Science.gov

Sample records for absolute bunch length

  1. Absolute Bunch Length Measurements by Incoherent Radiation Fluctuation Analysis

    SciTech Connect

    Sannibale, F.; Stupakov, G.V.; Zolotorev, M.S.; Filippetto, D.; Jagerhofer, L.; /Vienna, Tech. U.

    2009-12-09

    By analyzing the pulse to pulse intensity fluctuations of the radiation emitted by a charge particle in the incoherent part of the spectrum, it is possible to extract information about the spatial distribution of the beam. At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory, we have developed and successfully tested a simple scheme based on this principle that allows for the absolute measurement of the rms bunch length. A description of the method and the experimental results are presented.

  2. Absolute bunch length measurements by incoherent radiation fluctuation analysis

    SciTech Connect

    Sannibale, Fernando; Stupakov, Gennady; Zolotorev, Max; Filippetto, Daniele; Jagerhofer, Lukas

    2008-09-29

    By analyzing the pulse to pulse intensity fluctuations of the radiation emitted by a charge particle in the incoherent part of the spectrum, it is possible to extract information about the spatial distribution of the beam. At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory, we have developed and successfully tested a simple scheme based on this principle that allows for the absolute measurement of the rms bunch length. A description of the method and the experimental results are presented.

  3. Absolute Bunch Length Measurements at the ALS by Incoherent Synchrotron Radiation Fluctuation Analysis

    SciTech Connect

    Filippetto, D.; Sannibale, F.; Zolotorev, Max Samuil; Stupakov, G.V.; /SLAC

    2008-01-24

    By analyzing the pulse to pulse intensity fluctuations of the radiation emitted by a charge particle in the incoherent part of the spectrum, it is possible to extract information about the spatial distribution of the beam. At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory, we have developed and tested a simple scheme based on this principle that allows for the absolute measurement of the bunch length. A description of the method and the experimental results are presented.

  4. ABSOLUTE BUNCH LENGTH MEASUREMENTS AT THE ALS BY INCOHERENTSYNCHROTRON RADIATION FLUCTUATION ANALYSIS

    SciTech Connect

    Sannibale, Fernando; Zolotorev, Max S.; Filippetto, Daniele; Stupakov, Gennady V.

    2007-06-22

    By analysing the pulse to pulse intensity fluctuations ofthe radiation emitted by a charge particle in the incoherent part of thespectrum, it is possible to extract information about the spatialdistribution of the beam. At the Advanced Light Source (ALS) of theLawrence Berkeley National Laboratory, we have developed and tested asimple scheme based on this principle that allows for the absolutemeasurement of the bunch length. A description of the method and theexperimental results are presented.

  5. Overview of bunch length measurements.

    SciTech Connect

    Lumpkin, A. H.

    1999-02-19

    An overview of particle and photon beam bunch length measurements is presented in the context of free-electron laser (FEL) challenges. Particle-beam peak current is a critical factor in obtaining adequate FEL gain for both oscillators and self-amplified spontaneous emission (SASE) devices. Since measurement of charge is a standard measurement, the bunch length becomes the key issue for ultrashort bunches. Both time-domain and frequency-domain techniques are presented in the context of using electromagnetic radiation over eight orders of magnitude in wavelength. In addition, the measurement of microbunching in a micropulse is addressed.

  6. Bunch length measurements using synchrotron ligth monitor

    SciTech Connect

    Ahmad, Mahmoud; Tiefenback, Michael G.

    2015-09-01

    The bunch length is measured at CEBAF using an invasive technique. The technique depends on applying an energy chirp for the electron bunch and imaging it through a dispersive region. The measurements are taken through Arc1 and Arc2 at CEBAF. The fundamental equations, procedure and the latest results are given.

  7. Bunch Length Measurements at JLab FEL

    SciTech Connect

    P. Evtushenko; J. L. Coleman; K. Jordan; J. M. Klopf; G. Neil; G. P. Williams

    2006-09-01

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years. This diagnostic can be used only in the pulsed beam mode. It is our goal to run FEL with CW beam and 74.85 MHz micropulse repetition rate. Hence it is very desirable to have the possibility of doing the bunch length measurements when running CW beam with any micropulse frequency. We use a Fourier transform infrared interferometer, which is essentially a Michelson interferometer, to measure the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides the bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with the data obtained by the Martin-Puplett interferometer. Results of the two diagnostics are usually agree within 15%. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.

  8. Analysis on Achieving a Minimum Bunch Length in LCLS Bunch Compressor One

    SciTech Connect

    Sun, Yipeng; Huang, Zhirong; Ding, Yuantao; Wu, Juhao; /SLAC

    2011-08-19

    An ultra-short bunch is required by different applications in many aspects. In this paper, the condition to achieve a minimum bunch length at the Linac Coherent Light Source (LCLS) [1] bunch compressor one (BC1) is analyzed analytically and evaluated by simulation. The space charge, wake field and coherent synchrotron radiation (CSR) effects are not discussed here.

  9. First bunch length studies in the SLC South Final Focus

    SciTech Connect

    Zimmerman, F.; Yocky, G.; Whittum, D.H.; Thompson, K.A.; Ng, C.; McCormick, D.; Markiewicz, T.; Bane, K.L.F.

    1998-06-01

    The authors report the first studies of bunch length in collision in an operating linear collider, making use of a new rf bunch length monitor installed in the South Final Focus of the Stanford Linear Collider (SLC) prior to the 1997/98 luminosity run. The theoretical and measured monitor responses to linac injection phase and bunch compressor voltage are described. Correlations with beamstrahlung and luminosity are discussed.

  10. Electron bunch length measurement at the Vanderbilt FEL

    SciTech Connect

    Amirmadhi, F.; Brau, C.A.; Mendenhall, M.

    1995-12-31

    During the past few years, a number of experiments have been performed to demonstrate the possibility to extract the longitudinal charge distribution from spectroscopic measurements of the coherent far-infrared radiation emitted as transition radiation or synchrotron radiation. Coherent emission occurs in a spectral region where the wavelength is comparable to or longer than the bunch length, leading to an enhancement of the radiation intensity that is on the order of the number of particles per bunch, as compared to incoherent radiation. This technique is particularly useful in the region of mm and sub-mm bunch lengths, a range where streak-cameras cannot be used for beam diagnostics due to their limited time resolution. Here we report on experiments that go beyond the proof of principle of this technique by applying it to the study and optimization of FEL performance. We investigated the longitudinal bunch length of the Vanderbilt FEL by analyzing the spectrum of coherent transition radiation emitted by the electron bunches. By monitoring the bunch length while applying a bunch-compression technique, the amount of the compression could be easily observed. This enabled us to perform a systematic study of the FEL performance, especially gain and optical pulse width, as a function of the longitudinal electron distribution in the bunch. The results of this study will be presented and discussed.

  11. Material Effects and Detector Response Corrections for Bunch Length Measurements

    SciTech Connect

    Zacherl, W.; Blumenfeld, I.; Berry, M.; Decker, F.-J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.; Kirby, N.; Siemann, R.; Walz, D.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2007-06-28

    A typical diagnostic used to determine the bunch length of ultra-short electron bunches is the auto-correlation of coherent transition radiation. This technique can produce artificially short bunch length results due to the attenuation of low frequency radiation if corrections for the material properties of the Michelson interferometer and detector response are not made. Measurements were taken using FTIR spectroscopy to determine the absorption spectrum of various materials and the response of a Molectron P1-45 pyroelectric detector. The material absorption data will be presented and limitations on the detector calibration discussed.

  12. Bunch-Length Measurements in PEP-II

    SciTech Connect

    Fisher, Alan S.; Novokhatski, A.; Turner, J.L.; Wienands, U.; Yocky, G.; Holtzapple, Robert; /Alfred U.

    2005-06-10

    We measured the lengths of colliding e{sup +}e{sup -} bunches in the PEP-II B Factory at SLAC using various techniques. First, at several RF voltages and with both single-bunch and multibunch beams, a synchroscan streak camera measured synchrotron emission through a narrow blue filter. With 3.8 MV of RF, the length of a single positron bunch was 12 mm at low current, rising to 13 mm at 1.5 mA and 14.8 mm at 3 mA. The electrons measured 12.2 mm at 16 MV with little current dependence. Both are longer than the expected low-current value of 10 mm (e{sup +}) and 10.5 mm (e{sup -}), derived from the energy spread and the measured synchrotron tune. We also determined the length for multibunch fills from measurements between 2 and 13 GHz of the bunch spectrum on a BPM button. After correcting for the frequency dependence of cable attenuation, we fitted the measured spectrum to that of a Gaussian bunch. At 3.8 MV, the positron measurement gave 13.2 mm at 1.5 mA/bunch in a full ring, shorter than the 15.6 mm found with the streak camera under these conditions, but we found 11.4 mm for the electrons at 16.7 MV and 1 mA/bunch, in good agreement with the 11 mm from multibunch streak measurements.

  13. Bunch Length Measurements With Laser/SR Cross-Correlation

    SciTech Connect

    Miller, Timothy; Daranciang, Dan; Lindenberg, Aaron; Corbett, Jeff; Fisher, Alan; Goodfellow, John; Huang, Xiaobiao; Mok, Walter; Safranek, James; Wen, Haidan; /SLAC

    2012-07-06

    By operating SPEAR3 in low-{alpha} mode the storage ring can generate synchrotron radiation pulses of order 1ps. Applications include pump-probe x-ray science and the production of THz radiation in the CSR regime. Measurements of the bunch length are difficult, however, because the light intensity is low and streak cameras typically provide resolution of only a few ps. Tests are now underway to resolve the short bunch length using cross-correlation between a 60-fs Ti:Sapphire laser and the visible SR beam in a BBO crystal. In this paper we report on the experimental setup, preliminary measurements and prospects for further improvement.

  14. Harmonically resonant cavity as a bunch-length monitor

    NASA Astrophysics Data System (ADS)

    Roberts, B.; Hannon, F.; Ali, M. M.; Forman, E.; Grames, J.; Kazimi, R.; Moore, W.; Pablo, M.; Poelker, M.; Sanchez, A.; Speirs, D.

    2016-05-01

    A compact, harmonically resonant cavity with fundamental resonant frequency 1497 MHz was used to evaluate the temporal characteristics of electron bunches produced by a 130 kV dc high voltage spin-polarized photoelectron source at the Continuous Electron Beam Accelerator Facility (CEBAF) photoinjector, delivered at 249.5 and 499 MHz repetition rates and ranging in width from 45 to 150 picoseconds (FWHM). A cavity antenna attached directly to a sampling oscilloscope detected the electron bunches as they passed through the cavity bore with a sensitivity of ˜1 mV /μ A . The oscilloscope waveforms are a superposition of the harmonic modes excited by the beam, with each cavity mode representing a term of the Fourier series of the electron bunch train. Relatively straightforward post-processing of the waveforms provided a near-real time representation of the electron bunches revealing bunch-length and the relative phasing of interleaved beams. The noninvasive measurements from the harmonically resonant cavity were compared to measurements obtained using an invasive RF-deflector-cavity technique and to predictions from particle tracking simulations.

  15. Electron Bunch Length Measurement for LCLS at SLAC

    SciTech Connect

    Zelazny, M.; Allison, S.; Chevtsov, Sergei; Emma, P.; Kotturi, K.d.; Loos, H.; Peng, S.; Rogind, D.; Straumann, T.; /SLAC

    2007-10-04

    At Stanford Linear Accelerator Center (SLAC) a Bunch Length Measurement system has been developed to measure the length of the electron bunch for its new Linac Coherent Light Source (LCLS). This destructive measurement uses a transverse-mounted RF deflector (TCAV) to vertically streak the electron beam and an image taken with an insertable screen and a camera. The device control software was implemented with the Experimental Physics and Industrial Control System (EPICS) toolkit. The analysis software was implemented in Matlab{trademark} using the EPICS/Channel Access Interface for Scilab{trademark} and Matlab{trademark} (labCA). This architecture allowed engineers and physicists to develop and integrate their control and analysis without duplication of effort.

  16. An RF bunch length monitor for the SLC final focus

    SciTech Connect

    Zimmermann, F.; Yocky, G.; Whittum, D.

    1997-05-01

    In preparation for the 1997 SLC run, a novel RF bunch-length monitor has been installed in the SLC South Final Focus. The monitor consists of a ceramic gap in the beam pipe, a 160-ft long X-band waveguide (WR90), and a set of dividers, tapers and microwave detectors. Electromagnetic fields radiated through the ceramic gap excite modes in the nearby open-ended X-band waveguide, which transmits the beam-induced signal to a radiation-free shack outside of the beamline vault. There, a combination of power dividers, tapers, waveguides, and crystal detectors is used to measure the signal power in 4 separate frequency channels between 7 and 110 GHz. For typical rms bunch lengths of 0.5-2 mm in the SLC, the bunch frequency spectrum can extend up to 100 GHz. In this paper, the authors present the overall monitor layout, describe MAFIA calculations of the signal coupled into the waveguide based on a detailed model of the complex beam-pipe geometry, estimate the final power level at the RF conversion points, and report the measured transmission properties of the installed waveguide system.

  17. Measuring short electron bunch lengths using coherent smith-purcell radiation

    DOEpatents

    Nguyen, Dinh C.

    1999-01-01

    A method is provided for directly determining the length of sub-picosecond electron bunches. A metallic grating is formed with a groove spacing greater than a length expected for the electron bunches. The electron bunches are passed over the metallic grating to generate coherent and incoherent Smith-Purcell radiation. The angular distribution of the coherent Smith-Purcell radiation is then mapped to directly deduce the length of the electron bunches.

  18. Measuring short electron bunch lengths using coherent Smith-Purcell radiation

    DOEpatents

    Nguyen, D.C.

    1999-03-30

    A method is provided for directly determining the length of sub-picosecond electron bunches. A metallic grating is formed with a groove spacing greater than a length expected for the electron bunches. The electron bunches are passed over the metallic grating to generate coherent and incoherent Smith-Purcell radiation. The angular distribution of the coherent Smith-Purcell radiation is then mapped to directly deduce the length of the electron bunches. 8 figs.

  19. Bunch Length and Impedance Measurements at SPEAR3

    SciTech Connect

    Corbett, W.J.; Cheng, W.X.; Fisher, A.S.; Huang, X.; /SLAC

    2011-11-02

    Streak camera measurements were made at SPEAR3 to characterize longitudinal coupling impedance. For the nominal optics, data was taken at three rf voltages and a single-bunch current range of 0-20mA. Both bunchcentroid phase shift and bunch lengthening were recorded to extract values for resistive and reactive impedance. An (R+L) and a Q=1 model were then back-substituted into the Haissinski equation and compared with raw profile data. In the short bunch (low-{alpha}) mode, distribution 'bursting' was observed.

  20. A Bunch Length Monitor for JLab 12 GeV Upgrade

    SciTech Connect

    Ahmad, Mahmoud Mohamad Ali; Freyberger, Arne P.; Gubeli, Joseph F.; Krafft, Geoffrey A.

    2013-12-01

    A continuous non-invasive bunch length monitor for the 12 GeV upgrade of Jefferson Lab will be used to determine the bunch length of the beam. The measurement will be done at the fourth dipole of the injector chicane at 123 MeV using the coherent synchrotron light emitted from the dipole. The estimated bunch length is 333 fs. A vacuum chamber will be fabricated and a Radiabeam real time interferometer will be used. In this paper, background, the estimated calculations and the construction of the chamber will be discussed.

  1. Calculation of the Beam Field in the LCLS Bunch Length Monitor

    SciTech Connect

    Stupakov, G.; Ding, Y.; Huang, Z.; /SLAC

    2006-06-07

    Maintaining a stable bunch length and peak current is a critical step for the reliable operation of a SASE based x-ray source. In the LCLS, relative bunch length monitors (BLM) right after both bunch compressors are proposed based on the coherent radiation generated by the short electron bunch. Due to its diagnostic setup, the standard far field synchrotron radiation formula and well-developed numerical codes do not apply for the analysis of the BLM performance. In this paper, we develop a calculation procedure to take into account the near field effect, the effect of a short bending magnet, and the diffraction effect of the radiation transport optics. We find the frequency response of the BLM after the first LCLS bunch compressor and discuss its expected performance.

  2. Absolute response of Fuji imaging plate detectors to picosecond-electron bunches

    SciTech Connect

    Zeil, K.; Kraft, S. D.; Jochmann, A.; Kroll, F.; Jahr, W.; Schramm, U.; Karsch, L.; Pawelke, J.; Hidding, B.; Pretzler, G.

    2010-01-15

    The characterization of the absolute number of electrons generated by laser wakefield acceleration often relies on absolutely calibrated FUJI imaging plates (IP), although their validity in the regime of extreme peak currents is untested. Here, we present an extensive study on the dependence of the sensitivity of BAS-SR and BAS-MS IP to picosecond electron bunches of varying charge of up to 60 pC, performed at the electron accelerator ELBE, making use of about three orders of magnitude of higher peak intensity than in prior studies. We demonstrate that the response of the IPs shows no saturation effect and that the BAS-SR IP sensitivity of 0.0081 photostimulated luminescence per electron number confirms surprisingly well data from previous works. However, the use of the identical readout system and handling procedures turned out to be crucial and, if unnoticed, may be an important error source.

  3. Bunch Length Measurements at the JLab FEL Using Coherent Transition and Synchrotron Radiation

    SciTech Connect

    Pavel Evtushenko; James Coleman; Kevin Jordan; J. Michael Klopf; George Neil; Gwyn Williams

    2006-05-01

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years [1]. This diagnostic can be used only in the pulsed beam mode. It is our goal to run the FEL with CW beam and a 74.85 MHz micropulse repetition rate, which, with the 135 pC nominal bunch charge corresponds to the beam average current of 10 mA. Hence it is very desirable to have the possibility of making bunch length measurements when running CW beam with any micropulse frequency. We use a Fourier transform infrared (FTIR) interferometer, which is essentially a Michelson interferometer, to measure the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with data obtained using the Martin-Puplett interferometer [1]. Results of the two diagnostics agree within 15 %. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.

  4. Bunch length measurement at the Fermilab A0 photoinjector using a Martin-Puplett interferometer

    SciTech Connect

    Thurman-Keup, Randy; Fliller, Raymond Patrick; Kazakevich, Grigory; /Fermilab

    2008-05-01

    We present preliminary measurements of the electron bunch lengths at the Fermilab A0 Photoinjector using a Martin-Puplett interferometer on loan from DESY. The photoinjector provides a relatively wide range of bunch lengths through laser pulse width adjustment and compression of the beam using a magnetic chicane. We present comparisons of data with simulations that account for diffraction distortions in the signal and discuss future plans for improving the measurement.

  5. Bunch length effects in the beam-beam compensation with an electron lens

    SciTech Connect

    Fischer, W.; Luo, Y.; Montag, C.

    2010-02-25

    Electron lenses for the head-on beam-beam compensation are under construction at the Relativistic Heavy Ion Collider. The bunch length is of the same order as the {beta}-function at the interaction point, and a proton passing through another proton bunch experiences a substantial phase shift which modifies the beam-beam interaction. We review the effect of the bunch length in the single pass beam-beam interaction, apply the same analysis to a proton passing through a long electron lens, and study the single pass beam-beam compensation with long bunches. We also discuss the beam-beam compensation of the electron beam in an electron-ion collider ring.

  6. Electron Bunch Length Measurements in the E-167 Plasma Wakefield Experiment

    SciTech Connect

    Blumenfeld, I.; Auerbach, D.; Berry, M.; Clayton, C.E.; Decker, F.J.; Hogan, M.J.; Huang, Cheng-Kun; Ischebeck, R.; Iverson, R.; Johnson, D.; Joshi, C.; Katsouleas, T.; Kirby, N.; Lu, Wei; Marsh, K.A.; Mori, W.B.; Muggli, P.; Oz, E.; Siemann, R.H.; Walz, D.; Zacherl, W.; /SLAC /UCLA /Southern California U.

    2007-03-27

    Bunch length is of prime importance to beam driven plasma wakefield acceleration experiments due to its inverse relationship to the amplitude of the accelerating wake. We present here a summary of work done by the E167 collaboration measuring the SLAC ultra-short bunches via autocorrelation of coherent transition radiation. We have studied material transmission properties and improved our autocorrelation traces using materials with better spectral characteristics.

  7. Infrared Spectroscope for Electron Bunch-length Measurement: Heat Sensor Parameters Analysis

    SciTech Connect

    Domgmo-Momo, Gilles; /Towson U. /SLAC

    2012-09-05

    The Linac Coherent Light Source (LCLS) is used for many experiments. Taking advantage of the free electron laser (FEL) process, scientists of various fields perform experiments of all kind. Some for example study protein folding; other experiments are more interested in the way electrons interact with the molecules before they are destroyed. These experiments among many others have very little information about the electrons x-ray produced by the FEL, except that the FEL is using bunches less than 10 femtoseconds long. To be able to interpret the data collected from those experiments, more accurate information is needed about the electron's bunch-length. Existing bunch length measurement techniques are not suitable for the measurement of such small time scales. Hence the need to design a device that will provide more precise information about the electron bunch length. This paper investigates the use of a pyreoelectric heat sensor that has a sensitivity of about 1.34 micro amps per watt for the single cell detector. Such sensitivity, added to the fact that the detector is an array sensor, makes the detector studied the primary candidate to be integrated to an infrared spectrometer designed to better measure the LCLS electron bunch length.

  8. Bunch-length and beam-timing monitors in the SLC final focus

    SciTech Connect

    Zimmermann, F.; Yocky, G.; Whittum, D. H.; Seidel, M.; Ng, C. K.; McCormick, D.; Bane, K. L. F.

    1999-07-12

    During the 1997/98 luminosity run of the Stanford Linear Collider (SLC) two novel RF-based detectors were brought into operation, in order to monitor the interaction-point (IP) bunch lengths and fluctuations in the relative arrival time of the two colliding beams. Both bunch length and timing can strongly affect the SLC luminosity and had not been monitored in previous years. The two new detectors utilize a broad-band microwave signal, which is excited by the beam through a ceramic gap in the final-focus beam pipe and transported outside of the beamline vault by a 160-ft long X-Band waveguide. We describe the estimated luminosity reduction due to bunch-length drift and IP timing fluctuation, the monitor layout, the expected responses and signal levels, calibration measurements, and beam observations.

  9. Bunch-length and beam-timing monitors in the SLC final focus

    SciTech Connect

    Zimmermann, F.; Yocky, G.; Whittum, D.H.; Seidel, M.; Ng, C.K.; McCormick, D.; Bane, K.L.

    1999-07-01

    During the 1997/98 luminosity run of the Stanford Linear Collider (SLC) two novel RF-based detectors were brought into operation, in order to monitor the interaction-point (IP) bunch lengths and fluctuations in the relative arrival time of the two colliding beams. Both bunch length and timing can strongly affect the SLC luminosity and had not been monitored in previous years. The two new detectors utilize a broad-band microwave signal, which is excited by the beam through a ceramic gap in the final-focus beam pipe and transported outside of the beamline vault by a 160-ft long X-Band waveguide. We describe the estimated luminosity reduction due to bunch-length drift and IP timing fluctuation, the monitor layout, the expected responses and signal levels, calibration measurements, and beam observations. {copyright} {ital 1999 American Institute of Physics.}

  10. Bunch-length and beam-timing monitors in the SLC final focus

    SciTech Connect

    Zimmermann, F.; Yocky, G.; Whittum, D.H.; Seidel, M.; Ng, C.K.; McCormick, D.; Bane, K.L.F.

    1998-07-01

    During the 1997/98 luminosity run of the Stanford Linear Collider (SLC), two novel RF-based detectors were brought into operation, in order to monitor the interaction-point (IP) bunch lengths and fluctuations in the relative arrival time of the two colliding beams. Both bunch length and timing can strongly affect the SLC luminosity and had not been monitored in previous years. The two new detectors utilize a broad-band microwave signal, which is excited by the beam through a ceramic gap in the final-focus beam pipe and transported outside of the beam line vault by a 160-ft long X-Band waveguide. The authors describe the estimated luminosity reduction due to bunch-length drift and IP timing fluctuation, the monitor layout, the expected responses and signal levels, calibration measurements, and beam observations.

  11. Coherent sychrotron radiation detector for a non-invasive subpicosecond bunch length monitor

    SciTech Connect

    Krafft, G.A.; Wang, D.; Price, E.; Feldl, E.; Porterfield, D.; Wood, P.; Crowe, T.

    1995-12-31

    This CSR detector was developed to monitor nondestructively the length of a subpicosecond bunch with high sensitivity. The monitor uses a state of the art GaAs Schottky whisker diode which is operated at room temperature at a wavelength of a few hundred microns. The detector is capable of detecting radiation power as low as 10 nW, depending on wavelength. This paper describes design specifications, parameter ranges, and monitor features and also reports its performance and comparison between measurement and calculation. The measurement results are cross-compared with an independent bunch length measurement using phase modulation. It was found that the output power varies with bunch length and that detectors at shorter wavelengths are preferred.

  12. Diffraction effects in coherent transition radiation diagnostics for sub-mm bunch length measurement

    SciTech Connect

    Maxwell, T.J.; Mihalcea, D.; Piot, P.; /Northern Illinois U. /Fermilab

    2008-09-01

    Electrons crossing the boundary between different media generate bursts of transition radiation. In the case of bunches of N electrons, the radiation is coherent and has an N-squared enhancement at wavelengths related to the longitudinal bunch distribution. This coherent transition radiation has therefore attracted attention as an interceptive charged particle beam diagnostic technique. Many analytical descriptions have been devised describing the spectral distribution generated by electron bunches colliding with thin metallic foils making different simplifying assumptions. For typical bunches having lengths in the sub-millimeter range, measurable spectra are generated up into the millimeter range. Analysis of this THz radiation is performed using optical equipment tens of millimeters in size. This gives rise to concern that optical diffraction effects may spread the wavefront of interest into regions larger than the optical elements and partially escape detection, generating a wavelength-dependent instrument response. In this paper we present a model implementing vector diffraction theory to analyze these effects in bunch length diagnostics based on coherent transition radiation.

  13. Bunch length compression method for free electron lasers to avoid parasitic compressions

    SciTech Connect

    Douglas, David R.; Benson, Stephen; Nguyen, Dinh Cong; Tennant, Christopher; Wilson, Guy

    2015-05-26

    A method of bunch length compression method for a free electron laser (FEL) that avoids parasitic compressions by 1) applying acceleration on the falling portion of the RF waveform, 2) compressing using a positive momentum compaction (R.sub.56>0), and 3) compensating for aberration by using nonlinear magnets in the compressor beam line.

