). This was compared to performance using default values of 1.5 mm3 and 4mm respectively, resulting in MAE = 5.48 years, though this 7.3% improvement was not statistically significant. When assessing generalisability, best performance was achieved when applying the entire Bayesian optimization framework to the new dataset, out-performing the parameters optimized for the initial training dataset. Our study outlines the proof-of-principle that neuroimaging models for brain-age prediction can use Bayesian optimization to derive case-specific pre-processing parameters. Our results suggest that different pre-processing parameters are selected when optimization is conducted in specific contexts. This potentially motivates use of optimization techniques at many different points during the experimental process, which may improve statistical sensitivity and reduce opportunities for experimenter-led bias. PMID:29483870
Pico, Fernando; Rosso, Charlotte; Meseguer, Elena; Chadenat, Marie-Laure; Cattenoy, Amina; Aegerter, Philippe; Deltour, Sandrine; Yeung, Jennifer; Hosseini, Hassan; Lambert, Yves; Smadja, Didier; Samson, Yves; Amarenco, Pierre
2016-10-01
Rationale Remote ischemic per-conditioning-causing transient limb ischemia to induce ischemic tolerance in other organs-reduces final infarct size in animal stroke models. Aim To evaluate whether remote ischemic per-conditioning during acute ischemic stroke (<6 h) reduces brain infarct size at 24 h. Methods and design This study is being performed in five French hospitals using a prospective randomized open blinded end-point design. Adults with magnetic resonance imaging confirmed ischemic stroke within 6 h of symptom onset and clinical deficit of 5-25 according to National Institutes of Health Stroke Scale will be randomized 1:1 to remote ischemic per-conditioning or control (stratified by center and intravenous fibrinolysis use). Remote ischemic per-conditioning will consist of four cycles of electronic tourniquet inflation (5 min) and deflation (5 min) to a thigh within 6 h of symptom onset. Magnetic resonance imaging is repeated 24 h after stroke onset. Sample size estimates For a difference of 15 cm 3 in brain infarct growth between groups, 200 patients will be included for 5% significance and 80% power. Study outcomes The primary outcome will be the difference in brain infarct growth from baseline to 24 h in the intervention versus control groups (by diffusion-weighted image magnetic resonance imaging). Secondary outcomes include: National Institutes of Health Stroke Scale score absolute difference between baseline and 24 h, three-month modified Rankin score and daily living activities, mortality, and tolerance and side effects of remote ischemic per-conditioning. Discussion The only remote ischemic per-conditioning trial in humans with stroke did not show remote ischemic per-conditioning to be effective. REmote iSchemic Conditioning in acUtE BRAin INfarction, which has important design differences, should provide more information on the use of this intervention in patients with acute ischemic stroke.
Introducing the Mean Absolute Deviation "Effect" Size
ERIC Educational Resources Information Center
Gorard, Stephen
2015-01-01
This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…
Spinal cord evolution in early Homo.
Meyer, Marc R; Haeusler, Martin
2015-11-01
The discovery at Nariokotome of the Homo erectus skeleton KNM-WT 15000, with a narrow spinal canal, seemed to show that this relatively large-brained hominin retained the primitive spinal cord size of African apes and that brain size expansion preceded postcranial neurological evolution. Here we compare the size and shape of the KNM-WT 15000 spinal canal with modern and fossil taxa including H. erectus from Dmanisi, Homo antecessor, the European middle Pleistocene hominins from Sima de los Huesos, and Pan troglodytes. In terms of shape and absolute and relative size of the spinal canal, we find all of the Dmanisi and most of the vertebrae of KNM-WT 15000 are within the human range of variation except for the C7, T2, and T3 of KNM-WT 15000, which are constricted, suggesting spinal stenosis. While additional fossils might definitively indicate whether H. erectus had evolved a human-like enlarged spinal canal, the evidence from the Dmanisi spinal canal and the unaffected levels of KNM-WT 15000 show that unlike Australopithecus, H. erectus had a spinal canal size and shape equivalent to that of modern humans. Subadult status is unlikely to affect our results, as spinal canal growth is complete in both individuals. We contest the notion that vertebrae yield information about respiratory control or language evolution, but suggest that, like H. antecessor and European middle Pleistocene hominins from Sima de los Huesos, early Homo possessed a postcranial neurological endowment roughly commensurate to modern humans, with implications for neurological, structural, and vascular improvements over Pan and Australopithecus. Copyright © 2015 Elsevier Ltd. All rights reserved.
Müller-Lyer figures influence the online reorganization of visually guided grasping movements.
Heath, Matthew; Rival, Christina; Neely, Kristina; Krigolson, Olav
2006-03-01
In advance of grasping a visual object embedded within fins-in and fins-out Müller-Lyer (ML) configurations, participants formulated a premovement grip aperture (GA) based on the size of a neutral preview object. Preview objects were smaller, veridical, or larger than the size of the to-be-grasped target object. As a result, premovement GA associated with the small and large preview objects required significant online reorganization to appropriately grasp the target object. We reasoned that such a manipulation would provide an opportunity to examine the extent to which the visuomotor system engages egocentric and/or allocentric visual cues for the online, feedback-based control of action. It was found that the online reorganization of GA was reliably influenced by the ML figures (i.e., from 20 to 80% of movement time), regardless of the size of the preview object, albeit the small and large preview objects elicited more robust illusory effects than the veridical preview object. These results counter the view that online grasping control is mediated by absolute visual information computed with respect to the observer (e.g., Glover in Behav Brain Sci 27:3-78, 2004; Milner and Goodale in The visual brain in action 1995). Instead, the impact of the ML figures suggests a level of interaction between egocentric and allocentric visual cues in online action control.
A neonatal perspective on Homo erectus brain growth.
Cofran, Zachary; DeSilva, Jeremy M
2015-04-01
The Mojokerto calvaria has been central to assessment of brain growth in Homo erectus, but different analytical approaches and uncertainty in the specimen's age at death have hindered consensus on the nature of H. erectus brain growth. We simulate average annual rates (AR) of absolute endocranial volume (ECV) growth and proportional size change (PSC) in H. erectus, utilizing estimates of H. erectus neonatal ECV and a range of ages for Mojokerto. These values are compared with resampled ARs and PSCs from ontogenetic series of humans, chimpanzees, and gorillas from birth to six years. Results are consistent with other studies of ECV growth in extant taxa. There is extensive overlap in PSC between all living species through the first postnatal year, with continued but lesser overlap between humans and chimpanzees to age six. Human ARs are elevated above those of apes, although there is modest overlap up to 0.50 years. Ape ARs overlap throughout the sequence, with gorillas slightly elevated over chimpanzees up to 0.50 years. Simulated H. erectus PSCs can be found in all living species by 0.50 years, and the median falls below the human and chimpanzee ranges after 2.5 years. H. erectus ARs are elevated above those of all extant taxa prior to 0.50 years, and after two years they fall out of the human range but are still above ape ranges. A review of evidence for the age at death of Mojokerto supports an estimate of around one year, indicating absolute brain growth rates in the lower half of the human range. These results point to secondary altriciality in H. erectus, implying that key human adaptations for increasing the energy budget of females may have been established by at least 1 Ma. Copyright © 2015 Elsevier Ltd. All rights reserved.
Age-specific absolute and relative organ weight distributions for B6C3F1 mice.
Marino, Dale J
2012-01-01
The B6C3F1 mouse is the standard mouse strain used in toxicology studies conducted by the National Cancer Institute (NCI) and the National Toxicology Program (NTP). While numerous reports have been published on growth, survival, and tumor incidence, no overall compilation of organ weight data is available. Importantly, organ weight change is an endpoint used by regulatory agencies to develop toxicity reference values (TRVs) for use in human health risk assessments. Furthermore, physiologically based pharmacokinetic (PBPK) models, which utilize relative organ weights, are increasingly being used to develop TRVs. Therefore, all available absolute and relative organ weight data for untreated control B6C3F1 mice were collected from NCI/NTP studies in order to develop age-specific distributions. Results show that organ weights were collected more frequently in NCI/NTP studies at 2-wk (60 studies), 3-mo (147 studies), and 15-mo (40 studies) intervals than at other intervals, and more frequently from feeding and inhalation than drinking water studies. Liver, right kidney, lung, heart, thymus, and brain weights were most frequently collected. From the collected data, the mean and standard deviation for absolute and relative organ weights were calculated. Results show age-related increases in absolute liver, right kidney, lung, and heart weights and relatively stable brain and right testis weights. The results suggest a general variability trend in absolute organ weights of brain < right testis < right kidney < heart < liver < lung < spleen < thymus. This report describes the results of this effort.
Zheng, Yuanshui
2015-01-01
The main purposes of this study are to: 1) evaluate the accuracy of XiO treatment planning system (TPS) for different dose calculation grid size based on head phantom measurements in uniform scanning proton therapy (USPT); and 2) compare the dosimetric results for various dose calculation grid sizes based on real computed tomography (CT) dataset of pediatric brain cancer treatment plans generated by USPT and intensity‐modulated proton therapy (IMPT) techniques. For phantom study, we have utilized the anthropomorphic head proton phantom provided by Imaging and Radiation Oncology Core (IROC). The imaging, treatment planning, and beam delivery were carried out following the guidelines provided by the IROC. The USPT proton plan was generated in the XiO TPS, and dose calculations were performed for grid size ranged from 1 to 3 mm. The phantom containing thermoluminescent dosimeter (TLDs) and films was irradiated using uniform scanning proton beam. The irradiated TLDs were read by the IROC. The calculated doses from the XiO for different grid sizes were compared to the measured TLD doses provided by the IROC. Gamma evaluation was done by comparing calculated planar dose distribution of 3 mm grid size with measured planar dose distribution. Additionally, IMPT plan was generated based on the same CT dataset of the IROC phantom, and IMPT dose calculations were performed for grid size ranged from 1 to 3 mm. For comparative purpose, additional gamma analysis was done by comparing the planar dose distributions of standard grid size (3 mm) with that of other grid sizes (1, 1.5, 2, and 2.5 mm) for both the USPT and IMPT plans. For patient study, USPT plans of three pediatric brain cancer cases were selected. IMPT plans were generated for each of three pediatric cases. All patient treatment plans (USPT and IMPT) were generated in the XiO TPS for a total dose of 54 Gy (relative biological effectiveness [RBE]). Treatment plans (USPT and IMPT) of each case was recalculated for grid sizes of 1, 1.5, 2, and 2.5 mm; these dosimetric results were then compared with that of 3 mm grid size. Phantom study results: There was no distinct trend exhibiting the dependence of grid size on dose calculation accuracy when calculated point dose of different grid sizes were compared to the measured point (TLD) doses. On average, the calculated point dose was higher than the measured dose by 1.49% and 2.63% for the right and left TLDs, respectively. The gamma analysis showed very minimal differences among planar dose distributions of various grid sizes, with percentage of points meeting gamma index criteria 1% and 1 mm to be from 97.92% to 99.97%. The gamma evaluation using 2% and 2 mm criteria showed both the IMPT and USPT plans have 100% points meeting the criteria. Patient study results: In USPT, there was no very distinct relationship between the absolute difference in mean planning target volume (PTV) dose and grid size, whereas in IMPT, it was found that the decrease in grid size slightly increased the PTV maximum dose and decreased the PTV mean dose and PTV D50%. For the PTV doses, the average differences were up to 0.35 Gy (RBE) and 1.47 Gy (RBE) in the USPT and IMPT plans, respectively. Dependency on grid size was not very clear for the organs at risk (OARs), with average difference ranged from −0.61 Gy (RBE) to 0.53 Gy (RBE) in the USPT plans and from −0.83 Gy (RBE) to 1.39 Gy (RBE) in the IMPT plans. In conclusion, the difference in the calculated point dose between the smallest grid size (1 mm) and the largest grid size (3 mm) in phantom for USPT was typically less than 0.1%. Patient study results showed that the decrease in grid size slightly increased the PTV maximum dose in both the USPT and IMPT plans. However, no distinct trend was obtained between the absolute difference in dosimetric parameter and dose calculation grid size for the OARs. Grid size has a large effect on dose calculation efficiency, and use of 2 mm or less grid size can increase the dose calculation time significantly. It is recommended to use grid size either 2.5 or 3 mm for dose calculations of pediatric brain cancer plans generated by USPT and IMPT techniques in XiO TPS. PACS numbers: 87.55.D‐, 87.55.ne, 87.55.dk PMID:26699310
Shah, Brijesh; Khunt, Dignesh; Misra, Manju; Padh, Harish
2018-01-02
Presence of tight junctions in blood brain barrier (BBB) pose a major hurdle for delivery of drug and severely affects adequate therapeutic concentration to reach the brain. In present work, we have selected Rivastigmine hydrogen tartrate (RHT), a reversible cholinesterase inhibitor, which exhibits extensive first-pass metabolism, resulting in limited absolute bioavailability (36%). RHT shows extremely low aqueous solubility and poor penetration, resulting in inadequate concentration reaching the brain, thus necessitating frequent oral dosing. To overcome these problems of RHT, microemulsion (ME) and mucoadhesive microemulsion (MME) of RHT were formulated for brain targeting via intranasal delivery route and compared on the basis of in vivo pharmacokinetics. ME and MME formulations containing RHT were developed by water titration method. Characterization of ME and MME was done for various physicochemical parameters, nasal spray pattern, and in vivo pharmacokinetics quantitatively and qualitatively (gamma scintigraphy studies). The developed ME and MME were transparent having globule size approximately in the range of 53-55 nm. Pharmacokinetic studies showed higher values for C max and DTP for intranasal RHT: CH-ME over RHT-ME, thus indicating the effect of chitosan in modulating tight junctions, thereby enhanced paracellular transport of RHT. Gamma scintigraphy and in vivo pharmacokinetic study suggested enhanced RHT concentration, upon intranasal administration of RHT:CH-ME, compare with other groups administered formulations intranasally. These findings suggested the potential of non-invasive intranasal route for brain delivery, especially for therapeutics, facing challenges in oral administration.
NIR time domain diffuse optical tomography experiments on human forearm
NASA Astrophysics Data System (ADS)
Zhao, Huijuan; Gao, Feng; Tanikawa, Yukari; Homma, Kazuhiro; Yamada, Yukio
2003-07-01
To date, the applications of near infrared (NIR) diffusion optical tomography (DOT) are mostly focused on the potential of imaging woman breast, human head hemodynamics and neonatal head. For the neonates, who are suffered from ischaemia or hemorrhages in brain, bedside monitoring of the cerebral perfusion situation, e.g., the blood oxygen saturation and blood volume, is necessary for avoiding permanent injure. NIR DOT is on the promising tools because it is noninvasive, smaller in size, and moveable. Prior to achieving the ultimate goal of imaging infant brain and woman breast using DOT, in this paper, the developed methodologies are justified by imaging in vivo human forearms. The absolute absorption- and scattering-coefficient images revealed the inner structure of the forearm and the bones were clearly distinguished from the muscle. The differential images showed the changes in oxy-hemoglobin, deoxy-hemoglobin and blood volume during the hand-gripping exercises, which are consistent with the physiological process reported on literatures.
Shah, Brijesh M; Misra, Manju; Shishoo, Chamanlal J; Padh, Harish
2015-01-01
Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to irreversible loss of neurons, cognition and formation of abnormal protein aggregates. Rivastigmine, a reversible cholinesterase inhibitor used for the treatment of AD, undergoes extensive first-pass metabolism, thus limiting its absolute bioavailability to only 36% after 3-mg dose. Due to extreme aqueous solubility, rivastigmine shows poor penetration and lesser concentration in the brain thus requiring frequent oral dosing. This investigation was aimed to formulate microemulsion (ME) and mucoadhesive microemulsions (MMEs) of rivastigmine for nose to brain delivery and to compare percentage drug diffused for both systems using in-vitro and ex-vivo study. Rivastigmine-loaded ME and MMEs were prepared by titration method and characterized for drug content, globule size distribution, zeta potential, pH, viscosity and nasal ciliotoxicity study. Rivastigmine-loaded ME system containing 8% w/w Capmul MCM EP, 44% w/w Labrasol:Transcutol-P (1:1) and 48% w/w distilled water was formulated, whereas 0.3% w/w chitosan (CH) and cetyl trimethyl ammonium bromide (as mucoadhesive agents) were used to formulate MMEs, respectively. ME and MMEs formulations were transparent with drug content, globule size and zeta potential in the range of 98.59% to 99.43%, 53.8 nm to 55.4 nm and -2.73 mV to 6.52 mV, respectively. MME containing 0.3% w/w CH followed Higuchi model (r(2) = 0.9773) and showed highest diffusion coefficient. It was free from nasal ciliotoxicity and stable for three months. However, the potential of developed CH-based MME for nose to brain delivery of rivastigmine can only be established after in-vivo and biodistribution study.
Werner, S.C.; Tanaka, K.L.
2011-01-01
For the boundaries of each chronostratigraphic epoch on Mars, we present systematically derived crater-size frequencies based on crater counts of geologic referent surfaces and three proposed " standard" crater size-frequency production distributions as defined by (a) a simple -2 power law, (b) Neukum and Ivanov, (c) Hartmann. In turn, these crater count values are converted to model-absolute ages based on the inferred cratering rate histories. We present a new boundary definition for the Late Hesperian-Early Amazonian transition. Our fitting of crater size-frequency distributions to the chronostratigraphic record of Mars permits the assignment of cumulative counts of craters down to 100. m, 1. km, 2. km, 5. km, and 16. km diameters to martian epochs. Due to differences in the " standard" crater size-frequency production distributions, a generalized crater-density-based definition to the chronostratigraphic system cannot be provided. For the diameter range used for the boundary definitions, the resulting model absolute age fits vary within 1.5% for a given set of production function and chronology model ages. Crater distributions translated to absolute ages utilizing different curve descriptions can result in absolute age differences exceeding 10%. ?? 2011 Elsevier Inc.
Is orbital volume associated with eyeball and visual cortex volume in humans?
Pearce, Eiluned; Bridge, Holly
2013-01-01
In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (n = 88) and brain and visual cortex (n = 99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes and (iii) different visual cortical areas, independently of overall brain volume. In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices.
Is orbital volume associated with eyeball and visual cortex volume in humans?
Pearce, Eiluned; Bridge, Holly
2013-01-01
Background In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. Aim To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Subjects & Methods Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (N=88), and brain and visual cortex (N=99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. Results A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes, (iii) different visual cortical areas, independently of overall brain volume. Conclusion In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices. PMID:23879766
Evolution of brain region volumes during artificial selection for relative brain size.
Kotrschal, Alexander; Zeng, Hong-Li; van der Bijl, Wouter; Öhman-Mägi, Caroline; Kotrschal, Kurt; Pelckmans, Kristiaan; Kolm, Niclas
2017-12-01
The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here, we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use microcomputer tomography to investigate how the volumes of 11 main brain regions respond to selection for larger versus smaller brains. We found no differences in relative brain region volumes between large- and small-brained animals and only minor sex-specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
Gómez, Carlos M; Rodríguez-Martínez, Elena I; Fernández, Alberto; Maestú, Fernando; Poza, Jesús; Gómez, Carlos
2017-01-01
The aim of this study was to define the pattern of reduction in absolute power spectral density (PSD) of magnetoencephalography (MEG) signals throughout development. Specifically, we wanted to explore whether the human skull's high permeability for electromagnetic fields would allow us to question whether the pattern of absolute PSD reduction observed in the human electroencephalogram is due to an increase in the skull's resistive properties with age. Furthermore, the topography of the MEG signals during maturation was explored, providing additional insights about the areas and brain rhythms related to late maturation in the human brain. To attain these goals, spontaneous MEG activity was recorded from 148 sensors in a sample of 59 subjects divided into three age groups: children/adolescents (7-14 years), young adults (17-20 years) and adults (21-26 years). Statistical testing was carried out by means of an analysis of variance (ANOVA), with "age group" as between-subject factor and "sensor group" as within-subject factor. Additionally, correlations of absolute PSD with age were computed to assess the influence of age on the spectral content of MEG signals. Results showed a broadband PSD decrease in frontal areas, which suggests the late maturation of this region, but also a mild increase in high frequency PSD with age in posterior areas. These findings suggest that the intensity of the neural sources during spontaneous brain activity decreases with age, which may be related to synaptic pruning.
Ortiz-Prado, E; Natah, Siraj; Srinivasan, Sathyanarayanan; Dunn, Jeff F
2010-11-30
The level of tissue oxygenation provides information related to the balance between oxygen delivery, oxygen utilization, tissue reactivity and morphology during physiological conditions. Tissue partial pressure of oxygen (PtO(2)) is influenced by the use of anesthesia or restraint. These factors may impact the absolute level of PtO(2). In this study we present a novel fiber optic method to measure brain PtO(2). This method can be used in unanesthetized, unrestrained animals, provides absolute values for PO(2), has a stable calibration, does not consume oxygen and is MRI compatible. Brain PtO(2) was studied during acute hypoxia, as well as before and after 28 days of high altitude acclimatization. A sensor was chronically implanted in the frontal cortex of eight Wistar rats. It is comprised of a fiber optic probe with a tip containing material that fluoresces with an oxygen dependent lifetime. Brain PtO(2) declines by 80% and 76% pre- and post-acclimatization, respectively, when the fraction of inspired oxygen declines from 0.21 to 0.08. In addition, a linear relationship between brain PtO(2) and inspired O(2) levels was demonstrated r(2)=0.98 and r(2)=0.99 (pre- and post-acclimatization). Hypoxia acclimatization resulted in an increase in the overall brain PtO(2) by approximately 35%. This paper demonstrates the use of a novel chronically implanted fiber optic based sensor for measuring absolute PtO(2). It shows a very strong linear relationship in awake animals between inspired O(2) and tissue O(2), and shows that there is a proportional increase in PtO(2) over a range of inspired values after exposure to chronic hypoxia. Copyright © 2010 Elsevier B.V. All rights reserved.
In vivo quantification of brain metabolites by 1H-MRS using water as an internal standard.
Christiansen, P; Henriksen, O; Stubgaard, M; Gideon, P; Larsson, H B
1993-01-01
The reliability of absolute quantification of average metabolite concentrations in the human brain in vivo by 1H-MRS using the fully relaxed water signal as an internal standard was tested in a number of in vitro as well as in vivo measurements. The experiments were carried out on a SIEMENS HELICON SP 63/84 wholebody MR-scanner operating at 1.5 T using a STEAM sequence. In vitro studies indicate a very high correlation between metabolite signals (area under peaks) and concentration, R = 0.99 as well as between metabolite signals and the volume of the selected voxel, R = 1.00. The error in quantification of N-acetyl aspartate (NAA) concentration was about 1-2 mM (6-12%). Also in vivo a good linearity between water signal and selected voxel size was seen. The same was true for the studied metabolites, N-acetyl aspartate (NAA), creatine/phosphocreatine (Cr/PCr), and choline (Cho). Calculated average concentrations of NAA, Cr/PCr, and Cho in the occipital lobe of the brain in five healthy volunteers were (mean +/- 1 SD) 11.6 +/- 1.3 mM, 7.6 +/- 1.4 mM, and 1.7 +/- 0.5 mM. The results indicate that the method presented offers reasonable estimation of metabolite concentrations in the brain in vivo and therefore is useful in clinical research.
Hutsler, Jeffrey J; Lee, Dong-Geun; Porter, Kristin K
2005-08-02
The mammalian cerebral cortex is composed of individual layers characterized by the cell types they contain and their afferent and efferent connections. The current study examined the raw, and size-normalized, laminar thicknesses in three cortical regions (somatosensory, motor, and premotor) of fourteen species from three orders of mammals: primates, carnivores, and rodents. The proportional size of the pyramidal cell layers (supra- and infragranular) varied between orders but was similar within orders despite wide variance in absolute cortical thickness. Further, supragranular layer thickness was largest in primates (46 +/- 3 percent), followed by carnivores (36 +/- 3 percent), and then rodents (19 +/- 4 percent), suggesting a distinct difference in the proportion of cortex devoted to corticocortical connectivity across these orders. Although measures of supragranular layer thickness are highly correlated with measures of overall brain size, such associations are not present when independent contrasts are used to control for phylogenetic inertia. Interestingly, neurogenesis time span remains strongly associated with supragranular layer thickness despite size normalization and controlling for phylogenetic inertia. Such layering differences between orders, and similarities amongst species within an order, suggest that supragranular layer expansion may have occurred early in mammalian evolution and may be related to ontogenetic variables such as neurogenesis time span rather than measures of overall size.
Enhanced Cortical Connectivity in Absolute Pitch Musicians: A Model for Local Hyperconnectivity
ERIC Educational Resources Information Center
Loui, Psyche; Li, H. Charles; Hohmann, Anja; Schlaug, Gottfried
2011-01-01
Connectivity in the human brain has received increased scientific interest in recent years. Although connection disorders can affect perception, production, learning, and memory, few studies have associated brain connectivity with graded variations in human behavior, especially among normal individuals. One group of normal individuals who possess…
Enhanced cortical connectivity in absolute pitch musicians: a model for local hyperconnectivity.
Loui, Psyche; Li, H Charles; Hohmann, Anja; Schlaug, Gottfried
2011-04-01
Connectivity in the human brain has received increased scientific interest in recent years. Although connection disorders can affect perception, production, learning, and memory, few studies have associated brain connectivity with graded variations in human behavior, especially among normal individuals. One group of normal individuals who possess unique characteristics in both behavior and brain structure is absolute pitch (AP) musicians, who can name the appropriate pitch class of any given tone without a reference. Using diffusion tensor imaging and tractography, we observed hyperconnectivity in bilateral superior temporal lobe structures linked to AP possession. Furthermore, volume of tracts connecting left superior temporal gyrus to left middle temporal gyrus predicted AP performance. These findings extend previous reports of exaggerated temporal lobe asymmetry, may explain the higher incidence of AP in special populations, and may provide a model for understanding the heightened connectivity that is thought to underlie savant skills and cases of exceptional creativity.
Enhanced Cortical Connectivity in Absolute Pitch Musicians: A Model for Local Hyperconnectivity
Loui, Psyche; Charles Li, Hui C.; Hohmann, Anja; Schlaug, Gottfried
2010-01-01
Connectivity in the human brain has received increased scientific interest in recent years. Although connection disorders can affect perception, production, learning, and memory, few studies have associated brain connectivity with graded variations in human behavior, especially among normal individuals. One group of normal individuals who possess unique characteristics in both behavior and brain structure is absolute pitch (AP) musicians, who can name the appropriate pitch class of any given tone without a reference. Using diffusion tensor imaging and tractography, we observed hyperconnectivity in bilateral superior temporal lobe structures linked to AP possession. Furthermore, volume of tracts connecting left superior temporal gyrus to left middle temporal gyrus predicted AP performance. These findings extend previous reports of exaggerated temporal lobe asymmetry, may explain the higher incidence of AP in developmental disorders, and may provide a model for understanding the heightened connectivity that is thought to underlie savant skills and cases of exceptional creativity. PMID:20515408
Neural Sensitivity to Absolute and Relative Anticipated Reward in Adolescents
Vaidya, Jatin G.; Knutson, Brian; O'Leary, Daniel S.; Block, Robert I.; Magnotta, Vincent
2013-01-01
Adolescence is associated with a dramatic increase in risky and impulsive behaviors that have been attributed to developmental differences in neural processing of rewards. In the present study, we sought to identify age differences in anticipation of absolute and relative rewards. To do so, we modified a commonly used monetary incentive delay (MID) task in order to examine brain activity to relative anticipated reward value (neural sensitivity to the value of a reward as a function of other available rewards). This design also made it possible to examine developmental differences in brain activation to absolute anticipated reward magnitude (the degree to which neural activity increases with increasing reward magnitude). While undergoing fMRI, 18 adolescents and 18 adult participants were presented with cues associated with different reward magnitudes. After the cue, participants responded to a target to win money on that trial. Presentation of cues was blocked such that two reward cues associated with $.20, $1.00, or $5.00 were in play on a given block. Thus, the relative value of the $1.00 reward varied depending on whether it was paired with a smaller or larger reward. Reflecting age differences in neural responses to relative anticipated reward (i.e., reference dependent processing), adults, but not adolescents, demonstrated greater activity to a $1 reward when it was the larger of the two available rewards. Adults also demonstrated a more linear increase in ventral striatal activity as a function of increasing absolute reward magnitude compared to adolescents. Additionally, reduced ventral striatal sensitivity to absolute anticipated reward (i.e., the difference in activity to medium versus small rewards) correlated with higher levels of trait Impulsivity. Thus, ventral striatal activity in anticipation of absolute and relative rewards develops with age. Absolute reward processing is also linked to individual differences in Impulsivity. PMID:23544046
Quantitative endoscopy: initial accuracy measurements.
Truitt, T O; Adelman, R A; Kelly, D H; Willging, J P
2000-02-01
The geometric optics of an endoscope can be used to determine the absolute size of an object in an endoscopic field without knowing the actual distance from the object. This study explores the accuracy of a technique that estimates absolute object size from endoscopic images. Quantitative endoscopy involves calibrating a rigid endoscope to produce size estimates from 2 images taken with a known traveled distance between the images. The heights of 12 samples, ranging in size from 0.78 to 11.80 mm, were estimated with this calibrated endoscope. Backup distances of 5 mm and 10 mm were used for comparison. The mean percent error for all estimated measurements when compared with the actual object sizes was 1.12%. The mean errors for 5-mm and 10-mm backup distances were 0.76% and 1.65%, respectively. The mean errors for objects <2 mm and > or =2 mm were 0.94% and 1.18%, respectively. Quantitative endoscopy estimates endoscopic image size to within 5% of the actual object size. This method remains promising for quantitatively evaluating object size from endoscopic images. It does not require knowledge of the absolute distance of the endoscope from the object, rather, only the distance traveled by the endoscope between images.
NASA Astrophysics Data System (ADS)
Goya-Outi, Jessica; Orlhac, Fanny; Calmon, Raphael; Alentorn, Agusti; Nioche, Christophe; Philippe, Cathy; Puget, Stéphanie; Boddaert, Nathalie; Buvat, Irène; Grill, Jacques; Frouin, Vincent; Frouin, Frederique
2018-05-01
Few methodological studies regarding widely used textural indices robustness in MRI have been reported. In this context, this study aims to propose some rules to compute reliable textural indices from multimodal 3D brain MRI. Diagnosis and post-biopsy MR scans including T1, post-contrast T1, T2 and FLAIR images from thirty children with diffuse intrinsic pontine glioma (DIPG) were considered. The hybrid white stripe method was adapted to standardize MR intensities. Sixty textural indices were then computed for each modality in different regions of interest (ROI), including tumor and white matter (WM). Three types of intensity binning were compared : constant bin width and relative bounds; constant number of bins and relative bounds; constant number of bins and absolute bounds. The impact of the volume of the region was also tested within the WM. First, the mean Hellinger distance between patient-based intensity distributions decreased by a factor greater than 10 in WM and greater than 2.5 in gray matter after standardization. Regarding the binning strategy, the ranking of patients was highly correlated for 188/240 features when comparing with , but for only 20 when comparing with , and nine when comparing with . Furthermore, when using or texture indices reflected tumor heterogeneity as assessed visually by experts. Last, 41 features presented statistically significant differences between contralateral WM regions when ROI size slightly varies across patients, and none when using ROI of the same size. For regions with similar size, 224 features were significantly different between WM and tumor. Valuable information from texture indices can be biased by methodological choices. Recommendations are to standardize intensities in MR brain volumes, to use intensity binning with constant bin width, and to define regions with the same volumes to get reliable textural indices.
Muntimadugu, Eameema; Dhommati, Raju; Jain, Anjali; Challa, Venu Gopala Swami; Shaheen, M; Khan, Wahid
2016-09-20
Poor brain penetration of tarenflurbil (TFB) was one of the major reasons for its failure in phase III clinical trials conducted on Alzheimer's patients. Thus there is a tremendous need of developing efficient delivery systems for TFB. This study was designed with the aim of improving drug delivery to brain through intranasally delivered nanocarriers. TFB was loaded into two different nanocarriers i.e., poly (lactide-co-glycolide) nanoparticles (TFB-NPs) and solid lipid nanoparticles (TFB-SLNs). Particle size of both the nanocarriers (<200nm) as determined by dynamic light scattering technique and transmission electron microscopy, assured transcellular transport across olfactory axons whose diameter was ≈200nm and then paving a direct path to brain. TFB-NPs and TFB-SLNs resulted in 64.11±2.21% and 57.81±5.32% entrapment efficiencies respectively which again asserted protection of drug from chemical and biological degradation in nasal cavity. In vitro release studies proved the sustained release of TFB from TFB-NPs and TFB-SLNs in comparison with pure drug, indicating prolonged residence times of drug at targeting site. Pharmacokinetics suggested improved circulation behavior of nanoparticles and the absolute bioavailabilities followed this order: TFB-NPs (i.n.)>TFB-SLNs (i.n.)>TFB solution (i.n.)>TFB suspension (oral). Brain targeting efficiency was determined in terms of %drug targeting efficiency (%DTE) and drug transport percentage (DTP). The higher %DTE (287.24) and DTP (65.18) were observed for TFB-NPs followed by TFB-SLNs (%DTE: 183.15 and DTP: 45.41) among all other tested groups. These encouraging results proved that therapeutic concentrations of TFB could be transported directly to brain via olfactory pathway after intranasal administration of polymeric and lipidic nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.
Kotrschal, Alexander; Rogell, Björn; Bundsen, Andreas; Svensson, Beatrice; Zajitschek, Susanne; Brännström, Ioana; Immler, Simone; Maklakov, Alexei A; Kolm, Niclas
2013-01-21
The large variation in brain size that exists in the animal kingdom has been suggested to have evolved through the balance between selective advantages of greater cognitive ability and the prohibitively high energy demands of a larger brain (the "expensive-tissue hypothesis"). Despite over a century of research on the evolution of brain size, empirical support for the trade-off between cognitive ability and energetic costs is based exclusively on correlative evidence, and the theory remains controversial. Here we provide experimental evidence for costs and benefits of increased brain size. We used artificial selection for large and small brain size relative to body size in a live-bearing fish, the guppy (Poecilia reticulata), and found that relative brain size evolved rapidly in response to divergent selection in both sexes. Large-brained females outperformed small-brained females in a numerical learning assay designed to test cognitive ability. Moreover, large-brained lines, especially males, developed smaller guts, as predicted by the expensive-tissue hypothesis, and produced fewer offspring. We propose that the evolution of brain size is mediated by a functional trade-off between increased cognitive ability and reproductive performance and discuss the implications of these findings for vertebrate brain evolution. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kisler, Kassandra; Lazic, Divna; Sweeney, Melanie D; Plunkett, Shane; El Khatib, Mirna; Vinogradov, Sergei A; Boas, David A; Sakadži, Sava; Zlokovic, Berislav V
2018-06-01
Cerebrovascular dysfunction has an important role in the pathogenesis of multiple brain disorders. Measurement of hemodynamic responses in vivo can be challenging, particularly as techniques are often not described in sufficient detail and vary between laboratories. We present a set of standardized in vivo protocols that describe high-resolution two-photon microscopy and intrinsic optical signal (IOS) imaging to evaluate capillary and arteriolar responses to a stimulus, regional hemodynamic responses, and oxygen delivery to the brain. The protocol also describes how to measure intrinsic NADH fluorescence to understand how blood O 2 supply meets the metabolic demands of activated brain tissue, and to perform resting-state absolute oxygen partial pressure (pO 2 ) measurements of brain tissue. These methods can detect cerebrovascular changes at far higher resolution than MRI techniques, although the optical nature of these techniques limits their achievable imaging depths. Each individual procedure requires 1-2 h to complete, with two to three procedures typically performed per animal at a time. These protocols are broadly applicable in studies of cerebrovascular function in healthy and diseased brain in any of the existing mouse models of neurological and vascular disorders. All these procedures can be accomplished by a competent graduate student or experienced technician, except the two-photon measurement of absolute pO 2 level, which is better suited to a more experienced, postdoctoral-level researcher.
Desai, Preshita P; Patravale, Vandana B
2018-04-01
Curcumin, a potent antioxidant polyphenol with neuroprotective and antiamyloid activities, has significant potential in the treatment of neurodegenerative disorders such as Alzheimer's disease. However, its clinical translation is delayed due to poor bioavailability. For effective use of curcumin in Alzheimer's disease, it is imperative to increase its bioavailability with enhanced delivery at a therapeutic site that is, brain. With this objective, pharmaceutical cocrystals of curcumin were developed and incorporated in micellar nanocarriers for nose-to-brain delivery. For cocrystals, an antioxidant hydrophilic coformer was strategically selected using molecular modeling approach. The cocrystals were formulated using a planetary ball mill, and the process was optimized using 3 2 factorial design followed by characterization using differential scanning calorimetry, X-ray diffraction, and Fourier-transform infrared spectroscopy analysis. The cocrystal micelles exhibited globule size of 28.79 ± 0.86 nm. Further, curcumin cocrystal and co-crystal micelles exhibited a significantly low (p value <0.01) IC 50 concentration for antioxidant activity as compared to curcumin corroborating superior antioxidant performance. In vivo studies revealed about 1.7-fold absolute bioavailability of curcumin cocrystal micelles with C max of 1218.38 ± 58.11 ng/mL and showed significantly high brain distribution even beyond 6 hours of dosing. Thus, the studies confirmed enhanced bioavailability, higher brain uptake, retention, and delayed clearance with curcumin cocrystal micellar nanocarriers. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Tsuboi, M; Lim, A C O; Ooi, B L; Yip, M Y; Chong, V C; Ahnesjö, I; Kolm, N
2017-01-01
Brain size varies greatly at all taxonomic levels. Feeding ecology, life history and sexual selection have been proposed as key components in generating contemporary diversity in brain size across vertebrates. Analyses of brain size evolution have, however, been limited to lineages where males predominantly compete for mating and females choose mates. Here, we present the first original data set of brain sizes in pipefishes and seahorses (Syngnathidae) a group in which intense female mating competition occurs in many species. After controlling for the effect of shared ancestry and overall body size, brain size was positively correlated with relative snout length. Moreover, we found that females, on average, had 4.3% heavier brains than males and that polyandrous species demonstrated more pronounced (11.7%) female-biased brain size dimorphism. Our results suggest that adaptations for feeding on mobile prey items and sexual selection in females are important factors in brain size evolution of pipefishes and seahorses. Most importantly, our study supports the idea that sexual selection plays a major role in brain size evolution, regardless of on which sex sexual selection acts stronger. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Inference of ecological and social drivers of human brain-size evolution.
González-Forero, Mauricio; Gardner, Andy
2018-05-01
The human brain is unusually large. It has tripled in size from Australopithecines to modern humans 1 and has become almost six times larger than expected for a placental mammal of human size 2 . Brains incur high metabolic costs 3 and accordingly a long-standing question is why the large human brain has evolved 4 . The leading hypotheses propose benefits of improved cognition for overcoming ecological 5-7 , social 8-10 or cultural 11-14 challenges. However, these hypotheses are typically assessed using correlative analyses, and establishing causes for brain-size evolution remains difficult 15,16 . Here we introduce a metabolic approach that enables causal assessment of social hypotheses for brain-size evolution. Our approach yields quantitative predictions for brain and body size from formalized social hypotheses given empirical estimates of the metabolic costs of the brain. Our model predicts the evolution of adult Homo sapiens-sized brains and bodies when individuals face a combination of 60% ecological, 30% cooperative and 10% between-group competitive challenges, and suggests that between-individual competition has been unimportant for driving human brain-size evolution. Moreover, our model indicates that brain expansion in Homo was driven by ecological rather than social challenges, and was perhaps strongly promoted by culture. Our metabolic approach thus enables causal assessments that refine, refute and unify hypotheses of brain-size evolution.
Cell wall microstructure, pore size distribution and absolute density of hemp shiv
Lawrence, M.; Ansell, M. P.; Hussain, A.
2018-01-01
This paper, for the first time, fully characterizes the intrinsic physical parameters of hemp shiv including cell wall microstructure, pore size distribution and absolute density. Scanning electron microscopy revealed microstructural features similar to hardwoods. Confocal microscopy revealed three major layers in the cell wall: middle lamella, primary cell wall and secondary cell wall. Computed tomography improved the visualization of pore shape and pore connectivity in three dimensions. Mercury intrusion porosimetry (MIP) showed that the average accessible porosity was 76.67 ± 2.03% and pore size classes could be distinguished into micropores (3–10 nm) and macropores (0.1–1 µm and 20–80 µm). The absolute density was evaluated by helium pycnometry, MIP and Archimedes' methods. The results show that these methods can lead to misinterpretation of absolute density. The MIP method showed a realistic absolute density (1.45 g cm−3) consistent with the density of the known constituents, including lignin, cellulose and hemi-cellulose. However, helium pycnometry and Archimedes’ methods gave falsely low values owing to 10% of the volume being inaccessible pores, which require sample pretreatment in order to be filled by liquid or gas. This indicates that the determination of the cell wall density is strongly dependent on sample geometry and preparation. PMID:29765652
Cell wall microstructure, pore size distribution and absolute density of hemp shiv
NASA Astrophysics Data System (ADS)
Jiang, Y.; Lawrence, M.; Ansell, M. P.; Hussain, A.
2018-04-01
This paper, for the first time, fully characterizes the intrinsic physical parameters of hemp shiv including cell wall microstructure, pore size distribution and absolute density. Scanning electron microscopy revealed microstructural features similar to hardwoods. Confocal microscopy revealed three major layers in the cell wall: middle lamella, primary cell wall and secondary cell wall. Computed tomography improved the visualization of pore shape and pore connectivity in three dimensions. Mercury intrusion porosimetry (MIP) showed that the average accessible porosity was 76.67 ± 2.03% and pore size classes could be distinguished into micropores (3-10 nm) and macropores (0.1-1 µm and 20-80 µm). The absolute density was evaluated by helium pycnometry, MIP and Archimedes' methods. The results show that these methods can lead to misinterpretation of absolute density. The MIP method showed a realistic absolute density (1.45 g cm-3) consistent with the density of the known constituents, including lignin, cellulose and hemi-cellulose. However, helium pycnometry and Archimedes' methods gave falsely low values owing to 10% of the volume being inaccessible pores, which require sample pretreatment in order to be filled by liquid or gas. This indicates that the determination of the cell wall density is strongly dependent on sample geometry and preparation.
Intracortical myelination in musicians with absolute pitch: Quantitative morphometry using 7-T MRI.
Kim, Seung-Goo; Knösche, Thomas R
2016-10-01
Absolute pitch (AP) is known as the ability to recognize and label the pitch chroma of a given tone without external reference. Known brain structures and functions related to AP are mainly of macroscopic aspects. To shed light on the underlying neural mechanism of AP, we investigated the intracortical myeloarchitecture in musicians with and without AP using the quantitative mapping of the longitudinal relaxation rates with ultra-high-field magnetic resonance imaging at 7 T. We found greater intracortical myelination for AP musicians in the anterior region of the supratemporal plane, particularly the medial region of the right planum polare (PP). In the same region of the right PP, we also found a positive correlation with a behavioral index of AP performance. In addition, we found a positive correlation with a frequency discrimination threshold in the anterolateral Heschl's gyrus in the right hemisphere, demonstrating distinctive neural processes of absolute recognition and relative discrimination of pitch. Regarding possible effects of local myelination in the cortex and the known importance of the anterior superior temporal gyrus/sulcus for the identification of auditory objects, we argue that pitch chroma may be processed as an identifiable object property in AP musicians. Hum Brain Mapp 37:3486-3501, 2016. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Insular dwarfism in hippos and a model for brain size reduction in Homo floresiensis.
Weston, Eleanor M; Lister, Adrian M
2009-05-07
Body size reduction in mammals is usually associated with only moderate brain size reduction, because the brain and sensory organs complete their growth before the rest of the body during ontogeny. On this basis, 'phyletic dwarfs' are predicted to have a greater relative brain size than 'phyletic giants'. However, this trend has been questioned in the special case of dwarfism of mammals on islands. Here we show that the endocranial capacities of extinct dwarf species of hippopotamus from Madagascar are up to 30% smaller than those of a mainland African ancestor scaled to equivalent body mass. These results show that brain size reduction is much greater than predicted from an intraspecific 'late ontogenetic' model of dwarfism in which brain size scales to body size with an exponent of 0.35. The nature of the proportional change or grade shift observed here indicates that selective pressures on brain size are potentially independent of those on body size. This study demonstrates empirically that it is mechanistically possible for dwarf mammals on islands to evolve significantly smaller brains than would be predicted from a model of dwarfing based on the intraspecific scaling of the mainland ancestor. Our findings challenge current understanding of brain-body allometric relationships in mammals and suggest that the process of dwarfism could in principle explain small brain size, a factor relevant to the interpretation of the small-brained hominin found on the Island of Flores, Indonesia.
Insular dwarfism in hippos and a model for brain size reduction in Homo floresiensis
Weston, Eleanor M.; Lister, Adrian M.
2009-01-01
Body size reduction in mammals is usually associated with only moderate brain size reduction as the brain and sensory organs complete their growth before the rest of the body during ontogeny1,2. On this basis “phyletic dwarfs” are predicted to have a higher relative brain size than “phyletic giants”1,3. This trend has been questioned, however, in the special case of dwarfism of mammals on islands4. Here we show that the endocranial capacities of extinct dwarf species of hippopotamus from Madagascar are up to 30% smaller than those of a mainland African ancestor scaled to equivalent body mass. These results show brain size reduction is much greater than predicted from an intraspecific ‘late ontogenetic’ model of dwarfism where brain size scales to body size with an exponent of 0.35. The nature of the proportional change or grade shift2,5 observed here indicates that selective pressures upon brain size are potentially independent from those on body size. This study demonstrates empirically that it is mechanistically possible for dwarf mammals on islands to evolve significantly smaller brains than would be predicted from a model of dwarfing based on the intraspecific scaling of the mainland ancestor. Our findings challenge our understanding of brain-body allometric relationships in mammals and suggest that the process of dwarfism could in principle explain small brain size, a factor relevant to the interpretation of the small-brained hominin found on the Island of Flores, Indonesia6. PMID:19424156
Fawkner, Samantha; Henretty, Joan; Knowles, Ann-Marie; Nevill, Alan; Niven, Ailsa
2014-01-01
The aim of this study was to adopt a longitudinal design to explore the direct effects of both absolute and relative maturation and changes in body size on physical activity, and explore if, and how, physical self-perceptions might mediate this effect. We recruited 208 girls (11.8 ± 0.4 years) at baseline. Data were collected at three subsequent time points, each 6 months apart. At 18 months, 119 girls remained in the study. At each time point, girls completed the Physical Activity Questionnaire for Children, the Pubertal Development Scale (from which, both a measure of relative and absolute maturation were defined) and the Physical Self-Perception Profile, and had physical size characteristics assessed. Multilevel modelling for physical activity indicated a significant negative effect of age, positive effect for physical condition and sport competence and positive association for relatively early maturers. Absolute maturation, body mass, waist circumference and sum of skinfolds did not significantly contribute to the model. Contrary to common hypotheses, relatively more mature girls may, in fact, be more active than their less mature peers. However, neither changes in absolute maturation nor physical size appear to directly influence changes in physical activity in adolescent girls.
ERIC Educational Resources Information Center
Hirshhorn, Marnie; Grady, Cheryl; Rosenbaum, R. Shayna; Winocur, Gordon; Moscovitch, Morris
2012-01-01
Functional magnetic resonance imaging (fMRI) was used to compare brain activity during the retrieval of coarse- and fine-grained spatial details and episodic details associated with a familiar environment. Long-time Toronto residents compared pairs of landmarks based on their absolute geographic locations (requiring either coarse or fine…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obeid, L; Esteve, F; Adam, J
2014-06-15
Purpose: Synchrotron stereotactic radiotherapy (SSRT) is an innovative treatment combining the selective accumulation of heavy elements in tumors with stereotactic irradiations using monochromatic medium energy x-rays from a synchrotron source. Phase I/II clinical trials on brain metastasis are underway using venous infusion of iodinated contrast agents. The radiation dose enhancement depends on the amount of iodine in the tumor and its time course. In the present study, the reproducibility of iodine concentrations between the CT planning scan day (Day 0) and the treatment day (Day 10) was assessed in order to predict dose errors. Methods: For each of days 0more » and 10, three patients received a biphasic intravenous injection of iodinated contrast agent (40 ml, 4 ml/s, followed by 160 ml, 0.5 ml/s) in order to ensure stable intra-tumoral amounts of iodine during the treatment. Two volumetric CT scans (before and after iodine injection) and a multi-slice dynamic CT of the brain were performed using conventional radiotherapy CT (Day 0) or quantitative synchrotron radiation CT (Day 10). A 3D rigid registration was processed between images. The absolute and relative differences of absolute iodine concentrations and their corresponding dose errors were evaluated in the GTV and PTV used for treatment planning. Results: The differences in iodine concentrations remained within the standard deviation limits. The 3D absolute differences followed a normal distribution centered at zero mg/ml with a variance (∼1 mg/ml) which is related to the image noise. Conclusion: The results suggest that dose errors depend only on the image noise. This study shows that stable amounts of iodine are achievable in brain metastasis for SSRT treatment in a 10 days interval.« less
Hariu, Crystal D; Saunders, Ashley B; Gordon, Sonya G; Norby, Bo; Miller, Matthew W
2013-09-01
Determine if plasma N-terminal pro-brain natriuretic peptide (NT-proBNP) correlates with markers of hemodynamically significant patent ductus arteriosus (PDA) in dogs. Ten dogs with PDA and 30 healthy dogs of similar ages. Prospective case series with control population. Dogs with PDA were initially evaluated with thoracic radiographs, transthoracic echocardiography, pulmonary capillary wedge pressure (PCWP) and NT-proBNP. Following ductal occlusion, NT-proBNP and echocardiography were repeated within 24 h and at day 90. PCWP was repeated at day 90. Correlation between NT-proBNP and hemodynamic measurements was assessed, and accuracy of NT-proBNP for identifying PDA severity was estimated. NT-proBNP was significantly higher (median; absolute range) in dogs with PDA (895; 490-7118 pmol/L) than controls (663; 50-1318 pmol/L) (p = 0.025). NT-proBNP decreased significantly 90 days post-ductal closure (597; 154-1858 pmol/L) (p = 0.013). Left atrial and ventricular size decreased significantly within 24 h and at day 90 as did PCWP (day 90 only). NT-proBNP correlated with vertebral heart size (VHS) and indexed left ventricular systolic diameter (iLVIDs); concentrations ≥ 1224 pmol/L distinguished dogs with elevated VHS and iLVIDs. NT-proBNP is elevated in dogs with PDA, decreases following PDA closure and correlates with select radiographic and echocardiographic markers of cardiac remodeling. Copyright © 2013 Elsevier B.V. All rights reserved.
Walsh, Matthew R.; Broyles, Whitnee; Beston, Shannon M.; Munch, Stephan B.
2016-01-01
Vertebrates exhibit extensive variation in relative brain size. It has long been assumed that this variation is the product of ecologically driven natural selection. Yet, despite more than 100 years of research, the ecological conditions that select for changes in brain size are unclear. Recent laboratory selection experiments showed that selection for larger brains is associated with increased survival in risky environments. Such results lead to the prediction that increased predation should favour increased brain size. Work on natural populations, however, foreshadows the opposite trajectory of evolution; increased predation favours increased boldness, slower learning, and may thereby select for a smaller brain. We tested the influence of predator-induced mortality on brain size evolution by quantifying brain size variation in a Trinidadian killifish, Rivulus hartii, from communities that differ in predation intensity. We observed strong genetic differences in male (but not female) brain size between fish communities; second generation laboratory-reared males from sites with predators exhibited smaller brains than Rivulus from sites in which they are the only fish present. Such trends oppose the results of recent laboratory selection experiments and are not explained by trade-offs with other components of fitness. Our results suggest that increased male brain size is favoured in less risky environments because of the fitness benefits associated with faster rates of learning and problem-solving behaviour. PMID:27412278
Luders, Eileen; Toga, Arthur W; Thompson, Paul M
2014-01-01
Numerous studies have demonstrated a sexual dimorphism of the human corpus callosum. However, the question remains if sex differences in brain size, which typically is larger in men than in women, or biological sex per se account for the apparent sex differences in callosal morphology. Comparing callosal dimensions between men and women matched for overall brain size may clarify the true contribution of biological sex, as any observed group difference should indicate pure sex effects. We thus examined callosal morphology in 24 male and 24 female brains carefully matched for overall size. In addition, we selected 24 extremely large male brains and 24 extremely small female brains to explore if observed sex effects might vary depending on the degree to which male and female groups differed in brain size. Using the individual T1-weighted brain images (n=96), we delineated the corpus callosum at midline and applied a well-validated surface-based mesh-modeling approach to compare callosal thickness at 100 equidistant points between groups determined by brain size and sex. The corpus callosum was always thicker in men than in women. However, this callosal sex difference was strongly determined by the cerebral sex difference overall. That is, the larger the discrepancy in brain size between men and women, the more pronounced the sex difference in callosal thickness, with hardly any callosal differences remaining between brain-size matched men and women. Altogether, these findings suggest that individual differences in brain size account for apparent sex differences in the anatomy of the corpus callosum. © 2013.
Luders, Eileen; Toga, Arthur W.; Thompson, Paul M.
2013-01-01
Numerous studies have demonstrated a sexual dimorphism of the human corpus callosum. However, the question remains if sex differences in brain size, which typically is larger in men than in women, or biological sex per se account for the apparent sex differences in callosal morphology. Comparing callosal dimensions between men and women matched for overall brain size may clarify the true contribution of biological sex, as any observed group difference should indicate pure sex effects. We thus examined callosal morphology in 24 male and 24 female brains carefully matched for overall size. In addition, we selected 24 extremely large male brains and 24 extremely small female brains to explore if observed sex effects might vary depending on the degree to which male and female groups differed in brain size. Using the individual T1-weighted brain images (n=96), we delineated the corpus callosum at midline and applied a well-validated surface-based mesh-modeling approach to compare callosal thickness at 100 equidistant points between groups determined by brain size and sex. The corpus callosum was always thicker in men than in women. However, this callosal sex difference was strongly determined by the cerebral sex difference overall. That is, the larger the discrepancy in brain size between men and women, the more pronounced the sex difference in callosal thickness, with hardly any callosal differences remaining between brain-size matched men and women. Altogether, these findings suggest that individual differences in brain size account for apparent sex differences in the anatomy of the corpus callosum. PMID:24064068
Volumetric MRI study of the intrauterine growth restriction fetal brain.
Polat, A; Barlow, S; Ber, R; Achiron, R; Katorza, E
2017-05-01
Intrauterine growth restriction (IUGR) is a pathologic fetal condition known to affect the fetal brain regionally and associated with future neurodevelopmental abnormalities. This study employed MRI to assess in utero regional brain volume changes in IUGR fetuses compared to controls. Retrospectively, using MRI images of fetuses at 30-34 weeks gestational age, a total of 8 brain regions-supratentorial brain and cavity, cerebral hemispheres, temporal lobes and cerebellum-were measured for volume in 13 fetuses with IUGR due to placental insufficiency and in 21 controls. Volumes and their ratios were assessed for difference using regression models. Reliability was assessed by intraclass correlation coefficients (ICC) between two observers. In both groups, all structures increase in absolute volume during that gestation period, and the rate of cerebellar growth is higher compared to that of supratentorial structures. All structures' absolute volumes were significantly smaller for the IUGR group. Cerebellar to supratentorial ratios were found to be significantly smaller (P < 0.05) for IUGR compared to controls. No other significant ratio differences were found. ICC showed excellent agreement. The cerebellar to supratentorial volume ratio is affected in IUGR fetuses. Additional research is needed to assess this as a radiologic marker in relation to long-term outcome. • IUGR is a pathologic fetal condition affecting the brain • IUGR is associated with long-term neurodevelopmental abnormalities; fetal characterization is needed • This study aimed to evaluate regional brain volume differences in IUGR • Cerebellar to supratentorial volume ratios were smaller in IUGR fetuses • This finding may play a role in long-term development of IUGR fetuses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munbodh, R; Ding, X; Yin, L
Purpose: To identify indicators of Late Grade 3 (LG3) toxicity, late vision and hearing changes in patients treated for primary brain tumors with photon (XRT) or proton radiotherapy (PRT). Methods: We retrospectively reviewed 102 patients who received brain XRT or PRT to doses of 54 or 59.6 Gy in daily fractions of 1.8–2 Gy. Of the 80 patients (34 XRT, 39 PRT and 7 both modalities) reviewed for indicators of LG3 toxicity, 25 developed LG3 toxicity 90 to 500 days after radiotherapy completion. 55 patients had less than LG3 toxicity > 500 days after treatment. In that time, late visionmore » and hearing changes were seen in 44 of 75 and 25 of 78 patients, respectively. The correlation between late toxicity and prescription dose, planning target volume (PTV) size, and doses to the brainstem, brain, optic chiasm, optic nerves, eyes and cochlea was evaluated. A two-tailed Fisher's exact test and Wilcoxon rank sum test were used for the statistical analysis for XRT, PRT and all patients combined. Results: Exceeding the 54 Gy-5% dose-volume brainstem constraint, but not the optic structure constraints, was significantly correlated (p < 0.05) with late vision changes in all three groups. Exceeding maximum and mean cochlear doses of 45 and 30 Gy, respectively, was a significant indicator of hearing changes (p < 0.05) in PRT patients and all patients combined. In a sub-group of 52 patients in whom the brain was contoured, the absolute brain volume receiving ≤ 50 Gy and > 60 Gy was significantly larger in patients with LG3 toxicity for all patients combined (p < 0.05). Prescription dose, brainstem dose and PTV volume were not correlated to LG3 toxicity. Conclusion: Our results indicate the importance of minimizing the brain volume irradiated, and brainstem and cochlea doses to reduce the risk of late toxicities following brain radiotherapy.« less
ERIC Educational Resources Information Center
Gomes da Silva, Sérgio; de Almeida, Alexandre Aparecido; Fernandes, Jansen; Lopim, Glauber Menezes; Cabral, Francisco Romero; Scerni, Débora Amado; de Oliveira-Pinto, Ana Virgínia; Lent, Roberto; Arida, Ricardo Mario
2016-01-01
Clinical evidence has shown that physical exercise during pregnancy may alter brain development and improve cognitive function of offspring. However, the mechanisms through which maternal exercise might promote such effects are not well understood. The present study examined levels of brain-derived neurotrophic factor (BDNF) and absolute cell…
NASA Astrophysics Data System (ADS)
Fantini, Sergio; Hueber, Dennis; Franceschini, Maria Angela; Gratton, Enrico; Rosenfeld, Warren; Stubblefield, Phillip G.; Maulik, Dev; Stankovic, Miljan R.
1999-06-01
We have used continuous-wave (CW) and frequency-domain spectroscopy to investigate the optical properties of the newborn piglet brain in vivo and non-invasively. Three anaesthetized, intubated, ventilated and instrumented newborn piglets were placed into a stereotaxic instrument for optimal experimental stability, reproducible probe-to-scalp optical contact and 3D adjustment of the optical probe. By measuring the absolute values of the brain absorption and reduced scattering coefficients at two wavelengths (758 and 830 nm), frequency-domain spectroscopy provided absolute readings (in contrast to the relative readings of CW spectroscopy) of cerebral haemoglobin concentration and saturation during experimentally induced perturbations in cerebral haemodynamics and oxygenation. Such perturbations included a modulation of the inspired oxygen concentration, transient brain asphyxia, carotid artery occlusion and terminal brain asphyxia. The baseline cerebral haemoglobin saturation and concentration, measured with frequency-domain spectroscopy, were about 60% and 42 µM respectively. The cerebral saturation values ranged from a minimum of 17% (during transient brain asphyxia) to a maximum of 80% (during recovery from transient brain asphyxia). To analyse the CW optical data, we have (a) derived a mathematical relationship between the cerebral optical properties and the differential pathlength factor and (b) introduced a method based on the spatial dependence of the detected intensity (dc slope method). The analysis of the cerebral optical signals associated with the arterial pulse and with respiration demonstrates that motion artefacts can significantly affect the intensity recorded from a single optode pair. Motion artefacts can be strongly reduced by combining data from multiple optodes to provide relative readings in the dc slope method. We also report significant biphasic changes (initial decrease and successive increase) in the reduced scattering coefficient measured in the brain after the piglet had been sacrificed.
Herculano-Houzel, Suzana; Messeder, Débora J.; Fonseca-Azevedo, Karina; Pantoja, Nilma A.
2015-01-01
There is a strong trend toward increased brain size in mammalian evolution, with larger brains composed of more and larger neurons than smaller brains across species within each mammalian order. Does the evolution of increased numbers of brain neurons, and thus larger brain size, occur simply through the selection of individuals with more and larger neurons, and thus larger brains, within a population? That is, do individuals with larger brains also have more, and larger, neurons than individuals with smaller brains, such that allometric relationships across species are simply an extension of intraspecific scaling? Here we show that this is not the case across adult male mice of a similar age. Rather, increased numbers of neurons across individuals are accompanied by increased numbers of other cells and smaller average cell size of both types, in a trade-off that explains how increased brain mass does not necessarily ensue. Fundamental regulatory mechanisms thus must exist that tie numbers of neurons to numbers of other cells and to average cell size within individual brains. Finally, our results indicate that changes in brain size in evolution are not an extension of individual variation in numbers of neurons, but rather occur through step changes that must simultaneously increase numbers of neurons and cause cell size to increase, rather than decrease. PMID:26082686
Herculano-Houzel, Suzana; Messeder, Débora J; Fonseca-Azevedo, Karina; Pantoja, Nilma A
2015-01-01
There is a strong trend toward increased brain size in mammalian evolution, with larger brains composed of more and larger neurons than smaller brains across species within each mammalian order. Does the evolution of increased numbers of brain neurons, and thus larger brain size, occur simply through the selection of individuals with more and larger neurons, and thus larger brains, within a population? That is, do individuals with larger brains also have more, and larger, neurons than individuals with smaller brains, such that allometric relationships across species are simply an extension of intraspecific scaling? Here we show that this is not the case across adult male mice of a similar age. Rather, increased numbers of neurons across individuals are accompanied by increased numbers of other cells and smaller average cell size of both types, in a trade-off that explains how increased brain mass does not necessarily ensue. Fundamental regulatory mechanisms thus must exist that tie numbers of neurons to numbers of other cells and to average cell size within individual brains. Finally, our results indicate that changes in brain size in evolution are not an extension of individual variation in numbers of neurons, but rather occur through step changes that must simultaneously increase numbers of neurons and cause cell size to increase, rather than decrease.
Turschwell, Mischa P.; White, Craig R.
2016-01-01
ABSTRACT It has long been hypothesised that there is a functional correlation between brain size and metabolic rate in vertebrates. The present study tested this hypothesis in wild-caught adult mosquitofish Gambusia holbrooki by testing for an intra-specific association between resting metabolic rate (RMR) and brain size while controlling for variation in body size, and through the examination of the effects of spatial enrichment and laboratory housing on body mass-independent measures of brain size and RMR. Controlling for body mass, there was no relationship between brain size and RMR in wild-caught fish. Contrary to predictions, spatial enrichment caused a decrease in mass-independent brain size, highlighting phenotypic plasticity in the adult brain. As expected, after controlling for differences in body size, wild-caught fish had relatively larger brains than fish that had been maintained in the laboratory for a minimum of six weeks, but wild-caught fish also had significantly lower mass-independent RMR. This study demonstrates that an organisms' housing environment can cause significant plastic changes to fitness related traits including brain size and RMR. We therefore conclude that current standard laboratory housing conditions may cause captive animals to be non-representative of their wild counterparts, potentially undermining the transferability of previous laboratory-based studies of aquatic ectothermic vertebrates to wild populations. PMID:26794608
Evaluation of Morphological Plasticity in the Cerebella of Basketball Players with MRI
Park, In Sung; Han, Jong Woo; Lee, Kea Joo; Lee, Nam Joon; Lee, Won Teak; Park, Kyung Ah
2006-01-01
Cerebellum is a key structure involved in motor learning and coordination. In animal models, motor skill learning increased the volume of molecular layer and the number of synapses on Purkinje cells in the cerebellar cortex. The aim of this study is to investigate whether the analogous change of cerebellar volume occurs in human population who learn specialized motor skills and practice them intensively for a long time. Magnetic resonance image (MRI)-based cerebellar volumetry was performed in basketball players and matched controls with V-works image software. Total brain volume, absolute and relative cerebellar volumes were compared between two groups. There was no significant group difference in the total brain volume, the absolute and the relative cerebellar volume. Thus we could not detect structural change in the cerebellum of this athlete group in the macroscopic level. PMID:16614526
Patients with Rheumatoid Arthritis and Chronic Pain Display Enhanced Alpha Power Density at Rest.
Meneses, Francisco M; Queirós, Fernanda C; Montoya, Pedro; Miranda, José G V; Dubois-Mendes, Selena M; Sá, Katia N; Luz-Santos, Cleber; Baptista, Abrahão F
2016-01-01
Patients with chronic pain due to neuropathy or musculoskeletal injury frequently exhibit reduced alpha and increased theta power densities. However, little is known about electrical brain activity and chronic pain in patients with rheumatoid arthritis (RA). For this purpose, we evaluated power densities of spontaneous electroencephalogram (EEG) band frequencies (delta, theta, alpha, and beta) in females with persistent pain due to RA. This was a cross-sectional study of 21 participants with RA and 21 healthy controls (mean age = 47.20; SD = 10.40). EEG was recorded at rest over 5 min with participant's eyes closed. Twenty electrodes were placed over five brain regions (frontal, central, parietal, temporal, and occipital). Significant differences were observed in depression and anxiety with higher scores in RA participants than healthy controls (p = 0.002). Participants with RA exhibited increased average absolute alpha power density in all brain regions when compared to controls [F (1.39) = 6.39, p = 0.016], as well as increased average relative alpha power density [F (1.39) = 5.82, p = 0.021] in all regions, except the frontal region, controlling for depression/anxiety. Absolute theta power density also increased in the frontal, central, and parietal regions for participants with RA when compared to controls [F (1, 39) = 4.51, p = 0.040], controlling for depression/anxiety. Differences were not exhibited on beta and delta absolute and relative power densities. The diffuse increased alpha may suggest a possible neurogenic mechanism for chronic pain in individuals with RA.
Sacco, Roberto; Gabriele, Stefano; Persico, Antonio M
2015-11-30
Macrocephaly and brain overgrowth have been associated with autism spectrum disorder. We performed a systematic review and meta-analysis to provide an overall estimate of effect size and statistical significance for both head circumference and total brain volume in autism. Our literature search strategy identified 261 and 391 records, respectively; 27 studies defining percentages of macrocephalic patients and 44 structural brain imaging studies providing total brain volumes for patients and controls were included in our meta-analyses. Head circumference was significantly larger in autistic compared to control individuals, with 822/5225 (15.7%) autistic individuals displaying macrocephaly. Structural brain imaging studies measuring brain volume estimated effect size. The effect size is higher in low functioning autistics compared to high functioning and ASD individuals. Brain overgrowth was recorded in 142/1558 (9.1%) autistic patients. Finally, we found a significant interaction between age and total brain volume, resulting in larger head circumference and brain size during early childhood. Our results provide conclusive effect sizes and prevalence rates for macrocephaly and brain overgrowth in autism, confirm the variation of abnormal brain growth with age, and support the inclusion of this endophenotype in multi-biomarker diagnostic panels for clinical use. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Whole Brain Size and General Mental Ability: A Review
Rushton, J. Philippe; Ankney, C. Davison
2009-01-01
We review the literature on the relation between whole brain size and general mental ability (GMA) both within and between species. Among humans, in 28 samples using brain imaging techniques, the mean brain size/GMA correlation is 0.40 (N = 1,389; p < 10−10); in 59 samples using external head size measures it is 0.20 (N = 63,405; p < 10−10). In 6 samples using the method of correlated vectors to distill g, the general factor of mental ability, the mean r is 0.63. We also describe the brain size/GMA correlations with age, socioeconomic position, sex, and ancestral population groups, which also provide information about brain–behavior relationships. Finally, we examine brain size and mental ability from an evolutionary and behavior genetic perspective. PMID:19283594
Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A.
Aguado, Sonia; Bergeret, Gérard; Daniel, Cecile; Farrusseng, David
2012-09-12
Absolute ethylene/ethane separation is achieved by ethane exclusion on silver-exchanged zeolite A adsorbent. This molecular sieving type separation is attributed to the pore size of the adsorbent, which falls between ethylene and ethane kinetic diameters.
Effects of cell phone radiofrequency signal exposure on brain glucose metabolism.
Volkow, Nora D; Tomasi, Dardo; Wang, Gene-Jack; Vaska, Paul; Fowler, Joanna S; Telang, Frank; Alexoff, Dave; Logan, Jean; Wong, Christopher
2011-02-23
The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with ((18)F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes ("on" condition) and once with both cell phones deactivated ("off" condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm(3)) and P < .05 (corrected for multiple comparisons) were considered significant. Brain glucose metabolism computed as absolute metabolism (μmol/100 g per minute) and as normalized metabolism (region/whole brain). Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 μmol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67-4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). In healthy participants and compared with no exposure, 50-minute cell phone exposure was associated with increased brain glucose metabolism in the region closest to the antenna. This finding is of unknown clinical significance.
Large-brained frogs mature later and live longer.
Yu, Xin; Zhong, Mao Jun; Li, Da Yong; Jin, Long; Liao, Wen Bo; Kotrschal, Alexander
2018-05-01
Brain sizes vary substantially across vertebrate taxa, yet, the evolution of brain size appears tightly linked to the evolution of life histories. For example, larger brained species generally live longer than smaller brained species. A larger brain requires more time to grow and develop at a cost of exceeded gestation period and delayed weaning age. The cost of slower development may be compensated by better homeostasis control and increased cognitive abilities, both of which should increase survival probabilities and hence life span. To date, this relationship between life span and brain size seems well established in homoeothermic animals, especially in mammals. Whether this pattern occurs also in other clades of vertebrates remains enigmatic. Here, we undertake the first comparative test of the relationship between life span and brain size in an ectothermic vertebrate group, the anuran amphibians. After controlling for the effects of shared ancestry and body size, we find a positive correlation between brain size, age at sexual maturation, and life span across 40 species of frogs. Moreover, we also find that the ventral brain regions, including the olfactory bulbs, are larger in long-lived species. Our results indicate that the relationship between life history and brain evolution follows a general pattern across vertebrate clades. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Estrogen regulation of microcephaly genes and evolution of brain sexual dimorphism in primates.
Shi, Lei; Lin, Qiang; Su, Bing
2015-06-30
Sexual dimorphism in brain size is common among primates, including humans, apes and some Old World monkeys. In these species, the brain size of males is generally larger than that of females. Curiously, this dimorphism has persisted over the course of primate evolution and human origin, but there is no explanation for the underlying genetic controls that have maintained this disparity in brain size. In the present study, we tested the effect of the female hormone (estradiol) on seven genes known to be related to brain size in both humans and nonhuman primates, and we identified half estrogen responsive elements (half EREs) in the promoter regions of four genes (MCPH1, ASPM, CDK5RAP2 and WDR62). Likewise, at sequence level, it appears that these half EREs are generally conserved across primates. Later testing via a reporter gene assay and cell-based endogenous expression measurement revealed that estradiol could significantly suppress the expression of the four affected genes involved in brain size. More intriguingly, when the half EREs were deleted from the promoters, the suppression effect disappeared, suggesting that the half EREs mediate the regulation of estradiol on the brain size genes. We next replicated these experiments using promoter sequences from chimpanzees and rhesus macaques, and observed a similar suppressive effect of estradiol on gene expression, suggesting that this mechanism is conserved among primate species that exhibit brain size dimorphism. Brain size dimorphism among certain primates, including humans, is likely regulated by estrogen through its sex-dependent suppression of brain size genes during development.
Ayers, J. I.; Bartz, J. C.