  14. Single-shot electron bunch length measurements using a spatial electro-optical autocorrelation interferometer

    NASA Astrophysics Data System (ADS)

    Sütterlin, Daniel; Erni, Daniel; Schlott, Volker; Sigg, Hans; Jäckel, Heinz; Murk, Axel

    2010-10-01

    A spatial, electro-optical autocorrelation (EOA) interferometer using the vertically polarized lobes of coherent transition radiation (CTR) has been developed as a single-shot electron bunch length monitor at an optical beam port downstream the 100 MeV preinjector LINAC of the Swiss Light Source. This EOA monitor combines the advantages of step-scan interferometers (high temporal resolution) [D. Mihalcea et al., Phys. Rev. ST Accel. Beams 9, 082801 (2006) and T. Takahashi and K. Takami, Infrared Phys. Technol. 51, 363 (2008)] and terahertz-gating technologies [U. Schmidhammer et al., Appl. Phys. B: Lasers Opt. 94, 95 (2009) and B. Steffen et al., Phys. Rev. ST Accel. Beams 12, 032802 (2009)] (fast response), providing the possibility to tune the accelerator with an online bunch length diagnostics. While a proof of principle of the spatial interferometer was achieved by step-scan measurements with far-infrared detectors, the single-shot capability of the monitor has been demonstrated by electro-optical correlation of the spatial CTR interference pattern with fairly long (500 ps) neodymium-doped yttrium aluminum garnet (Nd:YAG) laser pulses in a ZnTe crystal. In single-shot operation, variations of the bunch length between 1.5 and 4 ps due to different phase settings of the LINAC bunching cavities have been measured with subpicosecond time resolution.

  15. Electron beam bunch length characterizations using incoherent and coherent radiation on the APS SASE FEL project.

    SciTech Connect

    Berg, W. J.; Happek, U.; Lewellen, J. W.; Lumpkin, A. H.; Sereno, N. S.; Yang, B. X.

    1999-08-28

    The Advanced Photon Source (APS) injector linac has been reconfigured with a low-emittance rf thermionic gun and a photocathode (PC) rf gun to support self-amplified spontaneous emission (SASE) free-electron laser (FEL) experiments. One of the most critical parameters for optimizing SASE performance (gain length) is the electron beam peak current, which requires a charge measurement and a bunch length measurement capability. We report here initial measurements of the latter using both incoherent optical transition radiation (OTR) and coherent transition radiation (CTR), A visible light Hamarnatsu C5680 synchroscan streak camera was used to measure the thermionic rf gun beam's bunch length ({sigma} {approximately}2 to 3ps) via OTR generated by the beam at 220 MeV and 200 mA macropulse average current. In addition, a CTR monitor (Michelson Interferometer) based on a Golay cell as the far infrared (FIR) detector has been installed at the 40-MeV station in the beamline. Initial observation s of CTR signal strength variation with gun a-magnet current and interferograms have been obtained. Progress in characterizing the beam at these locations and a comparison to other bunch length determinations will be presented.

  16. Linac Coherent Light Source (LCLS) Bunch-Length Monitor using Coherent Radiation

    SciTech Connect

    Wu, Juhao; Emma, P.; /SLAC

    2007-03-21

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. One of the most critical diagnostic devices is the bunch length monitor (BLM), which is to be installed right after each compressor utilizing coherent radiation from the last bending magnet. We describe the components and the optical layout of such a BLM. Based on the setup geometry, we discuss some issues about the coherent radiation signal.

  17. CALCULATING POINT-CHARGE WAKEFIELDS FROM FINITE LENGTH BUNCH WAKE-POTENTIALS

    SciTech Connect

    Podobedov, B.; Stupakov, G.

    2011-03-28

    Starting from analytical properties of high frequency geometric impedance we show how one can accurately calculate short bunch wake-potentials (and even point-charge wakefields) from time domain calculations performed with a much longer bunch. In many practical instances this drastically reduces the need for computer resources, speeds up the calculations, and improves their accuracy. To illustrate this method we give examples for 2D accelerator structures of various complexities. We describe preliminary results of a new method that allows us to accurately obtain longitudinal wakefields of short bunches by adding a long-bunch result from an EM solver and a singular analytical wake model. In the future this work will be generalized to 3D geometries as well. Similarly, the method should be equally applicable to the calculations of transverse wakefields. Periodic structures with a significant number of periods (2 {ge} a{sup 2}/{sigma}L, where L is the period length) have not been considered so far. They have asymptotic wakefields that differ from the examples described above. We believe this method is applicable to such geometries as well, as long as correct asymptotic solutions are used.

  18. Comparative Study of Bunch Length And Arrival Time Measurements at FLASH

    SciTech Connect

    Schlarb, H.; Azima, A.; Dusterer, S.; Huning, M.; Knabbe, E.A.; Roehrs, M.; Rybnikov, V.; Schmidt, B.; Steffen, B.; Ross, M.C.; Schmueser, P.; Winter, A.; /Hamburg U.

    2007-04-16

    Diagnostic devices to precisely measure the longitudinal electron beam profile and the bunch arrival time require elaborate new instrumentation techniques. At FLASH, two entirely different methods are used. The bunch profile can be determined with high precision by a transverse deflecting RF structure, but the method is disruptive and does not allow to monitor multiple bunches in a macro-pulse train. It is therefore complemented by two non-disruptive electrooptical devices, called EO and TEO. The EO setup uses a dedicated diagnostic laser synchronized to the machine RF. The longitudinal electron beam profile is encoded in the intensity profile of a chirped laser pulse and analyzed by looking at the spectral composition of the pulse. The second setup, TEO, utilizes the TiSa-based laser system used for pump-probe experiments. Here, the temporal electron shape is encoded into the spatial dimension of the laser pulse by an intersection angle between the laser and the electron beam at the EO-crystal. In this paper, we present a comparative study of bunch length and arrival time measurements performed simultaneously with all three experimental techniques.

  19. Picosecond Bunch length and Energy-z correlation measurements at SLAC's A-Line and End Station A

    SciTech Connect

    Molloy, Stephen; Emma, P.; Frisch, J.C.; Iverson, R.H.; Ross, M.; McCormick, D.J.; Ross, Marc C.; Walston, S.; Blackmore, V.; /Oxford U.

    2007-06-27

    We report on measurements of picosecond bunch lengths and the energy-z correlation of the bunch with a high energy electron test beam to the A-line and End Station A (ESA) facilities at SLAC. The bunch length and the energy-z correlation of the bunch are measured at the end of the linac using a synchrotron light monitor diagnostic at a high dispersion point in the A-line and a transverse RF deflecting cavity at the end of the linac. Measurements of the bunch length in ESA were made using high frequency diodes (up to 100 GHz) and pyroelectric detectors at a ceramic gap in the beamline. Modeling of the beam's longitudinal phase space through the linac and A-line to ESA is done using the 2-dimensional tracking program LiTrack, and LiTrack simulation results are compared with data. High frequency diode and pyroelectric detectors are planned to be used as part of a bunch length feedback system for the LCLS FEL at SLAC. The LCLS also plans precise bunch length and energy-z correlation measurements using transverse RF deflecting cavities.

  20. Plasma density gradient injection of low absolute momentum spread electron bunches

    SciTech Connect

    Geddes, C.G.R.; Nakamura, K.; Plateau, G.R.; Toth, Cs.; Cormier-Michel, E.; Esarey, E.; Schroeder, C.B.; Cary, J.R.; Leemans, W.P.

    2007-12-22

    Plasma density gradients in a gas jet were used to control the wake phase velocity and trapping threshold in a laser wakefield accelerator, producing stable electron bunches with longitudinal and transverse momentum spreads more than ten times lower than in previous experiments (0.17 and 0.02 MeV/c FWHM, respectively) and with central momenta of 0.76 +- 0.02 MeV/c. Transition radiation measurements combined with simulations indicated that the bunches can be used as a wakefield accelerator injector to produce stable beams with 0.2 MeV/c-class momentum spread at high energies.

  1. Electron Cloud Cyclotron Resonances in the Presence of a Short-bunch-length Relativistic Beam

    SciTech Connect

    Celata, C.M.; Furman, Miguel A.; Vay, J.-L.; Yu, Jennifer W.

    2008-09-02

    Computer simulations using the 2D code"POSINST" were used to study the formation of the electron cloud in the wiggler section of the positron damping ring of the International Linear Collider. In order to simulate an x-y slice of the wiggler (i.e., a slice perpendicular to the beam velocity), each simulation assumed a constant vertical magnetic field. At values of the magnetic field where the cyclotron frequency was an integral multiple of the bunch frequency, and where the field strength was less than approximately 0.6 T, equilibrium average electron densities were up to three times the density found at other neighboring field values. Effects of this resonance between the bunch and cyclotron frequency are expected to be non-negligible when the beam bunch length is much less than the product of the electron cyclotron period and the beam velocity, for a beam moving at v~;;c. Details of the dynamics of the resonance are described.

  2. A laser-heterodyne bunch length monitor for the SLC interaction point

    SciTech Connect

    Kotseroglou, T.; Alley, R.; Jobe, K.

    1997-05-01

    Since 1996, the transverse beam sizes at the SLC interaction point (IP) can be determined with a `laser wire`, by detecting the rate of Compton-scattered photons as a function of the beam-laser separation in space. Nominal laser parameters are: 350 nm wavelength, 2 mJ energy per pulse, 40 Hz repetition rate, and 150 ps FWHM pulse length. The laser system is presently being modified to enable measurements of the longitudinal beam profile. For this purpose, two laser pulses of slightly different frequency are superimposed, which creates a travelling fringe pattern and, thereby, introduces a bunch-to-bunch variation of the Compton rate. The magnitude of this variation depends on the beat wavelength and on the Fourier transform of the longitudinal distribution. This laser heterodyne technique is implemented by adding a 1-km long optical fibre at the laser oscillator output, which produces a linearly chirped laser pulse with 4.5-A linewidth and 60-ps FWHM pulse length. Also, the pulse is amplified in a regenerative amplifier and tripled with two nonlinear crystals. Then a Michelson interferometer spatially overlaps two split chirped pulses, which are temporally shifted with respect to each other, generating a quasi-sinusoidal adjustable fringe pattern. This laser pulse is then transported to the Interaction Point.

  3. Development of deflector cavity and RF amplifier for bunch length detector system

    NASA Astrophysics Data System (ADS)

    Pandey, H. K.; Bhattacharya, T. K.; Chakrabarti, A.

    2016-02-01

    A minimally-interceptive bunch length detector system is being developed for measurement of longitudinal dimension of the bunch beam from RFQ of the radioactive ion beam (RIB) facility at VECC. This detector system is based on secondary electrons emission produced by the primary ion beam hitting a thin tungsten wire placed in the beam path. In this paper we report the design, development and off line testing results of deflector cavity together with its RF sysytem. The deflector cavity is a capacitive loaded helical type λ/2 resonator driven by RF source of 500 W at 37.8 MHz solid state amplifier, realized by combining two amplifier modules of 300 W each. The measured RF characteristics of the resonator, such as frequency, Q value and shunt impedance have been found to be reasonably good and close to the analytical estimation and results of simulation. The design philosophy and test results of individual components of the amplifier are discussed. The test result upto full power shows a good harmonic separation at the individual module level and this is found to improve further when modules are combined together.The results of high power performance test of the deflector cavity together with amplifier are also reported.

  4. Bunch Length Monitoring at the A0 Photoinjector Using a Quasi-Optical Schottky Detector

    SciTech Connect

    Kazakevich, G.; Davidsaver, M.; Edwards, H.; Fliller, R.; Koeth, T.; Lumpkin, A.; Nagaitsev, S.; Ruan, J.; Thurman-Keup, R.; Jeong, Y.U.; Kubarev, V.; /Novosibirsk, IYF

    2009-05-01

    Noninvasive bunch duration monitoring has a crucial importance for modern accelerators intended for short wavelength FEL's, colliders and in some beam dynamics experiments. Monitoring of the bunch compression in the Emittance Exchange Experiment at the A0 Photoinjector was done using a parametric presentation of the bunch duration via Coherent Synchrotron Radiation (CSR) emitted in a dipole magnet and measured with a wideband quasi-optical Schottky Barrier Detector (SBD). The monitoring resulted in a mapping of the quadrupole parameters allowing a determination of the region of highest compression of the bunch in the sub-picosecond range. The obtained data were compared with those measured using the streak camera. A description of the technique and the results of simulations and measurements are presented and discussed in this report.

  5. Ion bunch length effects on the beam-beam interaction and its compensation in a high-luminosity ring-ring electron-ion collider

    SciTech Connect

    Montag C.; Oeftiger, A.; Fischer, W.

    2012-05-20

    One of the luminosity limits in a ring-ring electron-ion collider is the beam-beam effect on the electrons. In the limit of short ion bunches, simulation studies have shown that this limit can be significantly increased by head-on beam-beam compensation with an electron lens. However, with an ion bunch length comparable to the beta-function at the IP in conjunction with a large beam-beam parameter, the electrons perform a sizeable fraction of a betatron oscillation period inside the long ion bunches. We present recent simulation results on the compensation of this beam-beam interaction with multiple electron lenses.

  6. Method of controlling coherent synchroton radiation-driven degradation of beam quality during bunch length compression

    DOEpatents

    Douglas, David R.; Tennant, Christopher D.

    2012-07-10

    A method of avoiding CSR induced beam quality defects in free electron laser operation by a) controlling the rate of compression and b) using a novel means of integrating the compression with the remainder of the transport system: both are accomplished by means of dispersion modulation. A large dispersion is created in the penultimate dipole magnet of the compression region leading to rapid compression; this large dispersion is demagnified and dispersion suppression performed in a final small dipole. As a result, the bunch is short for only a small angular extent of the transport, and the resulting CSR excitation is small.

  7. A field-based technique for the longitudinal profiling of ultrarelativistic electron or positron bunches down to lengths of {le}10 microns

    SciTech Connect

    Tatchyn, R.

    1993-05-01

    Present and future generations of particle accelerating and storage machines are expected to develop ever-decreasing electron/positron bunch lengths, down to 100 {mu} and beyond. In this paper a method for measuring the longitudinal profiles of ultrashort (1000 {mu} {approx} 10 {mu}) bunches, based on: (1) the extreme field compaction attained by ultrarelativistic particles, and (2) the reduction of the group velocity of a visible light pulse in a suitably-chosen dielectric medium, is outline.

  8. Measurement of the Luminous-Region Profile at the PEP-II IP, And Application to e^\\pm Bunch-Length Determination

    SciTech Connect

    Viaud, B.F.; Kozanecki, W.; Narsky, I.V.; O'Grady, C.; Perazzo, A.; /SLAC

    2006-02-10

    The three-dimensional luminosity distribution at the interaction point (IP) of the SLAC B-Factory is measured continuously, using e{sup +}e{sup -} {yields} e{sup +}e{sup -}, {mu}{sup +}{mu}{sup -} events reconstructed online in the BABAR detector. The centroid of the transverse luminosity profile provides a very precise and reliable monitor of medium- and long-term orbit drifts at the IP. The longitudinal centroid is sensitive to variations in the relative RF phase of the colliding beams, both over time and differentially along the bunch train. The measured horizontal r.m.s. width of the distribution is consistent with a sizeable dynamic-{beta} effect; it is also useful as a benchmark of strong-strong beam-beam simulations. The longitudinal luminosity distribution depends on the e{sup {+-}} bunch lengths and vertical IP {beta}-functions, which can be different in the high- and low-energy rings. Using independent estimates of the {beta}functions, we analyze the longitudinal shape of the luminosity distribution in the presence of controlled variations in accelerating RF voltage and/or beam current, to extract measurements of the e{sup +} and e{sup -} bunch lengths.

  9. Optimum cavity length and absolute cavity detuning in acousto-optically mode-locked argon-ion lasers

    NASA Astrophysics Data System (ADS)

    Ruddock, I. S.; Illingworth, R.

    1987-09-01

    Acousto-optic mode-locking in an argon-ion laser was investigated in detail. Measurement of the discharge current is shown to be an accurate means of locating the optimum cavity length which depends strongly on level of excitation. The absolute cavity mismatch between the optimum length and that corresponding to c/4 vRF was determined by direct measurement and by using a cw dye laser as an active interferometer.

  10. A Single-Shot Method for Measuring Femtosecond Bunch Length in Linac-Based Free-Electron Lasers

    SciTech Connect

    Huang, Z.; Bane, K.; Ding, Y.; Emma, P.; /SLAC

    2010-08-26

    There is growing interest in the generation and characterization of femtosecond and subfemtosecond pulses from linac-based free-electron lasers (FELs). In this report, following the method of Ricci and Smith [Phys. Rev. ST Accel. Beams 3, 032801 (2000)], we investigate the measurement of the longitudinal bunch profile of an ultrashort electron bunch produced by these FELs. We show that this method can be applied in a straightforward manner at x-ray FEL facilities such as the Linac Coherent Light Source by slightly adjusting the second bunch compressor followed by running the bunch on an rf zero-crossing phase of the final linac. We find that the linac wakefield strongly perturbs the measurement, and through analysis show that it can be compensated in a simple way. We demonstrate the effectiveness of this method and wakefield compensation through numerical simulations, including effects of coherent synchrotron radiation and longitudinal space charge. When used in conjunction with a high-resolution electron spectrometer, this method potentially reveals the temporal profile of the electron beam down to the femtosecond and subfemotsecond scale.

  11. Kelvin Absolute Temperature Scale Identified as Length Scale and Related to de Broglie Thermal Wavelength

    NASA Astrophysics Data System (ADS)

    Sohrab, Siavash

    Thermodynamic equilibrium between matter and radiation leads to de Broglie wavelength λdβ = h /mβvrβ and frequency νdβ = k /mβvrβ of matter waves and stochastic definitions of Planck h =hk =mk <λrk > c and Boltzmann k =kk =mk <νrk > c constants, λrkνrk = c , that respectively relate to spatial (λ) and temporal (ν) aspects of vacuum fluctuations. Photon massmk =√{ hk /c3 } , amu =√{ hkc } = 1 /No , and universal gas constant Ro =No k =√{ k / hc } result in internal Uk = Nhνrk = Nmkc2 = 3 Nmkvmpk2 = 3 NkT and potential pV = uN\\vcirc / 3 = N\\ucirc / 3 = NkT energy of photon gas in Casimir vacuum such that H = TS = 4 NkT . Therefore, Kelvin absolute thermodynamic temperature scale [degree K] is identified as length scale [meter] and related to most probable wavelength and de Broglie thermal wavelength as Tβ =λmpβ =λdβ / 3 . Parallel to Wien displacement law obtained from Planck distribution, the displacement law λwS T =c2 /√{ 3} is obtained from Maxwell -Boltzmann distribution of speed of ``photon clusters''. The propagation speeds of sound waves in ideal gas versus light waves in photon gas are described in terms of vrβ in harmony with perceptions of Huygens. Newton formula for speed of long waves in canals √{ p / ρ } is modified to √{ gh } =√{ γp / ρ } in accordance with adiabatic theory of Laplace.

  12. Initial Characterization of Unequal-Length, Low-Background Proportional Counters for Absolute Gas-Counting Applications

    SciTech Connect

    Mace, Emily K.; Aalseth, Craig E.; Bonicalzi, Ricco; Day, Anthony R.; Fuller, Erin S.; Hayes, James C.; Hoppe, Eric W.; LaFerriere, Brian D.; Merriman, Jason H.; Overman, Cory T.; Seifert, Allen; Williams, Richard M.

    2013-08-31

    Abstract. Characterization of two sets of custom unequal length proportional counters is underway at Pacific Northwest National Laboratory (PNNL). These detectors will be used in measurements to determine the absolute activity concentration of gaseous radionuclides (e.g., 37Ar). A set of three detectors has been fabricated based on previous PNNL ultra-low-background proportional counters (ULBPC) designs and now operate in PNNL’s shallow underground counting laboratory. A second set of four counters has also been fabricated using clean assembly of OFHC copper components for use in an above-ground counting laboratory. Characterization of both sets of detectors is underway with measurements of background rates, gas gain, energy resolution, and shielding considerations. These results will be presented along with uncertainty estimates of future absolute gas counting measurements.

  13. Confinement of bunched beams

    NASA Astrophysics Data System (ADS)

    Hess, Mark; Chen, Chiping

    2001-05-01

    The non-relativistic motion is analyzed for a highly bunched beam propagating through a perfectly conducting cylindrical pipe confined radially by a constant magnetic field parallel to the conductor axis, using a Green's function technique and Hamiltonian dynamics analysis. It is shown that for the confinement of beams with the same charge per unit length, the maximum value of the effective self-field parameter for a highly bunched beam is significantly lower than the Brillouin density limit for an unbunched beam.

  14. Laser-cooled bunched ion beam

    SciTech Connect

    Schiffer, J.P.; Hangst, J.S.; Nielsen, J.S.

    1995-08-01

    In collaboration with the Arhus group, the laser cooling of a beam bunched by an rf electrode was investigated at the ASTRID storage ring. A single laser is used for unidirectional cooling, since the longitudinal velocity of the beam will undergo {open_quotes}synchrotron oscillations{close_quotes} and the ions are trapped in velocity space. As the cooling proceeds the velocity spread of the beam, as well as the bunch length is measured. The bunch length decreases to the point where it is limited only by the Coulomb repulsion between ions. The measured length is slightly (20-30%) smaller than the calculated limit for a cold beam. This may be the accuracy of the measurement, or may indicate that the beam still has a large transverse temperature so that the longitudinal repulsion is less than would be expected from an absolutely cold beam. Simulations suggest that the coupling between transverse and longitudinal degrees of freedom is strong -- but this issue will have to be resolved by further measurements.

  15. Length scales in alloy dissolution and measurement of absolute interfacial free energy.

    PubMed

    Rugolo, J; Erlebacher, J; Sieradzki, K

    2006-12-01

    De-alloying is the selective dissolution of one or more of the elemental components of an alloy. In binary alloys that exhibit complete solid solubility, de-alloying of the less noble component results in the formation of nanoporous metals, a materials class that has attracted attention for applications such as catalysis, sensing and actuation. In addition, the occurrence of de-alloying in metallic alloy systems under stress is known to result in stress-corrosion cracking, a key failure mechanism in fossil fuel and nuclear plants, ageing aircraft, and also an important concern in the design of nuclear-waste storage containers. Central to the design of corrosion-resistant alloys is the identification of a composition-dependent electrochemical critical potential, Vcrit, above which the current rises dramatically with potential, signalling the onset of bulk de-alloying. Below Vcrit, the surface is passivated by the accumulation of up to several monolayers of the more noble component. The current understanding of the processes that control Vcrit is incomplete. Here, we report on de-alloying results of Ag/Au superlattices that clarify the role of pre-existing length scales in alloy dissolution. Our data motivated us to re-analyse existing data on critical potentials of Ag-Au alloys and develop a simple unifying picture that accounts for the compositional dependence of solid-solution alloy critical potentials.

  16. Initial characterization of unequal-length, low-background proportional counters for absolute gas-counting applications

    NASA Astrophysics Data System (ADS)

    Mace, E. K.; Aalseth, C. E.; Bonicalzi, R.; Day, A. R.; Fuller, E. S.; Hayes, J. C.; Hoppe, E. W.; LaFerriere, B. D.; Merriman, J. H.; Overman, C. T.; Seifert, A.; Williams, R. M.

    2013-08-01

    Characterization of two sets of custom unequal length proportional counters is underway at Pacific Northwest National Laboratory (PNNL). These detectors will be used in measurements to determine the absolute activity concentration of gaseous radionuclides (e.g., 37Ar). A set of three detectors has been fabricated based on previous PNNL ultra-low-background proportional counter designs and now operate in PNNL's shallow underground counting laboratory. A second set of four counters has also been fabricated using clean assembly of Oxygen-Free High-Conductivity copper components for use in a shielded above-ground counting laboratory. Characterization of both sets of detectors is underway with measurements of background rates, gas gain, and energy resolution. These results will be presented along with a shielding study for the above-ground cave.

  17. Initial characterization of unequal-length, low-background proportional counters for absolute gas-counting applications

    SciTech Connect

    Mace, E. K.; Aalseth, C. E.; Bonicalzi, R.; Day, A. R.; Fuller, E. S.; Hayes, J. C.; Hoppe, E. W.; LaFerriere, B. D.; Merriman, J. H.; Overman, C. T.; Seifert, A.; Williams, R. M.

    2013-08-08

    Characterization of two sets of custom unequal length proportional counters is underway at Pacific Northwest National Laboratory (PNNL). These detectors will be used in measurements to determine the absolute activity concentration of gaseous radionuclides (e.g., {sup 37}Ar). A set of three detectors has been fabricated based on previous PNNL ultra-low-background proportional counter designs and now operate in PNNL's shallow underground counting laboratory. A second set of four counters has also been fabricated using clean assembly of Oxygen-Free High-Conductivity copper components for use in a shielded above-ground counting laboratory. Characterization of both sets of detectors is underway with measurements of background rates, gas gain, and energy resolution. These results will be presented along with a shielding study for the above-ground cave.

  18. MEASURING TEMPORAL PHOTON BUNCHING IN BLACKBODY RADIATION

    SciTech Connect

    Tan, P. K.; Poh, H. S.; Kurtsiefer, C.; Yeo, G. H.; Chan, A. H. E-mail: phyck@nus.edu.sg

    2014-07-01

    Light from thermal blackbody radiators such as stars exhibits photon bunching behavior at sufficiently short timescales. However, with available detector bandwidths, this bunching signal is difficult to observe directly. We present an experimental technique to increase the photon bunching signal in blackbody radiation via spectral filtering of the light source. Our measurements reveal strong temporal photon bunching from blackbody radiation, including the Sun. This technique allows for an absolute measurement of the photon bunching signature g {sup (2)}(0), and thereby a direct statement on the statistical nature of a light source. Such filtering techniques may help revive the interest in intensity interferometry as a tool in astronomy.

  19. Optical Design of a Broadband Infrared Spectrometer for Bunch Length Measurement at the Linac Coherent Light Source

    SciTech Connect

    Williams, Kiel; /SLAC

    2012-09-07

    The electron pulses generated by the Linac Coherent Light Source at the SLAC National Accelerator Laboratory occur on the order of tens of femtoseconds and cannot be directly measured by conventional means. The length of the pulses can instead be reconstructed by measuring the spectrum of optical transition radiation emitted by the electrons as they move toward a conducting foil. Because the emitted radiation occurs in the mid-infrared from 0.6 to 30 microns a novel optical layout is required. Using a helium-neon laser with wavelength 633 nm, a series of gold-coated off-axis parabolic mirrors were positioned to direct a beam through a zinc selenide prism and to a focus at a CCD camera for imaging. Constructing this layout revealed a number of novel techniques for reducing the aberrations introduced into the system by the off-axis parabolic mirrors. The beam had a recorded radius of less than a millimeter at its final focus on the CCD imager. This preliminary setup serves as a model for the spectrometer that will ultimately measure the LCLS electron pulse duration.

  20. Longitudinal bunch profile diagnostics with coherent radiation at FLASH

    NASA Astrophysics Data System (ADS)

    Hass, Eugen; Gerth, Christopher; Schmidt, Bernhard; Wesch, Stephan; Yan, Minjie

    2013-05-01

    The required high peak current in free-electron lasers (FELs) is realized by longitudinal compression of the electron bunches to sub-picosecond length. A novel in-vacuum polychromator (CRISP4) has been developed for measuring coherent radiation in the THz and infrared range. The polychromator is equipped with five consecutive dispersion gratings and 120 parallel readout channels. It can be operated either in short (5-44 μm) or in long wavelength mode (45-430 μm). Fast parallel readout permits the monitoring of coherent radiation from single electron bunches. Due to the large wavelength range covered and the absolute calibration of the device, Kramers-Kronig based phase retrieval allows to online reconstruct a longitudinal bunch profile from the measured coherent radiation spectrum. The device is used as a bunch length monitoring and tuning tool during routine operation at the Free-electron Laser in Hamburg (FLASH). Comparative measurements with the transverse deflecting structure show excellent agreement of both methods.

  1. CSR instability in a Bunch Compressor

    NASA Astrophysics Data System (ADS)

    Stupakov, G. V.

    2002-03-01

    The coherent synchrotron radiation of a bunch in a bunch compressor may lead to the microwave instability producing longitudinal modulation of the bunch with wavelengths small compared to the bunch length. It can also be a source of an undesirable emittance growth in the compressor. We derive and analyze the equation that describes linear evolution of the microwave modulation taking into account incoherent energy spread and nite emittance of the beam. Numerical solution of this equatierenton for the LCLS (Linac Coherent Light Source) bunch compressor gives the amplication factor for different wavelengths of the beam microbunching.

  2. CSR instability in a Bunch Compressor

    SciTech Connect

    Stupakov, Gennady V.

    2002-03-19

    The coherent synchrotron radiation of a bunch in a bunch compressor may lead to the microwave instability producing longitudinal modulation of the bunch with wavelengths small compared to the bunch length. It can also be a source of an undesirable emittance growth in the compressor. We derive and analyze the equation that describes linear evolution of the microwave modulation taking into account incoherent energy spread and finite emittance of the beam. Numerical solution of this equation for the LCLS bunch compressor gives the amplification factor for different wavelengths of the beam microbunching.

  3. Dechirper wakefields for short bunches

    NASA Astrophysics Data System (ADS)

    Bane, Karl; Stupakov, Gennady

    2016-06-01

    In previous work (Bane and Stupakov, 2015 [1]) general expressions, valid for arbitrary bunch lengths, were derived for the wakefields of corrugated structures with flat geometry, such as is used in the RadiaBeam/LCLS dechirper. However, the bunch at the end of linac-based X-ray FELs-like the LCLS-is extremely short, and for short bunches the wakes can be considerably simplified. In this work, we first derive analytical approximations to the short-range wakes. These are generalized wakes, in the sense that their validity is not limited to a small neighborhood of the symmetry axis, but rather extends to arbitrary transverse offsets of driving and test particles. The validity of these short-bunch wakes holds not only for the corrugated structure, but rather for any flat structure whose beam-cavity interaction can be described by a surface impedance. We use these wakes to obtain, for a short bunch passing through a dechirper: estimates of the energy loss as function of gap, the transverse kick as a function of beam offset, the slice energy spread increase, and the emittance growth. In the Appendix, a more accurate derivation-than that is found in Bane and Stupakov (2015) [1]-of the arbitrary bunch length wakes is performed; we find full agreement with the earlier results, provided the bunches are short compared to the dechirper gap, which is normally the regime of interest.

  4. The NLC L-Band Bunch Compressor

    SciTech Connect

    Emma, Paul J

    2002-08-21

    The first stage bunch compressor in the NLC injector complex compresses the e+/e- beams from a bunch length of 5 mm rms to 0.5 mm rms at the beam energy of 2 GeV. To obtain this compression ratio, the compressor rf section operates with an rf frequency of 1.4 GHz and a voltage of about 140 MV while a magnetic wiggler is used to generate an R{sub 56} = 0.5 m. The bunch compressor is designed to operate with a beam from the damping ring that has a bunch spacing slew of 20ps across the bunch train due to the transient loading in the damping rings. The compressor RF section is required to produce a specific energy profile along the bunch train so that the bunch spacing can be corrected in the compressor bending section. Further, the 1-amp beam heavily loads the compressor linac and beam loading compensation is essential to prevent a phase variation along the bunch train in the downstream linacs. In this paper, we will present simulation results of the beam loading compensation using a {Delta}T scheme assuming various initial bunch spacing arrangements. We will study the impact of the different compressor energy profiles on the beam energy, energy spread, and bunch length at the IP.

  5. Commissioning of the SPPS Linac Bunch Compressor

    SciTech Connect

    Krejcik, Patrick

    2003-05-21

    First results and beam measurements are presented for the recently installed linac bunch compressor chicane. The new bunch compressor produces ultra-short electron bunches for the Sub-Picosecond Photon Source (SPPS) and for test beams such as the E164 Plasma Wakefield experiment. This paper will give an overview of the first experiences with tuning and optimizing the compressor together with a description of the beam diagnostics and beam measurements. These measurements form the basis for further detailed study of emittance growth effects such as CSR and wakefields in a previously unmeasured regime of ultra-short bunch lengths.

  6. THz radiation as a bunch diagnostic forlaser-wakefield-accelerated electron bunches

    SciTech Connect

    van Tilborg, J.; Schroeder, C.B.; Filip, C.V.; Toth, Cs.; Geddes,C.G.R.; Fubiani, G.; Esarey, E.; Leemans, W.P.

    2006-02-15

    Experimental results are reported from two measurementtechniques (semiconductor switching and electro-optic sampling) thatallow temporal characterization of electron bunches produced by alaser-driven plasma-based accelerator. As femtosecond electron bunchesexit the plasma-vacuum interface, coherent transition radiation (at THzfrequencies) is emitted. Measuring the properties of this radiationallows characterization of the electron bunches. Theoretical work on theemission mechanism is represented, including a model that calculates theTHz waveform from a given bunch profile. It is found that the spectrum ofthe THz pulse is coherent up to the 200 mu m thick crystal (ZnTe)detection limit of 4 THz, which corresponds to the production of sub-50fs (root-mean-square) electron bunch structure. The measurementsdemonstrate both the shot-to-shot stability of bunch parameters that arecritical to THz emission (such as total charge and bunch length), as wellas femtosecond synchrotron between bunch, THz pulse, and laserbeam.

  7. RHIC experiments: Effect of bunch size and bunch spacing

    SciTech Connect

    Willis, W.; Ludlam, T.

    1988-01-01

    In designing experiments for a colliding beams facility the size of the interaction diamond is an important practical matter. The place where the beam particles collide--the source from which detected secondary particles radiate--is not a point but a line of some length. The bunch length grows due to intrabeam scattering, with sigma/sub D/ approaching 1 meter after 10 hours of storage time. The proposed scenario allowed smaller diamond lengths to be achieved with non-zero crossing angle, with a corresponding decrease in luminosity. Since that time the RHIC detector workshops have provided a more specific and quantitative assessment of the need for small interaction diamond. Among the highest priority experiments in the RHIC program are those which measure lepton pairs, and here each of two complementary experiments finds the bunch length to be critical. These experiments are discussed briefly. 3 refs., 2 figs.

  8. Longitudinal Beam Diagnostics for the ILC Injectors and Bunch Compressors

    SciTech Connect

    Piot, Philippe; Bracke, Adam; Demir, Veysel; Maxwell, Timothy; Rihaoui, Marwan; Jing, Chunguang; Power, John

    2010-12-01

    We present a diagnostics suite and analyze techniques for setting up the longitudinal beam dynamics in ILC e⁻ injectors and e⁺ and e⁻ bunch compressors. Techniques to measure the first order moments and recover the first order longitudinal transfer map of the injector's intricate bunching scheme are presented. Coherent transition radiation diagnostics needed to measure and monitor the bunch length downstream of the ~5 GeV bunch compressor are investigated using a vector diffraction model.

  9. Microbunching Due to Coherent Synchrotron Radiation in a Bunch Compressor

    SciTech Connect

    Stupakov, Gennady

    2001-09-10

    The coherent synchrotron radiation of a bunch in a bunch compressor may lead to the microwave instability producing longitudinal modulation of the bunch. This modulation generates coherent radiation with the wave length small compared to the bunch length. It can also be a source of an undesirable emittance growth in the compressor. We derive and analyze the equation that describes linear evolution of the microwave modulation. Numerical solution of this equation for the LCLS bunch compressor reveals such an instability, in qualitative agreement with numerical simulations.

  10. The Longitudinal Effective CSR Force for a Tilted Thin Bunch

    SciTech Connect

    Rui Li

    2005-05-01

    In the scheme of magnetic bunch compression, an electron bunch with linear energy chirp (energy-bunch length correlation), imposed by an upstream RF cavity, is sent to a magnetic chicane. The bunch length at the exit of the chicane can thus be manipulated via the pathlength-energy dependence due to chicane dispersion. As a linear energy-chirped bunch ({delta}-z correlation) being transported through a dispersive region (x-{delta} correlation), the bunch will have a linear horizontal-longitudinal (x-z) correlation in the configuration space (bunch tilt). Comparing to the case of a nontilted bunch, this x-z correlation modifies the geometry of particle interaction with respect to the direction of particle motion, which consequently modifies the retardation solution and the effective CSR forces. The simulation result of the CSR field for a tilted thin beam was presented earlier by Dohlus [1]. In this paper, we first give an example of the bunch x-z correlation, or bunch tilt, in a bunch compression chicane. The effect of this x-z correlation on the retardation solution and the longitudinal effective force are then analyzed for a line bunch with linear energy chirp transported by design optics.

  11. Bunched beam stochastic cooling in the Fermilab Recycler Ring

    SciTech Connect

    Broemmelsiek, D.; Burov, A.; Nagaitsev, S.; Neuffer, D.; /Fermilab

    2005-05-01

    Stochastic cooling with bunched beam in a linear bucket has been obtained and implemented operationally in the Fermilab Recycler Ring (RR). This is the first time that linear-rf bunched-beam stochastic cooling has been successfully used operationally in a high-energy facility. In this implementation the particle bunch length is much greater than the cooling system wavelengths, and that property is critical to the cooling success. The simultaneous longitudinal bunching enables cooling to much smaller longitudinal emittances than the coasting beam or barrier bucket system. Characteristics and limitations of bunched beam stochastic cooling are discussed.

  12. Proceedings of the impedance and bunch instability workshop

    SciTech Connect

    Not Available

    1990-04-01

    This report discusses the following topics: impedance and bunch lengthening; single bunch stability in the ESRF; a longitudinal mode-coupling instability model for bunch lengthening; high-frequency behavior of longitudinal coupling impedance; beam-induced energy spreads at beam-pipe transitions; on the calculation of wake functions using MAFIA-T3 code; preliminary measurements of the bunch length and the impedance of LEP; measurements and simulations of collective effects in the CERN SPS; bunch lengthening in the SLC damping rings; and status of impedance measurements for the spring-8 storage ring.

  13. Curvature-Induced Bunch Self-Interaction for an Energy-Chirped Bunch in Magnetic Bends

    SciTech Connect

    Li, Rui

    2008-02-01

    Within the realm of classical electrodynamics, the curvature-induced bunch collective interaction in magnetic bends can be studied using effective forces in the canonical formulation of the coherent synchrotron radiation (CSR) effect. As an application of this canonical formulation, in this paper, for an electron distribution moving ultrarelativistically in a bending system, the dynamics of the particles in the distribution is derived from the Hamiltonian of the particles in terms of the bunch internal coordinates. The consequent Vlasov equation manifests explicitly how the phase-space distribution is perturbed by the effective CSR forces. In particular, we study the impact of an initial linear energy chirp of the bunch on the behavior of the effective longitudinal CSR force, which arises due to the modification of the retardation relation as a result of the energy-chirping- induced longitudinal-horizontal correlation of the bunch distribution (bunch tilt) in dispersive regions. Our study demonstrates clearly the time delay (or retardation) of the behavior of the effective longitudinal CSR force on a bunch in responding to the change of the bunch length in a magnetic bend. Our result also shows that the effective longitudinal CSR force for a bunch under full compression can have sensitive dependence on the transverse position of the test particle in the bunch for certain parameter regimes.

  14. Application accelerator system having bunch control

    DOEpatents

    Wang, Dunxiong; Krafft, Geoffrey Arthur

    1999-01-01

    An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.

  15. Application accelerator system having bunch control

    DOEpatents

    Wang, D.; Krafft, G.A.

    1999-06-22

    An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig.

  16. Bunch compression for the TLC: Preliminary design

    SciTech Connect

    Kheifets, S.A.; Ruth, R.D.; Murray, J.J.; Fieguth, T.H.

    1988-12-01

    A preliminary design of a TLC bunch compressor as a two-stage device is described. The main parameters of the compressor, as well as results of some simulations, are presented. They show that the ideal system (no imperfections) does the job of transmitting transverse emittances without distortions (at least up to the second-order terms) producing at the same time the desired bunch length of 50 m. 9 refs., 6 figs., 4 tabs.

  17. Controlling multi-bunches by a fast phase switching

    SciTech Connect

    Decker, F.J.; Jobe, R.K.; Merminga, N.; Thompson, K.A.

    1990-09-01

    In linear accelerators with two or more bunches the beam loading of one bunch will influence the energy and energy spread the following bunches. This can be corrected by quickly changing the phase of a traveling wave-structure, so that each bunch receives a slightly different net phase. At the SLAC Linear Collider (SLC) three bunches, two (e{sup +},e{sup {minus}}) for the high energy collisions and one (e{sup {minus}}-scavenger) for producing positrons should sit at different phases, due to their different tasks. The two e{sup {minus}}-bunches are extracted from the damping ring at the same cycle time about 60 ns apart. Fast phase switching of the RF to the bunch length compressor in the Ring-To-Linac (RTL) section can produce the necessary advance of the scavenger bunch (about 6{degree} in phase). This allows a low energy spread of this third bunch at the e{sup +}-production region at 2/3 of the linac length, while the other bunches are not influenced. The principles and possible other applications of this fast phase switching as using it for multi-bunches, as well as the experimental layout for the actual RTL compressor are presented.

  18. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  19. Design of low energy bunch compressors with space charge effects

    NASA Astrophysics Data System (ADS)

    He, A.; Willeke, F.; Yu, L. H.; Yang, L.; Shaftan, T.; Wang, G.; Li, Y.; Hidaka, Y.; Qiang, J.

    2015-01-01

    In this paper, we explore a method to manipulate low energy electron bunches in a space charge dominated regime, and we use this method to design low energy linac bunch compressors to compress electron bunches in a space charge dominated regime. In the method, we use the space charge effects instead of avoiding them; i.e., we use the space charge forces to generate the required energy chirp instead of the ordinary method which uses the rf accelerating system to generate the chirp. We redefine the concepts of the dispersion function and beta functions in a space charge dominated regime to guide the optimization. Using this method, we study the low energy (5-22 MeV) linac bunch compressor design to produce short (˜150 fs ) and small size (˜30 μ m ) bunches for the electron beam slicing project. The low energy linac bunch compressors work in a space charge dominated regime, and the bunches at the downstream of the gun have a negative energy chirp due to the space charge effects. To provide compression for the negative energy chirped bunch, we design a positive R56 dispersive section using a four-dipole chicane with several quadrupole magnets. We have designed low energy linac bunch compressors with different photocathode rf guns. For example, one linac bunch compressor with the BNL photocathode electron rf gun has achieved a low energy bunch with the 166 fs rms bunch length, 28 and 31 μ m rms beam size in the vertical and horizontal directions, respectively, at 5 MeV with 50 pC charge. Another example with LBNL's very-high frequency gun has achieved a low energy bunch with the 128 fs rms bunch length, 42 and 25 μ m rms beam size in the vertical and horizontal directions, respectively, at 22 MeV with 200 pC charge.

  20. Terahertz radiation as a bunch diagnostic for laser-wakefield-accelerated electron bunches

    SciTech Connect

    van Tilborg, Jeroen; Schroeder, Carl; Filip, Catalin; Toth, Csaba; Geddes, Cameron; Fubiani, Gwenael; Esarey, Eric; Leemans, Wim

    2011-06-17

    Experimental results are reported from two measurement techniques (semiconductor switching and electro-optic sampling) that allow temporal characterization of electron bunches produced by a laser-driven plasma-based accelerator. As femtosecond electron bunches exit the plasma-vacuum interface, coherent transition radiation (at THz frequencies) is emitted. Measuring the properties of this radiation allows characterization of the electron bunches. Theoretical work on the emission mechanism is presented, including a model that calculates the THz wave form from a given bunch profile. It is found that the spectrum of the THz pulse is coherent up to the 200 {micro}m thick crystal (ZnTe) detection limit of 4 THz, which corresponds to the production of sub-50 fs (rms) electron bunch structure. The measurements demonstrate both the shot-to-shot stability of bunch parameters that are critical to THz emission (such as total charge and bunch length), as well as femtosecond synchronization among bunch, THz pulse, and laser beam.

  1. Bunch identification module

    SciTech Connect

    Fox, J.D.

    1981-01-01

    This module provides bunch identification and timing signals for the PEP Interaction areas. Timing information is referenced to the PEP master oscillator, and adjusted in phase as a function of region. Identification signals are generated in a manner that allows observers in all interaction regions to agree on an unambiguous bunch identity. The module provides bunch identification signals via NIM level logic, upon CAMAC command, and through LED indicators. A front panel ''region select'' switch allows the same module to be used in all regions. The module has two modes of operation: a bunch identification mode and a calibration mode. In the identification mode, signals indicate which of the three bunches of electrons and positrons are interacting, and timing information about beam crossing is provided. The calibration mode is provided to assist experimenters making time of flight measurements. In the calibration mode, three distinct gating signals are referenced to a selected bunch, allowing three timing systems to be calibrated against a common standard. Physically, the bunch identifier is constructed as a single width CAMAC module. 2 figs., 1 tab.

  2. Micro-bunching diagnostics for the IFEL by coherent transition radiation

    SciTech Connect

    Liu, Y.; Cline, D.B.; Wang, X.J.; Babzien, M.; Fang, J.M.; Yakimenko, V.

    1996-10-01

    Here, we propose an effective method for detecting micro-bunching effects (10 fs bunch length) produced by the IFEL interaction, by measuring the CTR spectrum. The pre-bunching of an initially energy- modulated c- beam passing through a wiggler (IFEL interaction) is studied. Simulation shows that more than 40% of electrons are pre- bunched in the micro-bunches. The longitudinal distribution of an optically pre-bunched beam is Fourier analyzed to find the dominant harmonics contributing to the CTR. The CTR spectrum is calculated analytically for the IFEL situation. A detection system has been built to demonstrate this technique.

  3. Generation and Analysis of Subpicosecond Double Electron Bunch at the Brookhaven Accelerator Test Facility

    SciTech Connect

    Babzien, M.; Kusche, K.; Yakimenko, V.; Zhou, F.; Kimura, Wayne D.; Cline, D.B.; Ding, X.P.; /UCLA

    2011-08-09

    Two compressed electron beam bunches from a single 60-MeV bunch have been generated in a reproducible manner during compression in the magnetic chicane - 'dog leg' arrangement at ATF. Measurements indicate they have comparable bunch lengths ({approx}100-200 fs) and are separated in energy by {approx}1.8 MeV with the higher-energy bunch preceding the lower-energy bunch by 0.5-1 ps. Some simulation results for analyzing the double-bunch formation process are also presented.

  4. Longitudinal Diagnostics of Short Bunches at FLASH

    SciTech Connect

    Khan, Shaukat

    2009-01-22

    Novel acceleration concepts such as laser- or beam-driven plasma acceleration require advanced diagnostic techniques to characterize and monitor the beam. A particular challenge is to measure bunch lengths of the order of 10 femtoseconds. Several methods are currently explored at the free-electron laser FLASH at DESY/Hamburg and will be discussed it this paper, such as electro-optical sampling, streaking bunches with a transversely deflecting cavity, and -most recently implemented at FLASH--the optical-replica synthesizer, a laser-based technique promising a time resolution of a few femtoseconds.

  5. Double rf system for bunch shortening

    SciTech Connect

    Chin, Yong Ho.

    1990-11-01

    It was suggested by Zisman that the combination of the two systems (double rf system) may be more effective to shorten a bunch, compromising between the desirable and the undesirable effects mentioned above. In this paper, we demonstrate that a double rf system is, in fact, quite effective in optimizing the rf performance. The parameters used are explained, and some handy formulae for bunch parameters are derived. We consider an example of bunch shortening by adding a higher-harmonic rf system to the main rf system. The parameters of the main rf system are unchanged. The double rf system, however, can be used for another purpose. Namely, the original bunch length can be obtained with a main rf voltage substantially lower than for a single rf system without necessitating a high-power source for the higher-harmonic cavities. Using a double rf system, the momentum acceptance remains large enough for ample beam lifetime. Moreover, the increase in nonlinearity of the rf waveform increases the synchrotron tune spread, which potentially helps a beam to be stabilized against longitudinal coupled-bunch instabilities. We will show some examples of this application. We discuss the choice of the higher-harmonic frequency.

  6. Cooperative accumulation of coherent undulator radiation emitted from periodic electron bunches

    SciTech Connect

    Seo, Y. H.

    2013-01-15

    Cavity build-up of coherent undulator synchrotron radiation emitted by periodic electron bunches is investigated. At the optimal off-grazing resonance, the bunch slippage relative to the radiation pulse introduces an initial transient period during which radiation accumulates cooperatively as if it is emitted by a single bunch. The power growth during the period is quadratic to the number of bunches. The number of cooperative bunches is {approx}2 Script-Small-L {sub s}{sup 2}, where Script-Small-L {sub s} denotes the slippage length in units of the resonant wavelength.

  7. The Study of the Tether Motion with Time-Varying Length Using the Absolute Nodal Coordinate Formulation with Multiple Nonlinear Time Scales

    NASA Astrophysics Data System (ADS)

    Kawaguti, Keisuke; Terumichi, Yoshiaki; Takehara, Shoichiro; Kaczmarczyk, Stefan; Sogabe, Kiyoshi

    In this study, the modeling and formulation for tether motion with time-varying length, large rotation, large displacement and large deformation are proposed. A tether or cable is an important element in lift systems, construction machines for transportation and often is used with a time-varying length. In some cases, these systems are large and the tether has a long length, large deformation and large displacement. The dynamic behavior of a tether in extension and retraction using the proposed method is discussed in this paper. In the passage through resonance, significant tether motions with large rotation and large deformation result. In the analysis of this phenomenon, the transient fluctuations of the motion amplitudes are examined and compared with the corresponding steady state motions. The accuracy and the cost of the calculations are also verified by comparison with the experimental results.

  8. Resistive wall wakefields of short bunches at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Stupakov, G.; Bane, K. L. F.; Emma, P.; Podobedov, B.

    2015-03-01

    We present calculations of the longitudinal wakefields at cryogenic temperatures for extremely short bunches, characteristic for modern x-ray free electron lasers. The calculations are based on the equations for the surface impedance in the regime of the anomalous skin effect in metals. This paper extends and complements an earlier analysis of B. Podobedov, Phys. Rev. ST Accel. Beams 12, 044401 (2009). into the region of very high frequencies associated with bunch lengths in the micron range. We study in detail the case of a rectangular bunch distribution for parameters of interest of LCLS-II with a superconducting undulator.

  9. Explanation of persistent high frequency density structure in coalesced bunches

    SciTech Connect

    Jackson, Gerald P.

    1988-07-01

    It has been observed that after the Main Ring rf manipulation of coalescing (where 5 to 13 primary bunches are transferred into a single rf bucket) the new secondary bunch displays evidence of high frequency density structure superimposed on the approximately Gaussian longitudinal bunch length distribution. This structure is persistent over a period of many seconds (hundreds of synchrotron oscillation periods). With the help of multiparticle simulation programs, an explanation of this phenomenon is given in terms of single particle longitudinal phase space dynamics. No coherent effects need be taken into account. 6 refs., 10 figs.

  10. Multi-Stage Bunch Compressors for the International Linear Collider

    SciTech Connect

    Tenenbaum, P.; Raubenheimer, T.O.; Wolski, A.; /LBL, Berkeley

    2005-05-27

    We present bunch compressor designs for the International Linear Collider (ILC) which achieve a reduction in RMS bunch length from 6 mm to 0.3 mm via multiple stages of compression, with stages of acceleration inserted between the stages of compression. The key advantage of multi-stage compression is that the maximum RMS energy spread is reduced to approximately 1%, compared to over 3% for a single-stage design. Analytic and simulation studies of the multi-stage bunch compressors are presented, along with performance comparisons to a single-stage system. Parameters for extending the systems to a larger total compression factor are discussed.

  11. Compensation of longitudinal nonlinearities in the NLC bunch compressor

    SciTech Connect

    Zimmermann, F.; Raubenheimer, T.O.

    1995-10-01

    The X-Band linac of the Next Linear Collider (NLC) will accelerate bunches of about 100 {mu}m rms length to energies of 250-750 GeV. The task of the NLC bunch compressor is to reduce the initial bunch length of 4-5 mm, at extraction from the damping ring, by a factor of 40, to the desired value. This task is accomplished in two separate stages. The first stage at 2 GeV consists of an rf section and a wiggler. The second stage at 10 GeV is formed by an arc, an rf section, and a chicane. The system is designed such that the final bunch phase is insensitive to initial phase errors and to beam-loading in the intermediate S-band pre-linac. Additional decelerating rf sections are employed to compensate significant longitudinal aberrations.

  12. Single/Few Bunch Space Charge Effects at 8 GeV in the Fermilab Main Injector

    SciTech Connect

    Scott, D.J.; Capista, D.; Kourbanis, I.; Seiya, K.; Yang, M.-J.; /Fermilab

    2012-05-01

    For Project X, it is planned to inject a beam of 3 10{sup 11} particles per bunch into the Main Injector. Therefore, at 8 GeV, there will be increased space charge tune shifts and an increased incoherent tune spread. In preparation for these higher intensity bunches exploratory studies have commenced looking at the transmission of different intensity bunches at different tunes. An experiment is described with results for bunch intensities between 20 and 300 10{sup 9} particles. To achieve the highest intensity bunches coalescing at 8 GeV is required, resulting in a longer bunch length. Comparisons show that similar transmission curves are obtained when the intensity and bunch length have increased by similar factors. This indicates the incoherent tune shifts are similar, as expected from theory. The results of these experiments will be used in conjugation with simulations to further study high intensity bunches in the Main Injector.

  13. Multi-bunch energy compensation

    SciTech Connect

    Ruth, R.D.