2016-01-01
ABSTRACT Inhalation of infected brain homogenate results in transepithelial transport of prions across the nasal mucosa of hamsters, some of which occurs rapidly in relatively large amounts between cells (A. E. Kincaid, K. F. Hudson, M. W. Richey, and J. C. Bartz, J. Virol 86:12731–12740, 2012, doi:http://dx.doi.org/10.1128/JVI.01930-12). Bulk transepithelial transport in the nasal cavity has not been studied to date. In the present study, we characterized the frequency, size, and specificity of the intercellular spaces that mediate the bulk transport of inhaled prions between cells of mice or hamsters following extranasal inoculation with mock-infected brain homogenate, different strains of prion-infected brain homogenate, or brain homogenate mixed with India ink. Infected or mock-infected inoculum was identified within lymphatic vessels of the lamina propria and in spaces of >5 μm between a small number of cells of the nasal mucosa in >90% of animals from 5 to 60 min after inhalation. The width of the spaces between cells, the amount of the inoculum within the lumen of lymphatic vessels, and the timing of the transport indicate that this type of transport was taking place through preexisting spaces in the nasal cavity that were orders of magnitude wider than what is normally reported for paracellular transport. The indiscriminate rapid bulk transport of brain homogenate in the nasal cavity results in immediate entry into nasal cavity lymphatics following inhalation. This novel mechanism may underlie the recent report of the early detection of prions in blood following inhalation and has implications for horizontal prion transmission. IMPORTANCE The results of these studies demonstrate that the nasal mucosa of mice and hamsters is not an absolute anatomical barrier to inhaled prion-infected or uninfected brain homogenate. Relatively large amounts of infected and uninfected brain homogenate rapidly cross the nasal mucosa and enter the lumen of lymphatic vessels following inhalation. These bulk transepithelial transport events were relatively rare but present in >90% of animals 5 to 60 min following inhalation. This novel mechanism of bulk transepithelial transport was seen in experimental and control hamsters and mice, indicating that it was not species specific or in response to prion exposure. The indiscriminate bulk intercellular transport of inhaled pathogens across the nasal mucosa followed by entry into the lymphatic system may be a mechanism that underlies the entry and spread of other toxins and pathogens in olfactory system-driven animals. PMID:27384659
Goya-Outi, Jessica; Orlhac, Fanny; Calmon, Raphael; Alentorn, Agusti; Nioche, Christophe; Philippe, Cathy; Puget, Stéphanie; Boddaert, Nathalie; Buvat, Irène; Grill, Jacques; Frouin, Vincent; Frouin, Frederique
2018-05-10
Few methodological studies regarding widely used textural indices robustness in MRI have been reported. In this context, this study aims to propose some rules to compute reliable textural indices from multimodal 3D brain MRI. Diagnosis and post-biopsy MR scans including T1, post-contrast T1, T2 and FLAIR images from thirty children with diffuse intrinsic pontine glioma (DIPG) were considered. The hybrid white stripe method was adapted to standardize MR intensities. Sixty textural indices were then computed for each modality in different regions of interest (ROI), including tumor and white matter (WM). Three types of intensity binning were compared [Formula: see text]: constant bin width and relative bounds; [Formula: see text] constant number of bins and relative bounds; [Formula: see text] constant number of bins and absolute bounds. The impact of the volume of the region was also tested within the WM. First, the mean Hellinger distance between patient-based intensity distributions decreased by a factor greater than 10 in WM and greater than 2.5 in gray matter after standardization. Regarding the binning strategy, the ranking of patients was highly correlated for 188/240 features when comparing [Formula: see text] with [Formula: see text], but for only 20 when comparing [Formula: see text] with [Formula: see text], and nine when comparing [Formula: see text] with [Formula: see text]. Furthermore, when using [Formula: see text] or [Formula: see text] texture indices reflected tumor heterogeneity as assessed visually by experts. Last, 41 features presented statistically significant differences between contralateral WM regions when ROI size slightly varies across patients, and none when using ROI of the same size. For regions with similar size, 224 features were significantly different between WM and tumor. Valuable information from texture indices can be biased by methodological choices. Recommendations are to standardize intensities in MR brain volumes, to use intensity binning with constant bin width, and to define regions with the same volumes to get reliable textural indices.
Comparison of absolute intensity between EAS with gamma-families and general EAS at Mount Norikura
NASA Technical Reports Server (NTRS)
Mitsumune, T.; Nakatsuka, T.; Nishikawa, K.; Saito, T.; Sakata, M.; Shima, M.; Yamamoto, Y.; Dake, S.; Kawamoto, M.; Kusumose, M.
1985-01-01
Gamma-families with total energy greater than 10 TeV, found in the EX chamber which was cooperated with the EAS array were combined with EAS triggered by big bursts. The absolute intensity of the size spectrum of these combined EAS was compared with that of general EAS obtained by AS trigger. The EAS with sizes greater than 2x1 million were always accompanied by gamma-families with sigma E sub gamma H 10 TeV, n sub gamma, H 2 and Emin=3 TeV, although the rate of EAS accompaning such gamma-families decreases rapidly as their sizes decrease.
Amiel, Joshua J.; Tingley, Reid; Shine, Richard
2011-01-01
Brain size relative to body size varies considerably among animals, but the ecological consequences of that variation remain poorly understood. Plausibly, larger brains confer increased behavioural flexibility, and an ability to respond to novel challenges. In keeping with that hypothesis, successful invasive species of birds and mammals that flourish after translocation to a new area tend to have larger brains than do unsuccessful invaders. We found the same pattern in ectothermic terrestrial vertebrates. Brain size relative to body size was larger in species of amphibians and reptiles reported to be successful invaders, compared to species that failed to thrive after translocation to new sites. This pattern was found in six of seven global biogeographic realms; the exception (where relatively larger brains did not facilitate invasion success) was Australasia. Establishment success was also higher in amphibian and reptile families with larger relative brain sizes. Future work could usefully explore whether invasion success is differentially associated with enlargement of specific parts of the brain (as predicted by the functional role of the forebrain in promoting behavioural flexibility), or with a general size increase (suggesting that invasion success is facilitated by enhanced perceptual and motor skills, as well as cognitive ability). PMID:21494328
Amiel, Joshua J; Tingley, Reid; Shine, Richard
2011-04-06
Brain size relative to body size varies considerably among animals, but the ecological consequences of that variation remain poorly understood. Plausibly, larger brains confer increased behavioural flexibility, and an ability to respond to novel challenges. In keeping with that hypothesis, successful invasive species of birds and mammals that flourish after translocation to a new area tend to have larger brains than do unsuccessful invaders. We found the same pattern in ectothermic terrestrial vertebrates. Brain size relative to body size was larger in species of amphibians and reptiles reported to be successful invaders, compared to species that failed to thrive after translocation to new sites. This pattern was found in six of seven global biogeographic realms; the exception (where relatively larger brains did not facilitate invasion success) was Australasia. Establishment success was also higher in amphibian and reptile families with larger relative brain sizes. Future work could usefully explore whether invasion success is differentially associated with enlargement of specific parts of the brain (as predicted by the functional role of the forebrain in promoting behavioural flexibility), or with a general size increase (suggesting that invasion success is facilitated by enhanced perceptual and motor skills, as well as cognitive ability).
Wu, J; Awate, S P; Licht, D J; Clouchoux, C; du Plessis, A J; Avants, B B; Vossough, A; Gee, J C; Limperopoulos, C
2015-07-01
Traditional methods of dating a pregnancy based on history or sonographic assessment have a large variation in the third trimester. We aimed to assess the ability of various quantitative measures of brain cortical folding on MR imaging in determining fetal gestational age in the third trimester. We evaluated 8 different quantitative cortical folding measures to predict gestational age in 33 healthy fetuses by using T2-weighted fetal MR imaging. We compared the accuracy of the prediction of gestational age by these cortical folding measures with the accuracy of prediction by brain volume measurement and by a previously reported semiquantitative visual scale of brain maturity. Regression models were constructed, and measurement biases and variances were determined via a cross-validation procedure. The cortical folding measures are accurate in the estimation and prediction of gestational age (mean of the absolute error, 0.43 ± 0.45 weeks) and perform better than (P = .024) brain volume (mean of the absolute error, 0.72 ± 0.61 weeks) or sonography measures (SDs approximately 1.5 weeks, as reported in literature). Prediction accuracy is comparable with that of the semiquantitative visual assessment score (mean, 0.57 ± 0.41 weeks). Quantitative cortical folding measures such as global average curvedness can be an accurate and reliable estimator of gestational age and brain maturity for healthy fetuses in the third trimester and have the potential to be an indicator of brain-growth delays for at-risk fetuses and preterm neonates. © 2015 by American Journal of Neuroradiology.
Herculano-Houzel, Suzana; Kaas, Jon H.
2011-01-01
Gorillas and orangutans are primates at least as large as humans, but their brains amount to about one third of the size of the human brain. This discrepancy has been used as evidence that the human brain is about 3 times larger than it should be for a primate species of its body size. In contrast to the view that the human brain is special in its size, we have suggested that it is the great apes that might have evolved bodies that are unusually large, on the basis of our recent finding that the cellular composition of the human brain matches that expected for a primate brain of its size, making the human brain a linearly scaled-up primate brain in its number of cells. To investigate whether the brain of great apes also conforms to the primate cellular scaling rules identified previously, we determine the numbers of neuronal and other cells that compose the orangutan and gorilla cerebella, use these numbers to calculate the size of the brain and of the cerebral cortex expected for these species, and show that these match the sizes described in the literature. Our results suggest that the brains of great apes also scale linearly in their numbers of neurons like other primate brains, including humans. The conformity of great apes and humans to the linear cellular scaling rules that apply to other primates that diverged earlier in primate evolution indicates that prehistoric Homo species as well as other hominins must have had brains that conformed to the same scaling rules, irrespective of their body size. We then used those scaling rules and published estimated brain volumes for various hominin species to predict the numbers of neurons that composed their brains. We predict that Homo heidelbergensis and Homo neanderthalensis had brains with approximately 80 billion neurons, within the range of variation found in modern Homo sapiens. We propose that while the cellular scaling rules that apply to the primate brain have remained stable in hominin evolution (since they apply to simians, great apes and modern humans alike), the Colobinae and Pongidae lineages favored marked increases in body size rather than brain size from the common ancestor with the Homo lineage, while the Homo lineage seems to have favored a large brain instead of a large body, possibly due to the metabolic limitations to having both. PMID:21228547
Herculano-Houzel, Suzana; Kaas, Jon H
2011-01-01
Gorillas and orangutans are primates at least as large as humans, but their brains amount to about one third of the size of the human brain. This discrepancy has been used as evidence that the human brain is about 3 times larger than it should be for a primate species of its body size. In contrast to the view that the human brain is special in its size, we have suggested that it is the great apes that might have evolved bodies that are unusually large, on the basis of our recent finding that the cellular composition of the human brain matches that expected for a primate brain of its size, making the human brain a linearly scaled-up primate brain in its number of cells. To investigate whether the brain of great apes also conforms to the primate cellular scaling rules identified previously, we determine the numbers of neuronal and other cells that compose the orangutan and gorilla cerebella, use these numbers to calculate the size of the brain and of the cerebral cortex expected for these species, and show that these match the sizes described in the literature. Our results suggest that the brains of great apes also scale linearly in their numbers of neurons like other primate brains, including humans. The conformity of great apes and humans to the linear cellular scaling rules that apply to other primates that diverged earlier in primate evolution indicates that prehistoric Homo species as well as other hominins must have had brains that conformed to the same scaling rules, irrespective of their body size. We then used those scaling rules and published estimated brain volumes for various hominin species to predict the numbers of neurons that composed their brains. We predict that Homo heidelbergensis and Homo neanderthalensis had brains with approximately 80 billion neurons, within the range of variation found in modern Homo sapiens. We propose that while the cellular scaling rules that apply to the primate brain have remained stable in hominin evolution (since they apply to simians, great apes and modern humans alike), the Colobinae and Pongidae lineages favored marked increases in body size rather than brain size from the common ancestor with the Homo lineage, while the Homo lineage seems to have favored a large brain instead of a large body, possibly due to the metabolic limitations to having both. Copyright © 2011 S. Karger AG, Basel.
The effect of brain size evolution on feeding propensity, digestive efficiency, and juvenile growth
Kotrschal, Alexander; Corral‐Lopez, Alberto; Szidat, Sönke; Kolm, Niclas
2015-01-01
One key hypothesis in the study of brain size evolution is the expensive tissue hypothesis; the idea that increased investment into the brain should be compensated by decreased investment into other costly organs, for instance the gut. Although the hypothesis is supported by both comparative and experimental evidence, little is known about the potential changes in energetic requirements or digestive traits following such evolutionary shifts in brain and gut size. Organisms may meet the greater metabolic requirements of larger brains despite smaller guts via increased food intake or better digestion. But increased investment in the brain may also hamper somatic growth. To test these hypotheses we here used guppy (Poecilia reticulata) brain size selection lines with a pronounced negative association between brain and gut size and investigated feeding propensity, digestive efficiency (DE), and juvenile growth rate. We did not find any difference in feeding propensity or DE between large‐ and small‐brained individuals. Instead, we found that large‐brained females had slower growth during the first 10 weeks after birth. Our study provides experimental support that investment into larger brains at the expense of gut tissue carries costs that are not necessarily compensated by a more efficient digestive system. PMID:26420573
Cultural influences on neural substrates of attentional control.
Hedden, Trey; Ketay, Sarah; Aron, Arthur; Markus, Hazel Rose; Gabrieli, John D E
2008-01-01
Behavioral research has shown that people from Western cultural contexts perform better on tasks emphasizing independent (absolute) dimensions than on tasks emphasizing interdependent (relative) dimensions, whereas the reverse is true for people from East Asian contexts. We assessed functional magnetic resonance imaging responses during performance of simple visuospatial tasks in which participants made absolute judgments (ignoring visual context) or relative judgments (taking visual context into account). In each group, activation in frontal and parietal brain regions known to be associated with attentional control was greater during culturally nonpreferred judgments than during culturally preferred judgments. Also, within each group, activation differences in these regions correlated strongly with scores on questionnaires measuring individual differences in culture-typical identity. Thus, the cultural background of an individual and the degree to which the individual endorses cultural values moderate activation in brain networks engaged during even simple visual and attentional tasks.
Normative brain size variation and brain shape diversity in humans.
Reardon, P K; Seidlitz, Jakob; Vandekar, Simon; Liu, Siyuan; Patel, Raihaan; Park, Min Tae M; Alexander-Bloch, Aaron; Clasen, Liv S; Blumenthal, Jonathan D; Lalonde, Francois M; Giedd, Jay N; Gur, Ruben C; Gur, Raquel E; Lerch, Jason P; Chakravarty, M Mallar; Satterthwaite, Theodore D; Shinohara, Russell T; Raznahan, Armin
2018-06-15
Brain size variation over primate evolution and human development is associated with shifts in the proportions of different brain regions. Individual brain size can vary almost twofold among typically developing humans, but the consequences of this for brain organization remain poorly understood. Using in vivo neuroimaging data from more than 3000 individuals, we find that larger human brains show greater areal expansion in distributed frontoparietal cortical networks and related subcortical regions than in limbic, sensory, and motor systems. This areal redistribution recapitulates cortical remodeling across evolution, manifests by early childhood in humans, and is linked to multiple markers of heightened metabolic cost and neuronal connectivity. Thus, human brain shape is systematically coupled to naturally occurring variations in brain size through a scaling map that integrates spatiotemporally diverse aspects of neurobiology. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Public Opinion Polls, Chicken Soup and Sample Size
ERIC Educational Resources Information Center
Nguyen, Phung
2005-01-01
Cooking and tasting chicken soup in three different pots of very different size serves to demonstrate that it is the absolute sample size that matters the most in determining the accuracy of the findings of the poll, not the relative sample size, i.e. the size of the sample in relation to its population.
Fonseca-Azevedo, Karina; Herculano-Houzel, Suzana
2012-01-01
Despite a general trend for larger mammals to have larger brains, humans are the primates with the largest brain and number of neurons, but not the largest body mass. Why are great apes, the largest primates, not also those endowed with the largest brains? Recently, we showed that the energetic cost of the brain is a linear function of its numbers of neurons. Here we show that metabolic limitations that result from the number of hours available for feeding and the low caloric yield of raw foods impose a tradeoff between body size and number of brain neurons, which explains the small brain size of great apes compared with their large body size. This limitation was probably overcome in Homo erectus with the shift to a cooked diet. Absent the requirement to spend most available hours of the day feeding, the combination of newly freed time and a large number of brain neurons affordable on a cooked diet may thus have been a major positive driving force to the rapid increased in brain size in human evolution. PMID:23090991
Fonseca-Azevedo, Karina; Herculano-Houzel, Suzana
2012-11-06
Despite a general trend for larger mammals to have larger brains, humans are the primates with the largest brain and number of neurons, but not the largest body mass. Why are great apes, the largest primates, not also those endowed with the largest brains? Recently, we showed that the energetic cost of the brain is a linear function of its numbers of neurons. Here we show that metabolic limitations that result from the number of hours available for feeding and the low caloric yield of raw foods impose a tradeoff between body size and number of brain neurons, which explains the small brain size of great apes compared with their large body size. This limitation was probably overcome in Homo erectus with the shift to a cooked diet. Absent the requirement to spend most available hours of the day feeding, the combination of newly freed time and a large number of brain neurons affordable on a cooked diet may thus have been a major positive driving force to the rapid increased in brain size in human evolution.
Kotrschal, Alexander; Trombley, Susanne; Rogell, Björn; Brannström, Ioana; Foconi, Eric; Schmitz, Monika; Kolm, Niclas
It has been suggested that mating behaviours require high levels of cognitive ability. However, since investment into mating and the brain both are costly features, their relationship is likely characterized by energetic trade-offs. Empirical data on the subject remains equivocal. We investigated if early sexual maturation was associated with brain development in Atlantic salmon ( Salmo salar ), in which males can either stay in the river and sexually mature at a small size (sneaker males) or migrate to the sea and delay sexual maturation until they have grown much larger (anadromous males). Specifically, we tested how sexual maturation may induce plastic changes in brain development by rearing juveniles on either natural or ad libitum feeding levels. After their first season we compared brain size and brain region volumes across both types of male mating tactics and females. Body growth increased greatly across both male mating tactics and females during ad libitum feeding as compared to natural feeding levels. However, despite similar relative increases in body size, early maturing sneaker males maintained larger relative brain size during ad libitum feeding levels as compared to anadromous males and females. We also detected several differences in the relative size of separate brain regions across feeding treatments, sexes and mating strategies. For instance, the relative size of the cognitive centre of the brain, the telencephalon, was largest in sneaker males. Our data support that a large relative brain size is maintained in individuals that start reproduction early also during fast body growth. We propose that the cognitive demands during complex mating behaviours maintain a high level of investment into brain development in reproducing individuals.
Evolutionary Divergence in Brain Size between Migratory and Resident Birds
Sol, Daniel; Garcia, Núria; Iwaniuk, Andrew; Davis, Katie; Meade, Andrew; Boyle, W. Alice; Székely, Tamás
2010-01-01
Despite important recent progress in our understanding of brain evolution, controversy remains regarding the evolutionary forces that have driven its enormous diversification in size. Here, we report that in passerine birds, migratory species tend to have brains that are substantially smaller (relative to body size) than those of resident species, confirming and generalizing previous studies. Phylogenetic reconstructions based on Bayesian Markov chain methods suggest an evolutionary scenario in which some large brained tropical passerines that invaded more seasonal regions evolved migratory behavior and migration itself selected for smaller brain size. Selection for smaller brains in migratory birds may arise from the energetic and developmental costs associated with a highly mobile life cycle, a possibility that is supported by a path analysis. Nevertheless, an important fraction (over 68%) of the correlation between brain mass and migratory distance comes from a direct effect of migration on brain size, perhaps reflecting costs associated with cognitive functions that have become less necessary in migratory species. Overall, our results highlight the importance of retrospective analyses in identifying selective pressures that have shaped brain evolution, and indicate that when it comes to the brain, larger is not always better. PMID:20224776
The visual perception of size and distance.
DOT National Transportation Integrated Search
1962-07-01
The perception of absolute distance has been assumed to be important in the perception of the size of objects and the depth between them. A different hypothesis is proposed. It is asserted that perceived relative size and distance are the primary psy...
Tsuboi, Masahito; Husby, Arild; Kotrschal, Alexander; Hayward, Alexander; Buechel, Séverine D; Zidar, Josefina; Løvlie, Hanne; Kolm, Niclas
2015-01-01
The brain is one of the most energetically expensive organs in the vertebrate body. Consequently, the energetic requirements of encephalization are suggested to impose considerable constraints on brain size evolution. Three main hypotheses concerning how energetic constraints might affect brain evolution predict covariation between brain investment and (1) investment into other costly tissues, (2) overall metabolic rate, and (3) reproductive investment. To date, these hypotheses have mainly been tested in homeothermic animals and the existing data are inconclusive. However, there are good reasons to believe that energetic limitations might play a role in large-scale patterns of brain size evolution also in ectothermic vertebrates. Here, we test these hypotheses in a group of ectothermic vertebrates, the Lake Tanganyika cichlid fishes. After controlling for the effect of shared ancestry and confounding ecological variables, we find a negative association between brain size and gut size. Furthermore, we find that the evolution of a larger brain is accompanied by increased reproductive investment into egg size and parental care. Our results indicate that the energetic costs of encephalization may be an important general factor involved in the evolution of brain size also in ectothermic vertebrates. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
The impact of brain size on pilot performance varies with aviation training and years of education
Adamson, Maheen M.; Samarina, Viktoriya; Xiangyan, Xu; Huynh, Virginia; Kennedy, Quinn; Weiner, Michael; Yesavage, Jerome; Taylor, Joy L.
2010-01-01
Previous studies have consistently reported age-related changes in cognitive abilities and brain structure. Previous studies also suggest compensatory roles for specialized training, skill, and years of education in the age-related decline of cognitive function. The Stanford/VA Aviation Study examines the influence of specialized training and skill level (expertise) on age-related changes in cognition and brain structure. This preliminary report examines the effect of aviation expertise, years of education, age, and brain size on flight simulator performance in pilots aged 45–68 years. Fifty-one pilots were studied with structural magnetic resonance imaging, flight simulator, and processing speed tasks. There were significant main effects of age (p < .01) and expertise (p < .01), but not of whole brain size (p > .1) or education (p > .1), on flight simulator performance. However, even though age and brain size were correlated (r = −0.41), age differences in flight simulator performance were not explained by brain size. Both aviation expertise and education were involved in an interaction with brain size in predicting flight simulator performance (p < .05). These results point to the importance of examining measures of expertise and their interactions to assess age-related cognitive changes. PMID:20193103
NASA Astrophysics Data System (ADS)
Chiu, Joshua; Pierce, Marlon; Braunstein, Steve E.; Theodosopoulos, Philip V.; McDermott, Michael W.; Sneed, Penny K.; Ma, Lijun
2016-10-01
Sharp dose fall-off is the hallmark of brain radiosurgery for the purpose of delivering high dose radiation to the target while minimizing peripheral dose to regional normal brain tissue. In this study, a technique was developed to enhance the peripheral dose gradient by magnifying the total number of beams focused toward each isocenter through pre-programmed patient head tilting. This technique was tested in clinical settings on a dedicated brain radiosurgical system (GKPFX, Gamma Knife Perfexion, Elekta Oncology) by comparing dosimetry as well as delivery efficiency for 20 radiosurgical cases previously treated with the system. The 3-fold beam number enhancement (BNE) treatment plans were found to produce nearly identical target volume coverage (absolute value < 0.5%, P > 0.2) and dose conformity (BNE CI = 1.41 ± 0.22 versus 1.41 ± 0.11, P > 0.99) as the original treatment plans. The total beam-on time for the 3-fold BNE treatment plans were also found to be comparable (<0.5 min or 2%) with those of the original treatment plans for all the cases. However, BNE treatment plans significantly improved the mean gradient index (BNE GI = 2.94 ± 0.27 versus original GI = 2.98 ± 0.28 P < 0.0001) and low-level isodose volumes, e.g. 20-50% prescribed isodose volumes, by 1.7%-3.9% (P < 0.03). With further 4-5-fold increase in the total number of beams, the absolute gradient index can decrease by as much as -0.5 in absolute value or -20% for a treatment. In conclusion, BNE via patient head tilt has been demonstrated to be a clinically suitable and efficient technique for physically sharpening the peripheral dose gradient for brain radiosurgery. This work was presented in part at the 2015 ISRS Congress in Yokohama Japan.
Frontal parenchymal atrophy measures in multiple sclerosis.
Locatelli, Laura; Zivadinov, Robert; Grop, Attilio; Zorzon, Marino
2004-10-01
The aim of this study was to establish whether, in a cross-sectional study, the normalized measures of whole and regional brain atrophy correlate better with tests assessing the cognitive function than the absolute brain atrophy measures. The neuropsychological performances and disability have been assessed in 39 patients with relapsing-remitting multiple sclerosis (MS). T1- and T2-lesion load (LL) of total brain and frontal lobes (FLs) were measured using a reproducible semiautomated technique. The whole brain volume and the regional brain parenchymal volume (RBPV) of FLs were obtained using a computerized interactive program, which incorporates semiautomated and automated segmentation processes. Normalized measures of brain atrophy, i.e., brain parenchymal fraction (BPF) and regional brain parenchymal fraction (RBPF) of FLs, were calculated. The scan-rescan, inter- and intrarater coefficient of variation (COV) and intraclass correlation coefficient (ICC) have been estimated. The RBPF of FLs showed an acceptable level of reproducibility which ranged from 1.7% for intrarater variability to 3.2% for scan-rescan variability. The mean ICC was 0.88 (CI 0.82-0.93). The RBPF of FLs demonstrated stronger magnitudes of correlation with neuropsychological functioning, disability and quantitative MRI lesion measures than RBPV. These differences were statistically significant: P<0.001 for Stroop Color Word Interference test, P<0.001 for Paced Auditory Serial Addition Test, P=0.04 for Standard Raven Progressive Matrices, P=0.049 for Expanded Disability Status Scale, P=0.01 for T2-LL of FLs and P<0.001 for T1-LL of FLs. BPF demonstrated significant correlations with tests assessing cognitive functions, whereas BPAV did not. The correlation analysis results were supported by the results of multiple regression analysis which showed that only the normalized brain atrophy measures were associated with tests exploring the cognitive functions. These data suggest that RBPF is a reproducible and sensitive method for measuring frontal parenchymal atrophy. The normalized measures of whole and regional brain parenchymal atrophy should be preferred to absolute measures in future studies that correlate neuropsychological performances and brain atrophy measures in patients with MS.
O'Donnell, Sean; Clifford, Marie R; DeLeon, Sara; Papa, Christopher; Zahedi, Nazaneen; Bulova, Susan J
2013-01-01
The mosaic brain evolution hypothesis predicts that the relative volumes of functionally distinct brain regions will vary independently and correlate with species' ecology. Paper wasp species (Hymenoptera: Vespidae, Polistinae) differ in light exposure: they construct open versus enclosed nests and one genus (Apoica) is nocturnal. We asked whether light environments were related to species differences in the size of antennal and optic processing brain tissues. Paper wasp brains have anatomically distinct peripheral and central regions that process antennal and optic sensory inputs. We measured the volumes of 4 sensory processing brain regions in paper wasp species from 13 Neotropical genera including open and enclosed nesters, and diurnal and nocturnal species. Species differed in sensory region volumes, but there was no evidence for trade-offs among sensory modalities. All sensory region volumes correlated with brain size. However, peripheral optic processing investment increased with brain size at a higher rate than peripheral antennal processing investment. Our data suggest that mosaic and concerted (size-constrained) brain evolution are not exclusive alternatives. When brain regions increase with brain size at different rates, these distinct allometries can allow for differential investment among sensory modalities. As predicted by mosaic evolution, species ecology was associated with some aspects of brain region investment. Nest architecture variation was not associated with brain investment differences, but the nocturnal genus Apoica had the largest antennal:optic volume ratio in its peripheral sensory lobes. Investment in central processing tissues was not related to nocturnality, a pattern also noted in mammals. The plasticity of neural connections in central regions may accommodate evolutionary shifts in input from the periphery with relatively minor changes in volume. © 2013 S. Karger AG, Basel.
Amador-Vargas, Sabrina; Gronenberg, Wulfila; Wcislo, William T.; Mueller, Ulrich
2015-01-01
Group size in both multicellular organisms and animal societies can correlate with the degree of division of labour. For ants, the task specialization hypothesis (TSH) proposes that increased behavioural specialization enabled by larger group size corresponds to anatomical specialization of worker brains. Alternatively, the social brain hypothesis proposes that increased levels of social stimuli in larger colonies lead to enlarged brain regions in all workers, regardless of their task specialization. We tested these hypotheses in acacia ants (Pseudomyrmex spinicola), which exhibit behavioural but not morphological task specialization. In wild colonies, we marked, followed and tested ant workers involved in foraging tasks on the leaves (leaf-ants) and in defensive tasks on the host tree trunk (trunk-ants). Task specialization increased with colony size, especially in defensive tasks. The relationship between colony size and brain region volume was task-dependent, supporting the TSH. Specifically, as colony size increased, the relative size of regions within the mushroom bodies of the brain decreased in trunk-ants but increased in leaf-ants; those regions play important roles in learning and memory. Our findings suggest that workers specialized in defence may have reduced learning abilities relative to leaf-ants; these inferences remain to be tested. In societies with monomorphic workers, brain polymorphism enhanced by group size could be a mechanism by which division of labour is achieved. PMID:25567649
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, S; Mossahebi, S; Yi, B
Purpose: A dedicated stereotactic breast radiotherapy device, GammaPod, was developed to treat early stage breast cancer. The first clinical unit was installed and commissioned at University of Maryland. We report our methodology of absolute dosimetry in multiple calibration conditions and dosimetric verifications of treatment plans produced by the system. Methods: GammaPod unit is comprised of a rotating hemi-spherical source carrier containing 36 Co-60 sources and a concentric tungsten collimator providing beams of 15 and 25 mm. Absolute dose calibration formalism was developed with modifications to AAPM protocols for unique geometry and different calibration medium (acrylic, polyethylene or liquid water). Breastmore » cup-size specific and collimator output factors were measured and verified with respect to Monte-Carlo simulations for single isocenter plans. Multiple isocenter plans were generated for various target size, location and cup-sizes in phantoms and 20 breast cancer patients images. Stereotactic mini-farmer chamber, OSL and TLD detectors as well as radio-chromic films were used for dosimetric measurements. Results: At the time of calibration (1/14/2016), absolute dose rate of the GammaPod was established to be 2.10 Gy/min in acrylic for 25 mm for sources installed in March 2011. Output factor for 15 mm collimator was measured to be 0.950. Absolute dose calibration was independently verified by IROC-Houston with a TLD/Institution ratio of 0.99. Cup size specific output measurements in liquid water for single isocenter were found to be within 3.0% of MC simulations. Point-dose measurements of multiple isocenter treatment plans were found to be within −1.0 ± 1.2 % of treatment planning system while 2-dimensional gamma analysis yielded a pass rate of 97.9 ± 2.2 % using gamma criteria of 3% and 2mm. Conclusion: The first GammaPod treatment unit for breast stereotactic radiotherapy was successfully installed, calibrated and commissioned for patient treatments. An absolute dosimetry and dosimetric verification protocols were successfully created.« less
Brain size predicts problem-solving ability in mammalian carnivores
Benson-Amram, Sarah; Dantzer, Ben; Stricker, Gregory; Swanson, Eli M.; Holekamp, Kay E.
2016-01-01
Despite considerable interest in the forces shaping the relationship between brain size and cognitive abilities, it remains controversial whether larger-brained animals are, indeed, better problem-solvers. Recently, several comparative studies have revealed correlations between brain size and traits thought to require advanced cognitive abilities, such as innovation, behavioral flexibility, invasion success, and self-control. However, the general assumption that animals with larger brains have superior cognitive abilities has been heavily criticized, primarily because of the lack of experimental support for it. Here, we designed an experiment to inquire whether specific neuroanatomical or socioecological measures predict success at solving a novel technical problem among species in the mammalian order Carnivora. We presented puzzle boxes, baited with food and scaled to accommodate body size, to members of 39 carnivore species from nine families housed in multiple North American zoos. We found that species with larger brains relative to their body mass were more successful at opening the boxes. In a subset of species, we also used virtual brain endocasts to measure volumes of four gross brain regions and show that some of these regions improve model prediction of success at opening the boxes when included with total brain size and body mass. Socioecological variables, including measures of social complexity and manual dexterity, failed to predict success at opening the boxes. Our results, thus, fail to support the social brain hypothesis but provide important empirical support for the relationship between relative brain size and the ability to solve this novel technical problem. PMID:26811470
Brain size predicts problem-solving ability in mammalian carnivores.
Benson-Amram, Sarah; Dantzer, Ben; Stricker, Gregory; Swanson, Eli M; Holekamp, Kay E
2016-03-01
Despite considerable interest in the forces shaping the relationship between brain size and cognitive abilities, it remains controversial whether larger-brained animals are, indeed, better problem-solvers. Recently, several comparative studies have revealed correlations between brain size and traits thought to require advanced cognitive abilities, such as innovation, behavioral flexibility, invasion success, and self-control. However, the general assumption that animals with larger brains have superior cognitive abilities has been heavily criticized, primarily because of the lack of experimental support for it. Here, we designed an experiment to inquire whether specific neuroanatomical or socioecological measures predict success at solving a novel technical problem among species in the mammalian order Carnivora. We presented puzzle boxes, baited with food and scaled to accommodate body size, to members of 39 carnivore species from nine families housed in multiple North American zoos. We found that species with larger brains relative to their body mass were more successful at opening the boxes. In a subset of species, we also used virtual brain endocasts to measure volumes of four gross brain regions and show that some of these regions improve model prediction of success at opening the boxes when included with total brain size and body mass. Socioecological variables, including measures of social complexity and manual dexterity, failed to predict success at opening the boxes. Our results, thus, fail to support the social brain hypothesis but provide important empirical support for the relationship between relative brain size and the ability to solve this novel technical problem.
2013-01-01
Proteomics has opened a new horizon in biological sciences. Global proteomic analysis is a promising technology for the discovery of thousands of proteins, post-translational modifications, polymorphisms, and molecular interactions in a variety of biological systems. The activities and roles of the identified proteins must also be elucidated, but this is complicated by the inability of conventional proteomic methods to yield quantitative information for protein expression. Thus, a variety of biological systems remain “black boxes”. Quantitative targeted absolute proteomics (QTAP) enables the determination of absolute expression levels (mol) of any target protein, including low-abundance functional proteins, such as transporters and receptors. Therefore, QTAP will be useful for understanding the activities and roles of individual proteins and their differences, including normal/disease, human/animal, or in vitro/in vivo. Here, we describe the study protocols and precautions for QTAP experiments including in silico target peptide selection, determination of peptide concentration by amino acid analysis, setup of selected/multiple reaction monitoring (SRM/MRM) analysis in liquid chromatography–tandem mass spectrometry, preparation of protein samples (brain capillaries and plasma membrane fractions) followed by the preparation of peptide samples, simultaneous absolute quantification of target proteins by SRM/MRM analysis, data analysis, and troubleshooting. An application of QTAP in biological sciences was introduced that utilizes data from inter-strain differences in the protein expression levels of transporters, receptors, tight junction proteins and marker proteins at the blood–brain barrier in ddY, FVB, and C57BL/6J mice. Among 18 molecules, 13 (abcb1a/mdr1a/P-gp, abcc4/mrp4, abcg2/bcrp, slc2a1/glut1, slc7a5/lat1, slc16a1/mct1, slc22a8/oat3, insr, lrp1, tfr1, claudin-5, Na+/K+-ATPase, and γ-gtp) were detected in the isolated brain capillaries, and their protein expression levels were within a range of 0.637-101 fmol/μg protein. The largest difference in the levels between the three strains was 2.2-fold for 13 molecules, although bcrp and mct1 displayed statistically significant differences between C57BL/6J and the other strain(s). Highly sensitive simultaneous absolute quantification achieved by QTAP will increase the usefulness of proteomics in biological sciences and is expected to advance the new research field of pharmacoproteomics (PPx). PMID:23758935
Lesion Size Does Not Predict Outcomes in Fresh Osteochondral Allograft Transplantation.
Tírico, Luis E P; McCauley, Julie C; Pulido, Pamela A; Bugbee, William D
2018-03-01
Cartilage repair algorithms use lesion size to choose surgical techniques when selecting a cartilage repair procedure. The association of fresh osteochondral allograft (OCA) size with graft survivorship and subjective patient outcomes is still unknown. To determine if lesion size (absolute or relative) affects outcomes after OCA transplantation. Cohort study; Level of evidence, 3. The study included 156 knees in 143 patients who underwent OCA transplantation from 1998 to 2014 for isolated femoral condyle lesions. The mean age was 29.6 ± 11.4 years, and 62.9% were male. The majority of patients (62.2%) presented for cartilage repair because of osteochondritis dissecans. The mean graft area, used as a surrogate for absolute size of the lesion, was 6.4 cm 2 (range, 2.3-11.5 cm 2 ). The relative size of the lesion was calculated as the tibial width ratio (TWR; ratio of graft area to tibial width) and affected femoral condyle ratio (AFCR; ratio of graft area to affected femoral condyle width) using preoperative radiographs. All patients had a minimum follow-up of 2 years. Further surgical procedures were documented, and graft failure was defined as revision OCA transplantation or conversion to arthroplasty. International Knee Documentation Committee (IKDC) pain, function, and total scores were obtained. Satisfaction with OCA transplantation was assessed. The mean follow-up among patients with grafts remaining in situ was 6.0 years (range, 1.9-16.5 years). The OCA failure rate was 5.8%. Overall survivorship of the graft was 97.2% at 5 years and 93.5% at 10 years. No difference in postoperative outcomes between groups was found in absolute or relative size. Change in IKDC scores (from preoperative to latest follow-up) was greater for knees with large lesions compared to knees with small lesions, among all measurement methods. Overall satisfaction with the results of OCA transplantation was 89.8%. The size of the lesion, either absolute or relative, does not influence outcomes after OCA transplantation for isolated femoral condyle lesions of the knee.
Li, Belinda S Y; Wang, Hao; Gonen, Oded
2003-10-01
In localized brain proton MR spectroscopy ((1)H-MRS), metabolites' levels are often expressed as ratios, rather than as absolute concentrations. Frequently, their denominator is the creatine [Cr], which level is explicitly assumed to be stable in normal as well as in many pathologic states. The rationale is that ratios self-correct for imager and localization method differences, gain instabilities, regional susceptibility variations and partial volume effects. The implicit assumption is that these benefits are worth their cost(w)-(w) propagation of the individual variation of each of the ratio's components. To test this hypothesis, absolute levels of N-acetylaspartate [NAA], choline [Cho] and [Cr] were quantified in various regions of the brains of 8 volunteers, using 3-dimensional (3D) (1)H-MRS at 1.5 T. The results show that in over 50% of approximately 2000 voxels examined, [NAA]/[Cr] and [Cho]/[Cr] exhibited higher coefficients of variations (CV) than [NAA] and [Cho] individually. Furthermore, in approximately 33% of these voxels, the ratios' CVs exceeded even the combined constituents' CVs. Consequently, basing metabolite quantification on ratios and assuming stable [Cr] introduces more variability into (1)H-MRS than it prevents. Therefore, its cost exceeds the benefit.
Cerebral Blood Flow during Rest Associates with General Intelligence and Creativity
Takeuchi, Hikaru; Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Nagase, Tomomi; Nouchi, Rui; Kawashima, Ryuta
2011-01-01
Recently, much scientific attention has been focused on resting brain activity and its investigation through such methods as the analysis of functional connectivity during rest (the temporal correlation of brain activities in different regions). However, investigation of the magnitude of brain activity during rest has focused on the relative decrease of brain activity during a task, rather than on the absolute resting brain activity. It is thus necessary to investigate the association between cognitive factors and measures of absolute resting brain activity, such as cerebral blood flow (CBF), during rest (rest-CBF). In this study, we examined this association using multiple regression analyses. Rest-CBF was the dependent variable and the independent variables included two essential components of cognitive functions, psychometric general intelligence and creativity. CBF was measured using arterial spin labeling and there were three analyses for rest-CBF; namely mean gray matter rest-CBF, mean white matter rest-CBF, and regional rest-CBF. The results showed that mean gray and white matter rest-CBF were significantly and positively correlated with individual psychometric intelligence. Furthermore, mean white matter rest-CBF was significantly and positively correlated with creativity. After correcting the effect of mean gray matter rest-CBF the significant and positive correlation between regional rest-CBF in the perisylvian anatomical cluster that includes the left superior temporal gyrus and insula and individual psychometric intelligence was found. Also, regional rest-CBF in the precuneus was significantly and negatively correlated with individual creativity. Significance of these results of regional rest-CBF did not change when the effect of regional gray matter density was corrected. The findings showed mean and regional rest-CBF in healthy young subjects to be correlated with cognitive functions. The findings also suggest that, even in young cognitively intact subjects, resting brain activity (possibly underlain by default cognitive activity or metabolic demand from developed brain structures) is associated with cognitive functions. PMID:21980485
Jin, Songwan; Zador, Zsolt; Verkman, A. S.
2008-01-01
Diffusion through the extracellular space (ECS) in brain is important in drug delivery, intercellular communication, and extracellular ionic buffering. The ECS comprises ∼20% of brain parenchymal volume and contains cell-cell gaps ∼50 nm. We developed a random-walk model to simulate macromolecule diffusion in brain ECS in three dimensions using realistic ECS dimensions. Model inputs included ECS volume fraction (α), cell size, cell-cell gap geometry, intercellular lake (expanded regions of brain ECS) dimensions, and molecular size of the diffusing solute. Model output was relative solute diffusion in water versus brain ECS (Do/D). Experimental Do/D for comparison with model predictions was measured using a microfiberoptic fluorescence photobleaching method involving stereotaxic insertion of a micron-size optical fiber into mouse brain. Do/D for the small solute calcein in different regions of brain was in the range 3.0–4.1, and increased with brain cell swelling after water intoxication. Do/D also increased with increasing size of the diffusing solute, particularly in deep brain nuclei. Simulations of measured Do/D using realistic α, cell size and cell-cell gap required the presence of intercellular lakes at multicell contact points, and the contact length of cell-cell gaps to be least 50-fold smaller than cell size. The model accurately predicted Do/D for different solute sizes. Also, the modeling showed unanticipated effects on Do/D of changing ECS and cell dimensions that implicated solute trapping by lakes. Our model establishes the geometric constraints to account quantitatively for the relatively modest slowing of solute and macromolecule diffusion in brain ECS. PMID:18469079
Jin, Songwan; Zador, Zsolt; Verkman, A S
2008-08-01
Diffusion through the extracellular space (ECS) in brain is important in drug delivery, intercellular communication, and extracellular ionic buffering. The ECS comprises approximately 20% of brain parenchymal volume and contains cell-cell gaps approximately 50 nm. We developed a random-walk model to simulate macromolecule diffusion in brain ECS in three dimensions using realistic ECS dimensions. Model inputs included ECS volume fraction (alpha), cell size, cell-cell gap geometry, intercellular lake (expanded regions of brain ECS) dimensions, and molecular size of the diffusing solute. Model output was relative solute diffusion in water versus brain ECS (D(o)/D). Experimental D(o)/D for comparison with model predictions was measured using a microfiberoptic fluorescence photobleaching method involving stereotaxic insertion of a micron-size optical fiber into mouse brain. D(o)/D for the small solute calcein in different regions of brain was in the range 3.0-4.1, and increased with brain cell swelling after water intoxication. D(o)/D also increased with increasing size of the diffusing solute, particularly in deep brain nuclei. Simulations of measured D(o)/D using realistic alpha, cell size and cell-cell gap required the presence of intercellular lakes at multicell contact points, and the contact length of cell-cell gaps to be least 50-fold smaller than cell size. The model accurately predicted D(o)/D for different solute sizes. Also, the modeling showed unanticipated effects on D(o)/D of changing ECS and cell dimensions that implicated solute trapping by lakes. Our model establishes the geometric constraints to account quantitatively for the relatively modest slowing of solute and macromolecule diffusion in brain ECS.
Rodriguez Gutierrez, Daniel; Manita, Muftah; Jaspan, Tim; Dineen, Robert A.; Grundy, Richard G.; Auer, Dorothee P.
2013-01-01
Background Assessment of treatment response by measuring tumor size is known to be a late and potentially confounded response index. Serial diffusion MRI has shown potential for allowing earlier and possibly more reliable response assessment in adult patients, with limited experience in clinical settings and in pediatric brain cancer. We present a retrospective study of clinical MRI data in children with high-grade brain tumors to assess and compare the values of several diffusion change metrics to predict treatment response. Methods Eighteen patients (age range, 1.9–20.6 years) with high-grade brain tumors and serial diffusion MRI (pre- and posttreatment interval range, 1–16 weeks posttreatment) were identified after obtaining parental consent. The following diffusion change metrics were compared with the clinical response status assessed at 6 months: (1) regional change in absolute and normalized apparent diffusivity coefficient (ADC), (2) voxel-based fractional volume of increased (fiADC) and decreased ADC (fdADC), and (3) a new metric based on the slope of the first principal component of functional diffusion maps (fDM). Results Responders (n = 12) differed significantly from nonresponders (n = 6) in all 3 diffusional change metrics demonstrating higher regional ADC increase, larger fiADC, and steeper slopes (P < .05). The slope method allowed the best response prediction (P < .01, η2 = 0.78) with a classification accuracy of 83% for a slope of 58° using receiver operating characteristic (ROC) analysis. Conclusions We demonstrate that diffusion change metrics are suitable response predictors for high-grade pediatric tumors, even in the presence of variable clinical diffusion imaging protocols. PMID:23585630
Brain size growth in wild and captive chimpanzees (Pan troglodytes).
Cofran, Zachary
2018-05-24
Despite many studies of chimpanzee brain size growth, intraspecific variation is under-explored. Brain size data from chimpanzees of the Taï Forest and the Yerkes Primate Research Center enable a unique glimpse into brain growth variation as age at death is known for individuals, allowing cross-sectional growth curves to be estimated. Because Taï chimpanzees are from the wild but Yerkes apes are captive, potential environmental effects on neural development can also be explored. Previous research has revealed differences in growth and health between wild and captive primates, but such habitat effects have yet to be investigated for brain growth. Here, I use an iterative curve fitting procedure to estimate brain growth and regression parameters for each population, statistically comparing growth models using bootstrapped confidence intervals. Yerkes and Taï brain sizes overlap at all ages, although the sole Taï newborn is at the low end of captive neonatal variation. Growth rate and duration are statistically indistinguishable between the two populations. Resampling the Yerkes sample to match the Taï sample size and age group composition shows that ontogenetic variation in the two groups are remarkably similar despite the latter's limited size. Best fit growth curves for each sample indicate cessation of brain size growth at around 2 years, earlier than has previously been reported. The overall similarity between wild and captive chimpanzees points to the canalization of brain growth in this species. © 2018 Wiley Periodicals, Inc.
Charvet, Christine J.; Finlay, Barbara L.
2012-01-01
Brain size, body size, developmental length, life span, costs of raising offspring, behavioral complexity, and social structures are correlated in mammals due to intrinsic life-history requirements. Dissecting variation and direction of causation in this web of relationships often draw attention away from the factors that correlate with basic life parameters. We consider the “social brain hypothesis,” which postulates that overall brain and the isocortex are selectively enlarged to confer social abilities in primates, as an example of this enterprise and pitfalls. We consider patterns of brain scaling, modularity, flexibility of brain organization, the “leverage,” and direction of selection on proposed dimensions. We conclude that the evidence supporting selective changes in isocortex or brain size for the isolated ability to manage social relationships is poor. Strong covariation in size and developmental duration coupled with flexible brains allow organisms to adapt in variable social and ecological environments across the life span and in evolution. PMID:22230623
In vivo measurement of apolipoprotein E from the brain interstitial fluid using microdialysis
2013-01-01
Background The APOE4 allele variant is the strongest known genetic risk factor for developing late-onset Alzheimer’s disease. The link between apolipoprotein E (apoE) and Alzheimer’s disease is likely due in large part to the impact of apoE on the metabolism of amyloid β (Aβ) within the brain. Manipulation of apoE levels and lipidation within the brain has been proposed as a therapeutic target for the treatment of Alzheimer’s disease. However, we know little about the dynamic regulation of apoE levels and lipidation within the central nervous system. We have developed an assay to measure apoE levels in the brain interstitial fluid of awake and freely moving mice using large molecular weight cut-off microdialysis probes. Results We were able to recover apoE using microdialysis from human cerebrospinal fluid (CSF) in vitro and mouse brain parenchyma in vivo. Microdialysis probes were inserted into the hippocampus of wild-type mice and interstitial fluid was collected for 36 hours. Levels of apoE within the microdialysis samples were determined by ELISA. The levels of apoE were found to be relatively stable over 36 hours. No apoE was detected in microdialysis samples from apoE KO mice. Administration of the RXR agonist bexarotene increased ISF apoE levels while ISF Aβ levels were decreased. Extrapolation to zero-flow analysis allowed us to determine the absolute recoverable concentration of apoE3 in the brain ISF of apoE3 KI mice. Furthermore, analysis of microdialysis samples by non-denaturing gel electrophoresis determined lipidated apoE particles in microdialysis samples were consistent in size with apoE particles from CSF. Finally, we found that the concentration of apoE in the brain ISF was dependent upon apoE isoform in human apoE KI mice, following the pattern apoE2>apoE3>apoE4. Conclusions We are able to collect lipidated apoE from the brain of awake and freely moving mice and monitor apoE levels over the course of several hours from a single mouse. Our technique enables assessment of brain apoE dynamics under physiological and pathophysiological conditions and in response to therapeutic interventions designed to affect apoE levels and lipidation within the brain. PMID:23601557
Evidence of a Conserved Molecular Response to Selection for Increased Brain Size in Primates
Harrison, Peter W.; Caravas, Jason A.; Raghanti, Mary Ann; Phillips, Kimberley A.; Mundy, Nicholas I.
2017-01-01
The adaptive significance of human brain evolution has been frequently studied through comparisons with other primates. However, the evolution of increased brain size is not restricted to the human lineage but is a general characteristic of primate evolution. Whether or not these independent episodes of increased brain size share a common genetic basis is unclear. We sequenced and de novo assembled the transcriptome from the neocortical tissue of the most highly encephalized nonhuman primate, the tufted capuchin monkey (Cebus apella). Using this novel data set, we conducted a genome-wide analysis of orthologous brain-expressed protein coding genes to identify evidence of conserved gene–phenotype associations and species-specific adaptations during three independent episodes of brain size increase. We identify a greater number of genes associated with either total brain mass or relative brain size across these six species than show species-specific accelerated rates of evolution in individual large-brained lineages. We test the robustness of these associations in an expanded data set of 13 species, through permutation tests and by analyzing how genome-wide patterns of substitution co-vary with brain size. Many of the genes targeted by selection during brain expansion have glutamatergic functions or roles in cell cycle dynamics. We also identify accelerated evolution in a number of individual capuchin genes whose human orthologs are associated with human neuropsychiatric disorders. These findings demonstrate the value of phenotypically informed genome analyses, and suggest at least some aspects of human brain evolution have occurred through conserved gene–phenotype associations. Understanding these commonalities is essential for distinguishing human-specific selection events from general trends in brain evolution. PMID:28391320
Towards a unified analysis of brain maturation and aging across the entire lifespan: A MRI analysis.
Coupé, Pierrick; Catheline, Gwenaelle; Lanuza, Enrique; Manjón, José Vicente
2017-11-01
There is no consensus in literature about lifespan brain maturation and senescence, mainly because previous lifespan studies have been performed on restricted age periods and/or with a limited number of scans, making results instable and their comparison very difficult. Moreover, the use of nonharmonized tools and different volumetric measurements lead to a great discrepancy in reported results. Thanks to the new paradigm of BigData sharing in neuroimaging and the last advances in image processing enabling to process baby as well as elderly scans with the same tool, new insights on brain maturation and aging can be obtained. This study presents brain volume trajectory over the entire lifespan using the largest age range to date (from few months of life to elderly) and one of the largest number of subjects (N = 2,944). First, we found that white matter trajectory based on absolute and normalized volumes follows an inverted U-shape with a maturation peak around middle life. Second, we found that from 1 to 8-10 y there is an absolute gray matter (GM) increase related to body growth followed by a GM decrease. However, when normalized volumes were considered, GM continuously decreases all along the life. Finally, we found that this observation holds for almost all the considered subcortical structures except for amygdala which is rather stable and hippocampus which exhibits an inverted U-shape with a longer maturation period. By revealing the entire brain trajectory picture, a consensus can be drawn since most of the previously discussed discrepancies can be explained. Hum Brain Mapp 38:5501-5518, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Differential resting-state EEG patterns associated with comorbid depression in Internet addiction.
Lee, Jaewon; Hwang, Jae Yeon; Park, Su Mi; Jung, Hee Yeon; Choi, Sam-Wook; Kim, Dai Jin; Lee, Jun-Young; Choi, Jung-Seok
2014-04-03
Many researchers have reported a relationship between Internet addiction and depression. In the present study, we compared the resting-state quantitative electroencephalography (QEEG) activity of treatment-seeking patients with comorbid Internet addiction and depression with those of treatment-seeking patients with Internet addiction without depression, and healthy controls to investigate the neurobiological markers that differentiate pure Internet addiction from Internet addiction with comorbid depression. Thirty-five patients diagnosed with Internet addiction and 34 age-, sex-, and IQ-matched healthy controls were enrolled in this study. Patients with Internet addiction were divided into two groups according to the presence (N=18) or absence (N=17) of depression. Resting-state, eye-closed QEEG was recorded, and the absolute and relative power of the brain were analyzed. The Internet addiction group without depression had decreased absolute delta and beta powers in all brain regions, whereas the Internet addiction group with depression had increased relative theta and decreased relative alpha power in all regions. These neurophysiological changes were not related to clinical variables. The current findings reflect differential resting-state QEEG patterns between both groups of participants with Internet addiction and healthy controls and also suggest that decreased absolute delta and beta powers are neurobiological markers of Internet addiction. Copyright © 2013 Elsevier Inc. All rights reserved.
Intracortical myelination in musicians with absolute pitch: Quantitative morphometry using 7‐T MRI
Knösche, Thomas R.
2016-01-01
Abstract Absolute pitch (AP) is known as the ability to recognize and label the pitch chroma of a given tone without external reference. Known brain structures and functions related to AP are mainly of macroscopic aspects. To shed light on the underlying neural mechanism of AP, we investigated the intracortical myeloarchitecture in musicians with and without AP using the quantitative mapping of the longitudinal relaxation rates with ultra‐high‐field magnetic resonance imaging at 7 T. We found greater intracortical myelination for AP musicians in the anterior region of the supratemporal plane, particularly the medial region of the right planum polare (PP). In the same region of the right PP, we also found a positive correlation with a behavioral index of AP performance. In addition, we found a positive correlation with a frequency discrimination threshold in the anterolateral Heschl's gyrus in the right hemisphere, demonstrating distinctive neural processes of absolute recognition and relative discrimination of pitch. Regarding possible effects of local myelination in the cortex and the known importance of the anterior superior temporal gyrus/sulcus for the identification of auditory objects, we argue that pitch chroma may be processed as an identifiable object property in AP musicians. Hum Brain Mapp 37:3486–3501, 2016. © 2016 Wiley Periodicals, Inc. PMID:27160707
Olgun, Gokhan; Newey, Christopher R; Ardelt, Agnieszka
2015-11-01
The determination of brain death in neonates, infants, children and adults relies on a clinical diagnosis based on the absence of neurological function with a known irreversible cause of brain injury. Evaluation of pupil size and non-reactivity is a requisite for determination of brain death. There are no studies in the literature that quantitatively assess pupil size in brain dead children and adults. Infants, children and adults diagnosed with brain death were included in the study. Pupils were measured with a quantitative pupillometer (Forsite; Neuroptics, Irvine, CA, USA). Median, minimum and maximum pupil sizes were documented and the results were adjudicated for age, vasopressor use and temperature. Median right and left pupil sizes were 5.01 ± 0.85 mm and 5.12 ± 0.87 mm, respectively, with a range between 3.69 and 7.34 mm. Paediatric pupils were larger than adult pupils (right pupil 5.53 vs 4.73 mm p: 0.018; left pupil 5.87 vs 4.77 mm P: 0.03), and there was no correlation of pupil size with temperature or increasing number of vasopressors. This is the first study in the literature objectively evaluating pupil sizes in infants, children and adults diagnosed with brain death. We observed variation between observed pupil size and that expected based on brain death determination guidelines.
Willett, Francis R; Murphy, Brian A; Memberg, William D; Blabe, Christine H; Pandarinath, Chethan; Walter, Benjamin L; Sweet, Jennifer A; Miller, Jonathan P; Henderson, Jaimie M; Shenoy, Krishna V; Hochberg, Leigh R; Kirsch, Robert F; Ajiboye, A Bolu
2017-04-01
Do movements made with an intracortical BCI (iBCI) have the same movement time properties as able-bodied movements? Able-bodied movement times typically obey Fitts' law: [Formula: see text] (where MT is movement time, D is target distance, R is target radius, and [Formula: see text] are parameters). Fitts' law expresses two properties of natural movement that would be ideal for iBCIs to restore: (1) that movement times are insensitive to the absolute scale of the task (since movement time depends only on the ratio [Formula: see text]) and (2) that movements have a large dynamic range of accuracy (since movement time is logarithmically proportional to [Formula: see text]). Two participants in the BrainGate2 pilot clinical trial made cortically controlled cursor movements with a linear velocity decoder and acquired targets by dwelling on them. We investigated whether the movement times were well described by Fitts' law. We found that movement times were better described by the equation [Formula: see text], which captures how movement time increases sharply as the target radius becomes smaller, independently of distance. In contrast to able-bodied movements, the iBCI movements we studied had a low dynamic range of accuracy (absence of logarithmic proportionality) and were sensitive to the absolute scale of the task (small targets had long movement times regardless of the [Formula: see text] ratio). We argue that this relationship emerges due to noise in the decoder output whose magnitude is largely independent of the user's motor command (signal-independent noise). Signal-independent noise creates a baseline level of variability that cannot be decreased by trying to move slowly or hold still, making targets below a certain size very hard to acquire with a standard decoder. The results give new insight into how iBCI movements currently differ from able-bodied movements and suggest that restoring a Fitts' law-like relationship to iBCI movements may require non-linear decoding strategies.
Hill, Eric M.; Petersen, Christian P.
2015-01-01
Mechanisms determining final organ size are poorly understood. Animals undergoing regeneration or ongoing adult growth are likely to require sustained and robust mechanisms to achieve and maintain appropriate sizes. Planarians, well known for their ability to undergo whole-body regeneration using pluripotent adult stem cells of the neoblast population, can reversibly scale body size over an order of magnitude by controlling cell number. Using quantitative analysis, we showed that after injury planarians perfectly restored brain:body proportion by increasing brain cell number through epimorphosis or decreasing brain cell number through tissue remodeling (morphallaxis), as appropriate. We identified a pathway controlling a brain size set-point that involves feedback inhibition between wnt11-6/wntA/wnt4a and notum, encoding conserved antagonistic signaling factors expressed at opposite brain poles. wnt11-6/wntA/wnt4a undergoes feedback inhibition through canonical Wnt signaling but is likely to regulate brain size in a non-canonical pathway independently of beta-catenin-1 and APC. Wnt/Notum signaling tunes numbers of differentiated brain cells in regenerative growth and tissue remodeling by influencing the abundance of brain progenitors descended from pluripotent stem cells, as opposed to regulating cell death. These results suggest that the attainment of final organ size might be accomplished by achieving a balance of positional signaling inputs that regulate the rates of tissue production. PMID:26525673
Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucos Metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, N.D.; Wang, G.; Volkow, N.D.
The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with ({sup 18}F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice,more » once with the right cell phone activated (sound muted) for 50 minutes ('on' condition) and once with both cell phones deactivated ('off' condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm{sup 3}) and P < .05 (corrected for multiple comparisons) were considered significant. Brain glucose metabolism computed as absolute metabolism ({micro}mol/100 g per minute) and as normalized metabolism (region/whole brain). Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 {micro}mol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67-4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). In healthy participants and compared with no exposure, 50-minute cell phone exposure was associated with increased brain glucose metabolism in the region closest to the antenna. This finding is of unknown clinical significance.« less
Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucose Metabolism
Volkow, Nora D.; Tomasi, Dardo; Wang, Gene-Jack; Vaska, Paul; Fowler, Joanna S.; Telang, Frank; Alexoff, Dave; Logan, Jean; Wong, Christopher
2011-01-01
Context The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. Objective To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Design, Setting, and Participants Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with (18F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes (“on” condition) and once with both cell phones deactivated (“off” condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm3) and P < .05 (corrected for multiple comparisons) were considered significant. Main Outcome Measure Brain glucose metabolism computed as absolute metabolism (µmol/100 g per minute) and as normalized metabolism (region/whole brain). Results Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 µmol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67–4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). Conclusions In healthy participants and compared with no exposure, 50-minute cell phone exposure was associated with increased brain glucose metabolism in the region closest to the antenna. This finding is of unknown clinical significance. PMID:21343580
Sex Differences in Intelligence and Brain Size: A Developmental Theory.
ERIC Educational Resources Information Center
Lynn, Richard
1999-01-01
Proposes a developmental theory of sex differences in intelligence that states that the faster maturation and brain size growth in girls up to age 15 compensates for their smaller brain size so that sex differences in intelligence are very small. Discusses evidence that supports this theory. (SLD)
The effect of brain size evolution on feeding propensity, digestive efficiency, and juvenile growth.
Kotrschal, Alexander; Corral-Lopez, Alberto; Szidat, Sönke; Kolm, Niclas
2015-11-01
One key hypothesis in the study of brain size evolution is the expensive tissue hypothesis; the idea that increased investment into the brain should be compensated by decreased investment into other costly organs, for instance the gut. Although the hypothesis is supported by both comparative and experimental evidence, little is known about the potential changes in energetic requirements or digestive traits following such evolutionary shifts in brain and gut size. Organisms may meet the greater metabolic requirements of larger brains despite smaller guts via increased food intake or better digestion. But increased investment in the brain may also hamper somatic growth. To test these hypotheses we here used guppy (Poecilia reticulata) brain size selection lines with a pronounced negative association between brain and gut size and investigated feeding propensity, digestive efficiency (DE), and juvenile growth rate. We did not find any difference in feeding propensity or DE between large- and small-brained individuals. Instead, we found that large-brained females had slower growth during the first 10 weeks after birth. Our study provides experimental support that investment into larger brains at the expense of gut tissue carries costs that are not necessarily compensated by a more efficient digestive system. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Zador, Zsolt; Magzoub, Mazin; Jin, Songwan; Manley, Geoffrey T; Papadopoulos, Marios C; Verkman, A S
2008-03-01
Diffusion in brain extracellular space (ECS) is important for nonsynaptic intercellular communication, extracellular ionic buffering, and delivery of drugs and metabolites. We measured macromolecular diffusion in normally light-inaccessible regions of mouse brain by microfiberoptic epifluorescence photobleaching, in which a fiberoptic with a micron-size tip is introduced deep in brain tissue. In brain cortex, the diffusion of a noninteracting molecule [fluorescein isothiocyanate (FITC)-dextran, 70 kDa] was slowed 4.5 +/- 0.5-fold compared with its diffusion in water (D(o)/D), and was depth-independent down to 800 microm from the brain surface. Diffusion was significantly accelerated (D(o)/D of 2.9+/-0.3) in mice lacking the glial water channel aquaporin-4. FITC-dextran diffusion varied greatly in different regions of brain, with D(o)/D of 3.5 +/- 0.3 in hippocampus and 7.4 +/- 0.3 in thalamus. Remarkably, D(o)/D in deep brain was strongly dependent on solute size, whereas diffusion in cortex changed little with solute size. Mathematical modeling of ECS diffusion required nonuniform ECS dimensions in deep brain, which we call "heterometricity," to account for the size-dependent diffusion. Our results provide the first data on molecular diffusion in ECS deep in brain in vivo and demonstrate previously unrecognized hindrance and heterometricity for diffusion of large macromolecules in deep brain.
Amador-Vargas, Sabrina; Gronenberg, Wulfila; Wcislo, William T; Mueller, Ulrich
2015-02-22
Group size in both multicellular organisms and animal societies can correlate with the degree of division of labour. For ants, the task specialization hypothesis (TSH) proposes that increased behavioural specialization enabled by larger group size corresponds to anatomical specialization of worker brains. Alternatively, the social brain hypothesis proposes that increased levels of social stimuli in larger colonies lead to enlarged brain regions in all workers, regardless of their task specialization. We tested these hypotheses in acacia ants (Pseudomyrmex spinicola), which exhibit behavioural but not morphological task specialization. In wild colonies, we marked, followed and tested ant workers involved in foraging tasks on the leaves (leaf-ants) and in defensive tasks on the host tree trunk (trunk-ants). Task specialization increased with colony size, especially in defensive tasks. The relationship between colony size and brain region volume was task-dependent, supporting the TSH. Specifically, as colony size increased, the relative size of regions within the mushroom bodies of the brain decreased in trunk-ants but increased in leaf-ants; those regions play important roles in learning and memory. Our findings suggest that workers specialized in defence may have reduced learning abilities relative to leaf-ants; these inferences remain to be tested. In societies with monomorphic workers, brain polymorphism enhanced by group size could be a mechanism by which division of labour is achieved. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
;margin-right:20px;vertical-align:top;width:300px;} .statmapfilters .activeFilters{font-size:0.7em;padding %;} .statmapfilters .btn .caret{border-width:5px;margin-left:10px;position:absolute;right:1em;top:calc(50% - 2px );} .statmapfilters .button-group{margin-top:20px;} /*.statmapfilters .clearfilters{position:absolute;right:1em;top
Congenital heart disease affects cerebral size but not brain growth.
Ortinau, Cynthia; Inder, Terrie; Lambeth, Jennifer; Wallendorf, Michael; Finucane, Kirsten; Beca, John
2012-10-01
Infants with congenital heart disease (CHD) have delayed brain maturation and alterations in brain volume. Brain metrics is a simple measurement technique that can be used to evaluate brain growth. This study used brain metrics to test the hypothesis that alterations in brain size persist at 3 months of age and that infants with CHD have slower rates of brain growth than control infants. Fifty-seven infants with CHD underwent serial brain magnetic resonance imaging (MRI). To evaluate brain growth across the first 3 months of life, brain metrics were undertaken using 19 tissue and fluid spaces shown on MRIs performed before surgery and again at 3 months of age. Before surgery, infants with CHD have smaller frontal, parietal, cerebellar, and brain stem measures (p < 0.001). At 3 months of age, alterations persisted in all measures except the cerebellum. There was no difference between control and CHD infants in brain growth. However, the cerebellum trended toward greater growth in infants with CHD. Somatic growth was the primary factor that related to brain growth. Presence of focal white matter lesions before and after surgery did not relate to alterations in brain size or growth. Although infants with CHD have persistent alterations in brain size at 3 months of age, rates of brain growth are similar to that of healthy term infants. Somatic growth was the primary predictor of brain growth, emphasizing the importance of optimal weight gain in this population.
Martínez, Kenia; Janssen, Joost; Pineda-Pardo, José Ángel; Carmona, Susanna; Román, Francisco Javier; Alemán-Gómez, Yasser; Garcia-Garcia, David; Escorial, Sergio; Quiroga, María Ángeles; Santarnecchi, Emiliano; Navas-Sánchez, Francisco Javier; Desco, Manuel; Arango, Celso; Colom, Roberto
2017-07-15
Global structural brain connectivity has been reported to be sex-dependent with women having increased interhemispheric connectivity (InterHc) and men having greater intrahemispheric connectivity (IntraHc). However, (a) smaller brains show greater InterHc, (b) larger brains show greater IntraHc, and (c) women have, on average, smaller brains than men. Therefore, sex differences in brain size may modulate sex differences in global brain connectivity. At the behavioural level, sex-dependent differences in connectivity are thought to contribute to men-women differences in spatial and verbal abilities. But this has never been tested at the individual level. The current study assessed whether individual differences in global structural connectome measures (InterHc, IntraHc and the ratio of InterHc relative to IntraHc) predict spatial and verbal ability while accounting for the effect of sex and brain size. The sample included forty men and forty women, who did neither differ in age nor in verbal and spatial latent components defined by a broad battery of tests and tasks. High-resolution T 1 -weighted and diffusion-weighted images were obtained for computing brain size and reconstructing the structural connectome. Results showed that men had higher IntraHc than women, while women had an increased ratio InterHc/IntraHc. However, these sex differences were modulated by brain size. Increased InterHc relative to IntraHc predicted higher spatial and verbal ability irrespective of sex and brain size. The positive correlations between the ratio InterHc/IntraHc and the spatial and verbal abilities were confirmed in 1000 random samples generated by bootstrapping. Therefore, sex differences in global structural connectome connectivity were modulated by brain size and did not underlie sex differences in verbal and spatial abilities. Rather, the level of dominance of InterHc over IntraHc may be associated with individual differences in verbal and spatial abilities in both men and women. Copyright © 2017 Elsevier Inc. All rights reserved.
Re-evaluating the link between brain size and behavioural ecology in primates.
Powell, Lauren E; Isler, Karin; Barton, Robert A
2017-10-25
Comparative studies have identified a wide range of behavioural and ecological correlates of relative brain size, with results differing between taxonomic groups, and even within them. In primates for example, recent studies contradict one another over whether social or ecological factors are critical. A basic assumption of such studies is that with sufficiently large samples and appropriate analysis, robust correlations indicative of selection pressures on cognition will emerge. We carried out a comprehensive re-examination of correlates of primate brain size using two large comparative datasets and phylogenetic comparative methods. We found evidence in both datasets for associations between brain size and ecological variables (home range size, diet and activity period), but little evidence for an effect of social group size, a correlation which has previously formed the empirical basis of the Social Brain Hypothesis. However, reflecting divergent results in the literature, our results exhibited instability across datasets, even when they were matched for species composition and predictor variables. We identify several potential empirical and theoretical difficulties underlying this instability and suggest that these issues raise doubts about inferring cognitive selection pressures from behavioural correlates of brain size. © 2017 The Author(s).
ERIC Educational Resources Information Center
Willerman, Lee; Schultz, Robert T.
1995-01-01
The relationship between mental retardation and brain size is discussed. Research suggests that a common path for many otherwise idiopathic mild retardation cases (genetic or environmental) could be small brain size, indicating reduced information processing capacity. Suggestions are made for further research on neuron number. (SLD)
Uchida, Yasuo; Ito, Katsuaki; Ohtsuki, Sumio; Kubo, Yoshiyuki; Suzuki, Takashi; Terasaki, Tetsuya
2015-07-01
The purpose of this study was to clarify the expression of Na(+) -dependent multivitamin transporter (SLC5A6/SMVT) and its contribution to the supply of biotin and pantothenic acid to the human brain via the blood-brain barrier. DNA microarray and immunohistochemical analyses confirmed that SLC5A6 is expressed in microvessels of human brain. The absolute expression levels of SLC5A6 protein in isolated human and monkey brain microvessels were 1.19 and 0.597 fmol/μg protein, respectively, as determined by a quantitative targeted absolute proteomics technique. Using an antibody-free method established by Kubo et al. (2015), we found that SLC5A6 was preferentially localized at the luminal membrane of brain capillary endothelium. Knock-down analysis using SLC5A6 siRNA showed that SLC5A6 accounts for 88.7% and 98.6% of total [(3) H]biotin and [(3) H]pantothenic acid uptakes, respectively, by human cerebral microvascular endothelial cell line hCMEC/D3. SLC5A6-mediated transport in hCMEC/D3 was markedly inhibited not only by biotin and pantothenic acid, but also by prostaglandin E2, lipoic acid, docosahexaenoic acid, indomethacin, ketoprofen, diclofenac, ibuprofen, phenylbutazone, and flurbiprofen. This study is the first to confirm expression of SLC5A6 in human brain microvessels and to provide evidence that SLC5A6 is a major contributor to luminal uptake of biotin and pantothenic acid at the human blood-brain barrier. In humans, it was unclear (not concluded) about what transport system at the blood-brain barrier (BBB) is responsible for the brain uptakes of two vitamins, biotin and pantothenic acid, which are necessary for brain proper function. This study clarified for the first time that the solute carrier 5A6/Na(+) -dependent multivitamin transporter SLC5A6/SMVT is responsible for the supplies of biotin and pantothenic acid into brain across the BBB in humans. DHA, docosahexaenoic acid; NSAID, non-steroidal anti-inflammatory drug; PGE2, prostaglandin E2. © 2015 International Society for Neurochemistry.
Brain composition and olfactory learning in honey bees
Gronenberg, Wulfila; Couvillon, Margaret J.
2015-01-01
Correlations between brain or brain component size and behavioral measures are frequently studied by comparing different animal species, which sometimes introduces variables that complicate interpretation in terms of brain function. Here, we have analyzed the brain composition of honey bees (Apis mellifera) that have been individually tested in an olfactory learning paradigm. We found that the total brain size correlated with the bees’ learning performance. Among different brain components, only the mushroom body, a structure known to be involved in learning and memory, showed a positive correlation with learning performance. In contrast, visual neuropils were relatively smaller in bees that performed better in the olfactory learning task, suggesting modality-specific behavioral specialization of individual bees. This idea is also supported by inter-individual differences in brain composition. Some slight yet statistically significant differences in the brain composition of European and Africanized honey bees are reported. Larger bees had larger brains, and by comparing brains of different sizes, we report isometric correlations for all brain components except for a small structure, the central body. PMID:20060918
Risk aversion affects economic values of blue fox breeding scheme.