    1988-02-01

    To obtain a luminosity of 10{sup 34} cm{sup {minus}2} sec{sup {minus}1} in a TeV Linear Collider (TLC), it will probably be necessary to accelerate many bunches in one filling of the rf structure. This has the effect of extracting more energy from the structure and thus enhances the overall efficiency of the accelerator. However, this leads to many problems. First, the train bunches is subject to cummulative beam breakup transversely. This can be controlled by damping the transverse modes with slots in the irises coupled to waveguides. In addition, the energy of the bunches must be kept the same to high precision. For the fundamental mode, this entails adjusting the timing of the rf fill and also the bunch spacing. The higher longitudinal modes, although they do not induce instability, also may lead to bunch-to-bunch variations in energy. However, it also seems possible to damp these modes to cure this problem. Of course, there are also problems associated with damping a train of bunches in a damping ring. In this paper we discuss some of the issues of multi-bunch energy compensation. In the first two sections, we review some basics about energy extraction by a single bunch, and then, multi-bunch energy compensation is treated. We discuss various tolerance issues associated with deviations of amplitude and phase of the rf away from the ideal.

  14. Micro-bunching diagnostics for the ICA by coherent transition radiation

    SciTech Connect

    Liu, Y.; Bogacz, S.A.; Cline, D.B.; Wang, X.J.; Pogorelsky, I.V.; Kimura, W.D.

    1995-12-31

    Here, the authors propose an effective method to detect micro-bunching effects (10 fs bunch length), produced by the ICA interaction, by using the CTR spectrum. The re-bunching of initially energy modulated e-beam passing through a Hydrogen gas cell (ICA interaction) is studied via a Monte Carlo simulation code (STI), as well as in a space-charge dominated region by a multi-particle time domain tracking code (PARMELA). The results show that even in a strong space-charge dominated region the re-bunching effect is still very pronounced. The erosion of bunching due to the space-charge defocusing washes out the final bunching peak only by about 10% (FWHM). The longitudinal distribution of a micro-bunched beam is Fourier analyzed to find the dominant harmonics contributing to the CTR. The CTR spectrum is calculated analytically for the ICA situation. A schematic of the experimental set up is also proposed.

  15. Six Dimensional Bunch Merging for Muon Collider Cooling

    SciTech Connect

    Palmer, R.B.; Fernow, R.C.

    2011-03-28

    A muon collider requires single, intense, muon bunches with small emittances in all six dimensions. It is most efficient to initally phase-rotate the muons into many separate bunches, cool these bunches in six dimensions (6D), and, when cool enough, merge them into single bunches (one of each sign). Previous studies only merged in longitudinal phase space (2D). In this paper we describe merging in all six dimensions (6D). The scheme uses rf for longitudinal merging, and kickers and transports with differing lengths (trombones) for transverse merging. Preliminary simulations, including incorporation in 6D cooling, is described. Muons are efficiently generated by pion decay, but they then have very large emittances. A muon collider requires low emittances, which can be achieved using transverse ionization cooling, combined with emittance exchange using dispersion and shaped absorbers. For efficient capture, muons are first phase-rotated by rf into a train of many bunches. But for high luminosity, we need just one bunch of each sign, so after some initial cooling, these bunches should be merged.

  16. Main Ring bunch spreaders: Past, 1987/1988 fixed target run, and proposed future

    SciTech Connect

    Jackson, G.P.

    1989-02-26

    During the last 1987--1988 fixed target running period beam intensity was limited many times by coherent instabilities in both the Main Ring and in the Tevatron. The intensity thresholds for instabilities are generally inversely proportional to the proton bunch length. Since fixed target operations are insensitive to the longitudinal phase space emittance of the beam, bunch spreaders are employed to increase this emittance, and hence the bunch length. As a result, more beam intensity can be delivered to the fixed target experiments. This paper starts with a short history behind the old Main Ring bunch spreader. After discussing the physics of stimulated emittance growth, the design and performance of the 1987--1988 fixed target run Main Ring bunch spreader is discussed. Finally, designs of improved Main Ring and Tevatron bunch spreaders for the next fixed target run are proposed. 23 figs.

  17. Longitudinal bunch dynamics study with coherent synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Billinghurst, B. E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; May, T. E.; Vogt, J. M.; Wurtz, W. A.

    2016-02-01

    An electron bunch circulating in a storage ring constitutes a dynamical system with both longitudinal and transverse degrees of freedom. Through a self-interaction with the wakefields created by the bunch, certain of these degrees may get excited, defining a set of eigenmodes analogous to a spectroscopic series. The present study focuses on the longitudinal modes of a single bunch. The excitation of a mode appears as an amplitude modulation at the mode frequency of the coherent synchrotron radiation (CSR) emitted by the bunch. The modulations are superimposed on a much larger continuum from CSR emission in the continuous mode. A given eigenmode is classified by the integer m which is the ratio of the mode frequency to the synchrotron frequency. The present measurements extend up to m =8 and focus on the region near the instability thresholds. At threshold the modes are excited sequentially, resembling a staircase when the mode frequencies are plotted as a function of bunch length or synchrotron frequency. Adjacent modes are observed to coexist at the boundaries between the modes. An energy-independent correlation is observed between the threshold current for an instability and the corresponding zero-current bunch length. Measurements were made at five beam energies between 1.0 and 2.9 GeV at the Canadian Light Source. The CSR was measured in the time domain using an unbiased Schottky diode spanning 50-75 GHz.

  18. VELOCITY BUNCHING OF HIGH-BRIGHTNESS ELECTRON BEAMS

    SciTech Connect

    Anderson, S G; Musumeci, P; Rosenzweig, J B; Brown, W J; England, R J; Ferrario, M; Jacob, J S; Thompson, M C; Travish, G; Tremaine, A M; Yoder, R

    2004-10-15

    Velocity bunching has been recently proposed as a tool for compressing electron beam pulses in modern high brightness photoinjector sources. This tool is familiar from earlier schemes implemented for bunching dc electron sources, but presents peculiar challenges when applied to high current, low emittance beams from photoinjectors. The main difficulty foreseen is control of emittance oscillations in the beam in this scheme, which can be naturally considered as an extension of the emittance compensation process at moderate energies. This paper presents two scenarios in which velocity bunching, combined with emittance control, is to play a role in nascent projects. The first is termed ballistic bunching, where the changing of relative particle velocities and positions occur in distinct regions, a short high gradient linac, and a drift length. This scenario is discussed in the context of the proposed ORION photoinjector. Simulations are used to explore the relationship between the degree of bunching, and the emittance compensation process. Experimental measurements performed at the UCLA Neptune Laboratory of the surprisingly robust bunching process, as well as accompanying deleterious transverse effects, are presented. An unanticipated mechanism for emittance growth in bends for highly momentum chirped beam was identified and studied in these experiments. The second scenario may be designated as phase space rotation, and corresponds closely to the recent proposal of Ferrario and Serafini. Its implementation for the compression of the electron beam pulse length in the PLEIADES inverse Compton scattering (ICS) experiment at LLNL is discussed. It is shown in simulations that optimum compression may be obtained by manipulation of the phases in low gradient traveling wave accelerator sections. Measurements of the bunching and emittance control achieved in such an implementation at PLEIADES, as well as aspects of the use of velocity-bunched beam directly in ICS experiments

  19. The Optimized Bunch Compressor for the International Linear Collider

    SciTech Connect

    Seletskiy, S.; Tenenbaum, P.; /SLAC

    2007-07-06

    The International Linear Collider (ILC) utilizes a two stage Bunch Compressor (BC) that compresses the RMS bunch length from 9 mm to 200 to 300 micrometers before sending the electron beam to the Main Linac. This paper reports on the new design of the optimized BC wiggler. It was reduced in length by more than 30%. The introduction of nonzero dispersion slope in the BC wigglers enabled them to generate the required compression while having a small SR emittance growth, a tunability range of over a factor of 2 in each wiggler, and less than 3% RMS energy spread throughout the entire system.

  20. Bunch Compressor Beamlines for the Tesla and S Band Linear Colliders

    SciTech Connect

    Emma, Paul J

    2003-06-20

    A detailed design for a single stage beam bunch length compressor for both the TESLA and the S-Band Linear Collider (SBLC) is presented. Compression is achieved by introducing an energy-position correlation along the bunch with an rf section at zero-crossing phase followed by a short bending section with energy dependent path length (momentum compaction). The motivation for a wiggler design is presented and many of the critical single bunch tolerances are evaluated. A solenoid based spin rotator is included in the design and transverse emittance tuning elements, diagnostics and tuning methods are described. Bunch length limitations due to second order momentum compaction and sinusoidal rf shape are discussed with options for compensation. Finally, the disadvantages of bunch compression using a 180{sup o} arc are discussed.

  1. MODULATION OF LOW ENERGY BEAM TO GENERATE PREDEFINED BUNCH TRAINS FOR THE NSLS-II TOP-OFF INJECTION

    SciTech Connect

    Wang, G.M.; Cheng, W.X.; Shaftan, T.; Fliller, R.; Heese, R.; Rose, J.

    2011-03-28

    The NSLS II linac will produce a bunch train, 80-150 bunches long with 2 ns bunch spacing. Having the ability to tailor the bunch train can lead to the smaller bunch to bunch charge variation in the storage ring. A stripline is planned to integrate into the linac baseline to achieve this tailoring. The stripline must have a fast field rise and fall time to tailor each bunch. The beam dynamics is minimally affected by including the extra space for the stripline. This paper discusses the linac beam dynamics with stripline, and the optimal design of the stripline. A stripline is to be integrated in the linac to match the storage ring uniform bunch charge requirement, which simplifies the gun pulser electronics and looses the edge uniform requirement. It is located at low energy to lower the stripline power supply requirement and limit the dumped electron radiation. By turning off the stripline, the beam dynamics through linac is comparable with the baseline design. More advanced ideas can be explored. If a DC corrector along with the stripline is used, the core bunch trains gets kick from the stripline while the head and the tail of bunch train just gets a DC kick. The stripline power supply waveform is a single flat top waveform with fast rise and drop and the pulse length is {approx}200 ns long or 100 bunches, which may be easier from the power supply view point. We are also considering the bunch by bunch charge manipulation to match the storage ring uniform bunch charge distribution requirement. By modulating the flat top waveform at 250 MHz with adjustable amplitude, each the bunch center is either at 45 degree or 135 degree. Only the head or tail of the bunch is trimmed out. Although each bunch center deviation from idea center is very different at low energy, it is gradually minimized with beam energy increase.

  2. Simulation of longitudinal coupled-bunch instabilities

    SciTech Connect

    Thompson, K.A.

    1991-02-07

    The purpose of this note is to document some work done as part of the effort directed at designing and simulating a bunch-by-bunch feedback system to control longitudinal coupled bunch instabilities in the B-factory. In particular, I discuss the ring model used in the simulation program developed to study this feedback system. Basically the simulation is a simple tracking program in which the rf drive voltage, the wakefields due to all the bunches, the synchrotron radiation losses, and the kicks applied to the bunches by the bunch-by-bunch feedback are all modelled as voltages applied at a single, discrete point in the ring. The computation of the bunch-by-bunch feedback voltages may of course be done by any desired algorithms. An example and discussion of the general behavior without bunch-by-bunch feedback is given at the end of this report.

  3. Compensating the unequal bunch spacing in the NLC damping rings

    SciTech Connect

    Bane, K.L.F.; Wilson, P.B.; Kubo, K.

    1996-06-01

    The damping rings of the Next Linear Collider (NLC), at any given time, will contain four trains of 90 bunches each. Within each train the bunches populate adjacent buckets and between trains there is a gap that extends over 43 buckets. A consequence of an uneven filling scheme is that within each train the synchronous phase will vary from bunch to bunch. In the NLC after extraction the beam enters the bunch compressor and then the X-band linac. The phase variation in the ring, if uncompensated, will lead to a phase variation in the X-band linac which, in turn, will result in an unacceptable spread in the final energy of the individual bunches of a train. The synchronous phase variation, however, can be compensated, either in the damping ring itself or in the bunch compressor that follows. The subject of this paper is compensation in the damping ring. In this report we begin by finding the synchronous phase variation in damping rings with bunch trains and gaps of arbitrary length. These results are then applied to the parameters of the NLC damping rings. Finally, we study two methods of compensating this phase variation: in the first method two passive subharmonic cavities are employed, and in the second the klystron output is varied as a function of time. We find that, for the NLC, a nominal phase variation of 6 degrees within a train can be reduced by almost an order of magnitude by either method of compensation, with the cost of the second method being an extra 10% in output power capability of the klystron.

  4. Determination of longitudinal bunch profile using spectral fluctuations of incoherent radiation

    SciTech Connect

    Sajaev, V.

    2000-07-05

    Single-shot spectrum measurements of the radiation emitted by an electron bunch provide a novel way to characterize the bunch shape. Shot noise fluctuations in the longitudinal beam density result in radiation with a spectrum that consists of spikes with width inversely proportional to the bunch length. The variance of the Fourier transform of the spectrum is proportional to the convolution function of the beam current averaged over many bunches. After the convolution function is found, the phase retrieval technique can be applied to recover the bunch shape. This technique has been used to analyze the shape of the 4-ps-long bunches at the Low-Energy Undulator Test Line at the Advanced Photon Source.

  5. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  6. Beam transport and bunch compression at TARLA

    NASA Astrophysics Data System (ADS)

    Aksoy, Avni; Lehnert, Ulf

    2014-10-01

    The Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) will operate two InfraRed Free Electron Lasers (IR-FEL) covering the range of 3-250 μm. The facility will consist of an injector fed by a thermionic triode gun with two-stage RF bunch compression, two superconducting accelerating ELBE modules operating at continuous wave (CW) mode and two independent optical resonator systems with different undulator period lengths. The electron beam will also be used to generate Bremsstrahlung radiation. In this study, we present the electron beam transport including beam matching to the undulators and the shaping of the longitudinal phase space using magnetic dispersive sections.

  7. STOCHASTIC COOLING FOR BUNCHED BEAMS.

    SciTech Connect

    BLASKIEWICZ, M.

    2005-05-16

    Problems associated with bunched beam stochastic cooling are reviewed. A longitudinal stochastic cooling system for RHIC is under construction and has been partially commissioned. The state of the system and future plans are discussed.

  8. Thermal damage at short electron bunches passage through a thin target

    NASA Astrophysics Data System (ADS)

    Babaev, A. A.; Gogolev, A. S.

    2016-07-01

    The thin target could be used for beam diagnostics by means the radiation that is induced by interaction of beam particles with target matter. The electron beams used in modern applications (as, for example, modern FELs) have very large brightness, small emittance as well as very short bunch length. For example, the bunch length of XFEL is about of 25 um at bunch charge order of 1 nC and with electrons energy of 17.5 GeV. The passage of this powerful short bunches could damage the target or even completely destroy it. In the presented work the train of such bunches passages through the target is investigated. It is shown the target works in extreme regime close to phase transition temperature.

  9. Non-linear effects in bunch compressor of TARLA

    NASA Astrophysics Data System (ADS)

    Yildiz, Hüseyin; Aksoy, Avni; Arikan, Pervin

    2016-03-01

    Transport of a beam through an accelerator beamline is affected by high order and non-linear effects such as space charge, coherent synchrotron radiation, wakefield, etc. These effects damage form of the beam, and they lead particle loss, emittance growth, bunch length variation, beam halo formation, etc. One of the known non-linear effects on low energy machine is space charge effect. In this study we focus on space charge effect for Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) machine which is designed to drive InfraRed Free Electron Laser covering the range of 3-250 µm. Moreover, we discuss second order effects on bunch compressor of TARLA.

  10. Temporal Characterization of Electron Beam Bunches with a Fast Streak Camera at the JLab FEL Facility

    SciTech Connect

    S. Zhang; S.V. Benson; D. Douglas; D. Hardy; C. Hernandez-Garcia; K. Jordan; G. Neil; Michelle D. Shinn

    2005-08-21

    The design and construction of an optical transport that brings synchrotron radiation from electron bunches to a fast streak camera in a remote area has become a useful tool for online observation of bunch length and stability. This paper will report on the temporal measurements we have done, comparison with simulations, and the on-going work for another imaging optical transport system that will make possible the direct measurement of the longitudinal phase space by measuring the bunch length as a function of energy

  11. End-to-end simulation of bunch merging for a muon collider

    SciTech Connect

    Bao, Yu; Stratakis, Diktys; Hanson, Gail G.; Palmer, Robert B.

    2015-05-03

    Muon accelerator beams are commonly produced indirectly through pion decay by interaction of a charged particle beam with a target. Efficient muon capture requires the muons to be first phase-rotated by rf cavities into a train of 21 bunches with much reduced energy spread. Since luminosity is proportional to the square of the number of muons per bunch, it is crucial for a Muon Collider to use relatively few bunches with many muons per bunch. In this paper we will describe a bunch merging scheme that should achieve this goal. We present for the first time a complete end-to-end simulation of a 6D bunch merger for a Muon Collider. The 21 bunches arising from the phase-rotator, after some initial cooling, are merged in longitudinal phase space into seven bunches, which then go through seven paths with different lengths and reach the final collecting "funnel" at the same time. The final single bunch has a transverse and a longitudinal emittance that matches well with the subsequent 6D rectilinear cooling scheme.

  12. Electron Bunch Shape Measurements Using Electro-optical Spectral Decoding

    NASA Astrophysics Data System (ADS)

    Borysenko, A.; Hiller, N.; Müller, A.-S.; Steffen, B.; Peier, P.; Ivanisenko, Y.; Ischebeck, R.; Schlott, V.

    Longitudinal diagnostics of the electron bunch shapes play a crucial role in the operation of linac-based light sources. Electro-optical techniques allow us to measure the longitudinal electron bunch profiles non-destructively on a shot-by-shot basis. Here we present results from measurements of electron bunches with a length of 200-900 fs rms at the Swiss FEL Injector Test Facility. All the measurements were done using an Yb-doped fibre laser system (with a central wavelength of a 1050 nm) and a GaP crystal. The technique of electro-optical spectral decoding (EOSD) was applied and showed great capabilities to measure bunch shapes down to around 370 fs rms. Measurements were performed for different electron energies to study the expected distortions of the measured bunch profile due to the energy-dependent widening of the electric field, which plays a role for low beam energies below and around 40 MeV. The studies provide valuable input for the design of the EOSD monitors for the compact linear accelerator FLUTE that is currently under commissioning at the Karslruhe Institute of Technology (KIT).

  13. Single-bunch kicker pulser

    SciTech Connect

    Frey, W.W.

    1983-01-01

    The single-bunch kicker magnet is powered by a capacitor discharge pulser. The ferrite-core magnet is used to kick out one of twelve proton bunches circulating in the AGS (Alternating Gradient Synchrotron) into the experimental area. The magnet current pulse has a half-sinusoid shape, with a peak current of 2800 A. The pulse current rises and falls to zero, with minimum undershoot, in 410 nsec to minimize effects on adjacent bunches. The magnet inductance is 1.0 ..mu..Hy. The pulser is mounted on the kicker magnet in the AGS ring, and is exposed to ionizing radiation. The HVDC power supply, controls, monitoring, and auxiliary circuits are housed approximately 300 feet away external to the ring. A two-gap thyratron is used to discharge the energy storage capacitor. Two hydrogen diodes are series connected to function as an inverse diode.

  14. Single-shot electro-optic experiments for electron bunch diagnostics at Tsinghua Accelerator Laboratory

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Du, Yingchao; Yan, Lixin; Hua, Jianfei; Zhang, Zhen; Zhou, Zheng; Huang, Wenhui; Tang, Chuanxiang; Li, Ming

    2016-10-01

    The electro-optic (EO) technique detects the Coulomb electric field distribution of relativistic electron bunches to obtain the associated longitudinal profile. This diagnostic method allows the direct time-resolved single-shot measurement and thus the real-time monitoring of the bunch profile and beam arrival time in a non-destructive way with sub-picosecond temporal resolution. In this paper, we report the measurement of the longitudinal profile of an electron bunch through electro-optic spectral decoding detection, in which the bunch profile is encoded into the spectra of the linearly chirped laser pulse. The experimental setup and measurement results of a 40 MeV electron bunch are presented, with a temporal profile length of 527 fs rms (~1.24 ps FWHM) and a beam arrival time jitter of 471 fs rms. Temporal resolution and future experimental improvement are also discussed.

  15. Microbunching Instability in Velocity Bunching

    SciTech Connect

    Xiang, D; Wu, J.; /SLAC

    2009-05-26

    Microbunching instability is one of the most challenging threats to FEL performances. The most effective ways to cure the microbunching instability include suppression of the density modulation sources and suppression of the amplification process. In this paper we study the microbunching instability in velocity bunching. Our simulations show that the initial current and energy modulations are suppressed in velocity bunching process, which may be attributed to the strong plasma oscillation and Landau damping from the relatively low beam energy and large relative slice energy spread. A heating effect that may be present in a long solenoid is also preliminarily analyzed.

  16. Loss Factor of Tapered Structures for Short Bunches

    SciTech Connect

    Blednykh, A.

    2011-03-28

    Using the electromagnetic simulation code ECHO, we have found a simple phenomenological formula that accurately describes the loss factor for short bunches traversing an axisymmetric tapered collimator. In this paper, we consider tapered collimators with rectangular cross-section and use the GdfidL code to calculate the loss factor dependence on the geometric parameters for short bunches. The results for both axisymmetric and rectangular collimators are discussed. The behaviour of the impedance of tapered structures for very short bunches in the optical regime has been determined in refs. [10,11]. Here, for the loss factors for two particular geometries, we have studied the departure from the optical regime behaviour as bunch length is increased. In both cases, the ratio of the loss factor for the tapered collimator to the loss factor in the optical regime is a function only of the scaling parameter {sigma}L/d{sup 2}. The fact that the bunch length a and the taper length L appear as a product is consistent with the recent scaling derived by Stupakov in ref. [12], since there is only a weak dependence on g. One noteworthy fact that is not a priori expected is that only the larger radius or vertical half-aperture d appears. The reduction factor is independent of b. Moreover, it is striking that the specific form involving the arctan given in Eq. (5) holds for both geometries, with only the coefficient {mu} differing by a factor of {approx}2 for flat vs round. This suggests that there may be a useful phenomenological form for more general geometries which may follow from natural extensions of Eq. (5). This possibility is presently being investigated.

  17. Universality of Generalized Bunching and Efficient Assessment of Boson Sampling

    NASA Astrophysics Data System (ADS)

    Shchesnovich, V. S.

    2016-03-01

    It is found that identical bosons (fermions) show a generalized bunching (antibunching) property in linear networks: the absolute maximum (minimum) of the probability that all N input particles are detected in a subset of K output modes of any nontrivial linear M -mode network is attained only by completely indistinguishable bosons (fermions). For fermions K is arbitrary; for bosons it is either (i) arbitrary for only classically correlated bosons or (ii) satisfies K ≥N (or K =1 ) for arbitrary input states of N particles. The generalized bunching allows us to certify in a polynomial in N number of runs that a physical device realizing boson sampling with an arbitrary network operates in the regime of full quantum coherence compatible only with completely indistinguishable bosons. The protocol needs only polynomial classical computations for the standard boson sampling, whereas an analytic formula is available for the scattershot version.

  18. Transverse and longitudinal coupled bunch instabilities in trains of closely spaced bunches

    SciTech Connect

    Thompson, K.A.; Ruth, R.D.

    1989-03-01

    Damping rings for the next generation of linear collider may need to contain several bunch trains within which the bunches are quire closely spaced (1 or 2 RF wavelengths). Methods are presented for studying the transverse and longitudinal coupled bunch instabilities, applicable to this problem and to other cases in which the placement of the bunches is not necessarily symmetric. 5 refs., 1 fig.

  19. Bunch coalescing and bunch rotation in the Fermilab Main Ring: Operational experience and comparison with simulations

    SciTech Connect

    Martin, P.S.; Wildman, D.W.

    1988-07-01

    The Fermilab Tevatron I proton-antiproton collider project requires that the Fermilab Main Ring produce intense bunches of protons and antiprotons for injection into the Tevatron. The process of coalescing a small number of harmonic number h=1113 bunches into a single bunch by bunch-rotating in a lower harmonic rf system is described.The Main Ring is also required to extract onto the antiproton production target bunches with as narrow a time spread as possible. This operation is also discussed. The operation of the bunch coalescing and bunch rotation are compared with simulations using the computer program ESME. 2 refs., 8 figs.

  20. Self-bunching electron guns

    NASA Astrophysics Data System (ADS)

    Mako, Frederick M.; Len, L. K.

    1999-05-01

    We report on three electron gun projects that are aimed at power tube and injector applications. The purpose of the work is to develop robust electron guns which produce self-bunched, high-current-density beams. We have demonstrated, in a microwave cavity, self-bunching, cold electron emission, long life, and tolerance to contamination. The cold process is based on secondary electron emission. FMT has studied using simulation codes the resonant bunching process which gives rise to high current densities (0.01-5 kA/cm2), high charge bunches (up to 500 nC/bunch), and short pulses (1-100 ps) for frequencies from 1 to 12 GHz. The beam pulse width is nominally ˜5% of the rf period. The first project is the L-Band Micro-Pulse Gun (MPG). Measurements show ˜40 ps long micro-bunches at ˜20 A/cm2 without contamination due to air exposure. Lifetime testing has been carried out for about 18 months operating at 1.25 GHz for almost 24 hours per day at a repetition rate of 300 Hz and 5 μs-long macro-pulses. Approximately 5.8×1013 micro-bunches or 62,000 coulombs have passed through this gun and it is still working fine. The second project, the S-Band MPG, is now operational. It is functioning at a frequency of 2.85 GHz, a repetition rate of 30 Hz, with a 2 μs-long macro-pulse. It produces about 45 A in the macro-pulse. The third project is a 34.2 GHz frequency-multiplied source driven by an X-Band MPG. A point design was performed at an rf output power of 150 MW at 34.2 GHz. The resulting system efficiency is 53% and the gain is 60 dB. The system efficiency includes the input cavity efficiency, input driver efficiency (a 50 MW klystron at 11.4 GHz), output cavity efficiency, and the post-acceleration efficiency.

  1. Theoretical and numerical analyses of a slit-masked chicane for modulated bunch generation

    DOE PAGES

    Zhu, Xiaofang; Broemmelsiek, Daniel R.; Shin, Young -Min; Fermi National Accelerator Lab.

    2015-10-28

    Density modulations on electron beams can improve machine performance of beam-driven accelerators and FELs with resonance beam-wave coupling. The beam modulation is studied with a masked chicane by the analytic model and simulations with the beam parameters of the Fermilab Accelerator Science and Technology (FAST) facility. With the chicane design parameters (bending angle of 18o, bending radius of 0.95 m and R56 ~ –0.19 m) and a nominal beam of 3 ps bunch length, the analytic model showed that a slit-mask with slit period 900 μ m and aperture width 300 μ m induces a modulation of bunch-to-bunch spacing ~more » 100 μ m to the bunch with 2.4% correlated energy spread. With the designed slit mask and a 3 ps bunch, particle-in-cell (PIC) simulations, including nonlinear energy distributions, space charge force, and coherent synchrotron radiation (CSR) effect, also result in beam modulation with bunch-to-bunch distance around 100 μ m and a corresponding modulation frequency of 3 THz. The beam modulation has been extensively examined with three different beam conditions, 2.25 ps (0.25 nC), 3.25 ps (1 nC), and 4.75 ps (3.2 nC), by tracking code Elegant. The simulation analysis indicates that the sliced beam by the slit-mask with 3 ~ 6% correlated energy spread has modulation lengths about 187 μ m (0.25 nC), 270 μ m (1 nC) and 325 μ m (3.2 nC). As a result, the theoretical and numerical data proved the capability of the designed masked chicane in producing modulated bunch train with micro-bunch length around 100 fs.« less

  2. Theoretical and numerical analyses of a slit-masked chicane for modulated bunch generation

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Broemmelsiek, D. R.; Shin, Y.-M.

    2015-10-01

    Density modulations on electron beams can improve machine performance of beam-driven accelerators and FELs with resonance beam-wave coupling. The beam modulation is studied with a masked chicane by the analytic model and simulations with the beam parameters of the Fermilab Accelerator Science and Technology (FAST) facility. With the chicane design parameters (bending angle of 18o, bending radius of 0.95 m and R56 ~ -0.19 m) and a nominal beam of 3 ps bunch length, the analytic model showed that a slit-mask with slit period 900 μ m and aperture width 300 μ m induces a modulation of bunch-to-bunch spacing ~ 100 μ m to the bunch with 2.4% correlated energy spread. With the designed slit mask and a 3 ps bunch, particle-in-cell (PIC) simulations, including nonlinear energy distributions, space charge force, and coherent synchrotron radiation (CSR) effect, also result in beam modulation with bunch-to-bunch distance around 100 μ m and a corresponding modulation frequency of 3 THz. The beam modulation has been extensively examined with three different beam conditions, 2.25 ps (0.25 nC), 3.25 ps (1 nC), and 4.75 ps (3.2 nC), by tracking code Elegant. The simulation analysis indicates that the sliced beam by the slit-mask with 3 ~ 6% correlated energy spread has modulation lengths about 187 μ m (0.25 nC), 270 μ m (1 nC) and 325 μ m (3.2 nC). The theoretical and numerical data proved the capability of the designed masked chicane in producing modulated bunch train with micro-bunch length around 100 fs.

  3. Theoretical and numerical analyses of a slit-masked chicane for modulated bunch generation

    SciTech Connect

    Zhu, Xiaofang; Broemmelsiek, Daniel R.; Shin, Young -Min

    2015-10-28

    Density modulations on electron beams can improve machine performance of beam-driven accelerators and FELs with resonance beam-wave coupling. The beam modulation is studied with a masked chicane by the analytic model and simulations with the beam parameters of the Fermilab Accelerator Science and Technology (FAST) facility. With the chicane design parameters (bending angle of 18o, bending radius of 0.95 m and R56 ~ –0.19 m) and a nominal beam of 3 ps bunch length, the analytic model showed that a slit-mask with slit period 900 μ m and aperture width 300 μ m induces a modulation of bunch-to-bunch spacing ~ 100 μ m to the bunch with 2.4% correlated energy spread. With the designed slit mask and a 3 ps bunch, particle-in-cell (PIC) simulations, including nonlinear energy distributions, space charge force, and coherent synchrotron radiation (CSR) effect, also result in beam modulation with bunch-to-bunch distance around 100 μ m and a corresponding modulation frequency of 3 THz. The beam modulation has been extensively examined with three different beam conditions, 2.25 ps (0.25 nC), 3.25 ps (1 nC), and 4.75 ps (3.2 nC), by tracking code Elegant. The simulation analysis indicates that the sliced beam by the slit-mask with 3 ~ 6% correlated energy spread has modulation lengths about 187 μ m (0.25 nC), 270 μ m (1 nC) and 325 μ m (3.2 nC). As a result, the theoretical and numerical data proved the capability of the designed masked chicane in producing modulated bunch train with micro-bunch length around 100 fs.

  4. Wakefields in THz cylindrical dielectric lined waveguides driven by femtosecond electron bunches

    NASA Astrophysics Data System (ADS)

    Nie, Yuancun

    2015-01-01

    This paper reports the wakefield effects driven by a high-intensity relativistic electron bunch in a dielectric lined waveguide (DLW). A state-of-the-art electron bunch is employed to serve as the drive bunch, which has an rms length of 10 μm, i.e. 33 fs, and a charge of 200 pC. Such bunch parameters are comparable to those of DESY's FLASH and SLAC's LCLS and FACET facilities. It is demonstrated that coherent Cherenkov radiation (CCR) at the fundamental mode with frequency above 1 THz and accelerating gradient as high as 2 GV/m can be obtained in a single layer cylindrical diamond-DLW structure, as long as the geometrical parameters of the DLW are properly selected to match the drive bunch. Wakefield-induced energy modulations on the drive bunch itself are studied as well, which can be used to reduce its energy spread or to produce microbunches with much shorter length from it. The simulated results agree well with the theoretical predictions. Such wakefields can be used to accelerate or modulate electron bunches with ultra-high gradients, and produce high power THz radiations directly. These properties have potential applications in the fields of compact colliders and advanced radiation sources.

  5. Measurements of Compression and Emittance Growth after the First LCLS Bunch Compressor Chicane

    SciTech Connect

    Bane, K.; Ding, Y.; Emma, P.; Frisch, J.; Huang, Z.; Loos, H.; Sannibale, F.; Sonnad, K.; Stupakov, G.; Wu, J.; Zolotorev, M.; Prat, E.; /DESY

    2007-11-02

    The Linac Coherent Light Source (LCLS) is a SASE xray free-electron laser project presently under construction at SLAC. The injector section from RF photocathode gun through first bunch compressor chicane was installed during the fall of 2006. The first bunch compressor is located at 250 MeV and nominally compresses a 1-nC electron bunch from an rms length of about 1 mm to 0.2 mm. Transverse phase space and bunch length diagnostics are located immediately after the chicane. We present preliminary measurements and simulations of the longitudinal and transverse phase space after the chicane in various beam conditions, including extreme compression with micron-scale current spikes.

  6. Turn-by-Turn and Bunch-by-Bunch Transverse Profiles of a Single Bunch in a Full Ring

    SciTech Connect

    Kraus, R.; Fisher, A.S.; /SLAC

    2005-12-15

    The apparatus described in this paper can image the evolution of the transverse profile of a single bunch, isolated from a full PEP-II ring of 1500 bunches. Using this apparatus there are two methods of single bunch imaging; bunch-by-bunch beam profiling can image every bunch in the ring a single bunch at a time with the images of sequential bunches being in order, allowing one to see variations in beam size along a train. Turn-by-turn beam profiling images a single bunch on each successive turn it makes around the ring. This method will be useful in determining the effect that an injected bunch has on a stable bunch as the oscillations of the injected bunch damp out. Turn-by-turn imaging of the synchrotron light uses a system of lenses and mirrors to image many turns of both the major and minor axis of a single bunch across the photocathode of a gateable camera. The bunch-by-bunch method is simpler: because of a focusing mirror used in porting the light from the ring, the synchrotron light from the orbiting electrons becomes an image at a certain distance from the mirror; and since the camera does not use a lens, the photocathode is set exactly at this image distance. Bunch-by-bunch profiling has shown that in the Low Energy Ring (LER) horizontal bunch size decreases along a train. Turn-by-turn profiling has been able to image 100 turns of a single bunch on one exposure of the camera. The turn-by-turn setup has also been able to image 50 turns of the minor axis showing part of the damping process of an oscillating injected charge during a LER fill. The goal is to image the damping of oscillations of injected charge for 100 turns of both the major and minor axis throughout the damping process during trickle injection. With some changes to the apparatus this goal is within reach and will make turn-by-turn imaging a very useful tool in beam diagnostics.

  7. Transient Resistive Wall Wake for Very Short Bunches

    SciTech Connect

    Stupakov, G.; /SLAC

    2005-05-13

    The catch up distance for the resistive wall wake in a round pipe is approximately equal to the square of the pipe radius divided by the bunch length. The standard formulae for this wake are applicable at distances much larger than the catch up distance. In this paper, we calculate the resistive wall wake at distances compared with the catch up distance assuming a constant wall conductivity.

  8. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  9. A hybrid approach for generating ultra-short bunches for advanced accelerator applications

    NASA Astrophysics Data System (ADS)

    Stratakis, Diktys

    2016-06-01

    Generation of electron beams with high phase-space density, short bunch length and high peak current is an essential requirement for future linear colliders and bright electron beam sources. Unfortunately, such bunches cannot be produced directly from the source since forces from the mutual repulsion of electrons would destroy the brilliance of the beam within a short distance. Here, we detail a beam dynamics study of a two-stage compression scheme that can generate ultra-short bunches without degrading the beam quality. In the first stage, a magnetized beam is compressed with a velocity bunching technique in which the longitudinal phase space is rotated so that electrons on the bunch tail become faster than electrons in the bunch head. In the second stage, the beam is further compressed with a magnetic chicane. With the aid of numerical simulations we show that our two-staged scheme is capable to increase the current of a 50 pC bunch by a notable factor of 100 (from 15 A to 1.5 kA) while the emittance growth can be suppressed to 1% with appropriate tailoring of the initial beam distribution.

  10. A hybrid approach for generating ultra-short bunches for advanced accelerator applications

    SciTech Connect

    Stratakis, Diktys

    2015-09-01

    Generation of electron beams with high phase-space density, short bunch length and high peak current is an essential requirement for future linear colliders and bright electron beam sources. Unfortunately, such bunches cannot be produced directly from the source since forces from the mutual repulsion of electrons would destroy the brilliance of the beam within a short distance. Here, we detail a beam dynamics study of an innovative two-stage compression scheme that can generate ultra-short bunches without degrading the beam quality. In the first stage, the beam is compressed with an advanced velocity bunching technique in which the longitudinal phase space is rotated so that electrons on the bunch tail become faster than electrons in the bunch head. In the second stage, the beam is further compressed with a conventional magnetic chicane. With the aid of numerical simulations we show that our two-staged scheme is capable to increase the current of a 50 pC bunch to a notable factor of 100 while the emittance growth can be suppressed to 1% with appropriate tailoring of the initial beam distribution.

  11. Analytical bunch compression studies for a linac-based electron accelerator

    NASA Astrophysics Data System (ADS)

    Schreck, M.; Wesolowski, P.

    2015-10-01

    The current paper deals with analytical bunch compression studies for FLUTE whose results are compared to simulations. FLUTE is a linac-based electron accelerator with a design energy of approximately 40 MeV currently being constructed at the Karlsruhe Institute of Technology. One of the goals of FLUTE is to generate electron bunches with their length lying in the femtosecond regime. In the first phase this will be accomplished using a magnetic bunch compressor. This compressor forms the subject of the studies presented. The paper is divided into two parts. The first part deals with pure geometric investigations of the bunch compressor where space charge effects and the backreaction of bunches with coherent synchrotron radiation are neglected. The second part is dedicated to the treatment of space charge effects. The upshot is that the analytical results in the two parts agree quite well with what is obtained from simulations. This paper shall form the basis for future analytical studies of the FLUTE bunch compressor and of bunch compression, in general.

  12. Single-Bunch Tune and Beam Size Measurements Along Bunch Trains in PEP-II

    SciTech Connect

    Holtzapple, Robert; Dujmic, Denis; Fisher, Alan S.; /SLAC

    2005-06-22

    By scanning gated cameras and gated tune monitors across the bunch pattern during normal colliding-bunch operation of PEP-II, the tunes and beam sizes of individual bunches were measured simultaneously in the high and low energy storage rings of PEP-II. The measurements were made with 1561 colliding bunches in PEP-II, arranged in trains of 66 bunches, with each bunch in the train separated by 4.2 ns. The tune and beam size measurements were correlated with the current, luminosity, and specific luminosity of the bunch. The results show a vertical tune shift at the start and end of the mini-trains, a luminosity droop along the mini-train, and specific luminosity drop in the first and last bunches of the train, since they experience a different parasitic crossing on either side of the interaction point (IP).

  13. Bunch coalescing studies for the SSC

    SciTech Connect

    Mahale, N.; Yan, Y.T.; Ellison, J.

    1993-05-01

    It may become necessary to enhance the luminosity and increase the bunch spacing in the Superconducting Super Collider (SSC). Here we study the feasibility of bunch coalescing to achieve this. We choose the Medium Energy Booster (MEB) at extraction, momentum 200GeV, to perform the operation. In order to properly align the bunches we propose to linearize the RF using the second and third harmonics. Theoretical studies with simulation are presented. The program ESME is used for the simulation.

  14. Electron cloud wakefields in bunch trains

    NASA Astrophysics Data System (ADS)

    Petrov, F. B.; Boine-Frankenheim, Oliver

    2016-02-01

    Electron cloud is a concern for many modern and future accelerator facilities. There are a number of undesired effects attributed to the presence of electron clouds. Among them are coherent instabilities, emittance growth, cryogenic heat load, synchronous phase shift and pressure rise. In long bunch trains one can observe the emittance growth getting faster along the bunch train. The interaction between the beam and the electron cloud is a two-stream interaction. The prameters of the electron cloud wakefields depend on the beam intensity, beam centroid perturbations, and on the electron density and perturbations. If the electron cloud forgets the bunch centroid perturbation very fast, the buildup itself, via growing density, becomes a way of coupling between the bunches. In the present paper we address how the bunch perturbation shape affects the multi-bunch wakefields under the conditions similar to the CERN LHC and SPS. We study the interplay between the single-bunch and multi-bunch electron cloud wakefields. The effect of the dipole magnetic field on the multi-bunch wakefields is studied.

  15. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  16. High-intensity coherent FIR radiation from sub-picosecond electron bunches

    SciTech Connect

    Kung, P.H.; Lihn, Hung-chi; Wiedemann, H.; Bocek, D.

    1994-01-01

    A facility to generate high-intensity, ultra-short pulses of broad-band far-infrared radiation has been assembled and tested at Stanford. The device uses sub-picosecond relativistic electron bunches to generate coherent radiation through transition or synchrotron radiation in the far-infrared (FIR) regime between millimeter waves and wavelengths of about 100 {mu}m and less. Experimental results show a peak radiation power of greater than 0.33 MW within a micro-bunch and an average FIR radiation power of 4 mW. The average bunch length of 2856 micro-bunches within a 1 {mu}sec macro-pulse is estimated to be about 480 sec. Simulations experimental setup and results will be discussed.

  17. Generation of attosecond electron bunches in a laser-plasma accelerator using a plasma density upramp

    NASA Astrophysics Data System (ADS)

    Weikum, M. K.; Li, F. Y.; Assmann, R. W.; Sheng, Z. M.; Jaroszynski, D.

    2016-09-01

    Attosecond electron bunches and attosecond radiation pulses enable the study of ultrafast dynamics of matter in an unprecedented regime. In this paper, the suitability for the experimental realization of a novel scheme producing sub-femtosecond duration electron bunches from laser-wakefield acceleration in plasma with self-injection in a plasma upramp profile has been investigated. While it has previously been predicted that this requires laser power above a few hundred terawatts typically, here we show that the scheme can be extended with reduced driving laser powers down to tens of terawatts, generating accelerated electron pulses with minimum length of around 166 attoseconds and picocoulombs charge. Using particle-in-cell simulations and theoretical models, the evolution of the accelerated electron bunch within the plasma as well as simple scalings of the bunch properties with initial laser and plasma parameters are presented.

  18. Self-organization of step bunching instability on vicinal substrate

    SciTech Connect

    Pascale, A.; Berbezier, I.; Ronda, A.; Videcoq, A.; Pimpinelli, A.

    2006-09-04

    The authors investigate quantitatively the self-organization of step bunching instability during epitaxy of Si on vicinal Si(001). They show that growth instability evolution can be fitted by power laws L{approx}t{sup {alpha}} and A{approx}t{sup {beta}} (where L is the correlation length and A is the instability amplitude) with critical exponents {alpha}{approx}0.3 and {beta}{approx}0.5 in good agreement with previous studies and well reproduced by kinetic Monte Carlo simulation. They demonstrate that the main phenomenon controlling step bunching is the anisotropy of surface diffusion. The microscopic origin of the instability is attributed to an easier adatom detachment from S{sub A} step, which can be interpreted as a pseudoinverse Ehrlich-Schwoebel barrier [J. Appl. Phys. 37, 3682 (1967); J. Chem. Phys. 44, 1039 (1966)].

  19. Recent Advances and New Techniques in Visualization of Ultra-short Relativistic Electron Bunches

    SciTech Connect

    Xiang, Dao; /SLAC

    2012-06-05

    Ultrashort electron bunches with rms length of {approx} 1 femtosecond (fs) can be used to generate ultrashort x-ray pulses in FELs that may open up many new regimes in ultrafast sciences. It is also envisioned that ultrashort electron bunches may excite {approx}TeV/m wake fields for plasma wake field acceleration and high field physics studies. Recent success of using 20 pC electron beam to drive an x-ray FEL at LCLS has stimulated world-wide interests in using low charge beam (1 {approx} 20 pC) to generate ultrashort x-ray pulses (0.1 fs {approx} 10 fs) in FELs. Accurate measurement of the length (preferably the temporal profile) of the ultrashort electron bunch is essential for understanding the physics associated with the bunch compression and transportation. However, the shorter and shorter electron bunch greatly challenges the present beam diagnostic methods. In this paper we review the recent advances in the measurement of ultra-short electron bunches. We will focus on several techniques and their variants that provide the state-of-the-art temporal resolution. Methods to further improve the resolution of these techniques and the promise to break the 1 fs time barrier is discussed. We review recent advances in the measurement of ultrashort relativistic electron bunches. We will focus on several techniques and their variants that are capable of breaking the femtosecond time barrier in measurements of ultrashort bunches. Techniques for measuring beam longitudinal phase space as well as the x-ray pulse shape in an x-ray FEL are also discussed.

  20. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  1. Booster's coupled bunch damper upgrade

    SciTech Connect

    William A. Pellico and D. W. Wildman

    2003-08-14

    A new narrowband active damping system for longitudinal coupled bunch (CB) modes in the Fermilab Booster has recently been installed and tested. In the past, the Booster active damper system consisted of four independent front-ends. The summed output was distributed to the 18, h=84 RF accelerating cavities via the RF fan-out system. There were several problems using the normal fan-out system to deliver the longitudinal feedback RF. The high power RF amplifiers normally operate from 37 MHz to 53 MHz whereas the dampers operate around 83MHz. Daily variations in the tuning of the RF stations created tuning problems for the longitudinal damper system. The solution was to build a dedicated narrowband, Q {approx} 10, 83MHz cavity powered with a new 3.5kW solid-state amplifier. The cavity was installed in June 2002 and testing of the amplifier and damper front-end began in August 2002. A significant improvement has been made in both operational stability and high intensity beam damping. At present there are five CB modes being damped and a sixth mode module is being built. The new damper hardware is described and data showing the suppression of the coupled-bunch motion at high intensity is presented.

  2. Plasma gradient controlled injection and postacceleration of high quality electron bunches

    SciTech Connect

    Geddes, C. G. R.; Cormier-Michel, E.; Nakamura, K.; Schroeder, C. B.; Toth, Cs.; Esarey, E.; Plateau, G. R.; Bruhwiler, D. L.; Cary, J. R.; Leemans, W. P.

    2009-01-22

    Plasma density gradient control of wake phase velocity and trapping threshold in a laser wakefield accelerator produced electron bunches with absolute longitudinal and transverse momentum spreads more than ten times lower than in previous experiments (0.17 and 0.02 MeV/c FWHM, respectively) and with central momenta of 0.76{+-}0.02 MeV/c, stable over a week of operation. Simulations validated against diagnostics show that use of such bunches as a wakefield accelerator injector can produce stable beams with 0.2 MeV/c-class momentum spread at high energies. Preservation of bunch momentum spread requires high simulation momentum accuracy, and related self-trapped simulations showed that high order particle weight effectively suppresses simulation momentum errors allowing design of low emittance stages.

  3. Preliminary Study on Two Possible Bunch Compression Schemes at NLCTA

    SciTech Connect

    Sun, Yipeng; /SLAC

    2011-08-11

    In this paper, two possible bunch compression configurations are proposed and evaluated by numerical simulation in the Next Linear Collider Test Accelerator (NLCTA) at SLAC. A bunch compression ratio up to 20 could be achieved under a perfect condition, without consideration for the timing jitter and other error sources. The NLCTA is a test accelerator built at SLAC, which is approximately 42 meters long and composed of X-band acceleration structures. The main aim of building NLCTA is to develop and demonstrate the X-band rf acceleration technologies for the next generation linear collider, with a relatively high acceleration gradient between 50 MV/m and 100 MV/m. The current operation configuration of NLCTA features a thermionic-cathode electron gun at its starting point which generates an electron beam with an energy of 5 MeV. This is followed by a roughly 1.5 meter long X-band acceleration structure which boosts the electron beam energy to 60 MeV. Then there is a four-dipole magnetic chicane which is 6 meters long and provides a first order longitudinal dispersion of R{sub 56} = -73mm. Next the electron beam passes by several matching quadrupoles and can be accelerated further to 120 MeV through another one-meter-long X-band acceleration structure. After that, there are three small chicanes downstream, with a total first order longitudinal dispersion of R{sub 56} = -10mm. A sketch of the main components of NLCTA is shown in Figure 1, where the total length of this accelerator is 45 meters. Free Electron Lasers (FELs), proposed by J. Madey and demonstrated for the first time at Stanford University in 1970s [2] [3], use the lasing of relativistic electron beam traveling through a magnetic undulator, which can reach high power and can be widely tunable in wavelength. Linac based FEL source can provide sufficient brightness, and a short X-ray wavelength down to angstrom scale, which promises in supporting wide range of research experiments. In order to have an

  4. Coherent-Radiation Spectroscopy of Few-Femtosecond Electron Bunches Using a Middle-Infrared Prism Spectrometer

    NASA Astrophysics Data System (ADS)

    Maxwell, T. J.; Behrens, C.; Ding, Y.; Fisher, A. S.; Frisch, J.; Huang, Z.; Loos, H.

    2013-11-01

    Modern, high-brightness electron beams such as those from plasma wakefield accelerators and free-electron laser linacs continue the drive to ever-shorter bunch durations. In low-charge operation (˜20pC), bunches shorter than 10 fs are reported at the Linac Coherent Light Source (LCLS). Though suffering from a loss of phase information, spectral diagnostics remain appealing as compact, low-cost bunch duration monitors suitable for deployment in beam dynamics studies and operations instrumentation. Progress in middle-infrared (MIR) imaging has led to the development of a single-shot, MIR prism spectrometer to characterize the corresponding LCLS coherent beam radiation power spectrum for few-femtosecond scale bunch length monitoring. In this Letter, we report on the spectrometer installation as well as the temporal reconstruction of 3 to 60 fs-long LCLS electron bunch profiles using single-shot coherent transition radiation spectra.

  5. An Optical Streaking Method for Measuring Femtosecond Electron Bunches

    SciTech Connect

    Ding, Yuantao; Bane, Karl L.F.; Huang, Zhirong; /SLAC

    2011-12-14

    The measurement of the ultra-short electron bunch length on the femtosecond time scale constitutes a very challenging problem. In the x-ray free electron laser facilities such as the Linac Coherent Light Source, generation of a sub-ten femtoseconds electron beam with 20pC charge is possible, but direct measurements are very difficult due to the resolution limit of the present diagnostics. We propose a new method here based on the measurement of the electron beam energy modulation induced from laser-electron interaction in a short wiggler. A typical optical streaking method requires a laser wavelength much longer than the electron bunch length. In this paper a laser with its wavelength shorter than the electron bunch length has been adopted, while the slope on the laser intensity envelope is used to distinguish the different periods. With this technique it is possible to reconstruct the bunch longitudinal profile from a single shot measurement. Generation of ultrashort x-ray pulses at femtoseconds (fs) scale is of great interest within synchrotron radiation and free electron laser (FEL) user community. One of the simple methods is to operate the FEL facility at low charge. At the Linac Coherent Light Source (LCLS), we have demonstrated the capability of generating ultrashort electron-beam (e-beam) with a duration of less than 10 fs fwhm using 20 pC charge. The x-ray pulses have been delivered to the x-ray users with a similar or even shorter pulse duration. However, The measurement of such short electron or x-ray pulse length at the fs time-scale constitutes a challenging problem. A standard method using an S-band radio-frequency (rf) transverse deflector has been established at LCLS, which works like a streak camera for electrons and is capable of resolving bunch lengths as short as 25 fs fwhm. With this device, the electrons are transversely deflected by the high-frequency time-variation of the deflecting fields. Increasing the deflecting voltage and rf frequency

  6. Tolerances of TTF-2 First Bunch Compressor

    SciTech Connect

    Emma, Paul J

    2003-08-08

    In bunch compressors for SASE-FEL facilities, the projected transverse emittance can be diluted by magnetic multipole component errors in dipoles and dipole misalignments as well as by coherent synchrotron radiation (CSR). In this paper, we describe the multipole field tolerances and the misalignment tolerances of the first bunch compressor (BC2) for the TESLA Test Facility Phase-2 (TTF-2).

  7. Feedback control of coupled-bunch instabilities

    SciTech Connect

    Fox, J.D.; Eisen, N.; Hindi, H.; Linscott, I.; Oxoby, G.; Sapozhnikov, L.; Serio, M.

    1993-05-01

    The next generation of synchrotron light sources and particle accelerators will require active feedback systems to control multi-bunch instabilities. Stabilizing hundreds or thousands of potentially unstable modes in these accelerator designs presents many technical challenges. Feedback systems to stabilize coupled-bunch instabilities may be understood in the frequency domain (mode-based feedback) or in the time domain (bunch-by-bunch feedback). In both approaches an external amplifier system is used to create damping fields that prevent coupled-bunch oscillations from growing without bound. The system requirements for transverse (betatron) and longitudinal (synchrotron) feedback are presented, and possible implementation options developed. Feedback system designs based on digital signal-processing techniques are described. Experimental results are shown from a synchrotron oscillation damper in the SSRL/SLAC storage ring SPEAR that uses digital signal-processing techniques.

  8. Individual Beam Size And Length Measurements at the SLC Interaction Point Derived From the Beam Energy Loss During a Beam Beam Deflection Scan

    SciTech Connect

    Raimondi, P.; Field, R.Clive; Phinney, N.; Ross, M.C.; Slaton, T.; Traller, R.; /SLAC

    2011-08-26

    At the Interaction Point (IP) of the SLC Final Focus, beam-beam deflection scans routinely provide a measurement of the sum in quadrature of the electron and positron transverse beam sizes, but no information on the individual beam sizes. During the 1996 SLC run, an upgrade to the Final Focus beam position monitor system allowed a first measurement of the absolute beam energy loss of both beams on each step of the deflection scan. A fit to the energy loss distributions of the two beams provides a measurement not only of the individual transverse beam sizes at the IP but also of the individual bunch lengths.

  9. Emittance control and RF bunch compression in the NSRRC photoinjector

    NASA Astrophysics Data System (ADS)

    Lau, W. K.; Hung, S. B.; Lee, A. P.; Chou, C. S.; Huang, N. Y.