Peura, J; Kempe, R; Strandén, I; Rydhmer, L
2016-12-01
The profit and production of an average Finnish blue fox farm was simulated using a deterministic bio-economic farm model. Risk was included using Arrow-Prat absolute risk aversion coefficient and profit variance. Risk-rated economic values were calculated for pregnancy rate, litter loss, litter size, pelt size, pelt quality, pelt colour clarity, feed efficiency and eye infection. With high absolute risk aversion, economic values were lower than with low absolute risk aversion. Economic values were highest for litter loss (18.16 and 26.42 EUR), litter size (13.27 and 19.40 EUR), pregnancy (11.99 and 18.39 EUR) and eye infection (12.39 and 13.81 EUR). Sensitivity analysis showed that selection pressure for improved eye health depended strongly on proportion of culled animals among infected animals and much less on the proportion of infected animals. The economic value of feed efficiency was lower than expected (6.06 and 8.03 EUR). However, it was almost the same magnitude as pelt quality (7.30 and 7.30 EUR) and higher than the economic value of pelt size (3.37 and 5.26 EUR). Risk factors should be considered in blue fox breeding scheme because they change the relative importance of traits. © 2016 Blackwell Verlag GmbH.
Westerhausen, René; Kompus, Kristiina; Hugdahl, Kenneth
2014-01-01
Functional hemispheric differences for speech and language processing have been traditionally studied by using verbal dichotic-listening paradigms. The commonly observed right-ear preference for the report of dichotically presented syllables is taken to reflect the left hemispheric dominance for speech processing. However, the results of recent functional imaging studies also show that both hemispheres - not only the left - are engaged by dichotic listening, suggesting a more complex relationship between behavioral laterality and functional hemispheric activation asymmetries. In order to more closely examine the hemispheric differences underlying dichotic-listening performance, we report an analysis of functional magnetic resonance imaging (fMRI) data of 104 right-handed subjects, for the first time combining an interhemispheric difference and conjunction analysis. This approach allowed for a distinction of homotopic brain regions which showed symmetrical (i.e., brain region significantly activated in both hemispheres and no activation difference between the hemispheres), relative asymmetrical (i.e., activated in both hemispheres but significantly stronger in one than the other hemisphere), and absolute asymmetrical activation patterns (i.e., activated only in one hemisphere and this activation is significantly stronger than in the other hemisphere). Symmetrical activation was found in large clusters encompassing temporal, parietal, inferior frontal, and medial superior frontal regions. Relative and absolute left-ward asymmetries were found in the posterior superior temporal gyrus, located adjacent to symmetrically activated areas, and creating a lateral-medial gradient from symmetrical towards absolute asymmetrical activation within the peri-Sylvian region. Absolute leftward asymmetry was also found in the post-central and medial superior frontal gyri, while rightward asymmetries were found in middle temporal and middle frontal gyri. We conclude that dichotic listening engages a bihemispheric cortical network, showing a symmetrical and mostly leftward asymmetrical pattern. The here obtained functional (a)symmetry map might serve as a basis for future studies which - by studying the relevance of the here identified regions - clarify the relationship between behavioral laterality measures and hemispheric asymmetry. © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bancelin, Stéphane; Aimé, Carole; Gusachenko, Ivan; Kowalczuk, Laura; Latour, Gaël; Coradin, Thibaud; Schanne-Klein, Marie-Claire
2014-09-01
The quantification of collagen fibril size is a major issue for the investigation of pathological disorders associated with structural defects of the extracellular matrix. Second-harmonic generation microscopy is a powerful technique to characterize the macromolecular organization of collagen in unstained biological tissues. Nevertheless, due to the complex coherent building of this nonlinear optical signal, it has never been used to measure fibril diameter so far. Here we report absolute measurements of second-harmonic signals from isolated fibrils down to 30 nm diameter, via implementation of correlative second-harmonic-electron microscopy. Moreover, using analytical and numerical calculations, we demonstrate that the high sensitivity of this technique originates from the parallel alignment of collagen triple helices within fibrils and the subsequent constructive interferences of second-harmonic radiations. Finally, we use these absolute measurements as a calibration for ex vivo quantification of fibril diameter in the Descemet’s membrane of a diabetic rat cornea.
Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution.
Smaers, J B; Soligo, C
2013-05-22
Comparative analyses of primate brain evolution have highlighted changes in size and internal organization as key factors underlying species diversity. It remains, however, unclear (i) how much variation in mosaic brain reorganization versus variation in relative brain size contributes to explaining the structural neural diversity observed across species, (ii) which mosaic changes contribute most to explaining diversity, and (iii) what the temporal origin, rates and processes are that underlie evolutionary shifts in mosaic reorganization for individual branches of the primate tree of life. We address these questions by combining novel comparative methods that allow assessing the temporal origin, rate and process of evolutionary changes on individual branches of the tree of life, with newly available data on volumes of key brain structures (prefrontal cortex, frontal motor areas and cerebrocerebellum) for a sample of 17 species (including humans). We identify patterns of mosaic change in brain evolution that mirror brain systems previously identified by electrophysiological and anatomical tract-tracing studies in non-human primates and functional connectivity MRI studies in humans. Across more than 40 Myr of anthropoid primate evolution, mosaic changes contribute more to explaining neural diversity than changes in relative brain size, and different mosaic patterns are differentially selected for when brains increase or decrease in size. We identify lineage-specific evolutionary specializations for all branches of the tree of life covered by our sample and demonstrate deep evolutionary roots for mosaic patterns associated with motor control and learning.
Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution
Smaers, J. B.; Soligo, C.
2013-01-01
Comparative analyses of primate brain evolution have highlighted changes in size and internal organization as key factors underlying species diversity. It remains, however, unclear (i) how much variation in mosaic brain reorganization versus variation in relative brain size contributes to explaining the structural neural diversity observed across species, (ii) which mosaic changes contribute most to explaining diversity, and (iii) what the temporal origin, rates and processes are that underlie evolutionary shifts in mosaic reorganization for individual branches of the primate tree of life. We address these questions by combining novel comparative methods that allow assessing the temporal origin, rate and process of evolutionary changes on individual branches of the tree of life, with newly available data on volumes of key brain structures (prefrontal cortex, frontal motor areas and cerebrocerebellum) for a sample of 17 species (including humans). We identify patterns of mosaic change in brain evolution that mirror brain systems previously identified by electrophysiological and anatomical tract-tracing studies in non-human primates and functional connectivity MRI studies in humans. Across more than 40 Myr of anthropoid primate evolution, mosaic changes contribute more to explaining neural diversity than changes in relative brain size, and different mosaic patterns are differentially selected for when brains increase or decrease in size. We identify lineage-specific evolutionary specializations for all branches of the tree of life covered by our sample and demonstrate deep evolutionary roots for mosaic patterns associated with motor control and learning. PMID:23536600
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertesz, Vilmos; Weiskittel, Taylor M.; Vavek, Marissa
Currently, absolute quantitation aspects of droplet-based surface sampling for thin tissue analysis using a fully automated autosampler/HPLC-ESI-MS/MS system are not fully evaluated. Knowledge of extraction efficiency and its reproducibility is required to judge the potential of the method for absolute quantitation of analytes from thin tissue sections. Methods: Adjacent thin tissue sections of propranolol dosed mouse brain (10- μm-thick), kidney (10- μm-thick) and liver (8-, 10-, 16- and 24- μm-thick) were obtained. Absolute concentration of propranolol was determined in tissue punches from serial sections using standard bulk tissue extraction protocols and subsequent HPLC separations and tandem mass spectrometric analysis. Thesemore » values were used to determine propranolol extraction efficiency from the tissues with the droplet-based surface sampling approach. Results: Extraction efficiency of propranolol using 10- μm-thick brain, kidney and liver thin tissues using droplet-based surface sampling varied between ~45-63%. Extraction efficiency decreased from ~65% to ~36% with liver thickness increasing from 8 μm to 24 μm. Randomly selecting half of the samples as standards, precision and accuracy of propranolol concentrations obtained for the other half of samples as quality control metrics were determined. Resulting precision ( ±15%) and accuracy ( ±3%) values, respectively, were within acceptable limits. In conclusion, comparative quantitation of adjacent mouse thin tissue sections of different organs and of various thicknesses by droplet-based surface sampling and by bulk extraction of tissue punches showed that extraction efficiency was incomplete using the former method, and that it depended on the organ and tissue thickness. However, once extraction efficiency was determined and applied, the droplet-based approach provided the required quantitation accuracy and precision for assay validations. Furthermore, this means that once the extraction efficiency was calibrated for a given tissue type and drug, the droplet-based approach provides a non-labor intensive and high-throughput means to acquire spatially resolved quantitative analysis of multiple samples of the same type.« less
[A correlation between diffusion kurtosis imaging and the proliferative activity of brain glioma].
Tonoyan, A S; Pronin, I N; Pitshelauri, D I; Shishkina, L V; Fadeeva, L M; Pogosbekyan, E L; Zakharova, N E; Shults, E I; Khachanova, N V; Kornienko, V N; Potapov, A A
2015-01-01
The aim of the study was to assess the capabilities of diffusion kurtosis imaging (DKI) in diagnosis of the glioma proliferative activity and to evaluate a relationship between the glioma proliferative activity index and diffusion parameters of the contralateral normal appearing white matter (CNAWM). The study included 47 patients with newly diagnosed brain gliomas (23 low grade, 13 grade III, and 11 grade IV gliomas). We determined a relationship between absolute and normalized parameters of the diffusion tensor (mean (MD), axial (AD), and radial (RD) diffusivities; fractional (FA) and relative (RA) anisotropies) and diffusion kurtosis (mean (MK), axial (AK), and radial (RK) kurtosis; kurtosis anisotropy (KA)) and the proliferative activity index in the most malignant glioma parts (p<0.05). We also established a relationship between the tensor and kurtosis parameters of CNAWM and the glioma proliferative activity index (p<0.05). The correlation between all the absolute and normalized diffusion parameters and the glioma proliferative activity index, except absolute and normalized FA and RA values, was found to be statistically significant (p<0.05). Kurtosis (MK, AK, and RK) and anisotropy (KA, FA, RA) values increased, and diffusivity (MD, AD, RD) values decreased as the glioma proliferative activity index increased. A strong correlation between the proliferative activity index and absolute RK (r=0,71; p=0.000001) and normalized values of MK (r=0.8; p=0.000001), AK (r=0.71; p=0.000001), RK (r=0.81; p=0.000001), and RD (r=-0.71; p=0.000001) was found. A weak, but statistically significant correlation between the glioma proliferative activity index and diffusion values RK (r=-0.36; p=0.014), KA (r=-0.39; p=0.007), RD (r=0.35; p=0.017), FA (r=-0.42; p=0.003), and RA (r=-0.41; p=0.004) of CNAWM was found. DKI has good capabilities to detect immunohistochemical changes in gliomas. DKI demonstrated a high sensitivity in detection of microstructural changes in the contralateral normal appearing white matter in patients with brain gliomas.
Kertesz, Vilmos; Weiskittel, Taylor M.; Vavek, Marissa; ...
2016-06-22
Currently, absolute quantitation aspects of droplet-based surface sampling for thin tissue analysis using a fully automated autosampler/HPLC-ESI-MS/MS system are not fully evaluated. Knowledge of extraction efficiency and its reproducibility is required to judge the potential of the method for absolute quantitation of analytes from thin tissue sections. Methods: Adjacent thin tissue sections of propranolol dosed mouse brain (10- μm-thick), kidney (10- μm-thick) and liver (8-, 10-, 16- and 24- μm-thick) were obtained. Absolute concentration of propranolol was determined in tissue punches from serial sections using standard bulk tissue extraction protocols and subsequent HPLC separations and tandem mass spectrometric analysis. Thesemore » values were used to determine propranolol extraction efficiency from the tissues with the droplet-based surface sampling approach. Results: Extraction efficiency of propranolol using 10- μm-thick brain, kidney and liver thin tissues using droplet-based surface sampling varied between ~45-63%. Extraction efficiency decreased from ~65% to ~36% with liver thickness increasing from 8 μm to 24 μm. Randomly selecting half of the samples as standards, precision and accuracy of propranolol concentrations obtained for the other half of samples as quality control metrics were determined. Resulting precision ( ±15%) and accuracy ( ±3%) values, respectively, were within acceptable limits. In conclusion, comparative quantitation of adjacent mouse thin tissue sections of different organs and of various thicknesses by droplet-based surface sampling and by bulk extraction of tissue punches showed that extraction efficiency was incomplete using the former method, and that it depended on the organ and tissue thickness. However, once extraction efficiency was determined and applied, the droplet-based approach provided the required quantitation accuracy and precision for assay validations. Furthermore, this means that once the extraction efficiency was calibrated for a given tissue type and drug, the droplet-based approach provides a non-labor intensive and high-throughput means to acquire spatially resolved quantitative analysis of multiple samples of the same type.« less
Sleep confers a benefit for retention of statistical language learning in 6.5month old infants.
Simon, Katharine N S; Werchan, Denise; Goldstein, Michael R; Sweeney, Lucia; Bootzin, Richard R; Nadel, Lynn; Gómez, Rebecca L
2017-04-01
Infants show robust ability to track transitional probabilities within language and can use this information to extract words from continuous speech. The degree to which infants remember these words across a delay is unknown. Given well-established benefits of sleep on long-term memory retention in adults, we examine whether sleep similarly facilitates memory in 6.5month olds. Infants listened to an artificial language for 7minutes, followed by a period of sleep or wakefulness. After a time-matched delay for sleep and wakefulness dyads, we measured retention using the head-turn-preference procedure. Infants who slept retained memory for the extracted words that was prone to interference during the test. Infants who remained awake showed no retention. Within the nap group, retention correlated with three electrophysiological measures (1) absolute theta across the brain, (2) absolute alpha across the brain, and (3) greater fronto-central slow wave activity (SWA). Copyright © 2016 Elsevier Inc. All rights reserved.
Herculano-Houzel, Suzana; Avelino-de-Souza, Kamilla; Neves, Kleber; Porfírio, Jairo; Messeder, Débora; Mattos Feijó, Larissa; Maldonado, José; Manger, Paul R.
2014-01-01
What explains the superior cognitive abilities of the human brain compared to other, larger brains? Here we investigate the possibility that the human brain has a larger number of neurons than even larger brains by determining the cellular composition of the brain of the African elephant. We find that the African elephant brain, which is about three times larger than the human brain, contains 257 billion (109) neurons, three times more than the average human brain; however, 97.5% of the neurons in the elephant brain (251 billion) are found in the cerebellum. This makes the elephant an outlier in regard to the number of cerebellar neurons compared to other mammals, which might be related to sensorimotor specializations. In contrast, the elephant cerebral cortex, which has twice the mass of the human cerebral cortex, holds only 5.6 billion neurons, about one third of the number of neurons found in the human cerebral cortex. This finding supports the hypothesis that the larger absolute number of neurons in the human cerebral cortex (but not in the whole brain) is correlated with the superior cognitive abilities of humans compared to elephants and other large-brained mammals. PMID:24971054
Cui, Zaixu; Gong, Gaolang
2018-06-02
Individualized behavioral/cognitive prediction using machine learning (ML) regression approaches is becoming increasingly applied. The specific ML regression algorithm and sample size are two key factors that non-trivially influence prediction accuracies. However, the effects of the ML regression algorithm and sample size on individualized behavioral/cognitive prediction performance have not been comprehensively assessed. To address this issue, the present study included six commonly used ML regression algorithms: ordinary least squares (OLS) regression, least absolute shrinkage and selection operator (LASSO) regression, ridge regression, elastic-net regression, linear support vector regression (LSVR), and relevance vector regression (RVR), to perform specific behavioral/cognitive predictions based on different sample sizes. Specifically, the publicly available resting-state functional MRI (rs-fMRI) dataset from the Human Connectome Project (HCP) was used, and whole-brain resting-state functional connectivity (rsFC) or rsFC strength (rsFCS) were extracted as prediction features. Twenty-five sample sizes (ranged from 20 to 700) were studied by sub-sampling from the entire HCP cohort. The analyses showed that rsFC-based LASSO regression performed remarkably worse than the other algorithms, and rsFCS-based OLS regression performed markedly worse than the other algorithms. Regardless of the algorithm and feature type, both the prediction accuracy and its stability exponentially increased with increasing sample size. The specific patterns of the observed algorithm and sample size effects were well replicated in the prediction using re-testing fMRI data, data processed by different imaging preprocessing schemes, and different behavioral/cognitive scores, thus indicating excellent robustness/generalization of the effects. The current findings provide critical insight into how the selected ML regression algorithm and sample size influence individualized predictions of behavior/cognition and offer important guidance for choosing the ML regression algorithm or sample size in relevant investigations. Copyright © 2018 Elsevier Inc. All rights reserved.
Food Web Structure Shapes the Morphology of Teleost Fish Brains.
Edmunds, Nicholas B; McCann, Kevin S; Laberge, Frédéric
2016-01-01
Previous work showed that teleost fish brain size correlates with the flexible exploitation of habitats and predation abilities in an aquatic food web. Since it is unclear how regional brain changes contribute to these relationships, we quantitatively examined the effects of common food web attributes on the size of five brain regions in teleost fish at both within-species (plasticity or natural variation) and between-species (evolution) scales. Our results indicate that brain morphology is influenced by habitat use and trophic position, but not by the degree of littoral-pelagic habitat coupling, despite the fact that the total brain size was previously shown to increase with habitat coupling in Lake Huron. Intriguingly, the results revealed two potential evolutionary trade-offs: (i) relative olfactory bulb size increased, while relative optic tectum size decreased, across a trophic position gradient, and (ii) the telencephalon was relatively larger in fish using more littoral-based carbon, while the cerebellum was relatively larger in fish using more pelagic-based carbon. Additionally, evidence for a within-species effect on the telencephalon was found, where it increased in size with trophic position. Collectively, these results suggest that food web structure has fundamentally contributed to the shaping of teleost brain morphology. © 2016 S. Karger AG, Basel.
Horváth, Klára; Martos, János; Mihalik, Béla; Bódizs, Róbert
2011-06-17
Our study intends to examine whether the social brain theory is applicable to human individual differences. According to the social brain theory primates have larger brains as it could be expected from their body sizes due to the adaptation to a more complex social life. Regarding humans there were few studies about the relationship between theory of mind and frontal and temporal brain lobes. We hypothesized that these brain lobes, as well as the whole cerebrum and neocortex are in connection with the Sociability personality dimension that is associated with individuals' social lives. Our findings support this hypothesis as Sociability correlated positively with the examined brain structures if we control the effects of body size differences and age. These results suggest that the social brain theory can be extended to human interindividual differences and they have some implications to personality psychology too.
Semler, Elisa; Anderl-Straub, Sarah; Uttner, Ingo; Diehl-Schmid, Janine; Danek, Adrian; Einsiedler, Beate; Fassbender, Klaus; Fliessbach, Klaus; Huppertz, Hans-Jürgen; Jahn, Holger; Kornhuber, Johannes; Landwehrmeyer, Bernhard; Lauer, Martin; Muche, Rainer; Prudlo, Johannes; Schneider, Anja; Schroeter, Matthias L; Ludolph, Albert C; Otto, Markus
2018-04-25
With upcoming therapeutic interventions for patients with primary progressive aphasia (PPA), instruments for the follow-up of patients are needed to describe disease progression and to evaluate potential therapeutic effects. So far, volumetric brain changes have been proposed as clinical endpoints in the literature, but cognitive scores are still lacking. This study followed disease progression predominantly in language-based performance within 1 year and defined a PPA sum score which can be used in therapeutic interventions. We assessed 28 patients with nonfluent variant PPA, 17 with semantic variant PPA, 13 with logopenic variant PPA, and 28 healthy controls in detail for 1 year. The most informative neuropsychological assessments were combined to a sum score, and associations between brain atrophy were investigated followed by a sample size calculation for clinical trials. Significant absolute changes up to 20% in cognitive tests were found after 1 year. Semantic and phonemic word fluency, Boston Naming Test, Digit Span, Token Test, AAT Written language, and Cookie Test were identified as the best markers for disease progression. These tasks provide the basis of a new PPA sum score. Assuming a therapeutic effect of 50% reduction in cognitive decline for sample size calculations, a number of 56 cases is needed to find a significant treatment effect. Correlations between cognitive decline and atrophy showed a correlation up to r = 0.7 between the sum score and frontal structures, namely the superior and inferior frontal gyrus, as well as with left-sided subcortical structures. Our findings support the high performance of the proposed sum score in the follow-up of PPA and recommend it as an outcome measure in intervention studies.
Castillo-Morales, Atahualpa; Monzón-Sandoval, Jimena; de Sousa, Alexandra A; Urrutia, Araxi O; Gutierrez, Humberto
2016-10-01
Increased brain size is thought to have played an important role in the evolution of mammals and is a highly variable trait across lineages. Variations in brain size are closely linked to corresponding variations in the size of the neocortex, a distinct mammalian evolutionary innovation. The genomic features that explain and/or accompany variations in the relative size of the neocortex remain unknown. By comparing the genomes of 28 mammalian species, we show that neocortical expansion relative to the rest of the brain is associated with variations in gene family size (GFS) of gene families that are significantly enriched in biological functions associated with chemotaxis, cell-cell signalling and immune response. Importantly, we find that previously reported GFS variations associated with increased brain size are largely accounted for by the stronger link between neocortex expansion and variations in the size of gene families. Moreover, genes within these families are more prominently expressed in the human neocortex during early compared with adult development. These results suggest that changes in GFS underlie morphological adaptations during brain evolution in mammalian lineages. © 2016 The Authors.
Castillo-Morales, Atahualpa; Monzón-Sandoval, Jimena; de Sousa, Alexandra A.
2016-01-01
Increased brain size is thought to have played an important role in the evolution of mammals and is a highly variable trait across lineages. Variations in brain size are closely linked to corresponding variations in the size of the neocortex, a distinct mammalian evolutionary innovation. The genomic features that explain and/or accompany variations in the relative size of the neocortex remain unknown. By comparing the genomes of 28 mammalian species, we show that neocortical expansion relative to the rest of the brain is associated with variations in gene family size (GFS) of gene families that are significantly enriched in biological functions associated with chemotaxis, cell–cell signalling and immune response. Importantly, we find that previously reported GFS variations associated with increased brain size are largely accounted for by the stronger link between neocortex expansion and variations in the size of gene families. Moreover, genes within these families are more prominently expressed in the human neocortex during early compared with adult development. These results suggest that changes in GFS underlie morphological adaptations during brain evolution in mammalian lineages. PMID:27707894
Levetiracetam-induced neutropenia following traumatic brain injury.
Bunnell, Kristen; Pucci, Francesco
2015-01-01
Levetiracetam is being increasingly utilized for post-traumatic brain injury seizure prophylaxis, in part because of its more favourable adverse effect profile compared to other anti-epileptics. This report highlights an unusual, clinically significant adverse drug reaction attributed to levetiracetam use in a patient with blunt traumatic brain injury. This study describes a case of isolated neutropenia associated with levetiracetam in a 52-year-old man with traumatic brain injury. The patient developed neutropenia on day 3 of therapy with levetiracetam, with an absolute neutrophil count nadir of 200. There were no other medications that may have been implicated in the development of this haematological toxicity. Neutropenia rapidly resolved upon cessation of levetiracetam therapy. Clinicians should be aware of potentially serious adverse reactions associated with levetiracetam in patients with neurological injury.
Winter, Lukas; Oezerdem, Celal; Hoffmann, Werner; van de Lindt, Tessa; Periquito, Joao; Ji, Yiyi; Ghadjar, Pirus; Budach, Volker; Wust, Peter; Niendorf, Thoralf
2015-09-22
Glioblastoma multiforme is the most common and most aggressive malign brain tumor. The 5-year survival rate after tumor resection and adjuvant chemoradiation is only 10 %, with almost all recurrences occurring in the initially treated site. Attempts to improve local control using a higher radiation dose were not successful so that alternative additive treatments are urgently needed. Given the strong rationale for hyperthermia as part of a multimodal treatment for patients with glioblastoma, non-invasive radio frequency (RF) hyperthermia might significantly improve treatment results. A non-invasive applicator was constructed utilizing the magnetic resonance (MR) spin excitation frequency for controlled RF hyperthermia and MR imaging in an integrated system, which we refer to as thermal MR. Applicator designs at RF frequencies 300 MHz, 500 MHz and 1GHz were investigated and examined for absolute applicable thermal dose and temperature hotspot size. Electromagnetic field (EMF) and temperature simulations were performed in human voxel models. RF heating experiments were conducted at 300 MHz and 500 MHz to characterize the applicator performance and validate the simulations. The feasibility of thermal MR was demonstrated at 7.0 T. The temperature could be increased by ~11 °C in 3 min in the center of a head sized phantom. Modification of the RF phases allowed steering of a temperature hotspot to a deliberately selected location. RF heating was monitored using the integrated system for MR thermometry and high spatial resolution MRI. EMF and thermal simulations demonstrated that local RF hyperthermia using the integrated system is feasible to reach a maximum temperature in the center of the human brain of 46.8 °C after 3 min of RF heating while surface temperatures stayed below 41 °C. Using higher RF frequencies reduces the size of the temperature hotspot significantly. The opportunities and capabilities of thermal magnetic resonance for RF hyperthermia interventions of intracranial lesions are intriguing. Employing such systems as an alternative additive treatment for glioblastoma multiforme might be able to improve local control by "fighting fire with fire". Interventions are not limited to the human brain and might include temperature driven targeted drug and MR contrast agent delivery and help to understand temperature dependent bio- and physiological processes in-vivo.
Explaining brain size variation: from social to cultural brain.
van Schaik, Carel P; Isler, Karin; Burkart, Judith M
2012-05-01
Although the social brain hypothesis has found near-universal acceptance as the best explanation for the evolution of extensive variation in brain size among mammals, it faces two problems. First, it cannot account for grade shifts, where species or complete lineages have a very different brain size than expected based on their social organization. Second, it cannot account for the observation that species with high socio-cognitive abilities also excel in general cognition. These problems may be related. For birds and mammals, we propose to integrate the social brain hypothesis into a broader framework we call cultural intelligence, which stresses the importance of the high costs of brain tissue, general behavioral flexibility and the role of social learning in acquiring cognitive skills. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tunc-Skarka, Nuran; Weber-Fahr, Wolfgang; Ende, Gabriele
2015-10-01
It has previously been reported that even social alcohol consumption affects the magnetic resonance spectroscopy (MRS) signals of choline-containing compounds (tCho). The purpose of this study was to investigate whether the consumption of alcohol affects the concentrations of the metabolites tCho, N-acetylaspartate, creatine, or myo-inositol and/or their T 2 relaxation times. (1)H MR spectra were obtained at 3 T from a frontal white matter voxel of 25 healthy subjects with social alcohol consumption (between 0 and 25.9 g/day). Absolute brain metabolite concentrations and T 2 relaxation times of metabolites were examined via MRS measurements at different echo times. Metabolite concentrations and their T 2 relaxation times were correlated with subjects' alcohol consumption, controlling for age. We observed positive correlations of absolute tCho and phosphocreatine and creatine (tCr) concentrations with alcohol consumption but no correlation between any metabolite T 2 relaxation time and alcohol consumption. This study shows that even social alcohol consumption affects the concentrations of tCho and tCr in cerebral white matter. Future studies assessing brain tCho and tCr levels should control for the confounding factor alcohol consumption.
Female brain size affects the assessment of male attractiveness during mate choice.
Corral-López, Alberto; Bloch, Natasha I; Kotrschal, Alexander; van der Bijl, Wouter; Buechel, Severine D; Mank, Judith E; Kolm, Niclas
2017-03-01
Mate choice decisions are central in sexual selection theory aimed to understand how sexual traits evolve and their role in evolutionary diversification. We test the hypothesis that brain size and cognitive ability are important for accurate assessment of partner quality and that variation in brain size and cognitive ability underlies variation in mate choice. We compared sexual preference in guppy female lines selected for divergence in relative brain size, which we have previously shown to have substantial differences in cognitive ability. In a dichotomous choice test, large-brained and wild-type females showed strong preference for males with color traits that predict attractiveness in this species. In contrast, small-brained females showed no preference for males with these traits. In-depth analysis of optomotor response to color cues and gene expression of key opsins in the eye revealed that the observed differences were not due to differences in visual perception of color, indicating that differences in the ability to process indicators of attractiveness are responsible. We thus provide the first experimental support that individual variation in brain size affects mate choice decisions and conclude that differences in cognitive ability may be an important underlying mechanism behind variation in female mate choice.
Tedrus, Gloria M A S; Fonseca, Lineu C; Tonelotto, Josiane M F; Costa, Rebeca M; Chiodi, Marcelo G
2006-07-01
Benign childhood epilepsy with centro-temporal spikes (BECTS) is a form of focal idiopathic epilepsy, with seizure remission by the age of 18. Recent studies have suggested that some children with BECTS can suffer from deficits of memory, attention and learning ability and in auditory-verbal and performance sub-tests. On the other hand, alterations in the baseline brain electrical activity determined by using the quantitative electroencephalogram (qEEG) have been described. The objective of this study was to evaluate the absolute and relative powers in the delta, theta, alpha and beta bands of the qEEG in children with BECTS, and their relation to IQ measurements (WISC-III). Twenty-six 8 to 11-year-old children with BECTS were studied, paired with a control group of healthy children according to age and gender. It was shown that the absolute delta and theta powers were statistically greater in the children with BECTS than in the control group, at almost all the electrodes. In the children with BECTS, a negative correlation (Pearson's correlation test) was observed at various electrodes between the absolute delta and theta powers and the performance IQ. These data indicate a possible relationship between maturational disturbance in the brain electrical activity development and the tendency for inferior cognitive performance in children with BECTS.
Liu, Haisong; Li, Jun; Pappas, Evangelos; Andrews, David; Evans, James; Werner-Wasik, Maria; Yu, Yan; Dicker, Adam; Shi, Wenyin
2016-09-08
An automatic brain-metastases planning (ABMP) software has been installed in our institution. It is dedicated for treating multiple brain metastases with radiosurgery on linear accelerators (linacs) using a single-setup isocenter with noncoplanar dynamic conformal arcs. This study is to validate the calculated absolute dose and dose distribution of ABMP. Three types of measurements were performed to validate the planning software: 1, dual micro ion chambers were used with an acrylic phantom to measure the absolute dose; 2, a 3D cylindrical phantom with dual diode array was used to evaluate 2D dose distribution and point dose for smaller targets; and 3, a 3D pseudo-in vivo patient-specific phantom filled with polymer gels was used to evaluate the accuracy of 3D dose distribution and radia-tion delivery. Micro chamber measurement of two targets (volumes of 1.2 cc and 0.9 cc, respectively) showed that the percentage differences of the absolute dose at both targets were less than 1%. Averaged GI passing rate of five different plans measured with the diode array phantom was above 98%, using criteria of 3% dose difference, 1 mm distance to agreement (DTA), and 10% low-dose threshold. 3D gel phantom measurement results demonstrated a 3D displacement of nine targets of 0.7 ± 0.4 mm (range 0.2 ~ 1.1 mm). The averaged two-dimensional (2D) GI passing rate for several region of interests (ROI) on axial slices that encompass each one of the nine targets was above 98% (5% dose difference, 2 mm DTA, and 10% low-dose threshold). Measured D95, the minimum dose that covers 95% of the target volume, of the nine targets was 0.7% less than the calculated D95. Three different types of dosimetric verification methods were used and proved the dose calculation of the new automatic brain metastases planning (ABMP) software was clinical acceptable. The 3D pseudo-in vivo patient-specific gel phantom test also served as an end-to-end test for validating not only the dose calculation, but the treatment delivery accuracy as well. © 2016 The Authors.
Speed and Accuracy of Absolute Pitch Judgments: Some Latter-Day Results.
ERIC Educational Resources Information Center
Carroll, John B.
Nine subjects, 5 of whom claimed absolute pitch (AP) ability were instructed to rapidly strike notes on the piano to match randomized tape-recorded piano notes. Stimulus set sizes were 64, 16, or 4 consecutive semitones, or 7 diatonic notes of a designated octave. A control task involved motor movements to notes announced in advance. Accuracy,…
Madani, Zohra; Malaisse, Willy J; Ait-Yahia, Dalila
2015-09-01
The present study explored the potential of fish proteins to counteract high glucose levels and oxidative stress induced by fructose in the brain. A total of 24 male Wistar rats consumed sardine protein or casein with or without high fructose (64%). After 2 months, brain tissue was used for analyses. The fructose rats exhibited an increase in body mass index (BMI), body weight, absolute and relative brain weights and brain glucose; however, there was a decrease in food and water intake. Fructose disrupts membrane homeostasis, as evidenced by an increase in the brain hydroperoxides and a decrease in catalase (CAT) and glutathione peroxidase (GSH-Px) compared to the control. The exposure to the sardine protein reduced BMI, food intake, glucose and hydroperoxides, and increased CAT and GSH-Px in the brain. In conclusion, the metabolic dysfunctions associated with the fructose treatment were ameliorated by the presence of sardine protein in the diet by decreasing BMI, brain glucose and lipid peroxidation, and increasing CAT and GSH-Px activities.
NASA Astrophysics Data System (ADS)
Qi, Li; Zhu, Jiang; Hancock, Aneeka M.; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D.; Chen, Zhongping
2017-02-01
Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it not only relates to the properties of the laser and the scattering particles, but also relates to the geometry of both directions of the laser beam and the flow. In this paper, focusing on the analysis of cerebral hemodynamics, we presents a method to quantify the total absolute blood flow velocity in middle cerebral artery (MCA) based on volumetric vessel reconstruction from pure DOCT images. A modified region growing segmentation method is first used to localize the MCA on successive DOCT B-scan images. Vessel skeletonization, followed by an averaging gradient angle calculation method, is then carried out to obtain Doppler angles along the entire MCA. Once the Doppler angles are determined, the absolute blood flow velocity of each position on the MCA is easily found. Given a seed point position on the MCA, our approach could achieve automatic quantification of the fully distributed absolute BFV. Based on experiments conducted using a swept-source optical coherence tomography system, our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches in the rodent brain.
Light enough to travel or wise enough to stay? Brain size evolution and migratory behavior in birds.
Vincze, Orsolya
2016-09-01
Brain size relative to body size is smaller in migratory than in nonmigratory birds. Two mutually nonexclusive hypotheses had been proposed to explain this association. On the one hand, the "energetic trade-off hypothesis" claims that migratory species were selected to have smaller brains because of the interplay between neural tissue volume and migratory flight. On the other hand, the "behavioral flexibility hypothesis" argues that resident species are selected to have higher cognitive capacities, and therefore larger brains, to enable survival in harsh winters, or to deal with environmental seasonality. Here, I test the validity and setting of these two hypotheses using 1466 globally distributed bird species. First, I show that the negative association between migration distance and relative brain size is very robust across species and phylogeny. Second, I provide strong support for the energetic trade-off hypothesis, by showing the validity of the trade-off among long-distance migratory species alone. Third, using resident and short-distance migratory species, I demonstrate that environmental harshness is associated with enlarged relative brain size, therefore arguably better cognition. My study provides the strongest comparative support to date for both the energetic trade-off and the behavioral flexibility hypotheses, and highlights that both mechanisms contribute to brain size evolution, but on different ends of the migratory spectrum. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Morphofunctional Experience-Dependent Plasticity in the Honeybee Brain
ERIC Educational Resources Information Center
Andrione, Mara; Timberlake, Benjamin F.; Vallortigara, Giorgio; Antolini, Renzo; Haase, Albrecht
2017-01-01
Repeated or prolonged exposure to an odorant without any positive or negative reinforcement produces experience-dependent plasticity, which results in habituation and latent inhibition. In the honeybee ("Apis mellifera"), it has been demonstrated that, even if the absolute neural representation of an odor in the primary olfactory center,…
Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu
2015-05-01
The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.
On the Perceptual Subprocess of Absolute Pitch.
Kim, Seung-Goo; Knösche, Thomas R
2017-01-01
Absolute pitch (AP) is the rare ability of musicians to identify the pitch of tonal sound without external reference. While there have been behavioral and neuroimaging studies on the characteristics of AP, how the AP is implemented in human brains remains largely unknown. AP can be viewed as comprising of two subprocesses: perceptual (processing auditory input to extract a pitch chroma) and associative (linking an auditory representation of pitch chroma with a verbal/non-verbal label). In this review, we focus on the nature of the perceptual subprocess of AP. Two different models on how the perceptual subprocess works have been proposed: either via absolute pitch categorization (APC) or based on absolute pitch memory (APM). A major distinction between the two views is that whether the AP uses unique auditory processing (i.e., APC) that exists only in musicians with AP or it is rooted in a common phenomenon (i.e., APM), only with heightened efficiency. We review relevant behavioral and neuroimaging evidence that supports each notion. Lastly, we list open questions and potential ideas to address them.
On the Perceptual Subprocess of Absolute Pitch
Kim, Seung-Goo; Knösche, Thomas R.
2017-01-01
Absolute pitch (AP) is the rare ability of musicians to identify the pitch of tonal sound without external reference. While there have been behavioral and neuroimaging studies on the characteristics of AP, how the AP is implemented in human brains remains largely unknown. AP can be viewed as comprising of two subprocesses: perceptual (processing auditory input to extract a pitch chroma) and associative (linking an auditory representation of pitch chroma with a verbal/non-verbal label). In this review, we focus on the nature of the perceptual subprocess of AP. Two different models on how the perceptual subprocess works have been proposed: either via absolute pitch categorization (APC) or based on absolute pitch memory (APM). A major distinction between the two views is that whether the AP uses unique auditory processing (i.e., APC) that exists only in musicians with AP or it is rooted in a common phenomenon (i.e., APM), only with heightened efficiency. We review relevant behavioral and neuroimaging evidence that supports each notion. Lastly, we list open questions and potential ideas to address them. PMID:29085275
Morris, Melanie; Shaw, Ariel; Lambert, Madison; Perry, Haley Halperin; Lowenstein, Eve; Valenzuela, David; Velazquez-Ulloa, Norma Andrea
2018-06-14
Pregnant women may be exposed to nicotine if they smoke or use tobacco products, nicotine replacement therapy, or via e-cigarettes. Prenatal nicotine exposure has been shown to have deleterious effects on the nervous system in mammals including changes in brain size and in the dopaminergic system. The genetic and molecular mechanisms for these changes are not well understood. A Drosophila melanogaster model for these effects of nicotine exposure could contribute to faster identification of genes and molecular pathways underlying these effects. The purpose of this study was to determine if developmental nicotine exposure affects the nervous system of Drosophila melanogaster, focusing on changes to brain size and the dopaminergic system at two developmental stages. We reared flies on control or nicotine food from egg to 3rd instar larvae or from egg to adult and determined effectiveness of the nicotine treatment. We used immunohistochemistry to visualize the whole brain and dopaminergic neurons, using tyrosine hydroxylase as the marker. We measured brain area, tyrosine hydroxylase fluorescence, and counted the number of dopaminergic neurons in brain clusters. We detected an increase in larval brain hemisphere area, a decrease in tyrosine hydroxylase fluorescence in adult central brains, and a decrease in the number of neurons in the PPM3 adult dopaminergic cluster. We tested involvement of Dα7, one of the nicotinic acetylcholine receptor subunits, and found it was involved in eclosion, as previously described, but not involved in brain size. We conclude that developmental nicotine exposure in Drosophila melanogaster affects brain size and the dopaminergic system. Prenatal nicotine exposure in mammals has also been shown to have effects on brain size and in the dopaminergic system. This study further establishes Drosophila melanogaster as model organism to study the effects of developmental nicotine exposure. The genetic and molecular tools available for Drosophila research will allow elucidation of the mechanisms underlying the effects of nicotine exposure during development.
Social brain volume is associated with in-degree social network size among older adults
2018-01-01
The social brain hypothesis proposes that large neocortex size evolved to support cognitively demanding social interactions. Accordingly, previous studies have observed that larger orbitofrontal and amygdala structures predict the size of an individual's social network. However, it remains uncertain how an individual's social connectedness reported by other people is associated with the social brain volume. In this study, we found that a greater in-degree network size, a measure of social ties identified by a subject's social connections rather than by the subject, significantly correlated with a larger regional volume of the orbitofrontal cortex, dorsomedial prefrontal cortex and lingual gyrus. By contrast, out-degree size, which is based on an individual's self-perceived connectedness, showed no associations. Meta-analytic reverse inference further revealed that regional volume pattern of in-degree size was specifically involved in social inference ability. These findings were possible because our dataset contained the social networks of an entire village, i.e. a global network. The results suggest that the in-degree aspect of social network size not only confirms the previously reported brain correlates of the social network but also shows an association in brain regions involved in the ability to infer other people's minds. This study provides insight into understanding how the social brain is uniquely associated with sociocentric measures derived from a global network. PMID:29367402
The effects of incubation temperature on the development of the cortical forebrain in a lizard.
Amiel, Joshua J; Bao, Shisan; Shine, Richard
2017-01-01
The embryos of egg-laying species are exposed to variable thermal regimes, which can influence not only the resultant hatchling's morphology (e.g., size, sex) and performance (e.g., locomotor speed), but also its cognitive performance (learning ability). To clarify the proximate basis for this latter effect, we incubated eggs of the scincid lizard Bassiana duperreyi under simulated 'hot' and 'cold' natural nest temperatures to examine the effect of incubation temperature on the structure of the telencephalon region of the forebrain. Hatchlings from low-temperature incubation had larger telencephalons (both in absolute terms and relative to body size) and larger neurons in their medial cortices, whereas the medial cortices of hatchlings from high-temperature incubation had fewer neurons overall, but greater neuronal density, and more neurons in certain areas. These temperature-induced differences in B. duperreyi forebrain development are consistent with (and may explain) the disparities in learning ability between hatchlings from our two incubation treatments. The phenotypic plasticity of lizard telencephalon anatomy in response to incubation temperature presents exciting opportunities for studies on the evolutionary and developmental determinants of intelligence in vertebrates, but also offers a cautionary tale. Global climate changes, wrought by anthropogenic activities, may directly modify brain structure in reptiles.
Pearce, Eiluned; Stringer, Chris; Dunbar, R. I. M.
2013-01-01
Previous research has identified morphological differences between the brains of Neanderthals and anatomically modern humans (AMHs). However, studies using endocasts or the cranium itself are limited to investigating external surface features and the overall size and shape of the brain. A complementary approach uses comparative primate data to estimate the size of internal brain areas. Previous attempts to do this have generally assumed that identical total brain volumes imply identical internal organization. Here, we argue that, in the case of Neanderthals and AMHs, differences in the size of the body and visual system imply differences in organization between the same-sized brains of these two taxa. We show that Neanderthals had significantly larger visual systems than contemporary AMHs (indexed by orbital volume) and that when this, along with their greater body mass, is taken into account, Neanderthals have significantly smaller adjusted endocranial capacities than contemporary AMHs. We discuss possible implications of differing brain organization in terms of social cognition, and consider these in the context of differing abilities to cope with fluctuating resources and cultural maintenance. PMID:23486442
Shi, Lei; Hu, Enzhi; Wang, Zhenbo; Liu, Jiewei; Li, Jin; Li, Ming; Chen, Hua; Yu, Chunshui; Jiang, Tianzi; Su, Bing
2017-02-01
Human evolution is marked by a continued enlargement of the brain. Previous studies on human brain evolution focused on identifying sequence divergences of brain size regulating genes between humans and nonhuman primates. However, the evolutionary pattern of the brain size regulating genes during recent human evolution is largely unknown. We conducted a comprehensive analysis of the brain size regulating gene CASC5 and found that in recent human evolution, CASC5 has accumulated many modern human specific amino acid changes, including two fixed changes and six polymorphic changes. Among human populations, 4 of the 6 amino acid polymorphic sites have high frequencies of derived alleles in East Asians, but are rare in Europeans and Africans. We proved that this between-population allelic divergence was caused by regional Darwinian positive selection in East Asians. Further analysis of brain image data of Han Chinese showed significant associations of the amino acid polymorphic sites with gray matter volume. Hence, CASC5 may contribute to the morphological and structural changes of the human brain during recent evolution. The observed between-population divergence of CASC5 variants was driven by natural selection that tends to favor a larger gray matter volume in East Asians.
Phylogenetic signal, feeding behaviour and brain volume in Neotropical bats.
Rojas, D; Mancina, C A; Flores-Martínez, J J; Navarro, L
2013-09-01
Comparative correlational studies of brain size and ecological traits (e.g. feeding habits and habitat complexity) have increased our knowledge about the selective pressures on brain evolution. Studies conducted in bats as a model system assume that shared evolutionary history has a maximum effect on the traits. However, this effect has not been quantified. In addition, the effect of levels of diet specialization on brain size remains unclear. We examined the role of diet on the evolution of brain size in Mormoopidae and Phyllostomidae using two comparative methods. Body mass explained 89% of the variance in brain volume. The effect of feeding behaviour (either characterized as feeding habits, as levels of specialization on a type of item or as handling behaviour) on brain volume was also significant albeit not consistent after controlling for body mass and the strength of the phylogenetic signal (λ). Although the strength of the phylogenetic signal of brain volume and body mass was high when tested individually, λ values in phylogenetic generalized least squares models were significantly different from 1. This suggests that phylogenetic independent contrasts models are not always the best approach for the study of ecological correlates of brain size in New World bats. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, J; Braunstein, S; McDermott, M
Purpose: Sharp dose fall-off is the hallmark of brain radiosurgery to deliver a high dose of radiation to the target while minimizing dose to normal brain tissue. In this study, we developed a technique for the purpose of enhancing the peripheral dose gradient by magnifying the total number of beams focused toward each isocenter via patient head tilt and simultaneous beam intensity modulations. Methods: Computer scripting for the proposed beam number enhancement (BNE) technique was developed. The technique was tested and then implemented on a clinical treatment planning system for a dedicated brain radiosurgical system (GK Perfexion, Elekta Oncology). Tomore » study technical feasibility and dosimetric advantages of the technique, we compared treatment planning quality and delivery efficiency for 20 radiosurgical cases previously treated at our institution. These cases included relatively complex treatments such as acoustic schwannoma, meningioma, brain metastasis and mesial temporal lobe epilepsy. Results: The BNE treatment plans were found to produce nearly identical target volume coverage (absolute value < 0.5%, P > 0.2) and dose conformity (BNE CI= 1.41±0.15 versus 1.41±0.20, P>0.9) as the original treatment plans. The total beam-on time for theBNE treatment plans were comparable (within 1.0 min or 1.8%) with those of the original treatment plans for all the cases. However, BNE treatment plans significantly improved the mean gradient index (BNE GI = 2.9±0.3 versus original GI =3.0±0.3 p<0.0001) and low-level isodose volumes, e.g. 20-50% prescribed isodose volumes, by 2.0% to 5.0% (p<0.02). Furthermore, with 4 to 5-fold increase in the total number of beams, the GI decreased by as much as 20% or 0.5 in absolute values. Conclusion: BNE via head tilt and simultaneous beam intensity modulation is an effective and efficient technique that physically sharpens the peripheral dose gradient for brain radiosurgery.« less
Ohtsuki, Sumio; Ikeda, Chiemi; Uchida, Yasuo; Sakamoto, Yumi; Miller, Florence; Glacial, Fabienne; Decleves, Xavier; Scherrmann, Jean-Michel; Couraud, Pierre-Olivier; Kubo, Yoshiyuki; Tachikawa, Masanori; Terasaki, Tetsuya
2013-01-07
Human cerebral microvascular endothelial cell line hCMEC/D3 is an established model of the human blood-brain barrier (BBB). The purpose of the present study was to determine, by means of quantitative targeted absolute proteomics, the protein expression levels in hCMEC/D3 cells of multiple transporters, receptors and junction proteins for comparison with our previously reported findings in isolated human brain microvessels. Among 91 target molecules, 12 transporters, 2 receptors, 1 junction protein and 1 membrane marker were present at quantifiable levels in plasma membrane fraction of hCMEC/D3 cells. ABCA2, MDR1, MRP4, BCRP, GLUT1, 4F2hc, MCT1, ENT1, transferrin and insulin receptors and claudin-5 were detected in both hCMEC/D3 cells and human brain microvessels. After normalization based on Na(+)/K(+) ATPase expression, the differences in protein expression levels between hCMEC/D3 cells and human brain microvessels were within 4-fold for these proteins, with the exceptions of ENT1, transferrin receptor and claudin-5. ABCA8, LAT1, LRP1 and γ-GTP were below the limit of quantification in the cells, but were found in human brain microvessels. ABCA3, ABCA6, MRP1 and ATA1 were found only in hCMEC/D3 cells. Furthermore, compared with human umbilical vein endothelial cells (HUVECs) as reference nonbrain endothelial cells, MDR1 was found only in hCMEC/D3 cells, and GLUT1 expression was 15-fold higher in hCMEC/D3 cells than in HUVECs. In conclusion, this is the first study to examine the suitability and limitations of the hCMEC/D3 cell line as a BBB functional model in terms of quantitative expression levels of transporters, receptors and tight junction proteins.
Assessing Relevance of External Cognitive Measures.
Cairó, Osvaldo
2017-01-01
The arrival of modern brain imaging technologies has provided new opportunities for examining the biological essence of human intelligence as well as the relationship between brain size and cognition. Thanks to these advances, we can now state that the relationship between brain size and intelligence has never been well understood. This view is supported by findings showing that cognition is correlated more with brain tissues than sheer brain size. The complexity of cellular and molecular organization of neural connections actually determines the computational capacity of the brain. In this review article, we determine that while genotypes are responsible for defining the theoretical limits of intelligence, what is primarily responsible for determining whether those limits are reached or exceeded is experience (environmental influence). Therefore, we contend that the gene-environment interplay defines the intelligent quotient of an individual.
Hypoglossal canal size and hominid speech
DeGusta, David; Gilbert, W. Henry; Turner, Scott P.
1999-01-01
The mammalian hypoglossal canal transmits the nerve that supplies the motor innervation to the tongue. Hypoglossal canal size has previously been used to date the origin of human-like speech capabilities to at least 400,000 years ago and to assign modern human vocal abilities to Neandertals. These conclusions are based on the hypothesis that the size of the hypoglossal canal is indicative of speech capabilities. This hypothesis is falsified here by the finding of numerous nonhuman primate taxa that have hypoglossal canals in the modern human size range, both absolutely and relative to oral cavity volume. Specimens of Australopithecus afarensis, Australopithecus africanus, and Australopithecus boisei also have hypoglossal canals that, both absolutely and relative to oral cavity volume, are equal in size to those of modern humans. The basis for the hypothesis that hypoglossal canal size is indicative of speech was the assumption that hypoglossal canal size is correlated with hypoglossal nerve size, which in turn is related to tongue function. This assumption is probably incorrect, as we found no apparent correlation between the size of the hypoglossal nerve, or the number of axons it contains, and the size of the hypoglossal canal in a sample of cadavers. Our data demonstrate that the size of the hypoglossal canal does not reflect vocal capabilities or language usage. Thus the date of origin for human language and the speech capabilities of Neandertals remain open questions. PMID:9990105
Optical and Nanoparticle Analysis of Normal and Cancer Cells by Light Transmission Spectroscopy
NASA Astrophysics Data System (ADS)
Deatsch, Alison; Sun, Nan; Johnson, Jeffery; Stack, Sharon; Szajko, John; Sander, Christopher; Rebuyon, Roland; Easton, Judah; Tanner, Carol; Ruggiero, Steven
2015-03-01
We have investigated the optical properties of human oral and ovarian cancer and normal cells. Specifically, we have measured the absolute optical extinction for intra-cellular material (lysates) in aqueous suspension. Measurements were conducted over a wavelength range of 250 to 1000 nm with 1 nm resolution using Light Transmission Spectroscopy (LTS). This provides both the absolute extinction of materials under study and, with Mie inversion, the absolute number of particles of a given diameter as a function of diameter in the range of 1 to 3000 nm. Our preliminary studies show significant differences in both the extinction and particle size distributions associated with cancer versus normal cells, which appear to be correlated with differences in the particle size distribution in the range of approximately 50 to 250 nm. Especially significant is a clearly higher density of particles at about 100 nm and smaller for normal cells. Department of Physics, Harper Cancer Research Institute, and the Office of Research at the University of Notre Dame.
{box-sizing:border-box}.fix{background-color:#ff0}.bio-title{color:#5e6a71;font-size:20px;margin-top:0 ,.8);color:#fff;padding:1em;position:absolute;text-align:left}h3 .more{color:#fff;font-size:65%;font -weight:400}.hpfeat .header{background-color:#00a3e4;border-bottom:5px solid #000;color:#000;font-size
Gravitational acceleration as a cue for absolute size and distance?
NASA Technical Reports Server (NTRS)
Hecht, H.; Kaiser, M. K.; Banks, M. S.
1996-01-01
When an object's motion is influenced by gravity, as in the rise and fall of a thrown ball, the vertical component of acceleration is roughly constant at 9.8 m/sec2. In principle, an observer could use this information to estimate the absolute size and distance of the object (Saxberg, 1987a; Watson, Banks, von Hofsten, & Royden, 1992). In five experiments, we examined people's ability to utilize the size and distance information provided by gravitational acceleration. Observers viewed computer simulations of an object rising and falling on a trajectory aligned with the gravitational vector. The simulated objects were balls of different diameters presented across a wide range of simulated distances. Observers were asked to identify the ball that was presented and to estimate its distance. The results showed that observers were much more sensitive to average velocity than to the gravitational acceleration pattern. Likewise, verticality of the motion and visibility of the trajectory's apex had negligible effects on the accuracy of size and distance judgments.
Study on improving the turbidity measurement of the absolute coagulation rate constant.
Sun, Zhiwei; Liu, Jie; Xu, Shenghua
2006-05-23
The existing theories dealing with the evaluation of the absolute coagulation rate constant by turbidity measurement were experimentally tested for different particle-sized (radius = a) suspensions at incident wavelengths (lambda) ranging from near-infrared to ultraviolet light. When the size parameter alpha = 2pi a/lambda > 3, the rate constant data from previous theories for fixed-sized particles show significant inconsistencies at different light wavelengths. We attribute this problem to the imperfection of these theories in describing the light scattering from doublets through their evaluation of the extinction cross section. The evaluations of the rate constants by all previous theories become untenable as the size parameter increases and therefore hampers the applicable range of the turbidity measurement. By using the T-matrix method, we present a robust solution for evaluating the extinction cross section of doublets formed in the aggregation. Our experiments show that this new approach is effective in extending the applicability range of the turbidity methodology and increasing measurement accuracy.
Ranking metrics in gene set enrichment analysis: do they matter?
Zyla, Joanna; Marczyk, Michal; Weiner, January; Polanska, Joanna
2017-05-12
There exist many methods for describing the complex relation between changes of gene expression in molecular pathways or gene ontologies under different experimental conditions. Among them, Gene Set Enrichment Analysis seems to be one of the most commonly used (over 10,000 citations). An important parameter, which could affect the final result, is the choice of a metric for the ranking of genes. Applying a default ranking metric may lead to poor results. In this work 28 benchmark data sets were used to evaluate the sensitivity and false positive rate of gene set analysis for 16 different ranking metrics including new proposals. Furthermore, the robustness of the chosen methods to sample size was tested. Using k-means clustering algorithm a group of four metrics with the highest performance in terms of overall sensitivity, overall false positive rate and computational load was established i.e. absolute value of Moderated Welch Test statistic, Minimum Significant Difference, absolute value of Signal-To-Noise ratio and Baumgartner-Weiss-Schindler test statistic. In case of false positive rate estimation, all selected ranking metrics were robust with respect to sample size. In case of sensitivity, the absolute value of Moderated Welch Test statistic and absolute value of Signal-To-Noise ratio gave stable results, while Baumgartner-Weiss-Schindler and Minimum Significant Difference showed better results for larger sample size. Finally, the Gene Set Enrichment Analysis method with all tested ranking metrics was parallelised and implemented in MATLAB, and is available at https://github.com/ZAEDPolSl/MrGSEA . Choosing a ranking metric in Gene Set Enrichment Analysis has critical impact on results of pathway enrichment analysis. The absolute value of Moderated Welch Test has the best overall sensitivity and Minimum Significant Difference has the best overall specificity of gene set analysis. When the number of non-normally distributed genes is high, using Baumgartner-Weiss-Schindler test statistic gives better outcomes. Also, it finds more enriched pathways than other tested metrics, which may induce new biological discoveries.
Eckstein, R Lutz; Ruch, Diana; Otte, Annette; Donath, Tobias W
2012-01-01
Since inference concerning the relative effects of propagule pressure, biotic interactions, site conditions and species traits on the invasibility of plant communities is limited, we carried out a field experiment to study the role of these factors for absolute and relative seedling emergence in three resident and three non-resident confamilial herb species on a nutrient-poor temperate pasture. We set up a factorial field experiment with two levels each of the factors litter cover (0 and 400 g m(-2)), gap size (0.01 and 0.1 m(2)) and propagule pressure (5 and 50 seeds) and documented soil temperature, soil water content and relative light availability. Recruitment was recorded in spring and autumn 2010 and in spring 2011 to cover initial seedling emergence, establishment after summer drought and final establishment after the first winter. Litter alleviated temperature and moisture conditions and had positive effects on proportional and absolute seedling emergence during all phases of recruitment. Large gaps presented competition-free space with high light availability but showed higher temperature amplitudes and lower soil moisture. Proportional and absolute seedling recruitment was significantly higher in large than in small gaps. In contrast, propagule pressure facilitated absolute seedling emergence but had no effects on proportional emergence or the chance for successful colonisation. Despite significantly higher initial seedling emergence of resident than non-resident species, seed mass and other species-specific traits may be better predictors for idiosyncratic variation in seedling establishment than status. Our data support the fluctuating resource hypothesis and demonstrate that the reserve effect of seeds may facilitate seedling emergence. The direct comparison of propagule pressure with other environmental factors showed that propagule pressure affects absolute seedling abundance, which may be crucial for species that depend on other individuals for sexual reproduction. However, propagule batch size did not significantly affect the chance for successful colonisation of disturbed plots.
The Physics Inside our Brain. Comment on "Topodynamics of Metastable Brains" by Arturo Tozzi et al.
NASA Astrophysics Data System (ADS)
Garreffa, Girolamo
2017-07-01
The explanation of brain function in rational and objective terms is absolutely the most difficult challenge of all times and is continuously stimulated by a rooted instinct of knowledge. Humans, since their early forms of structured ;organization; of mental processes, improved more and more their communication attempts and ability to share perceptions and emotions and language (in any form) was the first basic instrument to assess externally in some way a sort of end result of above mentioned mental processes. How this ;abstract organizing entity; is and how it works we are still studying and debating, with exciting results and with increasingly consideration of philosophical thinking of the past and of our times (Aristotle, Kant, Hegel, Russel).
Brain tissue water content in patients with idiopathic normal pressure hydrocephalus.
Aygok, G; Marmarou, A; Fatouros, P; Young, H
2006-01-01
Relatively little is known regarding the water content of brain tissue in idiopathic normal-pressure hydrocephalus (NPH) patients. The objective of our study was to determine absolute water content non-invasively in hydrocephalic patients, particularly in the anterior and posterior ventricular horns and in the periventricular white matter. Ten patients who were diagnosed and treated for idiopathic NPH in our clinic were selected for study. Magnetic resonance imaging (MRI) techniques were used to obtain anatomical image slices for quantitative brain water measurements. Apparent diffusion coefficient measures were also extracted from regions of interest. To our knowledge, this is the first study to confirm that periventricular lucency seen on MRI represents increased water content in the extracellular space that is markedly elevated prior to shunting.
Assessing Relevance of External Cognitive Measures
Cairó, Osvaldo
2017-01-01
The arrival of modern brain imaging technologies has provided new opportunities for examining the biological essence of human intelligence as well as the relationship between brain size and cognition. Thanks to these advances, we can now state that the relationship between brain size and intelligence has never been well understood. This view is supported by findings showing that cognition is correlated more with brain tissues than sheer brain size. The complexity of cellular and molecular organization of neural connections actually determines the computational capacity of the brain. In this review article, we determine that while genotypes are responsible for defining the theoretical limits of intelligence, what is primarily responsible for determining whether those limits are reached or exceeded is experience (environmental influence). Therefore, we contend that the gene-environment interplay defines the intelligent quotient of an individual. PMID:28270753
Brain size and thermoregulation during the evolution of the genus Homo.
Naya, Daniel E; Naya, Hugo; Lessa, Enrique P
2016-01-01
Several hypotheses have been proposed to explain the evolution of an energetically costly brain in the genus Homo. Some of these hypotheses are based on the correlation between climatic factors and brain size recorded for this genus during the last millions of years. In this study, we propose a complementary climatic hypothesis that is based on the mechanistic connection between temperature, thermoregulation, and size of internal organs in endothermic species. We hypothesized that global cooling during the last 3.2 my may have imposed an increased energy expenditure for thermoregulation, which in the case of hominids could represent a driver for the evolution of an expanded brain, or at least, it could imply the relaxation of a negative selection pressure acting upon this costly organ. To test this idea, here we (1) assess variation in the energetic costs of thermoregulation and brain maintenance for the last 3.2 my, and (2) evaluate the relationship between Earth temperature and brain maintenance cost for the same period, taking into account the effects of body mass and fossil age. We found that: (1) the energetic cost associated with brain enlargement represents an important fraction (between 47.5% and 82.5%) of the increase in energy needed for thermoregulation; (2) fossil age is a better predictor of brain maintenance cost than Earth temperature, suggesting that (at least) another factor correlated with time was more relevant than ambient temperature in brain size evolution; and (3) there is a significant negative correlation between the energetic cost of brain and Earth temperature, even after accounting for the effect of body mass and fossil age. Thus, our results expand the current energetic framework for the study of brain size evolution in our lineage by suggesting that a fall in Earth temperature during the last millions of years may have facilitated brain enlargement. Copyright © 2015 Elsevier Inc. All rights reserved.
Eddie Bevilacqua
2002-01-01
Comparative analysis of growth responses among trees following natural or anthropogenic disturbances is often confounded when comparing trees of different size because of the high correlation between growth and initial tree size: large trees tend to have higher absolute grow rates. Relative growth rate (RGR) may not be the most suitable size-dependent measure of growth...
Big-brained birds survive better in nature
Sol, Daniel; Székely, Tamás; Liker, András; Lefebvre, Louis
2007-01-01
Big brains are hypothesized to enhance survival of animals by facilitating flexible cognitive responses that buffer individuals against environmental stresses. Although this theory receives partial support from the finding that brain size limits the capacity of animals to behaviourally respond to environmental challenges, the hypothesis that large brains are associated with reduced mortality has never been empirically tested. Using extensive information on avian adult mortality from natural populations, we show here that species with larger brains, relative to their body size, experience lower mortality than species with smaller brains, supporting the general importance of the cognitive buffer hypothesis in the evolution of large brains. PMID:17251112
Brain enlargement and dental reduction were not linked in hominin evolution
Smaers, Jeroen B.; Holloway, Ralph L.
2017-01-01
The large brain and small postcanine teeth of modern humans are among our most distinctive features, and trends in their evolution are well studied within the hominin clade. Classic accounts hypothesize that larger brains and smaller teeth coevolved because behavioral changes associated with increased brain size allowed a subsequent dental reduction. However, recent studies have found mismatches between trends in brain enlargement and posterior tooth size reduction in some hominin species. We use a multiple-variance Brownian motion approach in association with evolutionary simulations to measure the tempo and mode of the evolution of endocranial and dental size and shape within the hominin clade. We show that hominin postcanine teeth have evolved at a relatively consistent neutral rate, whereas brain size evolved at comparatively more heterogeneous rates that cannot be explained by a neutral model, with rapid pulses in the branches leading to later Homo species. Brain reorganization shows evidence of elevated rates only much later in hominin evolution, suggesting that fast-evolving traits such as the acquisition of a globular shape may be the result of direct or indirect selection for functional or structural traits typical of modern humans. PMID:28049819
Von Der Heide, Rebecca; Vyas, Govinda
2014-01-01
The social brain hypothesis proposes that the large size of the primate neocortex evolved to support complex and demanding social interactions. Accordingly, recent studies have reported correlations between the size of an individual’s social network and the density of gray matter (GM) in regions of the brain implicated in social cognition. However, the reported relationships between GM density and social group size are somewhat inconsistent with studies reporting correlations in different brain regions. One factor that might account for these discrepancies is the use of different measures of social network size (SNS). This study used several measures of SNS to assess the relationships SNS and GM density. The second goal of this study was to test the relationship between social network measures and functional brain activity. Participants performed a social closeness task using photos of their friends and unknown people. Across the VBM and functional magnetic resonance imaging analyses, individual differences in SNS were consistently related to structural and functional differences in three regions: the left amygdala, right amygdala and the right entorhinal/ventral anterior temporal cortex. PMID:24493846
Surbhi; Rastogi, Ashutosh; Malik, Shalie; Rani, Sangeeta; Kumar, Vinod
2016-05-01
Present study examined the expression of brain peptides associated with the reproduction and energy homeostasis (GnRH/GnIH, NPY/VIP), and assessed their possible functional association in the photosensitive (non-breeding, pre-breeding), photostimulated (breeding) and photorefractory (post-breeding) migratory redheaded buntings (Emberiza bruniceps), using double-labeled immunohistochemistry. Particularly, we measured immunoreactive (-ir) cell numbers, per cent cell area and cell optical density (OD) in the preoptic area (GnRH-I), midbrain (GnRH-II), paraventricular nucleus (GnIH), dorsomedial hypothalamus, DMH and infundibular complex, INc (NPY and VIP), and lateral septal organ (VIP) of buntings kept under natural photoperiods at the wintering latitude (26°55'N). There was a significant seasonal difference in GnRH-I, not GnRH-II, with reduced -ir cells in the photosensitive and photorefractory buntings, and notably with increased cell OD between the refractory and non-breeding states with no increase in testis size. Also, increased cell OD of GnIH neurons in non-breeding state indicated its role in the maintenance of small testes during the post-refractory period. Overall, seasonal changes in GnRH-I and GnIH were found consistent with their suggested roles in reproductive regulation of absolute photorefractory birds. Further, there was a significant seasonal change in cell OD of NPY neurons in DMH, not the INc. In contrast, VIP immunoreactivity was seasonally altered, with a significantly higher VIP-ir cells in breeding than the pre-breeding state. Finally, close proximity between perikarya with fibres suggested functional interactions between the GnRH and GnIH, and NPY and VIP. Thus, seasonal plasticity of brain peptides is perhaps the part of neural regulation of seasonal reproduction and associated energy homeostasis in migratory songbirds. Copyright © 2016 Elsevier Inc. All rights reserved.
Willemet, Romain
2012-05-18
The mammalian brain varies in size by a factor of 100,000 and is composed of anatomically and functionally distinct structures. Theoretically, the manner in which brain composition can evolve is limited, ranging from highly modular ("mosaic evolution") to coordinated changes in brain structure size ("concerted evolution") or anything between these two extremes. There is a debate about the relative importance of these distinct evolutionary trends. It is shown here that the presence of taxa-specific allometric relationships between brain structures makes a taxa-specific approach obligatory. In some taxa, the evolution of the size of brain structures follows a unique, coordinated pattern, which, in addition to other characteristics at different anatomical levels, defines what has been called here a "taxon cerebrotype". In other taxa, no clear pattern is found, reflecting heterogeneity of the species' lifestyles. These results suggest that the evolution of brain size and composition depends on the complex interplay between selection pressures and constraints that have changed constantly during mammalian evolution. Therefore the variability in brain composition between species should not be considered as deviations from the normal, concerted mammalian trend, but in taxa and species-specific versions of the mammalian brain. Because it forms homogenous groups of species within this complex "space" of constraints and selection pressures, the cerebrotype approach developed here could constitute an adequate level of analysis for evo-devo studies, and by extension, for a wide range of disciplines related to brain evolution.
Understanding the Evolution of Mammalian Brain Structures; the Need for a (New) Cerebrotype Approach
Willemet, Romain
2012-01-01
The mammalian brain varies in size by a factor of 100,000 and is composed of anatomically and functionally distinct structures. Theoretically, the manner in which brain composition can evolve is limited, ranging from highly modular (“mosaic evolution”) to coordinated changes in brain structure size (“concerted evolution”) or anything between these two extremes. There is a debate about the relative importance of these distinct evolutionary trends. It is shown here that the presence of taxa-specific allometric relationships between brain structures makes a taxa-specific approach obligatory. In some taxa, the evolution of the size of brain structures follows a unique, coordinated pattern, which, in addition to other characteristics at different anatomical levels, defines what has been called here a “taxon cerebrotype”. In other taxa, no clear pattern is found, reflecting heterogeneity of the species’ lifestyles. These results suggest that the evolution of brain size and composition depends on the complex interplay between selection pressures and constraints that have changed constantly during mammalian evolution. Therefore the variability in brain composition between species should not be considered as deviations from the normal, concerted mammalian trend, but in taxa and species-specific versions of the mammalian brain. Because it forms homogenous groups of species within this complex “space” of constraints and selection pressures, the cerebrotype approach developed here could constitute an adequate level of analysis for evo-devo studies, and by extension, for a wide range of disciplines related to brain evolution. PMID:24962772
Lima, Jean Pierre Mendes; Rayêe, Danielle; Silva-Rodrigues, Thaia; Pereira, Paula Ribeiro Paes; Mendonca, Ana Paula Miranda; Rodrigues-Ferreira, Clara; Szczupak, Diego; Fonseca, Anna; Oliveira, Marcus F; Lima, Flavia Regina Souza; Lent, Roberto; Galina, Antonio; Uziel, Daniela
2018-03-26
Perinatal asphyxia remains a significant cause of neonatal mortality and is associated with long-term neurodegenerative disorders. In the present study, we evaluated cellular and subcellular damages to brain development in a model of mild perinatal asphyxia. Survival rate in the experimental group was 67%. One hour after the insult, intraperitoneally injected Evans blue could be detected in the fetuses' brains, indicating disruption of the blood-brain barrier. Although brain mass and absolute cell numbers (neurons and non-neurons) were not reduced after perinatal asphyxia immediately and in late brain development, subcellular alterations were detected. Cortical oxygen consumption increased immediately after asphyxia, and remained high up to 7 days, returning to normal levels after 14 days. We observed an increased resistance to mitochondrial membrane permeability transition, and calcium buffering capacity in asphyxiated animals from birth to 14 days after the insult. In contrast to ex vivo data, mitochondrial oxygen consumption in primary cell cultures of neurons and astrocytes was not altered after 1% hypoxia. Taken together, our results demonstrate that although newborns were viable and apparently healthy, brain development is subcellularly altered by perinatal asphyxia. Our findings place the neonate brain mitochondria as a potential target for therapeutic protective interventions.
Brain Size and Cerebral Glucose Metabolic Rate in Nonspecific Retardation and Down Syndrome.
ERIC Educational Resources Information Center
Haier, Richard J.; And Others
1995-01-01
Brain size and cerebral glucose metabolic rate were determined for 10 individuals with mild mental retardation (MR), 7 individuals with Down syndrome (DS), and 10 matched controls. MR and DS groups both had brain volumes of about 80% compared to controls, with variance greatest within the MR group. (SLD)
The brain parenchyma has a type I interferon response that can limit virus spread.
Drokhlyansky, Eugene; Göz Aytürk, Didem; Soh, Timothy K; Chrenek, Ryan; O'Loughlin, Elaine; Madore, Charlotte; Butovsky, Oleg; Cepko, Constance L
2017-01-03
The brain has a tightly regulated environment that protects neurons and limits inflammation, designated "immune privilege." However, there is not an absolute lack of an immune response. We tested the ability of the brain to initiate an innate immune response to a virus, which was directly injected into the brain parenchyma, and to determine whether this response could limit viral spread. We injected vesicular stomatitis virus (VSV), a transsynaptic tracer, or naturally occurring VSV-derived defective interfering particles (DIPs), into the caudate-putamen (CP) and scored for an innate immune response and inhibition of virus spread. We found that the brain parenchyma has a functional type I interferon (IFN) response that can limit VSV spread at both the inoculation site and among synaptically connected neurons. Furthermore, we characterized the response of microglia to VSV infection and found that infected microglia produced type I IFN and uninfected microglia induced an innate immune response following virus injection.