    2011-05-01

    The high-brightness photoinjector being constructed at the National Synchrotron Radiation Research Center is for testing new accelerator and light-source concepts. It is the so-called split photoinjector configuration in which a short solenoid magnet is used for emittance compensation. The UV-drive laser pulses are also shaped to produce uniform cylindrical bunches for further reduction of beam emittance. However, limited by the available power from our microwave power system, the nominal accelerating gradient in the S-band booster linac is set at 18 MV/m. A simulation study with PARMELA shows that the linac operating at this gradient fails to freeze the electron beam emittance at low value. A background solenoid magnetic field is applied for beam emittance control in the linac during acceleration. A satisfactory result that meets our preliminary goal has been achieved with the solenoid magnetic field strength at 0.1 T. RF bunch compression as a means to achieve the required beam brightness for high-gain free-electron laser experiments is also examined. The reduction of bunch length to a few hundred femtoseconds can be obtained.

  10. Calculating the Loss factor of the LCLS Beam Line Elements for Ultra-Shrot Bunches

    SciTech Connect

    Novokhatski, A.; /SLAC

    2009-10-17

    The Linac Coherent Light Source (LCLS) is a SASE 1.5-15 {angstrom} x-ray Free-Electron Laser (FEL) facility. Since an ultra-short intense bunch is used in the LCLS operation one might suggest that wake fields, generated in the vacuum chamber, may have an effect on the x-ray production because these fields can change the beam particle energies thereby increasing the energy spread in a bunch. At LCLS a feedback system precisely controls the bunch energy before it enters a beam transport line after the linac. However, in the transport line and later in the undulator section the bunch energy and energy spread are not under feedback control and may change due to wake field radiation, which depends upon the bunch current or on a bunch length. The linear part of the energy spread can be compensated in the upstream linac; the energy loss in the undulator section can be compensated by varying the K-parameter of the undulators, however we need a precise knowledge of the wake fields in this part of the machine. Resistive wake fields are known and well calculated. We discuss an additional part of the wake fields, which comes from the different vacuum elements like bellows, BPMs, transitions, vacuum ports, vacuum valves and others. We use the code 'NOVO' together with analytical estimations for the wake potential calculations.

  11. Wakefield Excitation by a Sequence of Electron Bunches in a Rectangular Waveguide Lined with Dielectric Slabs

    NASA Astrophysics Data System (ADS)

    Kiselev, V. A.; Linnik, A. F.; Marshall, T. C.; Onishchenko, I. N.; Onishchenko, N. I.; Sotnikov, G. V.; Uskov, V. V.

    2006-11-01

    A rectangular dielectric-lined metallic structure was studied that has an advantage over a cylindrical structure from the possibility of exciting by a sequence of bunches many equally-spaced modes, thereby building up a larger mode-locked wakefield. A rectangular vacuum copper waveguide was lined with two dielectric slabs, the size of which was calculated to provide resonant excitation of the fundamental LSM mode by a sequence of bunches with repetition frequency f0=2805 MHz, produced by linear resonant electron accelerator (4.5 MeV, number of bunches 6.103, diameter 1cm, duration 60 ps each, distance between bunches 300 ps, number of electrons in each bunch 109). The waveguide has cross section 85 mm × 180 mm, and Teflon (ɛ = 2.1) plates were placed along the smaller sides of the waveguide, their thickness from the calculation being 22 mm. In experiments, the length of the resonator was 535mm. We found that the total wakefield is three times larger than the fundamental mode; thus a greater number of excited modes was excited compared with the cylindrical case, for which this ratio was only 1.5. We found considerably more energy loss of electron bunches for the resonator case compared with the waveguide case.

  12. Single-shot measurement of the spectral envelope of broad-bandwidth terahertz pulses from femtosecond electron bunches

    SciTech Connect

    van Tilborg, Jeroen; Toth, Csaba; Matlis, Nicholas; Plateau, Guillaume; Leemans, Wim

    2011-06-17

    We present a new approach (demonstrated experimentally and through modeling) to characterize the spectral envelope of a terahertz (THz) pulse in a single shot. The coherent THz pulse is produced by a femtosecond electron bunch and contains information on the bunch duration. The technique, involving a single low-power laser probe pulse, is an extension of the conventional spectral encoding method (limited in time resolution to hundreds of femtoseconds) into a regime only limited in resolution by the laser pulse length (tens of femtoseconds). While only the bunch duration is retrieved (and not the exact charge profile), such a measurement provides a useful and critical parameter for optimization of the electron accelerator.

  13. Sensitivity of the CSR self-interaction to the local longitudinal charge concentration of an electron bunch

    NASA Astrophysics Data System (ADS)

    Li, R.

    2001-12-01

    Recent measurements of the coherent synchrotron radiation (CSR) effects indicated that the observed emittance growth and energy modulation due to the orbit-curvature-induced bunch self-interaction are sometimes bigger than predictions based on Gaussian longitudinal charge distributions. In this paper, by performing a model study, we show both analytically and numerically that when the longitudinal bunch charge distribution involves concentration of charges in a small fraction of the bunch length, enhancement of the CSR self-interaction beyond the Gaussian prediction may occur. The level of this enhancement is sensitive to the level of the local charge concentration.

  14. Measurements of Transverse Emittance Growth due to Coherent Synchrotron Radiation in the SLAC SPPS Bunch Compressor Chicane

    SciTech Connect

    Emma, Paul J

    2003-06-20

    A four-dipole bunch compressor chicane has recently been installed in the SLAC linac at 9 GeV and is capable of compressing a 3.4-nC electron bunch to an rms length of 50 microns, resulting in a peak current of nearly 10 kA [1]. The electron bunch is extracted from a damping ring with normalized horizontal emittance of {approx} 30 {micro}m. We present preliminary measurements of the initial and final emittance in the chicane and compare these to 1D and 3D calculations of the effects of coherent synchrotron radiation (CSR).

  15. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  16. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  17. Van Kampen modes for bunch longitudinal motion

    SciTech Connect

    Burov, A.; /Fermilab

    2010-09-01

    Conditions for existence, uniqueness and stability of bunch steady states are considered. For the existence uniqueness problem, simple algebraic equations are derived, showing the result both for the action and Hamiltonian domain distributions. For the stability problem, van Kampen theory is used. Emerging of discrete van Kampen modes show either loss of Landau damping, or instability. This method can be applied for an arbitrary impedance, RF shape and beam distribution function Available areas on intensity-emittance plane are shown for resistive wall wake and single harmonic, bunch shortening and bunch lengthening RF configurations. Language of van Kampen modes is a powerful tool for studying beam stability. Its unique efficiency reveals itself in those complicated cases, when the dielectric function cannot be obtained, as it is for the longitudinal bunch motion. Emergence of a discrete mode means either loss of Landau damping or instability. By definition, the discrete modes lie outside the continuous incoherent spectrum, but they still may stay within the bucket. In the last case, the discrete mode would disappear after a tiny portion of resonant particles would be added. However, if the discrete mode lie outside the bucket, the Landau damping cannot be restored by tiny perturbation of the particle distribution; LLD is called radical in that case. For a given bunch emittance and RF voltage, the intensity is limited either by reduction of the bucket acceptance or by (radical) LLD. In this paper, results are presented for longitudinal bunch stability in weak head-tail approximation and resistive wall impedance; three RF configurations are studied: single harmonic, bunch shortening and bunch lengthening. It is shown that every RF configuration may be preferable, depending on the bunch emittance and intensity.

  18. Simulation studies of the SLC bunch compressor (RTL)

    SciTech Connect

    Zimmermann, F.

    1996-06-01

    In the 1994/95 SLC run, bunch lengthening in the damping ring along with overcompression in the two ring-to-linac transport lines (RTLs) have caused a normal beam loss of about 10-20% between entrance and end of the RTLs, which constitutes a major hindrance to further luminosity increases of the SLC. This paper summarizes studies of both longitudinal and six-dimensional dynamics in the RTL, and compares simulation results with measurements. Quadratic dependence of path length on energy and higher-order multipoles in the RTL quadrupoles are shown to affect the compressor performance. Minor optics changes are suggested which may improve the transmission efficiency.

  19. Contrast of Subpicosecond Microelectron Bunch Trains

    SciTech Connect

    Muggli, Patric; Kallos, Efthymios; Yakimenko, Vitaly; Kusche, Karl; Babzien, Marcus; Park, Jangho

    2009-01-22

    We recently demonstrated that electron bunch trains with a controllable number of bunches and adjustable subpicosecond spacing can be produced using a mask technique. In this paper we calculate the bunch train contrast as a function of the beam betatron size at the mask {sigma}{sub {beta}} and of the diameter d of the mask wires separated by a period D. As expected, when {sigma}{sub {beta}}/(d/2) the contrast is high and decreases with increasing {sigma}{sub {beta}}/(d/2)

  20. Diagnostic technique applied for FEL electron bunches

    NASA Astrophysics Data System (ADS)

    Brovko, O.; Grebentsov, A.; Morozov, N.; Syresin, E.; Yurkov, M.

    2016-05-01

    Diagnostic technique applied for FEL ultrashort electron bunches is developed at JINR-DESY collaboration within the framework of the FLASH and XFEL projects. Photon diagnostics are based on calorimetric measurements and detection of undulator radiation. The infrared undulator constructed at JINR and installed at FLASH is used for longitudinal bunch shape measurements and for two-color lasing provided by the FIR and VUV undulators. The pump probe experiments with VUV and FIR undulators provide the bunch profile measurements with resolution of several femtosecond. The new three microchannel plates (MCP) detectors operated in X-ray range are under development now in JINR for SASE1-SASE 3 European XFEL.

  1. Holographic Spectroscopy for Rapid Electron Bunch Analysis: Development of an Instrument with THZ Resolved Optical Gating

    SciTech Connect

    Sievers, Albert

    2011-10-28

    The main thrust of our project was to apply the concepts of holographic spectroscopy, developed earlier in the visible and near IR spectral regions for satellite mapping, to the THz region in order to measure the spectral signature of the coherent radiation emanating from a relativistic electron bunch to obtain the bunch length itself. There were four major discoveries. (1) In the course of this ground-breaking work we developed and built the first static THz interferometer suitable for the realization of such a holographic Fourier transform spectrometer. Experimental tests and analysis of the observed results have provided the necessary foundation for future development of THz detector arrays optimized for spectroscopic applications. (2) Since such detectors do not exist at the present time our next effort was to find an alternative approach. We explored the electro-optic (EO) detection of the THz pulse using the short pulse of a visible diode laser synchronized to the bunch with the long-term goal aimed at single bunch measurement capability. The main hurdle was found to be the parasitic scattering of the diode radiation in the EO medium. By using the optical Fourier transform of the THz interference pattern the effects of this background were suppressed enough to obtain the spectrum using multiple shot acquisition. During our experiments at the FLASH facility at DESY we determined that for single bunch measurement capability the diode laser has to be able to produce sub 100 ps pulses with peak power of at least 1 W. Since these parameters are quite feasible at the current stage of diode laser science this combination of techniques can be used for single shot measurement of a short electron bunch. (3) In carrying out the above effort a simpler measurement possibility was uncovered involving the visible/nearIR pulse of incoherent radiation produced by the same bunch. This observation made possible the cross-correlation of the THz coherent and visible incoherent

  2. Down sampled signal processing for a B Factory bunch-by-bunch feedback system

    SciTech Connect

    Hindi, H.; Hosseini, W.; Briggs, D.; Fox, J.; Hutton, A.

    1992-03-01

    A bunch-by-bunch feedback scheme is studied for damping coupled bunch synchrotron oscillations in the proposed PEP II B Factory. The quasi-linear feedback systems design incorporates a phase detector to provide a quantized measure of bunch phase, digital signal processing to compute an error correction signal and a kicker system to correct the energy of the bunches. A farm of digital processors, operating in parallel, is proposed to compute correction signals for the 1658 bunches of the B Factory. This paper studies the use of down sampled processing to reduce the computational complexity of the feedback system. We present simulation results showing the effect of down sampling on beam dynamics. Results show that down sampled processing can reduce the scale of the processing task by a factor of 10.

  3. Considerations of bunch-spacing options for multi-bunch operation of the Tevatron Collider

    SciTech Connect

    Dugan, G.

    1989-12-14

    This discussion will consider a number of points relevant to limitations, advantages and disadvantages of various arrangements of bunches in the Tevatron proton-antiproton collider. The considerations discussed here will be limited to: (a) bunch spacing symmetry and relation to the relative luminosity at B0 and D0 and the beam-beam interaction with separated beams; (b) bunch spacing constraints imposed by Main Ring RF coalescing and the optics of beam separation at B0 and D0; and (c) bunch spacing constraints imposed by injection and abort kicker timing requirements, and by the Antiproton Source RF unstacking process. 20 figs., 17 tabs.

  4. Bunch-by-bunch longitudinal feedback system for PEP-II

    SciTech Connect

    Oxoby, G.; Claus, R.; Fox, J.

    1994-06-01

    This paper describes the implementation of the bunch-by-bunch longitudinal feedback system for the PEP-II B Factory. Bunch spacing down to 2 ns is achieved using 500 Megasamples per second A/D and D/A converters, and AT&T 1610 Digital Signal Processors are integrated to run a downsampled feedback algorithm for each bunch in parallel. This general purpose programmable system, packaged in VXI and VME, is modular and scalable to offer portability to other accelerator rings. The control and monitoring hardware and software architecture have been developed to provide ease of operation as well as diagnostic tools for machine physics.

  5. The internal bunch coordinate monitor (IBCM)

    SciTech Connect

    Yamin, S.P.

    1988-11-04

    An instrument has been developed and installed at the AGS for recording the transverse motion of each rf bunch. It can be operated from any node of the Apollo control system. A preliminary version of this report has appeared elsewhere. Appendix A is an instruction manual. Two digitizers, running off the same 100 MHz clock, sampled the output of either a horizontal or vertical pick-up electrode (PUE) pair. The coordinate of each rf bunch was calculated each time it passed the PUEs during a 320 microsecond interval. Thus, the motion of each bunch could be followed during this interval. Subsequent analysis computed the Fourier transform of this motion. Bunch motion has been studied at several times during the AGS cycle: the betatron oscillations induced by the tune meter's vertical kick have been seen, and their Fourier analysis gives results consistent with the tune meter; at transition, the effect of the radial kick on each bunch has been observed; coupled-bunch oscillations have been studied; and instabilities produced by high intensities have been observed. 6 figs., 1 tab.

  6. Bucket shaking stops bunch dancing in Tevatron

    SciTech Connect

    Burov, A.; Tan, C.Y.; /Fermilab

    2011-03-01

    Bunches in Tevatron are known to be longitudinally unstable: their collective oscillations, also called dancing bunches, persist without any signs of decay. Typically, a damper is used to stop these oscillations, but recently, it was theoretically predicted that the oscillations can be stabilized by means of small bucket shaking. Dedicated measurements in Tevatron have shown that this method does stop the dancing. According to predictions of Refs. [2,3], the flattening of the bunch distribution at low amplitudes should make the bunch more stable against LLD. An experiment has been devised to flatten the distribution by modulating the RF phase at the low-amplitude synchrotron frequency for a few degrees of amplitude. These beam studies show that stabilisation really happens. After several consecutive shakings, the dancing disappears and the resulting bunch profile becomes smoother at the top. Although not shown in this report, sometimes a little divot forms at the centre of the distribution. These experiments confirm that resonant RF shaking flattens the bunch distribution at low amplitudes, and the dancing stops.

  7. Terahertz coherent transition radiation based on an ultrashort electron bunching beam

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Xin; Huang, Wen-Hui; Du, Ying-Chao; Yan, Li-Xin; Wu, Dai; Tang, Chuan-Xiang

    2011-07-01

    The experimental result of terahertz (THz) coherent transition radiation generated from an ultrashort electron bunching beam is reported. During this experiment, the window for THz transmission from ultrahigh vacuum to free air is tested. The compact measurement system which can simultaneously test the THz wave power and frequency is built and proofed. With the help of improved Martin—Puplett interferometer and Kramers—Krong transform, the longitudinal bunch length is measured. The results show that the peak power of THz radiation wave is more than 80 kW, and its radiation frequency is from 0.1 THz to 1.5 THz.

  8. A Two-Stage Bunch Compressor Option for the US Cold LC

    SciTech Connect

    Raubenheimer, T

    2004-07-21

    To increase the luminosity or improve the stability of the US Cold LC design, it would be advantageous to decrease the bunch length below the specified 300 mu m. It is unlikely that further compression would be possible with the single stage compressor proposed in TESLA design and thus in this note we scale the two-stage NLC bunch compressor design to the US Cold LC design. The primary difficulties with this scaling are related to the much larger (factor of 3.6 times larger) longitudinal emittance in the US Cold LC design.

  9. Difference between BPM reading one bunch and the average of multi-bunch in Booster

    SciTech Connect

    Xi Yang

    2004-08-18

    Differences caused by BPM reading one bunch and multi-bunch average need to be well understood before the beam parameters, such as the synchrotron tune, betatron tune, and chromaticity, are extracted from those BPM data. It is easy to perform such a study using numerical simulation other than modifying the BPM electronics.

  10. The Effective CSR Forces on an Energy-Chirped Bunch under Magnetic Compression

    SciTech Connect

    Rui Li

    2007-06-25

    Following our earlier formulation of the coherent synchrotron radiation (CSR) effect on bunch dynamics in magnetic bends, here we investigate the behavior of the effective CSR forces for an energy-chirped Gaussian bunch in the bending plane around full compression, with special care being taken in the incorporation of the retardation relation. Our results show clearly a delayed response of the CSR forces to the compression or lengthening of the bunch length. In addition, around full compression, our results reveal sensitivity of the effective CSR forces on the particles' transverse position, as a consequence of the geometry of particle interaction and retardation in this regime. These results can serve as benchmarks to the numerical simulation of the CSR effects.

  11. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876

  12. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses.

  13. First Measurements of the Longitudinal Bunch Profile at SLAC Using Coherent Smith-Purcell Radiation at 28GeV

    SciTech Connect

    Blackmore, V.; Doucas, G.; Ottewell, B.; Perry, C.; Kimmitt, M.F.; Arnold, R.; Molloy, S.; Woods, M.; /SLAC

    2011-11-02

    Coherent Smith-Purcell radiation has been demonstrated as a technique for measuring the longitudinal profile of charged particles bunches in the low to intermediate energy range. However, with the advent of the International Linear Collider, the need has arisen for a non-invasive method of measuring the bunch profile at extremely high energies. Smith-Purcell radiation has been used for the first time in the multi-GeV regime to measure the longitudinal profile of the 28GeV SLAC beam. The experiment has both successfully determined the bunch length, and has also demonstrated its sensitivity to bunch profile changes. The challenges associated with this technique, and its prospects as a diagnostic tool are reported here.

  14. Loss of Landau Damping for Bunch Oscillations

    SciTech Connect

    Burov, A.; /Fermilab

    2011-04-11

    Conditions for the existence, uniqueness and stability of self-consistent bunch steady states are considered. For the existence and uniqueness problems, simple algebraic criteria are derived for both the action and Hamiltonian domain distributions. For the stability problem, van Kampen theory is used. The onset of a discrete van Kampen mode means the emergence of a coherent mode without any Landau damping; thus, even a tiny couple-bunch or multi-turn wake is sufficient to drive the instability. The method presented here assumes an arbitrary impedance, RF shape, and beam distribution function. Available areas on the intensity-emittance plane are shown for resistive wall wake and single harmonic, bunch shortening and bunch lengthening RF configurations. Thresholds calculated for the Tevatron parameters and impedance model are in agreement with the observations. These thresholds are found to be extremely sensitive to the small-argument behaviour of the bunch distribution function. Accordingly, a method to increase the LLD threshold is suggested. This article summarizes and extends recent author's publications.

  15. Fast Bunch Integrators at Fermilab During Run II

    SciTech Connect

    Meyer, Thomas; Briegel, Charles; Fellenz, Brian; Vogel, Greg; /Fermilab

    2011-07-13

    The Fast Bunch Integrator is a bunch intensity monitor designed around the measurements made from Resistive Wall Current Monitors. During the Run II period these were used in both Tevatron and Main Injector for single and multiple bunch intensity measurements. This paper presents an overview of the design and use of these systems during this period. During the Run II era the Fast Bunch integrators have found a multitude of uses. From antiproton transfers to muti-bunch beam coalescing, Main Injector transfers to halo scraping and lifetime measurements, the Fast Bunch Integrators have proved invaluable in the creation and maintenance of Colliding Beams stores at Fermilab.

  16. Note on polarized RHIC bunch arrangement

    SciTech Connect

    Underwood, D.

    1996-08-30

    We discuss what combinations of bunch polarization in the two RHIC rings are necessary to do the physics measurements at various interaction regions. We also consider the bunches for both the pion inclusive and p-p elastic polarization measurements. Important factors to consider are the direction of the polarization with respect to the momentum in each bunch, the beam gas backgrounds, and the simulation of zero - polarization in one beam by averaging + and - helicity, and luminosity monitoring for normalization. These considerations can be addressed by setting the relative number of each of the 9 combinations possible at each of the 6 interaction regions. The combinations are (+ empty -) yellow X (+ empty -)blue, where yellow and blue are the counter-rotating rings.

  17. Adaptive method for electron bunch profile prediction

    SciTech Connect

    Scheinker, Alexander; Gessner, Spencer

    2015-10-01

    We report on an experiment performed at the Facility for Advanced Accelerator Experimental Tests (FACET) at SLAC National Accelerator Laboratory, in which a new adaptive control algorithm, one with known, bounded update rates, despite operating on analytically unknown cost functions, was utilized in order to provide quasi-real-time bunch property estimates of the electron beam. Multiple parameters, such as arbitrary rf phase settings and other time-varying accelerator properties, were simultaneously tuned in order to match a simulated bunch energy spectrum with a measured energy spectrum. The simple adaptive scheme was digitally implemented using matlab and the experimental physics and industrial control system. The main result is a nonintrusive, nondestructive, real-time diagnostic scheme for prediction of bunch profiles, as well as other beam parameters, the precise control of which are important for the plasma wakefield acceleration experiments being explored at FACET. © 2015 authors. Published by the American Physical Society.

  18. Bunch coalescing in the Fermilab Main Ring

    SciTech Connect

    Wildman, D.; Martin, P.; Meisner, K.; Miller, H.W.

    1987-03-01

    A new rf system has been installed in the Fermilab Main Ring to coalesce up to 13 individual bunches of protons or antiprotons into a single high-intensity bunch. The coalescing process consists of adiabatically reducing the h = 1113 Main Ring rf voltage from 1 MV to less than 1 kV, capturing the debunched beam in a linearized h = 53 and h = 106 bucket, rotating for a quarter of a synchrotron oscillation period, and then recapturing the beam in a single h = 1113 bucket. The new system will be described and the results of recent coalescing experiments will be compared with computer-generated particle tracking simulations.

  19. Wakefields of Sub-Picosecond Electron Bunches

    SciTech Connect

    Bane, Karl L.F.; /SLAC

    2006-04-19

    We discuss wakefields excited by short bunches in accelerators. In particular, we review some of what has been learned in recent years concerning diffraction wakes, roughness impedance, coherent synchrotron radiation wakes, and the resistive wall wake, focusing on analytical solutions where possible. As examples, we apply formulas for these wakes to various parts of the Linac Coherent Light Source (LCLS) project. The longitudinal accelerator structure wake of the SLAC linac is an important ingredient in the LCLS bunch compression process. Of the wakes in the undulator region, the dominant one is the resistive wall wake of the beam pipe.

  20. The absolute path command

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  1. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  2. Sub-fs electron bunch generation with sub-10-fs bunch arrival-time jitter via bunch slicing in a magnetic chicane

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Assmann, R. W.; Dohlus, M.; Dorda, U.; Marchetti, B.

    2016-05-01

    The generation of ultrashort electron bunches with ultrasmall bunch arrival-time jitter is of vital importance for laser-plasma wakefield acceleration with external injection. We study the production of 100-MeV electron bunches with bunch durations of subfemtosecond (fs) and bunch arrival-time jitters of less than 10 fs, in an S-band photoinjector by using a weak magnetic chicane with a slit collimator. The beam dynamics inside the chicane is simulated by using two codes with different self-force models. The first code separates the self-force into a three-dimensional (3D) quasistatic space-charge model and a one-dimensional coherent synchrotron radiation (CSR) model, while the other one starts from the first principle with a so-called 3D sub-bunch method. The simulations indicate that the CSR effect dominates the horizontal emittance growth and the 1D CSR model underestimates the final bunch duration and emittance because of the very large transverse-to-longitudinal aspect ratio of the sub-fs bunch. Particularly, the CSR effect is also strongly affected by the vertical bunch size. Due to the coupling between the horizontal and longitudinal phase spaces, the bunch duration at the entrance of the last dipole magnet of the chicane is still significantly longer than that at the exit of the chicane, which considerably mitigates the impact of space charge and CSR effects on the beam quality. Exploiting this effect, a bunch charge of up to 4.8 pC in a sub-fs bunch could be simulated. In addition, we analytically and numerically investigate the impact of different jitter sources on the bunch arrival-time jitter downstream of the chicane, and define the tolerance budgets assuming realistic values of the stability of the linac for different bunch charges and compression schemes.

  3. Operational performance of a bunch by bunch digital damper in the Fermilab Main Injector

    SciTech Connect

    Adamson, P.; Ashmanskas, W.J.; Foster, G.W.; Hansen, S.; Marchionni, A.; Nicklaus, D.; Semenov, A.; Wildman, D.; Kang, H.; /Stanford U., Phys. Dept.

    2005-05-01

    We have implemented a transverse and longitudinal bunch by bunch digital damper system in the Fermilab Main Injector, using a single digital board for all 3 coordinates. The system has been commissioned over the last year, and is now operational in all MI cycles, damping beam bunched at both 53MHz and 2.5MHz. We describe the performance of this system both for collider operations and high-intensity running for the NuMI project, operating with a full ring and sometimes with only a few buckets populated.