2009-01-01
A 25-year-old male military veteran presented with diagnoses of post concussion syndrome and post traumatic stress disorder three years after loss of consciousness from an explosion in combat. The patient underwent single photon emission computed tomography brain blood flow imaging before and after a block of thirty-nine 1.5 atmospheres absolute hyperbaric oxygen treatments. The patient experienced a permanent marked improvement in his post-concussive symptoms, physical exam findings, and brain blood flow. In addition, he experienced a complete resolution of post-traumatic stress disorder symptoms. After treatment he became and has remained employed for eight consecutive months. This case suggests a novel treatment for the combined diagnoses of blast-induced post-concussion syndrome and post-traumatic stress disorder. PMID:19829822
Willett, Francis R.; Murphy, Brian A.; Memberg, William D.; Blabe, Christine H.; Pandarinath, Chethan; Walter, Benjamin L.; Sweet, Jennifer A.; Miller, Jonathan P.; Henderson, Jaimie M.; Shenoy, Krishna V.; Hochberg, Leigh R.; Kirsch, Robert F.; Ajiboye, A. Bolu
2017-01-01
Objective Do movements made with an intracortical BCI (iBCI) have the same movement time properties as able-bodied movements? Able-bodied movement times typically obey Fitts’ law: MT = a + b log2(D/R ) (where MT is movement time, D is target distance, R is target radius, and a,b are parameters). Fitts’ law expresses two properties of natural movement that would be ideal for iBCIs to restore: (1) that movement times are insensitive to the absolute scale of the task (since movement time depends only on the ratio D/R) and (2) that movements have a large dynamic range of accuracy (since movement time is logarithmically proportional to D/R). Approach Two participants in the BrainGate2 pilot clinical trial made cortically controlled cursor movements with a linear velocity decoder and acquired targets by dwelling on them. We investigated whether the movement times were well described by Fitts’ law. Main Results We found that movement times were better described by the equation MT = a + bD + cR−2, which captures how movement time increases sharply as the target radius becomes smaller, independently of distance. In contrast to able-bodied movements, the iBCI movements we studied had a low dynamic range of accuracy (absence of logarithmic proportionality) and were sensitive to the absolute scale of the task (small targets had long movement times regardless of the D/R ratio). We argue that this relationship emerges due to noise in the decoder output whose magnitude is largely independent of the user’s motor command (signal-independent noise). Signal-independent noise creates a baseline level of variability that cannot be decreased by trying to move slowly or hold still, making targets below a certain size very hard to acquire with a standard decoder. Significance The results give new insight into how iBCI movements currently differ from able-bodied movements and suggest that restoring a Fitts’ law-like relationship to iBCI movements may require nonlinear decoding strategies. PMID:28177925
NASA Astrophysics Data System (ADS)
Willett, Francis R.; Murphy, Brian A.; Memberg, William D.; Blabe, Christine H.; Pandarinath, Chethan; Walter, Benjamin L.; Sweet, Jennifer A.; Miller, Jonathan P.; Henderson, Jaimie M.; Shenoy, Krishna V.; Hochberg, Leigh R.; Kirsch, Robert F.; Bolu Ajiboye, A.
2017-04-01
Objective. Do movements made with an intracortical BCI (iBCI) have the same movement time properties as able-bodied movements? Able-bodied movement times typically obey Fitts’ law: \\text{MT}=a+b{{log}2}(D/R) (where MT is movement time, D is target distance, R is target radius, and a,~b are parameters). Fitts’ law expresses two properties of natural movement that would be ideal for iBCIs to restore: (1) that movement times are insensitive to the absolute scale of the task (since movement time depends only on the ratio D/R ) and (2) that movements have a large dynamic range of accuracy (since movement time is logarithmically proportional to D/R ). Approach. Two participants in the BrainGate2 pilot clinical trial made cortically controlled cursor movements with a linear velocity decoder and acquired targets by dwelling on them. We investigated whether the movement times were well described by Fitts’ law. Main results. We found that movement times were better described by the equation \\text{MT}=a+bD+c{{R}-2} , which captures how movement time increases sharply as the target radius becomes smaller, independently of distance. In contrast to able-bodied movements, the iBCI movements we studied had a low dynamic range of accuracy (absence of logarithmic proportionality) and were sensitive to the absolute scale of the task (small targets had long movement times regardless of the D/R ratio). We argue that this relationship emerges due to noise in the decoder output whose magnitude is largely independent of the user’s motor command (signal-independent noise). Signal-independent noise creates a baseline level of variability that cannot be decreased by trying to move slowly or hold still, making targets below a certain size very hard to acquire with a standard decoder. Significance. The results give new insight into how iBCI movements currently differ from able-bodied movements and suggest that restoring a Fitts’ law-like relationship to iBCI movements may require non-linear decoding strategies.
NASA Astrophysics Data System (ADS)
Moteabbed, Maryam; Yock, Torunn I.; Paganetti, Harald
2014-06-01
The incidence of second malignant tumors is a clinically observed adverse late effect of radiation therapy, especially in organs close to the treatment site, receiving medium to high doses (>2.5 Gy). For pediatric patients, choosing the least toxic radiation modality is of utmost importance, due to their high radiosensitivity and small size. This study aims to evaluate the risk of second cancer incidence in the vicinity of the primary radiation field, for pediatric patients with brain/head and neck tumors and compare four treatment modalities: passive scattering and pencil beam scanning proton therapy (PPT and PBS), intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). For a cohort of six pediatric patients originally treated with PPT, additional PBS, IMRT and VMAT plans were created. Dose distributions from these plans were used to calculate the excess absolute risk (EAR) and lifetime attributable risk (LAR) for developing a second tumor in soft tissue and skull. A widely used risk assessment formalism was employed and compared with a linear model based on recent clinical findings. In general, LAR was found to range between 0.01%-2.8% for PPT/PBS and 0.04%-4.9% for IMRT/VMAT. PBS was associated with the lowest risk for most patients using carcinoma and sarcoma models, whereas IMRT and VMAT risks were comparable and the highest among all modalities. The LAR for IMRT/VMAT relative to PPT ranged from 1.3-4.6 for soft tissue and from 3.5-9.5 for skull. Larger absolute LAR was observed for younger patients and using linear risk models. The number of fields used in proton therapy and IMRT had minimal effect on the risk. When planning treatments and deciding on the treatment modality, the probability of second cancer incidence should be carefully examined and weighed against the possibility of developing acute side effects for each patient individually.
Sonali; Singh, Rahul Pratap; Singh, Nitesh; Sharma, Gunjan; Vijayakumar, Mahalingam R; Koch, Biplob; Singh, Sanjay; Singh, Usha; Dash, Debabrata; Pandey, Bajarangprasad L; Muthu, Madaswamy S
2016-05-01
Diagnosis and therapy of brain cancer was often limited due to low permeability of delivery materials across the blood-brain barrier (BBB) and their poor penetration into the brain tissue. This study explored the possibility of utilizing theranostic d-alpha-tocopheryl polyethylene glycol 1000 succinate mono-ester (TPGS) liposomes as nanocarriers for minimally invasive brain-targeted imaging and therapy (brain theranostics). The aim of this work was to formulate transferrin conjugated TPGS coated theranostic liposomes, which contain both docetaxel and quantum dots (QDs) for imaging and therapy of brain cancer. The theranostic liposomes with and without transferrin decoration were prepared and characterized for their particle size, polydispersity, morphology, drug encapsulation efficiency, in-vitro release study and brain theranostics. The particle sizes of the non-targeted and targeted theranostic liposomes were found below 200 nm. Nearly, 71% of drug encapsulation efficiency was achieved with liposomes. The drug release from transferrin conjugated theranostic liposomes was sustained for more than 72 h with 70% of drug release. The in-vivo results indicated that transferrin receptor-targeted theranostic liposomes could be a promising carrier for brain theranostics due to nano-sized delivery and its permeability which provided an improved and prolonged brain targeting of docetaxel and QDs in comparison to the non-targeted preparations.
ERIC Educational Resources Information Center
Sideridis, Georgios; Simos, Panagiotis; Papanicolaou, Andrew; Fletcher, Jack
2014-01-01
The present study assessed the impact of sample size on the power and fit of structural equation modeling applied to functional brain connectivity hypotheses. The data consisted of time-constrained minimum norm estimates of regional brain activity during performance of a reading task obtained with magnetoencephalography. Power analysis was first…
ERIC Educational Resources Information Center
Miller, Geoffrey F.; Penke, Lars
2007-01-01
Most theories of human mental evolution assume that selection favored higher intelligence and larger brains, which should have reduced genetic variance in both. However, adult human intelligence remains highly heritable, and is genetically correlated with brain size. This conflict might be resolved by estimating the coefficient of additive genetic…
Regional infant brain development: an MRI-based morphometric analysis in 3 to 13 month olds.
Choe, Myong-Sun; Ortiz-Mantilla, Silvia; Makris, Nikos; Gregas, Matt; Bacic, Janine; Haehn, Daniel; Kennedy, David; Pienaar, Rudolph; Caviness, Verne S; Benasich, April A; Grant, P Ellen
2013-09-01
Elucidation of infant brain development is a critically important goal given the enduring impact of these early processes on various domains including later cognition and language. Although infants' whole-brain growth rates have long been available, regional growth rates have not been reported systematically. Accordingly, relatively less is known about the dynamics and organization of typically developing infant brains. Here we report global and regional volumetric growth of cerebrum, cerebellum, and brainstem with gender dimorphism, in 33 cross-sectional scans, over 3 to 13 months, using T1-weighted 3-dimensional spoiled gradient echo images and detailed semi-automated brain segmentation. Except for the midbrain and lateral ventricles, all absolute volumes of brain regions showed significant growth, with 6 different patterns of volumetric change. When normalized to the whole brain, the regional increase was characterized by 5 differential patterns. The putamen, cerebellar hemispheres, and total cerebellum were the only regions that showed positive growth in the normalized brain. Our results show region-specific patterns of volumetric change and contribute to the systematic understanding of infant brain development. This study greatly expands our knowledge of normal development and in future may provide a basis for identifying early deviation above and beyond normative variation that might signal higher risk for neurological disorders.
Regional Infant Brain Development: An MRI-Based Morphometric Analysis in 3 to 13 Month Olds
Choe, Myong-sun; Ortiz-Mantilla, Silvia; Makris, Nikos; Gregas, Matt; Bacic, Janine; Haehn, Daniel; Kennedy, David; Pienaar, Rudolph; Caviness, Verne S.; Benasich, April A.; Grant, P. Ellen
2013-01-01
Elucidation of infant brain development is a critically important goal given the enduring impact of these early processes on various domains including later cognition and language. Although infants’ whole-brain growth rates have long been available, regional growth rates have not been reported systematically. Accordingly, relatively less is known about the dynamics and organization of typically developing infant brains. Here we report global and regional volumetric growth of cerebrum, cerebellum, and brainstem with gender dimorphism, in 33 cross-sectional scans, over 3 to 13 months, using T1-weighted 3-dimensional spoiled gradient echo images and detailed semi-automated brain segmentation. Except for the midbrain and lateral ventricles, all absolute volumes of brain regions showed significant growth, with 6 different patterns of volumetric change. When normalized to the whole brain, the regional increase was characterized by 5 differential patterns. The putamen, cerebellar hemispheres, and total cerebellum were the only regions that showed positive growth in the normalized brain. Our results show region-specific patterns of volumetric change and contribute to the systematic understanding of infant brain development. This study greatly expands our knowledge of normal development and in future may provide a basis for identifying early deviation above and beyond normative variation that might signal higher risk for neurological disorders. PMID:22772652
Pizem, Joze; Velnar, Tomaz; Prestor, Borut; Mlakar, Jernej; Popovic, Mara
2014-01-01
Despite the important prognostic value of brain invasion in meningiomas, little attention has been paid to its massessment, and the parameters associated with brain invasion assessability (identification of brain tissue in the surgical specimen) are not well characterized. The aim of our study was to determine the parameters that are associated with brain invasion assessability and brain invasion in meningiomas. By binary logistic regression analysis, we studied the association of various clinical and pathologic parameters with brain invasion assessabilitym and brain invasion in 294 meningiomas: 149 unselected consecutive meningiomas with extensive sampling, diagnosed in 2009 and 2010, collected prospectively, and 145 meningiomas diagnosed in 1999 and 2000 when little attention was paid to brain invasion assessment. Meningioma grade, size and number of tissue blocks were independent predictors of brain invasion assessability. Brain tissue was identified in 78 of 233 (33%) benign, 33 of 51 (65%) atypical, and 10 of 10 (100%) malignant meningiomas. In univariate analysis, group (prospective vs.retrospective), type (recurrent vs. primary), cleavability, meningioma grade and mitotic count were predictors of brain invasion, while only meningioma grade, and group retained predictive value in multivariate analysis. Brain invasion, when assessable, was identified in 22 of 78 (28%) benign, 21 of 33 (64%) atypical, and 10 of 10 (100%) malignant meningiomas. Brain invasion assessability is related to meningioma grade and size and can be improved by extensive sampling of meningioma surgical.
Opposing Brain Differences in 16p11.2 Deletion and Duplication Carriers
Qureshi, Abid Y.; Mueller, Sophia; Snyder, Abraham Z.; Mukherjee, Pratik; Berman, Jeffrey I.; Roberts, Timothy P.L.; Nagarajan, Srikantan S.; Spiro, John E.; Chung, Wendy K.; Sherr, Elliott H.
2014-01-01
Deletions and duplications of the recurrent ∼600 kb chromosomal BP4–BP5 region of 16p11.2 are associated with a broad variety of neurodevelopmental outcomes including autism spectrum disorder. A clue to the pathogenesis of the copy number variant (CNV)'s effect on the brain is that the deletion is associated with a head size increase, whereas the duplication is associated with a decrease. Here we analyzed brain structure in a clinically ascertained group of human deletion (N = 25) and duplication (N = 17) carriers from the Simons Variation in Individuals Project compared with age-matched controls (N = 29 and 33, respectively). Multiple brain measures showed increased size in deletion carriers and reduced size in duplication carriers. The effects spanned global measures of intracranial volume, brain size, compartmental measures of gray matter and white matter, subcortical structures, and the cerebellum. Quantitatively, the largest effect was on the thalamus, but the collective results suggest a pervasive rather than a selective effect on the brain. Detailed analysis of cortical gray matter revealed that cortical surface area displays a strong dose-dependent effect of CNV (deletion > control > duplication), whereas average cortical thickness is less affected. These results suggest that the CNV may exert its opposing influences through mechanisms that influence early stages of embryonic brain development. PMID:25143601
Veridical mapping in savant abilities, absolute pitch, and synesthesia: an autism case study
Bouvet, Lucie; Donnadieu, Sophie; Valdois, Sylviane; Caron, Chantal; Dawson, Michelle; Mottron, Laurent
2014-01-01
An enhanced role and autonomy of perception are prominent in autism. Furthermore, savant abilities, absolute pitch, and synesthesia are all more commonly found in autistic individuals than in the typical population. The mechanism of veridical mapping has been proposed to account for how enhanced perception in autism leads to the high prevalence of these three phenomena and their structural similarity. Veridical mapping entails functional rededication of perceptual brain regions to higher order cognitive operations, allowing the enhanced detection and memorization of isomorphisms between perceptual and non-perceptual structures across multiple scales. In this paper, we present FC, an autistic individual who possesses several savant abilities in addition to both absolute pitch and synesthesia-like associations. The co-occurrence in FC of abilities, some of them rare, which share the same structure, as well as FC’s own accounts of their development, together suggest the importance of veridical mapping in the atypical range and nature of abilities displayed by autistic people. PMID:24600416
Absolute Quantitation of Water and Metabolites in the Human Brain. II. Metabolite Concentrations
NASA Astrophysics Data System (ADS)
Kreis, R.; Ernst, T.; Ross, B. D.
A method for determining absolute metabolite concentrations with in vivo1H magnetic resonance spectroscopy is presented. Using the compartmentation model introduced in the preceding paper of this series ( J. Magn. Reson. B102, 1, 1993), it is possible to express NMR results in terms of most commonly used concentration units. The proposed scheme, involving the measurement of an external standard as well as of the localized water signal, is verified on cerebral spectra obtained from 22 subjects. Besides concentrations, longitudinal and transverse relaxation times are determined for parietal white and occipital gray matter. The determination of these quantities crucially depends on the analysis of the T2 signal decay as a function of echo time. The in vivo concentrations of the four metabolites N-acetyl aspartate, creatine plus phosphocreatine, choline, and myo-inositol are in good agreement with biochemical determinations performed in vitro. Two clinical examples emphasize the relevance of absolute quantitation in the investigation of human neuropathology and normal development.
Brain MR imaging at ultra-low radiofrequency power.
Sarkar, Subhendra N; Alsop, David C; Madhuranthakam, Ananth J; Busse, Reed F; Robson, Philip M; Rofsky, Neil M; Hackney, David B
2011-05-01
To explore the lower limits for radiofrequency (RF) power-induced specific absorption rate (SAR) achievable at 1.5 T for brain magnetic resonance (MR) imaging without loss of tissue signal or contrast present in high-SAR clinical imaging in order to create a potentially viable MR method at ultra-low RF power to image tissues containing implanted devices. An institutional review board-approved HIPAA-compliant prospective MR study design was used, with written informed consent from all subjects prior to MR sessions. Seven healthy subjects were imaged prospectively at 1.5 T with ultra-low-SAR optimized three-dimensional (3D) fast spin-echo (FSE) and fluid-attenuated inversion-recovery (FLAIR) T2-weighted sequences and an ultra-low-SAR 3D spoiled gradient-recalled acquisition in the steady state T1-weighted sequence. Corresponding high-SAR two-dimensional (2D) clinical sequences were also performed. In addition to qualitative comparisons, absolute signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) for multicoil, parallel imaging acquisitions were generated by using a Monte Carlo method for quantitative comparison between ultra-low-SAR and high-SAR results. There were minor to moderate differences in the absolute tissue SNR and CNR values and in qualitative appearance of brain images obtained by using ultra-low-SAR and high-SAR techniques. High-SAR 2D T2-weighted imaging produced slightly higher SNR, while ultra-low-SAR 3D technique not only produced higher SNR for T1-weighted and FLAIR images but also higher CNRs for all three sequences for most of the brain tissues. The 3D techniques adopted here led to a decrease in the absorbed RF power by two orders of magnitude at 1.5 T, and still the image quality was preserved within clinically acceptable imaging times. RSNA, 2011
Thyroid function and the risk of dementia: The Rotterdam Study.
Chaker, Layal; Wolters, Frank J; Bos, Daniel; Korevaar, Tim I M; Hofman, Albert; van der Lugt, Aad; Koudstaal, Peter J; Franco, Oscar H; Dehghan, Abbas; Vernooij, Meike W; Peeters, Robin P; Ikram, M Arfan
2016-10-18
To study the role of thyroid function in dementia, cognitive function, and subclinical vascular brain disease with MRI. Analyses were performed within the Rotterdam Study (baseline 1997), a prospective, population-based cohort. We evaluated the association of thyroid-stimulating hormone (TSH) and free thyroxine with incident dementia using Cox models adjusted for age, sex, cardiovascular risk factors, and education. Absolute risks were calculated accounting for death as a competing risk factor. Associations of thyroid function with cognitive test scores and subclinical vascular brain disease (white matter lesions, lacunes, and microbleeds) were assessed with linear or logistic regression. Additionally, we stratified by sex and restricted analyses to normal thyroid function. We included 9,446 participants with a mean age of 65 years. During follow-up (mean 8.0 years), 601 participants had developed dementia. Higher TSH was associated with lower dementia risk in both the full and normal ranges of thyroid function (hazard ratio [HR] 0.90, 95% confidence interval [CI] 0.83-0.98; and HR 0.76, 95% CI 0.64-0.91, respectively). This association was independent of cardiovascular risk factors. Dementia risk was higher in individuals with higher free thyroxine (HR 1.04, 95% CI 1.01-1.07). Absolute 10-year dementia risk decreased from 15% to 10% with higher TSH in older women. Higher TSH was associated with better global cognitive scores (p = 0.021). Thyroid function was not related to subclinical vascular brain disease as indicated by MRI. High and high-normal thyroid function is associated with increased dementia risk. Thyroid function is not related to vascular brain disease as assessed by MRI, suggesting a role for thyroid hormone in nonvascular pathways leading to dementia. © 2016 American Academy of Neurology.
In vivo mapping of current density distribution in brain tissues during deep brain stimulation (DBS)
NASA Astrophysics Data System (ADS)
Sajib, Saurav Z. K.; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2017-01-01
New methods for in vivo mapping of brain responses during deep brain stimulation (DBS) are indispensable to secure clinical applications. Assessment of current density distribution, induced by internally injected currents, may provide an alternative method for understanding the therapeutic effects of electrical stimulation. The current flow and pathway are affected by internal conductivity, and can be imaged using magnetic resonance-based conductivity imaging methods. Magnetic resonance electrical impedance tomography (MREIT) is an imaging method that can enable highly resolved mapping of electromagnetic tissue properties such as current density and conductivity of living tissues. In the current study, we experimentally imaged current density distribution of in vivo canine brains by applying MREIT to electrical stimulation. The current density maps of three canine brains were calculated from the measured magnetic flux density data. The absolute current density values of brain tissues, including gray matter, white matter, and cerebrospinal fluid were compared to assess the active regions during DBS. The resulting current density in different tissue types may provide useful information about current pathways and volume activation for adjusting surgical planning and understanding the therapeutic effects of DBS.
Lin, Hung; Chang, Ching-Ping; Lin, Hung-Jung; Lin, Mao-Tsun; Tsai, Cheng-Chia
2012-05-01
We assessed whether hyperbaric oxygen preconditioning (HBO2P) in rats induced heat shock protein (HSP)-70 and whether HSP-70 antibody (Ab) preconditioning attenuates high altitude exposure (HAE)-induced brain edema, hippocampal oxidative stress, and cognitive dysfunction. Rats were randomly divided into five groups: the non-HBO2P + non-HAE group, the HBO2P + non-HAE group, the non-HBO2P + HAE group, the HBO2P + HAE group, and the HBO2P + HSP-70 Abs + HAE group. The HBO2P groups were given 100% O2 at 2.0 absolute atmospheres for 1 hour per day for 5 consecutive days. The HAE groups were exposed to simulated HAE (9.7% O2 at 0.47 absolute atmospheres of 6,000 m) in a hypobaric chamber for 3 days. Polyclonal rabbit anti-mouse HSP-70-neutralizing Abs were intravenously injected 24 hours before the HAE experiments. Immediately after returning to normal atmosphere, the rats were given cognitive performance tests, overdosed with a general anesthetic, and then their brains were excised en bloc for water content measurements and biochemical evaluation and analysis. Non-HBO2P group rats displayed cognitive deficits, brain edema, and hippocampal oxidative stress (evidenced by increased toxic oxidizing radicals [e.g., nitric oxide metabolites and hydroxyl radicals], increased pro-oxidant enzymes [e.g., malondialdehyde and oxidized glutathione] but decreased antioxidant enzymes [e.g., reduced glutathione, glutathione peroxide, glutathione reductase, and superoxide dismutase]) in HAE. HBO2P induced HSP-70 overexpression in the hippocampus and significantly attenuated HAE-induced brain edema, cognitive deficits, and hippocampal oxidative stress. The beneficial effects of HBO2P were significantly reduced by HSP-70 Ab preconditioning. Our results suggest that high-altitude cerebral edema, cognitive deficit, and hippocampal oxidative stress can be prevented by HSP-70-mediated HBO2P in rats.
Hanna, Timothy Paul; Delaney, Geoffrey Paul; Barton, Michael Bernard
2016-09-01
To estimate the population benefit of radiotherapy (RT) for primary malignant brain tumors if evidence-based guidelines were routinely followed. This study investigated 5-year local control (LC) and 2- and 5-year overall survival (OS) benefits. RT benefit was the absolute proportional benefit of RT alone over no RT for radical indications, and over surgery alone for adjuvant indications. Chemoradiotherapy (CRT) benefit was the absolute incremental benefit of concurrent chemotherapy and RT over RT alone. Decision tree models were adapted to define the incidence of each indication. Citation databases were systematically queried for the highest level of evidence defining indication benefits. Meta-analysis was performed if there were multiple sources of the same evidence level, and deterministic and probabilistic sensitivity analysis was also performed. Among all patients with malignant brain tumors, 82% had indications for curative- or adjuvant-intent RT. The magnitude of benefit was based on level I or II evidence in 44% of all patients. A total of 25 relevant studies were used to quantify indication benefits. All RT benefit included in the model was irreplaceable. For malignant brain tumors, the estimated population benefit for RT alone was 9% for 5-year LC (95% CI, 7%-10%), 9% for 2-year OS (95% CI, 8%-11%), and 5% for 5-year OS (95% CI, 4%-5%). The incremental benefit of CRT was 1% for 5-year LC (95% CI, 0%-2%), 7% for 2-year OS (95% CI, 4%-11%), and 3% for 5-year OS (95% CI, 1%-5%). The model was robust in sensitivity analysis. When optimally used, RT provides an important benefit for many patients with malignant brain tumors. The model provided a robust means for estimating the magnitude of this benefit. Copyright © 2016 by the National Comprehensive Cancer Network.
Exploratory Factor Analysis with Small Sample Sizes
ERIC Educational Resources Information Center
de Winter, J. C. F.; Dodou, D.; Wieringa, P. A.
2009-01-01
Exploratory factor analysis (EFA) is generally regarded as a technique for large sample sizes ("N"), with N = 50 as a reasonable absolute minimum. This study offers a comprehensive overview of the conditions in which EFA can yield good quality results for "N" below 50. Simulations were carried out to estimate the minimum required "N" for different…
Fiedler, Klaus; Kareev, Yaakov; Avrahami, Judith; Beier, Susanne; Kutzner, Florian; Hütter, Mandy
2016-01-01
Detecting changes, in performance, sales, markets, risks, social relations, or public opinions, constitutes an important adaptive function. In a sequential paradigm devised to investigate detection of change, every trial provides a sample of binary outcomes (e.g., correct vs. incorrect student responses). Participants have to decide whether the proportion of a focal feature (e.g., correct responses) in the population from which the sample is drawn has decreased, remained constant, or increased. Strong and persistent anomalies in change detection arise when changes in proportional quantities vary orthogonally to changes in absolute sample size. Proportional increases are readily detected and nonchanges are erroneously perceived as increases when absolute sample size increases. Conversely, decreasing sample size facilitates the correct detection of proportional decreases and the erroneous perception of nonchanges as decreases. These anomalies are however confined to experienced samples of elementary raw events from which proportions have to be inferred inductively. They disappear when sample proportions are described as percentages in a normalized probability format. To explain these challenging findings, it is essential to understand the inductive-learning constraints imposed on decisions from experience.
Warger, William C.; Hostens, Jeroen; Namati, Eman; Birngruber, Reginald; Bouma, Brett E.; Tearney, Guillermo J.
2012-01-01
Abstract. Optical coherence tomography (OCT) has been increasingly used for imaging pulmonary alveoli. Only a few studies, however, have quantified individual alveolar areas, and the validity of alveolar volumes represented within OCT images has not been shown. To validate quantitative measurements of alveoli from OCT images, we compared the cross-sectional area, perimeter, volume, and surface area of matched subpleural alveoli from microcomputed tomography (micro-CT) and OCT images of fixed air-filled swine samples. The relative change in size between different alveoli was extremely well correlated (r>0.9, P<0.0001), but OCT images underestimated absolute sizes compared to micro-CT by 27% (area), 7% (perimeter), 46% (volume), and 25% (surface area) on average. We hypothesized that the differences resulted from refraction at the tissue–air interfaces and developed a ray-tracing model that approximates the reconstructed alveolar size within OCT images. Using this model and OCT measurements of the refractive index for lung tissue (1.41 for fresh, 1.53 for fixed), we derived equations to obtain absolute size measurements of superellipse and circular alveoli with the use of predictive correction factors. These methods and results should enable the quantification of alveolar sizes from OCT images in vivo. PMID:23235834
NASA Astrophysics Data System (ADS)
Unglert, Carolin I.; Warger, William C.; Hostens, Jeroen; Namati, Eman; Birngruber, Reginald; Bouma, Brett E.; Tearney, Guillermo J.
2012-12-01
Optical coherence tomography (OCT) has been increasingly used for imaging pulmonary alveoli. Only a few studies, however, have quantified individual alveolar areas, and the validity of alveolar volumes represented within OCT images has not been shown. To validate quantitative measurements of alveoli from OCT images, we compared the cross-sectional area, perimeter, volume, and surface area of matched subpleural alveoli from microcomputed tomography (micro-CT) and OCT images of fixed air-filled swine samples. The relative change in size between different alveoli was extremely well correlated (r>0.9, P<0.0001), but OCT images underestimated absolute sizes compared to micro-CT by 27% (area), 7% (perimeter), 46% (volume), and 25% (surface area) on average. We hypothesized that the differences resulted from refraction at the tissue-air interfaces and developed a ray-tracing model that approximates the reconstructed alveolar size within OCT images. Using this model and OCT measurements of the refractive index for lung tissue (1.41 for fresh, 1.53 for fixed), we derived equations to obtain absolute size measurements of superellipse and circular alveoli with the use of predictive correction factors. These methods and results should enable the quantification of alveolar sizes from OCT images in vivo.
Fish Otolith Growth in 1g and 3g Depends on the Gravity Vector
NASA Astrophysics Data System (ADS)
Anken, R. H.; Werner, K.; Breuer, J.; Rahmann, H.
Size and asymmetry (size difference between the left and the right side) as well as calcium (Ca) content of inner ear otoliths of larval cichlid fish Oreochromis mossambicus were determined after a long-term stay at hypergravity conditions (3g; centrifuge). Both utricular and saccular otoliths (lapilli and sagittae, respectively) were significantly smaller after hyper-g exposure as compared to parallely raised 1g-control specimens and the absolute amount of otolith-Ca was diminished. The asymmetry of sagittae was significantly increased in the experimental animals, whereas the respective asymmetry concerning lapilli was markedly decreased. In the course of another experiment, larvae were raised in aquarium hatch baskets, from which one was placed directly above aeration equipment, which resulted in random water circulation shifting the fish around (``shifted'' specimens). The lapillar asymmetry of the ``stationary'' specimens showed a highly significant increase during early development when larvae were forced to lay on their sides due to their prominent yolk-sacs. In later developmental stages, when they began to swim freely, a dramatic decrease in lapillar asymmetry was apparent. Taken together with own previous findings according to which otolith growth stops after vestibular nerve transection, the results presented here suggest that the growth and the development of bilateral asymmetry of otoliths is guided by the environmental gravity vector, obviously involving a feedback loop between the brain and the inner ear
An inexpensive and portable microvolumeter for rapid evaluation of biological samples.
Douglass, John K; Wcislo, William T
2010-08-01
We describe an improved microvolumeter (MVM) for rapidly measuring volumes of small biological samples, including live zooplankton, embryos, and small animals and organs. Portability and low cost make this instrument suitable for widespread use, including at remote field sites. Beginning with Archimedes' principle, which states that immersing an arbitrarily shaped sample in a fluid-filled container displaces an equivalent volume, we identified procedures that maximize measurement accuracy and repeatability across a broad range of absolute volumes. Crucial steps include matching the overall configuration to the size of the sample, using reflected light to monitor fluid levels precisely, and accounting for evaporation during measurements. The resulting precision is at least 100 times higher than in previous displacement-based methods. Volumes are obtained much faster than by traditional histological or confocal methods and without shrinkage artifacts due to fixation or dehydration. Calibrations using volume standards confirmed accurate measurements of volumes as small as 0.06 microL. We validated the feasibility of evaluating soft-tissue samples by comparing volumes of freshly dissected ant brains measured with the MVM and by confocal reconstruction.
Wise, Richard G.; Harris, Ashley D.; Stone, Alan; Murphy, Kevin
2014-01-01
Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (FMRI) is most commonly used in a semi-quantitative manner to infer changes in brain activity. Despite the basis of the image contrast lying in the cerebral venous blood oxygenation level, quantification of absolute cerebral metabolic rate of oxygen consumption (CMRO2) has only recently been demonstrated. Here we examine two approaches to the calibration of FMRI signal to measure absolute CMRO2 using hypercapnic and hyperoxic respiratory challenges. The first approach is to apply hypercapnia and hyperoxia separately but interleaved in time and the second is a combined approach in which we apply hyperoxic challenges simultaneously with different levels of hypercapnia. Eleven healthy volunteers were studied at 3T using a dual gradient-echo spiral readout pulsed arterial spin labelling (ASL) imaging sequence. Respiratory challenges were conducted using an automated system of dynamic end-tidal forcing. A generalised BOLD signal model was applied, within a Bayesian estimation framework, that aims to explain the effects of modulation of CBF and arterial oxygen content to estimate venous deoxyhaemoglobin concentration ([dHb]0). Using CBF measurements combined with the estimated oxygen extraction fraction (OEF), absolute CMRO2 was calculated. The interleaved approach to hypercapnia and hyperoxia, as well as yielding estimates of CMRO2 and OEF demonstrated a significant increase in regional CBF, venous oxygen saturation (SvO2) (a decrease in OEF) and absolute CMRO2 in visual cortex in response to a continuous (20 minute) visual task, demonstrating the potential for the method in measuring long term changes in CMRO2. The combined approach to oxygen and carbon dioxide modulation, as well as taking less time to acquire data, yielded whole brain grey matter estimates of CMRO2 and OEF of 184±45 μmol/100g/min and 0.42±0.12 respectively, along with additional estimates of the vascular parameters α = 0.33±0.06, the exponent relating relative increases in CBF to CBV, and β = 1.35±0.13, the exponent relating deoxyhaemoglobin concentration to the relaxation rate R2*. Maps of cerebrovascular and cerebral metabolic parameters were also calculated. We show that combined modulation of oxygen and carbon dioxide can offer an experimentally more efficient approach to estimating OEF and absolute CMRO2 along with the additional vascular parameters that form an important part of the commonly used calibrated FMRI signal model. PMID:23769703
Rehkämper, Gerd; Frahm, Heiko D; Cnotka, Julia
2008-01-01
Brain sizes and brain component sizes of five domesticated pigeon breeds including homing (racing) pigeons are compared with rock doves (Columba livia) based on an allometric approach to test the influence of domestication on brain and brain component size. Net brain volume, the volumes of cerebellum and telencephalon as a whole are significantly smaller in almost all domestic pigeons. Inside the telencephalon, mesopallium, nidopallium (+ entopallium + arcopallium) and septum are smaller as well. The hippocampus is significantly larger, particularly in homing pigeons. This finding is in contrast to the predictions of the 'regression hypothesis' of brain alteration under domestication. Among the domestic pigeons homing pigeons have significantly larger olfactory bulbs. These data are interpreted as representing a functional adaptation to homing that is based on spatial cognition and sensory integration. We argue that domestication as seen in domestic pigeons is not principally different from evolution in the wild, but represents a heuristic model to understand the evolutionary process in terms of adaptation and optimization. Copyright 2007 S. Karger AG, Basel.
A mathematical model for human brain cooling during cold-water near-drowning.
Xu, X; Tikuisis, P; Giesbrecht, G
1999-01-01
A two-dimensional mathematical model was developed to estimate the contributions of different mechanisms of brain cooling during cold-water near-drowning. Mechanisms include 1) conductive heat loss through tissue to the water at the head surface and in the upper airway and 2) circulatory cooling to aspirated water via the lung and via venous return from the scalp. The model accounts for changes in boundary conditions, blood circulation, respiratory ventilation of water, and head size. Results indicate that conductive heat loss through the skull surface or the upper airways is minimal, although a small child-sized head will conductively cool faster than a large adult-sized head. However, ventilation of cold water may provide substantial brain cooling through circulatory cooling. Although it seems that water breathing is required for rapid "whole" brain cooling, it is possible that conductive cooling may provide some advantage by cooling the brain cortex peripherally and the brain stem centrally via the upper airway.
Sundar, Lalith Ks; Muzik, Otto; Rischka, Lucas; Hahn, Andreas; Rausch, Ivo; Lanzenberger, Rupert; Hienert, Marius; Klebermass, Eva-Maria; Füchsel, Frank-Günther; Hacker, Marcus; Pilz, Magdalena; Pataraia, Ekaterina; Traub-Weidinger, Tatjana; Beyer, Thomas
2018-01-01
Absolute quantification of PET brain imaging requires the measurement of an arterial input function (AIF), typically obtained invasively via an arterial cannulation. We present an approach to automatically calculate an image-derived input function (IDIF) and cerebral metabolic rates of glucose (CMRGlc) from the [18F]FDG PET data using an integrated PET/MRI system. Ten healthy controls underwent test-retest dynamic [18F]FDG-PET/MRI examinations. The imaging protocol consisted of a 60-min PET list-mode acquisition together with a time-of-flight MR angiography scan for segmenting the carotid arteries and intermittent MR navigators to monitor subject movement. AIFs were collected as the reference standard. Attenuation correction was performed using a separate low-dose CT scan. Assessment of the percentage difference between area-under-the-curve of IDIF and AIF yielded values within ±5%. Similar test-retest variability was seen between AIFs (9 ± 8) % and the IDIFs (9 ± 7) %. Absolute percentage difference between CMRGlc values obtained from AIF and IDIF across all examinations and selected brain regions was 3.2% (interquartile range: (2.4-4.3) %, maximum < 10%). High test-retest intravariability was observed between CMRGlc values obtained from AIF (14%) and IDIF (17%). The proposed approach provides an IDIF, which can be effectively used in lieu of AIF.
Dolz, Jose; Laprie, Anne; Ken, Soléakhéna; Leroy, Henri-Arthur; Reyns, Nicolas; Massoptier, Laurent; Vermandel, Maximilien
2016-01-01
To constrain the risk of severe toxicity in radiotherapy and radiosurgery, precise volume delineation of organs at risk is required. This task is still manually performed, which is time-consuming and prone to observer variability. To address these issues, and as alternative to atlas-based segmentation methods, machine learning techniques, such as support vector machines (SVM), have been recently presented to segment subcortical structures on magnetic resonance images (MRI). SVM is proposed to segment the brainstem on MRI in multicenter brain cancer context. A dataset composed by 14 adult brain MRI scans is used to evaluate its performance. In addition to spatial and probabilistic information, five different image intensity values (IIVs) configurations are evaluated as features to train the SVM classifier. Segmentation accuracy is evaluated by computing the Dice similarity coefficient (DSC), absolute volumes difference (AVD) and percentage volume difference between automatic and manual contours. Mean DSC for all proposed IIVs configurations ranged from 0.89 to 0.90. Mean AVD values were below 1.5 cm(3), where the value for best performing IIVs configuration was 0.85 cm(3), representing an absolute mean difference of 3.99% with respect to the manual segmented volumes. Results suggest consistent volume estimation and high spatial similarity with respect to expert delineations. The proposed approach outperformed presented methods to segment the brainstem, not only in volume similarity metrics, but also in segmentation time. Preliminary results showed that the approach might be promising for adoption in clinical use.
MemBrain: An Easy-to-Use Online Webserver for Transmembrane Protein Structure Prediction
NASA Astrophysics Data System (ADS)
Yin, Xi; Yang, Jing; Xiao, Feng; Yang, Yang; Shen, Hong-Bin
2018-03-01
Membrane proteins are an important kind of proteins embedded in the membranes of cells and play crucial roles in living organisms, such as ion channels, transporters, receptors. Because it is difficult to determinate the membrane protein's structure by wet-lab experiments, accurate and fast amino acid sequence-based computational methods are highly desired. In this paper, we report an online prediction tool called MemBrain, whose input is the amino acid sequence. MemBrain consists of specialized modules for predicting transmembrane helices, residue-residue contacts and relative accessible surface area of α-helical membrane proteins. MemBrain achieves a prediction accuracy of 97.9% of A TMH, 87.1% of A P, 3.2 ± 3.0 of N-score, 3.1 ± 2.8 of C-score. MemBrain-Contact obtains 62%/64.1% prediction accuracy on training and independent dataset on top L/5 contact prediction, respectively. And MemBrain-Rasa achieves Pearson correlation coefficient of 0.733 and its mean absolute error of 13.593. These prediction results provide valuable hints for revealing the structure and function of membrane proteins. MemBrain web server is free for academic use and available at www.csbio.sjtu.edu.cn/bioinf/MemBrain/. [Figure not available: see fulltext.
Visual cortical areas of the mouse: comparison of parcellation and network structure with primates
Laramée, Marie-Eve; Boire, Denis
2015-01-01
Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals. PMID:25620914
Visual cortical areas of the mouse: comparison of parcellation and network structure with primates.
Laramée, Marie-Eve; Boire, Denis
2014-01-01
Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals.
Random and non-random monoallelic expression.
Chess, Andrew
2013-01-01
Monoallelic expression poses an intriguing problem in epigenetics because it requires the unequal treatment of two segments of DNA that are present in the same nucleus and which can have absolutely identical sequences. This review will consider different known types of monoallelic expression. For all monoallelically expressed genes, their respective allele-specific patterns of expression have the potential to affect brain function and dysfunction.
Podlesniy, Petar; Trullas, Ramon
2018-01-01
Cerebrospinal fluid (CSF) contains molecules directly linked with brain function because it permeates brain tissue. The analysis of protein biomarkers in CSF is currently recommended for the diagnosis of neurodegenerative disorders, but the clinical sensitivity and specificity are still being investigated. A major drawback is that most of the currently used biomarkers of neurodegenerative diseases are proteins that are found at very low concentrations in CSF and need to be measured by immunoassays that provide relative values, which sometimes are difficult to reproduce between laboratories. In contrast, the recent availability of digital PCR platforms allows the absolute quantification of nucleic acids at single-molecule resolution, but their presence in CSF has not been characterized. CSF contains cell-free mitochondrial DNA (mtDNA) and changes in the concentration of this nucleic acid are linked to neurodegeneration. Here we describe a method to measure the concentration of cell-free circulating mtDNA directly in unpurified CSF using droplet digital PCR with either hydrolysis probes or fluorescent DNA-binding dye methods. This protocol allows the detection and absolute quantification of mtDNA content in the CSF with high analytical sensitivity, specificity, and accuracy.
Scaling of cerebral blood perfusion in primates and marsupials.
Seymour, Roger S; Angove, Sophie E; Snelling, Edward P; Cassey, Phillip
2015-08-01
The evolution of primates involved increasing body size, brain size and presumably cognitive ability. Cognition is related to neural activity, metabolic rate and rate of blood flow to the cerebral cortex. These parameters are difficult to quantify in living animals. This study shows that it is possible to determine the rate of cortical brain perfusion from the size of the internal carotid artery foramina in skulls of certain mammals, including haplorrhine primates and diprotodont marsupials. We quantify combined blood flow rate in both internal carotid arteries as a proxy of brain metabolism in 34 species of haplorrhine primates (0.116-145 kg body mass) and compare it to the same analysis for 19 species of diprotodont marsupials (0.014-46 kg). Brain volume is related to body mass by essentially the same exponent of 0.70 in both groups. Flow rate increases with haplorrhine brain volume to the 0.95 power, which is significantly higher than the exponent (0.75) expected for most organs according to 'Kleiber's Law'. By comparison, the exponent is 0.73 in marsupials. Thus, the brain perfusion rate increases with body size and brain size much faster in primates than in marsupials. The trajectory of cerebral perfusion in primates is set by the phylogenetically older groups (New and Old World monkeys, lesser apes) and the phylogenetically younger groups (great apes, including humans) fall near the line, with the highest perfusion. This may be associated with disproportionate increases in cortical surface area and mental capacity in the highly social, larger primates. © 2015. Published by The Company of Biologists Ltd.
Phillips, Kimberley A.; Stimpson, Cheryl D.; Smaers, Jeroen B.; Raghanti, Mary Ann; Jacobs, Bob; Popratiloff, Anastas; Hof, Patrick R.; Sherwood, Chet C.
2015-01-01
Interhemispheric communication may be constrained as brain size increases because of transmission delays in action potentials over the length of axons. Although one might expect larger brains to have progressively thicker axons to compensate, spatial packing is a limiting factor. Axon size distributions within the primate corpus callosum (CC) may provide insights into how these demands affect conduction velocity. We used electron microscopy to explore phylogenetic variation in myelinated axon density and diameter of the CC from 14 different anthropoid primate species, including humans. The majority of axons were less than 1 µm in diameter across all species, indicating that conduction velocity for most interhemispheric communication is relatively constant regardless of brain size. The largest axons within the upper 95th percentile scaled with a progressively higher exponent than the median axons towards the posterior region of the CC. While brain mass among the primates in our analysis varied by 97-fold, estimates of the fastest cross-brain conduction times, as conveyed by axons at the 95th percentile, varied within a relatively narrow range between 3 and 9 ms across species, whereas cross-brain conduction times for the median axon diameters differed more substantially between 11 and 38 ms. Nonetheless, for both size classes of axons, an increase in diameter does not entirely compensate for the delay in interhemispheric transmission time that accompanies larger brain size. Such biophysical constraints on the processing speed of axons conveyed by the CC may play an important role in the evolution of hemispheric asymmetry. PMID:26511047
Jin, Guang; DeMoya, Marc A; Duggan, Michael; Knightly, Thomas; Mejaddam, Ali Y; Hwabejire, John; Lu, Jennifer; Smith, William Michael; Kasotakis, Georgios; Velmahos, George C; Socrate, Simona; Alam, Hasan B
2012-07-01
Traumatic brain injury (TBI) and hemorrhagic shock (HS) are the leading causes of trauma-related mortality and morbidity. Combination of TBI and HS (TBI + HS) is highly lethal, and the optimal resuscitation strategy for this combined insult remains unclear. A critical limitation is the lack of suitable large animal models to test different treatment strategies. We have developed a clinically relevant large animal model of TBI + HS, which was used to evaluate the impact of different treatments on brain lesion size and associated edema. Yorkshire swine (42-50 kg) were instrumented to measure hemodynamic parameters and intracranial pressure. A computer-controlled cortical impact device was used to create a TBI through a 20-mm craniotomy: 15-mm cylindrical tip impactor at 4 m/s velocity, 100-ms dwell time, and 12-mm penetration depth. Volume-controlled hemorrhage was started (40% blood volume) concurrent with the TBI. After 2 h of shock, animals were randomized to one of three resuscitation groups (n = 5/group): (a) normal saline (NS); (b) 6% hetastarch, Hextend (Hex); and (c) fresh frozen plasma (FFP). Volumes of Hex and FFP matched the shed blood, whereas NS was three times the volume. After 6 h of postresuscitation monitoring, brains were sectioned into 5-mm slices and stained with TTC (2,3,5-triphenyltetrazolium chloride) to quantify the lesion size and brain swelling. Combination of 40% blood loss with cortical impact and a period of shock (2 h) resulted in a highly reproducible brain injury. Total fluid requirements were lower in the Hex and FFP groups. Lesion size and brain swelling in the FFP group (2,160 ± 202.63 mm and 22% ± 1.0%, respectively) were significantly smaller than those in the NS group (3,285 ± 130.8 mm3 and 37% ± 1.6%, respectively) (P < 0.05). Hex treatment decreased the swelling (29% ± 1.6%) without reducing the lesion size. Early administration of FFP reduces the size of brain lesion and associated swelling in a large animal model of TBI + HS. In contrast, artificial colloid (Hex) decreases swelling without reducing the actual size of the brain lesion.
Artificial selection on male genitalia length alters female brain size.
Buechel, Séverine D; Booksmythe, Isobel; Kotrschal, Alexander; Jennions, Michael D; Kolm, Niclas
2016-11-30
Male harassment is a classic example of how sexual conflict over mating leads to sex-specific behavioural adaptations. Females often suffer significant costs from males attempting forced copulations, and the sexes can be in an arms race over male coercion. Yet, despite recent recognition that divergent sex-specific interests in reproduction can affect brain evolution, sexual conflict has not been addressed in this context. Here, we investigate whether artificial selection on a correlate of male success at coercion, genital length, affects brain anatomy in males and females. We analysed the brains of eastern mosquitofish (Gambusia holbrooki), which had been artificially selected for long or short gonopodium, thereby mimicking selection arising from differing levels of male harassment. By analogy to how prey species often have relatively larger brains than their predators, we found that female, but not male, brain size was greater following selection for a longer gonopodium. Brain subregion volumes remained unchanged. These results suggest that there is a positive genetic correlation between male gonopodium length and female brain size, which is possibly linked to increased female cognitive ability to avoid male coercion. We propose that sexual conflict is an important factor in the evolution of brain anatomy and cognitive ability. © 2016 The Author(s).
Opposing brain differences in 16p11.2 deletion and duplication carriers.
Qureshi, Abid Y; Mueller, Sophia; Snyder, Abraham Z; Mukherjee, Pratik; Berman, Jeffrey I; Roberts, Timothy P L; Nagarajan, Srikantan S; Spiro, John E; Chung, Wendy K; Sherr, Elliott H; Buckner, Randy L
2014-08-20
Deletions and duplications of the recurrent ~600 kb chromosomal BP4-BP5 region of 16p11.2 are associated with a broad variety of neurodevelopmental outcomes including autism spectrum disorder. A clue to the pathogenesis of the copy number variant (CNV)'s effect on the brain is that the deletion is associated with a head size increase, whereas the duplication is associated with a decrease. Here we analyzed brain structure in a clinically ascertained group of human deletion (N = 25) and duplication (N = 17) carriers from the Simons Variation in Individuals Project compared with age-matched controls (N = 29 and 33, respectively). Multiple brain measures showed increased size in deletion carriers and reduced size in duplication carriers. The effects spanned global measures of intracranial volume, brain size, compartmental measures of gray matter and white matter, subcortical structures, and the cerebellum. Quantitatively, the largest effect was on the thalamus, but the collective results suggest a pervasive rather than a selective effect on the brain. Detailed analysis of cortical gray matter revealed that cortical surface area displays a strong dose-dependent effect of CNV (deletion > control > duplication), whereas average cortical thickness is less affected. These results suggest that the CNV may exert its opposing influences through mechanisms that influence early stages of embryonic brain development. Copyright © 2014 the authors 0270-6474/14/3411199-13$15.00/0.
NASA Technical Reports Server (NTRS)
Mulrooney, Dr. Mark K.; Matney, Dr. Mark J.
2007-01-01
Orbital object data acquired via optical telescopes can play a crucial role in accurately defining the space environment. Radar systems probe the characteristics of small debris by measuring the reflected electromagnetic energy from an object of the same order of size as the wavelength of the radiation. This signal is affected by electrical conductivity of the bulk of the debris object, as well as its shape and orientation. Optical measurements use reflected solar radiation with wavelengths much smaller than the size of the objects. Just as with radar, the shape and orientation of an object are important, but we only need to consider the surface electrical properties of the debris material (i.e., the surface albedo), not the bulk electromagnetic properties. As a result, these two methods are complementary in that they measure somewhat independent physical properties to estimate the same thing, debris size. Short arc optical observations such as are typical of NASA's Liquid Mirror Telescope (LMT) give enough information to estimate an Assumed Circular Orbit (ACO) and an associated range. This information, combined with the apparent magnitude, can be used to estimate an "absolute" brightness (scaled to a fixed range and phase angle). This absolute magnitude is what is used to estimate debris size. However, the shape and surface albedo effects make the size estimates subject to systematic and random errors, such that it is impossible to ascertain the size of an individual object with any certainty. However, as has been shown with radar debris measurements, that does not preclude the ability to estimate the size distribution of a number of objects statistically. After systematic errors have been eliminated (range errors, phase function assumptions, photometry) there remains a random geometric albedo distribution that relates object size to absolute magnitude. Measurements by the LMT of a subset of tracked debris objects with sizes estimated from their radar cross sections indicate that the random variations in the albedo follow a log-normal distribution quite well. In addition, this distribution appears to be independent of object size over a considerable range in size. Note that this relation appears to hold for debris only, where the shapes and other properties are not primarily the result of human manufacture, but of random processes. With this information in hand, it now becomes possible to estimate the actual size distribution we are sampling from. We have identified two characteristics of the space debris population that make this process tractable and by extension have developed a methodology for performing the transformation.
Hühn, M
1995-05-01
Some approaches to molecular marker-assisted linkage detection for a dominant disease-resistance trait based on a segregating F2 population are discussed. Analysis of two-point linkage is carried out by the traditional measure of maximum lod score. It depends on (1) the maximum-likelihood estimate of the recombination fraction between the marker and the disease-resistance gene locus, (2) the observed absolute frequencies, and (3) the unknown number of tested individuals. If one replaces the absolute frequencies by expressions depending on the unknown sample size and the maximum-likelihood estimate of recombination value, the conventional rule for significant linkage (maximum lod score exceeds a given linkage threshold) can be resolved for the sample size. For each sub-population used for linkage analysis [susceptible (= recessive) individuals, resistant (= dominant) individuals, complete F2] this approach gives a lower bound for the necessary number of individuals required for the detection of significant two-point linkage by the lod-score method.
An, Zhao; Wen-Xin, Zhang; Zhong, Yao; Yu-Kuan, Ma; Qing, Liu; Hou-Lang, Duan; Yi-di, Shang
2016-06-29
To optimize and simplify the survey method of Oncomelania hupensis snail in marshland endemic region of schistosomiasis and increase the precision, efficiency and economy of the snail survey. A quadrate experimental field was selected as the subject of 50 m×50 m size in Chayegang marshland near Henghu farm in the Poyang Lake region and a whole-covered method was adopted to survey the snails. The simple random sampling, systematic sampling and stratified random sampling methods were applied to calculate the minimum sample size, relative sampling error and absolute sampling error. The minimum sample sizes of the simple random sampling, systematic sampling and stratified random sampling methods were 300, 300 and 225, respectively. The relative sampling errors of three methods were all less than 15%. The absolute sampling errors were 0.221 7, 0.302 4 and 0.047 8, respectively. The spatial stratified sampling with altitude as the stratum variable is an efficient approach of lower cost and higher precision for the snail survey.
Peter, Johannes; Rosman, Tom; Mayer, Anne-Kathrin; Leichner, Nikolas; Krampen, Günter
2016-06-01
Particularly in higher education, not only a view of science as a means of finding absolute truths (absolutism), but also a view of science as generally tentative (multiplicism) can be unsophisticated and obstructive for learning. Most quantitative epistemic belief inventories neglect this and understand epistemic sophistication as disagreement with absolute statements. This article suggests considering absolutism and multiplicism as separate dimensions. Following our understanding of epistemic sophistication as a cautious and reluctant endorsement of both positions, we assume evaluativism (a contextually adaptive view of knowledge as personally constructed and evidence-based) to be reflected by low agreement with both generalized absolute and generalized multiplicistic statements. Three studies with a total sample size of N = 416 psychology students were conducted. A domain-specific inventory containing both absolute and multiplicistic statements was developed. Expectations were tested by exploratory factor analysis, confirmatory factor analysis, and correlational analyses. Results revealed a two-factor solution with an absolute and a multiplicistic factor. Criterion validity of both factors was confirmed. Cross-sectional analyses revealed that agreement to generalized multiplicistic statements decreases with study progress. Moreover, consistent with our understanding of epistemic sophistication as a reluctant attitude towards generalized epistemic statements, evidence for a negative relationship between epistemic sophistication and need for cognitive closure was found. We recommend including multiplicistic statements into epistemic belief questionnaires and considering them as a separate dimension, especially when investigating individuals in later stages of epistemic development (i.e., in higher education). © 2015 The British Psychological Society.
Absolute and relative educational inequalities in depression in Europe.
Dudal, Pieter; Bracke, Piet
2016-09-01
To investigate (1) the size of absolute and relative educational inequalities in depression, (2) their variation between European countries, and (3) their relationship with underlying prevalence rates. Analyses are based on the European Social Survey, rounds three and six (N = 57,419). Depression is measured using the shortened Centre of Epidemiologic Studies Depression Scale. Education is coded by use of the International Standard Classification of Education. Country-specific logistic regressions are applied. Results point to an elevated risk of depressive symptoms among the lower educated. The cross-national patterns differ between absolute and relative measurements. For men, large relative inequalities are found for countries including Denmark and Sweden, but are accompanied by small absolute inequalities. For women, large relative and absolute inequalities are found in Belgium, Bulgaria, and Hungary. Results point to an empirical association between inequalities and the underlying prevalence rates. However, the strength of the association is only moderate. This research stresses the importance of including both measurements for comparative research and suggests the inclusion of the level of population health in research into inequalities in health.
Island Rule, quantitative genetics and brain-body size evolution in Homo floresiensis.
Diniz-Filho, José Alexandre Felizola; Raia, Pasquale
2017-06-28
Colonization of islands often activate a complex chain of adaptive events that, over a relatively short evolutionary time, may drive strong shifts in body size, a pattern known as the Island Rule. It is arguably difficult to perform a direct analysis of the natural selection forces behind such a change in body size. Here, we used quantitative evolutionary genetic models, coupled with simulations and pattern-oriented modelling, to analyse the evolution of brain and body size in Homo floresiensis , a diminutive hominin species that appeared around 700 kya and survived up to relatively recent times (60-90 kya) on Flores Island, Indonesia. The hypothesis of neutral evolution was rejected in 97% of the simulations, and estimated selection gradients are within the range found in living natural populations. We showed that insularity may have triggered slightly different evolutionary trajectories for body and brain size, which means explaining the exceedingly small cranial volume of H. floresiensis requires additional selective forces acting on brain size alone. Our analyses also support previous conclusions that H. floresiensis may be most likely derived from an early Indonesian H. erectus , which is coherent with currently accepted biogeographical scenario for Homo expansion out of Africa. © 2017 The Author(s).
Optoelectronic fuzzy associative memory with controllable attraction basin sizes
NASA Astrophysics Data System (ADS)
Wen, Zhiqing; Campbell, Scott; Wu, Weishu; Yeh, Pochi
1995-10-01
We propose and demonstrate a new fuzzy associative memory model that provides an option to control the sizes of the attraction basins in neural networks. In our optoelectronic implementation we use spatial/polarization encoding to represent the fuzzy variables. Shadow casting of the encoded patterns is employed to yield the fuzzy-absolute difference between fuzzy variables.
How Infants Encode Spatial Extent
ERIC Educational Resources Information Center
Duffy, Sean; Huttenlocher, Janellen; Levine, Susan; Duffy, Renee
2005-01-01
This study explores how infants encode an object's spatial extent. We habituated 6.5-month-old infants to a dowel inside a container and then tested whether they dishabituate to a change in absolute size when the relation between dowel and container is held constant (by altering the size of both container and dowel) and when the relation changes…
Mankiw, Catherine; Park, Min Tae M.; Reardon, P.K.; Fish, Ari M.; Clasen, Liv S.; Greenstein, Deanna; Blumenthal, Jonathan D.; Lerch, Jason P.; Chakravarty, M. Mallar
2017-01-01
The cerebellum is a large hindbrain structure that is increasingly recognized for its contribution to diverse domains of cognitive and affective processing in human health and disease. Although several of these domains are sex biased, our fundamental understanding of cerebellar sex differences—including their spatial distribution, potential biological determinants, and independence from brain volume variation—lags far behind that for the cerebrum. Here, we harness automated neuroimaging methods for cerebellar morphometrics in 417 individuals to (1) localize normative male–female differences in raw cerebellar volume, (2) compare these to sex chromosome effects estimated across five rare sex (X/Y) chromosome aneuploidy (SCA) syndromes, and (3) clarify brain size-independent effects of sex and SCA on cerebellar anatomy using a generalizable allometric approach that considers scaling relationships between regional cerebellar volume and brain volume in health. The integration of these approaches shows that (1) sex and SCA effects on raw cerebellar volume are large and distributed, but regionally heterogeneous, (2) human cerebellar volume scales with brain volume in a highly nonlinear and regionally heterogeneous fashion that departs from documented patterns of cerebellar scaling in phylogeny, and (3) cerebellar organization is modified in a brain size-independent manner by sex (relative expansion of total cerebellum, flocculus, and Crus II-lobule VIIIB volumes in males) and SCA (contraction of total cerebellar, lobule IV, and Crus I volumes with additional X- or Y-chromosomes; X-specific contraction of Crus II-lobule VIIIB). Our methods and results clarify the shifts in human cerebellar organization that accompany interwoven variations in sex, sex chromosome complement, and brain size. SIGNIFICANCE STATEMENT Cerebellar systems are implicated in diverse domains of sex-biased behavior and pathology, but we lack a basic understanding of how sex differences in the human cerebellum are distributed and determined. We leverage a rare neuroimaging dataset to deconvolve the interwoven effects of sex, sex chromosome complement, and brain size on human cerebellar organization. We reveal topographically variegated scaling relationships between regional cerebellar volume and brain size in humans, which (1) are distinct from those observed in phylogeny, (2) invalidate a traditional neuroimaging method for brain volume correction, and (3) allow more valid and accurate resolution of which cerebellar subcomponents are sensitive to sex and sex chromosome complement. These findings advance understanding of cerebellar organization in health and sex chromosome aneuploidy. PMID:28314818
NASA Astrophysics Data System (ADS)
Stedman, J. D.; Spyrou, N. M.
1994-12-01
The trace element concentrations in porcine brain samples as determined by particle-induced X-ray emission (PIXE) analysis, instrumental neutron activation analysis (INAA) and particle-induced gamma-ray emission (PIGE) analysis are compared. The matrix composition was determined by Rutherford backscattering (RBS). Al, Si, P, S, Cl, K, Ca, Mn, Fe and Cd were determined by PIXE analysis Na, K, Sc, Fe, Co, Zn, As, Br, Rb, and Cs by INAA and Na, Mg and Fe by PIGE analysis. The bulk elements C, N, O, Na Cl and S were found by RBS analysis. Elemental concentrations are obtained using the comparator method of analysis rather than an absolute method, the validity which is examined by comparing the elemental concentrations obtained in porcine brain using two separate certified reference materials.
Sariev, A K; Lun'shina, E V; Zherdev, V P; Mirzoian, N R
2006-01-01
Experiments showed that a new drug composition containing pyrrolidone and pyroglutamic acid exhibits a significant cerebrovascular effect upon peroral administration in rats. The pharmacokinetics of pyrrolidone monitored upon its combined administration with pyroglutamic acid shows that this drug, as a component of the composition, is characterized by a high absolute bioavailability and permeability trough the blood-brain barrier. The presence of pyroglutamic acid slows down the absorption and elimination of pyrrolidone and enhances its distribution in the organs and tissues. There is a correlation between the concentration of pyrrolidone in the brain, on the one hand, and the levels of cerebral microcirculation and arterial pressure on the other hand. An increase in the concentration of pyrrolidone in the brain is accompanied by more intensive cerebral blood flow and by a decrease in the arterial pressure.
Brain death revisited: it is not 'complete death' according to Islamic sources.
Bedir, Ahmet; Aksoy, Sahin
2011-05-01
Concepts, such as death, life and spirit cannot be known in their quintessential nature, but can be defined in accordance with their effects. In fact, those who think within the mode of pragmatism and Cartesian logic have ignored the metaphysical aspects of these terms. According to Islam, the entity that moves the body is named the soul. And the aliment of the soul is air. Cessation of breathing means leaving of the soul from the body. Those who agree on the diagnosis of brain death may not able to agree unanimously on the rules that lay down such diagnosis. That is to say, there are a heap of suspicions regarding the diagnosis of brain death, and these suspicions are on the increase. In fact, Islamic jurisprudence does not put provisions, decisions on suspicious grounds. By virtue of these facts, it can be asserted that brain death is not absolute death according to Islamic sources; for in the patients diagnosed with brain death the soul still has not abandoned the body. Therefore, these patients suffer in every operation performed on them.
Sepehrband, Farshid; Clark, Kristi A.; Ullmann, Jeremy F.P.; Kurniawan, Nyoman D.; Leanage, Gayeshika; Reutens, David C.; Yang, Zhengyi
2015-01-01
We examined whether quantitative density measures of cerebral tissue consistent with histology can be obtained from diffusion magnetic resonance imaging (MRI). By incorporating prior knowledge of myelin and cell membrane densities, absolute tissue density values were estimated from relative intra-cellular and intra-neurite density values obtained from diffusion MRI. The NODDI (neurite orientation distribution and density imaging) technique, which can be applied clinically, was used. Myelin density estimates were compared with the results of electron and light microscopy in ex vivo mouse brain and with published density estimates in a healthy human brain. In ex vivo mouse brain, estimated myelin densities in different sub-regions of the mouse corpus callosum were almost identical to values obtained from electron microscopy (Diffusion MRI: 42±6%, 36±4% and 43±5%; electron microscopy: 41±10%, 36±8% and 44±12% in genu, body and splenium, respectively). In the human brain, good agreement was observed between estimated fiber density measurements and previously reported values based on electron microscopy. Estimated density values were unaffected by crossing fibers. PMID:26096639
Karlen, Sarah J; Krubitzer, Leah
2006-01-01
The neocortex is that portion of the brain that is involved in volitional motor control, perception, cognition and a number of other complex behaviours exhibited by mammals, including humans. Indeed, the increase in the size of the cortical sheet and cortical field number is one of the hallmarks of human brain evolution. Fossil records and comparative studies of the neocortex indicate that early mammalian neocortices were composed of only a few parts or cortical fields, and that in some lineages such as primates, the neocortex expanded dramatically. More significantly, the number of cortical fields increased and the connectivity between cortical fields became more complex. While we do not know the exact transformation between this type of increase in cortical field number and connectivity; and the emergence of complex behaviours like those mentioned above, we know that species that have large neocorticies with multiple parts generally have more complex behaviours, both overt and covert. Although a number of inroads have been made into understanding how neurons in the neocortex respond to a variety of stimuli, the micro and macro circuitry of particular neocortical fields, and the molecular developmental events that construct current organization, very little is known about how more cortical fields are added in evolution. In particular, we do not know the rules of change, nor the constraints imposed on evolving nervous systems that dictate the particular phenotype that will ultimately emerge. One reason why these issues are unresolved is that the brain is a compromise between existing genetic constraints and the need to adapt. Thus, the functions that the brain generates are absolutely imperfect, although functionally optimized. This makes it very difficult to determine the rules of construction, to generate viable computational models of brain evolution, and to predict the direction of changes that may occur over time. Despite these obstacles, it is still possible to study the evolution of the neocortex. One way is to study the products of the evolutionary process--extant mammal brains-and to make inferences about the process. The second way to study brain evolution is to examine the developmental mechanisms that give rise to complex brains. We have begun to test our theories regarding cortical evolution, generated from comparative studies, by 'tweaking' in a developing nervous system what we believe is naturally being modified in evolution. Our goals are to identify the constraints imposed on the evolving neocortex, to disentangle the genetic and activity dependent mechanisms that give rise to complex brains, and ultimately to produce a cortical phenotype that is consistent with what would naturally occur in evolution.
Zidan, Ahmed S; Aldawsari, Hibah
2015-01-01
Delivering drugs to intracerebral regions can be accomplished by improving the capacity of transport through blood-brain barrier. Using sertraline as model drug for brain targeting, the current study aimed at modifying its liposomal vesicles with mannopyranoside. Box-Behnken design was employed to statistically optimize the ultrasound parameters, namely ultrasound amplitude, time, and temperature, for maximum mannosylation capacity, sertraline entrapment, and surface charge while minimizing vesicular size. Moreover, in vitro blood-brain barrier transport model was established to assess the transendothelial capacity of the optimized mannosylated vesicles. Results showed a dependence of vesicular size, mannosylation capacity, and sertraline entrapment on cavitation and bubble implosion events that were related to ultrasound power amplitude, temperature. However, short ultrasound duration was required to achieve >90% mannosylation with nanosized vesicles (<200 nm) of narrow size distribution. Optimized ultrasound parameters of 65°C, 27%, and 59 seconds for ultrasound temperature, amplitude, and time were elucidated to produce 81.1%, 46.6 nm, and 77.6% sertraline entrapment, vesicular size, and mannosylation capacity, respectively. Moreover, the transendothelial ability was significantly increased by 2.5-fold by mannosylation through binding with glucose transporters. Hence, mannosylated liposomes processed by ultrasound could be a promising approach for manufacturing and scale-up of brain-targeting liposomes.
Pixel-based absolute surface metrology by three flat test with shifted and rotated maps
NASA Astrophysics Data System (ADS)
Zhai, Dede; Chen, Shanyong; Xue, Shuai; Yin, Ziqiang
2018-03-01
In traditional three flat test, it only provides the absolute profile along one surface diameter. In this paper, an absolute testing algorithm based on shift-rotation with three flat test has been proposed to reconstruct two-dimensional surface exactly. Pitch and yaw error during shift procedure is analyzed and compensated in our method. Compared with multi-rotation method proposed before, it only needs a 90° rotation and a shift, which is easy to carry out especially in condition of large size surface. It allows pixel level spatial resolution to be achieved without interpolation or assumption to the test surface. In addition, numerical simulations and optical tests are implemented and show the high accuracy recovery capability of the proposed method.
Visual perception as retrospective Bayesian decoding from high- to low-level features
Ding, Stephanie; Cueva, Christopher J.; Tsodyks, Misha; Qian, Ning
2017-01-01
When a stimulus is presented, its encoding is known to progress from low- to high-level features. How these features are decoded to produce perception is less clear, and most models assume that decoding follows the same low- to high-level hierarchy of encoding. There are also theories arguing for global precedence, reversed hierarchy, or bidirectional processing, but they are descriptive without quantitative comparison with human perception. Moreover, observers often inspect different parts of a scene sequentially to form overall perception, suggesting that perceptual decoding requires working memory, yet few models consider how working-memory properties may affect decoding hierarchy. We probed decoding hierarchy by comparing absolute judgments of single orientations and relative/ordinal judgments between two sequentially presented orientations. We found that lower-level, absolute judgments failed to account for higher-level, relative/ordinal judgments. However, when ordinal judgment was used to retrospectively decode memory representations of absolute orientations, striking aspects of absolute judgments, including the correlation and forward/backward aftereffects between two reported orientations in a trial, were explained. We propose that the brain prioritizes decoding of higher-level features because they are more behaviorally relevant, and more invariant and categorical, and thus easier to specify and maintain in noisy working memory, and that more reliable higher-level decoding constrains less reliable lower-level decoding. PMID:29073108
A brain aneurysm is an abnormal bulge or "ballooning" in the wall of an artery in the brain. They are sometimes called berry aneurysms because they ... often the size of a small berry. Most brain aneurysms produce no symptoms until they become large, ...
Bayesian estimation of optical properties of the human head via 3D structural MRI
NASA Astrophysics Data System (ADS)
Barnett, Alexander H.; Culver, Joseph P.; Sorensen, A. Gregory; Dale, Anders M.; Boas, David A.
2003-10-01
Knowledge of the baseline optical properties of the tissues of the human head is essential for absolute cerebral oximetry, and for quantitative studies of brain activation. In this work we numerically model the utility of signals from a small 6-optode time-resolved diffuse optical tomographic apparatus for inferring baseline scattering and absorption coefficients of the scalp, skull and brain, when complete geometric information is available from magnetic resonance imaging (MRI). We use an optical model where MRI-segmented tissues are assumed homogeneous. We introduce a noise model capturing both photon shot noise and forward model numerical accuracy, and use Bayesian inference to predict errorbars and correlations on the measurments. We also sample from the full posterior distribution using Markov chain Monte Carlo. We conclude that ~ 106 detected photons are sufficient to measure the brain"s scattering and absorption to a few percent. We present preliminary results using a fast multi-layer slab model, comparing the case when layer thicknesses are known versus unknown.
In Vivo Follow-up of Brain Tumor Growth via Bioluminescence Imaging and Fluorescence Tomography
Genevois, Coralie; Loiseau, Hugues; Couillaud, Franck
2016-01-01
Reporter gene-based strategies are widely used in experimental oncology. Bioluminescence imaging (BLI) using the firefly luciferase (Fluc) as a reporter gene and d-luciferin as a substrate is currently the most widely employed technique. The present paper compares the performances of BLI imaging with fluorescence imaging using the near infrared fluorescent protein (iRFP) to monitor brain tumor growth in mice. Fluorescence imaging includes fluorescence reflectance imaging (FRI), fluorescence diffuse optical tomography (fDOT), and fluorescence molecular Imaging (FMT®). A U87 cell line was genetically modified for constitutive expression of both the encoding Fluc and iRFP reporter genes and assayed for cell, subcutaneous tumor and brain tumor imaging. On cultured cells, BLI was more sensitive than FRI; in vivo, tumors were first detected by BLI. Fluorescence of iRFP provided convenient tools such as flux cytometry, direct detection of the fluorescent protein on histological slices, and fluorescent tomography that allowed for 3D localization and absolute quantification of the fluorescent signal in brain tumors. PMID:27809256
In Vivo Follow-up of Brain Tumor Growth via Bioluminescence Imaging and Fluorescence Tomography.
Genevois, Coralie; Loiseau, Hugues; Couillaud, Franck
2016-10-31
Reporter gene-based strategies are widely used in experimental oncology. Bioluminescence imaging (BLI) using the firefly luciferase (Fluc) as a reporter gene and d-luciferin as a substrate is currently the most widely employed technique. The present paper compares the performances of BLI imaging with fluorescence imaging using the near infrared fluorescent protein (iRFP) to monitor brain tumor growth in mice. Fluorescence imaging includes fluorescence reflectance imaging (FRI), fluorescence diffuse optical tomography (fDOT), and fluorescence molecular Imaging (FMT ® ). A U87 cell line was genetically modified for constitutive expression of both the encoding Fluc and iRFP reporter genes and assayed for cell, subcutaneous tumor and brain tumor imaging. On cultured cells, BLI was more sensitive than FRI; in vivo, tumors were first detected by BLI. Fluorescence of iRFP provided convenient tools such as flux cytometry, direct detection of the fluorescent protein on histological slices, and fluorescent tomography that allowed for 3D localization and absolute quantification of the fluorescent signal in brain tumors.
Payzieva, Shaira; Maxmudova, D
2014-01-01
We used functional Near-Infrared Spectroscopy (fNIRS) to estimate brain activity in Major Depressive Disorder (MDD) patients (in remission), while they played a computerized brain training games for cognitive rehabilitation. MDD is characterized by marked deterioration in affect as well as significant impairment in cognitive function. It was found, that depressed patients showed long-lasting impaired cognitive performance on cognitive demanding tasks despite significant improvement in the depression symptoms. Previous studies have shown that video games can improve cognitive functions. But assessment was made only with cognitive tests. The main objective of this research was to study the effects of brain training games on cognitive functions of MDD patients in remission with objective instrumental NIRS method. Tissue oxygen saturation (StO2) and absolute concentrations of oxyhemoglobin ([O2Hb]), deoxyhemoglobin ([HHb]) and total hemoglobin ([tHb]) were measured by functional near-infrared spectroscopy (fNIRS) - Oxyprem (BORL, Zurich, Switzerland). Preliminary results are discussed.
Big Cat Coalitions: A Comparative Analysis of Regional Brain Volumes in Felidae.
Sakai, Sharleen T; Arsznov, Bradley M; Hristova, Ani E; Yoon, Elise J; Lundrigan, Barbara L
2016-01-01
Broad-based species comparisons across mammalian orders suggest a number of factors that might influence the evolution of large brains. However, the relationship between these factors and total and regional brain size remains unclear. This study investigated the relationship between relative brain size and regional brain volumes and sociality in 13 felid species in hopes of revealing relationships that are not detected in more inclusive comparative studies. In addition, a more detailed analysis was conducted of four focal species: lions ( Panthera leo ), leopards ( Panthera pardus ), cougars ( Puma concolor ), and cheetahs ( Acinonyx jubatus ). These species differ markedly in sociality and behavioral flexibility, factors hypothesized to contribute to increased relative brain size and/or frontal cortex size. Lions are the only truly social species, living in prides. Although cheetahs are largely solitary, males often form small groups. Both leopards and cougars are solitary. Of the four species, leopards exhibit the most behavioral flexibility, readily adapting to changing circumstances. Regional brain volumes were analyzed using computed tomography. Skulls ( n = 75) were scanned to create three-dimensional virtual endocasts, and regional brain volumes were measured using either sulcal or bony landmarks obtained from the endocasts or skulls. Phylogenetic least squares regression analyses found that sociality does not correspond with larger relative brain size in these species. However, the sociality/solitary variable significantly predicted anterior cerebrum (AC) volume, a region that includes frontal cortex. This latter finding is despite the fact that the two social species in our sample, lions and cheetahs, possess the largest and smallest relative AC volumes, respectively. Additionally, an ANOVA comparing regional brain volumes in four focal species revealed that lions and leopards, while not significantly different from one another, have relatively larger AC volumes than are found in cheetahs or cougars. Further, female lions possess a significantly larger AC volume than conspecific males; female lion values were also larger than those of the other three species (regardless of sex). These results may reflect greater complexity in a female lion's social world, but additional studies are necessary. These data suggest that within family comparisons may reveal variations not easily detected by broad comparative analyses.
Big Cat Coalitions: A Comparative Analysis of Regional Brain Volumes in Felidae
Sakai, Sharleen T.; Arsznov, Bradley M.; Hristova, Ani E.; Yoon, Elise J.; Lundrigan, Barbara L.
2016-01-01
Broad-based species comparisons across mammalian orders suggest a number of factors that might influence the evolution of large brains. However, the relationship between these factors and total and regional brain size remains unclear. This study investigated the relationship between relative brain size and regional brain volumes and sociality in 13 felid species in hopes of revealing relationships that are not detected in more inclusive comparative studies. In addition, a more detailed analysis was conducted of four focal species: lions (Panthera leo), leopards (Panthera pardus), cougars (Puma concolor), and cheetahs (Acinonyx jubatus). These species differ markedly in sociality and behavioral flexibility, factors hypothesized to contribute to increased relative brain size and/or frontal cortex size. Lions are the only truly social species, living in prides. Although cheetahs are largely solitary, males often form small groups. Both leopards and cougars are solitary. Of the four species, leopards exhibit the most behavioral flexibility, readily adapting to changing circumstances. Regional brain volumes were analyzed using computed tomography. Skulls (n = 75) were scanned to create three-dimensional virtual endocasts, and regional brain volumes were measured using either sulcal or bony landmarks obtained from the endocasts or skulls. Phylogenetic least squares regression analyses found that sociality does not correspond with larger relative brain size in these species. However, the sociality/solitary variable significantly predicted anterior cerebrum (AC) volume, a region that includes frontal cortex. This latter finding is despite the fact that the two social species in our sample, lions and cheetahs, possess the largest and smallest relative AC volumes, respectively. Additionally, an ANOVA comparing regional brain volumes in four focal species revealed that lions and leopards, while not significantly different from one another, have relatively larger AC volumes than are found in cheetahs or cougars. Further, female lions possess a significantly larger AC volume than conspecific males; female lion values were also larger than those of the other three species (regardless of sex). These results may reflect greater complexity in a female lion’s social world, but additional studies are necessary. These data suggest that within family comparisons may reveal variations not easily detected by broad comparative analyses. PMID:27812324
In Pursuit of Neurophenotypes: The Consequences of Having Autism and a Big Brain
Amaral, David G.; Li, Deana; Libero, Lauren; Solomon, Marjorie; Van de Water, Judy; Mastergeorge, Ann; Naigles, Letitia; Rogers, Sally; Nordahl, Christine Wu
2017-01-01
A consensus has emerged that despite common core features, autism spectrum disorder (ASD) has multiple etiologies and various genetic and biological characteristics. The fact that there are likely to be subtypes of ASD has complicated attempts to develop effective therapies. The UC Davis MIND Institute Autism Phenome Project is a longitudinal, multidisciplinary analysis of children with autism and age-matched typically developing controls; nearly 400 families are participating in this study. The overarching goal is to gather sufficient biological, medical, and behavioral data to allow definition of clinically meaningful subtypes of ASD. One reasonable hypothesis is that different subtypes of autism will demonstrate different patterns of altered brain organization or development i.e., different neurophenotypes. In this Commentary, we discuss one neurophenotype that is defined by megalencephaly, or having brain size that is large and disproportionate to body size. We have found that 15% of the boys with autism demonstrate this neurophenotype, though it is far less common in girls. We review behavioral and medical characteristics of the large-brained group of boys with autism in comparison to those with typically sized brains. While brain size in typically developing individuals is positively correlated with cognitive function, the children with autism and larger brains have more severe disabilities and poorer prognosis. This research indicates that phenotyping in autism, like genotyping, requires a very substantial cohort of subjects. Moreover, since brain and behavior relationships may emerge at different times during development, this effort highlights the need for longitudinal analyses to carry out meaningful phenotyping. PMID:28239961
Neural Plasticity and Neurorehabilitation Following Traumatic Brain Injury
2009-10-01
Nissl . Using the Nissl stained sections, Dorothy Kozlowski’s lab has analyzed the size of the contusions. Previous studies have shown that if...brains, staining one set with Nissl , saving the remaining sets for Immunohistochemical staining . • Dr. Kozlowski’s lab is analyzing contusion size...serially and coronaly into sets and immunohistochemically analyzed for the following: contusion size estimated as volume of remaining tissue in Nissl
A combined MR and CT study for precise quantitative analysis of the avian brain
NASA Astrophysics Data System (ADS)
Jirak, Daniel; Janacek, Jiri; Kear, Benjamin P.
2015-10-01
Brain size is widely used as a measure of behavioural complexity and sensory-locomotive capacity in avians but has largely relied upon laborious dissections, endoneurocranial tissue displacement, and physical measurement to derive comparative volumes. As an alternative, we present a new precise calculation method based upon coupled magnetic resonance (MR) imaging and computed tomography (CT). Our approach utilizes a novel interactive Fakir probe cross-referenced with an automated CT protocol to efficiently generate total volumes and surface areas of the brain tissue and endoneurocranial space, as well as the discrete cephalic compartments. We also complemented our procedures by using sodium polytungstate (SPT) as a contrast agent. This greatly enhanced CT applications but did not degrade MR quality and is therefore practical for virtual brain tissue reconstructions employing multiple imaging modalities. To demonstrate our technique, we visualized sex-based brain size differentiation in a sample set of Ring-necked pheasants (Phasianus colchicus). This revealed no significant variance in relative volume or surface areas of the primary brain regions. Rather, a trend towards isometric enlargement of the total brain and endoneurocranial space was evidenced in males versus females, thus advocating a non-differential sexually dimorphic pattern of brain size increase amongst these facultatively flying birds.
Khaligh-Razavi, Seyed-Mahdi; Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude
2018-06-07
Animacy and real-world size are properties that describe any object and thus bring basic order into our perception of the visual world. Here, we investigated how the human brain processes real-world size and animacy. For this, we applied representational similarity to fMRI and MEG data to yield a view of brain activity with high spatial and temporal resolutions, respectively. Analysis of fMRI data revealed that a distributed and partly overlapping set of cortical regions extending from occipital to ventral and medial temporal cortex represented animacy and real-world size. Within this set, parahippocampal cortex stood out as the region representing animacy and size stronger than most other regions. Further analysis of the detailed representational format revealed differences among regions involved in processing animacy. Analysis of MEG data revealed overlapping temporal dynamics of animacy and real-world size processing starting at around 150 msec and provided the first neuromagnetic signature of real-world object size processing. Finally, to investigate the neural dynamics of size and animacy processing simultaneously in space and time, we combined MEG and fMRI with a novel extension of MEG-fMRI fusion by representational similarity. This analysis revealed partly overlapping and distributed spatiotemporal dynamics, with parahippocampal cortex singled out as a region that represented size and animacy persistently when other regions did not. Furthermore, the analysis highlighted the role of early visual cortex in representing real-world size. A control analysis revealed that the neural dynamics of processing animacy and size were distinct from the neural dynamics of processing low-level visual features. Together, our results provide a detailed spatiotemporal view of animacy and size processing in the human brain.
Random and Non-Random Monoallelic Expression
Chess, Andrew
2013-01-01
Monoallelic expression poses an intriguing problem in epigenetics because it requires the unequal treatment of two segments of DNA that are present in the same nucleus and which can have absolutely identical sequences. This review will consider different known types of monoallelic expression. For all monoallelically expressed genes, their respective allele-specific patterns of expression have the potential to affect brain function and dysfunction. PMID:22763620
ERIC Educational Resources Information Center
Irvin, Andrea
2012-01-01
English teachers have those favorite characters in the literature they choose to study with their students, from the classics of Lennie and George in "Of Mice and Men" to more contemporary characters such as Arnold in "The Absolutely True Diary of a Part-Time Indian" who was "born with water on the brain" (Alexie 1). The author loves allowing…
Cryptosporidium: A Guide to Water Filters
... label> Parasites Home A Guide to Water Filters Recommend on Facebook Tweet Share Compartir Filtering Tap ... absolute pore size of 1 micron or smaller. Filters designed to remove Crypto (any of the four ...
Body size, swimming speed, or thermal sensitivity? Predator-imposed selection on amphibian larvae.
Gvoždík, Lumír; Smolinský, Radovan
2015-11-02
Many animals rely on their escape performance during predator encounters. Because of its dependence on body size and temperature, escape velocity is fully characterized by three measures, absolute value, size-corrected value, and its response to temperature (thermal sensitivity). The primary target of the selection imposed by predators is poorly understood. We examined predator (dragonfly larva)-imposed selection on prey (newt larvae) body size and characteristics of escape velocity using replicated and controlled predation experiments under seminatural conditions. Specifically, because these species experience a wide range of temperatures throughout their larval phases, we predict that larvae achieving high swimming velocities across temperatures will have a selective advantage over more thermally sensitive individuals. Nonzero selection differentials indicated that predators selected for prey body size and both absolute and size-corrected maximum swimming velocity. Comparison of selection differentials with control confirmed selection only on body size, i.e., dragonfly larvae preferably preyed on small newt larvae. Maximum swimming velocity and its thermal sensitivity showed low group repeatability, which contributed to non-detectable selection on both characteristics of escape performance. In the newt-dragonfly larvae interaction, body size plays a more important role than maximum values and thermal sensitivity of swimming velocity during predator escape. This corroborates the general importance of body size in predator-prey interactions. The absence of an appropriate control in predation experiments may lead to potentially misleading conclusions about the primary target of predator-imposed selection. Insights from predation experiments contribute to our understanding of the link between performance and fitness, and further improve mechanistic models of predator-prey interactions and food web dynamics.
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Levy, David; Zickuhr, Tom; Mavriplis, Dimitri J.; Wahls, Richard A.; Morrison, Joseph H.; Brodersen, Olaf P.; Eisfeld, Bernhard;
2008-01-01
Recently acquired experimental data for the DLR-F6 wing-body transonic transport con figuration from the National Transonic Facility (NTF) are compared with the database of computational fluid dynamics (CFD) predictions generated for the Third AIAA CFD Drag Prediction Workshop (DPW-III). The NTF data were collected after the DPW-III, which was conducted with blind test cases. These data include both absolute drag levels and increments associated with this wing-body geometry. The baseline DLR-F6 wing-body geometry is also augmented with a side-of-body fairing which eliminates the flow separation in this juncture region. A comparison between computed and experimentally observed sizes of the side-of-body flow-separation bubble is included. The CFD results for the drag polars and separation bubble sizes are computed on grids which represent current engineering best practices for drag predictions. In addition to these data, a more rigorous attempt to predict absolute drag at the design point is provided. Here, a series of three grid densities are utilized to establish an asymptotic trend of computed drag with respect to grid convergence. This trend is then extrapolated to estimate a grid-converged absolute drag level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groetz, J.-E., E-mail: jegroetz@univ-fcomte.fr; Mavon, C.; Fromm, M.
2014-08-15
We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™and FLUKA). Measurements of airmore » kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.« less
No effect of hypergravity on adult rat ventral horn neuron size or SDH activity
NASA Technical Reports Server (NTRS)
Roy, R. R.; Ishihara, A.; Moran, M. M.; Wade, C. E.; Edgerton, V. R.
2001-01-01
BACKGROUND: Spaceflights of short duration (approximately 2 wk) result in adaptations in the size and/or metabolic properties of a select population of motoneurons located in the lumbosacral region of the rat spinal cord. A decrease in succinate dehydrogenase (SDH, an oxidative marker enzyme) activity of moderately sized (500-800 microm2) motoneurons in the retrodorsolateral region of the spinal cord (L6) has been observed after a 14-d flight. HYPOTHESIS: Our hypothesis was that exposure to short-term hypergravity would result in adaptations in the opposite direction, reflecting a continuum of morphological and biochemical responses in the spinal motoneurons from zero gravity to hypergravity. METHODS: Young, male rats were centrifuged at either 1.5 or 2.0 G for 2 wk. The size and SDH activity of a population of motoneurons in the retrodorsolateral region of the spinal cord (L5) were determined and compared with age-matched rats maintained at 1.0 G. The absolute and relative (to body weight) masses of the soleus, gastrocnemius, adductor longus and tibialis anterior muscles were compared among the three groups. RESULTS: There were no effects of either hypergravity intervention on the motoneuron properties. Rats maintained under hypergravity conditions gained less body mass than rats kept at 1.0 G. For the 1.5 and 2.0 G groups, the muscle absolute mass was smaller and relative mass similar to that observed in the 1.0 G rats, except for the adductor longus. The adductor longus absolute mass was similar to and the relative mass larger in both hypergravity groups than in the 1.0 G group. CONCLUSIONS: Our hypothesis was rejected. The findings suggest that rat motoneurons are more responsive to short-term chronic exposure to spaceflight than to hypergravity conditions.
NASA Astrophysics Data System (ADS)
Wu, Yingchun; Crua, Cyril; Li, Haipeng; Saengkaew, Sawitree; Mädler, Lutz; Wu, Xuecheng; Gréhan, Gérard
2018-07-01
The accurate measurements of droplet temperature, size and evaporation rate are of great importance to characterize the heat and mass transfer during evaporation/condensation processes. The nanoscale size change of a micron-sized droplet exactly describes its transient mass transfer, but is difficult to measure because it is smaller than the resolutions of current size measurement techniques. The Phase Rainbow Refractometry (PRR) technique is developed and applied to measure droplet temperature, size and transient size changes and thereafter evaporation rate simultaneously. The measurement principle of PRR is theoretically derived, and it reveals that the phase shift of the time-resolved ripple structures linearly depends on, and can directly yield, nano-scale size changes of droplets. The PRR technique is first verified through the simulation of rainbows of droplets with changing size, and results show that PRR can precisely measure droplet refractive index, absolute size, as well as size change with absolute and relative errors within several nanometers and 0.6%, respectively, and thus PRR permits accurate measurements of transient droplet evaporation rates. The evaporations of flowing single n-nonane droplet and mono-dispersed n-heptane droplet stream are investigated by two PRR systems with a high speed linear CCD and a low speed array CCD, respectively. Their transient evaporation rates are experimentally determined and quantitatively agree well with the theoretical values predicted by classical Maxwell and Stefan-Fuchs models. With the demonstration of evaporation rate measurement of monocomponent droplet in this work, PRR is an ideal tool for measurements of transient droplet evaporation/condensation processes, and can be extended to multicomponent droplets in a wide range of industrially-relevant applications.
Pietschnig, Jakob; Penke, Lars; Wicherts, Jelte M; Zeiler, Michael; Voracek, Martin
2015-10-01
Positive associations between human intelligence and brain size have been suspected for more than 150 years. Nowadays, modern non-invasive measures of in vivo brain volume (Magnetic Resonance Imaging) make it possible to reliably assess associations with IQ. By means of a systematic review of published studies and unpublished results obtained by personal communications with researchers, we identified 88 studies examining effect sizes of 148 healthy and clinical mixed-sex samples (>8000 individuals). Our results showed significant positive associations of brain volume and IQ (r=.24, R(2)=.06) that generalize over age (children vs. adults), IQ domain (full-scale, performance, and verbal IQ), and sex. Application of a number of methods for detection of publication bias indicates that strong and positive correlation coefficients have been reported frequently in the literature whilst small and non-significant associations appear to have been often omitted from reports. We show that the strength of the positive association of brain volume and IQ has been overestimated in the literature, but remains robust even when accounting for different types of dissemination bias, although reported effects have been declining over time. While it is tempting to interpret this association in the context of human cognitive evolution and species differences in brain size and cognitive ability, we show that it is not warranted to interpret brain size as an isomorphic proxy of human intelligence differences. Copyright © 2015 Elsevier Ltd. All rights reserved.
Orliac, Maeva J; Ladevèze, Sandrine; Gingerich, Philip D; Lebrun, Renaud; Smith, Thierry
2014-04-22
Expansion of the brain is a key feature of primate evolution. The fossil record, although incomplete, allows a partial reconstruction of changes in primate brain size and morphology through time. Palaeogene plesiadapoids, closest relatives of Euprimates (or crown-group primates), are crucial for understanding early evolution of the primate brain. However, brain morphology of this group remains poorly documented, and major questions remain regarding the initial phase of euprimate brain evolution. Micro-CT investigation of the endocranial morphology of Plesiadapis tricuspidens from the Late Palaeocene of Europe--the most complete plesiadapoid cranium known--shows that plesiadapoids retained a very small and simple brain. Plesiadapis has midbrain exposure, and minimal encephalization and neocorticalization, making it comparable with that of stem rodents and lagomorphs. However, Plesiadapis shares a domed neocortex and downwardly shifted olfactory-bulb axis with Euprimates. If accepted phylogenetic relationships are correct, then this implies that the euprimate brain underwent drastic reorganization during the Palaeocene, and some changes in brain structure preceded brain size increase and neocortex expansion during evolution of the primate brain.
Manipulation complexity in primates coevolved with brain size and terrestriality
Heldstab, Sandra A.; Kosonen, Zaida K.; Koski, Sonja E.; Burkart, Judith M.; van Schaik, Carel P.; Isler, Karin
2016-01-01
Humans occupy by far the most complex foraging niche of all mammals, built around sophisticated technology, and at the same time exhibit unusually large brains. To examine the evolutionary processes underlying these features, we investigated how manipulation complexity is related to brain size, cognitive test performance, terrestriality, and diet quality in a sample of 36 non-human primate species. We categorized manipulation bouts in food-related contexts into unimanual and bimanual actions, and asynchronous or synchronous hand and finger use, and established levels of manipulative complexity using Guttman scaling. Manipulation categories followed a cumulative ranking. They were particularly high in species that use cognitively challenging food acquisition techniques, such as extractive foraging and tool use. Manipulation complexity was also consistently positively correlated with brain size and cognitive test performance. Terrestriality had a positive effect on this relationship, but diet quality did not affect it. Unlike a previous study on carnivores, we found that, among primates, brain size and complex manipulations to acquire food underwent correlated evolution, which may have been influenced by terrestriality. Accordingly, our results support the idea of an evolutionary feedback loop between manipulation complexity and cognition in the human lineage, which may have been enhanced by increasingly terrestrial habits. PMID:27075921
Smit, Dirk J A; Anokhin, Andrey P
2017-05-01
The brain continuously develops and reorganizes to support an expanding repertoire of behaviors and increasingly complex cognition. These processes may, however, also result in the appearance or disappearance of specific neurodevelopmental disorders such as attention problems. To investigate whether brain activity changed during adolescence, how genetics shape this change, and how these changes were related to attention problems, we measured EEG activity in 759 twins and siblings, assessed longitudinally in four waves (12, 14, 16, and 18years of age). Attention problems were assessed with the SWAN at waves 12, 14, and 16. To characterize functional brain development, we used a measure of temporal stability (TS) of brain oscillations over the recording time of 5min reflecting the tendency of a brain to maintain the same oscillatory state for longer or shorter periods. Increased TS may reflect the brain's tendency to maintain stability, achieve focused attention, and thus reduce "mind wandering" and attention problems. The results indicate that brain TS is increased across the scalp from 12 to 18. TS showed large individual differences that were heritable. Change in TS (alpha oscillations) was heritable between 12 and 14 and between 14 and 16 for the frontal brain areas. Absolute levels of brain TS at each wave were positively correlated with attention problems but not significantly. High and low attention problems subjects showed different developmental trajectories in TS, which was significant in a cluster of frontal leads. These results indicate that trajectories in brain TS development are a biomarker for the developing brain. TS in brain oscillations is highly heritable, and age-related change in TS is also heritable in selected brain areas. These results suggest that high and low attention problems subjects are at different stages of brain development. Copyright © 2016. Published by Elsevier B.V.
caption-box,.carousel-caption,.fogbox>div{box-sizing:border-box}.fix{background-color:#ff0}.bio -title{color:#5e6a71;font-size:20px;margin-top:0}.topmargin{margin-top:2em}.bottommargin{margin-bottom {position:relative}.caption-box{background:rgba(0,0,0,.8);color:#fff;padding:1em;position:absolute;text-align:left}h3
Prenatal famine exposure has sex-specific effects on brain size.
de Rooij, Susanne R; Caan, Matthan W A; Swaab, Dick F; Nederveen, Aart J; Majoie, Charles B; Schwab, Matthias; Painter, Rebecca C; Roseboom, Tessa J
2016-08-01
Early nutritional deprivation might cause irreversible damage to the brain. Prenatal exposure to undernutrition has been shown to be associated with increased central nervous system anomalies at birth and decreased cognitive function in adulthood. Little is known about the potential effect on the brain in older age. We investigated brain size and structure at age 68 years after prenatal famine exposure. T1-weighted structural magnetic resonance images of the brain were made in 118 Dutch famine birth cohort members. Of these 118 (44% male, age range 65-69 years), 41 had been exposed to famine in early gestation and 77 had been prenatally unexposed. Structural volumes were automatically assessed using FreeSurfer. Diffusion tensor imaging was performed and anisotropy and diffusivity were computed. Fluid attenuated inversion recovery was performed to assess white matter hyperintensities. Exposure to famine in early gestation was associated with smaller intracranial volume in males, but not females. Volumes of total brain, grey and white matter were also smaller in early exposed males, but these differences disappeared after adjusting for intracranial volume. Prenatally exposed males but not females, had a smaller intracranial and total brain volume compared to unexposed subjects. Our findings show that prenatal undernutrition permanently affected brain size.media-1vid110.1093/brain/aww132_video_abstractaww132_video_abstract. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Raychaudhuri, Soumya; Korn, Joshua M.; McCarroll, Steven A.; Altshuler, David; Sklar, Pamela; Purcell, Shaun; Daly, Mark J.
2010-01-01
Investigators have linked rare copy number variation (CNVs) to neuropsychiatric diseases, such as schizophrenia. One hypothesis is that CNV events cause disease by affecting genes with specific brain functions. Under these circumstances, we expect that CNV events in cases should impact brain-function genes more frequently than those events in controls. Previous publications have applied “pathway” analyses to genes within neuropsychiatric case CNVs to show enrichment for brain-functions. While such analyses have been suggestive, they often have not rigorously compared the rates of CNVs impacting genes with brain function in cases to controls, and therefore do not address important confounders such as the large size of brain genes and overall differences in rates and sizes of CNVs. To demonstrate the potential impact of confounders, we genotyped rare CNV events in 2,415 unaffected controls with Affymetrix 6.0; we then applied standard pathway analyses using four sets of brain-function genes and observed an apparently highly significant enrichment for each set. The enrichment is simply driven by the large size of brain-function genes. Instead, we propose a case-control statistical test, cnv-enrichment-test, to compare the rate of CNVs impacting specific gene sets in cases versus controls. With simulations, we demonstrate that cnv-enrichment-test is robust to case-control differences in CNV size, CNV rate, and systematic differences in gene size. Finally, we apply cnv-enrichment-test to rare CNV events published by the International Schizophrenia Consortium (ISC). This approach reveals nominal evidence of case-association in neuronal-activity and the learning gene sets, but not the other two examined gene sets. The neuronal-activity genes have been associated in a separate set of schizophrenia cases and controls; however, testing in independent samples is necessary to definitively confirm this association. Our method is implemented in the PLINK software package. PMID:20838587
Effects of subject-case marking on agreement processing: ERP evidence from Basque.
Chow, Wing-Yee; Nevins, Andrew; Carreiras, Manuel
2018-02-01
Previous cross-linguistic research has found that comprehenders are immediately sensitive to various kinds of agreement violations across languages. We focused on Basque, a verb-final ergative language with both subject-verb (SV) and object-verb (OV) agreement. We compared the effects of SV agreement violations on comprehenders' event-related brain potentials (ERPs) in transitive sentences (where OV agreement is present, and the subject is ergative) and intransitive sentences (where OV agreement is absent, and the subject is absolutive). We observed a P600 effect in both cases, but only violations with intransitive subjects elicited an early posterior negativity. Such a qualitative difference suggests that distinct neurocognitive mechanisms are involved in processing agreement with transitive subjects (which are marked with ergative case) versus intransitive subjects (which bear absolutive case). Building on theoretical proposals that in languages such as Basque, true agreement occurs with absolutive subjects but not with ergative subjects, we submit that the early posterior negativity may be an electrophysiological signature for true agreement. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sowndhararajan, Kandhasamy; Seo, Min; Kim, Minju; Kim, Heeyeon; Kim, Songmun
2017-08-01
The present study aimed to investigate the effect of inhalation of essential oil (EO) and supercritical carbon dioxide extract (SC-CO 2 ) from the root of A. gigas on human electroencephalographic (EEG) activity. For this purpose, the EO was obtained from the root of A. gigas by steam distillation and SC-CO 2 was obtained at 50 °C and 400 bar for 1 h. The EEG readings were recorded using the QEEG-8 system from 8 electrode sites according to the International 10-20 system. In the EEG study, the absolute low beta (left temporal and left parietal) activity significantly increased during the inhalation of EO. In the case of SC-CO 2 inhalation, there was no significant change in absolute waves. The results revealed that the EO of A. gigas root produced significant changes in the absolute low beta activity and these changes may enhance the language learning abilities of human brain. Copyright © 2017. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertesz, Vilmos; Vavrek, Marissa; Freddo, Carol
Here, spatial resolved quantitation of chemical species in thin tissue sections by mass spectrometric methods has been constrained by the need for matrix-matched standards or other arduous calibration protocols and procedures to mitigate matrix effects (e.g., spatially varying ionization suppression). Reported here is the use of laser cut and drop sampling with a laser microdissection-liquid vortex capture electrospray ionization tandem mass spectrometry (LMD-LVC/ESI-MS/MS) system for online and absolute quantitation of propranolol in mouse brain, kidney, and liver thin tissue sections of mice administered with the drug at a 7.5 mg/kg dose, intravenously. In this procedure either 20 μm x 20more » μm or 40 μm x 40 μm tissue microdissections were cut and dropped into the flowing solvent of the capture probe. During transport to the ESI source drug related material was completely extracted from the tissue into the solvent, which contained a known concentration of propranolol-d 7 as an internal standard. This allowed absolute quantitation to be achieved with an external calibration curve generated from standards containing the same fixed concentration of propranolold-d 7 and varied concentrations of propranolol. Average propranolol concentrations determined with the laser cut and drop sampling method closely agreed with concentration values obtained from 2.3 mm diameter tissue punches from serial sections that were extracted and quantified by HPLC/ESI-MS/MS measurements. In addition, the relative abundance of hydroxypropranolol glucuronide metabolites were recorded and found to be consistent with previous findings.« less
Quantitative EEG correlations with brain glucose metabolic rate during anesthesia in volunteers.
Alkire, M T
1998-08-01
To help elucidate the relationship between anesthetic-induced changes in the electroencephalogram (EEG) and the concurrent cerebral metabolic changes caused by anesthesia, positron emission tomography data of cerebral metabolism obtained in volunteers during anesthesia were correlated retrospectively with various concurrently measured EEG descriptors. Volunteers underwent functional brain imaging using the 18fluorodeoxyglucose technique; one scan always assessed awake-baseline cerebral metabolism (n = 7), and the other scans assessed metabolism during propofol sedation (n = 4), propofol anesthesia (n = 4), or isoflurane anesthesia (n = 5). The EEG was recorded continuously during metabolism assessment using a frontal-mastoid montage. Power spectrum variables, median frequency, 95% spectral edge, and bispectral index (BIS) values subsequently were correlated with the percentage of absolute cerebral metabolic reduction (PACMR) of glucose utilization caused by anesthesia. The percentage of absolute cerebral metabolic reduction, evident during anesthesia, trended median frequency (r = -0.46, P = 0.11), and the spectral edge (r = -0.52, P = 0.07), and correlated with anesthetic type (r = -0.70, P < 0.05), relative beta power (r = -0.60, P < 0.05), total power (r = 0.71,P < 0.01), and bispectral index (r = -0.81,P < 0.001). After controlling for anesthetic type, only bispectral index (r = 0.40, P = 0.08) and alpha power (r = 0.37, P = 0.10) approached significance for explaining residual percentage of absolute cerebral metabolic reduction prediction error. Some EEG descriptors correlated linearly with the magnitude of the cerebral metabolic reduction caused by propofol and isoflurane anesthesia. These data suggest that a physiologic link exists between the EEG and cerebral metabolism during anesthesia that is mathematically quantifiable.
Kertesz, Vilmos; Vavrek, Marissa; Freddo, Carol; ...
2016-05-23
Here, spatial resolved quantitation of chemical species in thin tissue sections by mass spectrometric methods has been constrained by the need for matrix-matched standards or other arduous calibration protocols and procedures to mitigate matrix effects (e.g., spatially varying ionization suppression). Reported here is the use of laser cut and drop sampling with a laser microdissection-liquid vortex capture electrospray ionization tandem mass spectrometry (LMD-LVC/ESI-MS/MS) system for online and absolute quantitation of propranolol in mouse brain, kidney, and liver thin tissue sections of mice administered with the drug at a 7.5 mg/kg dose, intravenously. In this procedure either 20 μm x 20more » μm or 40 μm x 40 μm tissue microdissections were cut and dropped into the flowing solvent of the capture probe. During transport to the ESI source drug related material was completely extracted from the tissue into the solvent, which contained a known concentration of propranolol-d 7 as an internal standard. This allowed absolute quantitation to be achieved with an external calibration curve generated from standards containing the same fixed concentration of propranolold-d 7 and varied concentrations of propranolol. Average propranolol concentrations determined with the laser cut and drop sampling method closely agreed with concentration values obtained from 2.3 mm diameter tissue punches from serial sections that were extracted and quantified by HPLC/ESI-MS/MS measurements. In addition, the relative abundance of hydroxypropranolol glucuronide metabolites were recorded and found to be consistent with previous findings.« less
First trimester size charts of embryonic brain structures.
Gijtenbeek, M; Bogers, H; Groenenberg, I A L; Exalto, N; Willemsen, S P; Steegers, E A P; Eilers, P H C; Steegers-Theunissen, R P M
2014-02-01
Can reliable size charts of human embryonic brain structures be created from three-dimensional ultrasound (3D-US) visualizations? Reliable size charts of human embryonic brain structures can be created from high-quality images. Previous studies on the visualization of both the cavities and the walls of the brain compartments were performed using 2D-US, 3D-US or invasive intrauterine sonography. However, the walls of the diencephalon, mesencephalon and telencephalon have not been measured non-invasively before. Last-decade improvements in transvaginal ultrasound techniques allow a better visualization and offer the tools to measure these human embryonic brain structures with precision. This study is embedded in a prospective periconceptional cohort study. A total of 141 pregnancies were included before the sixth week of gestation and were monitored until delivery to assess complications and adverse outcomes. For the analysis of embryonic growth, 596 3D-US scans encompassing the entire embryo were obtained from 106 singleton non-malformed live birth pregnancies between 7(+0) and 12(+6) weeks' gestational age (GA). Using 4D View (3D software) the measured embryonic brain structures comprised thickness of the diencephalon, mesencephalon and telencephalon, and the total diameter of the diencephalon and mesencephalon. Of 596 3D scans, 161 (27%) high-quality scans of 79 pregnancies were eligible for analysis. The reliability of all embryonic brain structure measurements, based on the intra-class correlation coefficients (ICCs) (all above 0.98), was excellent. Bland-Altman plots showed moderate agreement for measurements of the telencephalon, but for all other measurements the agreement was good. Size charts were constructed according to crown-rump length (CRL). The percentage of high-quality scans suitable for analysis of these brain structures was low (27%). The size charts of human embryonic brain structures can be used to study normal and abnormal development of brain development in future. Also, the effects of periconceptional maternal exposures, such as folic acid supplement use and smoking, on human embryonic brain development can be a topic of future research. This study was supported by the Department of Obstetrics and Gynaecology of the Erasmus University Medical Center. M.G. was supported by an additional grant from the Sophia Foundation for Medical Research (SSWO grant number 644). No competing interests are declared.
Zarghami, Niloufar; Murrell, Donna H; Jensen, Michael D; Dick, Frederick A; Chambers, Ann F; Foster, Paula J; Wong, Eugene
2018-06-01
Brain metastasis is becoming increasingly prevalent in breast cancer due to improved extra-cranial disease control. With emerging availability of modern image-guided radiation platforms, mouse models of brain metastases and small animal magnetic resonance imaging (MRI), we examined brain metastases' responses from radiotherapy in the pre-clinical setting. In this study, we employed half brain irradiation to reduce inter-subject variability in metastases dose-response evaluations. Half brain irradiation was performed on a micro-CT/RT system in a human breast cancer (MDA-MB-231-BR) brain metastasis mouse model. Radiation induced DNA double stranded breaks in tumors and normal mouse brain tissue were quantified using γ-H2AX immunohistochemistry at 30 min (acute) and 11 days (longitudinal) after half-brain treatment for doses of 8, 16 and 24 Gy. In addition, tumor responses were assessed volumetrically with in-vivo longitudinal MRI and histologically for tumor cell density and nuclear size. In the acute setting, γ-H2AX staining in tumors saturated at higher doses while normal mouse brain tissue continued to increase linearly in the phosphorylation of H2AX. While γ-H2AX fluorescence intensities returned to the background level in the brain 11 days after treatment, the residual γ-H2AX phosphorylation in the radiated tumors remained elevated compared to un-irradiated contralateral tumors. With radiation, MRI-derived relative tumor growth was significantly reduced compared to the un-irradiated side. While there was no difference in MRI tumor volume growth between 16 and 24 Gy, there was a significant reduction in tumor cell density from histology with increasing dose. In the longitudinal study, nuclear size in the residual tumor cells increased significantly as the radiation dose was increased. Radiation damages to the DNAs in the normal brain parenchyma are resolved over time, but remain unrepaired in the treated tumors. Furthermore, there is a radiation dose response in nuclear size of surviving tumor cells. Increase in nuclear size together with unrepaired DNA damage indicated that the surviving tumor cells post radiation had continued to progress in the cell cycle with DNA replication, but failed cytokinesis. Half brain irradiation provides efficient evaluation of dose-response for cancer cell lines, a pre-requisite to perform experiments to understand radio-resistance in brain metastases.
Mills, Kathryn L; Goddings, Anne-Lise; Herting, Megan M; Meuwese, Rosa; Blakemore, Sarah-Jayne; Crone, Eveline A; Dahl, Ronald E; Güroğlu, Berna; Raznahan, Armin; Sowell, Elizabeth R; Tamnes, Christian K
2016-11-01
Longitudinal studies including brain measures acquired through magnetic resonance imaging (MRI) have enabled population models of human brain development, crucial for our understanding of typical development as well as neurodevelopmental disorders. Brain development in the first two decades generally involves early cortical grey matter volume (CGMV) increases followed by decreases, and monotonic increases in cerebral white matter volume (CWMV). However, inconsistencies regarding the precise developmental trajectories call into question the comparability of samples. This issue can be addressed by conducting a comprehensive study across multiple datasets from diverse populations. Here, we present replicable models for gross structural brain development between childhood and adulthood (ages 8-30years) by repeating analyses in four separate longitudinal samples (391 participants; 852 scans). In addition, we address how accounting for global measures of cranial/brain size affect these developmental trajectories. First, we found evidence for continued development of both intracranial volume (ICV) and whole brain volume (WBV) through adolescence, albeit following distinct trajectories. Second, our results indicate that CGMV is at its highest in childhood, decreasing steadily through the second decade with deceleration in the third decade, while CWMV increases until mid-to-late adolescence before decelerating. Importantly, we show that accounting for cranial/brain size affects models of regional brain development, particularly with respect to sex differences. Our results increase confidence in our knowledge of the pattern of brain changes during adolescence, reduce concerns about discrepancies across samples, and suggest some best practices for statistical control of cranial volume and brain size in future studies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Encephalization quotients and life-history traits in the Sirenia
O'Shea, T.J.; Reep, R.L.
1990-01-01
Relative brain size in the Sirenia is unusually small. Encephalization quotients are 0.27 for Florida manatees (Trichechus manatus) and 0.38 for dugongs (Dugong dugon). Estimates for Steller's sea cow (Hydrodamalis gigas) range from 0.12 to 0.19. These values are among the lowest known for Recent mammals, and seemingly have changed little since the Eocene. A body plan specialized for the aquatic environment does not account for low encephalization quotients; values are substantially less than predicted based on cetacean or pinniped allometry. Life-history, ecological, and behavioral traits of the Sirenia are typical of relatively large-brained species. Low quality food and a low metabolic rate, however, are characteristic of the Sirenia and other small-brained mammals. Acting through prolonged postnatal growth, selection also likely favored large body size in the Sirenia without a correlated increase in brain size.
Bio-Inspired Stretchable Absolute Pressure Sensor Network
Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X.
2016-01-01
A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4’’ wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134
Note: An absolute X-Y-Θ position sensor using a two-dimensional phase-encoded binary scale
NASA Astrophysics Data System (ADS)
Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan
2018-04-01
This Note presents a new absolute X-Y-Θ position sensor for measuring planar motion of a precision multi-axis stage system. By analyzing the rotated image of a two-dimensional phase-encoded binary scale (2D), the absolute 2D position values at two separated points were obtained and the absolute X-Y-Θ position could be calculated combining these values. The sensor head was constructed using a board-level camera, a light-emitting diode light source, an imaging lens, and a cube beam-splitter. To obtain the uniform intensity profiles from the vignette scale image, we selected the averaging directions deliberately, and higher resolution in the angle measurement could be achieved by increasing the allowable offset size. The performance of a prototype sensor was evaluated in respect of resolution, nonlinearity, and repeatability. The sensor could resolve 25 nm linear and 0.001° angular displacements clearly, and the standard deviations were less than 18 nm when 2D grid positions were measured repeatedly.
An ERP study of second language learning after childhood: effects of proficiency.
Ojima, Shiro; Nakata, Hiroki; Kakigi, Ryusuke
2005-08-01
Whether there is an absolute critical period for acquiring language is a matter of continuous debate. One approach to address this issue is to compare the processes of second language (L2) learning after childhood and those of first language (L1) learning during childhood. To study the cortical process of postchildhood L2 learning, we compared event-related brain potentials recorded from two groups of adult Japanese speakers who attained either high or intermediate proficiency in English after childhood (J-High and J-Low), and adult native English speakers (ENG). Semantic anomalies embedded in English sentences evoked a clear N400 component in all three groups, with only the time course of the brain activation varying among the groups. Syntactic violations elicited a left-lateralized negativity similar to the left anterior negativity in ENG and J-High, but not in J-Low. In ENG, a P600 component was additionally found. These results suggest that semantic processing is robust from early on in L2 learning, whereas the development of syntactic processing is more dependent on proficiency as evidenced by the lack of the left-lateralized negativity in J-Low. Because early maturation and stability of semantic processing as opposed to syntactic processing are also a feature of L1 processing, postchildhood L2 learning may be governed by the same brain properties as those which govern childhood L1 learning. We argue that these processes are qualitatively similar in many respects, with only restricted domains of language processing being subject to absolute critical period effects.
CD4 Count in HIV- Brain-Dead Donors: Insight into Donor Risk Assessment for HIV+ Donors.
Serrano, Oscar Kenneth; Kerwin, Scott; Payne, William D; Pruett, Timothy L
2017-04-01
The Human Immunodeficiency Virus (HIV) Organ Policy Equity Act allows for transplantation of organs from HIV-infected individuals (HIV+), provided it is performed under a research protocol. The safety assessment of an organ for transplantation is an essential element of the donation process. The risk for HIV-associated opportunistic infections increases as circulating CD4+ lymphocytes decrease to less than 200 cells/μL; however, the numbers of circulating CD4+ cells in the HIV-negative (HIV-) brain-dead donor (BDD) is not known. Circulating T-lymphocyte subset profiles in conventional HIV- BDD were measured in 20 BDD in a clinical laboratory. The mean age of the BDD cohort was 48.7 years, 95% were white and 45% were women. The average body mass index was 29.2 kg/m. Cerebrovascular accident (40%) was the most prevalent cause of death. Sixteen (80%) subjects had a CD4 count ≤441 cells/μL (lower limit of normal) and 11 (55%) had a CD4 count less than 200 cells/μL; 11 (55%) subjects had a CD8 count ≤125 cells/μL (lower limit of normal). CD4/CD8 ratio was below normal in 3 patients (normal, 1.4-2.6). No recipient had a recognized donor-associated adverse event. Absolute numbers of CD4 and CD8 T-lymphocytes are commonly reduced after brain death in HIV- individuals. Thus, CD4 absolute numbers are an inconsistent metric for assessing organ donor risk, irrespective of HIV status.
Yun, Ruijuan; Lin, Chung-Chih; Wu, Shuicai; Huang, Chu-Chung; Lin, Ching-Po; Chao, Yi-Ping
2013-01-01
In this study, we employed diffusion tensor imaging (DTI) to construct brain structural network and then derive the connection matrices from 96 healthy elderly subjects. The correlation analysis between these topological properties of network based on graph theory and the Cognitive Abilities Screening Instrument (CASI) index were processed to extract the significant network characteristics. These characteristics were then integrated to estimate the models by various machine-learning algorithms to predict user's cognitive performance. From the results, linear regression model and Gaussian processes model showed presented better abilities with lower mean absolute errors of 5.8120 and 6.25 to predict the cognitive performance respectively. Moreover, these extracted topological properties of brain structural network derived from DTI also could be regarded as the bio-signatures for further evaluation of brain degeneration in healthy aged and early diagnosis of mild cognitive impairment (MCI).
Single-cell imaging tools for brain energy metabolism: a review
San Martín, Alejandro; Sotelo-Hitschfeld, Tamara; Lerchundi, Rodrigo; Fernández-Moncada, Ignacio; Ceballo, Sebastian; Valdebenito, Rocío; Baeza-Lehnert, Felipe; Alegría, Karin; Contreras-Baeza, Yasna; Garrido-Gerter, Pamela; Romero-Gómez, Ignacio; Barros, L. Felipe
2014-01-01
Abstract. Neurophotonics comes to light at a time in which advances in microscopy and improved calcium reporters are paving the way toward high-resolution functional mapping of the brain. This review relates to a parallel revolution in metabolism. We argue that metabolism needs to be approached both in vitro and in vivo, and that it does not just exist as a low-level platform but is also a relevant player in information processing. In recent years, genetically encoded fluorescent nanosensors have been introduced to measure glucose, glutamate, ATP, NADH, lactate, and pyruvate in mammalian cells. Reporting relative metabolite levels, absolute concentrations, and metabolic fluxes, these sensors are instrumental for the discovery of new molecular mechanisms. Sensors continue to be developed, which together with a continued improvement in protein expression strategies and new imaging technologies, herald an exciting era of high-resolution characterization of metabolism in the brain and other organs. PMID:26157964
Clinical MRS studies of the brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubesch, B.; Marinier, D.S.; Hetherington, H.P.
1989-12-01
Image-guided {sup 31}P and 1H magnetic resonance localized spectroscopy was performed on patients with brain tumors, temporal lobe epilepsy, chronic brain stroke, and deep white matter lesions. Absolute molar concentrations of metabolites, peak area ratios, and pH were obtained. The important findings were that {sup 31}P metabolite concentrations were significantly reduced in tumors, infarcts, and deep white matter lesions. Similarly, {sup 1}H metabolite intensities were reduced in chronic stroke. In the seizure foci of epilepsy patients, in tumors, and in chronic stroke, the pH was more alkaline than the normal pH. Peak area ratios were altered in tumors (reduction ofmore » phosphocreatine/inorganic phosphate) and in chronic stroke (large increases in Cr/NAA and Cho/NAA). Finally, the spectroscopic imaging technique offers a versatile alternative to the single point techniques, producing spectra or images of the spatial distribution of individual {sup 31}P metabolites.« less
Mankiw, Catherine; Park, Min Tae M; Reardon, P K; Fish, Ari M; Clasen, Liv S; Greenstein, Deanna; Giedd, Jay N; Blumenthal, Jonathan D; Lerch, Jason P; Chakravarty, M Mallar; Raznahan, Armin
2017-05-24
The cerebellum is a large hindbrain structure that is increasingly recognized for its contribution to diverse domains of cognitive and affective processing in human health and disease. Although several of these domains are sex biased, our fundamental understanding of cerebellar sex differences-including their spatial distribution, potential biological determinants, and independence from brain volume variation-lags far behind that for the cerebrum. Here, we harness automated neuroimaging methods for cerebellar morphometrics in 417 individuals to (1) localize normative male-female differences in raw cerebellar volume, (2) compare these to sex chromosome effects estimated across five rare sex (X/Y) chromosome aneuploidy (SCA) syndromes, and (3) clarify brain size-independent effects of sex and SCA on cerebellar anatomy using a generalizable allometric approach that considers scaling relationships between regional cerebellar volume and brain volume in health. The integration of these approaches shows that (1) sex and SCA effects on raw cerebellar volume are large and distributed, but regionally heterogeneous, (2) human cerebellar volume scales with brain volume in a highly nonlinear and regionally heterogeneous fashion that departs from documented patterns of cerebellar scaling in phylogeny, and (3) cerebellar organization is modified in a brain size-independent manner by sex (relative expansion of total cerebellum, flocculus, and Crus II-lobule VIIIB volumes in males) and SCA (contraction of total cerebellar, lobule IV, and Crus I volumes with additional X- or Y-chromosomes; X-specific contraction of Crus II-lobule VIIIB). Our methods and results clarify the shifts in human cerebellar organization that accompany interwoven variations in sex, sex chromosome complement, and brain size. SIGNIFICANCE STATEMENT Cerebellar systems are implicated in diverse domains of sex-biased behavior and pathology, but we lack a basic understanding of how sex differences in the human cerebellum are distributed and determined. We leverage a rare neuroimaging dataset to deconvolve the interwoven effects of sex, sex chromosome complement, and brain size on human cerebellar organization. We reveal topographically variegated scaling relationships between regional cerebellar volume and brain size in humans, which (1) are distinct from those observed in phylogeny, (2) invalidate a traditional neuroimaging method for brain volume correction, and (3) allow more valid and accurate resolution of which cerebellar subcomponents are sensitive to sex and sex chromosome complement. These findings advance understanding of cerebellar organization in health and sex chromosome aneuploidy. Copyright © 2017 the authors 0270-6474/17/375222-11$15.00/0.
Absolute quantification by droplet digital PCR versus analog real-time PCR
Hindson, Christopher M; Chevillet, John R; Briggs, Hilary A; Gallichotte, Emily N; Ruf, Ingrid K; Hindson, Benjamin J; Vessella, Robert L; Tewari, Muneesh
2014-01-01
Nanoliter-sized droplet technology paired with digital PCR (ddPCR) holds promise for highly precise, absolute nucleic acid quantification. Our comparison of microRNA quantification by ddPCR and real-time PCR revealed greater precision (coefficients of variation decreased by 37–86%) and improved day-to-day reproducibility (by a factor of seven) of ddPCR but with comparable sensitivity. When we applied ddPCR to serum microRNA biomarker analysis, this translated to superior diagnostic performance for identifying individuals with cancer. PMID:23995387
Tracer kinetic modelling for DCE-MRI quantification of subtle blood-brain barrier permeability.
Heye, Anna K; Thrippleton, Michael J; Armitage, Paul A; Valdés Hernández, Maria Del C; Makin, Stephen D; Glatz, Andreas; Sakka, Eleni; Wardlaw, Joanna M
2016-01-15
There is evidence that subtle breakdown of the blood-brain barrier (BBB) is a pathophysiological component of several diseases, including cerebral small vessel disease and some dementias. Dynamic contrast-enhanced MRI (DCE-MRI) combined with tracer kinetic modelling is widely used for assessing permeability and perfusion in brain tumours and body tissues where contrast agents readily accumulate in the extracellular space. However, in diseases where leakage is subtle, the optimal approach for measuring BBB integrity is likely to differ since the magnitude and rate of enhancement caused by leakage are extremely low; several methods have been reported in the literature, yielding a wide range of parameters even in healthy subjects. We hypothesised that the Patlak model is a suitable approach for measuring low-level BBB permeability with low temporal resolution and high spatial resolution and brain coverage, and that normal levels of scanner instability would influence permeability measurements. DCE-MRI was performed in a cohort of mild stroke patients (n=201) with a range of cerebral small vessel disease severity. We fitted these data to a set of nested tracer kinetic models, ranking their performance according to the Akaike information criterion. To assess the influence of scanner drift, we scanned 15 healthy volunteers that underwent a "sham" DCE-MRI procedure without administration of contrast agent. Numerical simulations were performed to investigate model validity and the effect of scanner drift. The Patlak model was found to be most appropriate for fitting low-permeability data, and the simulations showed vp and K(Trans) estimates to be reasonably robust to the model assumptions. However, signal drift (measured at approximately 0.1% per minute and comparable to literature reports in other settings) led to systematic errors in calculated tracer kinetic parameters, particularly at low permeabilities. Our findings justify the growing use of the Patlak model in low-permeability states, which has the potential to provide valuable information regarding BBB integrity in a range of diseases. However, absolute values of the resulting tracer kinetic parameters should be interpreted with extreme caution, and the size and influence of signal drift should be measured where possible. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Tracer kinetic modelling for DCE-MRI quantification of subtle blood–brain barrier permeability
Heye, Anna K.; Thrippleton, Michael J.; Armitage, Paul A.; Valdés Hernández, Maria del C.; Makin, Stephen D.; Glatz, Andreas; Sakka, Eleni; Wardlaw, Joanna M.
2016-01-01
There is evidence that subtle breakdown of the blood–brain barrier (BBB) is a pathophysiological component of several diseases, including cerebral small vessel disease and some dementias. Dynamic contrast-enhanced MRI (DCE-MRI) combined with tracer kinetic modelling is widely used for assessing permeability and perfusion in brain tumours and body tissues where contrast agents readily accumulate in the extracellular space. However, in diseases where leakage is subtle, the optimal approach for measuring BBB integrity is likely to differ since the magnitude and rate of enhancement caused by leakage are extremely low; several methods have been reported in the literature, yielding a wide range of parameters even in healthy subjects. We hypothesised that the Patlak model is a suitable approach for measuring low-level BBB permeability with low temporal resolution and high spatial resolution and brain coverage, and that normal levels of scanner instability would influence permeability measurements. DCE-MRI was performed in a cohort of mild stroke patients (n = 201) with a range of cerebral small vessel disease severity. We fitted these data to a set of nested tracer kinetic models, ranking their performance according to the Akaike information criterion. To assess the influence of scanner drift, we scanned 15 healthy volunteers that underwent a “sham” DCE-MRI procedure without administration of contrast agent. Numerical simulations were performed to investigate model validity and the effect of scanner drift. The Patlak model was found to be most appropriate for fitting low-permeability data, and the simulations showed vp and KTrans estimates to be reasonably robust to the model assumptions. However, signal drift (measured at approximately 0.1% per minute and comparable to literature reports in other settings) led to systematic errors in calculated tracer kinetic parameters, particularly at low permeabilities. Our findings justify the growing use of the Patlak model in low-permeability states, which has the potential to provide valuable information regarding BBB integrity in a range of diseases. However, absolute values of the resulting tracer kinetic parameters should be interpreted with extreme caution, and the size and influence of signal drift should be measured where possible. PMID:26477653
Validation of Pinnacle treatment planning system for use with Novalis delivery unit.
Faygelman, Vladimir; Hunt, Dylan; Walker, Luke; Mueller, Richard; Demarco, Mary Lou; Dilling, Thomas; Stevens, Craig; Zhang, Geoffrey
2010-06-15
For an institution that already owns the licenses, it is economically advantageous and technically feasible to use Pinnacle TPS (Philips Radiation Oncology Systems, Fitchburg, WI) with the BrainLab Novalis delivery system (BrainLAB A.G., Heimstetten, Germany). This takes advantage of the improved accuracy of the convolution algorithm in the presence of heterogeneities compared with the pencil beam calculation, which is particularly significant for lung SBRT treatments. The reference patient positioning DRRs still have to be generated by the BrainLab software from the CT images and isocenter coordinates transferred from Pinnacle. We validated this process with the end-to-end hidden target test, which showed an isocenter positioning error within one standard deviation from the previously established mean value. The Novalis treatment table attenuation is substantial (up to 6.2% for a beam directed straight up and up to 8.4% for oblique incidence) and has to be accounted for in calculations. A simple single-contour treatment table model was developed, resulting in mean differences between the measured and calculated attenuation factors of 0.0%-0.2%, depending on the field size. The maximum difference for a single incidence angle is 1.1%. The BrainLab micro-MLC (mMLC) leaf tip, although not geometrically round, can be represented in Pinnacle by an arch with satisfactory dosimetric accuracy. Subsequently, step-and-shoot (direct machine parameter optimization) IMRT dosimetric agreement is excellent. VMAT (called "SmartArc" in Pinnacle) treatments with constant gantry speed and dose rate are feasible without any modifications to the accelerator. Due to the 3 mm-wide mMLC leaves, the use of a 2 mm calculation grid is recommended. When dual arcs are used for the more complex cases, the overall dosimetric agreement for the SmartArc plans compares favorably with the previously reported results for other implementations of VMAT: gamma(3%,3mm) for absolute dose obtained with the biplanar diode array passing rates above 97% with the mean of 98.6%. However, a larger than expected dose error with the single-arc plans, confined predominantly to the isocenter region, requires further investigation.
Uehara, Toshiyuki; Yasui, Nobuyuki; Okada, Yasushi; Hasegawa, Yasuhiro; Nagatsuka, Kazuyuki; Minematsu, Kazuo
2014-01-01
We conducted a survey by questionnaire to identify the essential components of stroke centers in Japan and compared our results with the European Expert Survey. In 2007, a questionnaire was mailed to the directors of 740 facilities certified by the Japan Stroke Society to ask their opinion on the essential components of comprehensive stroke centers (CSC), primary stroke centers (PSC) and any hospital ward (AHW) admitting acute stroke patients. The directors were asked to provide 1 of the following 6 possible answers regarding 112 components: 'irrelevant'; 'useful but not necessary'; 'desirable'; 'important but not absolutely necessary'; 'absolutely necessary', or 'question unclear or ambiguous'. The components considered 'absolutely necessary' by more than 75% of the respondents were compared between our survey and the European Expert Survey. In addition, we compared the rates of neurosurgeons and neurologists who answered 'absolutely necessary' with regard to each component. Responses were obtained from 428 directors (57.8% response rate). Among these respondents, 298 (69.6%) were neurosurgeons. There was no component considered 'absolutely necessary' for AHW by more than 75% of the respondents, and this was similar to the results of the European Expert Survey. The following components were considered 'absolutely necessary' for PSC in our survey: brain CT scanning 24 h a day, 7 days a week (24/7); automated monitoring of the ECG, pulse oximetry, blood pressure and breathing, and respiratory support. In both our survey and the European Expert Survey, the essential components for CSC were as follows: physiotherapist; brain CT scanning 24/7; monitoring of the ECG, pulse oximetry and blood pressure; carotid surgery; angioplasty and stenting, and intravenous recombinant tissue plasminogen activator protocols. The components multidisciplinary stroke team, stroke-trained nurse, ultrasonography, collaboration with an outside rehabilitation center, stroke pathway and clinical research were deemed essential only in the European Expert Survey. However, MRI 24/7, MR angiography 24/7, conventional angiography 24/7, respiratory support as well as most neuroendovascular and neurosurgical treatments were considered necessary for CSC by more than 75% of the respondents in our survey. Analyzing the responses from only neurologists reduced the differences between our survey and the European Expert Survey. The present study indicated the essential components expected for stroke centers in Japan. Our survey demonstrated that more emphasis was likely to be placed on installations than on a dedicated stroke team and the use of stroke care maps. In addition, the results of this study may reflect some characteristics of the stroke care environment in Japan, such as the predominance of neurosurgeons and widespread use of MRI. © 2014 S. Karger AG, Basel.
Rodriguez-Ayllon, M; Cadenas-Sanchez, C; Esteban-Cornejo, I; Migueles, J H; Mora-Gonzalez, J; Henriksson, P; Martín-Matillas, M; Mena-Molina, A; Molina-García, P; Estévez-López, F; Enriquez, G M; Perales, J C; Ruiz, J R; Catena, A; Ortega, F B
2018-02-01
To examine the associations of physical fitness (i.e. cardiorespiratory fitness, muscular strength, and speed/agility) with psychological distress and psychological well-being in overweight/obese pre-adolescent children. 110 overweight/obese children (10.0±1.1years old, 61 boys) from the ActiveBrains project (http://profith.ugr.es/activebrains) participated in this cross-sectional study. Physical fitness was evaluated by the ALPHA battery test. Cardiorespiratory fitness was additionally evaluated by a maximal incremental treadmill. Stress was assessed by the Children's Daily Stress Inventory, anxiety by the State-Trait Anxiety Inventory, depression by the Children Depression Inventory, positive affect and negative affect by the Positive and Negative Affect Scale for Children, happiness by the Subjective Happiness Scale, optimism by the Life Orientation Test, and self-esteem by the Rosenberg Self-Esteem questionnaire. Linear regression adjusted for sex and peak height velocity was used to examine associations. Absolute upper-body muscular strength was negatively associated with stress and negative affect (β=-0.246, p=0.047; β=-0.329, p=0.010, respectively). Furthermore, absolute lower-body muscular strength was negatively associated with negative affect (β=-0.301, p=0.029). Cardiorespiratory fitness, expressed by the last completed lap, and relative upper-body muscular strength were positively associated with optimism (β=0.220, p=0.042; β=0.240, p=0.017, respectively). Finally, absolute upper-body muscular strength was positively associated with self-esteem (β=0.362, p=0.003) independently of sex and weight status (p for interactions >0.3), and absolute lower-body muscular strength was also positively associated with self-esteem (β=0.352, p=0.008). Muscular strength was associated with psychological distress (i.e. stress and negative affect) and psychological well-being (i.e. optimism and self-esteem) as well as cardiorespiratory fitness was associated with optimism. Therefore, increased levels of physical fitness, specifically muscular strength, could have significant benefits for overweight/obese children psychological health. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Benoit, Julien; Fernandez, Vincent; Manger, Paul R; Rubidge, Bruce S
2017-01-01
The origin and evolution of the mammalian brain has long been the focus of scientific enquiry. Conversely, little research has focused on the palaeoneurology of the stem group of Mammaliaformes, the Permian and Triassic non-mammaliaform Therapsida (NMT). This is because the majority of the NMT have a non-ossified braincase, making the study of their endocranial cast (sometimes called the "fossil brain") problematic. Thus, descriptions of the morphology and size of NMT endocranial casts have been based largely on approximations rather than reliable determination. Accordingly, here we use micro-CT scans of the skulls of 1 Dinocephalia and 3 Biarmosuchia, which are NMT with a fully ossified braincase and thus a complete endocast. For the first time, our work enables the accurate determination of endocranial shape and size in NMT. This study suggests that NMT brain size falls in the upper range of the reptilian and amphibian variation. Brain size in the dicynodont Kawingasaurus is equivalent to that of early Mammaliaformes, whereas the Dinocephalia show evidence of a secondary reduction of brain size. In addition, unlike other NMT in which the endocast has a tubular shape and its parts are arranged in a linear manner, the biarmosuchian endocast is strongly flexed at the level of the midbrain, creating a near right angle between the fore- and hindbrain. These data highlight an unexpected diversity of endocranial size and morphology in NMT, features that are usually considered conservative in this group. © 2017 S. Karger AG, Basel.
Monteiro-Junior, Renato Sobral; da Silva Figueiredo, Luiz Felipe; Maciel-Pinheiro, Paulo de Tarso; Abud, Erick Lohan Rodrigues; Braga, Ana Elisa Mendes Montalvão; Barca, Maria Lage; Engedal, Knut; Nascimento, Osvaldo José M; Deslandes, Andrea Camaz; Laks, Jerson
2017-06-01
Improvements on balance, gait and cognition are some of the benefits of exergames. Few studies have investigated the cognitive effects of exergames in institutionalized older persons. To assess the acute effect of a single session of exergames on cognition of institutionalized older persons. Nineteen institutionalized older persons were randomly allocated to Wii (WG, n = 10, 86 ± 7 year, two males) or control groups (CG, n = 9, 86 ± 5 year, one male). The WG performed six exercises with virtual reality, whereas CG performed six exercises without virtual reality. Verbal fluency test (VFT), digit span forward and digit span backward were used to evaluate semantic memory/executive function, short-term memory and work memory, respectively, before and after exergames and Δ post- to pre-session (absolute) and Δ % (relative) were calculated. Parametric (t independent test) and nonparametric (Mann-Whitney test) statistics and effect size were applied to tests for efficacy. VFT was statistically significant within WG (-3.07, df = 9, p = 0.013). We found no statistically significant differences between the two groups (p > 0.05). Effect size between groups of Δ % (median = 21 %) showed moderate effect for WG (0.63). Our data show moderate improvement of semantic memory/executive function due to exergames session. It is possible that cognitive brain areas are activated during exergames, increasing clinical response. A single session of exergames showed no significant improvement in short-term memory, working memory and semantic memory/executive function. The effect size for verbal fluency was promising, and future studies on this issue should be developed. RBR-6rytw2.
Maternal-fetal unit interactions and eutherian neocortical development and evolution
Montiel, Juan F.; Kaune, Heidy; Maliqueo, Manuel
2013-01-01
The conserved brain design that primates inherited from early mammals differs from the variable adult brain size and species-specific brain dominances observed across mammals. This variability relies on the emergence of specialized cerebral cortical regions and sub-compartments, triggering an increase in brain size, areal interconnectivity and histological complexity that ultimately lies on the activation of developmental programs. Structural placental features are not well correlated with brain enlargement; however, several endocrine pathways could be tuned with the activation of neuronal progenitors in the proliferative neocortical compartments. In this article, we reviewed some mechanisms of eutherians maternal–fetal unit interactions associated with brain development and evolution. We propose a hypothesis of brain evolution where proliferative compartments in primates become activated by “non-classical” endocrine placental signals participating in different steps of corticogenesis. Changes in the inner placental structure, along with placenta endocrine stimuli over the cortical proliferative activity would allow mammalian brain enlargement with a concomitant shorter gestation span, as an evolutionary strategy to escape from parent-offspring conflict. PMID:23882189
Characteristics of voxel prediction power in full-brain Granger causality analysis of fMRI data
NASA Astrophysics Data System (ADS)
Garg, Rahul; Cecchi, Guillermo A.; Rao, A. Ravishankar
2011-03-01
Functional neuroimaging research is moving from the study of "activations" to the study of "interactions" among brain regions. Granger causality analysis provides a powerful technique to model spatio-temporal interactions among brain regions. We apply this technique to full-brain fMRI data without aggregating any voxel data into regions of interest (ROIs). We circumvent the problem of dimensionality using sparse regression from machine learning. On a simple finger-tapping experiment we found that (1) a small number of voxels in the brain have very high prediction power, explaining the future time course of other voxels in the brain; (2) these voxels occur in small sized clusters (of size 1-4 voxels) distributed throughout the brain; (3) albeit small, these clusters overlap with most of the clusters identified with the non-temporal General Linear Model (GLM); and (4) the method identifies clusters which, while not determined by the task and not detectable by GLM, still influence brain activity.
Brain Stimulation in Alzheimer's Disease.
Chang, Chun-Hung; Lane, Hsien-Yuan; Lin, Chieh-Hsin
2018-01-01
Brain stimulation techniques can modulate cognitive functions in many neuropsychiatric diseases. Pilot studies have shown promising effects of brain stimulations on Alzheimer's disease (AD). Brain stimulations can be categorized into non-invasive brain stimulation (NIBS) and invasive brain stimulation (IBS). IBS includes deep brain stimulation (DBS), and invasive vagus nerve stimulation (VNS), whereas NIBS includes transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), electroconvulsive treatment (ECT), magnetic seizure therapy (MST), cranial electrostimulation (CES), and non-invasive VNS. We reviewed the cutting-edge research on these brain stimulation techniques and discussed their therapeutic effects on AD. Both IBS and NIBS may have potential to be developed as novel treatments for AD; however, mixed findings may result from different study designs, patients selection, population, or samples sizes. Therefore, the efficacy of NIBS and IBS in AD remains uncertain, and needs to be further investigated. Moreover, more standardized study designs with larger sample sizes and longitudinal follow-up are warranted for establishing a structural guide for future studies and clinical application.
Size-weight illusion and anticipatory grip force scaling following unilateral cortical brain lesion.
Li, Yong; Randerath, Jennifer; Goldenberg, Georg; Hermsdörfer, Joachim
2011-04-01
The prediction of object weight from its size is an important prerequisite of skillful object manipulation. Grip and load forces anticipate object size during early phases of lifting an object. A mismatch between predicted and actual weight when two different sized objects have the same weight results in the size-weight illusion (SWI), the small object feeling heavier. This study explores whether lateralized brain lesions in patients with or without apraxia alter the size-weight illusion and impair anticipatory finger force scaling. Twenty patients with left brain damage (LBD, 10 with apraxia, 10 without apraxia), ten patients with right brain damage (RBD), and matched control subjects lifted two different-sized boxes in alternation. All subjects experienced a similar size-weight illusion. The anticipatory force scaling of all groups was in correspondence with the size cue: higher forces and force rates were applied to the big box and lower forces and force rates to the small box during the first lifts. Within few lifts, forces were scaled to actual object weight. Despite the lack of significant differences at group level, 5 out of 20 LBD patients showed abnormal predictive scaling of grip forces. They differed from the LBD patients with normal predictive scaling by a greater incidence of posterior occipito-parietal lesions but not by a greater incidence of apraxia. The findings do not support a more general role for the motor-dominant left hemisphere, or an influence of apraxia per se, in the scaling of finger force according to object properties. However, damage in the vicinity of the parietal-occipital junction may be critical for deriving predictions of weight from size. Copyright © 2011 Elsevier Ltd. All rights reserved.
Intrinsic Brain Activity in Altered States of Consciousness
Boly, M.; Phillips, C.; Tshibanda, L.; Vanhaudenhuyse, A.; Schabus, M.; Dang-Vu, T.T.; Moonen, G.; Hustinx, R.; Maquet, P.; Laureys, S.
2010-01-01
Spontaneous brain activity has recently received increasing interest in the neuroimaging community. However, the value of resting-state studies to a better understanding of brain–behavior relationships has been challenged. That altered states of consciousness are a privileged way to study the relationships between spontaneous brain activity and behavior is proposed, and common resting-state brain activity features observed in various states of altered consciousness are reviewed. Early positron emission tomography studies showed that states of extremely low or high brain activity are often associated with unconsciousness. However, this relationship is not absolute, and the precise link between global brain metabolism and awareness remains yet difficult to assert. In contrast, voxel-based analyses identified a systematic impairment of associative frontoparieto–cingulate areas in altered states of consciousness, such as sleep, anesthesia, coma, vegetative state, epileptic loss of consciousness, and somnambulism. In parallel, recent functional magnetic resonance imaging studies have identified structured patterns of slow neuronal oscillations in the resting human brain. Similar coherent blood oxygen level–dependent (BOLD) systemwide patterns can also be found, in particular in the default-mode network, in several states of unconsciousness, such as coma, anesthesia, and slow-wave sleep. The latter results suggest that slow coherent spontaneous BOLD fluctuations cannot be exclusively a reflection of conscious mental activity, but may reflect default brain connectivity shaping brain areas of most likely interactions in a way that transcends levels of consciousness, and whose functional significance remains largely in the dark. PMID:18591474
A biometric analysis of brain size in micrencephalics.
Hofman, M A
1984-01-01
Brain weight and head circumference in micrencephalic patients were analysed as a function of age, height and sex in relation to normal human standards. A quantitative definition of micrencephaly is proposed, which is based on these analyses. Evidence is presented, furthermore, that micrencephalics have a significantly lower brain weight in adolescence than in early childhood, and that this cerebral dystrophy continues throughout adulthood, leading to death in more than 85% of the males and 78% of the females before they reach the age of 30 years. Since this decline in brain weight after approximately 3-5 years of age is not accompanied by a similar reduction in head circumference, the brains of elderly micrencephalic patients no longer occupy the entire cranial cavity. It is evident, therefore, that head circumference in the case of micrencephaly is an unsuitable parameter for estimating brain size.
Cunha, Marlo; Bastos, Victor Hugo; Veiga, Heloisa; Cagy, Maurício; McDowell, Kaleb; Furtado, Vernon; Piedade, Roberto; Ribeiro, Pedro
2004-09-01
The present study aimed to investigate alterations in EEG patterns in normal, right-handed individuals, during the process of learning a specific motor skill (typewriting). Recent studies have shown that the cerebral cortex is susceptible to several changes during a learning process and that alterations in the brain's electrical patterns take place as a result of the acquisition of a motor skill and memory consolidation. In this context, subjects' brain electrical activity was analyzed before and after the motor task. EEG data were collected by a Braintech 3000 and analyzed by Neurometrics. For the statistical analysis, the behavioral variables "time" and "number of errors" were assessed by a one-way ANOVA. For the neurophysiological variable "Absolute Power", a paired t-Test was performed for each pair of electrodes CZ-C3/CZ-C4, in the theta and alpha frequency bands. The main results demonstrated a change in performance, through both behavioral variables ("time" and "number of errors"). At the same time, no changes were observed for the neurophysiological variable ("Absolute Power") in the theta band. On the other hand, a significant increase was observed in the alpha band in central areas (CZ-C3/CZ-C4). These results suggest an adaptation of the sensory-motor cortex, as a consequence of the typewriting training.
Changes in absolute theta power in bipolar patients during a saccadic attention task.
Cartier, Consuelo; Diniz, Claudia; Di Girogio, Luiza; Bittencourt, Juliana; Gongora, Mariana; Ken Tanaka, Guaraci; Teixeira, Silmar; Basile, Luis F; Novis, Fernanda; Angélica Silveira, Luciana; da Silva, Rafael de Assis; Cagy, Mauricio; Cheniaux, Elie; Ribeiro, Pedro; Velasques, Bruna
2015-08-30
The present study analyzed absolute theta power (ATP) in brain areas involved with attention in the three phase of BD while the patients performing a saccadic attention task. We hypothesized that patients in depression and mania states show a higher ATP compared to euthymic patients, since a higher ATP is indicative of attention deficit. We analyzed the frontal (F7, F3, Fz, F4 and F8) and central (C3, Cz and C4) areas. Thirty bipolar patients were enrolled in this study. The subjects performed a saccadic attention task while their brain activity pattern was recorded using quantitative electroencephalography (20 channels). Our results showed a main effect for group over C3, C4, Cz, F7, F4, F8 electrodes, and a main effect for moment over Cz, F7, F8 electrodes. These results indicate that both task and groups produce changes in theta activity in distinct cortical areas that participate in the organization of attention. Our results therefore demonstrate that, although it is well established in the literature that theta has a relevant role in the attention process, it is necessary to deepen the investigations to better understand the specifics of theta during visual processing tasks that have a demand for attention. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Simultaneous imaging of oxygen tension and blood flow in animals using a digital micromirror device.