  4. Obtaining the Bunch Shape in a Linac from Beam Spectrum Measurements

    SciTech Connect

    Bane, Karl LF

    1999-04-14

    In linacs with high single-bunch charge, and tight tolerances for energy spread and emittance growth, controlling the short-range wakefield effects becomes extremely important. The effects of the wakefields, in turn, depend on the bunch length and also on the bunch shape. It was shown in the linac of the Stanford Linear Collider (SLC), for example, that by shaping the bunch, the final rms energy spread could be greatly reduced, compared to for the standard Gaussian bunch shape[1]. Therefore, in machines with high single-bunch charge, a method of measuring bunch shape can be an important beam diagnostic. In a linac with low single-bunch charge, the longitudinal bunch shape can be obtained relatively easily from a single measurement of the beam's final energy spectrum, provided that the final to initial energy ratio is large. One merely shifts the average phase of the beam, so that it rides off-crest sufficiently to induce an energy variation that is monotonic with longitudinal position. Then, by knowing the initial and final energies, the rf wave number, and the average beam phase, one can directly map the spectrum into the bunch shape. In a linac with high single-bunch charge, however, due to the effect of the longitudinal wakefield, this method either does not work at all, or it requires such a large shift in beam phase as to become impractical. In earlier work[2],[3] it was shown that, even when wakefields are important, if one measures the final beam spectrum for two different (properly chosen) values of beam phase, then one can again obtain the bunch shape, and--as a by-product--also the form of the wakefield induced voltage; this method was then illustrated using data from the linac of the SLC. These SLC measurements, however, had been performed with the machine in a special configuration, where the current was low; in addition, the noise the data was low and the measured spectra were smooth distributions. Under normal SLC conditions, however, the currents

  5. The Case: Bunche-Da Vinci Learning Partnership Academy

    ERIC Educational Resources Information Center

    Eisenberg, Nicole; Winters, Lynn; Alkin, Marvin C.

    2005-01-01

    The Bunche-Da Vinci case described in this article presents a situation at Bunche Elementary School that four theorists were asked to address in their evaluation designs (see EJ791771, EJ719772, EJ791773, and EJ792694). The Bunche-Da Vinci Learning Partnership Academy, an elementary school located between an urban port city and a historically…

  6. Diagnostics of Interaction Point Properties and Bunch-by-Bunch Tune Measurements at CESR

    SciTech Connect

    Codner, G. W.; Palmer, M. A.; Tanke, E. P.; Temnykh, A. B.

    2006-11-20

    The Cornell Electron Storage Ring (CESR) undergoes significant changes in running conditions as operation for CLEO-c high energy physics is interleaved with synchrotron light operation for CHESS (Cornell High Energy Synchrotron Source). Two examples of CESR beam instrumentation applications that are being used to understand storage ring conditions are described: 1) measurement of coupling at the interaction point using the single bunch, multiple turn, type I CESR Beam Position Monitor (CBPM) electronics with continuous beam excitation and 2) measurement of individual bunch tunes to explore possible electron cloud effects using the multiple bunch, multiple turn, type II CBPM electronics with a shock-excited beam. Both applications use the same acquired data for a given bunch, which is turn-by-turn beam position data, and both applications extract the relevant information using the discrete Fourier transform of the time sequences.

  7. BUNCH PATTERNS AND PRESSURE RISE IN RHIC.

    SciTech Connect

    FISCHER,W.IRISO-ARIZ,U.

    2004-07-05

    The RHIC luminosity is limited by pressure rises with high intensity beams. At injection and store, the dominating cause for the pressure rise was shown to be electron clouds. We discuss bunch distributions along the circumference that minimize the electron cloud effect in RHIC. Simulation results are compared with operational observations.

  8. Dancing bunches as Van Kampen modes

    SciTech Connect

    Burov, A.; /Fermilab

    2011-03-01

    Van Kampen modes are eigen-modes of Jeans-Vlasov equation [1-3]. Their spectrum consists of continuous and, possibly, discrete parts. Onset of a discrete van Kampen mode means emergence of a coherent mode without any Landau damping; thus, even a tiny couple-bunch wake is sufficient to drive instability. Longitudinal instabilities observed at Tevatron [4], RHIC [5] and SPS [6] can be explained as loss of Landau damping (LLD), which is shown here to happen at fairly low impedances. For repulsive wakes and single-harmonic RF, LLD is found to be extremely sensitive to steepness of the bunch distribution function at small amplitudes. Based on that, a method of beam stabilization is suggested. Emergence of a discrete van Kampen mode means either loss of Landau damping or instability. Longitudinal bunch stability is analysed in weak head-tail approximation for inductive impedance and single-harmonic RF. The LLD threshold intensities are found to be rather low: for cases under study all of them do not exceed a few percent of the zero-amplitude incoherent synchrotron frequency shift, strongly decreasing for shorter bunches. Because of that, LLD can explain longitudinal instabilities happened at fairly low impedances at Tevatron [4], and possibly for RHIC [5] and SPS [6], being in that sense an alternative to the soliton explanation [5, 20]. Although LLD itself results in many cases in emergence of a mode with zero growth rate, any couple-bunch (and sometimes multi-turn) wake would drive instability for that mode, however small this wake is. LLD is similar to a loss of immune system of a living cell, when any microbe becomes fatal for it. The emerging discrete mode is normally very different from the rigid-bunch motion; thus the rigid-mode model significantly overestimates the LLD threshold. The power low of LLD predicted in Ref. [17] agrees with results of this paper. However, the numerical factor in that scaling low strongly depends on the bunch distribution function

  9. ``Electron Lens`` to Compensate Bunch-to-Bunch Tune Spread in TEV33

    SciTech Connect

    Shiltsev, V.

    1997-10-01

    In this article we discuss an electron beam lens for compensation of bunch-to-bunch tune spread in the Tevatron antiproton beam. Time-modulated current of an electron beam can produce defocusing forces necessary to compensate effects caused by parasitic beam-beam interactions with proton beam. We estimate maim parameters of the electron beam and consider resulting beam footprint. Emittance growth rate due to the electron current fluctuations is discussed.

  10. A transverse bunch by bunch feedback system for Pohang Light Source upgrade

    SciTech Connect

    Lee, E.-H.; Kim, D.-T.; Huang, J.-Y.; Shin, S.; Nakamura, T.; Kobayashi, K.

    2014-12-15

    The Pohang Light Source upgrade (PLS-II) project has successfully upgraded the Pohang Light Source (PLS). The main goals of the PLS-II project are to increase the beam energy to 3 GeV, increase the number of insertion devices by a factor of two (20 IDs), increase the beam current to 400 mA, and at the same time reduce the beam emittance to below 10 nm by using the existing PLS tunnel and injection system. Among 20 insertion devices, 10 narrow gap in-vacuum undulators are in operation now and two more in-vacuum undulators are to be installed later. Since these narrow gap in-vacuum undulators are most likely to produce coupled bunch instability by the resistive wall impedance and limit the stored beam current, a bunch by bunch feedback system is implemented to suppress coupled bunch instability in the PLS-II. This paper describes the scheme and performance of the PLS-II bunch by bunch feedback system.

  11. Analytical formulas for short bunch wakes in a flat dechirper

    NASA Astrophysics Data System (ADS)

    Bane, Karl; Stupakov, Gennady; Zagorodnov, Igor

    2016-08-01

    We develop analytical models of the longitudinal and transverse wakes, on and off axis for a flat, corrugated beam pipe with realistic parameters, and then compare them with numerical calculations, and generally find good agreement. These analytical "first order" formulas approximate the droop at the origin of the longitudinal wake and of the slope of the transverse wakes; they represent an improvement in accuracy over earlier, "zeroth order" formulas. In example calculations for the RadiaBeam/LCLS dechirper using typical parameters, we find a 16% droop in the energy chirp at the bunch tail compared to simpler calculations. With the beam moved to 200 μ m from one jaw in one dechirper section, one can achieve a 3 MV transverse kick differential over a 30 μ m length.

  12. Theoretical analysis and simulation of the influence of self-bunching effects and longitudinal space charge effects on the propagation of keV electron bunch produced by a novel S-band Micro-Pulse electron Gun

    NASA Astrophysics Data System (ADS)

    Zhao, Jifei; Lu, Xiangyang; Zhou, Kui; Yang, Ziqin; Yang, Deyu; Luo, Xing; Tan, Weiwei; Yang, Yujia

    2016-06-01

    As an important electron source, Micro-Pulse electron Gun (MPG) which is qualified for producing high average current, short pulse, low emittance electron bunches steadily holds promise to use as an electron source of Coherent Smith-Purcell Radiation (CSPR), Free Electron Laser (FEL). The stable output of S-band MPG has been achieved in many labs. To establish reliable foundation for the future application of it, the propagation of picosecond electron bunch produced by MPG should be studied in detail. In this article, the MPG which was working on the rising stage of total effective Secondary Electron Yield (SEY) curve was introduced. The self-bunching mechanism was discussed in depth both in the multipacting amplifying state and the steady working state. The bunch length broadening induced by the longitudinal space-charge (SC) effects was investigated by different theoretical models in different regions. The 2D PIC codes MAGIC and beam dynamic codes TraceWin simulations were also performed in the propagation. The result shows an excellent agreement between the simulation and the theoretical analysis for bunch length evolution.

  13. Use of Helical Transport Channels for Bunch Recombination

    SciTech Connect

    Neuffer, David; Yonehara, Katsuya; Yoshikawa, Cary; /MUONS Inc., Batavia

    2010-03-01

    Cooling scenarios for a high-luminosity Muon Collider require bunch recombination for optimal luminosity. In this report we note that the tunable chronicity property of a helical transport channel (HTC) makes it a desirable component of a bunch recombiner. A large chronicity HTC is desirable for the bunch recombining transport, while more isochronous transport may be preferred for rf manipulations. Scenarios for bunch recombination are presented, with initial 1-D simulations, in order to set the stage for future 3-D simulation and optimization. HTC transports may enable a very compact bunch recombiner.

  14. ACCELERATORS Study of a magnetic alloy-loaded RF cavity for bunch compression at the CSR

    NASA Astrophysics Data System (ADS)

    Yin, Da-Yu; Liu, Yong; Xia, Jia-Wen; Li, Peng; Zhao, Yong-Tao; Yang, Lei; Qi, Xin

    2010-12-01

    The Heavy Ion Research Facility and Cooling Storage Ring (HIRFL-CSR) accelerator in Lanzhou offers a unique possibility for the generation of high density and short pulse heavy ion beams by non-adiabatic bunch compression longitudinally, which is implemented by a fast jump of the RF-voltage amplitude. For this purpose, an RF cavity with high electric field gradient loaded with Magnetic Alloy cores has been developed. The results show that the resonant frequency range of the single-gap RF cavity is from 1.13 MHz to 1.42 MHz, and a maximum RF voltage of 40 kV with a total length of 100 cm can be obtained, which can be used to compress heavy ion beams of 238U72+ with 250 MeV/u from the initial bunch length of 200 ns to 50 ns with the coaction of the two single-gap RF cavity mentioned above.

  15. Neandertal clavicle length

    PubMed Central

    Trinkaus, Erik; Holliday, Trenton W.; Auerbach, Benjamin M.

    2014-01-01

    The Late Pleistocene archaic humans from western Eurasia (the Neandertals) have been described for a century as exhibiting absolutely and relatively long clavicles. This aspect of their body proportions has been used to distinguish them from modern humans, invoked to account for other aspects of their anatomy and genetics, used in assessments of their phylogenetic polarities, and used as evidence for Late Pleistocene population relationships. However, it has been unclear whether the usual scaling of Neandertal clavicular lengths to their associated humeral lengths reflects long clavicles, short humeri, or both. Neandertal clavicle lengths, along with those of early modern humans and latitudinally diverse recent humans, were compared with both humeral lengths and estimated body masses (based on femoral head diameters). The Neandertal do have long clavicles relative their humeri, even though they fall within the ranges of variation of early and recent humans. However, when scaled to body masses, their humeral lengths are relatively short, and their clavicular lengths are indistinguishable from those of Late Pleistocene and recent modern humans. The few sufficiently complete Early Pleistocene Homo clavicles seem to have relative lengths also well within recent human variation. Therefore, appropriately scaled clavicular length seems to have varied little through the genus Homo, and it should not be used to account for other aspects of Neandertal biology or their phylogenetic status. PMID:24616525

  16. A Two Bunch Beam Position Monitor

    SciTech Connect

    Medvedko, E.; Aiello, R.; Smith, S.; /SLAC

    2011-09-12

    A new beam position monitor digitizer module has been designed, tested and tuned at SLAC. This module, the electron-positron beam position monitor (epBPM), measures position of single electron and positron bunches for the SLC, LINAC, PEPII injections lines and final focus. The epBPM has been designed to improve resolution of beam position measurements with respect to existing module and to speed feedback correction. The required dynamic range is from 5 x 10{sup 8} to 10{sup 11} particles per bunch (46dB). The epBPM input signal range is from {+-}2.5 mV to {+-}500 mV. The pulse-to-pulse resolution is less than 2 {mu}m for 5 x 10{sup 10} particles per bunch for the 12 cm long striplines, covering 30{sup o} at 9 mm radius. The epBPM module has been made in CAMAC standard, single width slot, with SLAC type timing connector. 45 modules have been fabricated. The epBPM module has four input channels X{sup +}, X{sup -}, Y{sup +}, Y{sup -} (Fig. 1), named to correspond with coordinates of four striplines - two in horizontal and two in vertical planes, processing signals to the epBPM inputs. The epBPM inputs are split for eight signal processing channels to catch two bunches, first - the positron, then the electron bunch in one cycle of measurements. The epBPM has internal and external trigger modes of operations. The internal mode has two options - with or without external timing, catching only first bunch in the untimed mode. The epBPM has an on board calibration circuit for measuring gain of the signal processing channels and for timing scan of programmable digital delays to synchronize the trigger and the epBPM input signal's peak. There is a mode for pedestal measurements. The epBPM has 3.6 {mu}s conversion time.

  17. Simulation of ELBE SRF gun II for high-bunch-charge applications

    NASA Astrophysics Data System (ADS)

    Lu, P.; Arnold, A.; Teichert, J.; Vennekate, H.; Xiang, R.

    2016-09-01

    The SRF gun at ELBE will benefit most of the local user beamlines for future high-bunch-charge operations. Parallel to its development, simulation-based investigations have been performed to improve the beam quality for THz experiments and Compton backscattering experiments. These two applications have the most challenging requirements: THz experiments benefit significantly from short bunch lengths at the sub-ps level, while Compton backscattering experiments demand small transverse beam sizes of about 30 μm. The beam dynamics of the SRF gun are simulated with ASTRA and the beam transport is optimized using Elegant. Important physical effects included in simulations are introduced first, where the interesting phenomenon of "slice mismatch" is generally quantified and numerically studied. Afterwards, beam transport strategies and optimization methods are proposed which are based on the specific settings of ELBE but also applicable to similar accelerator setups. Finally, optimizations of the SRF gun and the beam transport in ELBE are presented. Results show that the SRF gun is capable of providing 500 pC bunches for both applications with better beam qualities than the currently 100 pC bunches supplied by the existing thermionic DC source.

  18. Shielded transient self-interaction of a bunch entering a circle from a straight path

    SciTech Connect

    Li, R.; Bohn, C.L.; Bisognano, J.J.

    1997-08-01

    Recent developments in electron-gun and injector technologies enable production of short (mm-length), high-charge (nC-regime) bunches. In this parameter regime, the curvature effect on the bunch self-interaction, by way of coherent synchrotron radiation (CSR) and space-charge forces as the beam traverses magnet bends, may cause serious emittance degradation. In this paper, the authors study an electron bunch orbiting between two infinite, parallel conducting plates. The bunch moves on a trajectory from a straight path to a circular orbit and begins radiating. Transient effects, arising from CSR and space-charge forces generated from source particles both on the bend and on the straight path prior to the bend, are analyzed using Lienard-Wiechert fields, and their overall net effect is obtained. The influence of the plates on the transients is contrasted to their shielding of the steady-state radiated power. Results for emittance degradation induced by this self-interaction are also presented.

  19. Towards highest peak intensities for ultra-short MeV-range ion bunches

    PubMed Central

    Busold, Simon; Schumacher, Dennis; Brabetz, Christian; Jahn, Diana; Kroll, Florian; Deppert, Oliver; Schramm, Ulrich; Cowan, Thomas E.; Blažević, Abel; Bagnoud, Vincent; Roth, Markus

    2015-01-01

    A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8 MeV, up to 5 × 108 protons could be re-focused in time to a FWHM bunch length of τ = (462 ± 40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6 m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches. PMID:26212024

  20. Self-interaction of subpico-second electron bunch traveling through a chicane-based bunch-compressor

    NASA Astrophysics Data System (ADS)

    Hajima, Ryoichi; Yoshii, Koji; Ueda, Toru; Sakai, Fumio; Kotaki, Hideyuki; Kondoh, Shuji; Kando, Masaki; Kinoshita, Kenichi; Harano, Hideki; Watanabe, Takahiro; Uesaka, Mitsuru; Dewa, Hideki; Nakajima, Kazuhisa

    1999-06-01

    A photo-cathode RF-gun and a chicane-based bunch-compressor are installed on an S-band linac which had been used for a UT-FEL experiment. Electron bunches extracted from the photo-cathode RF-gun are accelerated by an S-band structure up to 20 MeV and compressed by a chicane magnet. Since the bunch has very small longitudinal size and relatively low energy, coherent synchrotron radiation emitted from the bunch in the chicane creates a nonuniform energy loss in the bunch and degrades the performance of the bunch compressor. In the present paper, the performance of the bunch-compressor under the influence of coherent synchrotron radiation is studied. Preliminary experimental results are also presented.

  1. Bunch Profiling Using a Rotating Mask

    SciTech Connect

    Miller, Mitchell; /SLAC /IIT, Chicago

    2012-08-24

    The current method for measuring profiles of proton bunches in accelerators is severely lacking. One must dedicate a great deal of time and expensive equipment to achieve meaningful results. A new method to complete this task uses a rotating mask with slots of three different orientations to collect this data. By scanning over the beam in three different directions, a complete profile for each bunch is built in just seconds, compared to the hours necessary for the previous method. This design was successfully tested using synchrotron radiation emitted by SPEAR3. The profile of the beam was measured in each of the three desired directions. Due to scheduled beam maintenance, only one set of data was completed and more are necessary to solve any remaining issues. The data collected was processed and all of the RMS sizes along the major and minor axes, as well as the tilt of the beam ellipse were measured.

  2. Single-bunch beams for BC-75

    SciTech Connect

    Sodja, J.; Clendenin, J.E.; Erickson, R.A.; Miller, R.H.

    1983-06-01

    On June 8, 1983, a beam consisting of a single S-band bunch was transported through the linac into the beam switchyard (BSY) and analyzed in the C-line (Beamline 27) at 30 GeV. The C-line toroid 2712 measured an intensity of approximately 2 x 10/sup 9/e/sup -//pulse. The exact intensity was uncertain due to the limited response time of the toroid for fast, single-bunch beams. However, the linear Q intensity monitors (Lin Q) showed the transmission of the beam through the linac between Sectors 2 and 30 to be fairly flat with an intensity of 3 x 10/sup 9/e/sup -//pulse in the final 19 sectors. The CID Faraday cup, which is located adjacent to the Gun Lin Q, was used to check the calibration of the Lin Q.

  3. Halo formation in three-dimensional bunches

    NASA Astrophysics Data System (ADS)

    Gluckstern, R. L.; Fedotov, A. V.; Kurennoy, S.; Ryne, R.

    1998-10-01

    We have constructed, analytically and numerically, a class of self-consistent six-dimensional (6D) phase space stationary distributions. Stationary distributions allow us to study the halo development mechanism without it being obscured by beam redistribution and its effect on halo formation. The beam is then mismatched longitudinally and/or transversely, and we explore the formation of longitudinal and transverse halos in 3D axisymmetric beam bunches. We find that the longitudinal halo forms first for comparable longitudinal and transverse mismatches because the longitudinal tune depression is more severe than the transverse one for elongated bunches. Of particular importance is the result that, due to the coupling between longitudinal and transverse motion, a longitudinal or transverse halo is observed for a mismatch less than 10% if the mismatch in the other plane is large.

  4. A discussion of bunched beam stochastic cooling

    SciTech Connect

    Neuffer, David; /Fermilab

    2005-08-01

    The analysis of Herr and Mohl[1] is used as a basis for a discussion of bunched beam cooling in the Fermilab recycler and the Tevatron. Differences between the two cooling regimes are discussed. Criteria discussed in that paper imply the failure of stochastic cooling in the Tevatron while permitting the success of stochastic cooling in the Recycler. These ''predictions'' are in agreement with observations.

  5. Mesoscopic quantum multiplex for channeling bunches

    NASA Astrophysics Data System (ADS)

    Shen, Jing

    1998-09-01

    (1) Bogacz-Cline channeling is an interesting idea that can transform a bunch of low particle intensity to a collider of high luminosity but it was maintained as impossible to carry out because of three technical problems. (2) The first of which is discussed in this paper, and it is how to get billions particles from each bunch to enter into and channel through a single crystal channel. (3) Two basic difficulties of entrance are discussed in this paper. The first is due to the Heisenberg's uncertainty, and the second is the dimension reduction of a beam bunch in crystal from 3D to 1D. (4) To overcome these difficulties, a hybrid device named Mesoscopic Quantum Multiplex (MQM) is designed to achieve entrance and channeling. It is a quantum generalization of classical multiplex in detector readout electronics for the classical-quantum interface. It is made by nano-crystalline technology. (5) The MQM can channel the Richter-Kimura-Takada flat e± beams of NLC-JLC, and low emittance p or heavy ion beams as well as the Bogacz-Cline μ± beams, and the Nagamine-Chu cool μ± beams.

  6. ABSOLUTE POLARIMETRY AT RHIC.

    SciTech Connect

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  7. Emittance growth due to static and radiative space charge forces in an electron bunch compressor

    NASA Astrophysics Data System (ADS)

    Talman, Richard; Malitsky, Nikolay; Stulle, Frank

    2009-01-01

    Evolution of short intense electron bunches passing through bunch-compressing beam lines is studied using the UAL (Unified Accelerator Libraries) string space charge formulation [R. Talman, Phys. Rev. ST Accel. Beams 7, 100701 (2004)PRABFM1098-440210.1103/PhysRevSTAB.7.100701; N. Malitsky and R. Talman, in Proceedings of the 9th European Particle Accelerator Conference, Lucerne, 2004 (EPS-AG, Lucerne, 2004); R. Talman, Accelerator X-Ray Sources (Wiley-VCH, Weinheim, 2006), Chap. 13]. Three major configurations are studied, with the first most important and studied in greatest detail (because actual experimental results are available and the same results have been simulated with other codes): (i) Experimental bunch compression results were obtained at CTF-II, the CERN test facility for the “Compact Linear Collider” using electrons of about 40 MeV. Previous simulations of these results have been performed (using TraFiC4* [A. Kabel , Nucl. Instrum. Methods Phys. Res., Sect. A 455, 185 (2000)NIMAER0168-900210.1016/S0168-9002(00)00729-4] and ELEGANT [M. Borland, Argonne National Laboratory Report No. LS-287, 2000]). All three simulations are in fair agreement with the data except that the UAL simulation predicts a substantial dependence of horizontal emittance γx on beam width (as controlled by the lattice βx function) at the compressor location. This is consistent with the experimental observations, but inconsistent with other simulations. Excellent agreement concerning dependence of bunch energy loss on bunch length and magnetic field strength [L. Groening , in Proceedings of the Particle Accelerator Conference, Chicago, IL, 2001 (IEEE, New York, 2001), http://groening.home.cern/groening/csr_00.htm] confirms our understanding of the role played by coherent synchrotron radiation (CSR). (ii) A controlled comparison is made between the predictions of the UAL code and those of CSRTrack [M. Dohlus and T. Limberg, in Proceedings of the 2004 FEL Conference, pp. 18

  8. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    SciTech Connect

    Piot, P.; Sun, Y. -E; Maxwell, T. J.; Ruan, J.; Lumpkin, A. H.; Rihaoui, M. M.; Thurman-Keup, R.

    2011-06-27

    We experimentally demonstrate the production of narrow-band (δf/f ~ =20% at f ~ = 0.5 THz) THz transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. In addition, we show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  9. Direct determination of the chromosomal location of bunching onion and bulb onion markers using bunching onion-shallot monosomic additions and allotriploid-bunching onion single alien deletions.

    PubMed

    Tsukazaki, Hikaru; Yamashita, Ken-ichiro; Yaguchi, Shigenori; Yamashita, Koichiro; Hagihara, Takuya; Shigyo, Masayoshi; Kojima, Akio; Wako, Tadayuki

    2011-02-01

    To determine the chromosomal location of bunching onion (Allium fistulosum L.) simple sequence repeats (SSRs) and bulb onion (A. cepa L.) expressed sequence tags (ESTs), we used a complete set of bunching onion-shallot monosomic addition lines and allotriploid bunching onion single alien deletion lines as testers. Of a total of 2,159 markers (1,198 bunching onion SSRs, 324 bulb onion EST-SSRs and 637 bulb onion EST-derived non-SSRs), chromosomal locations were identified for 406 markers in A. fistulosum and/or A. cepa. Most of the bunching onion SSRs with identified chromosomal locations showed polymorphism in bunching onion (89.5%) as well as bulb onion lines (66.1%). Using these markers, we constructed a bunching onion linkage map (1,261 cM), which consisted of 16 linkage groups with 228 markers, 106 of which were newly located. All linkage groups of this map were assigned to the eight basal Allium chromosomes. In this study, we assigned 513 markers to the eight chromosomes of A. fistulosum and A. cepa. Together with 254 markers previously located on a separate bunching onion map, we have identified chromosomal locations for 766 markers in total. These chromosome-specific markers will be useful for the intensive mapping of desirable genes or QTLs for agricultural traits, and to obtain DNA markers linked to these.

  10. Direct determination of the chromosomal location of bunching onion and bulb onion markers using bunching onion-shallot monosomic additions and allotriploid-bunching onion single alien deletions.

    PubMed

    Tsukazaki, Hikaru; Yamashita, Ken-ichiro; Yaguchi, Shigenori; Yamashita, Koichiro; Hagihara, Takuya; Shigyo, Masayoshi; Kojima, Akio; Wako, Tadayuki

    2011-02-01

    To determine the chromosomal location of bunching onion (Allium fistulosum L.) simple sequence repeats (SSRs) and bulb onion (A. cepa L.) expressed sequence tags (ESTs), we used a complete set of bunching onion-shallot monosomic addition lines and allotriploid bunching onion single alien deletion lines as testers. Of a total of 2,159 markers (1,198 bunching onion SSRs, 324 bulb onion EST-SSRs and 637 bulb onion EST-derived non-SSRs), chromosomal locations were identified for 406 markers in A. fistulosum and/or A. cepa. Most of the bunching onion SSRs with identified chromosomal locations showed polymorphism in bunching onion (89.5%) as well as bulb onion lines (66.1%). Using these markers, we constructed a bunching onion linkage map (1,261 cM), which consisted of 16 linkage groups with 228 markers, 106 of which were newly located. All linkage groups of this map were assigned to the eight basal Allium chromosomes. In this study, we assigned 513 markers to the eight chromosomes of A. fistulosum and A. cepa. Together with 254 markers previously located on a separate bunching onion map, we have identified chromosomal locations for 766 markers in total. These chromosome-specific markers will be useful for the intensive mapping of desirable genes or QTLs for agricultural traits, and to obtain DNA markers linked to these. PMID:20938763

  11. Final Report for May 1 2004 to April 30 2005 and renewal request for the experiment # 1042511 Electro-optical detection for the temporal characterization of sub-picosecond beam bunch

    SciTech Connect

    Ben-Zvi, I.