Ponticorvo, Adrien; Dunn, Andrew K
2010-04-12
In this study we present a novel imaging method that combines high resolution cerebral blood flow imaging with a highly flexible map of absolute pO(2). In vivo measurements of pO(2) in animals using phosphorescence quenching is a well established method, and is preferable over electrical probes which are inherently invasive and are limited to single point measurements. However, spatially resolved pO(2) measurements using phosphorescence lifetime quenching typically require expensive cameras to obtain images of pO(2) and often suffer from poor signal to noise. Our approach enables us to retain the high temporal resolution and sensitivity of single point detection of phosphorescence by using a digital micromirror device (DMD) to selectively illuminate arbitrarily shaped regions of tissue. In addition, by simultaneously using Laser Speckle Contrast Imaging (LSCI) to measure relative blood flow, we can better examine the relationship between blood flow and absolute pO(2). We successfully used this instrument to study changes that occur during ischemic conditions in the brain with enough spatial resolution to clearly distinguish different regions. This novel instrument will provide researchers with an inexpensive and improved technique to examine multiple hemodynamic parameters simultaneously in the brain as well as other tissues.
Nounou, Mohamed Ismail; Adkins, Chris E; Rubinchik, Evelina; Terrell-Hall, Tori B; Afroz, Mohamed; Vitalis, Tim; Gabathuler, Reinhard; Tian, Mei Mei; Lockman, Paul R
2016-12-01
The ability of human melanotransferrin (hMTf) to carry a therapeutic concentration of trastuzumab (BTA) in the brain after conjugation (in the form of trastuzumab-melanotransferrin conjugate, BT2111 conjugate) was investigated by measuring the reduction of the number and size of metastatic human HER 2+ breast cancer tumors in a preclinical model of brain metastases of breast cancer. Human metastatic brain seeking breast cancer cells were injected in NuNu mice (n = 6-12 per group) which then developed experimental brain metastases. Drug uptake was analyzed in relation to metastasis size and blood-tumor barrier permeability. To investigate in-vivo activity against brain metastases, equimolar doses of the conjugate, and relevant controls (hMTf and BTA) in separate groups were administered biweekly after intracardiac injection of the metastatic cancer cells. The trastuzumab-melanotransferrin conjugate (BT2111) reduced the number of preclinical human HER 2+ breast cancer metastases in the brain by 68% compared to control groups. Tumors which remained after treatment were 46% smaller than the control groups. In contrast, BTA alone had no effect on reducing number of metastases, and was associated with only a minimal reduction in metastasis size. The results suggest the novel trastuzumab-melanotransferrin conjugate (BT2111) may have utility in treating brain metastasis and validate hMTf as a potential vector for antibody transport across the Blood Brain Barrier (BBB).
MicroCT and microMRI imaging of a prenatal mouse model of increased brain size
NASA Astrophysics Data System (ADS)
López, Elisabeth K. N.; Stock, Stuart R.; Taketo, Makoto M.; Chenn, Anjen; Ravosa, Matthew J.
2008-08-01
There are surprisingly few experimental models of neural growth and cranial integration. This and the dearth of information regarding fetal brain development detract from a mechanistic understanding of cranial integration and its relevance to the patterning of skull form, specifically the role of encephalization on basicranial flexion. To address this shortcoming, our research uses transgenic mice expressing a stabilized form of β-catenin to isolate the effects of relative brain size on craniofacial development. These mice develop highly enlarged brains due to an increase in neural precursors, and differences between transgenic and wild-type mice are predicted to result solely from variation in brain size. Comparisons of wild-type and transgenic mice at several prenatal ages were performed using microCT (Scanco Medical MicroCT 40) and microMRI (Avance 600 WB MR spectrometer). Statistical analyses show that the larger brain of the transgenic mice is associated with a larger neurocranium and an altered basicranial morphology. However, body size and postcranial ossification do not seem to be affected by the transgene. Comparisons of the rate of postcranial and cranial ossification using microCT also point to an unexpected effect of neural growth on skull development: increased fetal encephalization may result in a compensatory decrease in the level of cranial ossification. Therefore, if other life history factors are held constant, the ontogeny of a metabolically costly structure such as a brain may occur at the expense of other cranial structures. These analyses indicate the benefits of a multifactorial approach to cranial integration using a mouse model.
Simulation of a central scotoma using contact lenses with an opaque centre.
Almutleb, Essam S; Bradley, Arthur; Jedlicka, Jason; Hassan, Shirin E
2018-01-01
This study evaluated the feasibility of using soft contact lenses (CLs) with an opaque centre to induce absolute central scotomas that move with the eye. We examined the geometrical optics prediction that scotoma size will vary with the size of the CL's opaque centre and with ocular pupil size. We also tested the hypothesis that high environmental light levels will ensure that the ocular pupil will remain small enough, even with opaque centre CLs, to generate absolute scotomas representative of those experienced by patients with age-related macular disease. Using an Octopus 900 Perimeter ( www.Haag-Streit.com), kinetic visual fields (VFs) were measured in five normally-sighted subjects using a V4e Goldmann target with CLs that had central opaque areas with diameters of 2.8, 3.0, and 3.2 mm. To control pupil size, VFs were measured with background perimeter bowl luminances of 10, 585, and 1155 cd m -2 . Subjects attempted to (i) fixate the bowl centre; and (ii) place the scotoma edge at the bowl fixation target (eccentric viewing). As predicted, there was a direct relationship between scotoma size and both luminance level and diameter of the opacity. Mean scotoma diameters were 0°, 17.6° and 22°, for the low, medium and high bowl luminances, respectively. Scotoma size was determined primarily by the difference between the diameters of CL opacity and the entrance pupil of the eye and the axial separation between them, and between-subject differences in pupil diameters contributed most to the between-subject variability in scotoma diameter at each light level (SD: 6.01°). Scotoma displacement during eccentric fixation confirmed the gaze-contingent characteristics of this experimental model. It is possible to induce a gaze-contingent absolute scotoma and hence mimic central vision loss using centrally-opaque CLs provided that the CL opacity is larger than the entrance pupil of the eye. This simulation tool will, therefore, be ineffective at low environmental light levels (as shown previously) if the entrance pupil of the eye is larger than the CL opacity. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.
Simulation of a Real-Time Brain Computer Interface for Detecting a Self-Paced Hitting Task.
Hammad, Sofyan H; Kamavuako, Ernest N; Farina, Dario; Jensen, Winnie
2016-12-01
An invasive brain-computer interface (BCI) is a promising neurorehabilitation device for severely disabled patients. Although some systems have been shown to work well in restricted laboratory settings, their utility must be tested in less controlled, real-time environments. Our objective was to investigate whether a specific motor task could be reliably detected from multiunit intracortical signals from freely moving animals in a simulated, real-time setting. Intracortical signals were first obtained from electrodes placed in the primary motor cortex of four rats that were trained to hit a retractable paddle (defined as a "Hit"). In the simulated real-time setting, the signal-to-noise-ratio was first increased by wavelet denoising. Action potentials were detected, and features were extracted (spike count, mean absolute values, entropy, and combination of these features) within pre-defined time windows (200 ms, 300 ms, and 400 ms) to classify the occurrence of a "Hit." We found higher detection accuracy of a "Hit" (73.1%, 73.4%, and 67.9% for the three window sizes, respectively) when the decision was made based on a combination of features rather than on a single feature. However, the duration of the window length was not statistically significant (p = 0.5). Our results showed the feasibility of detecting a motor task in real time in a less restricted environment compared to environments commonly applied within invasive BCI research, and they showed the feasibility of using information extracted from multiunit recordings, thereby avoiding the time-consuming and complex task of extracting and sorting single units. © 2016 International Neuromodulation Society.
NASA Astrophysics Data System (ADS)
Herrera-Vega, Javier; Montero-Hernández, Samuel; Tachtsidis, Ilias; Treviño-Palacios, Carlos G.; Orihuela-Espina, Felipe
2017-11-01
Accurate estimation of brain haemodynamics parameters such as cerebral blood flow and volume as well as oxygen consumption i.e. metabolic rate of oxygen, with funcional near infrared spectroscopy (fNIRS) requires precise characterization of light propagation through head tissues. An anatomically realistic forward model of the human adult head with unprecedented detailed specification of the 5 scalp sublayers to account for blood irrigation in the connective tissue layer is introduced. The full model consists of 9 layers, accounts for optical properties ranging from 750nm to 950nm and has a voxel size of 0.5mm. The whole model is validated comparing the predicted remitted spectra, using Monte Carlo simulations of radiation propagation with 108 photons, against continuous wave (CW) broadband fNIRS experimental data. As the true oxy- and deoxy-hemoglobin concentrations during acquisition are unknown, a genetic algorithm searched for the vector of parameters that generates a modelled spectrum that optimally fits the experimental spectrum. Differences between experimental and model predicted spectra was quantified using the Root mean square error (RMSE). RMSE was 0.071 +/- 0.004, 0.108 +/- 0.018 and 0.235+/-0.015 at 1, 2 and 3cm interoptode distance respectively. The parameter vector of absolute concentrations of haemoglobin species in scalp and cortex retrieved with the genetic algorithm was within histologically plausible ranges. The new model capability to estimate the contribution of the scalp blood flow shall permit incorporating this information to the regularization of the inverse problem for a cleaner reconstruction of brain hemodynamics.
Cerebral complexity preceded enlarged brain size and reduced olfactory bulbs in Old World monkeys
Gonzales, Lauren A.; Benefit, Brenda R.; McCrossin, Monte L.; Spoor, Fred
2015-01-01
Analysis of the only complete early cercopithecoid (Old World monkey) endocast currently known, that of 15-million-year (Myr)-old Victoriapithecus, reveals an unexpectedly small endocranial volume (ECV) relative to body size and a large olfactory bulb volume relative to ECV, similar to extant lemurs and Oligocene anthropoids. However, the Victoriapithecus brain has principal and arcuate sulci of the frontal lobe not seen in the stem catarrhine Aegyptopithecus, as well as a distinctive cercopithecoid pattern of gyrification, indicating that cerebral complexity preceded encephalization in cercopithecoids. Since larger ECVs, expanded frontal lobes, and reduced olfactory bulbs are already present in the 17- to 18-Myr-old ape Proconsul these features evolved independently in hominoids (apes) and cercopithecoids and much earlier in the former. Moreover, the order of encephalization and brain reorganization was apparently different in hominoids and cercopithecoids, showing that brain size and cerebral organization evolve independently. PMID:26138795
Liu, Dan; Lin, Bingqian; Shao, Wei; Zhu, Zhi; Ji, Tianhai; Yang, Chaoyong
2014-02-12
Transport of PEGylated silica nanoparticles (PSiNPs) with diameters of 100, 50, and 25 nm across the blood-brain barrier (BBB) was evaluated using an in vitro BBB model based on mouse cerebral endothelial cells (bEnd.3) cultured on transwell inserts within a chamber. In vivo animal experiments were further performed by noninvasive in vivo imaging and ex vivo optical imaging after injection via carotid artery. Confocal fluorescence studies were carried out to evaluate the uptake of PSiNPs by brain endothelial cells. The results showed that PSiNPs can traverse the BBB in vitro and in vivo. The transport efficiency of PSiNPs across BBB was found to be size-dependent, with increased particle size resulting in decreased efficiency. This work points to the potential application of small sized silica nanoparticles in brain imaging or drug delivery.
Das, R K; Li, Z; Perera, H; Williamson, J F
1996-06-01
Practical dosimeters in brachytherapy, such as thermoluminescent dosimeters (TLD) and diodes, are usually calibrated against low-energy megavoltage beams. To measure absolute dose rate near a brachytherapy source, it is necessary to establish the energy response of the detector relative to that of the calibration energy. The purpose of this paper is to assess the accuracy of Monte Carlo photon transport (MCPT) simulation in modelling the absolute detector response as a function of detector geometry and photon energy. We have exposed two different sizes of TLD-100 (LiF chips) and p-type silicon diode detectors to calibrated 60Co, HDR source (192Ir) and superficial x-ray beams. For the Scanditronix electron-field diode, the relative detector response, defined as the measured detector readings per measured unit of air kerma, varied from 38.46 V cGy-1 (40 kVp beam) to 6.22 V cGy-1 (60Co beam). Similarly for the large and small chips the same quantity varied from 2.08-3.02 nC cGy-1 and 0.171-0.244 nC cGy-1, respectively. Monte Carlo simulation was used to calculate the absorbed dose to the active volume of the detector per unit air kerma. If the Monte Carlo simulation is accurate, then the absolute detector response, which is defined as the measured detector reading per unit dose absorbed by the active detector volume, and is calculated by Monte Carlo simulation, should be a constant. For the diode, the absolute response is 5.86 +/- 0.15 (V cGy-1). For TLDs of size 3 x 3 x 1 mm3 the absolute response is 2.47 +/- 0.07 (nC cGy-1) and for TLDs of 1 x 1 x 1 mm3 it is 0.201 +/- 0.008 (nC cGy-1). From the above results we can conclude that the absolute response function of detectors (TLDs and diodes) is directly proportional to absorbed dose by the active volume of the detector and is independent of beam quality.
Relaxed genetic control of cortical organization in human brains compared with chimpanzees
Gómez-Robles, Aida; Hopkins, William D.; Schapiro, Steven J.; Sherwood, Chet C.
2015-01-01
The study of hominin brain evolution has focused largely on the neocortical expansion and reorganization undergone by humans as inferred from the endocranial fossil record. Comparisons of modern human brains with those of chimpanzees provide an additional line of evidence to define key neural traits that have emerged in human evolution and that underlie our unique behavioral specializations. In an attempt to identify fundamental developmental differences, we have estimated the genetic bases of brain size and cortical organization in chimpanzees and humans by studying phenotypic similarities between individuals with known kinship relationships. We show that, although heritability for brain size and cortical organization is high in chimpanzees, cerebral cortical anatomy is substantially less genetically heritable than brain size in humans, indicating greater plasticity and increased environmental influence on neurodevelopment in our species. This relaxed genetic control on cortical organization is especially marked in association areas and likely is related to underlying microstructural changes in neural circuitry. A major result of increased plasticity is that the development of neural circuits that underlie behavior is shaped by the environmental, social, and cultural context more intensively in humans than in other primate species, thus providing an anatomical basis for behavioral and cognitive evolution. PMID:26627234
Rigotti, D J; Inglese, M; Kirov, I I; Gorynski, E; Perry, N N; Babb, J S; Herbert, J; Grossman, R I; Gonen, O
2012-05-01
To test the hypotheses that 1) patients with relapsing-remitting multiple sclerosis (RR-MS) exhibit a quantifiable decline in their whole-brain concentration of the neural marker N-acetyl-L-aspartate (WBNAA), that is 2) more sensitive than clinical changes and 3) may provide a practical outcome measure for proof-of-concept and larger phase III clinical trials. Nineteen patients (5 men and 14 women) with clinically definite RR-MS, who were 33 ± 5 years old (mean ± SD), had a disease duration of 47 ± 28 months, and had a median Expanded Disability Status Scale (EDSS) score of 1.0 (range 0-5.5), underwent MRI and proton magnetic resonance spectroscopy ((1)H-MRS) semiannually for 2 years (5 time points). Eight matched control subjects underwent the protocol annually (3 time points). Their global N-acetyl-L-aspartate (1)H-MRS signal was converted into absolute amounts by phantom replacement and into WBNAA by dividing with the brain parenchymal volume, V(B), from MRI segmentation. The baseline WBNAA of the patients (10.5 ± 1.7 mM) was significantly lower than that of the controls (12.3 ± 1.3 mM; p < 0.002) and declined significantly (5%/year, p < 0.002) vs that for the controls who did not show a decline (0.4%/year, p > 0.7). Likewise, V(B) values of the patients also declined significantly (0.5%/year, p < 0.0001), whereas those of the controls did not (0.2%/year, p = 0.08). The mean EDSS score of the patients increased insignificantly from 1.0 to 1.5 (range 0-6.0) and did not correlate with V(B) or WBNAA. WBNAA of patients with RR-MS declined significantly at both the group and individual levels over a 2-year time period common in clinical trials. Because of the small sample sizes required to establish power, WBNAA can be incorporated into future studies.
NASA Astrophysics Data System (ADS)
Braun, Jaroslav; Štroner, Martin; Urban, Rudolf
2015-05-01
All surveying instruments and their measurements suffer from some errors. To refine the measurement results, it is necessary to use procedures restricting influence of the instrument errors on the measured values or to implement numerical corrections. In precise engineering surveying industrial applications the accuracy of the distances usually realized on relatively short distance is a key parameter limiting the resulting accuracy of the determined values (coordinates, etc.). To determine the size of systematic and random errors of the measured distances were made test with the idea of the suppression of the random error by the averaging of the repeating measurement, and reducing systematic errors influence of by identifying their absolute size on the absolute baseline realized in geodetic laboratory at the Faculty of Civil Engineering CTU in Prague. The 16 concrete pillars with forced centerings were set up and the absolute distances between the points were determined with a standard deviation of 0.02 millimetre using a Leica Absolute Tracker AT401. For any distance measured by the calibrated instruments (up to the length of the testing baseline, i.e. 38.6 m) can now be determined the size of error correction of the distance meter in two ways: Firstly by the interpolation on the raw data, or secondly using correction function derived by previous FFT transformation usage. The quality of this calibration and correction procedure was tested on three instruments (Trimble S6 HP, Topcon GPT-7501, Trimble M3) experimentally using Leica Absolute Tracker AT401. By the correction procedure was the standard deviation of the measured distances reduced significantly to less than 0.6 mm. In case of Topcon GPT-7501 is the nominal standard deviation 2 mm, achieved (without corrections) 2.8 mm and after corrections 0.55 mm; in case of Trimble M3 is nominal standard deviation 3 mm, achieved (without corrections) 1.1 mm and after corrections 0.58 mm; and finally in case of Trimble S6 is nominal standard deviation 1 mm, achieved (without corrections) 1.2 mm and after corrections 0.51 mm. Proposed procedure of the calibration and correction is in our opinion very suitable for increasing of the accuracy of the electronic distance measurement and allows the use of the common surveying instrument to achieve uncommonly high precision.
Prenatal Nutrition and Later Education
ERIC Educational Resources Information Center
Evans, T. N.
1972-01-01
Text of an affidavit in the case, Kennedy v. Detroit Board of Education. Reports on a study which established that prenatal nutrition is directly related to brain size and volume determined at 48 hours of infancy and at eight months of age. Pinpoints the relationship between inadequate nutrition in pregnancy, infant brain size, and intellectual…
Visual perception as retrospective Bayesian decoding from high- to low-level features.
Ding, Stephanie; Cueva, Christopher J; Tsodyks, Misha; Qian, Ning
2017-10-24
When a stimulus is presented, its encoding is known to progress from low- to high-level features. How these features are decoded to produce perception is less clear, and most models assume that decoding follows the same low- to high-level hierarchy of encoding. There are also theories arguing for global precedence, reversed hierarchy, or bidirectional processing, but they are descriptive without quantitative comparison with human perception. Moreover, observers often inspect different parts of a scene sequentially to form overall perception, suggesting that perceptual decoding requires working memory, yet few models consider how working-memory properties may affect decoding hierarchy. We probed decoding hierarchy by comparing absolute judgments of single orientations and relative/ordinal judgments between two sequentially presented orientations. We found that lower-level, absolute judgments failed to account for higher-level, relative/ordinal judgments. However, when ordinal judgment was used to retrospectively decode memory representations of absolute orientations, striking aspects of absolute judgments, including the correlation and forward/backward aftereffects between two reported orientations in a trial, were explained. We propose that the brain prioritizes decoding of higher-level features because they are more behaviorally relevant, and more invariant and categorical, and thus easier to specify and maintain in noisy working memory, and that more reliable higher-level decoding constrains less reliable lower-level decoding. Published under the PNAS license.
Metabolic acceleration and the evolution of human brain size and life history.
Pontzer, Herman; Brown, Mary H; Raichlen, David A; Dunsworth, Holly; Hare, Brian; Walker, Kara; Luke, Amy; Dugas, Lara R; Durazo-Arvizu, Ramon; Schoeller, Dale; Plange-Rhule, Jacob; Bovet, Pascal; Forrester, Terrence E; Lambert, Estelle V; Thompson, Melissa Emery; Shumaker, Robert W; Ross, Stephen R
2016-05-19
Humans are distinguished from the other living apes in having larger brains and an unusual life history that combines high reproductive output with slow childhood growth and exceptional longevity. This suite of derived traits suggests major changes in energy expenditure and allocation in the human lineage, but direct measures of human and ape metabolism are needed to compare evolved energy strategies among hominoids. Here we used doubly labelled water measurements of total energy expenditure (TEE; kcal day(-1)) in humans, chimpanzees, bonobos, gorillas and orangutans to test the hypothesis that the human lineage has experienced an acceleration in metabolic rate, providing energy for larger brains and faster reproduction without sacrificing maintenance and longevity. In multivariate regressions including body size and physical activity, human TEE exceeded that of chimpanzees and bonobos, gorillas and orangutans by approximately 400, 635 and 820 kcal day(-1), respectively, readily accommodating the cost of humans' greater brain size and reproductive output. Much of the increase in TEE is attributable to humans' greater basal metabolic rate (kcal day(-1)), indicating increased organ metabolic activity. Humans also had the greatest body fat percentage. An increased metabolic rate, along with changes in energy allocation, was crucial in the evolution of human brain size and life history.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Shi, M.; Sun, J.; Yang, C.; Zhang, Yajuan; Scopesi, F.; Makobore, P.; Chin, C.; Serra, G.; Wickramasinghe, Y. A. B. D.; Rolfe, P.
2015-02-01
Brain activity can be monitored non-invasively by functional near-infrared spectroscopy (fNIRS), which has several advantages in comparison with other methods, such as flexibility, portability, low cost and fewer physical restrictions. However, in practice fNIRS measurements are often contaminated by physiological interference arising from cardiac contraction, breathing and blood pressure fluctuations, thereby severely limiting the utility of the method. Hence, further improvement is necessary to reduce or eliminate such interference in order that the evoked brain activity information can be extracted reliably from fNIRS data. In the present paper, the multi-distance fNIRS probe configuration has been adopted. The short-distance fNIRS measurement is treated as the virtual channel and the long-distance fNIRS measurement is treated as the measurement channel. Independent component analysis (ICA) is employed for the fNIRS recordings to separate the brain signals and the interference. Least-absolute deviation (LAD) estimator is employed to recover the brain activity signals. We also utilized Monte Carlo simulations based on a five-layer model of the adult human head to evaluate our methodology. The results demonstrate that the ICA algorithm has the potential to separate physiological interference in fNIRS data and the LAD estimator could be a useful criterion to recover the brain activity signals.
Altbäcker, Anna; Plózer, Enikő; Darnai, Gergely; Perlaki, Gábor; Horváth, Réka; Orsi, Gergely; Nagy, Szilvia Anett; Bogner, Péter; Schwarcz, Attila; Kovács, Norbert; Komoly, Sámuel; Clemens, Zsófia; Janszky, József
2016-12-01
Neuroimaging findings suggest that excessive Internet use shows functional and structural brain changes similar to substance addiction. Even though it is still under debate whether there are gender differences in case of problematic use, previous studies by-passed this question by focusing on males only or by using gender matched approach without controlling for potential gender effects. We designed our study to find out whether there are structural correlates in the brain reward system of problematic Internet use in habitual Internet user females. T1-weighted Magnetic Resonance (MR) images were collected in 82 healthy habitual Internet user females. Structural brain measures were investigated using both automated MR volumetry and voxel based morphometry (VBM). Self-reported measures of problematic Internet use and hours spent online were also assessed. According to MR volumetry, problematic Internet use was associated with increased grey matter volume of bilateral putamen and right nucleus accumbens while decreased grey matter volume of orbitofrontal cortex (OFC). Similarly, VBM analysis revealed a significant negative association between the absolute amount of grey matter OFC and problematic Internet use. Our findings suggest structural brain alterations in the reward system usually related to addictions are present in problematic Internet use.
Eye height scaling of absolute size in immersive and nonimmersive displays
NASA Technical Reports Server (NTRS)
Dixon, M. W.; Wraga, M.; Proffitt, D. R.; Williams, G. C.; Kaiser, M. K. (Principal Investigator)
2000-01-01
Eye-height (EH) scaling of absolute height was investigated in three experiments. In Experiment 1, standing observers viewed cubes in an immersive virtual environment. Observers' center of projection was placed at actual EH and at 0.7 times actual EH. Observers' size judgments revealed that the EH manipulation was 76.8% effective. In Experiment 2, seated observers viewed the same cubes on an interactive desktop display; however, no effect of EH was found in response to the simulated EH manipulation. Experiment 3 tested standing observers in the immersive environment with the field of view reduced to match that of the desktop. Comparable to Experiment 1, the effect of EH was 77%. These results suggest that EH scaling is not generally used when people view an interactive desktop display because the altitude of the center of projection is indeterminate. EH scaling is spontaneously evoked, however, in immersive environments.
Efficient Merge and Insert Operations for Binary Heaps and Trees
NASA Technical Reports Server (NTRS)
Kuszmaul, Christopher Lee; Woo, Alex C. (Technical Monitor)
2000-01-01
Binary heaps and binary search trees merge efficiently. We introduce a new amortized analysis that allows us to prove the cost of merging either binary heaps or balanced binary trees is O(l), in the amortized sense. The standard set of other operations (create, insert, delete, extract minimum, in the case of binary heaps, and balanced binary trees, as well as a search operation for balanced binary trees) remain with a cost of O(log n). For binary heaps implemented as arrays, we show a new merge algorithm that has a single operation cost for merging two heaps, a and b, of O(absolute value of a + min(log absolute value of b log log absolute value of b. log absolute value of a log absolute value of b). This is an improvement over O(absolute value of a + log absolute value of a log absolute value of b). The cost of the new merge is so low that it can be used in a new structure which we call shadow heaps. to implement the insert operation to a tunable efficiency. Shadow heaps support the insert operation for simple priority queues in an amortized time of O(f(n)) and other operations in time O((log n log log n)/f (n)), where 1 less than or equal to f (n) less than or equal to log log n. More generally, the results here show that any data structure with operations that change its size by at most one, with the exception of a merge (aka meld) operation, can efficiently amortize the cost of the merge under conditions that are true for most implementations of binary heaps and search trees.
NASA Astrophysics Data System (ADS)
Pfau, Jens; Kirley, Michael; Kashima, Yoshihisa
2013-01-01
We introduce a variant of the Axelrod model of cultural dissemination in which agents change their physical locations, social links, and cultures. Numerical simulations are used to investigate the evolution of social network communities and the cultural diversity within and between these communities. An analysis of the simulation results shows that an initial peak in the cultural diversity within network communities is evident before agents segregate into a final configuration of culturally homogeneous communities. Larger long-range interaction probabilities facilitate the initial emergence of culturally diverse network communities, which leads to a more pronounced initial peak in cultural diversity within communities. At equilibrium, the number of communities, and hence cultures, increases when the initial cultural diversity increases. However, the number of communities decreases when the lattice size or population density increases. A phase transition between two regimes of initial cultural diversity is evident. For initial diversities below a critical value, a single network community and culture emerges that dominates the population. For initial diversities above the critical value, multiple culturally homogeneous communities emerge. The critical value of initial diversity at which this transition occurs increases with increasing lattice size and population density and generally with increasing absolute population size. We conclude that larger initial diversities promote cultural heterogenization, while larger lattice sizes, population densities, and in fact absolute population sizes promote homogenization.
Lu, Jin; Guo, Li-Wei; Fu, Ting-Ming; Zhu, Guo-Long; Dai, Zhen-Nan; Zhan, Guan-Jun; Chen, Li-Li
2017-06-01
PLA-α-asarone nanoparticles were prepared by using organic solvent evaporation method, and their in vivo distribution and brain targeting after intranasal administration were studied as compared with intravenous administration. The results showed that brain targeting coefficient of PLA-α-asarone nanoparticles after intranasal and intravenous administration was 1.65 and 1.16 respectively. The absolute bioavailability, brain-targeting efficiency and the percentage of nasal-brain delivery of PLA-α-asarone nanoparticles were 74.2%, 142.24 and 29.83%, respectively after intranasal administration. The results of fluorescence labeling showed that the fluorescent intensity of coumarin-6 in the brain tissue was the highest after intranasal administration of PLA-α-asarone fluorescent nanoparticles, achieving the purpose of brain-targeted drug delivery. The fluorescent intensity of coumarin-6 in liver tissue after intravenous administration of PLA-α-asarone nanoparticles was much higher than that after intranasal administration, indicating that intranasal administration of PLA-α-asarone nanoparticles could decrease drug-induced hepatotoxicity. In addition, the fluorescent intensity of coumarin-6 in lung tissue was weaker after intranasal administration, which solved the shortcomings of intranasal administration of α-asarone dry powder prepared by airflow pulverization method. In vivo studies indicated that PLA-α-asarone nanoparticles after intranasal administration had a stronger brain targeting as compared with intravenous administration. Copyright© by the Chinese Pharmaceutical Association.
Glucose metabolism and astrocyte-neuron interactions in the neonatal brain.
Brekke, Eva; Morken, Tora Sund; Sonnewald, Ursula
2015-03-01
Glucose is essentially the sole fuel for the adult brain and the mapping of its metabolism has been extensive in the adult but not in the neonatal brain, which is believed to rely mainly on ketone bodies for energy supply. However, glucose is absolutely indispensable for normal development and recent studies have shed light on glycolysis, the pentose phosphate pathway and metabolic interactions between astrocytes and neurons in the 7-day-old rat brain. Appropriately (13)C labeled glucose was used to distinguish between glycolysis and the pentose phosphate pathway during development. Experiments using (13)C labeled acetate provided insight into the GABA-glutamate-glutamine cycle between astrocytes and neurons. It could be shown that in the neonatal brain the part of this cycle that transfers glutamine from astrocytes to neurons is operating efficiently while, in contrast, little glutamate is shuttled from neurons to astrocytes. This lack of glutamate for glutamine synthesis is compensated for by anaplerosis via increased pyruvate carboxylation relative to that in the adult brain. Furthermore, compared to adults, relatively more glucose is prioritized to the pentose phosphate pathway than glycolysis and pyruvate dehydrogenase activity. The reported developmental differences in glucose metabolism and neurotransmitter synthesis may determine the ability of the brain at various ages to resist excitotoxic insults such as hypoxia-ischemia. Copyright © 2015 Elsevier Ltd. All rights reserved.
Brain size and limits to adult neurogenesis.
Paredes, Mercedes F; Sorrells, Shawn F; Garcia-Verdugo, Jose M; Alvarez-Buylla, Arturo
2016-02-15
The walls of the cerebral ventricles in the developing embryo harbor the primary neural stem cells from which most neurons and glia derive. In many vertebrates, neurogenesis continues postnatally and into adulthood in this region. Adult neurogenesis at the ventricle has been most extensively studied in organisms with small brains, such as reptiles, birds, and rodents. In reptiles and birds, these progenitor cells give rise to young neurons that migrate into many regions of the forebrain. Neurogenesis in adult rodents is also relatively widespread along the lateral ventricles, but migration is largely restricted to the rostral migratory stream into the olfactory bulb. Recent work indicates that the wall of the lateral ventricle is highly regionalized, with progenitor cells giving rise to different types of neurons depending on their location. In species with larger brains, young neurons born in these spatially specified domains become dramatically separated from potential final destinations. Here we hypothesize that the increase in size and topographical complexity (e.g., intervening white matter tracts) in larger brains may severely limit the long-term contribution of new neurons born close to, or in, the ventricular wall. We compare the process of adult neuronal birth, migration, and integration across species with different brain sizes, and discuss how early regional specification of progenitor cells may interact with brain size and affect where and when new neurons are added. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
3D brain tumor localization and parameter estimation using thermographic approach on GPU.
Bousselham, Abdelmajid; Bouattane, Omar; Youssfi, Mohamed; Raihani, Abdelhadi
2018-01-01
The aim of this paper is to present a GPU parallel algorithm for brain tumor detection to estimate its size and location from surface temperature distribution obtained by thermography. The normal brain tissue is modeled as a rectangular cube including spherical tumor. The temperature distribution is calculated using forward three dimensional Pennes bioheat transfer equation, it's solved using massively parallel Finite Difference Method (FDM) and implemented on Graphics Processing Unit (GPU). Genetic Algorithm (GA) was used to solve the inverse problem and estimate the tumor size and location by minimizing an objective function involving measured temperature on the surface to those obtained by numerical simulation. The parallel implementation of Finite Difference Method reduces significantly the time of bioheat transfer and greatly accelerates the inverse identification of brain tumor thermophysical and geometrical properties. Experimental results show significant gains in the computational speed on GPU and achieve a speedup of around 41 compared to the CPU. The analysis performance of the estimation based on tumor size inside brain tissue also presented. Copyright © 2017 Elsevier Ltd. All rights reserved.
Brandstätter, R; Kotrschal, K
1989-01-01
The present study deals with aspects of the brain development in the roach, Rutilus rutilus, a common mid-European cyprinid fish. The morphogenesis of selected brain areas from hatching to early juveniles was examined on serial paraffin cross-sections. From early juveniles to large adults, brain growth was quantitatively analyzed by computer-aided planimetry. The hatchlings of roach show a cytologically distinct optic tectum, but a poorly differentiated brainstem, reflecting the predominance of the optic sense during the larval planktivorous period. The differentiation and outgrowth of chemosensory brainstem centers is related to the onset and development of benthivorous feeding in juveniles. The optic tectum decreases in size relative to the total brain volume from juveniles through adults. The corpus cerebelli increases in relative size, whereas chemosensory and acousticolateral centers grow isometrically with the brain as a whole.
NASA Astrophysics Data System (ADS)
Morlanes, Tomas; de la Pena, Jose L.; Sanchez-Brea, Luis M.; Alonso, Jose; Crespo, Daniel; Saez-Landete, Jose B.; Bernabeu, Eusebio
2005-07-01
In this work, an optoelectronic device that provides the absolute position of a measurement element with respect to a pattern scale upon switch-on is presented. That means that there is not a need to perform any kind of transversal displacement after the startup of the system. The optoelectronic device is based on the process of light propagation passing through a slit. A light source with a definite size guarantees the relation of distances between the different elements that constitute our system and allows getting a particular optical intensity profile that can be measured by an electronic post-processing device providing the absolute location of the system with a resolution of 1 micron. The accuracy of this measuring device is restricted to the same limitations of any incremental position optical encoder.
Huang, Huafeng; Colabello, Diane M.; Sklute, Elizabeth C.; ...
2017-04-23
The absolute absorption coefficient, α(E), is a critical design parameter for devices using semiconductors for light harvesting associated with renewable energy production, both for classic technologies such as photovoltaics and for emerging technologies such as direct solar fuel production. While α(E) is well-known for many classic simple semiconductors used in photovoltaic applications, the absolute values of α(E) are typically unknown for the complex semiconductors being explored for solar fuel production due to the absence of single crystals or crystalline epitaxial films that are needed for conventional methods of determining α(E). In this work, a simple self-referenced method for estimating bothmore » the refractive indices, n(E), and absolute absorption coefficients, α(E), for loose powder samples using diffuse reflectance data is demonstrated. In this method, the sample refractive index can be deduced by refining n to maximize the agreement between the relative absorption spectrum calculated from bidirectional reflectance data (calculated through a Hapke transform which depends on n) and integrating sphere diffuse reflectance data (calculated through a Kubleka–Munk transform which does not depend on n). This new method can be quickly used to screen the suitability of emerging semiconductor systems for light-harvesting applications. The effectiveness of this approach is tested using the simple classic semiconductors Ge and Fe 2O 3 as well as the complex semiconductors La 2MoO 5 and La 4Mo 2O 11. The method is shown to work well for powders with a narrow size distribution (exemplified by Fe 2O 3) and to be ineffective for semiconductors with a broad size distribution (exemplified by Ge). As such, it provides a means for rapidly estimating the absolute optical properties of complex solids which are only available as loose powders.« less
Absolute Depth Sensitivity in Cat Primary Visual Cortex under Natural Viewing Conditions.
Pigarev, Ivan N; Levichkina, Ekaterina V
2016-01-01
Mechanisms of 3D perception, investigated in many laboratories, have defined depth either relative to the fixation plane or to other objects in the visual scene. It is obvious that for efficient perception of the 3D world, additional mechanisms of depth constancy could operate in the visual system to provide information about absolute distance. Neurons with properties reflecting some features of depth constancy have been described in the parietal and extrastriate occipital cortical areas. It has also been shown that, for some neurons in the visual area V1, responses to stimuli of constant angular size differ at close and remote distances. The present study was designed to investigate whether, in natural free gaze viewing conditions, neurons tuned to absolute depths can be found in the primary visual cortex (area V1). Single-unit extracellular activity was recorded from the visual cortex of waking cats sitting on a trolley in front of a large screen. The trolley was slowly approaching the visual scene, which consisted of stationary sinusoidal gratings of optimal orientation rear-projected over the whole surface of the screen. Each neuron was tested with two gratings, with spatial frequency of one grating being twice as high as that of the other. Assuming that a cell is tuned to a spatial frequency, its maximum response to the grating with a spatial frequency twice as high should be shifted to a distance half way closer to the screen in order to attain the same size of retinal projection. For hypothetical neurons selective to absolute depth, location of the maximum response should remain at the same distance irrespective of the type of stimulus. It was found that about 20% of neurons in our experimental paradigm demonstrated sensitivity to particular distances independently of the spatial frequencies of the gratings. We interpret these findings as an indication of the use of absolute depth information in the primary visual cortex.
Kurkluoglu, Mustafa; John, Anitha S; Cross, Russell; Chung, David; Yerebakan, Can; Zurakowski, David; Jonas, Richard A; Sinha, Pranava
2015-01-01
Indications for prophylactic tricuspid annuloplasty in patients with pulmonary regurgitation (PR) after tetralogy of Fallot (TOF) repair are unclear and often extrapolated from acquired functional tricuspid regurgitation (TR) data in adults, where despite correction of primary left heart pathology, progressive tricuspid annular dilation is noted beyond a threshold diameter >4 cm (21 mm/m(2)). We hypothesized that unlike in adult functional TR, in pure volume-overload conditions such as patients with PR after TOF, the tricuspid valve size is likely to regress after pulmonary valve replacement (PVR). A total of 43 consecutive patients who underwent PVR from 2005 until 2012 at a single institution were retrospectively reviewed. Absolute and indexed tricuspid annulus diameters (TADs), tricuspid annulus Z-scores, grade of TR along with right ventricular size, and function indices were recorded before and after PVR. Preoperative and postoperative echocardiographic data were available in all patients. A higher tricuspid valve Z-score correlated with greater TR both preoperatively (P = 0.005) and postoperatively (P = 0.02). Overall reductions in the absolute and indexed TAD and tricuspid valve Z-scores were seen postoperatively, with greater absolute as well as percentage reduction seen with larger preoperative TAD index (P = 0.007) and higher tricuspid annulus Z-scores (P = 0.06). In pure volume-overload conditions such as patients with PR after TOF, reduction in the tricuspid valve size is seen after PVR. Concomitant tricuspid annuloplasty should not be considered based on tricuspid annular dilation alone. Copyright © 2015 Elsevier Inc. All rights reserved.
Nielsen, Line; Damsgaard, Mogens Trab; Meilstrup, Charlotte; Due, Pernille; Madsen, Katrine Rich; Koushede, Vibeke; Holstein, Bjørn Evald
2015-02-01
This comparative study examines absolute and relative socioeconomic differences in emotional symptoms among adolescents using standardised data from five Nordic countries and gives recommendations on how to present socioeconomic inequality. The Health Behaviour in School-aged Children (HBSC) international cross-sectional study from 2005/2006 provided data on 29,642 11-15-year-old adolescents from nationally random samples in Denmark, Finland, Iceland, Norway and Sweden. The outcome was daily emotional symptoms. Family Affluence Scale (FAS) was used as indicator of socioeconomic position. We applied four summary measures of inequality: Prevalence Difference, Odds Ratio, Slope Index of Inequality and Relative Index of Inequality, and presented the socioeconomic inequality by a graphical illustration of the prevalence of emotional symptoms, the size of the FAS groups and the summary indices of inequality in each country. The prevalence of emotional symptoms ranged from 8.1% in Denmark to 13.2% in Iceland. There were large country variations in the size of the low FAS-group ranging from 2% in Iceland to 12% in Finland. The largest absolute and relative socioeconomic inequalities were found in Iceland and the smallest in Finland for girls and in Denmark for boys. Emotional symptoms were more common among nordic adolescents from low affluence families this association appeared in the study of both absolute and relative inequality. A comprehensive presentation of socioeconomic inequality should include the prevalence of the health outcome, the size of the socioeconomic groups, and the regression line representing the summary indices of inequality. © 2014 the Nordic Societies of Public Health.
Korkusuz, Huedayi; Fehre, Niklas; Sennert, Michael; Happel, Christian; Grünwald, Frank
2015-01-01
High-intensity focused ultrasound (HIFU) is a promising, non-invasive technique in treating benign thyroid nodules (TNs). The aim of this study was to evaluate the efficacy of HIFU to induce clinically meaningful shrinkage in benign predominantly solid TNs and to identify variables that influence or predict the magnitude of TN volume reduction. For each of ten subjects, HIFU treatment was conducted on a single nodule. Nodular volume was measured sonographically at baseline and at 3 months post-procedure. Nodular function and early treatment assessment was done scintigraphically. Median nodular volume reduction was 0.7 ml absolute and 48.8% relative to pre-interventional size (p < 0.05). Absolute shrinkage was negatively correlated with the average treatment depth (τ = -0.61, p < 0.05). Absolute nodular volume was positively correlated with the scintigraphic nodular uptake reduction (τ = 0.66, p < 0.05). HIFU treatment of benign predominantly solid TNs appears to be safe and effective for inducing nodular shrinkage. Despite potential for improvement, a single treatment session with HIFU is already a viable alternative to more standard methods. The feasibility of multiple HIFU treatments requires further investigation. Due to the small sample size, the findings of this analysis need conformation by larger studies.
Complex oligosaccharides are N-linked to Kv3 voltage-gated K+ channels in rat brain.
Cartwright, Tara A; Corey, Melissa J; Schwalbe, Ruth A
2007-04-01
Neuronal Kv3 voltage-gated K(+) channels have two absolutely conserved N-glycosylation sites. Here, it is shown that Kv3.1, 3.3, and 3.4 channels are N-glycosylated in rat brain. Digestion of total brain membranes with peptide N glycosidase F (PNGase F) produced faster migrating immunobands than those of undigested membranes. Additionally, partial PNGase F digests showed that both sites are occupied by oligosaccharides. Neuraminidase treatment produced a smaller immunoband shift relative to PNGase F treatment. These results indicate that both sites are highly available and occupied by N-linked oligosaccharides for Kv3.1, 3.3, and 3.4 in rat brain, and furthermore that at least one oligosaccharide is of complex type. Additionally, these results point to an extracytoplasmic S1-S2 linker in Kv3 proteins expressed in native membranes. We suggest that N-glycosylation processing of Kv3 channels is critical for the expression of K(+) currents at the surface of neurons, and perhaps contributes to the pathophysiology of congenital disorders of glycosylation.
Pearce, Mark S; Salotti, Jane A; Little, Mark P; McHugh, Kieran; Lee, Choonsik; Kim, Kwang Pyo; Howe, Nicola L; Ronckers, Cecile M; Rajaraman, Preetha; Craft, Alan W; Parker, Louise; de González, Amy Berrington
2012-01-01
Summary Background Although CT scans are very useful clinically, potential cancer risks exist from associated ionising radiation, in particular for children who are more radiosensitive than adults. We aimed to assess the excess risk of leukaemia and brain tumours after CT scans in a cohort of children and young adults. Methods In our retrospective cohort study, we included patients without previous cancer diagnoses who were first examined with CT in National Health Service (NHS) centres in England, Wales, or Scotland (Great Britain) between 1985 and 2002, when they were younger than 22 years of age. We obtained data for cancer incidence, mortality, and loss to follow-up from the NHS Central Registry from Jan 1, 1985, to Dec 31, 2008. We estimated absorbed brain and red bone marrow doses per CT scan in mGy and assessed excess incidence of leukaemia and brain tumours cancer with Poisson relative risk models. To avoid inclusion of CT scans related to cancer diagnosis, follow-up for leukaemia began 2 years after the first CT and for brain tumours 5 years after the first CT. Findings During follow-up, 74 of 178 604 patients were diagnosed with leukaemia and 135 of 176 587 patients were diagnosed with brain tumours. We noted a positive association between radiation dose from CT scans and leukaemia (excess relative risk [ERR] per mGy 0·036, 95% CI 0·005–0·120; p=0·0097) and brain tumours (0·023, 0·010–0·049; p<0·0001). Compared with patients who received a dose of less than 5 mGy, the relative risk of leukaemia for patients who received a cumulative dose of at least 30 mGy (mean dose 51·13 mGy) was 3·18 (95% CI 1·46–6·94) and the relative risk of brain cancer for patients who received a cumulative dose of 50–74 mGy (mean dose 60·42 mGy) was 2·82 (1·33–6·03). Interpretation Use of CT scans in children to deliver cumulative doses of about 50 mGy might almost triple the risk of leukaemia and doses of about 60 mGy might triple the risk of brain cancer. Because these cancers are relatively rare, the cumulative absolute risks are small: in the 10 years after the first scan for patients younger than 10 years, one excess case of leukaemia and one excess case of brain tumour per 10 000 head CT scans is estimated to occur. Nevertheless, although clinical benefits should outweigh the small absolute risks, radiation doses from CT scans ought to be kept as low as possible and alternative procedures, which do not involve ionising radiation, should be considered if appropriate. Funding US National Cancer Institute and UK Department of Health. PMID:22681860
Pearce, Mark S; Salotti, Jane A; Little, Mark P; McHugh, Kieran; Lee, Choonsik; Kim, Kwang Pyo; Howe, Nicola L; Ronckers, Cecile M; Rajaraman, Preetha; Sir Craft, Alan W; Parker, Louise; Berrington de González, Amy
2012-08-04
Although CT scans are very useful clinically, potential cancer risks exist from associated ionising radiation, in particular for children who are more radiosensitive than adults. We aimed to assess the excess risk of leukaemia and brain tumours after CT scans in a cohort of children and young adults. In our retrospective cohort study, we included patients without previous cancer diagnoses who were first examined with CT in National Health Service (NHS) centres in England, Wales, or Scotland (Great Britain) between 1985 and 2002, when they were younger than 22 years of age. We obtained data for cancer incidence, mortality, and loss to follow-up from the NHS Central Registry from Jan 1, 1985, to Dec 31, 2008. We estimated absorbed brain and red bone marrow doses per CT scan in mGy and assessed excess incidence of leukaemia and brain tumours cancer with Poisson relative risk models. To avoid inclusion of CT scans related to cancer diagnosis, follow-up for leukaemia began 2 years after the first CT and for brain tumours 5 years after the first CT. During follow-up, 74 of 178,604 patients were diagnosed with leukaemia and 135 of 176,587 patients were diagnosed with brain tumours. We noted a positive association between radiation dose from CT scans and leukaemia (excess relative risk [ERR] per mGy 0·036, 95% CI 0·005-0·120; p=0·0097) and brain tumours (0·023, 0·010-0·049; p<0·0001). Compared with patients who received a dose of less than 5 mGy, the relative risk of leukaemia for patients who received a cumulative dose of at least 30 mGy (mean dose 51·13 mGy) was 3·18 (95% CI 1·46-6·94) and the relative risk of brain cancer for patients who received a cumulative dose of 50-74 mGy (mean dose 60·42 mGy) was 2·82 (1·33-6·03). Use of CT scans in children to deliver cumulative doses of about 50 mGy might almost triple the risk of leukaemia and doses of about 60 mGy might triple the risk of brain cancer. Because these cancers are relatively rare, the cumulative absolute risks are small: in the 10 years after the first scan for patients younger than 10 years, one excess case of leukaemia and one excess case of brain tumour per 10,000 head CT scans is estimated to occur. Nevertheless, although clinical benefits should outweigh the small absolute risks, radiation doses from CT scans ought to be kept as low as possible and alternative procedures, which do not involve ionising radiation, should be considered if appropriate. US National Cancer Institute and UK Department of Health. Copyright © 2012 Elsevier Ltd. All rights reserved.
Life in the unthinking depths: energetic constraints on encephalization in marine fishes.
Iglesias, T L; Dornburg, A; Brandley, M C; Alfaro, M E; Warren, D L
2015-05-01
Several hypotheses have been proposed to explain the limitation of brain size in vertebrates. Here, we test three hypotheses of brain size evolution using marine teleost fishes: the direct metabolic constraints hypothesis (DMCH), the expensive tissue hypothesis and the temperature-dependent hypothesis. Our analyses indicate that there is a robust positive correlation between encephalization and basal metabolic rate (BMR) that spans the full range of depths occupied by teleosts from the epipelagic (< 200 m), mesopelagic (200-1000 m) and bathypelagic (> 4000 m). Our results disentangle the effects of temperature and metabolic rate on teleost brain size evolution, supporting the DMCH. Our results agree with previous findings that teleost brain size decreases with depth; however, we also recover a negative correlation between trophic level and encephalization within the mesopelagic zone, a result that runs counter to the expectations of the expensive tissue hypothesis. We hypothesize that mesopelagic fishes at lower trophic levels may be investing more in neural tissue related to the detection of small prey items in a low-light environment. We recommend that comparative encephalization studies control for BMR in addition to controlling for body size and phylogeny. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
NASA Astrophysics Data System (ADS)
Shiino, Akihiko; Chen, Yen-Wei; Tanigaki, Kenji; Yamada, Atsushi; Vigers, Piers; Watanabe, Toshiyuki; Tooyama, Ikuo; Akiguchi, Ichiro
2017-01-01
It has been contended that any observed difference of the corpus callosum (CC) size between men and women is not sex-related but brain-size-related. A recent report, however, showed that the midsagittal CC area was significantly larger in women in 37 brain-size-matched pairs of normal young adults. Since this constituted strong evidence of sexual dimorphism and was obtained from publicly available data in OASIS, we examined volume differences within the CC and in other white matter using voxel-based morphometry (VBM). We created a three-dimensional region of interest of the CC and measured its volume. The VBM statistics were analyzed by permutation test and threshold-free cluster enhancement (TFCE) with the significance levels at FWER < 0.05. The CC volume was significantly larger in women in the same 37 brain-size-matched pairs. We found that the CC genu was the subregion showing the most significant sex-related difference. We also found that white matter in the bilateral anterior frontal regions and the left lateral white matter near to Broca’s area were larger in women, whereas there were no significant larger regions in men. Since we used brain-size-matched subjects, our results gave strong volumetric evidence of localized sexual dimorphism of white matter.
High correlations between MRI brain volume measurements based on NeuroQuant® and FreeSurfer.
Ross, David E; Ochs, Alfred L; Tate, David F; Tokac, Umit; Seabaugh, John; Abildskov, Tracy J; Bigler, Erin D
2018-05-30
NeuroQuant ® (NQ) and FreeSurfer (FS) are commonly used computer-automated programs for measuring MRI brain volume. Previously they were reported to have high intermethod reliabilities but often large intermethod effect size differences. We hypothesized that linear transformations could be used to reduce the large effect sizes. This study was an extension of our previously reported study. We performed NQ and FS brain volume measurements on 60 subjects (including normal controls, patients with traumatic brain injury, and patients with Alzheimer's disease). We used two statistical approaches in parallel to develop methods for transforming FS volumes into NQ volumes: traditional linear regression, and Bayesian linear regression. For both methods, we used regression analyses to develop linear transformations of the FS volumes to make them more similar to the NQ volumes. The FS-to-NQ transformations based on traditional linear regression resulted in effect sizes which were small to moderate. The transformations based on Bayesian linear regression resulted in all effect sizes being trivially small. To our knowledge, this is the first report describing a method for transforming FS to NQ data so as to achieve high reliability and low effect size differences. Machine learning methods like Bayesian regression may be more useful than traditional methods. Copyright © 2018 Elsevier B.V. All rights reserved.
The effect of nanoparticle size on the ability to cross the blood-brain barrier: an in vivo study.
Betzer, Oshra; Shilo, Malka; Opochinsky, Renana; Barnoy, Eran; Motiei, Menachem; Okun, Eitan; Yadid, Gal; Popovtzer, Rachela
2017-07-01
Our goal was to develop an efficient nanoparticle-based system that can overcome the restrictive mechanism of the blood-brain barrier (BBB) by targeting insulin receptors and would thus enable drug delivery to the brain. Insulin-coated gold nanoparticles (INS-GNPs) were synthesized to serve as a BBB transport system. The effect of nanoparticle size (20, 50 and 70 nm) on their ability to cross the BBB was quantitatively investigated in Balb/C mice. The most widespread biodistribution and highest accumulation within the brain were observed using 20 nm INS-GNPs, 2 h post injection. In vivo CT imaging revealed that particles migrated to specific brain regions, which are involved in neurodegenerative and neuropsychiatric disorders. These findings promote the optimization of nanovehicles for transport of drugs through the BBB. The insulin coating of the particles enabled targeting of specific brain regions, suggesting the potential use of INS-GNPs for delivery of various treatments for brain-related disorders.
Determinants of Market Structure and the Airline Industry
NASA Technical Reports Server (NTRS)
Raduchel, W.
1972-01-01
The general economic determinants of market structure are outlined with special reference to the airline industry. Included are the following facets: absolute size of firms; distributions of firms by size; concentration; entry barriers; product and service differentiation; diversification; degrees of competition; vertical integration; market boundaries; and economies of scale. Also examined are the static and dynamic properties of market structure in terms of mergers, government policies, and economic growth conditions.
Brain enlargement is associated with regression in preschool-age boys with autism spectrum disorders
Nordahl, Christine Wu; Lange, Nicholas; Li, Deana D.; Barnett, Lou Ann; Lee, Aaron; Buonocore, Michael H.; Simon, Tony J.; Rogers, Sally; Ozonoff, Sally; Amaral, David G.
2011-01-01
Autism is a heterogeneous disorder with multiple behavioral and biological phenotypes. Accelerated brain growth during early childhood is a well-established biological feature of autism. Onset pattern, i.e., early onset or regressive, is an intensely studied behavioral phenotype of autism. There is currently little known, however, about whether, or how, onset status maps onto the abnormal brain growth. We examined the relationship between total brain volume and onset status in a large sample of 2- to 4-y-old boys and girls with autism spectrum disorder (ASD) [n = 53, no regression (nREG); n = 61, regression (REG)] and a comparison group of age-matched typically developing controls (n = 66). We also examined retrospective head circumference measurements from birth through 18 mo of age. We found that abnormal brain enlargement was most commonly found in boys with regressive autism. Brain size in boys without regression did not differ from controls. Retrospective head circumference measurements indicate that head circumference in boys with regressive autism is normal at birth but diverges from the other groups around 4–6 mo of age. There were no differences in brain size in girls with autism (n = 22, ASD; n = 24, controls). These results suggest that there may be distinct neural phenotypes associated with different onsets of autism. For boys with regressive autism, divergence in brain size occurs well before loss of skills is commonly reported. Thus, rapid head growth may be a risk factor for regressive autism. PMID:22123952
Brain Dynamics of Word Familiarization in 20-Month-Olds: Effects of Productive Vocabulary Size
ERIC Educational Resources Information Center
Torkildsen, Janne von Koss; Hansen, Hanna Friis; Svangstu, Janne Mari; Smith, Lars; Simonsen, Hanne Gram; Moen, Inger; Lindgren, Magnus
2009-01-01
The present study investigated the brain mechanisms involved during young children's receptive familiarization with new words, and whether the dynamics of these mechanisms are related to the child's productive vocabulary size. To this end, we recorded event-related potentials (ERPs) from 20-month-old children in a pseudoword repetition task.…
ERIC Educational Resources Information Center
Vaccarino, Flora M.; Grigorenko, Elena L.; Smith, Karen Muller; Stevens, Hanna E.
2009-01-01
Increased brain size is common in children with autism spectrum disorders. Here we propose that an increased number of cortical excitatory neurons may underlie the increased brain volume, minicolumn pathology and excessive network excitability, leading to sensory hyper-reactivity and seizures, which are often found in autism. We suggest that…
Glucocorticoids Protect Neonatal Rat Brain in Model of Hypoxic-Ischemic Encephalopathy (HIE)
Harding, Benjamin; Conception, Katherine; Li, Yong; Zhang, Lubo
2016-01-01
Hypoxic-ischemic encephalopathy (HIE) resulting from asphyxia in the peripartum period is the most common cause of neonatal brain damage and can result in significant neurologic sequelae, including cerebral palsy. Currently therapeutic hypothermia is the only accepted treatment in addition to supportive care for infants with HIE, however, many additional neuroprotective therapies have been investigated. Of these, glucocorticoids have previously been shown to have neuroprotective effects. HIE is also frequently compounded by infectious inflammatory processes (sepsis) and as such, the infants may be more amenable to treatment with an anti-inflammatory agent. Thus, the present study investigated dexamethasone and hydrocortisone treatment given after hypoxic-ischemic (HI) insult in neonatal rats via intracerebroventricular (ICV) injection and intranasal administration. In addition, we examined the effects of hydrocortisone treatment in HIE after lipopolysaccharide (LPS) sensitization in a model of HIE and sepsis. We found that dexamethasone significantly reduced rat brain infarction size when given after HI treatment via ICV injection; however it did not demonstrate any neuroprotective effects when given intranasally. Hydrocortisone after HI insult also significantly reduced brain infarction size when given via ICV injection; and the intranasal administration showed to be protective of brain injury in male rats at a dose of 300 µg. LPS sensitization did significantly increase the brain infarction size compared to controls, and hydrocortisone treatment after LPS sensitization showed a significant decrease in brain infarction size when given via ICV injection, as well as intranasal administration in both genders at a dose of 300 µg. To conclude, these results show that glucocorticoids have significant neuroprotective effects when given after HI injury and that these effects may be even more pronounced when given in circumstances of additional inflammatory injury, such as neonatal sepsis. PMID:28025500
Fraiman, Daniel; Chialvo, Dante R.
2012-01-01
The study of spontaneous fluctuations of brain activity, often referred as brain noise, is getting increasing attention in functional magnetic resonance imaging (fMRI) studies. Despite important efforts, much of the statistical properties of such fluctuations remain largely unknown. This work scrutinizes these fluctuations looking at specific statistical properties which are relevant to clarify its dynamical origins. Here, three statistical features which clearly differentiate brain data from naive expectations for random processes are uncovered: First, the variance of the fMRI mean signal as a function of the number of averaged voxels remains constant across a wide range of observed clusters sizes. Second, the anomalous behavior of the variance is originated by bursts of synchronized activity across regions, regardless of their widely different sizes. Finally, the correlation length (i.e., the length at which the correlation strength between two regions vanishes) as well as mutual information diverges with the cluster's size considered, such that arbitrarily large clusters exhibit the same collective dynamics than smaller ones. These three properties are known to be exclusive of complex systems exhibiting critical dynamics, where the spatio-temporal dynamics show these peculiar type of fluctuations. Thus, these findings are fully consistent with previous reports of brain critical dynamics, and are relevant for the interpretation of the role of fluctuations and variability in brain function in health and disease. PMID:22934058
A Model of Penetrating Traumatic Brain Injury Using an Air Inflation Technique
2003-06-01
work of Carey et al (1989, 1990) using the now-abandoned fired projectile feline model. This report contains the results of all of the above...parameters that come into play, and do not neglect the usual forces that act on the projectile such as gravity. Ammunition producers go through great pains ...focus of our investigations. Vt is compared to the size of the human brain and then scaled down by 672.5:1 for the rat’s brain size and designated as Vt
Regional growth and atlasing of the developing human brain
Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V.; Edwards, A. David; Counsell, Serena J.; Rueckert, Daniel
2016-01-01
Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45 weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. PMID:26499811
Regional growth and atlasing of the developing human brain.
Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V; Edwards, A David; Counsell, Serena J; Rueckert, Daniel
2016-01-15
Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Split-step eigenvector-following technique for exploring enthalpy landscapes at absolute zero.
Mauro, John C; Loucks, Roger J; Balakrishnan, Jitendra
2006-03-16
The mapping of enthalpy landscapes is complicated by the coupling of particle position and volume coordinates. To address this issue, we have developed a new split-step eigenvector-following technique for locating minima and transition points in an enthalpy landscape at absolute zero. Each iteration is split into two steps in order to independently vary system volume and relative atomic coordinates. A separate Lagrange multiplier is used for each eigendirection in order to provide maximum flexibility in determining step sizes. This technique will be useful for mapping the enthalpy landscapes of bulk systems such as supercooled liquids and glasses.
The population, magnitudes, and sizes of Jupiter family comets
NASA Astrophysics Data System (ADS)
Fernández, J. A.; Tancredi, G.; Rickman, H.; Licandro, J.
1999-12-01
We analyze the sample of measured nuclear magnitudes of the observed Jupiter family (JF) comets (taken as those with orbital periods P < 20 years and Tisserand parameters T > 2). We find a tendency of the measured nuclear magnitudes to be fainter as JF comets are observed with CCD detectors attached to medium- and large-size telescopes (e.g. Spacewatch Telescope). However, a few JF comets observed very far from the Sun (4-7 AU) show a wide dispersion of their derived absolute nuclear magnitudes which suggests that either these JF comets keep active all along the orbit, so the reported unusually bright distant magnitudes were strongly contaminated by a coma, or some of the measured ``nuclear magnitudes'' were grossly overestimated (i.e. their brightness underestimated). The cumulative mass distribution of JF comets is found to follow a power-law of index s = - 0.88 +/- 0.08, suggesting a distribution significantly steeper than that for both small main-belt asteroids and near-Earth asteroids. The cumulative mass distribution of JF comets with q < 2 AU tends to flatten for absolute (visual) nuclear magnitudes H_N > 16, which is probably due to incompleteness of discovery of fainter comets and/or a real scarcity of small comets due, perhaps, to much shorter physical lifetimes. In particular, no JF comets fainter than H_N ~ 19.5 are found in the sample, suggesting that the critical size for a comet to be still active may be of about 0.4 km radius for an assumed geometric albedo of 0.04. Possibly, smaller comet nuclei disintegrate very quickly into meteor streams. Most absolute nuclear magnitudes are found in the range 15-18, corresponding to nuclear radii in the range 0.8-3.3 km (for the same geometric albedo). We find that a large majority of JF comets with perihelion distances q > 2.5 AU are brighter than absolute nuclear magnitude H_N = 16, suggesting that only a very small fraction (a few percent) of the population of the JF comets with large q has so far been detected. A similar trend is noted for the corresponding absolute total magnitudes H_T taken from Kresák & Kresáková's (1994) catalog. By analyzing the H_N and H_T data, and trends in the discovery rate of JF comets as a function of their perihelion distances, the overall population of JF comets within Jupiter's region (q < 5.2 AU) up to an absolute nuclear magnitude H_N = 18.5 is estimated to be from several thousand to about 104 members. The q-distribution of JF comets shows a steep increase with q, which is consistent with JF comets coming from a flat intermediate source in the Jupiter-Saturn region.
Two dose investigation of the 5-HT-agonist psilocybin on relative and global cerebral blood flow.
Lewis, Candace R; Preller, Katrin H; Kraehenmann, Rainer; Michels, Lars; Staempfli, Philipp; Vollenweider, Franz X
2017-10-01
Psilocybin, the active compound in psychedelic mushrooms, is an agonist of various serotonin receptors. Seminal psilocybin positron emission tomography (PET) research suggested regional increases in glucose metabolism in frontal cortex (hyperfrontality). However, a recent arterial spin labeling (ASL) study suggests psilocybin may lead to hypo-perfusion in various brain regions. In this placebo-controlled, double-blind study we used pseudo-continuous ASL (pCASL) to measure perfusion changes, with and without adjustment for global brain perfusion, after two doses of oral psilocybin (low dose: 0.160 mg/kg; high dose: 0.215 mg/kg) in two groups of healthy controls (n = 29 in both groups, total N = 58) during rest. We controlled for sex and age and used family-wise error corrected p values in all neuroimaging analyses. Both dose groups reported profound subjective drug effects as measured by the Altered States of Consciousness Rating Scale (5D-ASC) with the high dose inducing significantly larger effects in four out of the 11 scales. After adjusting for global brain perfusion, psilocybin increased relative perfusion in distinct right hemispheric frontal and temporal regions and bilaterally in the anterior insula and decreased perfusion in left hemispheric parietal and temporal cortices and left subcortical regions. Whereas, psilocybin significantly reduced absolute perfusion in frontal, temporal, parietal, and occipital lobes, and bilateral amygdalae, anterior cingulate, insula, striatal regions, and hippocampi. Our analyses demonstrate consistency with both the hyperfrontal hypothesis of psilocybin and the more recent study demonstrating decreased perfusion, depending on analysis method. Importantly, our data illustrate that relative changes in perfusion should be understood and interpreted in relation to absolute signal variations. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, Yasheng; Juttukonda, Meher; Su, Yi; Benzinger, Tammie; Rubin, Brian G.; Lee, Yueh Z.; Lin, Weili; Shen, Dinggang; Lalush, David
2015-01-01
Purpose To develop a positron emission tomography (PET) attenuation correction method for brain PET/magnetic resonance (MR) imaging by estimating pseudo computed tomographic (CT) images from T1-weighted MR and atlas CT images. Materials and Methods In this institutional review board–approved and HIPAA-compliant study, PET/MR/CT images were acquired in 20 subjects after obtaining written consent. A probabilistic air segmentation and sparse regression (PASSR) method was developed for pseudo CT estimation. Air segmentation was performed with assistance from a probabilistic air map. For nonair regions, the pseudo CT numbers were estimated via sparse regression by using atlas MR patches. The mean absolute percentage error (MAPE) on PET images was computed as the normalized mean absolute difference in PET signal intensity between a method and the reference standard continuous CT attenuation correction method. Friedman analysis of variance and Wilcoxon matched-pairs tests were performed for statistical comparison of MAPE between the PASSR method and Dixon segmentation, CT segmentation, and population averaged CT atlas (mean atlas) methods. Results The PASSR method yielded a mean MAPE ± standard deviation of 2.42% ± 1.0, 3.28% ± 0.93, and 2.16% ± 1.75, respectively, in the whole brain, gray matter, and white matter, which were significantly lower than the Dixon, CT segmentation, and mean atlas values (P < .01). Moreover, 68.0% ± 16.5, 85.8% ± 12.9, and 96.0% ± 2.5 of whole-brain volume had within ±2%, ±5%, and ±10% percentage error by using PASSR, respectively, which was significantly higher than other methods (P < .01). Conclusion PASSR outperformed the Dixon, CT segmentation, and mean atlas methods by reducing PET error owing to attenuation correction. © RSNA, 2014 PMID:25521778
Multivariate decoding of brain images using ordinal regression.
Doyle, O M; Ashburner, J; Zelaya, F O; Williams, S C R; Mehta, M A; Marquand, A F
2013-11-01
Neuroimaging data are increasingly being used to predict potential outcomes or groupings, such as clinical severity, drug dose response, and transitional illness states. In these examples, the variable (target) we want to predict is ordinal in nature. Conventional classification schemes assume that the targets are nominal and hence ignore their ranked nature, whereas parametric and/or non-parametric regression models enforce a metric notion of distance between classes. Here, we propose a novel, alternative multivariate approach that overcomes these limitations - whole brain probabilistic ordinal regression using a Gaussian process framework. We applied this technique to two data sets of pharmacological neuroimaging data from healthy volunteers. The first study was designed to investigate the effect of ketamine on brain activity and its subsequent modulation with two compounds - lamotrigine and risperidone. The second study investigates the effect of scopolamine on cerebral blood flow and its modulation using donepezil. We compared ordinal regression to multi-class classification schemes and metric regression. Considering the modulation of ketamine with lamotrigine, we found that ordinal regression significantly outperformed multi-class classification and metric regression in terms of accuracy and mean absolute error. However, for risperidone ordinal regression significantly outperformed metric regression but performed similarly to multi-class classification both in terms of accuracy and mean absolute error. For the scopolamine data set, ordinal regression was found to outperform both multi-class and metric regression techniques considering the regional cerebral blood flow in the anterior cingulate cortex. Ordinal regression was thus the only method that performed well in all cases. Our results indicate the potential of an ordinal regression approach for neuroimaging data while providing a fully probabilistic framework with elegant approaches for model selection. Copyright © 2013. Published by Elsevier Inc.
Design considerations and validation of the MSTAR absolute metrology system
NASA Astrophysics Data System (ADS)
Peters, Robert D.; Lay, Oliver P.; Dubovitsky, Serge; Burger, Johan; Jeganathan, Muthu
2004-08-01
Absolute metrology measures the actual distance between two optical fiducials. A number of methods have been employed, including pulsed time-of-flight, intensity-modulated optical beam, and two-color interferometry. The rms accuracy is currently limited to ~5 microns. Resolving the integer number of wavelengths requires a 1-sigma range accuracy of ~0.1 microns. Closing this gap has a large pay-off: the range (length measurement) accuracy can be increased substantially using the unambiguous optical phase. The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. In this paper, we present recent experiments that use dispersed white light interferometry to independently validate the zero-point of the system. We also describe progress towards reducing the size of optics, and stabilizing the laser wavelength for operation over larger target ranges. MSTAR is a general-purpose tool for conveniently measuring length with much greater accuracy than was previously possible, and has a wide range of possible applications.
Brain size regulations by cbp haploinsufficiency evaluated by in-vivo MRI based volumetry
NASA Astrophysics Data System (ADS)
Ateca-Cabarga, Juan C.; Cosa, Alejandro; Pallarés, Vicente; López-Atalaya, José P.; Barco, Ángel; Canals, Santiago; Moratal, David
2015-11-01
The Rubinstein-Taybi Syndrome (RSTS) is a congenital disease that affects brain development causing severe cognitive deficits. In most cases the disease is associated with dominant mutations in the gene encoding the CREB binding protein (CBP). In this work, we present the first quantitative analysis of brain abnormalities in a mouse model of RSTS using magnetic resonance imaging (MRI) and two novel self-developed automated algorithms for image volumetric analysis. Our results quantitatively confirm key syndromic features observed in RSTS patients, such as reductions in brain size (-16.31%, p < 0.05), white matter volume (-16.00%, p < 0.05), and corpus callosum (-12.40%, p < 0.05). Furthermore, they provide new insight into the developmental origin of the disease. By comparing brain tissues in a region by region basis between cbp+/- and cbp+/+ littermates, we found that cbp haploinsufficiency is specifically associated with significant reductions in prosencephalic tissue, such us in the olfactory bulb and neocortex, whereas regions evolved from the embryonic rhombencephalon were spared. Despite the large volume reductions, the proportion between gray-, white-matter and cerebrospinal fluid were conserved, suggesting a role of CBP in brain size regulation. The commonalities with holoprosencephaly and arhinencephaly conditions suggest the inclusion of RSTS in the family of neuronal migration disorders.
Quam, Rolf; Lorenzo, Carlos; Martínez, Ignacio; Gracia-Téllez, Ana; Arsuaga, Juan Luis
2016-01-01
We performed 3D virtual reconstructions based on CT scans to study the bony labyrinth morphology in 14 individuals from the large middle Pleistocene hominin sample from the site of the Sima de los Huesos (SH) in the Sierra de Atapuerca in northern Spain. The Atapuerca (SH) hominins represent early members of the Neandertal clade and provide an opportunity to compare the data with the later in time Neandertals, as well as Pleistocene and recent humans more broadly. The Atapuerca (SH) hominins do not differ from the Neandertals in any of the variables related to the absolute and relative sizes and shape of the semicircular canals. Indeed, the entire Neandertal clade seems to be characterized by a derived pattern of canal proportions, including a relatively small posterior canal and a relatively large lateral canal. In contrast, one of the most distinctive features observed in Neandertals, the low placement of the posterior canal (i.e., high sagittal labyrinthine index), is generally not present in the Atapuerca (SH) hominins. This low placement is considered a derived feature in Neandertals and is correlated with a more vertical orientation of the ampullar line (LSCm < APA), posterior surface of the petrous pyramid (LSCm > PPp), and third part of the facial canal (LSCm < FC3). Some variation is present within the Atapuerca (SH) sample, however, with a few individuals approaching the Neandertal condition more closely. In addition, the cochlear shape index in the Atapuerca (SH) hominins is low, indicating a reduction in the height of the cochlea. Although the phylogenetic polarity of this feature is less clear, the low shape index in the Atapuerca (SH) hominins may be a derived feature. Regardless, cochlear height subsequently increased in Neandertals. In contrast to previous suggestions, the expanded data in the present study indicate no difference across the genus Homo in the angle of inclination of the cochlear basal turn (COs < LSCm). Principal components analysis largely confirms these observations. While not fully resolved, the low placement of the posterior canal in Neandertals may be related to some combination of absolutely large brain size, a wide cranial base, and an archaic pattern of brain allometry. This more general explanation would not necessarily follow taxonomic lines, even though this morphology of the bony labyrinth occurs at high frequencies among Neandertals. While a functional interpretation of the relatively small vertical canals in the Neandertal clade remains elusive, the relative proportions of the semicircular canals is one of several derived Neandertal features in the Atapuerca (SH) crania. Examination of additional European middle Pleistocene specimens suggests that the full suite of Neandertal features in the bony labyrinth did not emerge in Europe until perhaps <200 kya. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dobrivojević, Marina; Bohaček, Ivan; Erjavec, Igor; Gorup, Dunja; Gajović, Srećko
2013-01-01
Aim To explore the possibility of brain imaging by microcomputed tomography (microCT) using x-ray contrasting methods to visualize mouse brain ischemic lesions after middle cerebral artery occlusion (MCAO). Methods Isolated brains were immersed in ionic or nonionic radio contrast agent (RCA) for 5 days and subsequently scanned using microCT scanner. To verify whether ex-vivo microCT brain images can be used to characterize ischemic lesions, they were compared to Nissl stained serial histological sections of the same brains. To verify if brains immersed in RCA may be used afterwards for other methods, subsequent immunofluorescent labeling with anti-NeuN was performed. Results Nonionic RCA showed better gray to white matter contrast in the brain, and therefore was selected for further studies. MicroCT measurement of ischemic lesion size and cerebral edema significantly correlated with the values determined by Nissl staining (ischemic lesion size: P=0.0005; cerebral edema: P=0.0002). Brain immersion in nonionic RCA did not affect subsequent immunofluorescent analysis and NeuN immunoreactivity. Conclusion MicroCT method was proven to be suitable for delineation of the ischemic lesion from the non-infarcted tissue, and quantification of lesion volume and cerebral edema. PMID:23444240
Dobrivojević, Marina; Bohaček, Ivan; Erjavec, Igor; Gorup, Dunja; Gajović, Srećko
2013-02-01
To explore the possibility of brain imaging by microcomputed tomography (microCT) using x-ray contrasting methods to visualize mouse brain ischemic lesions after middle cerebral artery occlusion (MCAO). Isolated brains were immersed in ionic or nonionic radio contrast agent (RCA) for 5 days and subsequently scanned using microCT scanner. To verify whether ex-vivo microCT brain images can be used to characterize ischemic lesions, they were compared to Nissl stained serial histological sections of the same brains. To verify if brains immersed in RCA may be used afterwards for other methods, subsequent immunofluorescent labeling with anti-NeuN was performed. Nonionic RCA showed better gray to white matter contrast in the brain, and therefore was selected for further studies. MicroCT measurement of ischemic lesion size and cerebral edema significantly correlated with the values determined by Nissl staining (ischemic lesion size: P=0.0005; cerebral edema: P=0.0002). Brain immersion in nonionic RCA did not affect subsequent immunofluorescent analysis and NeuN immunoreactivity. MicroCT method was proven to be suitable for delineation of the ischemic lesion from the non-infarcted tissue, and quantification of lesion volume and cerebral edema.
Brief Report: Abnormal Association between the Thalamus and Brain Size in Asperger's Disorder
ERIC Educational Resources Information Center
Hardan, Antonio Y.; Girgis, Ragy R.; Adams, Jason; Gilbert, Andrew R.; Melhem, Nadine M.; Keshavan, Matcheri S.; Minshew, Nancy J.
2008-01-01
The objective of this study was to examine the relationship between thalamic volume and brain size in individuals with Asperger's disorder (ASP). Volumetric measurements of the thalamus were performed on MRI scans obtained from 12 individuals with ASP (age range: 10-35 years) and 12 healthy controls (age range: 9-33 years). A positive correlation…
The Effect of Brain Based Learning on Academic Achievement: A Meta-Analytical Study
ERIC Educational Resources Information Center
Gozuyesil, Eda; Dikici, Ayhan
2014-01-01
This study's aim is to measure the effect sizes of the quantitative studies that examined the effectiveness of brain-based learning on students' academic achievement and to examine with the meta-analytical method if there is a significant difference in effect in terms of the factors of education level, subject matter, sampling size, and the…
Connor, Richard C
2007-04-29
Bottlenose dolphins in Shark Bay, Australia, live in a large, unbounded society with a fission-fusion grouping pattern. Potential cognitive demands include the need to develop social strategies involving the recognition of a large number of individuals and their relationships with others. Patterns of alliance affiliation among males may be more complex than are currently known for any non-human, with individuals participating in 2-3 levels of shifting alliances. Males mediate alliance relationships with gentle contact behaviours such as petting, but synchrony also plays an important role in affiliative interactions. In general, selection for social intelligence in the context of shifting alliances will depend on the extent to which there are strategic options and risk. Extreme brain size evolution may have occurred more than once in the toothed whales, reaching peaks in the dolphin family and the sperm whale. All three 'peaks' of large brain size evolution in mammals (odontocetes, humans and elephants) shared a common selective environment: extreme mutual dependence based on external threats from predators or conspecific groups. In this context, social competition, and consequently selection for greater cognitive abilities and large brain size, was intense.
Rotational Diffusion Depends on Box Size in Molecular Dynamics Simulations.
Linke, Max; Köfinger, Jürgen; Hummer, Gerhard
2018-06-07
We show that the rotational dynamics of proteins and nucleic acids determined from molecular dynamics simulations under periodic boundary conditions suffer from significant finite-size effects. We remove the box-size dependence of the rotational diffusion coefficients by adding a hydrodynamic correction k B T/6 ηV with k B Boltzmann's constant, T the absolute temperature, η the solvent shear viscosity, and V the box volume. We show that this correction accounts for the finite-size dependence of the rotational diffusion coefficients of horse-heart myoglobin and a B-DNA dodecamer in aqueous solution. The resulting hydrodynamic radii are in excellent agreement with experiment.
Factors influencing the specific interaction of Neisseria gonorrhoeae with transforming DNA.
Goodman, S D; Scocca, J J
1991-01-01
The specific interaction of transformable Neisseria gonorrhoeae with DNA depends on the recognition of specific 10-residue target sequences. The relative affinity for DNA between 3 and 17 kb in size appears to be linearly related to the frequency of targets on the segment and is unaffected by absolute size. The average frequency of targets in chromosomal DNA of N. gonorrhoeae appears to be approximately one per 1,000 bp. PMID:1909325
Study on Control of Brain Temperature for Brain Hypothermia Treatment
NASA Astrophysics Data System (ADS)
Gaohua, Lu; Wakamatsu, Hidetoshi
The brain hypothermia treatment is an attractive therapy for the neurologist because of its neuroprotection in hypoxic-ischemic encephalopathy patients. The present paper deals with the possibility of controlling the brain and other viscera in different temperatures from the viewpoint of system control. It is theoretically attempted to realize the special brain hypothermia treatment to cool only the head but to warm the body by using the simple apparatus such as the cooling cap, muffler and warming blanket. For this purpose, a biothermal system concerning the temperature difference between the brain and the other thoracico-abdominal viscus is synthesized from the biothermal model of hypothermic patient. The output controllability and the asymptotic stability of the system are examined on the basis of its structure. Then, the maximum temperature difference to be realized is shown dependent on the temperature range of the apparatus and also on the maximum gain determined from the coefficient matrices A, B and C of the biothermal system. Its theoretical analysis shows the realization of difference of about 2.5°C, if there is absolutely no constraint of the temperatures of the cooling cap, muffler and blanket. It is, however, physically unavailable. Those are shown by simulation example of the optimal brain temperature regulation using a standard adult database. It is thus concluded that the surface cooling and warming apparatus do no make it possible to realize the special brain hypothermia treatment, because the brain temperature cannot be cooled lower than those of other viscera in an appropriate temperature environment. This study shows that the ever-proposed good method of clinical treatment is in principle impossible in the actual brain hypothermia treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Huafeng; Colabello, Diane M.; Sklute, Elizabeth C.
The absolute absorption coefficient, α(E), is a critical design parameter for devices using semiconductors for light harvesting associated with renewable energy production, both for classic technologies such as photovoltaics and for emerging technologies such as direct solar fuel production. While α(E) is well-known for many classic simple semiconductors used in photovoltaic applications, the absolute values of α(E) are typically unknown for the complex semiconductors being explored for solar fuel production due to the absence of single crystals or crystalline epitaxial films that are needed for conventional methods of determining α(E). In this work, a simple self-referenced method for estimating bothmore » the refractive indices, n(E), and absolute absorption coefficients, α(E), for loose powder samples using diffuse reflectance data is demonstrated. In this method, the sample refractive index can be deduced by refining n to maximize the agreement between the relative absorption spectrum calculated from bidirectional reflectance data (calculated through a Hapke transform which depends on n) and integrating sphere diffuse reflectance data (calculated through a Kubleka–Munk transform which does not depend on n). This new method can be quickly used to screen the suitability of emerging semiconductor systems for light-harvesting applications. The effectiveness of this approach is tested using the simple classic semiconductors Ge and Fe 2O 3 as well as the complex semiconductors La 2MoO 5 and La 4Mo 2O 11. The method is shown to work well for powders with a narrow size distribution (exemplified by Fe 2O 3) and to be ineffective for semiconductors with a broad size distribution (exemplified by Ge). As such, it provides a means for rapidly estimating the absolute optical properties of complex solids which are only available as loose powders.« less
Desuter, Gauthier; Henrard, Sylvie; Van Lith-Bijl, Julie T; Amory, Avigaëlle; Duprez, Thierry; van Benthem, Peter Paul; Sjögren, Elisabeth
2017-03-01
This study aimed to determine whether the shape of the thyroid cartilage and gender influence voice outcomes after a Montgomery thyroplasty implant system (MTIS). A retrospective cohort study was performed on 20 consecutive patients who underwent MTIS. Voice outcome variables were the relative decrease in Voice Handicap Index (%) and the absolute increase in maximum phonation time (MPT) (in seconds). Material variables were the angle between the thyroid cartilage laminae (α-angle), the size of the prosthesis, and a combination of both (the α-ratio). Continuous variables were analyzed using medians and were compared between groups using the Mann-Whitney U test. Factors associated with the outcome variables were assessed by multivariable linear regression. A Pearson coefficient was calculated between material variables. The absolute increase in MPT between the pre- and postoperative period was significantly different between men and women, with a median absolute increase of 11.0 seconds for men and of 1.3 seconds for women (P < 0.001). A strong inverse correlation between the α-ratio and the absolute increase in MPT is observed in all patients, with a Pearson correlation coefficient R = -0.769 (P < 0.001). No factors were significantly associated with the relative Voice Handicap Index decrease in univariable or multivariable analyses. A better Pearson coefficient between the α-angle and the prosthesis size was found for females (0.8 vs 0.71). The MTIS is a good thyroplasty modality for male patients, but inadequate design of MTIS female implants leads to poor MPT outcomes. This represents a gender issue that needs to be further studied and eventually tackled. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Island Rule, quantitative genetics and brain–body size evolution in Homo floresiensis
2017-01-01
Colonization of islands often activate a complex chain of adaptive events that, over a relatively short evolutionary time, may drive strong shifts in body size, a pattern known as the Island Rule. It is arguably difficult to perform a direct analysis of the natural selection forces behind such a change in body size. Here, we used quantitative evolutionary genetic models, coupled with simulations and pattern-oriented modelling, to analyse the evolution of brain and body size in Homo floresiensis, a diminutive hominin species that appeared around 700 kya and survived up to relatively recent times (60–90 kya) on Flores Island, Indonesia. The hypothesis of neutral evolution was rejected in 97% of the simulations, and estimated selection gradients are within the range found in living natural populations. We showed that insularity may have triggered slightly different evolutionary trajectories for body and brain size, which means explaining the exceedingly small cranial volume of H. floresiensis requires additional selective forces acting on brain size alone. Our analyses also support previous conclusions that H. floresiensis may be most likely derived from an early Indonesian H. erectus, which is coherent with currently accepted biogeographical scenario for Homo expansion out of Africa. PMID:28637851
Hiraishi, Hirotoshi; Kikuchi, Mitsuru; Yoshimura, Yuko; Kitagawa, Sachiko; Hasegawa, Chiaki; Munesue, Toshio; Takesaki, Natsumi; Ono, Yasuki; Takahashi, Tsutomu; Suzuki, Michio; Higashida, Haruhiro; Asada, Minoru; Minabe, Yoshio
2015-03-01
Autism spectrum disorder (ASD) is often described as comprising an unusual brain growth pattern and aberrant brain lateralization. Although it is important to study the pathophysiology of the developing ASD cortex, examples of physiological brain lateralization in young children with ASD have yet to be well examined. Thirty-eight boys with ASD (aged 3-7 years) and 38 typically developing (TD) boys (aged 3-8 years) concentrated on video programs and their brain activities were measured non-invasively. We employed a customized child-sized magnetoencephalography system in which the sensors were located as close to the brain as possible for optimal recording in young children. To produce a credible laterality index of the brain oscillations, we defined two clusters of sensors corresponding to the right and left hemispheres. We focused on the laterality index ([left - right]/[left+right]) of the relative power band in seven frequency bands. The TD group displayed significantly rightward lateralized brain oscillations in the theta-1 frequency bands compared to the ASD group. This is the first study to demonstrate unusual brain lateralization of brain oscillations measured by magnetoencephalography in young children with ASD. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.
2005-02-01
Holshouser BA, Burley T, Ashwal S . Predicting neuropsychologic outcome after traumatic brain injury in children . Pediatr Neurol 2003;28(2):104-114. 5...breast cancer tissue. NMR Biomed 2002;15(5):327-337. 25. Ala- Korpela M, Posio P, Mattila S , Korhonen A, Williams SR. Absolute quantification of...STATEMENT: Approved for Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author( s ) and
Production of iota toxin by Clostridium spiroforme: a requirement for divalent cations.
Carman, R J; van Tassell, R L; Wilkins, T D
1987-10-01
The effects of divalent cations (Ca2+, Co2+ and Zn2+) on the production of iota toxin by Clostridium spiroforme were studied. Toxin production had an absolute requirement for one or more cations in the range 1-5 mM. Using bispecific antisera, we showed that production of both the components of the toxin (ia and ib) were enhanced by divalent cations added to brain-heart infusion supplemented with peptone and glucose.
Cope, Thomas E.; Grube, Manon; Mandal, Arnab; Cooper, Freya E.; Brechany, Una; Burn, David J.; Griffiths, Timothy D.
2014-01-01
Bilateral, high-frequency stimulation of the basal ganglia (STN-DBS) is in widespread use for the treatment of the motor symptoms of Parkinson׳s disease (PD). We present here the first psychophysical investigation of the effect of STN-DBS upon perceptual timing in the hundreds of milliseconds range, with both duration-based (absolute) and beat-based (relative) tasks; 13 patients with PD were assessed with their STN-DBS ‘on’, ‘off’, and then ‘on’ again. Paired parametric analyses revealed no statistically significant differences for any task according to DBS status. We demonstrate, from the examination of confidence intervals, that any functionally relevant effect of STN-DBS on relative perceptual timing is statistically unlikely. For absolute, duration-based timing, we demonstrate that the activation of STN-DBS may either worsen performance or have no effect, but that it is unlikely to lead to significant improvement. Although these results are negative they have important implications for our understanding of perceptual timing and its relationship to motor functions within the timing network of the brain. They imply that the mechanisms involved in the perceptual processing of temporal information are likely to be functionally independent from those that underpin movement. Further, they suggest that the connections between STN and the subtantia nigra and globus pallidus are unlikely to be critical to beat-based perceptual timing. PMID:24613477
Occipital cortical proton MRS at 4 Tesla in human moderate MDMA polydrug users
Cowan, Ronald L.; Bolo, Nicolas R.; Dietrich, Mary; Haga, Erica; Lukas, Scott E.; Renshaw, Perry F.
2007-01-01
The recreational drug MDMA (3,4, methylenedioxymethamphetamine; sold under the street name of Ecstasy) is toxic to serotonergic axons in some animal models of MDMA administration. In humans, MDMA use is associated with alterations in markers of brain function that are pronounced in occipital cortex. Among neuroimaging methods, magnetic resonance spectroscopy (MRS) studies of brain metabolites N-acetylaspartate (NAA) and myoinositol (MI) at a field strength of 1.5 Tesla (T) reveal inconsistent results in MDMA users. Because higher field strength proton MRS has theoretical advantages over lower field strengths, we used proton MRS at 4.0 T to study absolute concentrations of occipital cortical NAA and MI in a cohort of moderate MDMA users (n = 9) versus non-MDMA using (n = 7) controls. Mean NAA in non-MDMA users was 10.47 mM (± 2.51), versus 9.83 mM (± 1.94) in MDMA users. Mean MI in non-MDMA users was 7.43 mM (± 1.68), versus 6.57 mM (± 1.59) in MDMA users. There were no statistical differences in absolute metabolite levels for NAA and MI in occipital cortex of MDMA users and controls. These findings are not supportive of MDMA-induced alterations in NAA or MI levels in this small sample of moderate MDMA users. Limitations to this study suggest caution in the interpretation of these results. PMID:17574394
Occipital cortical proton MRS at 4 Tesla in human moderate MDMA polydrug users.
Cowan, Ronald L; Bolo, Nicolas R; Dietrich, Mary; Haga, Erica; Lukas, Scott E; Renshaw, Perry F
2007-08-15
The recreational drug MDMA (3,4, methylenedioxymethamphetamine; sold under the street name of Ecstasy) is toxic to serotonergic axons in some animal models of MDMA administration. In humans, MDMA use is associated with alterations in markers of brain function that are pronounced in occipital cortex. Among neuroimaging methods, magnetic resonance spectroscopy (MRS) studies of brain metabolites N-acetylaspartate (NAA) and myoinositol (MI) at a field strength of 1.5 Tesla (T) reveal inconsistent results in MDMA users. Because higher field strength proton MRS has theoretical advantages over lower field strengths, we used proton MRS at 4.0 T to study absolute concentrations of occipital cortical NAA and MI in a cohort of moderate MDMA users (n=9) versus non-MDMA using (n=7) controls. Mean NAA in non-MDMA users was 10.47 mM (+/-2.51), versus 9.83 mM (+/-1.94) in MDMA users. Mean MI in non-MDMA users was 7.43 mM (+/-.68), versus 6.57 mM (+/-1.59) in MDMA users. There were no statistical differences in absolute metabolite levels for NAA and MI in occipital cortex of MDMA users and controls. These findings are not supportive of MDMA-induced alterations in NAA or MI levels in this small sample of moderate MDMA users. Limitations to this study suggest caution in the interpretation of these results.
Red and NIR light dosimetry in the human deep brain
NASA Astrophysics Data System (ADS)
Pitzschke, A.; Lovisa, B.; Seydoux, O.; Zellweger, M.; Pfleiderer, M.; Tardy, Y.; Wagnières, G.
2015-04-01
Photobiomodulation (PBM) appears promising to treat the hallmarks of Parkinson’s Disease (PD) in cellular or animal models. We measured light propagation in different areas of PD-relevant deep brain tissue during transcranial, transsphenoidal illumination (at 671 and 808 nm) of a cadaver head and modeled optical parameters of human brain tissue using Monte-Carlo simulations. Gray matter, white matter, cerebrospinal fluid, ventricles, thalamus, pons, cerebellum and skull bone were processed into a mesh of the skull (158 × 201 × 211 voxels; voxel side length: 1 mm). Optical parameters were optimized from simulated and measured fluence rate distributions. The estimated μeff for the different tissues was in all cases larger at 671 than at 808 nm, making latter a better choice for light delivery in the deep brain. Absolute values were comparable to those found in the literature or slightly smaller. The effective attenuation in the ventricles was considerably larger than literature values. Optimization yields a new set of optical parameters better reproducing the experimental data. A combination of PBM via the sphenoid sinus and oral cavity could be beneficial. A 20-fold higher efficiency of light delivery to the deep brain was achieved with ventricular instead of transcranial illumination. Our study demonstrates that it is possible to illuminate deep brain tissues transcranially, transsphenoidally and via different application routes. This opens therapeutic options for sufferers of PD or other cerebral diseases necessitating light therapy.
Hare, Dominic J.; Kysenius, Kai; Paul, Bence; Knauer, Beate; Hutchinson, Robert W.; O'Connor, Ciaran; Fryer, Fred; Hennessey, Tom P.; Bush, Ashley I.; Crouch, Peter J.; Doble, Philip A.
2017-01-01
Metals are found ubiquitously throughout an organism, with their biological role dictated by both their chemical reactivity and abundance within a specific anatomical region. Within the brain, metals have a highly compartmentalized distribution, depending on the primary function they play within the central nervous system. Imaging the spatial distribution of metals has provided unique insight into the biochemical architecture of the brain, allowing direct correlation between neuroanatomical regions and their known function with regard to metal-dependent processes. In addition, several age-related neurological disorders feature disrupted metal homeostasis, which is often confined to small regions of the brain that are otherwise difficult to analyze. Here, we describe a comprehensive method for quantitatively imaging metals in the mouse brain, using laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS) and specially designed image processing software. Focusing on iron, copper and zinc, which are three of the most abundant and disease-relevant metals within the brain, we describe the essential steps in sample preparation, analysis, quantitative measurements and image processing to produce maps of metal distribution within the low micrometer resolution range. This technique, applicable to any cut tissue section, is capable of demonstrating the highly variable distribution of metals within an organ or system, and can be used to identify changes in metal homeostasis and absolute levels within fine anatomical structures. PMID:28190025
RNA-Seq Mouse Brain Regions Expression Data Analysis: Focus on ApoE Functional Network
Babenko, Vladimir N; Smagin, Dmitry A; Kudryavtseva, Natalia N
2017-09-13
ApoE expression status was proved to be a highly specific marker of energy metabolism rate in the brain. Along with its neighbor, Translocase of Outer Mitochondrial Membrane 40 kDa (TOMM40) which is involved in mitochondrial metabolism, the corresponding genomic region constitutes the neuroenergetic hotspot. Using RNA-Seq data from a murine model of chronic stress a significant positive expression coordination of seven neighboring genes in ApoE locus in five brain regions was observed. ApoE maintains one of the highest absolute expression values genome-wide, implying that ApoE can be the driver of the neighboring gene expression alteration observed under stressful loads. Notably, we revealed the highly statistically significant increase of ApoE expression in the hypothalamus of chronically aggressive (FDR < 0.007) and defeated (FDR < 0.001) mice compared to the control. Correlation analysis revealed a close association of ApoE and proopiomelanocortin (Pomc) gene expression profiles implying the putative neuroendocrine stress response background of ApoE expression elevation therein.
Size Constancy in Bat Biosonar? Perceptual Interaction of Object Aperture and Distance
Heinrich, Melina; Wiegrebe, Lutz
2013-01-01
Perception and encoding of object size is an important feature of sensory systems. In the visual system object size is encoded by the visual angle (visual aperture) on the retina, but the aperture depends on the distance of the object. As object distance is not unambiguously encoded in the visual system, higher computational mechanisms are needed. This phenomenon is termed “size constancy”. It is assumed to reflect an automatic re-scaling of visual aperture with perceived object distance. Recently, it was found that in echolocating bats, the ‘sonar aperture’, i.e., the range of angles from which sound is reflected from an object back to the bat, is unambiguously perceived and neurally encoded. Moreover, it is well known that object distance is accurately perceived and explicitly encoded in bat sonar. Here, we addressed size constancy in bat biosonar, recruiting virtual-object techniques. Bats of the species Phyllostomus discolor learned to discriminate two simple virtual objects that only differed in sonar aperture. Upon successful discrimination, test trials were randomly interspersed using virtual objects that differed in both aperture and distance. It was tested whether the bats spontaneously assigned absolute width information to these objects by combining distance and aperture. The results showed that while the isolated perceptual cues encoding object width, aperture, and distance were all perceptually well resolved by the bats, the animals did not assign absolute width information to the test objects. This lack of sonar size constancy may result from the bats relying on different modalities to extract size information at different distances. Alternatively, it is conceivable that familiarity with a behaviorally relevant, conspicuous object is required for sonar size constancy, as it has been argued for visual size constancy. Based on the current data, it appears that size constancy is not necessarily an essential feature of sonar perception in bats. PMID:23630598
Size constancy in bat biosonar? Perceptual interaction of object aperture and distance.
Heinrich, Melina; Wiegrebe, Lutz
2013-01-01
Perception and encoding of object size is an important feature of sensory systems. In the visual system object size is encoded by the visual angle (visual aperture) on the retina, but the aperture depends on the distance of the object. As object distance is not unambiguously encoded in the visual system, higher computational mechanisms are needed. This phenomenon is termed "size constancy". It is assumed to reflect an automatic re-scaling of visual aperture with perceived object distance. Recently, it was found that in echolocating bats, the 'sonar aperture', i.e., the range of angles from which sound is reflected from an object back to the bat, is unambiguously perceived and neurally encoded. Moreover, it is well known that object distance is accurately perceived and explicitly encoded in bat sonar. Here, we addressed size constancy in bat biosonar, recruiting virtual-object techniques. Bats of the species Phyllostomus discolor learned to discriminate two simple virtual objects that only differed in sonar aperture. Upon successful discrimination, test trials were randomly interspersed using virtual objects that differed in both aperture and distance. It was tested whether the bats spontaneously assigned absolute width information to these objects by combining distance and aperture. The results showed that while the isolated perceptual cues encoding object width, aperture, and distance were all perceptually well resolved by the bats, the animals did not assign absolute width information to the test objects. This lack of sonar size constancy may result from the bats relying on different modalities to extract size information at different distances. Alternatively, it is conceivable that familiarity with a behaviorally relevant, conspicuous object is required for sonar size constancy, as it has been argued for visual size constancy. Based on the current data, it appears that size constancy is not necessarily an essential feature of sonar perception in bats.
Mota, Bruno; Herculano-Houzel, Suzana
2014-01-01
How does the size of the glial and neuronal cells that compose brain tissue vary across brain structures and species? Our previous studies indicate that average neuronal size is highly variable, while average glial cell size is more constant. Measuring whole cell sizes in vivo, however, is a daunting task. Here we use chi-square minimization of the relationship between measured neuronal and glial cell densities in the cerebral cortex, cerebellum, and rest of brain in 27 mammalian species to model neuronal and glial cell mass, as well as the neuronal mass fraction of the tissue (the fraction of tissue mass composed by neurons). Our model shows that while average neuronal cell mass varies by over 500-fold across brain structures and species, average glial cell mass varies only 1.4-fold. Neuronal mass fraction varies typically between 0.6 and 0.8 in all structures. Remarkably, we show that two fundamental, universal relationships apply across all brain structures and species: (1) the glia/neuron ratio varies with the total neuronal mass in the tissue (which in turn depends on variations in average neuronal cell mass), and (2) the neuronal mass per glial cell, and with it the neuronal mass fraction and neuron/glia mass ratio, varies with average glial cell mass in the tissue. We propose that there is a fundamental building block of brain tissue: the glial mass that accompanies a unit of neuronal mass. We argue that the scaling of this glial mass is a consequence of a universal mechanism whereby numbers of glial cells are added to the neuronal parenchyma during development, irrespective of whether the neurons composing it are large or small, but depending on the average mass of the glial cells being added. We also show how evolutionary variations in neuronal cell mass, glial cell mass and number of neurons suffice to determine the most basic characteristics of brain structures, such as mass, glia/neuron ratio, neuron/glia mass ratio, and cell densities.
The Molecular Basis of Human Brain Evolution.
Enard, Wolfgang
2016-10-24
Humans are a remarkable species, especially because of the remarkable properties of their brain. Since the split from the chimpanzee lineage, the human brain has increased three-fold in size and has acquired abilities for vocal learning, language and intense cooperation. To better understand the molecular basis of these changes is of great biological and biomedical interest. However, all the about 16 million fixed genetic changes that occurred during human evolution are fully correlated with all molecular, cellular, anatomical and behavioral changes that occurred during this time. Hence, as humans and chimpanzees cannot be crossed or genetically manipulated, no direct evidence for linking particular genetic and molecular changes to human brain evolution can be obtained. Here, I sketch a framework how indirect evidence can be obtained and review findings related to the molecular basis of human cognition, vocal learning and brain size. In particular, I discuss how a comprehensive comparative approach, leveraging cellular systems and genomic technologies, could inform the evolution of our brain in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
Non-invasive monitoring of hemodynamic changes in orthotropic brain tumor
NASA Astrophysics Data System (ADS)
Kashyap, Dheerendra; Sharma, Vikrant; Liu, Hanli
2007-02-01
Radio surgical interventions such as Gamma Knife and Cyberknife have become attractive as therapeutic interventions. However, one of the drawbacks of cyberknife is radionecrosis, which is caused by excessive radiation to surrounding normal tissues. Radionecrosis occurs in about 10-15% of cases and could have adverse effects leading to death. Currently available imaging techniques have failed to reliably distinguish radionecrosis from tumor growth. Development of imaging techniques that could provide distinction between tumor growth and radionecrosis would give us ability to monitor effects of radiation therapy non-invasively. This paper investigates the use of near infrared spectroscopy (NIRS) as a new technique to monitor the growth of brain tumors. Brain tumors (9L glioma cell line) were implanted in right caudate nucleus of rats (250-300 gms, Male Fisher C) through a guide screw. A new algorithm was developed, which used broadband steady-state reflectance measurements made using a single source-detector pair, to quantify absolute concentrations of hemoglobin derivatives and reduced scattering coefficients. Preliminary results from the brain tumors indicated decreases in oxygen saturation, oxygenated hemoglobin concentrations and increases in deoxygenated hemoglobin concentrations with tumor growth. The study demonstrates that NIRS technology could provide an efficient, noninvasive means of monitoring vascular oxygenation dynamics of brain tumors and further facilitate investigations of efficacy of tumor treatments.
Gripp, Karen W.; Hopkins, Elisabeth; Doyle, Daniel; Dobyns, William B.
2010-01-01
Costello syndrome is a rasopathy caused by germline mutations in the proto-oncogene HRAS. Its presentation includes failure-to-thrive with macrocephaly, characteristic facial features, hypertrophic cardiomyopathy, papillomata, malignant tumors, and cognitive impairment. In a systematic review we found absolute or relative macrocephaly (100%), ventriculomegaly (50%), and other abnormalities on brain and spinal cord imaging studies in 27/28 individuals. Posterior fossa crowding with cerebellar tonsillar herniation (CBTH) was noted in 27/28 (96%), and in 10/17 (59%) with serial studies posterior fossa crowding progressed. Sequelae of posterior fossa crowding and CBTH included hydrocephalus requiring shunt or ventriculostomy (25%), Chiari 1 malformation (32%) and syrinx formation (25%). Our data reveal macrocephaly with progressive frontal bossing and CBTH, documenting an ongoing process rather than a static congenital anomaly. Comparison of images obtained in young infants to subsequent studies demonstrated postnatal development of posterior fossa crowding. This process of evolving megalencephaly and cerebellar enlargement is in keeping with mouse model data, delineating abnormal genesis of neurons and glia, resulting in an increased number of astrocytes and enlarged brain volume. In Costello syndrome and macrocephaly-capillary malformation syndrome disproportionate brain growth is the main factor resulting in postnatal CBTH and Chiari 1 malformation. PMID:20425820
Poly-Ub-Substrate-Degradative Activity of 26S Proteasome Is Not Impaired in the Aging Rat Brain
Giannini, Carolin; Kloß, Alexander; Gohlke, Sabrina; Mishto, Michele; Nicholson, Thomas P.; Sheppard, Paul W.; Kloetzel, Peter-Michael; Dahlmann, Burkhardt
2013-01-01
Proteostasis is critical for the maintenance of life. In neuronal cells an imbalance between protein synthesis and degradation is thought to be involved in the pathogenesis of neurodegenerative diseases during aging. Partly, this seems to be due to a decrease in the activity of the ubiquitin-proteasome system, wherein the 20S/26S proteasome complexes catalyse the proteolytic step. We have characterised 20S and 26S proteasomes from cerebrum, cerebellum and hippocampus of 3 weeks old (young) and 24 month old (aged) rats. Our data reveal that the absolute amount of the proteasome is not dfferent between both age groups. Within the majority of standard proteasomes in brain the minute amounts of immuno-subunits are slightly increased in aged rat brain. While this goes along with a decrease in the activities of 20S and 26S proteasomes to hydrolyse synthetic fluorogenic tripeptide substrates from young to aged rats, the capacity of 26S proteasomes for degradation of poly-Ub-model substrates and its activation by poly-Ub-substrates is not impaired or even slightly increased in brain of aged rats. We conclude that these alterations in proteasome properties are important for maintaining proteostasis in the brain during an uncomplicated aging process. PMID:23667697
Multiscale CNNs for Brain Tumor Segmentation and Diagnosis.
Zhao, Liya; Jia, Kebin
2016-01-01
Early brain tumor detection and diagnosis are critical to clinics. Thus segmentation of focused tumor area needs to be accurate, efficient, and robust. In this paper, we propose an automatic brain tumor segmentation method based on Convolutional Neural Networks (CNNs). Traditional CNNs focus only on local features and ignore global region features, which are both important for pixel classification and recognition. Besides, brain tumor can appear in any place of the brain and be any size and shape in patients. We design a three-stream framework named as multiscale CNNs which could automatically detect the optimum top-three scales of the image sizes and combine information from different scales of the regions around that pixel. Datasets provided by Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized by MICCAI 2013 are utilized for both training and testing. The designed multiscale CNNs framework also combines multimodal features from T1, T1-enhanced, T2, and FLAIR MRI images. By comparison with traditional CNNs and the best two methods in BRATS 2012 and 2013, our framework shows advances in brain tumor segmentation accuracy and robustness.
Vehicle mass and injury risk in two-car crashes: A novel methodology.
Tolouei, Reza; Maher, Mike; Titheridge, Helena
2013-01-01
This paper introduces a novel methodology based on disaggregate analysis of two-car crash data to estimate the partial effects of mass, through the velocity change, on absolute driver injury risk in each of the vehicles involved in the crash when absolute injury risk is defined as the probability of injury when the vehicle is involved in a two-car crash. The novel aspect of the introduced methodology is in providing a solution to the issue of lack of data on the speed of vehicles prior to the crash, which is required to calculate the velocity change, as well as a solution to the issue of lack of information on non-injury two-car crashes in national accident data. These issues have often led to focussing on relative measures of injury risk that are not independent of risk in the colliding cars. Furthermore, the introduced methodology is used to investigate whether there is any effect of vehicle size above and beyond that of mass ratio, and whether there are any effects associated with the gender and age of the drivers. The methodology was used to analyse two-car crashes to investigate the partial effects of vehicle mass and size on absolute driver injury risk. The results confirmed that in a two-car collision, vehicle mass has a protective effect on its own driver injury risk and an aggressive effect on the driver injury risk of the colliding vehicle. The results also confirmed that there is a protective effect of vehicle size above and beyond that of vehicle mass for frontal and front to side collisions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Johnson, Timothy D.; Dittgen, Felix; Nichols, Thomas E.; Malzahn, Uwe; Veltkamp, Roland
2017-01-01
Objective Atrial fibrillation (AF) is frequently detected after ischemic stroke for the first time, and brain regions involved in autonomic control have been suspected to trigger AF. We examined whether specific brain regions are associated with newly detected AF after ischemic stroke. Methods Patients with acute cerebral infarctions on diffusion-weighted magnetic resonance imaging were included in this lesion mapping study. Lesions were mapped and modeled voxelwise using Bayesian Spatial Generalised Linear Mixed Modeling to determine differences in infarct locations between stroke patients with new AF, without AF and with AF already known before the stroke. Results 582 patients were included (median age 68 years; 63.2% male). AF was present in 109/582 patients [(18.7%); new AF: 39/109 (35.8%), known AF: 70/109 (64.2%)]. AF patients had larger infarct volumes than patients without AF (mean: 29.7 ± 45.8 ml vs. 15.2 ± 35.1 ml; p<0.001). Lesions in AF patients accumulated in the right central middle cerebral artery territory. Increasing stroke size predicted progressive cortical but not pontine and thalamic involvement. Patients with new AF had more frequently lesions in the right insula compared to patients without AF when stroke size was not accounted for, but no specific brain region was more frequently involved after adjustment for infarct volume. Controlled for stroke size, left parietal involvement was less likely for patients with new AF than for those without AF or with known AF. Conclusions In the search for brain areas potentially triggering cardiac arrhythmias infarct size should be accounted for. After controlling for infarct size, there is currently no evidence that ischemic stroke lesions of specific brain areas are associated with new AF compared to patients without AF. This challenges the neurogenic hypothesis of AF according to which a relevant proportion of new AF is triggered by ischemic brain lesions of particular locations. PMID:28542605
Mammalian brain development and our grandmothering life history.
Hawkes, Kristen; Finlay, Barbara L
2018-05-02
Among mammals, including humans, adult brain size and the relative size of brain components depend precisely on the duration of a highly regular process of neural development. Much wider variation is seen in rates of body growth and the state of neural maturation at life history events like birth and weaning. Large brains result from slow maturation, which in humans is accompanied by weaning early with respect to both neural maturation and longevity. The grandmother hypothesis proposes this distinctive combination of life history features evolved as ancestral populations began to depend on foods that just weaned juveniles couldn't handle. Here we trace possible reciprocal connections between brain development and life history, highlighting the resulting extended neural plasticity in a wider cognitive ecology of allomaternal care that distinguishes human ontogeny with consequences for other peculiarities of our lineage. Copyright © 2018 Elsevier Inc. All rights reserved.
Sakadžić, Sava; Yuan, Shuai; Dilekoz, Ergin; Ruvinskaya, Svetlana; Vinogradov, Sergei A.; Ayata, Cenk; Boas, David A.
2009-01-01
We developed a novel imaging technique that provides real-time two-dimensional maps of the absolute partial pressure of oxygen and relative cerebral blood flow in rats by combining phosphorescence lifetime imaging with laser speckle contrast imaging. Direct measurement of blood oxygenation based on phosphorescence lifetime is not significantly affected by changes in the optical parameters of the tissue during the experiment. The potential of the system as a novel tool for quantitative analysis of the dynamic delivery of oxygen to support brain metabolism was demonstrated in rats by imaging cortical responses to forepaw stimulation and the propagation of cortical spreading depression waves. This new instrument will enable further study of neurovascular coupling in normal and diseased brain. PMID:19340106
NASA Astrophysics Data System (ADS)
Gil, Daniel A.; Bow, Hansen C.; Shen, Jin-H.; Joos, Karen M.; Skala, Melissa C.
2017-02-01
The human brain is made up of functional regions governing movement, sensation, language, and cognition. Unintentional injury during neurosurgery can result in significant neurological deficits and morbidity. The current standard for localizing function to brain tissue during surgery, intraoperative electrical stimulation or recording, significantly increases the risk, time, and cost of the procedure. There is a need for a fast, cost-effective, and high-resolution intraoperative technique that can avoid damage to functional brain regions. We propose that optical coherence tomography (OCT) can fill this niche by imaging differences in the cellular composition and organization of functional brain areas. We hypothesized this would manifest as differences in the attenuation coefficient measured using OCT. Five functional regions (prefrontal, somatosensory, auditory, visual, and cerebellum) were imaged in ex vivo porcine brains (n=3), a model chosen due to a similar white/gray matter ratio as human brains. The attenuation coefficient was calculated using a depth-resolved model and quantitatively validated with Intralipid phantoms across a physiological range of attenuation coefficients (absolute difference < 0.1cm-1). Image analysis was performed on the attenuation coefficient images to derive quantitative endpoints. We observed a statistically significant difference among the median attenuation coefficients of these five regions (one-way ANOVA, p<0.05). Nissl-stained histology will be used to validate our results and correlate OCT-measured attenuation coefficients to neuronal density. Additional development and validation of OCT algorithms to discriminate brain regions are planned to improve the safety and efficacy of neurosurgical procedures such as biopsy, electrode placement, and tissue resection.
The evolution of modern human brain shape
Neubauer, Simon; Hublin, Jean-Jacques; Gunz, Philipp
2018-01-01
Modern humans have large and globular brains that distinguish them from their extinct Homo relatives. The characteristic globularity develops during a prenatal and early postnatal period of rapid brain growth critical for neural wiring and cognitive development. However, it remains unknown when and how brain globularity evolved and how it relates to evolutionary brain size increase. On the basis of computed tomographic scans and geometric morphometric analyses, we analyzed endocranial casts of Homo sapiens fossils (N = 20) from different time periods. Our data show that, 300,000 years ago, brain size in early H. sapiens already fell within the range of present-day humans. Brain shape, however, evolved gradually within the H. sapiens lineage, reaching present-day human variation between about 100,000 and 35,000 years ago. This process started only after other key features of craniofacial morphology appeared modern and paralleled the emergence of behavioral modernity as seen from the archeological record. Our findings are consistent with important genetic changes affecting early brain development within the H. sapiens lineage since the origin of the species and before the transition to the Later Stone Age and the Upper Paleolithic that mark full behavioral modernity. PMID:29376123
The evolution of modern human brain shape.
Neubauer, Simon; Hublin, Jean-Jacques; Gunz, Philipp
2018-01-01
Modern humans have large and globular brains that distinguish them from their extinct Homo relatives. The characteristic globularity develops during a prenatal and early postnatal period of rapid brain growth critical for neural wiring and cognitive development. However, it remains unknown when and how brain globularity evolved and how it relates to evolutionary brain size increase. On the basis of computed tomographic scans and geometric morphometric analyses, we analyzed endocranial casts of Homo sapiens fossils ( N = 20) from different time periods. Our data show that, 300,000 years ago, brain size in early H. sapiens already fell within the range of present-day humans. Brain shape, however, evolved gradually within the H. sapiens lineage, reaching present-day human variation between about 100,000 and 35,000 years ago. This process started only after other key features of craniofacial morphology appeared modern and paralleled the emergence of behavioral modernity as seen from the archeological record. Our findings are consistent with important genetic changes affecting early brain development within the H. sapiens lineage since the origin of the species and before the transition to the Later Stone Age and the Upper Paleolithic that mark full behavioral modernity.
Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude
2017-01-01
Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes at ~100 ms, we found a marker of real-world scene size, i.e. spatial layout processing, at ~250 ms indexing neural representations robust to changes in unrelated scene properties and viewing conditions. For a quantitative model of how scene size representations may arise in the brain, we compared MEG data to a deep neural network model trained on scene classification. Representations of scene size emerged intrinsically in the model, and resolved emerging neural scene size representation. Together our data provide a first description of an electrophysiological signal for layout processing in humans, and suggest that deep neural networks are a promising framework to investigate how spatial layout representations emerge in the human brain. PMID:27039703
Does encephalization correlate with life history or metabolic rate in Carnivora?
Finarelli, John A
2010-06-23
A recent analysis of brain size evolution reconstructed the plesiomorphic brain-body size allometry for the mammalian order Carnivora, providing an important reference frame for comparative analyses of encephalization (brain volume scaled to body mass). I performed phylogenetically corrected regressions to remove the effects of body mass, calculating correlations between residual values of encephalization with basal metabolic rate (BMR) and six life-history variables (gestation time, neonatal mass, weaning time, weaning mass, litter size, litters per year). No significant correlations were recovered between encephalization and any life-history variable or BMR, arguing against hypotheses relating encephalization to maternal energetic investment. However, after correcting for clade-specific adaptations, I recovered significant correlations for several variables, and further analysis revealed a conserved carnivoran reproductive strategy, linking degree of encephalization to the well-documented mammalian life-history trade-off between neonatal mass and litter size. This strategy of fewer, larger offspring correlating with increased encephalization remains intact even after independent changes in encephalization allometries in the evolutionary history of this clade.
Evaluating the validity of using unverified indices of body condition
Schamber, J.L.; Esler, Daniel N.; Flint, Paul L.
2009-01-01
Condition indices are commonly used in an attempt to link body condition of birds to ecological variables of interest, including demographic attributes such as survival and reproduction. Most indices are based on body mass adjusted for structural body size, calculated as simple ratios or residuals from regressions. However, condition indices are often applied without confirming their predictive value (i.e., without being validated against measured values of fat and protein), which we term ‘unverified’ use. We evaluated the ability of a number of unverified indices frequently found in the literature to predict absolute and proportional levels of fat and protein across five species of waterfowl. Among indices we considered, those accounting for body size never predicted absolute protein more precisely than body mass, however, some indices improved predictability of fat, although the form of the best index varied by species. Further, the gain in precision by using a condition index to predict either absolute or percent fat was minimal (rise in r2≤0.13), and in many cases model fit was actually reduced. Our data agrees with previous assertions that the assumption that indices provide more precise indicators of body condition than body mass alone is often invalid. We strongly discourage the use of unverified indices, because subjectively selecting indices likely does little to improve precision and might in fact decrease predictability relative to using body mass alone.
Automated estimation of abdominal effective diameter for body size normalization of CT dose.
Cheng, Phillip M
2013-06-01
Most CT dose data aggregation methods do not currently adjust dose values for patient size. This work proposes a simple heuristic for reliably computing an effective diameter of a patient from an abdominal CT image. Evaluation of this method on 106 patients scanned on Philips Brilliance 64 and Brilliance Big Bore scanners demonstrates close correspondence between computed and manually measured patient effective diameters, with a mean absolute error of 1.0 cm (error range +2.2 to -0.4 cm). This level of correspondence was also demonstrated for 60 patients on Siemens, General Electric, and Toshiba scanners. A calculated effective diameter in the middle slice of an abdominal CT study was found to be a close approximation of the mean calculated effective diameter for the study, with a mean absolute error of approximately 1.0 cm (error range +3.5 to -2.2 cm). Furthermore, the mean absolute error for an adjusted mean volume computed tomography dose index (CTDIvol) using a mid-study calculated effective diameter, versus a mean per-slice adjusted CTDIvol based on the calculated effective diameter of each slice, was 0.59 mGy (error range 1.64 to -3.12 mGy). These results are used to calculate approximate normalized dose length product values in an abdominal CT dose database of 12,506 studies.
SAFETY/TOXICITY ASSESSMENT OF CERIA (A MODEL ENGINEERED NP) TO THE BRAIN
The results will indicate the influence of the size, shape and various surface chemistry properties of ENMs on their entrance into BBB cells and the brain, compared to selected peripheral organs, the effects they produce in the brain, their biopersistence and biotransformation...
Ndumele, Chiadi E; Matsushita, Kunihiro; Sang, Yingying; Lazo, Mariana; Agarwal, Sunil K; Nambi, Vijay; Deswal, Anita; Blumenthal, Roger S; Ballantyne, Christie M; Coresh, Josef; Selvin, Elizabeth
2016-02-16
Obesity is a risk factor for heart failure (HF) but is associated with lower N-terminal pro-brain natriuretic peptide (NT-proBNP) levels. It is unclear whether the prognostic value and implications of NT-proBNP levels for HF risk differ across body mass index (BMI) categories. We followed up 12 230 ARIC participants free of prior HF at baseline (visit 2, 1990-1992) with BMI ≥18.5 kg/m(2). We quantified and compared the relative and absolute risk associations of NT-proBNP with incident HF across BMI categories. There were 1861 HF events during a median 20.6 years of follow-up. Despite increased HF risk in obesity, a weak inverse association was seen between baseline BMI and NT-proBNP levels (r=-0.10). Nevertheless, higher baseline NT-proBNP was associated with increased HF risk in all BMI categories. NT-proBNP improved HF risk prediction overall, even among those with severe obesity (BMI ≥35 kg/m(2); improvement in C statistic, 0.032; 95% confidence interval, 0.011-0.053). However, given the higher HF rates among those with obesity, at each NT-proBNP level, higher BMI was associated with greater absolute HF risk. Indeed, among those with NT-proBNP of 100 to <200 pg/mL, the average 10-year HF risk was <5% among normal-weight individuals but >10% among the severely obese. Despite its inverse relationship with BMI, NT-proBNP provides significant prognostic information on the risk of developing HF even among individuals with obesity. Given the higher baseline HF risk among persons with obesity, even slight elevations in NT-proBNP may have implications for increased absolute HF risk in this population. © 2016 American Heart Association, Inc.
Zhang, Zhengyu; Uchida, Yasuo; Hirano, Satoshi; Ando, Daisuke; Kubo, Yoshiyuki; Auriola, Seppo; Akanuma, Shin-Ichi; Hosoya, Ken-Ichi; Urtti, Arto; Terasaki, Tetsuya; Tachikawa, Masanori
2017-11-06
The purpose of this study was to determine absolute protein expression levels of transporters at the porcine inner blood-retinal barrier (BRB) and to compare the transporter protein expression quantitatively among the inner BRB, outer BRB, blood-brain barrier (BBB), and blood-cerebrospinal fluid barrier (BCSFB). Crude membrane fractions of isolated retinal capillaries (inner BRB) and isolated retinal pigment epithelium (RPE, outer BRB) were prepared from porcine eyeballs, while plasma membrane fractions were prepared from isolated porcine brain capillaries (BBB) and isolated choroid plexus (BCSFB). Protein expression levels of 32 molecules, including 16 ATP-binding-cassette (ABC) transporters and 13 solute-carrier (SLC) transporters, were measured using a quantitative targeted absolute proteomic technique. At the inner BRB, five molecules were detected: breast cancer resistance protein (BCRP, ABCG2; 22.8 fmol/μg protein), multidrug resistance protein 1 (MDR1, ABCB1; 8.70 fmol/μg protein), monocarboxylate transporter 1 (MCT1, SLC16A1; 4.83 fmol/μg protein), glucose transporter 1 (GLUT1, SLC2A1; 168 fmol/μg protein), and sodium-potassium adenosine triphosphatase (Na + /K + -ATPase; 53.7 fmol/μg protein). Other proteins were under the limits of quantification. Expression of MCT1 was at least 17.6-, 11.0-, and 19.2-fold greater than those of MCT2, 3, and 4, respectively. The transporter protein expression at the inner BRB was most highly correlated with that at the BBB (R 2 = 0.8906), followed by outer BRB (R 2 = 0.7988) and BCSFB (R 2 = 0.4730). Sodium-dependent multivitamin transporter (SMVT, SLC5A6) and multidrug resistance-associated protein 1 (MRP1, ABCC1) were expressed at the outer BRB (0.378 and 1.03 fmol/μg protein, respectively) but were under the limit of quantification at the inner BRB. These findings may be helpful for understanding differential barrier function.
Voigt, Nadine; Henrich-Noack, Petra; Kockentiedt, Sarah; Hintz, Werner; Tomas, Jürgen; Sabel, Bernhard A
2014-05-01
Nanoparticles (NP) can deliver drugs across the blood-brain barrier (BBB), but little is known which of the factors surfactant, size and zeta-potential are essential for allowing BBB passage. To this end we designed purpose-built fluorescent polybutylcyanoacrylate (PBCA) NP and imaged the NP's passage over the blood-retina barrier - which is a model of the BBB - in live animals. Rats received intravenous injections of fluorescent PBCA-NP fabricated by mini-emulsion polymerisation to obtain various NP's compositions that varied in surfactants (non-ionic, anionic, cationic), size (67-464nm) and zeta-potential. Real-time imaging of retinal blood vessels and retinal tissue was carried out with in vivo confocal neuroimaging (ICON) before, during and after NP's injection. Successful BBB passage with subsequent cellular labelling was achieved if NP were fabricated with non-ionic surfactants or cationic stabilizers but not when anionic compounds were added. NP's size and charge had no influence on BBB passage and cell labelling. This transport was not caused by an unspecific opening of the BBB because control experiments with injections of unlabelled NP and fluorescent dye (to test a "door-opener" effect) did not lead to parenchymal labelling. Thus, neither NP's size nor chemo-electric charge, but particle surface is the key factor determining BBB passage. This result has important implications for NP engineering in medicine: depending on the surfactant, NP can serve one of two opposite functions: while non-ionic tensides enhance brain up-take, addition of anionic tensides prevents it. NP can now be designed to specifically enhance drug delivery to the brain or, alternatively, to prevent brain penetration so to reduce unwanted psychoactive effects of drugs or prevent environmental nanoparticles from entering tissue of the central nervous system. Copyright © 2014 Elsevier B.V. All rights reserved.
Sperry, Megan M; Kartha, Sonia; Granquist, Eric J; Winkelstein, Beth A
2018-07-01
Inter-subject networks are used to model correlations between brain regions and are particularly useful for metabolic imaging techniques, like 18F-2-deoxy-2-(18F)fluoro-D-glucose (FDG) positron emission tomography (PET). Since FDG PET typically produces a single image, correlations cannot be calculated over time. Little focus has been placed on the basic properties of inter-subject networks and if they are affected by group size and image normalization. FDG PET images were acquired from rats (n = 18), normalized by whole brain, visual cortex, or cerebellar FDG uptake, and used to construct correlation matrices. Group size effects on network stability were investigated by systematically adding rats and evaluating local network connectivity (node strength and clustering coefficient). Modularity and community structure were also evaluated in the differently normalized networks to assess meso-scale network relationships. Local network properties are stable regardless of normalization region for groups of at least 10. Whole brain-normalized networks are more modular than visual cortex- or cerebellum-normalized network (p < 0.00001); however, community structure is similar at network resolutions where modularity differs most between brain and randomized networks. Hierarchical analysis reveals consistent modules at different scales and clustering of spatially-proximate brain regions. Findings suggest inter-subject FDG PET networks are stable for reasonable group sizes and exhibit multi-scale modularity.
Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves
Silver nanoparticles with size range 5-10 nm has been synthesized under microwave irradiation conditions using gluathione, an absolutely benign antioxidant that serves as the reducing as well as capping agent in aqueous medium. This rapid protocol yields the nanoparticles within ...
Yue, Peijian; Gao, Lin; Wang, Xuejing; Ding, Xuebing; Teng, Junfang
2018-06-01
The purpose of this study was to investigate ultrasound-triggered effects of the glial cell line-derived neurotrophic factor (GDNF) + nuclear receptor-related factor 1 (Nurr1)-polyethylene glycol (PEG)ylated liposomes-coupled microbubbles (PLs-GDNF + Nurr1-MBs) on behavioral impairment and neuron loss in a rat model of Parkinson's disease (PD). The unloaded PEGylated liposomes-coupled microbubbles (PLs-MBs) were characterized for zeta potential, particle size, and concentration. 6-hydroxydopamine (6-OHDA) was used to establish the PD rat model. Rotational, climbing pole, and suspension tests were used to detect behavioral impairment. The immunohistochemical staining of tyrosine hydroxylase (TH) and dopamine transporter (DAT) was used to assess the neuron loss. Western blot and quantitative real-time PCR (qRT-PCR) analysis were used to measure the expression levels of GDNF and Nurr1. The particle size of PLs-MBs was gradually increased, while the concentration and absolute zeta potential were gradually decreased as the time prolongs. 6-OHDA increased amphetamine-induced rotations and loss of dopaminergic neurons as compared to sham group. Interestingly, PLs-GDNF-MBs or PLs-Nurr1-MBs decreased rotations and increased the TH and DAT immunoreactivity. Combined of both genes resulted in a robust reduction in the rotations and a greater increase of the dopaminergic neurons. The delivery of PLs-GDNF + Nurr1-MBs into the brains using magnetic resonance imaging (MRI)-guided focused ultrasound may be more efficacious for the treatment of PD than the single treatment. © 2017 Wiley Periodicals, Inc.
On the magnetic polarizability tensor of US coinage
NASA Astrophysics Data System (ADS)
Davidson, John L.; Abdel-Rehim, Omar A.; Hu, Peipei; Marsh, Liam A.; O'Toole, Michael D.; Peyton, Anthony J.
2018-03-01
The magnetic dipole polarizability tensor of a metallic object gives unique information about the size, shape and electromagnetic properties of the object. In this paper, we present a novel method of coin characterization based on the spectroscopic response of the absolute tensor. The experimental measurements are validated using a combination of tests with a small set of bespoke coin surrogates and simulated data. The method is applied to an uncirculated set of US coins. Measured and simulated spectroscopic tensor responses of the coins show significant differences between different coin denominations. The presented results are encouraging as they strongly demonstrate the ability to characterize coins using an absolute tensor approach.
Optimal quantum error correcting codes from absolutely maximally entangled states
NASA Astrophysics Data System (ADS)
Raissi, Zahra; Gogolin, Christian; Riera, Arnau; Acín, Antonio
2018-02-01
Absolutely maximally entangled (AME) states are pure multi-partite generalizations of the bipartite maximally entangled states with the property that all reduced states of at most half the system size are in the maximally mixed state. AME states are of interest for multipartite teleportation and quantum secret sharing and have recently found new applications in the context of high-energy physics in toy models realizing the AdS/CFT-correspondence. We work out in detail the connection between AME states of minimal support and classical maximum distance separable (MDS) error correcting codes and, in particular, provide explicit closed form expressions for AME states of n parties with local dimension \
Absolute phase estimation: adaptive local denoising and global unwrapping.
Bioucas-Dias, Jose; Katkovnik, Vladimir; Astola, Jaakko; Egiazarian, Karen
2008-10-10
The paper attacks absolute phase estimation with a two-step approach: the first step applies an adaptive local denoising scheme to the modulo-2 pi noisy phase; the second step applies a robust phase unwrapping algorithm to the denoised modulo-2 pi phase obtained in the first step. The adaptive local modulo-2 pi phase denoising is a new algorithm based on local polynomial approximations. The zero-order and the first-order approximations of the phase are calculated in sliding windows of varying size. The zero-order approximation is used for pointwise adaptive window size selection, whereas the first-order approximation is used to filter the phase in the obtained windows. For phase unwrapping, we apply the recently introduced robust (in the sense of discontinuity preserving) PUMA unwrapping algorithm [IEEE Trans. Image Process.16, 698 (2007)] to the denoised wrapped phase. Simulations give evidence that the proposed algorithm yields state-of-the-art performance, enabling strong noise attenuation while preserving image details. (c) 2008 Optical Society of America
Brew, Christopher J; Simpson, Philip M; Whitehouse, Sarah L; Donnelly, William; Crawford, Ross W; Hubble, Matthew J W
2012-04-01
We describe a scaling method for templating digital radiographs using conventional acetate templates independent of template magnification without the need for a calibration marker. The mean magnification factor for the radiology department was determined (119.8%; range, 117%-123.4%). This fixed magnification factor was used to scale the radiographs by the method described. Thirty-two femoral heads on postoperative total hip arthroplasty radiographs were then measured and compared with the actual size. The mean absolute accuracy was within 0.5% of actual head size (range, 0%-3%) with a mean absolute difference of 0.16 mm (range, 0-1 mm; SD, 0.26 mm). Intraclass correlation coefficient showed excellent reliability for both interobserver and intraobserver measurements with intraclass correlation coefficient scores of 0.993 (95% CI, 0.988-0.996) for interobserver measurements and intraobserver measurements ranging between 0.990 and 0.993 (95% CI, 0.980-0.997). Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
Chicken-sized oviraptorid dinosaurs from central China and their ontogenetic implications.
Lü, Junchang; Currie, Philip J; Xu, Li; Zhang, Xingliao; Pu, Hanyong; Jia, Songhai
2013-02-01
Oviraptorids are a group of specialized non-avian theropod dinosaurs that were generally one to 8 m in body length. New specimens of baby oviraptorids from the Late Cretaceous of Henan Province are some of the smallest individuals known. They include diagnostic characters such as the relative position of the antorbital fenestra and the external naris, distinct opening in the premaxilla anteroventral to the external naris, antorbital fossa partly bordered by premaxilla posterodorsally, lacrimal process of premaxilla does not contact the anterodorsal process of the lacrimal, parietal almost as long as frontal; in dorsal view, posterior margin forms a straight line between the postzygapophyses in each of the fourth and fifth cervicals; femur longer than ilium. They also elucidate the ontogenetic processes of oviraptorids, including fusion of cranial elements and changes in relative body proportions. Hind limb proportions are constant in oviraptorids, regardless of absolute body size or ontogenetic stage. This suggests a sedentary lifestyle that did not involve the pursuit of similar-sized prey. The functional implications for bite force and therefore dietary preferences are better understood through the study of such small animals. The comparison of the measurements of 115 skeletons indicates that oviraptorids maintain their hind limb proportions regardless of ontogenetic stage or absolute size, which is a pattern seen more commonly in herbivores than in carnivores. This may weakly support the hypothesis that oviraptorids are herbivores rather than active carnivores.
Chicken-sized oviraptorid dinosaurs from central China and their ontogenetic implications
NASA Astrophysics Data System (ADS)
Lü, Junchang; Currie, Philip J.; Xu, Li; Zhang, Xingliao; Pu, Hanyong; Jia, Songhai
2013-02-01
Oviraptorids are a group of specialized non-avian theropod dinosaurs that were generally one to 8 m in body length. New specimens of baby oviraptorids from the Late Cretaceous of Henan Province are some of the smallest individuals known. They include diagnostic characters such as the relative position of the antorbital fenestra and the external naris, distinct opening in the premaxilla anteroventral to the external naris, antorbital fossa partly bordered by premaxilla posterodorsally, lacrimal process of premaxilla does not contact the anterodorsal process of the lacrimal, parietal almost as long as frontal; in dorsal view, posterior margin forms a straight line between the postzygapophyses in each of the fourth and fifth cervicals; femur longer than ilium. They also elucidate the ontogenetic processes of oviraptorids, including fusion of cranial elements and changes in relative body proportions. Hind limb proportions are constant in oviraptorids, regardless of absolute body size or ontogenetic stage. This suggests a sedentary lifestyle that did not involve the pursuit of similar-sized prey. The functional implications for bite force and therefore dietary preferences are better understood through the study of such small animals. The comparison of the measurements of 115 skeletons indicates that oviraptorids maintain their hind limb proportions regardless of ontogenetic stage or absolute size, which is a pattern seen more commonly in herbivores than in carnivores. This may weakly support the hypothesis that oviraptorids are herbivores rather than active carnivores.
NASA Technical Reports Server (NTRS)
Heslin, T.; Heaney, J.; Harper, M.
1974-01-01
The effects of particle size on the optical properties and surface roughness of a glass-balloon-filled, carbon-pigmented paint were studied in order to develop a diffuse-reflecting, low-total-reflectance, low-outgassing black paint. Particle sizes ranged between 20 microns and 74 microns. Surface roughness was found to increase with increasing particle size. Relative total reflectance at near-normal incidence (MgO standard) of the filled paints was less than for the unfilled paint between 230 nm and 1800 nm. Total absolute reflectance at 546 nm decreased with increasing particle size at grazing angles of incidence. Near-normal, total emittance was greater for the filled paints than for the unfilled paint. Specularity decreased with increasing particle size over the range studied.
Aita, Takuyo; Nishigaki, Koichi
2012-11-01
To visualize a bird's-eye view of an ensemble of mitochondrial genome sequences for various species, we recently developed a novel method of mapping a biological sequence ensemble into Three-Dimensional (3D) vector space. First, we represented a biological sequence of a species s by a word-composition vector x(s), where its length [absolute value]x(s)[absolute value] represents the sequence length, and its unit vector x(s)/[absolute value]x(s)[absolute value] represents the relative composition of the K-tuple words through the sequence and the size of the dimension, N=4(K), is the number of all possible words with the length of K. Second, we mapped the vector x(s) to the 3D position vector y(s), based on the two following simple principles: (1) [absolute value]y(s)[absolute value]=[absolute value]x(s)[absolute value] and (2) the angle between y(s) and y(t) maximally correlates with the angle between x(s) and x(t). The mitochondrial genome sequences for 311 species, including 177 Animalia, 85 Fungi and 49 Green plants, were mapped into 3D space by using K=7. The mapping was successful because the angles between vectors before and after the mapping highly correlated with each other (correlation coefficients were 0.92-0.97). Interestingly, the Animalia kingdom is distributed along a single arc belt (just like the Milky Way on a Celestial Globe), and the Fungi and Green plant kingdoms are distributed in a similar arc belt. These two arc belts intersect at their respective middle regions and form a cross structure just like a jet aircraft fuselage and its wings. This new mapping method will allow researchers to intuitively interpret the visual information presented in the maps in a highly effective manner. Copyright © 2012 Elsevier Inc. All rights reserved.
A technique to measure the size of particles in laser Doppler velocimetry applications
NASA Technical Reports Server (NTRS)
Hess, C. F.
1985-01-01
A method to measure the size of particles in Laser Doppler Velocimeter (LDV) applications is discussed. Since in LDV the velocity of the flow is assocated with the velocity of particles to establish how well they follow the flow, in the present method the interferometric probe volume is surrounded by a larger beam of different polarization or wavelength. The particle size is then measured from the absolute intensity scattered from the large beam by particles crossing the fringes. Experiments using polystrene particles between 1.1 and 3.3 microns and larger glass beads are reported. It is shown that the method has an excellent size resolution and its accuracy is better than 10% for the particle size studied.
Li, Mingmei; Caeyenberghs, Karen
2018-05-20
In addition to the burden of a life-threatening diagnosis, cancer patients are struggling with adverse side-effects from cancer treatment. Chemotherapy has been linked to an array of cognitive impairments and alterations in brain structure and function ("chemobrain"). In this review, we summarized the existing evidence that evaluate the changes in cognitive functioning and brain with chemotherapy, as assessed using structural and functional MRI-based techniques in a longitudinal design. This review followed the latest PRISMA guidelines using Embase, Medline, PsychINFO, Scopus, and Web of Science databases with date restrictions from 2012-2017. Fourteen research articles met the key inclusion criteria: (i) the studies involved adult cancer patients (mean age≥18); (ii) the use of chemotherapy in the treatment of cancer; (iii) pre-post assessment of behavioral and brain-based outcomes; and (iv) abstracts written in English. Effect sizes of subjective and objective cognitive impairments from the reviewed studies were estimated using Cohen's d or z-scores. We calculated percentage of mean change or effect sizes for main neuroimaging findings when data were available. Strength of the correlations between brain alterations and cognitive changes was obtained using squared correlation coefficients. We showed small to medium effect sizes on individual tests of attention, processing speed, verbal memory, and executive control; and medium effect sizes on self-report questionnaires. Neuroimaging data showed reduced grey matter density in cancer patients in frontal, parietal, and temporal regions. Changes in brain function (brain activation and cerebral blood flow) were observed with cancer across functional networks involving (pre)frontal, parietal, occipital, temporal, and cerebellar regions. Data from diffusion-weighted MRI suggested reduced white matter integrity involving the superior longitudinal fasciculus, corpus callosum, forceps major, and corona radiate, and altered structural connectivity across the whole brain network. Finally, we observed moderate-to-strong correlations between worsening cognitive function and morphological changes in frontal brain regions. While MRI is a powerful tool for detection of longitudinal brain changes in the 'chemobrain', the underlying biological mechanisms are still unclear. Continued work in this field will hopefully detect MRI metrics to be used as biomarkers to help guide cognitive treatment at the individual cancer patient level. Copyright © 2018. Published by Elsevier Ltd.
Sampling for area estimation: A comparison of full-frame sampling with the sample segment approach
NASA Technical Reports Server (NTRS)
Hixson, M.; Bauer, M. E.; Davis, B. J. (Principal Investigator)
1979-01-01
The author has identified the following significant results. Full-frame classifications of wheat and non-wheat for eighty counties in Kansas were repetitively sampled to simulate alternative sampling plans. Evaluation of four sampling schemes involving different numbers of samples and different size sampling units shows that the precision of the wheat estimates increased as the segment size decreased and the number of segments was increased. Although the average bias associated with the various sampling schemes was not significantly different, the maximum absolute bias was directly related to sampling size unit.
Brain glucose content in fetuses of ethanol-fed rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pullen, G.; Singh, S.P.; Snyder, A.K.
1986-03-01
The authors have previously demonstrated impaired placental glucose transfer and fetal hypoglycemia in association with ethanol ingestion by pregnant rats. The present study examines the relationship between glucose availability and fetal brain growth under the same conditions. Rats (EF) were fed ethanol (30% of caloric intake) in liquid diet throughout gestation. Controls received isocaloric diet without ethanol by pair-feeding (PF) or ad libitum (AF). On the 22nd day of gestation fetuses were obtained by cesarean section. Fetal brains were removed and freeze-clamped. Brain weight was significantly reduced (p < 0.001) by maternal ethanol ingestion (206 +/- 2, 212 +/- 4more » and 194 +/- 2 mg in AF, FP and EF fetuses respectively). Similarly, fetal brain glucose content was lower (p < 0.05) in the EF group (14.3 +/- 0.9 mmoles/g dry weight) than in the PF (18.6 +/- 1.0) or the AF (16.2 +/- 0.9) groups. The protein: DNA ratio, an indicator of cell size, correlated positively (r = 0.371, p < 0.005) with brain glucose content. In conclusion, maternal ethanol ingestion resulted in lower brain weight and reduced brain glucose content. Glucose availability may be a significant factor in the determination of cell size in the fetal rat brain.« less
Brain organization and specialization in deep-sea chondrichthyans.
Yopak, Kara E; Montgomery, John C
2008-01-01
Chondrichthyans occupy a basal place in vertebrate evolution and offer a relatively unexplored opportunity to study the evolution of vertebrate brains. This study examines the brain morphology of 22 species of deep-sea sharks and holocephalans, in relation to both phylogeny and ecology. Both relative brain size (expressed as residuals) and the relative development of the five major brain areas (telencephalon, diencephalon, mesencephalon, cerebellum, and medulla) were assessed. The cerebellar-like structures, which receive projections from the electroreceptive and lateral line organs, were also examined as a discrete part of the medulla. Although the species examined spanned three major chondrichthyan groupings (Squalomorphii, Galeomorphii, Holocephali), brain size and the relative development of the major brain areas did not track phylogenetic groupings. Rather, a hierarchical cluster analysis performed on the deep-sea sharks and holocephalans shows that these species all share the common characteristics of a relatively reduced telencephalon and smooth cerebellar corpus, as well as extreme relative enlargement of the medulla, specifically the cerebellar-like lobes. Although this study was not a functional analysis, it provides evidence that brain variation in deep-sea chondichthyans shows adaptive patterns in addition to underlying phylogenetic patterns, and that particular brain patterns might be interpreted as 'cerebrotypes'. (c) 2008 S. Karger AG, Basel
Crespi, Francesco; Cattini, Stefano; Donini, Maurizio; Bandera, Andrea; Rovati, Luigi
2016-01-30
Near-infrared spectroscopy (NIRS) is a non-invasive technique that monitors changes in oxygenation of haemoglobin. The absorption spectra of near-infrared light differ for the oxygenation-deoxygenation states of haemoglobin (oxygenate (HbO2) and deoxygenate (Hb), respectively) so that these two states can be directly monitored. Different methodologies report different basal values of HbO2 and Hb absolute concentrations in brain. Here, we attempt to calculate basal HbO2 levels in rat CNS via evaluation of the influence of exogenous oxygen or exogenous carbon dioxide on the NIRS parameters measured in vivo. Furthermore the possibility that changes of haemoglobin oxygenation in rat brain as measured by NIRS might be a useful index of brain penetration of chemical entities has been investigated. Different compounds from different chemical classes were selected on the basis of parallel ex vivo and in vivo pharmacokinetic (PK/PD) studies of brain penetration and overall pharmacokinetic profile. It appeared that NIRS might contribute to assess brain penetration of chemical entities, i.e. significant changes in NIRS signals could be related to brain exposure, conversely the lack of significant changes in relevant NIRS parameters could be indicative of low brain exposure. This work is proposing a further innovation on NIRS preclinical applications i.e. a "chemical" NIRS [chNIRS] approach for determining penetration of drugs in animal brain. Therefore, chNIRS could became a non invasive methodology for studies on neurobiological processes and psychiatric diseases in preclinical but also a translational strategy from preclinical to clinical investigations. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Bigler, Erin D.; And Others
1995-01-01
Whether cross-sectional rates of decline for brain volume and the Performance Intellectual Quotient of the Wechsler Adult Intelligence Scale-Revised were equivalent over the years 16 to 65 was studied with 196 volunteers. Results indicate remarkably similar rates of decline in perceptual-motor functions and aging brain volume loss. (SLD)
Orbital Dynamics, Environmental Heterogeneity, and the Evolution of the Human Brain
ERIC Educational Resources Information Center
Grove, Matt
2012-01-01
Many explanations have been proposed for the evolution of our anomalously large brains, including social, ecological, and epiphenomenal hypotheses. Recently, an additional hypothesis has emerged, suggesting that advanced cognition and, by inference, increases in brain size, have been driven over evolutionary time by the need to deal with…
Wells, Elizabeth M; Goodkin, Howard P; Griesbach, Grace S
2016-01-01
Current consensus guidelines recommending physical and cognitive rest until a patient is asymptomatic after a sports concussion (ie, a mild traumatic brain injury) are being called into question, particularly for patients who are slower to recover and in light of preclinical and clinical research demonstrating that exercise aids neurorehabilitation. The pathophysiological response to mild traumatic brain injury includes a complex neurometabolic cascade of events resulting in a neurologic energy deficit. It has been proposed that this energy deficit leads to a period of vulnerability during which the brain is at risk for additional injury, explains why early postconcussive symptoms are exacerbated by cognitive and physical exertion, and is used to rationalize absolute rest until all symptoms have resolved. However, at some point, rest might no longer be beneficial and exercise might need to be introduced. At both extremes, excessive exertion and prolonged avoidance of exercise (physical and mental) have negative consequences. Individuals who have experienced a concussion need guidance for avoidance of triggers of severe symptoms and a plan for graduated exercise to promote recovery as well as optimal functioning (physical, educational, and social) during the postconcussion period. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Rice, A. R.
2015-12-01
The significant correlation between dropping temperatures throughout the Pliocene and the concomitant explosive expansion of the Hominid brain has led a number of workers to postulate climate change drove human evolution. Our brain (that of Homo sapiens), comprises 1-2 percent of our body weight but consumes 20 -25 percent of the body's caloric intake. We are "hotheads". Brains are extremely sensitive to overheating but we are endowed with unparalleled thermal regulation, much of it given over to protecting the Central Nervous System (CNS). Will there be reversed trends with global warming? The human brain has been shrinking since the end of the Ice Ages, losing about 150cc over the past 10,000 years. Polar bear skulls have been downsizing as well. Almost all mass extinctions or evolutionary upheavals are attributed to global warming: e.g. the Permian/Triassic (P/T) event, i.e., "The Great Dying", 250 million years ago (~90% of all life forms wiped out); the Paleocene/ Eocene Thermal Maximum (PETM) 55 million years ago. They may be analogs for what might await us. Large creatures, whose body size inhibits cooling, melted away during the PETM. Horses, initially the size of dogs then, reduced to the size of cats. An unanticipated hazard for humans that may attend extreme global warming is dumbing down or needing to retreat to the Poles as did those creatures that survived the P/T event (some references: http://johnhawks.net/research/hawks-2011-brain-size-selection-holocene; Kandel, E. et al Principles of Neural Science 4th ed. New York (US): McGraw-Hill, 2000; Selective Brain Cooling in Early Hominids:phylogenetic and evolutionary implications, Reeser, H., reeser@flmnh.ufl.edu; How the body controls brain temperature; the temperature shielding effect of cerebral blood flow, Mingming Z. et al. J Appl Physiol. 2006 November; 101(5): 1481-1488; news.nationalgeographic.com/ news/2014/03/140327-climate-change-shrinks-salamanders-global-warming-science/; Heat illness and heat stroke, www.ozemedicine.com/wiki/doku.php?id=heat illness 7/3/2010)
Pereira-Pedro, Ana Sofia; Rilling, James K; Chen, Xu; Preuss, Todd M; Bruner, Emiliano
2017-01-01
The precuneus is a major element of the superior parietal lobule, positioned on the medial side of the hemisphere and reaching the dorsal surface of the brain. It is a crucial functional region for visuospatial integration, visual imagery, and body coordination. Previously, we argued that the precuneus expanded in recent human evolution, based on a combination of paleontological, comparative, and intraspecific evidence from fossil and modern human endocasts as well as from human and chimpanzee brains. The longitudinal proportions of this region are a major source of anatomical variation among adult humans and, being much larger in Homo sapiens, is the main characteristic differentiating human midsagittal brain morphology from that of our closest living primate relative, the chimpanzee. In the current shape analysis, we examine precuneus variation in non-human primates through landmark-based models, to evaluate the general pattern of variability in non-human primates, and to test whether precuneus proportions are influenced by allometric effects of brain size. Results show that precuneus proportions do not covary with brain size, and that the main difference between monkeys and apes involves a vertical expansion of the frontal and occipital regions in apes. Such differences might reflect differences in brain proportions or differences in cranial architecture. In this sample, precuneus variation is apparently not influenced by phylogenetic or allometric factors, but does vary consistently within species, at least in chimpanzees and macaques. This result further supports the hypothesis that precuneus expansion in modern humans is not merely a consequence of increasing brain size or of allometric scaling, but rather represents a species-specific morphological change in our lineage. © 2017 S. Karger AG, Basel.
Yang, Di; Li, Suk-Yee; Yeung, Chung-Man; Chang, Raymond Chuen-Chung; So, Kwok-Fai; Wong, David; Lo, Amy C. Y.
2012-01-01
Background and Purpose Ischemic stroke is a destructive cerebrovascular disease and a leading cause of death. Yet, no ideal neuroprotective agents are available, leaving prevention an attractive alternative. The extracts from the fruits of Lycium barbarum (LBP), a Chinese anti-aging medicine and food supplement, showed neuroprotective function in the retina when given prophylactically. We aim to evaluate the protective effects of LBP pre-treatment in an experimental stroke model. Methods C57BL/6N male mice were first fed with either vehicle (PBS) or LBP (1 or 10 mg/kg) daily for 7 days. Mice were then subjected to 2-hour transient middle cerebral artery occlusion (MCAO) by the intraluminal method followed by 22-hour reperfusion upon filament removal. Mice were evaluated for neurological deficits just before sacrifice. Brains were harvested for infarct size estimation, water content measurement, immunohistochemical analysis, and Western blot experiments. Evans blue (EB) extravasation was determined to assess blood-brain barrier (BBB) disruption after MCAO. Results LBP pre-treatment significantly improved neurological deficits as well as decreased infarct size, hemispheric swelling, and water content. Fewer apoptotic cells were identified in LBP-treated brains by TUNEL assay. Reduced EB extravasation, fewer IgG-leaky vessels, and up-regulation of occludin expression were also observed in LBP-treated brains. Moreover, immunoreactivity for aquaporin-4 and glial fibrillary acidic protein were significantly decreased in LBP-treated brains. Conclusions Seven-day oral LBP pre-treatment effectively improved neurological deficits, decreased infarct size and cerebral edema as well as protected the brain from BBB disruption, aquaporin-4 up-regulation, and glial activation. The present study suggests that LBP may be used as a prophylactic neuroprotectant in patients at high risk for ischemic stroke. PMID:22438957
Park, Jeongmin; Choi, Eunshil; Shin, Seulgi; Lim, Sungsu; Kim, Dohee; Baek, Suji; Lee, Kang Pa; Lee, Jae Jun; Lee, Byeong Han; Kim, Bokyung; Jeong, Keunsoo; Baik, Ja-Hyun; Kim, Yun Kyung; Kim, Sehoon
2018-06-15
Traumatic brain injury (TBI) is an intracranial injury which can induce immediate neuroinflammation and long-term neurological deficits. Methylene blue (MB) as a nootropic has a great potential to treat neurodegeneration after TBI because of its anti-inflmmatory and neuroprotective functions. However, its limited accumulation to the brain across the blood-brain barrier (BBB) remains a major hurdle to be overcome. In this paper, we present a polymer surfactant-encapsulated nanocomplex of MB as a delivery system with high BBB permeability for efficacious treatment of TBI-induced neurodegeneration. MB was formulated via electrostatically/hydrophobically directed assembly with fatty acid and Pluronic surfactant (F-127 or F-68) to construct nanocomplexes of two different colloidal sizes (<10 nm and ~108 nm in hydrodynamic diameter for NanoMB-127 and NanoMB-68, respectively). Compared to uncomplexed free MB, formulation into the ultrasmall nanocomplex (NanoMB-127) significantly enhanced the uptake of MB by blood-brain vascular endothelial bEnd3 cells in vitro, and indeed improved its BBB penetration upon systemic administration to normal mice in vivo. However, large-size NanoMB-68 showed negligible BBB crossing despite the efficient bEnd3 cell internalization in vitro, probably due to the unfavorable pharmacokinetic profile associated with its large particle size. By virtue of the efficient BBB penetration and cellular uptake, ultrasmall NanoMB-127 was shown to distinctively reduce the expression level of an inflammatory cytokine with no notable toxicity in vitro and also considerably prevent the neurodegeneration after TBI in mice at much lower doses than free MB. Overall, the Pluronic-supported nanocomplexation method allows efficient brain delivery of MB, offering a novel way of enhancing the efficacy of neurotherapeutics to treat brain diseases. Copyright © 2018. Published by Elsevier B.V.
Asadi, Yasin; Gorjipour, Fazel; Behrouzifar, Sedigheh; Vakili, Abedin
2018-06-07
Evidence has shown therapeutic potential of irisin in cerebral stroke. The present study aimed to assess the effects of recombinant irisin on the infarct size, neurological outcomes, blood-brain barrier (BBB) permeability, apoptosis and brain-derived neurotrophic factor (BDNF) expression in a mouse model of stroke. Transient focal cerebral ischemia was established by middle cerebral artery occlusion (MCAO) for 45 min and followed reperfusion for 23 h in mice. Recombinant irisin was administrated at doses of 0.1, 0.5, 2.5, 7.5, and 15 µg/kg, intracerebroventricularly (ICV), on the MCAO beginning. Neurological outcomes, infarct size, brain edema and BBB permeability were evaluated by modified neurological severity score (mNSS), 2,3,5-triphenyltetrazolium chloride (TTC) staining and Evans blue (EB) extravasation methods, respectively, at 24 h after ischemia. Apoptotic cells and BDNF protein were detected by TUNEL assay and immunohistochemistry techniques. The levels of Bcl-2, Bax and caspase-3 proteins were measured by immunoblotting technique. ICV irisin administration at doses of 0.5, 2.5, 7.5 and 15 µg/kg, significantly reduced infarct size, whereas only in 7.5 and 15 µg/kg improved neurological outcome (P < 0.001). Treatment with irisin (7.5 µg/kg) reduced brain edema (P < 0.001) without changing BBB permeability (P > 0.05). Additionally, irisin (7.5 µg/kg) significantly diminished apoptotic cells and increased BDNF immunoreactivity in the ischemic brain cortex (P < 0.004). Irisin administration significantly downregulated the Bax and caspase-3 expression and upregulated the Bcl-2 protein. The present study indicated that irisin attenuates brain damage via reducing apoptosis and increasing BDNF protein of brain cortex in the experimental model of stroke in mice.
[The human corpse in arts and bioethics: Michelangelo´s Pietà Rondanini].
Figueroa, Gustavo
2016-02-01
According to bioethics, life is a fundamental but not an absolute good. Therefore the value of a person resides in being alive, no matter in which state such person is. The concept of brain death is legally and ethically accepted as the definition of death. In artworks, human beings are revealed as they are. Michelangelo's Pietà Rondanini captures and captures what a human corpse is, in its most intimate appearance. The artist boldly reveals its essence.
Sex as a Biological Variable: Who, What, When, Why, and How.
Bale, Tracy L; Epperson, C Neill
2017-01-01
The inclusion of sex as a biological variable in research is absolutely essential for improving our understanding of disease mechanisms contributing to risk and resilience. Studies focusing on examining sex differences have demonstrated across many levels of analyses and stages of brain development and maturation that males and females can differ significantly. This review will discuss examples of animal models and clinical studies to provide guidance and reference for the inclusion of sex as an important biological variable relevant to a Neuropsychopharmacology audience.
Intranasal mucoadhesive microemulsions of clonazepam: preliminary studies on brain targeting.
Vyas, Tushar K; Babbar, A K; Sharma, R K; Singh, Shashi; Misra, Ambikanandan
2006-03-01
The aim of this investigation was to prepare clonazepam microemulsions (CME) for rapid drug delivery to the brain to treat acute status epileptic patients and to characterize and evaluate the performance of CME in vitro and in vivo in rats. The CME were prepared by the titration method and were characterized for globule size and size distribution, zeta potential, and drug content. CME was radiolabeled with (99m)Tc (technetium) and biodistribution of drug in the brain was studied in Swiss albino rats after intranasal and intravenous administrations. Brain scintigraphy imaging in rabbits was also performed to ascertain the uptake of the drug into the brain. Pre and postCME formulation treated human nasal mucosa was subjected to transmission electron microscopy to investigate the mechanism of drug uptake across the nasal mucosa. CME were transparent and stable with mean globule size of 15 +/- 10 nm and zeta potential of -30 mV to -40 mV. (99m)Tc-labeled clonazepam solution ((99m)Tc CS)/ clonazepam microemulsion (CME)/clonazepam mucoadhesive microemulsion (CMME) were found to be stable and suitable for in vivo studies. Brain/blood uptake ratios at 0.50 hour (h) following intranasal CMME, CME, clonazepam solution (CS), and intravenous CME administrations were found to be 0.67, 0.50, 0.48, and 0.13, respectively indicating more effective targeting with intranasal administration and best targeting of the brain with intranasal CMME. Brain/blood ratio at all sampling points up to 8 h following intranasal administration of CMME compared to intravenous was found to be twofold higher indicating larger extent of distribution of the drug in brain. Rabbit brain scintigraphy also showed higher intranasal uptake of the drug into the brain. Transmission electron microscopy revealed significant accretion of CMME within interstitial spaces and paracellular mode of transport due to stretching of the tight junctions present in the nasal mucosa. This investigation demonstrates a more rapid and larger extent of transport of clonazepam into the rat brain with intranasal CMME, which may prove useful in treating acute status epileptics. Copyright 2006 Wiley-Liss, Inc. and the American Pharmacists Association.
Trends in Racial and Ethnic Disparities in Infant Mortality Rates in the United States, 1989–2006
Rossen, Lauren M.; Schoendorf, Kenneth C.
2014-01-01
Objectives. We sought to measure overall disparities in pregnancy outcome, incorporating data from the many race and ethnic groups that compose the US population, to improve understanding of how disparities may have changed over time. Methods. We used Birth Cohort Linked Birth–Infant Death Data Files from US Vital Statistics from 1989–1990 and 2005–2006 to examine multigroup indices of racial and ethnic disparities in the overall infant mortality rate (IMR), preterm birth rate, and gestational age–specific IMRs. We calculated selected absolute and relative multigroup disparity metrics weighting subgroups equally and by population size. Results. Overall IMR decreased on the absolute scale, but increased on the population-weighted relative scale. Disparities in the preterm birth rate decreased on both the absolute and relative scales, and across equally weighted and population-weighted indices. Disparities in preterm IMR increased on both the absolute and relative scales. Conclusions. Infant mortality is a common bellwether of general and maternal and child health. Despite significant decreases in disparities in the preterm birth rate, relative disparities in overall and preterm IMRs increased significantly over the past 20 years. PMID:24028239
Hu, Guoqing; Mizuguchi, Tatsuya; Zhao, Xin; Minamikawa, Takeo; Mizuno, Takahiko; Yang, Yuli; Li, Cui; Bai, Ming; Zheng, Zheng; Yasui, Takeshi
2017-01-01
A single, free-running, dual-wavelength mode-locked, erbium-doped fibre laser was exploited to measure the absolute frequency of continuous-wave terahertz (CW-THz) radiation in real time using dual THz combs of photo-carriers (dual PC-THz combs). Two independent mode-locked laser beams with different wavelengths and different repetition frequencies were generated from this laser and were used to generate dual PC-THz combs having different frequency spacings in photoconductive antennae. Based on the dual PC-THz combs, the absolute frequency of CW-THz radiation was determined with a relative precision of 1.2 × 10−9 and a relative accuracy of 1.4 × 10−9 at a sampling rate of 100 Hz. Real-time determination of the absolute frequency of CW-THz radiation varying over a few tens of GHz was also demonstrated. Use of a single dual-wavelength mode-locked fibre laser, in place of dual mode-locked lasers, greatly reduced the size, complexity, and cost of the measurement system while maintaining the real-time capability and high measurement precision. PMID:28186148
The slippery slope from contraception to euthanasia.
Kippley, J F
1978-01-01
The key element in natural family planning that keeps it from being the 1st to abortion is the emphasis on natural. A purely secular form of noncontraceptive birth control fails to avoid being the 1st step down the slippery slope toward abortion and then euthanasia. It is felt that the fundamental difference is in what is absolutized. The Western culture has absolutized family planning, thus, when people think that their right to plan the size of their family is an absolute right, and things do not go according to plans, they pursue their absolutized plans even if it means invading some other person's right to life. As Malcom Muggeridge has pointed out, as soon as a culture accepts the killing of the defenseless and innocent, the principle has been established for killing anyone who is socially inconvenient. However, when doing things according to God's laws, all individual plans are made relative. We do not attempt test-tube techniques and we do not resort to abortion or to sterilization. Some will reject the inherently religious overtones of the full meaning of natural (defined as acting in accord with the nature God has given each person), but at least, they have been given something to think about.
Absolute angular encoder based on optical diffraction
NASA Astrophysics Data System (ADS)
Wu, Jian; Zhou, Tingting; Yuan, Bo; Wang, Liqiang
2015-08-01
A new encoding method for absolute angular encoder based on optical diffraction was proposed in the present study. In this method, an encoder disc is specially designed that a series of elements are uniformly spaced in one circle and each element is consisted of four diffraction gratings, which are tilted in the directions of 30°, 60°, -60° and -30°, respectively. The disc is illuminated by a coherent light and the diffractive signals are received. The positions of diffractive spots are used for absolute encoding and their intensities are for subdivision, which is different from the traditional optical encoder based on transparent/opaque binary principle. Since the track's width in the disc is not limited in the diffraction pattern, it provides a new way to solve the contradiction between the size and resolution, which is good for minimization of encoder. According to the proposed principle, the diffraction pattern disc with a diameter of 40 mm was made by lithography in the glass substrate. A prototype of absolute angular encoder with a resolution of 20" was built up. Its maximum error was tested as 78" by comparing with a small angle measuring system based on laser beam deflection.
Nuclear medicine image registration by spatially noncoherent interferometry.
Scheiber, C; Malet, Y; Sirat, G; Grucker, D
2000-02-01
This article introduces a technique for obtaining high-resolution body contour data in the same coordinate frame as that of a rotating gamma camera, using a miniature range finder, the conoscope, mounted on the camera gantry. One potential application of the technique is accurate coregistration in longitudinal brain SPECT studies, using the face of the patient (or "mask"), instead of SPECT slices, to coregister subsequent acquisitions involving the brain. Conoscopic holography is an interferometry technique that relies on spatially incoherent light interference in birefringent crystals. In this study, the conoscope was used to measure the absolute distance (Z) between a light source reflected from the skin and its observation plane. This light was emitted by a 0.2-mW laser diode. A scanning system was used to image the face during SPECT acquisition. The system consisted of a motor-driven mirror (Y axis) and the gamma-camera gantry (1 profile was obtained for each rotation step, X axis). The system was calibrated to place the conoscopic measurements and SPECT slices in the same coordinate frame. Through a simple and robust calibration of the system, the SE for measurements performed on geometric shapes was less than 2 mm, i.e., less than the actual pixel size of the SPECT data. Biometric measurements of an anthropomorphic brain phantom were within 3%-5% of actual values. The mask data were used to register images of a brain phantom and of a volunteer's brain, respectively. The rigid transformation that allowed the merging of masks by visual inspection was applied to the 2 sets of SPECT slices to perform the fusion of the data. At the cost of an additional low-cost setup integrated into the gamma-camera gantry, real-time data about the surface of the head were obtained. As in all other surface-based techniques (as opposed to volume-based techniques), this method allows the match of data independently from the dataset of interest and facilitates further registration of data from any other source. The main advantage of this technique compared with other optically based methods is the robustness of the calibration procedure and the compactness of the sensor as a result of the colinearity of the projected beam and the reflected (diffused) beams of the conoscope. Taking into account the experimental nature of this preliminary work, significant improvements in the accuracy and speed of measurements (up to 1000 points/s) are expected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, H; Lee, Y; Ruschin, M
2015-06-15
Purpose: Automatically derive electron density of tissues using MR images and generate a pseudo-CT for MR-only treatment planning of brain tumours. Methods: 20 stereotactic radiosurgery (SRS) patients’ T1-weighted MR images and CT images were retrospectively acquired. First, a semi-automated tissue segmentation algorithm was developed to differentiate tissues with similar MR intensities and large differences in electron densities. The method started with approximately 12 slices of manually contoured spatial regions containing sinuses and airways, then air, bone, brain, cerebrospinal fluid (CSF) and eyes were automatically segmented using edge detection and anatomical information including location, shape, tissue uniformity and relative intensity distribution.more » Next, soft tissues - muscle and fat were segmented based on their relative intensity histogram. Finally, intensities of voxels in each segmented tissue were mapped into their electron density range to generate pseudo-CT by linearly fitting their relative intensity histograms. Co-registered CT was used as a ground truth. The bone segmentations of pseudo-CT were compared with those of co-registered CT obtained by using a 300HU threshold. The average distances between voxels on external edges of the skull of pseudo-CT and CT in three axial, coronal and sagittal slices with the largest width of skull were calculated. The mean absolute electron density (in Hounsfield unit) difference of voxels in each segmented tissues was calculated. Results: The average of distances between voxels on external skull from pseudo-CT and CT were 0.6±1.1mm (mean±1SD). The mean absolute electron density differences for bone, brain, CSF, muscle and fat are 78±114 HU, and 21±8 HU, 14±29 HU, 57±37 HU, and 31±63 HU, respectively. Conclusion: The semi-automated MR electron density mapping technique was developed using T1-weighted MR images. The generated pseudo-CT is comparable to that of CT in terms of anatomical position of tissues and similarity of electron density assignment. This method can allow MR-only treatment planning.« less
Employment in Appalachia: Trends and Prospects.
ERIC Educational Resources Information Center
Fuller, Theodore E.
The manufacturing industry's areal and structural growth trends were analyzed for insights into their possible future role in Appalachia's economy. Between 1950 and 1960, total manufacturing employment expanded in large-, medium-, and small-center population areas, in rates inverse to center size. However, absolute gains in employment were…
A Method to Compute Periodic Sums
2013-10-15
the absolute performance of the present meth- ods with the smooth particle mesh Ewald ( SPME ) and other algorithms for periodic summation due to a...can be done using published data [14] comparing perfor- mance of the SPME and FMM-type PWA implementation for clusters, for relatively small size
Martínez-Cerdeño, Verónica; Camacho, Jasmin; Fox, Elizabeth; Miller, Elaine; Ariza, Jeanelle; Kienzle, Devon; Plank, Kaela; Noctor, Stephen C; Van de Water, Judy
2016-01-01
Autism spectrum disorders (ASDs) affect up to 1 in 68 children. Autism-specific autoantibodies directed against fetal brain proteins have been found exclusively in a subpopulation of mothers whose children were diagnosed with ASD or maternal autoantibody-related autism. We tested the impact of autoantibodies on brain development in mice by transferring human antigen-specific IgG directly into the cerebral ventricles of embryonic mice during cortical neurogenesis. We show that autoantibodies recognize radial glial cells during development. We also show that prenatal exposure to autism-specific maternal autoantibodies increased stem cell proliferation in the subventricular zone (SVZ) of the embryonic neocortex, increased adult brain size and weight, and increased the size of adult cortical neurons. We propose that prenatal exposure to autism-specific maternal autoantibodies directly affects radial glial cell development and presents a viable pathologic mechanism for the maternal autoantibody-related prenatal ASD risk factor. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Micro sized implantable ball lens-based fiber optic probe design
NASA Astrophysics Data System (ADS)
Cha, Jaepyeong; Kang, Jin U.
2014-02-01
A micro sized implantable ball lens-based fiber optic probe design is described for continuous monitoring of brain activity in freely behaving mice. A prototype uses a 500-micron ball lens and a highly flexible 350-micron-diameter fiber bundle, which are enclosed by a 21G stainless steel sheath. Several types and thickness of brain tissue, consisting of fluorescent probes such as GFP, GCaMP3 calcium indicator, are used to evaluate the performance of the imaging probe. Measured working distance is approximately 400-μm, but is long enough to detect neural activities from cortical and cerebellar tissues of mice brain.
Frahm Olsen, Mette; Bjerre, Eik; Hansen, Maria Damkjær; Tendal, Britta; Hilden, Jørgen; Hróbjartsson, Asbjørn
2018-05-21
The minimum clinically important difference (MCID) is used to interpret the relevance of treatment effects, e.g., when developing clinical guidelines, evaluating trial results or planning sample sizes. There is currently no agreement on an appropriate MCID in chronic pain and little is known about which contextual factors cause variation. This is a systematic review. We searched PubMed, EMBASE, and Cochrane Library. Eligible studies determined MCID for chronic pain based on a one-dimensional pain scale, a patient-reported transition scale of perceived improvement, and either a mean change analysis (mean difference in pain among minimally improved patients) or a threshold analysis (pain reduction associated with best sensitivity and specificity for identifying minimally improved patients). Main results were descriptively summarized due to considerable heterogeneity, which were quantified using meta-analyses and explored using subgroup analyses and metaregression. We included 66 studies (31.254 patients). Median absolute MCID was 23 mm on a 0-100 mm scale (interquartile range [IQR] 12-39) and median relative MCID was 34% (IQR 22-45) among studies using the mean change approach. In both cases, heterogeneity was very high: absolute MCID I 2 = 99% and relative MCID I 2 = 96%. High variation was also seen among studies using the threshold approach: median absolute MCID was 20 mm (IQR 15-30) and relative MCID was 32% (IQR 15-41). Absolute MCID was strongly associated with baseline pain, explaining approximately two-thirds of the variation, and to a lesser degree with the operational definition of minimum pain relief and clinical condition. A total of 15 clinical and methodological factors were assessed as possible causes for variation in MCID. MCID for chronic pain relief vary considerably. Baseline pain is strongly associated with absolute, but not relative, measures. To a much lesser degree, MCID is also influenced by the operational definition of relevant pain relief and possibly by clinical condition. Explicit and conscientious reflections on the choice of an MCID are required when classifying effect sizes as clinically important or trivial. Copyright © 2018 Elsevier Inc. All rights reserved.
Fujishima, Motonobu; Kawaguchi, Atsushi; Maikusa, Norihide; Kuwano, Ryozo; Iwatsubo, Takeshi; Matsuda, Hiroshi
2017-01-01
Little is known about the sample sizes required for clinical trials of Alzheimer's disease (AD)-modifying treatments using atrophy measures from serial brain magnetic resonance imaging (MRI) in the Japanese population. The primary objective of the present study was to estimate how large a sample size would be needed for future clinical trials for AD-modifying treatments in Japan using atrophy measures of the brain as a surrogate biomarker. Sample sizes were estimated from the rates of change of the whole brain and hippocampus by the k-means normalized boundary shift integral (KN-BSI) and cognitive measures using the data of 537 Japanese Alzheimer's Neuroimaging Initiative (J-ADNI) participants with a linear mixed-effects model. We also examined the potential use of ApoE status as a trial enrichment strategy. The hippocampal atrophy rate required smaller sample sizes than cognitive measures of AD and mild cognitive impairment (MCI). Inclusion of ApoE status reduced sample sizes for AD and MCI patients in the atrophy measures. These results show the potential use of longitudinal hippocampal atrophy measurement using automated image analysis as a progression biomarker and ApoE status as a trial enrichment strategy in a clinical trial of AD-modifying treatment in Japanese people.
Nance, Elizabeth A.; Woodworth, Graeme F.; Sailor, Kurt A.; Shih, Ting-Yu; Xu, Qingguo; Swaminathan, Ganesh; Xiang, Dennis; Eberhart, Charles; Hanes, Justin
2013-01-01
Prevailing opinion suggests that only substances up to 64 nm in diameter can move at appreciable rates through the brain extracellular space (ECS). This size range is large enough to allow diffusion of signaling molecules, nutrients, and metabolic waste products, but too small to allow efficient penetration of most particulate drug delivery systems and viruses carrying therapeutic genes, thereby limiting effectiveness of many potential therapies. We analyzed the movements of nanoparticles of various diameters and surface coatings within fresh human and rat brain tissue ex vivo and mouse brain in vivo. Nanoparticles as large as 114-nm in diameter diffused within the human and rat brain, but only if they were densely coated with poly(ethylene glycol) (PEG). Using these minimally adhesive PEG-coated particles, we estimated that human brain tissue ECS has some pores larger than 200 nm, and that more than one-quarter of all pores are ≥100 nm. These findings were confirmed in vivo in mice, where 40- and 100-nm, but not 200-nm, nanoparticles, spread rapidly within brain tissue, only if densely coated with PEG. Similar results were observed in rat brain tissue with paclitaxel-loaded biodegradable nanoparticles of similar size (85 nm) and surface properties. The ability to achieve brain penetration with larger nanoparticles is expected to allow more uniform, longer-lasting, and effective delivery of drugs within the brain, and may find use in the treatment of brain tumors, stroke, neuroinflammation, and other brain diseases where the blood-brain barrier is compromised or where local delivery strategies are feasible. PMID:22932224
Thomsen, Kirsten; Yokota, Takashi; Hasan-Olive, Md Mahdi; Sherazi, Niloofar; Fakouri, Nima Borhan; Desler, Claus; Regnell, Christine Elisabeth; Larsen, Steen; Rasmussen, Lene Juel; Dela, Flemming; Bergersen, Linda Hildegard; Lauritzen, Martin
2018-01-01
Brain aging is accompanied by declining mitochondrial respiration. We hypothesized that mitochondrial morphology and dynamics would reflect this decline. Using hippocampus and frontal cortex of a segmental progeroid mouse model lacking Cockayne syndrome protein B (CSB m/m ) and C57Bl/6 (WT) controls and comparing young (2-5 months) to middle-aged mice (13-14 months), we found that complex I-linked state 3 respiration (CI) was reduced at middle age in CSB m/m hippocampus, but not in CSB m/m cortex or WT brain. In hippocampus of both genotypes, mitochondrial size heterogeneity increased with age. Notably, an inverse correlation between heterogeneity and CI was found in both genotypes, indicating that heterogeneity reflects mitochondrial dysfunction. The ratio between fission and fusion gene expression reflected age-related alterations in mitochondrial morphology but not heterogeneity. Mitochondrial DNA content was lower, and hypoxia-induced factor 1α mRNA was greater at both ages in CSB m/m compared to WT brain. Our findings show that decreased CI and increased mitochondrial size heterogeneity are highly associated and point to declining mitochondrial quality control as an initial event in brain aging. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Seymour, Roger S.; Bosiocic, Vanya; Snelling, Edward P.
2016-08-01
The evolution of human cognition has been inferred from anthropological discoveries and estimates of brain size from fossil skulls. A more direct measure of cognition would be cerebral metabolic rate, which is proportional to cerebral blood flow rate (perfusion). The hominin cerebrum is supplied almost exclusively by the internal carotid arteries. The sizes of the foramina that transmitted these vessels in life can be measured in hominin fossil skulls and used to calculate cerebral perfusion rate. Perfusion in 11 species of hominin ancestors, from Australopithecus to archaic Homo sapiens, increases disproportionately when scaled against brain volume (the allometric exponent is 1.41). The high exponent indicates an increase in the metabolic intensity of cerebral tissue in later Homo species, rather than remaining constant (1.0) as expected by a linear increase in neuron number, or decreasing according to Kleiber's Law (0.75). During 3 Myr of hominin evolution, cerebral tissue perfusion increased 1.7-fold, which, when multiplied by a 3.5-fold increase in brain size, indicates a 6.0-fold increase in total cerebral blood flow rate. This is probably associated with increased interneuron connectivity, synaptic activity and cognitive function, which all ultimately depend on cerebral metabolic rate.
Nagy, David; Marosi, Mate; Kis, Zsolt; Farkas, Tamas; Rakos, Gabriella; Vecsei, Laszlo; Teichberg, Vivian I; Toldi, Jozsef
2009-09-01
A traumatic brain injury or a focal brain lesion is followed by acute excitotoxicity caused by the presence of abnormally high glutamate (Glu) levels in the cerebrospinal and interstitial fluids. It has recently been demonstrated that this excess Glu in the brain can be eliminated into the blood following the intravenous administration of oxaloacetate (OxAc), which, by scavenging the blood Glu, induces an enhanced and neuroprotective brain-to-blood Glu efflux. In this study, we subjected rats to a photothrombotic lesion and treated them after the illumination with a single 30-min-long administration of OxAc (1.2 mg/100 g, i.v.). Following induction of the lesion, we measured the infarct size and the amplitudes of the somatosensory evoked potentials (SEPs) as recorded from the skull surface. The photothrombotic lesion resulted in appreciably decreased amplitudes of the evoked potentials, but OxAc administration significantly attenuated this reduction, and also the infarct size assessed histologically. We suggest that the neuroprotective effects of OxAc are due to its blood Glu-scavenging activity, which, by increasing the brain-to-blood Glu efflux, reduces the excess Glu responsible for the anatomical and functional correlates of the ischemia, as evaluated by electrophysiological evoked potential (EP) measurements.
Moderate and late preterm birth: effect on brain size and maturation at term-equivalent age.
Walsh, Jennifer M; Doyle, Lex W; Anderson, Peter J; Lee, Katherine J; Cheong, Jeanie L Y
2014-10-01
To compare the size of multiple brain structures, maturation in terms of both brain myelination and gyral development, and evidence of brain injury between moderate and late preterm (MLPT) and term-born infants at term-equivalent age. The study was approved by the human research ethics committees of the participating hospitals, and informed parental consent was obtained for all infants. One hundred ninety-nine MLPT and 50 term-born infants underwent 3-T magnetic resonance (MR) imaging brain examinations at 38-44 weeks of corrected gestational age. T1- and T2-weighted MR images were compared between groups for size of multiple cerebral structures, degree of myelination in the posterior limb of the internal capsule, gyral maturation, signal intensity abnormalities, and presence of cysts by a single assessor who was blinded to the gestational group and perinatal course of the infants. Group differences were compared by using linear regression for continuous variables and logistic regression for categorical variables, and interrater and intrarater reliability was assessed by using intraclass correlation coefficients. Compared with those in the term-born control group, measurements of brain biparietal diameter, corpus callosum, basal ganglia and thalami, and cerebellum were smaller in infants in the MLPT group (all P ≤ .01), while extracerebral space was larger (P < .0001). Myelination of the posterior limb of the internal capsule was less developed, and gyral maturation was delayed in the MLPT group (both P < .001). Signal intensity abnormalities and cysts were uncommon in both groups, with 13 (6.5%) MLPT infants and one (2%) term infant having abnormalities. Inter- and intrarater reliability was good for most measures, with intraclass correlation coefficients generally greater than 0.68. MLPT birth is associated with smaller brain size, less-developed myelination of the posterior limb of the internal capsule, and more immature gyral folding than those associated with full-term birth. These brain changes may form the basis of some of the long-term neurodevelopmental deficits observed in MLPT children. Online supplemental material is available for this article. © RSNA, 2014.
NASA Astrophysics Data System (ADS)
Siddiqui, Maheen; Wedemann, Roseli S.; Jensen, Henrik Jeldtoft
2018-01-01
We explore statistical characteristics of avalanches associated with the dynamics of a complex-network model, where two modules corresponding to sensorial and symbolic memories interact, representing unconscious and conscious mental processes. The model illustrates Freud's ideas regarding the neuroses and that consciousness is related with symbolic and linguistic memory activity in the brain. It incorporates the Stariolo-Tsallis generalization of the Boltzmann Machine in order to model memory retrieval and associativity. In the present work, we define and measure avalanche size distributions during memory retrieval, in order to gain insight regarding basic aspects of the functioning of these complex networks. The avalanche sizes defined for our model should be related to the time consumed and also to the size of the neuronal region which is activated, during memory retrieval. This allows the qualitative comparison of the behaviour of the distribution of cluster sizes, obtained during fMRI measurements of the propagation of signals in the brain, with the distribution of avalanche sizes obtained in our simulation experiments. This comparison corroborates the indication that the Nonextensive Statistical Mechanics formalism may indeed be more well suited to model the complex networks which constitute brain and mental structure.
Integrated Cuing Requirements (ICR) Study: Demonstration Data Base and Users Guide.
1983-07-01
viewed with a servo-mounted televison camera and used to provide a visual scene for an observer in an ATD. Modulation: Mathematically, the absolute...i(b). CROSS REFERENCE The impact of stationary scene RESULTS. . details was also tested in this See (c) study. See Figure 33.5-1. Ial TEST APPARATUS...size. (See the discussion of * the impact of perceived distance on perceived size in Section 31._.) Figure 33.4-1 Perceived Distance and Velocity of Self
Mendelow, A. David; Rowan, Elise N.; Francis, Richard; McColl, Elaine; McNamee, Paul; Chambers, Iain R.; Unterberg, Andreas; Boyers, Dwayne; Mitchell, Patrick M.
2015-01-01
Abstract Intraparenchymal hemorrhages occur in a proportion of severe traumatic brain injury TBI patients, but the role of surgery in their treatment is unclear. This international multi-center, patient-randomized, parallel-group trial compared early surgery (hematoma evacuation within 12 h of randomization) with initial conservative treatment (subsequent evacuation allowed if deemed necessary). Patients were randomized using an independent randomization service within 48 h of TBI. Patients were eligible if they had no more than two intraparenchymal hemorrhages of 10 mL or more and did not have an extradural or subdural hematoma that required surgery. The primary outcome measure was the traditional dichotomous split of the Glasgow Outcome Scale obtained by postal questionnaires sent directly to patients at 6 months. The trial was halted early by the UK funding agency (NIHR HTA) for failure to recruit sufficient patients from the UK (trial registration: ISRCTN19321911). A total of 170 patients were randomized from 31 of 59 registered centers worldwide. Of 82 patients randomized to early surgery with complete follow-up, 30 (37%) had an unfavorable outcome. Of 85 patients randomized to initial conservative treatment with complete follow-up, 40 (47%) had an unfavorable outcome (odds ratio, 0.65; 95% confidence interval, CI 0.35, 1.21; p=0.17), with an absolute benefit of 10.5% (CI, −4.4–25.3%). There were significantly more deaths in the first 6 months in the initial conservative treatment group (33% vs. 15%; p=0.006). The 10.5% absolute benefit with early surgery was consistent with the initial power calculation. However, with the low sample size resulting from the premature termination, we cannot exclude the possibility that this could be a chance finding. A further trial is required urgently to assess whether this encouraging signal can be confirmed. PMID:25738794
Brain Tumor Epidemiology: Consensus from the Brain Tumor Epidemiology Consortium (BTEC)
Bondy, Melissa L.; Scheurer, Michael E.; Malmer, Beatrice; Barnholtz-Sloan, Jill S.; Davis, Faith G.; Il’yasova, Dora; Kruchko, Carol; McCarthy, Bridget J.; Rajaraman, Preetha; Schwartzbaum, Judith A.; Sadetzki, Siegal; Schlehofer, Brigitte; Tihan, Tarik; Wiemels, Joseph L.; Wrensch, Margaret; Buffler, Patricia A.
2010-01-01
Epidemiologists in the Brain Tumor Epidemiology Consortium (BTEC) have prioritized areas for further research. Although many risk factors have been examined over the past several decades, there are few consistent findings possibly due to small sample sizes in individual studies and differences between studies in subjects, tumor types, and methods of classification. Individual studies have generally lacked sufficient sample size to examine interactions. A major priority based on available evidence and technologies includes expanding research in genetics and molecular epidemiology of brain tumors. BTEC has taken an active role in promoting understudied groups such as pediatric brain tumors, the etiology of rare glioma subtypes, such as oligodendroglioma, and meningioma, which not uncommon, has only recently been systematically registered in the US. There is also a pressing need to bring more researchers, especially junior investigators, to study brain tumor epidemiology. However, relatively poor funding for brain tumor research has made it difficult to encourage careers in this area. We review the group’s consensus on the current state of scientific findings and present a consensus on research priorities to identify the important areas the science should move to address. PMID:18798534
Dozo, M T
1987-01-01
A natural endocranial cast which represents a complete brain of a specimen of Hapalops indifferens is described. Comparing this cast to brains of actual Tardigrada, it shows a telencephalic morphology and a pattern of neocortical sulci that resemble more the brain of Bradypus rather than that of Choloepus. The neocortical sulci homologate the lateral or corono-lateral, suprasylvian and pseudosylvian sulci. Taking into account the studies of cortical maps in Bradypus and the notable similitude of the pattern of neocortical sulci between Bradypus and H. indifferens, the possible representation of the primary sensitive and motor somatic areas, secondary sensitive somatic area, visual and auditory areas are inferred. As in Bradypus, the primary sensitive and motor somatotopic organizations would be overlapped and would not be mirror images; they would show a predominance of the area of the forelimb. The relative brain size of H. indifferens is similar or higher than that of sloths of the genus Bradypus. The close resemblance between Bradypus and Hapalops, with respect to its brain morphology and relative brain size. is congruent with the current hypothesis of the phylogenetic relations between fossil and recent Tardigrada.
The Killer Fly Hunger Games: Target Size and Speed Predict Decision to Pursuit
Wardill, Trevor J.; Knowles, Katie; Barlow, Laura; Tapia, Gervasio; Nordström, Karin; Olberg, Robert M.; Gonzalez-Bellido, Paloma T.
2015-01-01
Predatory animals have evolved to optimally detect their prey using exquisite sensory systems such as vision, olfaction and hearing. It may not be so surprising that vertebrates, with large central nervous systems, excel at predatory behaviors. More striking is the fact that many tiny insects, with their miniscule brains and scaled down nerve cords, are also ferocious, highly successful predators. For predation, it is important to determine whether a prey is suitable before initiating pursuit. This is paramount since pursuing a prey that is too large to capture, subdue or dispatch will generate a substantial metabolic cost (in the form of muscle output) without any chance of metabolic gain (in the form of food). In addition, during all pursuits, the predator breaks its potential camouflage and thus runs the risk of becoming prey itself. Many insects use their eyes to initially detect and subsequently pursue prey. Dragonflies, which are extremely efficient predators, therefore have huge eyes with relatively high spatial resolution that allow efficient prey size estimation before initiating pursuit. However, much smaller insects, such as killer flies, also visualize and successfully pursue prey. This is an impressive behavior since the small size of the killer fly naturally limits the neural capacity and also the spatial resolution provided by the compound eye. Despite this, we here show that killer flies efficiently pursue natural (Drosophila melanogaster) and artificial (beads) prey. The natural pursuits are initiated at a distance of 7.9 ± 2.9 cm, which we show is too far away to allow for distance estimation using binocular disparities. Moreover, we show that rather than estimating absolute prey size prior to launching the attack, as dragonflies do, killer flies attack with high probability when the ratio of the prey's subtended retinal velocity and retinal size is 0.37. We also show that killer flies will respond to a stimulus of an angular size that is smaller than that of the photoreceptor acceptance angle, and that the predatory response is strongly modulated by the metabolic state. Our data thus provide an exciting example of a loosely designed matched filter to Drosophila, but one which will still generate successful pursuits of other suitable prey. PMID:26398293
Sewell, Diane L.; Nacewicz, Brendon; Liu, Frances; Macvilay, Sinarack; Erdei, Anna; Lambris, John D.; Sandor, Matyas; Fabry, Zsuzsa
2016-01-01
The role of complement components in traumatic brain injury is poorly understood. Here we show that secondary damage after acute cryoinjury is significantly reduced in C3−/− or C5−/− mice or in mice treated with C5a receptor antagonist peptides. Injury sizes and neutrophil extravasation were compared. While neutrophil density increased following traumatic brain injury in wild type (C57BL/6) mice, C3-deficient mice demonstrated lower neutrophil extravasation and injury sizes in the brain. RNase protection assay indicated that C3 contributes to the induction of brain inflammatory mediators, MIF, RANTES (CCL5) and MCP-1 (CCL2). Intracranial C3 injection induced neutrophil extravasation in injured brains of C3−/− mice suggesting locally produced C3 is important in brain inflammation. We show that neutrophil extravasation is significantly reduced in both C5−/− mice and C5a receptor antagonist treated cryoinjured mice suggesting that one of the possible mechanisms of C3 effect on neutrophil extravasation is mediated via downstream complement activation products such as C5a. Our data indicates that complement inhibitors may ameliorate traumatic brain injury. PMID:15342196
Thompson, Paul M.
2016-01-01
Sex differences in brain development and aging are important to identify, as they may help to understand risk factors and outcomes in brain disorders that are more prevalent in one sex compared with the other. Brain imaging techniques have advanced rapidly in recent years, yielding detailed structural and functional maps of the living brain. Even so, studies are often limited in sample size, and inconsistent findings emerge, one example being varying findings regarding sex differences in the size of the corpus callosum. More recently, large‐scale neuroimaging consortia such as the Enhancing Neuro Imaging Genetics through Meta Analysis Consortium have formed, pooling together expertise, data, and resources from hundreds of institutions around the world to ensure adequate power and reproducibility. These initiatives are helping us to better understand how brain structure is affected by development, disease, and potential modulators of these effects, including sex. This review highlights some established and disputed sex differences in brain structure across the life span, as well as pitfalls related to interpreting sex differences in health and disease. We also describe sex‐related findings from the ENIGMA consortium, and ongoing efforts to better understand sex differences in brain circuitry. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc. PMID:27870421
Guo, Bing-bing; Zheng, Xiao-lin; Lu, Zhen-gang; Wang, Xing; Yin, Zheng-qin; Hou, Wen-sheng; Meng, Ming
2015-01-01
Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only “see” pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex (the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine (LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern. PMID:26692860
Intermodal Attention Shifts in Multimodal Working Memory.
Katus, Tobias; Grubert, Anna; Eimer, Martin
2017-04-01
Attention maintains task-relevant information in working memory (WM) in an active state. We investigated whether the attention-based maintenance of stimulus representations that were encoded through different modalities is flexibly controlled by top-down mechanisms that depend on behavioral goals. Distinct components of the ERP reflect the maintenance of tactile and visual information in WM. We concurrently measured tactile (tCDA) and visual contralateral delay activity (CDA) to track the attentional activation of tactile and visual information during multimodal WM. Participants simultaneously received tactile and visual sample stimuli on the left and right sides and memorized all stimuli on one task-relevant side. After 500 msec, an auditory retrocue indicated whether the sample set's tactile or visual content had to be compared with a subsequent test stimulus set. tCDA and CDA components that emerged simultaneously during the encoding phase were consistently reduced after retrocues that marked the corresponding (tactile or visual) modality as task-irrelevant. The absolute size of cue-dependent modulations was similar for the tCDA/CDA components and did not depend on the number of tactile/visual stimuli that were initially encoded into WM. Our results suggest that modality-specific maintenance processes in sensory brain regions are flexibly modulated by top-down influences that optimize multimodal WM representations for behavioral goals.
Carlesimo, Giovanni A; Bonanni, Rita; Caltagirone, Carlo
2003-05-01
This study investigated the hypothesis that brain damaged patients with memory disorder are poorer at remembering the semantic than the perceptual attributes of information. Eight patients with memory impairment of different etiology and 24 patients with chronic consequences of severe closed-head injury were compared to similarly sized age- and literacy-matched normal control groups on recognition tests for the physical aspect and the semantic identity of words and pictures lists. In order to avoid interpretative problems deriving from different absolute levels of performance, study conditions were manipulated across subjects to obtain comparable accuracy on the perceptual recognition tests in the memory disordered and control groups. The results of the Picture Recognition test were consistent with the hypothesis. Indeed, having more time for the stimulus encoding, the two memory disordered groups performed at the same level as the normal subjects on the perceptual test but significantly lower on the semantic test. Instead, on the Word Recognition test, following study condition manipulation, patients and controls performed similarly on both the perceptual and the semantic tests. These data only partially support the hypothesis of the study; rather they suggest that in memory disordered patients there is a reduction of the advantage, exhibited by normal controls, of retrieving pictures over words (picture superiority effect).
NASA Astrophysics Data System (ADS)
Hallacoglu, Bertan; Sassaroli, Angelo; Wysocki, Michael; Guerrero-Berroa, Elizabeth; Schnaider Beeri, Michal; Haroutunian, Vahram; Shaul, Merav; Rosenberg, Irwin H.; Troen, Aron M.; Fantini, Sergio
2012-08-01
We present near-infrared spectroscopy measurement of absolute cerebral hemoglobin concentration and saturation in a large sample of 36 healthy elderly (mean age, 85±6 years) and 19 young adults (mean age, 28±4 years). Non-invasive measurements were obtained on the forehead using a commercially available multi-distance frequency-domain system and analyzed using a diffusion theory model for a semi-infinite, homogeneous medium with semi-infinite boundary conditions. Our study included repeat measurements, taken five months apart, on 16 elderly volunteers that demonstrate intra-subject reproducibility of the absolute measurements with cross-correlation coefficients of 0.9 for absorption coefficient (μa), oxy-hemoglobin concentration ([HbO2]), and total hemoglobin concentration ([HbT]), 0.7 for deoxy-hemoglobin concentration ([Hb]), 0.8 for hemoglobin oxygen saturation (StO2), and 0.7 for reduced scattering coefficient (). We found significant differences between the two age groups. Compared to young subjects, elderly subjects had lower cerebral [HbO2], [Hb], [HbT], and StO2 by 10±4 μM, 4±3 μM, 14±5 μM, and 6%±5%, respectively. Our results demonstrate the reliability and robustness of multi-distance near-infrared spectroscopy measurements based on a homogeneous model in the human forehead on a large sample of human subjects. Absolute, non-invasive optical measurements on the brain, such as those presented here, can significantly advance the development of NIRS technology as a tool for monitoring resting/basal cerebral perfusion, hemodynamics, oxygenation, and metabolism.
Hallacoglu, Bertan; Sassaroli, Angelo; Wysocki, Michael; Guerrero-Berroa, Elizabeth; Schnaider Beeri, Michal; Haroutunian, Vahram; Shaul, Merav; Rosenberg, Irwin H; Troen, Aron M; Fantini, Sergio
2012-08-01
We present near-infrared spectroscopy measurement of absolute cerebral hemoglobin concentration and saturation in a large sample of 36 healthy elderly (mean age, 85 ± 6 years) and 19 young adults (mean age, 28 ± 4 years). Non-invasive measurements were obtained on the forehead using a commercially available multi-distance frequency-domain system and analyzed using a diffusion theory model for a semi-infinite, homogeneous medium with semi-infinite boundary conditions. Our study included repeat measurements, taken five months apart, on 16 elderly volunteers that demonstrate intra-subject reproducibility of the absolute measurements with cross-correlation coefficients of 0.9 for absorption coefficient (μa), oxy-hemoglobin concentration ([HbO2]), and total hemoglobin concentration ([HbT]), 0.7 for deoxy-hemoglobin concentration ([Hb]), 0.8 for hemoglobin oxygen saturation (StO2), and 0.7 for reduced scattering coefficient (μ's). We found significant differences between the two age groups. Compared to young subjects, elderly subjects had lower cerebral [HbO2], [Hb], [HbT], and StO2 by 10 ± 4 μM, 4 ± 3 μM, 14 ± 5 μM, and 6%±5%, respectively. Our results demonstrate the reliability and robustness of multi-distance near-infrared spectroscopy measurements based on a homogeneous model in the human forehead on a large sample of human subjects. Absolute, non-invasive optical measurements on the brain, such as those presented here, can significantly advance the development of NIRS technology as a tool for monitoring resting/basal cerebral perfusion, hemodynamics, oxygenation, and metabolism.
Rommel, Anna-Sophie; Kitsune, Glenn L; Michelini, Giorgia; Hosang, Georgina M; Asherson, Philip; McLoughlin, Gráinne; Brandeis, Daniel; Kuntsi, Jonna
2016-11-01
While attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BD) denote distinct psychiatric conditions, diagnostic delineation is impeded by considerable symptomatic overlap. Direct comparisons across ADHD and BD on neurophysiological measures are limited. They could inform us on impairments that are specific to or shared between the disorders and, therefore, potential biomarkers that may aid in the identification of the diagnostic boundaries. Our aim was to test whether quantitative EEG (QEEG) identifies differences or similarities between women with ADHD and women with BD during resting-state and task conditions. QEEG activity was directly compared between 20 ADHD, 20 BD and 20 control women during an eyes-open resting-state condition (EO) and a cued continuous performance task (CPT-OX). Both ADHD (t 38 = 2.50, p = 0.017) and BD (t 38 = 2.54, p = 0.018) participants showed higher absolute theta power during EO than controls. No significant differences emerged between the two clinical groups. While control participants showed a task-related increase in absolute theta power from EO to CPT-OX (t 19 = -3.77, p = 0.001), no such change in absolute theta power was observed in the ADHD (t 19 = -0.605, p = 0.553) or BD (t 19 = 1.82, p = 0.084) groups. Our results provide evidence for commonalities in brain dysfunction between ADHD and BD. Absolute theta power may play a role as a marker of neurobiological processes in both disorders.
Reardon, Cillian; Tobin, Daniel P.; Delahunt, Eamonn
2015-01-01
A number of studies have used GPS technology to categorise rugby union locomotive demands. However, the utility of the results of these studies is confounded by small sample sizes, sub-elite player status and the global application of absolute speed thresholds to all player positions. Furthermore, many of these studies have used GPS units with low sampling frequencies. The aim of the present study was to compare and contrast the high speed running (HSR) demands of professional rugby union when utilizing micro-technology units sampling at 10 Hz and applying relative or individualised speed zones. The results of this study indicate that application of individualised speed zones results in a significant shift in the interpretation of the HSR demands of both forwards and backs and positional sub-categories therein. When considering the use of an absolute in comparison to an individualised HSR threshold, there was a significant underestimation for forwards of HSR distance (HSRD) (absolute = 269 ± 172.02, individualised = 354.72 ± 99.22, p < 0.001), HSR% (absolute = 5.15 ± 3.18, individualised = 7.06 ± 2.48, p < 0.001) and HSR efforts (HSRE) (absolute = 18.81 ± 12.25; individualised = 24.78 ± 8.30, p < 0.001). In contrast, there was a significant overestimation of the same HSR metrics for backs with the use of an absolute threshold (HSRD absolute = 697.79 ± 198.11, individualised = 570.02 ± 171.14, p < 0.001; HSR% absolute = 10.85 ± 2.82, individualised = 8.95 ± 2.76, p < 0.001; HSRE absolute = 41.55 ± 11.25; individualised = 34.54 ± 9.24, p < 0.001). This under- or overestimation associated with an absolute speed zone applies to varying degrees across the ten positional sub-categories analyzed and also to individuals within the same positional sub-category. The results of the present study indicated that although use of an individulised HSR threshold improves the interpretation of the HSR demands on a positional basis, inter-individual variability in maximum velocity within positional sub-categories means that players need to be considered on an individual basis to accurately gauge the HSR demands of rugby union. PMID:26208315
A study of the Huntington's disease associated trinucleotide repeat in the Scottish population.
Barron, L H; Warner, J P; Porteous, M; Holloway, S; Simpson, S; Davidson, R; Brock, D J
1993-01-01
Accurate measurements of a specific CAG repeat sequence in the Huntington's disease (HD) gene in 337 HD patients and 229 normal controls from the Scottish population showed a range from 35 to 62 repeats in affected subjects and eight to 33 in normal subjects. A link between early onset of symptoms and very high repeat number was seen. For HD patients with the most common affected allele sizes (39 to 42 repeats) absolute repeat size was a poor index for the age at onset of symptoms. There was variability in the transmitted repeat size for both sexes in the HD size range. We observed a significant increase of repeat size for paternal transmission of the disease and greater instability for paternally transmitted CAG repeats in the HD size range. Images PMID:8133495
Froud, Robert; Bjørkli, Tom; Bright, Philip; Rajendran, Dévan; Buchbinder, Rachelle; Underwood, Martin; Evans, David; Eldridge, Sandra
2015-11-30
Low back pain is a common and costly health complaint for which there are several moderately effective treatments. In some fields there is evidence that funder and financial conflicts are associated with trial outcomes. It is not clear whether effect sizes in back pain trials relate to journal impact factor, reporting conflicts of interest, or reporting funding. We performed a systematic review of English-language papers reporting randomised controlled trials of treatments for non-specific low back pain, published between 2006-2012. We modelled the relationship using 5-year journal impact factor, and categories of reported of conflicts of interest, and categories of reported funding (reported none and reported some, compared to not reporting these) using meta-regression, adjusting for sample size, and publication year. We also considered whether impact factor could be predicted by the direction of outcome, or trial sample size. We could abstract data to calculate effect size in 99 of 146 trials that met our inclusion criteria. Effect size is not associated with impact factor, reporting of funding source, or reporting of conflicts of interest. However, explicitly reporting 'no trial funding' is strongly associated with larger absolute values of effect size (adjusted β=1.02 (95 % CI 0.44 to 1.59), P=0.001). Impact factor increases by 0.008 (0.004 to 0.012) per unit increase in trial sample size (P<0.001), but does not differ by reported direction of the LBP trial outcome (P=0.270). The absence of associations between effect size and impact factor, reporting sources of funding, and conflicts of interest reflects positively on research and publisher conduct in the field. Strong evidence of a large association between absolute magnitude of effect size and explicit reporting of 'no funding' suggests authors of unfunded trials are likely to report larger effect sizes, notwithstanding direction. This could relate in part to quality, resources, and/or how pragmatic a trial is.
Zhou, R; Liu, B; Lin, K; Wang, R; Qin, Z; Liao, R; Qiu, Y
2015-07-01
Extracorporeal membrane oxygenation (ECMO) may offer life-saving treatment in severe pulmonary contusion or acute respiratory distress syndrome when conventional treatments have failed. However, because of the bleeding risk of systemic anticoagulation, ECMO should be performed only as a last resort in multiple trauma victims. Here, we report ECMO as a bridge for right main bronchus reconstruction and recovery of traumatic wet lung in a 31-year-old male multi-trauma patient with right main bronchial disruption, bilateral pulmonary contusion, cerebral contusion and long bone fracture. The patient was discharged without any obvious complication. ECMO support in a traumatic brain injured patient with severe hypoxemia caused by lung contusion and/or tracheal bronchus disruption is not an absolute contraindication. © The Author(s) 2014.
Ballarin, Cristina; Povinelli, Michele; Granato, Alberto; Panin, Mattia; Corain, Livio; Peruffo, Antonella; Cozzi, Bruno
2016-01-01
The domestic bovine Bos taurus is raised worldwide for meat and milk production, or even for field work. However the functional anatomy of its central nervous system has received limited attention and most of the reported data in textbooks and reviews are derived from single specimens or relatively old literature. Here we report information on the brain of Bos taurus obtained by sampling 158 individuals, 150 of which at local abattoirs and 8 in the dissecting room, these latter subsequently formalin-fixed. Using body weight and fresh brain weight we calculated the Encephalization Quotient (EQ), and Cerebellar Quotient (CQ). Formalin-fixed brains sampled in the necropsy room were used to calculate the absolute and relative weight of the major components of the brain. The data that we obtained indicate that the domestic bovine Bos taurus possesses a large, convoluted brain, with a slightly lower weight than expected for an animal of its mass. Comparisons with other terrestrial and marine members of the order Cetartiodactyla suggested close similarity with other species with the same feeding adaptations, and with representative baleen whales. On the other hand differences with fish-hunting toothed whales suggest separate evolutionary pathways in brain evolution. Comparison with the other large domestic herbivore Equus caballus (belonging to the order Perissodactyla) indicates that Bos taurus underwent heavier selection of bodily traits, which is also possibly reflected in a comparatively lower EQ than in the horse. The data analyzed suggest that the brain of domestic bovine is potentially interesting for comparative neuroscience studies and may represents an alternative model to investigate neurodegeneration processes.
Nitzsche, Björn; Frey, Stephen; Collins, Louis D.; Seeger, Johannes; Lobsien, Donald; Dreyer, Antje; Kirsten, Holger; Stoffel, Michael H.; Fonov, Vladimir S.; Boltze, Johannes
2015-01-01
Standard stereotaxic reference systems play a key role in human brain studies. Stereotaxic coordinate systems have also been developed for experimental animals including non-human primates, dogs, and rodents. However, they are lacking for other species being relevant in experimental neuroscience including sheep. Here, we present a spatial, unbiased ovine brain template with tissue probability maps (TPM) that offer a detailed stereotaxic reference frame for anatomical features and localization of brain areas, thereby enabling inter-individual and cross-study comparability. Three-dimensional data sets from healthy adult Merino sheep (Ovis orientalis aries, 12 ewes and 26 neutered rams) were acquired on a 1.5 T Philips MRI using a T1w sequence. Data were averaged by linear and non-linear registration algorithms. Moreover, animals were subjected to detailed brain volume analysis including examinations with respect to body weight (BW), age, and sex. The created T1w brain template provides an appropriate population-averaged ovine brain anatomy in a spatial standard coordinate system. Additionally, TPM for gray (GM) and white (WM) matter as well as cerebrospinal fluid (CSF) classification enabled automatic prior-based tissue segmentation using statistical parametric mapping (SPM). Overall, a positive correlation of GM volume and BW explained about 15% of the variance of GM while a positive correlation between WM and age was found. Absolute tissue volume differences were not detected, indeed ewes showed significantly more GM per bodyweight as compared to neutered rams. The created framework including spatial brain template and TPM represent a useful tool for unbiased automatic image preprocessing and morphological characterization in sheep. Therefore, the reported results may serve as a starting point for further experimental and/or translational research aiming at in vivo analysis in this species. PMID:26089780
Rudrabhatla, Parvathi; Grant, Philip; Jaffe, Howard; Strong, Michael J; Pant, Harish C
2010-11-01
Aberrant hyperphosphorylation of neuronal cytoskeletal proteins is one of the major pathological hallmarks of neurodegenerative disorders such as Alzheimer disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Human NF-M/H display a large number of multiple KSP repeats in the carboxy-terminal tail domain, which are phosphorylation sites of proline-directed serine/threonine (pSer/Thr-Pro, KS/T-P) kinases. The phosphorylation sites of NF-M/H have not been characterized in AD brain. Here, we use quantitative phosphoproteomic methodology, isobaric tag for relative and absolute quantitation (iTRAQ), for the characterization of NF-M/H phosphorylation sites in AD brain. We identified 13 hyperphosphorylated sites of NF-M; 9 Lys-Ser-Pro (KSP) sites; 2 variant motifs, Glu-Ser-Pro (ESP) Ser-736 and Leu-Ser-Pro (LSP) Ser-837; and 2 non-S/T-P motifs, Ser-783 and Ser-788. All the Ser/Thr residues are phosphorylated at significantly greater abundance in AD brain compared with control brain. Ten hyperphosphorylated KSP sites have been identified on the C-terminal tail domain of NF-H, with greater abundance of phosphorylation in AD brain compared with control brain. Our data provide the direct evidence that NF-M/H are hyperphosphorylated in AD compared with control brain and suggest the role of both proline-directed and non-proline-directed protein kinases in AD. This study represents the first comprehensive iTRAQ analyses and quantification of phosphorylation sites of human NF-M and NF-H from AD brain and suggests that aberrant hyperphosphorylation of neuronal intermediate filament proteins is involved in AD.
Ballarin, Cristina; Povinelli, Michele; Granato, Alberto; Panin, Mattia; Corain, Livio; Peruffo, Antonella; Cozzi, Bruno
2016-01-01
The domestic bovine Bos taurus is raised worldwide for meat and milk production, or even for field work. However the functional anatomy of its central nervous system has received limited attention and most of the reported data in textbooks and reviews are derived from single specimens or relatively old literature. Here we report information on the brain of Bos taurus obtained by sampling 158 individuals, 150 of which at local abattoirs and 8 in the dissecting room, these latter subsequently formalin-fixed. Using body weight and fresh brain weight we calculated the Encephalization Quotient (EQ), and Cerebellar Quotient (CQ). Formalin-fixed brains sampled in the necropsy room were used to calculate the absolute and relative weight of the major components of the brain. The data that we obtained indicate that the domestic bovine Bos taurus possesses a large, convoluted brain, with a slightly lower weight than expected for an animal of its mass. Comparisons with other terrestrial and marine members of the order Cetartiodactyla suggested close similarity with other species with the same feeding adaptations, and with representative baleen whales. On the other hand differences with fish-hunting toothed whales suggest separate evolutionary pathways in brain evolution. Comparison with the other large domestic herbivore Equus caballus (belonging to the order Perissodactyla) indicates that Bos taurus underwent heavier selection of bodily traits, which is also possibly reflected in a comparatively lower EQ than in the horse. The data analyzed suggest that the brain of domestic bovine is potentially interesting for comparative neuroscience studies and may represents an alternative model to investigate neurodegeneration processes. PMID:27128674
A new Homo erectus (Zhoukoudian V) brain endocast from China.
Wu, Xiujie; Schepartz, Lynne A; Liu, Wu
2010-01-22
A new Homo erectus endocast, Zhoukoudian (ZKD) V, is assessed by comparing it with ZKD II, ZKD III, ZKD X, ZKD XI, ZKD XII, Hexian, Trinil II, Sambungmacan (Sm) 3, Sangiran 2, Sangiran 17, KNM-ER 3733, KNM-WT 15 000, Kabwe, Liujiang and 31 modern Chinese. The endocast of ZKD V has an estimated endocranial volume of 1140 ml. As the geological age of ZKD V is younger than the other ZKD H. erectus, evolutionary changes in brain morphology are evaluated. The brain size of the ZKD specimens increases slightly over time. Compared with the other ZKD endocasts, ZKD V shows important differences, including broader frontal and occipital lobes, some indication of fuller parietal lobes, and relatively large brain size that reflect significant trends documented in later hominin brain evolution. Bivariate and principal component analyses indicate that geographical variation does not characterize the ZKD, African and other Asian specimens. The ZKD endocasts share some common morphological and morphometric features with other H. erectus endocasts that distinguish them from Homo sapiens.
Human induced rotation and reorganization of the brain of domestic dogs.
Roberts, Taryn; McGreevy, Paul; Valenzuela, Michael
2010-07-26
Domestic dogs exhibit an extraordinary degree of morphological diversity. Such breed-to-breed variability applies equally to the canine skull, however little is known about whether this translates to systematic differences in cerebral organization. By looking at the paramedian sagittal magnetic resonance image slice of canine brains across a range of animals with different skull shapes (N = 13), we found that the relative reduction in skull length compared to width (measured by Cephalic Index) was significantly correlated to a progressive ventral pitching of the primary longitudinal brain axis (r = 0.83), as well as with a ventral shift in the position of the olfactory lobe (r = 0.81). Furthermore, these findings were independent of estimated brain size or body weight. Since brachycephaly has arisen from generations of highly selective breeding, this study suggests that the remarkable diversity in domesticated dogs' body shape and size appears to also have led to human-induced adaptations in the organization of the canine brain.
Martin Cichy, Radoslaw; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude
2017-06-01
Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes at ~100ms, we found a marker of real-world scene size, i.e. spatial layout processing, at ~250ms indexing neural representations robust to changes in unrelated scene properties and viewing conditions. For a quantitative model of how scene size representations may arise in the brain, we compared MEG data to a deep neural network model trained on scene classification. Representations of scene size emerged intrinsically in the model, and resolved emerging neural scene size representation. Together our data provide a first description of an electrophysiological signal for layout processing in humans, and suggest that deep neural networks are a promising framework to investigate how spatial layout representations emerge in the human brain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification.
Guan, Weihua; Chen, Liben; Rane, Tushar D; Wang, Tza-Huei
2015-09-03
We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without reverse transcription and PCR amplification processes. The magnetic beads are subsequently encapsulated into a large number of picoliter-sized droplets with enzyme substrates in a continuous-flow device. This device is capable of generating droplets at high-throughput. It also integrates in-line enzymatic incubation and detection of fluorescent products. Our droplet digital ELOHA is able to accurately quantify (differentiate 40% difference) as few as ~600 RNA molecules in a 1 mL sample (equivalent to 1 aM or lower) without molecular replication. The absolute quantification ability of droplet digital ELOHA is demonstrated with the analysis of clinical Neisseria gonorrhoeae 16S rRNA to show its potential value in real complex samples.
NASA Technical Reports Server (NTRS)
Thome, Kurtis; Barnes, Robert; Baize, Rosemary; O'Connell, Joseph; Hair, Jason
2010-01-01
The Climate Absolute Radiance and Refractivity Observatory (CLARREO) plans to observe climate change trends over decadal time scales to determine the accuracy of climate projections. The project relies on spaceborne earth observations of SI-traceable variables sensitive to key decadal change parameters. The mission includes a reflected solar instrument retrieving at-sensor reflectance over the 320 to 2300 nm spectral range with 500-m spatial resolution and 100-km swath. Reflectance is obtained from the ratio of measurements of the earth s surface to those while viewing the sun relying on a calibration approach that retrieves reflectance with uncertainties less than 0.3%. The calibration is predicated on heritage hardware, reduction of sensor complexity, adherence to detector-based calibration standards, and an ability to simulate in the laboratory on-orbit sources in both size and brightness to provide the basis of a transfer to orbit of the laboratory calibration including a link to absolute solar irradiance measurements.
Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification
Guan, Weihua; Chen, Liben; Rane, Tushar D.; Wang, Tza-Huei
2015-01-01
We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without reverse transcription and PCR amplification processes. The magnetic beads are subsequently encapsulated into a large number of picoliter-sized droplets with enzyme substrates in a continuous-flow device. This device is capable of generating droplets at high-throughput. It also integrates in-line enzymatic incubation and detection of fluorescent products. Our droplet digital ELOHA is able to accurately quantify (differentiate 40% difference) as few as ~600 RNA molecules in a 1 mL sample (equivalent to 1 aM or lower) without molecular replication. The absolute quantification ability of droplet digital ELOHA is demonstrated with the analysis of clinical Neisseria gonorrhoeae 16S rRNA to show its potential value in real complex samples. PMID:26333806
Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification
NASA Astrophysics Data System (ADS)
Guan, Weihua; Chen, Liben; Rane, Tushar D.; Wang, Tza-Huei
2015-09-01
We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without reverse transcription and PCR amplification processes. The magnetic beads are subsequently encapsulated into a large number of picoliter-sized droplets with enzyme substrates in a continuous-flow device. This device is capable of generating droplets at high-throughput. It also integrates in-line enzymatic incubation and detection of fluorescent products. Our droplet digital ELOHA is able to accurately quantify (differentiate 40% difference) as few as ~600 RNA molecules in a 1 mL sample (equivalent to 1 aM or lower) without molecular replication. The absolute quantification ability of droplet digital ELOHA is demonstrated with the analysis of clinical Neisseria gonorrhoeae 16S rRNA to show its potential value in real complex samples.
NASA Astrophysics Data System (ADS)
Dekdouk, B.; Ktistis, C.; Armitage, D. W.; Peyton, A. J.
2010-04-01
Magnetic induction tomography (MIT) has been proposed as a possible method for imaging stroke in the human brain. Hemorrhagic stroke is characterized by local blood accumulation in the brain and exhibits a greater change in conductivity with frequency compared to other tissues which is observed in the frequency range of interest [1-10] MHz. In this study, we investigate the feasibility of detecting hemorrhagic stroke using absolute and frequency difference imaging. For this purpose, a model of the head originally obtained from MRI and X-ray data was used, to which a large stroke (50 ml) was added. In addition, a model of a 16 channel circular array MIT system was employed. The received coil induced voltages were computed using a custom eddy current solver, based on the finite difference method. For absolute imaging, the induced voltages at the receiver coils were calculated from various coil combinations at 10 MHz frequency together with anticipated systematic errors and biases (orientation and displacement of the coils, movement of the head). The induced voltage noise due to these systematic inaccuracies was compared with the voltage change due to the stroke. In order to decrease the impact of this noise, frequency difference was also considered, whereby measurements were performed at another frequency (1MHz) and subtracted. Comparison results are presented and a realistic picture is delivered with to regard the required mechanical stability and electronics accuracy for this particular medical application
Cope, Thomas E; Grube, Manon; Mandal, Arnab; Cooper, Freya E; Brechany, Una; Burn, David J; Griffiths, Timothy D
2014-05-01
Bilateral, high-frequency stimulation of the basal ganglia (STN-DBS) is in widespread use for the treatment of the motor symptoms of Parkinson׳s disease (PD). We present here the first psychophysical investigation of the effect of STN-DBS upon perceptual timing in the hundreds of milliseconds range, with both duration-based (absolute) and beat-based (relative) tasks; 13 patients with PD were assessed with their STN-DBS 'on', 'off', and then 'on' again. Paired parametric analyses revealed no statistically significant differences for any task according to DBS status. We demonstrate, from the examination of confidence intervals, that any functionally relevant effect of STN-DBS on relative perceptual timing is statistically unlikely. For absolute, duration-based timing, we demonstrate that the activation of STN-DBS may either worsen performance or have no effect, but that it is unlikely to lead to significant improvement. Although these results are negative they have important implications for our understanding of perceptual timing and its relationship to motor functions within the timing network of the brain. They imply that the mechanisms involved in the perceptual processing of temporal information are likely to be functionally independent from those that underpin movement. Further, they suggest that the connections between STN and the subtantia nigra and globus pallidus are unlikely to be critical to beat-based perceptual timing. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.