    2005-05-01

    To develop a novel, single-shot, non-destructive method of determining the time structure of the relativistic electron bunch length in the sub-picosecond resolution. Using an electro-optical flash (EO-flash) detection technique, we will demonstrate that the electron bunch length can be converted from time to spatial information. An additional task added for the continuation is advanced topics of particle acceleration in vacuum with high-power lasers.

  12. MINI-BUNCHED AND MICRO-BUNCHED SLOW EXTRACTED BEAMS FROM THE AGS.

    SciTech Connect

    BROWN,K.A.AHRENS,L.BRENNAN,J.M.GLENN,J.W.SIVERTZ,M.KOSCIELNIAK,S.R.

    2004-07-05

    Brookhaven National Laboratory's (BNLs) Alternating Gradient Synchrotron (AGS) has a long history of providing slow extracted proton beams to fixed target experiments. This program of providing high quality high intensity beams continues with two new experiments currently being designed for operation at the AGS. Both experiments require slow extracted beam, but with an added requirement that those beams be bunched. Bunched beam slow extraction techniques have been developed for both experiments and initial tests have been performed. In this report we describe the beam requirements for the two experiments, and present results of detailed simulations and initial beam tests.

  13. SuperB Bunch-By-Bunch Feedback R&D

    SciTech Connect

    Drago, A.; Beretta, M.; Bertsche, K.; Novokhatski, A.; Migliorati, M.; /Rome U.

    2011-08-12

    The SuperB project has the goal to build in Italy, in the Frascati or Tor Vergata area, an asymmetric e{sup +}/e{sup -} Super Flavor Factory to achieve a peak luminosity > 10**36 cm{sup -2} s{sup -1}. The SuperB design is based on collisions with extremely low vertical emittance beams and high beam currents. A source of emittance growth comes from the bunch by bunch feedback systems producing high power correction signals to damp the beams. To limit any undesirable effect, a large R&D program is in progress, partially funded by the INFN Fifth National Scientific Committee through the SFEED (SuperB Feedback) project approved within the 2010 budget. The SuperB project [1] has the goal to build in Italy, in the Frascati or Tor Vergata area, an asymmetric e{sup +}/e{sup -} Super Flavor Factory to achieve a peak luminosity > 10**36 cm{sup -2} s{sup -1}. In the last and current years, the machine layout has been deeply modified, in particular the main rings are now shorter and an option with high currents has been foreseen. In the fig.1 the new SuperB layout is shown. From bunch-by-bunch feedback point of view, the simultaneous presence in the machine parameters, of very low emittance, of the order of 5-10 pm in the vertical plane, and very high currents, at level of 4 Ampere for the Low Energy Ring, asks for designing very carefully the bunch-by-bunch feedback systems. The parameter list is presented in Fig. 2. The bunch-by-bunch feedback design must take care of the risky and exciting challenges proposed in the SuperB specifications, but it should consider also some other important aspects: flexibility in terms of being able to cope to unexpected beam behaviours [2], [3] legacy of previous version experience [4], [5] and internal powerful diagnostics [6] as in the systems previously used in PEP-II and DAFNE [7].

  14. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  15. Head-Tail Instability of a Super-bunch

    SciTech Connect

    Shimosaki, Yoshito; Toyama, Takeshi; Takayama, Ken

    2005-06-08

    Super-bunch acceleration is a key concept in an induction synchrotron. In the induction synchrotron, super-bunches confined in the longitudinal direction by a pair of barrier voltages are accelerated with long induction step voltage pulses. Synchrotron oscillation of the super-bunch is notable, which consists of long drifting between the barriers and quick reflection in the barrier regions. This is apparently distinguished from that of the conventional RF bunch, which is the pendulum oscillation. This property has been supposed to bring about qualitatively different features in the head-tail instability of the super-bunch. Recently the head-tail instability of the super-bunch has been systematically examined. In this paper, the preliminary results of macro-particle simulations is reported.

  16. Step bunching and ordering induced by step-edge barriers

    NASA Astrophysics Data System (ADS)

    Zhao, Yuegang; Liu, Feng; Tersoff, Jerry; Lagally, Max G.

    2000-03-01

    We derive the equation of motion of steps for step flow growth under the influence of both misfit strain and step-edge barriers. An energy barrier at a step for an atom arriving from the lower terrace causes a step bunching instability. Simulation results show that the bunching is predominantly driven by a coalescence mechanism, leading to multiple transient stages of metastable step bunch arrays, with average bunch size of 2, 4, and 8 steps. The bunch array in these transient stages exhibits a surprisingly good long-range order. Similar kinetic step-bunch ordering has been seen in a a recent experiment[1]. Reference: [1]: C. Schelling, G. Springholz, and F. Schäffler, Phys. Rev. Letts, 83(995)1999.

  17. Radiation of charged-particle bunches passing perpendicularly by the edge of a semi-infinite planar wire structure

    NASA Astrophysics Data System (ADS)

    Tyukhtin, Andrey V.; Vorobev, Viktor V.; Galyamin, Sergey N.

    2015-06-01

    The radiation of a charged-particle bunch moving perpendicularly to a semi-infinite plane grid composed of thin parallel wires is analyzed using the method of averaged boundary conditions (the period of the grid is assumed to be much less than the wavelengths under investigation). We perform an analysis of the volume radiation and surface waves generated by a bunch of finite length. It is shown that the patterns of the volume radiation fundamentally differ from those that arise in the case of an infinite grid. The properties of the surface waves are similar to the properties of Cherenkov radiation in a three-dimensional wire metamaterial. These waves propagate along the wires at the speed of light in a vacuum and do not diminish with distance (if absorption is negligible). The structure of the surface waves allows for the determination of the size and form of the particle bunches.

  18. Demonstration of passive plasma lensing of a laser wakefield accelerated electron bunch

    DOE PAGES

    Kuschel, S.; Hollatz, D.; Heinemann, T.; Karger, O.; Schwab, M. B.; Ullmann, D.; Knetsch, A.; Seidel, A.; Rodel, C.; Yeung, M.; et al

    2016-07-20

    We report on the first demonstration of passive all-optical plasma lensing using a two-stage setup. An intense femtosecond laser accelerates electrons in a laser wakefield accelerator (LWFA) to 100 MeV over millimeter length scales. By adding a second gas target behind the initial LWFA stage we introduce a robust and independently tunable plasma lens. We observe a density dependent reduction of the LWFA electron beam divergence from an initial value of 2.3 mrad, down to 1.4 mrad (rms), when the plasma lens is in operation. Such a plasma lens provides a simple and compact approach for divergence reduction well matchedmore » to the mm-scale length of the LWFA accelerator. The focusing forces are provided solely by the plasma and driven by the bunch itself only, making this a highly useful and conceptually new approach to electron beam focusing. Possible applications of this lens are not limited to laser plasma accelerators. Since no active driver is needed the passive plasma lens is also suited for high repetition rate focusing of electron bunches. As a result, its understanding is also required for modeling the evolution of the driving particle bunch in particle driven wake field acceleration.« less

  19. Demonstration of passive plasma lensing of a laser wakefield accelerated electron bunch

    NASA Astrophysics Data System (ADS)

    Kuschel, S.; Hollatz, D.; Heinemann, T.; Karger, O.; Schwab, M. B.; Ullmann, D.; Knetsch, A.; Seidel, A.; Rödel, C.; Yeung, M.; Leier, M.; Blinne, A.; Ding, H.; Kurz, T.; Corvan, D. J.; Sävert, A.; Karsch, S.; Kaluza, M. C.; Hidding, B.; Zepf, M.

    2016-07-01

    We report on the first demonstration of passive all-optical plasma lensing using a two-stage setup. An intense femtosecond laser accelerates electrons in a laser wakefield accelerator (LWFA) to 100 MeV over millimeter length scales. By adding a second gas target behind the initial LWFA stage we introduce a robust and independently tunable plasma lens. We observe a density dependent reduction of the LWFA electron beam divergence from an initial value of 2.3 mrad, down to 1.4 mrad (rms), when the plasma lens is in operation. Such a plasma lens provides a simple and compact approach for divergence reduction well matched to the mm-scale length of the LWFA accelerator. The focusing forces are provided solely by the plasma and driven by the bunch itself only, making this a highly useful and conceptually new approach to electron beam focusing. Possible applications of this lens are not limited to laser plasma accelerators. Since no active driver is needed the passive plasma lens is also suited for high repetition rate focusing of electron bunches. Its understanding is also required for modeling the evolution of the driving particle bunch in particle driven wake field acceleration.

  20. Distortion of Crabbed Bunch Due to the Electron Cloud

    SciTech Connect

    Wang, L; Raubenheimer, T.; /SLAC

    2008-05-28

    In order to improve the luminosity, two crab cavities have been installed in KEKB HER and LER [1]. Since there is only one crab cavity in each ring, the crab cavity generates a horizontally titled bunch along the whole ring. The achieved specific luminosity with crabbed bunch is higher, but it is not as high as that from beam-beam simulation [2]. One of the suspicions is the electron cloud. The electron cloud in LER (positron beam) may distort the crabbed bunch and cause the luminosity drop. This note briefly estimates the bunch shape distortion due to the electron cloud in KEKB LER.

  1. SINGLE BUNCH BEAM BREAKUP - A GENERAL SOLUTION.

    SciTech Connect

    WANG,J.M.; MANE,S.R.; TOWNE,N.

    2000-06-26

    Caporaso, Barletta and Neil (CBN) found in a solution to the problem of the single-bunch beam breakup in a linac[1]. However, their method applies only to the case of a beam traveling in a strongly betatron-focused linac under the influence of the resistive wall impedance. We suggest in this paper a method for dealing with the same problem. Our methods is more general; it applies to the same problem under any impedance, and it applies to a linac with or without external betatron focusing.

  2. Bunched beam echos in the AGS

    SciTech Connect

    Kewisch, J.; Brennan, J.M.

    1998-08-01

    Beam echos have been measured at FNAL and CERN in coasting beams. A coherent oscillation introduced by a short RF burst decoheres quickly, but a coherent echo of this oscillation can be observed if the decohered oscillation is bounced off a second RF burst. In this report the authors describe first longitudinal echo measurements of bunched beam in the AGS accelerator. They applied a method proposed by Stupakov for transverse beam echos, where the initial oscillation is produced by a dipole kick and is bounced off a quadrupole kick. In the longitudinal case the dipole and quadrupole kicks are produced by cavities operating at a 90 and 0{degree} phase shift, respectively.

  3. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  4. Improvements in bunch coalescing in the Fermilab Main Ring

    SciTech Connect

    Martin, P.S.; Meisner, K.G.; Wildman, D.W.

    1989-03-01

    This paper discusses the improvements in the performance of the bunch coalescing operation in the Fermilab Main Ring which have resulted in increased efficiency and the capability to produce bunches containing more than 10/sup 11/ protons. 3 refs., 3 figs.

  5. Ralph Bunche and the Responsibilities of the Public Intellectual

    ERIC Educational Resources Information Center

    Holloway, Jonathan Scott

    2004-01-01

    Drawing from the authoritative sources on Ralph Bunche's early years in the academy, his personal papers, and his publications from the 1930s, this essay discusses Bunche's political philosophies and how they were informed by the social realities of the world in which he and other Black scholars lived. This essay urges readers to look beyond his…

  6. General rules for bosonic bunching in multimode interferometers.

    PubMed

    Spagnolo, Nicolò; Vitelli, Chiara; Sansoni, Linda; Maiorino, Enrico; Mataloni, Paolo; Sciarrino, Fabio; Brod, Daniel J; Galvão, Ernesto F; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto

    2013-09-27

    We perform a comprehensive set of experiments that characterize bosonic bunching of up to three photons in interferometers of up to 16 modes. Our experiments verify two rules that govern bosonic bunching. The first rule, obtained recently, predicts the average behavior of the bunching probability and is known as the bosonic birthday paradox. The second rule is new and establishes a n!-factor quantum enhancement for the probability that all n bosons bunch in a single output mode, with respect to the case of distinguishable bosons. In addition to its fundamental importance in phenomena such as Bose-Einstein condensation, bosonic bunching can be exploited in applications such as linear optical quantum computing and quantum-enhanced metrology.

  7. Compact electron acceleration and bunch compression in THz waveguides.

    PubMed

    Wong, Liang Jie; Fallahi, Arya; Kärtner, Franz X

    2013-04-22

    We numerically investigate the acceleration and bunch compression capabilities of 20 mJ, 0.6 THz-centered coherent terahertz pulses in optimized metallic dielectric-loaded cylindrical waveguides. In particular, we theoretically demonstrate the acceleration of 1.6 pC and 16 pC electron bunches from 1 MeV to 10 MeV over an interaction distance of 20mm, the compression of a 1.6 pC 1 MeV bunch from 100 fs to 2 fs (50 times compression) over an interaction distance of about 18mm, and the compression of a 1.6 pC 10 MeV bunch from 100 fs to 1.61 fs (62 times) over an interaction distance of 42 cm. The obtained results show the promise of coherent THz pulses in realizing compact electron acceleration and bunch compression schemes. PMID:23609686

  8. Absolute Identification by Relative Judgment

    ERIC Educational Resources Information Center

    Stewart, Neil; Brown, Gordon D. A.; Chater, Nick

    2005-01-01

    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…

  9. Be Resolute about Absolute Value

    ERIC Educational Resources Information Center

    Kidd, Margaret L.

    2007-01-01

    This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

  10. Production of high intensity electron bunches for the SLAC Linear Collider

    SciTech Connect

    James, M.B.

    1987-08-01

    This thesis describes the design and performance of a high intensity electron injecfor for the SLAC Linear Collider. Motivation for the collider and the specifications for the injector are discussed. An analytic theory of the bunching and capture of electrons by rf fields is discussed in the limit of low space charge and small signal. The design and performance of SLAC's main injector are described to illustrate a successful application of this theory. The bunching and capture of electrons by rf fields are then discussed in the limit of high space charge and large signal, and a description of the design of the collider injector follows. In the limit of high space charge forces and large rf signals, the beam dynamics are considerably more complex and numerical simulations are required to predict particle motion. A computer code which models the longitudinal dynamics of electrons in the presence of space charge and rf fields is described. The results of the simulations, the resulting collider injector design and the various components which make up the collider injector are described. These include the gun, subharmonic bunchers, traveling-wave buncher and velocity-of-light accelerator section. Finally, the performance of the injector is described including the beam intensity, bunch length, transverse emittance and energy spectrum. While the final operating conditions differ somewaht from the design, the performance of the collider injector is in good agreement with the numerical simulations and meets all of the collider specifications. 28 refs.

  11. Tool Wear Characteristics of Oil Palm Empty Fruit Bunch Particleboard

    NASA Astrophysics Data System (ADS)

    Ratnasingam, Jegatheswaran; Chew Tek, Tee; Farrokhpayam, Saied Reza

    A series of machining experiments on the Oil-Palm Empty Fruit Bunch (OPEFB) particleboard were carried out using a CNC router, to evaluate the tool wearing properties of the composite in comparison to the conventional wood-material particleboard. A single-fluted tungsten-carbide router bit (12 mm φ, 18 000 rpm), with a rake angle of 15° was used in this experiment, in which the depth of cut was 1.5 mm and feed speed was 4.5 m min-1. The router bit machined the edge of the board, moving along the full length before returning to repeat the cycle. The tool was examined for the extent of wear after complete failure had occurred. The result found that the wear pattern was similar in the oil-palm based particleboard and the wood-based particleboard, but the former was twice more abrasive compared to the latter. Microscopic examination of the cutter edge revealed greater incidence of micro-fracture when cutting the oil-palm based particleboard, indicating the presence of hard impurities in the composite. From an economic perspective, the tooling cost for machining oil-palm based particleboard is estimated to be twice of the cost for machining wood-based particleboard. This study shows that the machining properties of oil-palm based particleboard will be a primary concern, if the board is to find widespread application as a potential substitute for wood-based particleboard.

  12. Bunch coalescing in the main ring to form intense proton and antiproton bunches without RF counterphasing

    SciTech Connect

    Griffin, J.E.; MacLachlan, J.A.; Nicholls, G.N.; Qian, Z.B.

    1984-08-09

    Both the proton and antiproton bunches which will collide in the Tevatron have longitudinal emittance greater than can be accelerated by the main ring from 8 GeV without large loss and emittance growth. We have previously described the technique of combining several smaller bunches at the Tevatron injection energy with little increase in the total emittance and negligible loss. This technique requires adiabatic debunching of several adjacent 53 MHz bunches by smooth reduction of the RF voltage from approx. 1 MV to approx. 100 V. The very low voltage is extremely difficult to attain with a high-Q system designed for megavolt accelerating potential. The counterphasing technique of voltage reduction which we have used in main ring experiments and proposed for the TeV I project is to divide the accelerating cavities into two closely matched groups and to smoothly shift the relative phase of the drive to the two groups by 180 degrees. When the net voltage has been reduced by this means to the lowest practical level, about 10 kV, the final voltage reduction may be performed by turning off the high-Q system and using a low-Q cavity. The voltage induced on the undriven gaps of the high-Q system is low enough not to be a major problem because the total intensity is low. However, the effects are not negligible, and dynamic beam loading compensation is required. This memo proposes that the process described above be simplified somewhat by replacing the counterphasing voltage reduction with a zero-voltage spreading of the bunches for several milliseconds followed by a few hundred microseconds of rotation to minimum energy spread in buckets produced at high voltage.

  13. Rights, Bunche, Rose and the "pipeline".

    PubMed Central

    Marks, Steven R.; Wilkinson-Lee, Ada M.

    2006-01-01

    We address education "pipelines" and their social ecology, drawing on the 1930's writing of Ralph J. Bunche, a Nobel peace maker whose war against systematic second-class education for the poor, minority and nonminority alike is nearly forgotten; and of the epidemiologist Geoffrey Rose, whose 1985 paper spotlighted the difficulty of shifting health status and risks in a "sick society. From the perspective of human rights and human development, we offer suggestions toward the paired "ends" of the pipeline: equality of opportunity for individuals, and equality of health for populations. We offer a national "to do" list to improve pipeline flow and then reconsider the merits of the "pipeline" metaphor, which neither matches the reality of lived education pathways nor supports notions of human rights, freedoms and capabilities, but rather reflects a commoditizing stance to free persons. PMID:17019927

  14. Electron gun jitter effects on beam bunching

    SciTech Connect

    Liu, M. S.; Iqbal, M.

    2014-02-15

    For routine operation of Beijing Electron Positron Collider II (BEPCII) linac, many factors may affect the beam bunching process directly or indirectly. We present the measurements and analyses of the gun timing jitter, gun high voltage jitter, and beam energy at the exit of the standard acceleration section of the linac quantitatively. Almost 80 mV and more than 200 ps of gun high voltage and time jitters have ever been measured, respectively. It was analyzed that the gun timing jitter produced severe effects on beam energy than the gun high voltage jitter, if the timing jitter exceeded 100 ps which eventually deteriorates both the beam performance and the injection rate to the storage ring.

  15. Nonlinear Dynamics of Single Bunch Instability

    SciTech Connect

    Stupakov, G.V.; Breizman, B.N.; Pekker, M.S.; /Texas U.

    2011-09-09

    A nonlinear equation is derived that governs the evolution of the amplitude of unstable oscillations with account of quantum diffusion effects due to the synchrotron radiation. Numerical solutions to this equation predict a variety of possible scenarios of nonlinear evolution of the instability some of which are in good qualitative agreement with experimental observations. Microwave single bunch instability in circular accelerators has been observed in many machines. The instability usually arises when the number of particles in the bunch exceeds some critical value, Nc, which varies depending on the parameters of the accelerating regime. Recent observations on the SLC damping rings at SLAC with a new low-impedance vacuum chamber revealed new interesting features of the instability. In some cases, after initial exponential growth, the instability eventually saturated at a level that remained constant through the accumulation cycle. In other regimes, relaxation-type oscillations were measured in nonlinear phase of the instability. In many cases, the instability was characterized by a frequency close to the second harmonic of the synchrotron oscillations. Several attempts have been made to address the nonlinear stage of the instability based on either computer simulations or some specific assumptions regarding the structure of the unstable mode. An attempt of a more general consideration of the problem is carried out in this paper. We adopt an approach recently developed in plasma physics for analysis of nonlinear behavior of weakly unstable modes in dynamic systems. Assuming that the growth rate of the instability is much smaller than its frequency, we find a time dependent solution to Vlasov equation and derive an equation for the complex amplitude of the oscillations valid in the nonlinear regime. Numerical solutions to this equation predict a variety of possible scenarios of nonlinear evolution of the instability some of which are in good qualitative agreement

  16. Bunch mode specific rate corrections for PILATUS3 detectors

    DOE PAGES

    Trueb, P.; Dejoie, C.; Kobas, M.; Pattison, P.; Peake, D. J.; Radicci, V.; Sobott, B. A.; Walko, D. A.; Broennimann, C.

    2015-04-09

    PILATUS X-ray detectors are in operation at many synchrotron beamlines around the world. This article reports on the characterization of the new PILATUS3 detector generation at high count rates. As for all counting detectors, the measured intensities have to be corrected for the dead-time of the counting mechanism at high photon fluxes. The large number of different bunch modes at these synchrotrons as well as the wide range of detector settings presents a challenge for providing accurate corrections. To avoid the intricate measurement of the count rate behaviour for every bunch mode, a Monte Carlo simulation of the counting mechanismmore » has been implemented, which is able to predict the corrections for arbitrary bunch modes and a wide range of detector settings. This article compares the simulated results with experimental data acquired at different synchrotrons. It is found that the usage of bunch mode specific corrections based on this simulation improves the accuracy of the measured intensities by up to 40% for high photon rates and highly structured bunch modes. For less structured bunch modes, the instant retrigger technology of PILATUS3 detectors substantially reduces the dependency of the rate correction on the bunch mode. The acquired data also demonstrate that the instant retrigger technology allows for data acquisition up to 15 million photons per second per pixel.« less

  17. Bunch mode specific rate corrections for PILATUS3 detectors

    PubMed Central

    Trueb, P.; Dejoie, C.; Kobas, M.; Pattison, P.; Peake, D. J.; Radicci, V.; Sobott, B. A.; Walko, D. A.; Broennimann, C.

    2015-01-01

    PILATUS X-ray detectors are in operation at many synchrotron beamlines around the world. This article reports on the characterization of the new PILATUS3 detector generation at high count rates. As for all counting detectors, the measured intensities have to be corrected for the dead-time of the counting mechanism at high photon fluxes. The large number of different bunch modes at these synchrotrons as well as the wide range of detector settings presents a challenge for providing accurate corrections. To avoid the intricate measurement of the count rate behaviour for every bunch mode, a Monte Carlo simulation of the counting mechanism has been implemented, which is able to predict the corrections for arbitrary bunch modes and a wide range of detector settings. This article compares the simulated results with experimental data acquired at different synchrotrons. It is found that the usage of bunch mode specific corrections based on this simulation improves the accuracy of the measured intensities by up to 40% for high photon rates and highly structured bunch modes. For less structured bunch modes, the instant retrigger technology of PILATUS3 detectors substantially reduces the dependency of the rate correction on the bunch mode. The acquired data also demonstrate that the instant retrigger technology allows for data acquisition up to 15 million photons per second per pixel. PMID:25931086

  18. Mechanical Behavior of Electrospun Palmfruit Bunch Reinforced Polylactide Composite Fibers

    NASA Astrophysics Data System (ADS)

    Adeosun, S. O.; Akpan, E. I.; Gbenebor, O. P.; Peter, A. A.; Olaleye, Samuel Adebayo

    2016-01-01

    In this study, the mechanical characteristics of electrospun palm fruit bunch reinforced poly lactic acid (PLA) nanofiber composites using treated and untreated filler was examined. Poly lactic acid-palm fruit bunch-dichloromethane blends were electrospun by varying the concentration of the palm fruit bunch between 0 wt.% and 8 wt.%. A constant voltage of 26 kV was applied, the tip-to-collector distance was maintained at 27.5 cm and PLA-palm fruit bunch-dichloromethane (DCM) concentration of 12.5% (w/v) was used. The results revealed that the presence of untreated palm fruit bunch fillers in the electrospun PLA matrix significantly reduces the average diameters of the fibers, causing the formation of beads. As a result there are reductions in tensile strengths of the fibers. The presence of treated palm fruit bunch fillers in the electrospun PLA matrix increases the average diameters of the fibers with improvements in the mechanical properties. The optimal mechanical responses were obtained at 3 wt.% of the treated palm fruit bunch fillers in the PLA matrix. However, increase in the palm fruit fillers (treated and untreated) in the PLA matrix promoted the formation of beads in the nanofiber composites.

  19. Bunch mode specific rate corrections for PILATUS3 detectors

    SciTech Connect

    Trueb, P.; Dejoie, C.; Kobas, M.; Pattison, P.; Peake, D. J.; Radicci, V.; Sobott, B. A.; Walko, D. A.; Broennimann, C.

    2015-04-09

    PILATUS X-ray detectors are in operation at many synchrotron beamlines around the world. This article reports on the characterization of the new PILATUS3 detector generation at high count rates. As for all counting detectors, the measured intensities have to be corrected for the dead-time of the counting mechanism at high photon fluxes. The large number of different bunch modes at these synchrotrons as well as the wide range of detector settings presents a challenge for providing accurate corrections. To avoid the intricate measurement of the count rate behaviour for every bunch mode, a Monte Carlo simulation of the counting mechanism has been implemented, which is able to predict the corrections for arbitrary bunch modes and a wide range of detector settings. This article compares the simulated results with experimental data acquired at different synchrotrons. It is found that the usage of bunch mode specific corrections based on this simulation improves the accuracy of the measured intensities by up to 40% for high photon rates and highly structured bunch modes. For less structured bunch modes, the instant retrigger technology of PILATUS3 detectors substantially reduces the dependency of the rate correction on the bunch mode. The acquired data also demonstrate that the instant retrigger technology allows for data acquisition up to 15 million photons per second per pixel.

  20. Energy loss and longitudinal wakefield of relativistic short proton bunches in electron clouds

    NASA Astrophysics Data System (ADS)

    Boine-Frankenheim, O.; Gjonaj, E.; Petrov, F.; Yaman, F.; Weiland, T.; Rumolo, G.

    2012-05-01

    The aim of our study is the numerical computation of the wakefield and energy loss per unit length for relativistic, short (<10ns) proton bunches interacting with an electron cloud inside the beam pipe. We present analytical expressions for the energy loss in the impulse kick approximation. For the simulation of the wakefields a 2D self-consistent, electrostatic particle-in-cell (PIC) code is employed. Results for the energy loss and for the wakefields are presented for the parameter scope of the CERN LHC and SPS. For selected parameters the results are compared to a three-dimensional (3D) electromagnetic PIC code.

  1. Production of Relativistic Electron Bunch with Tunable Current Distribution

    SciTech Connect

    Piot, P.; Sun, Y.-E; Rihaoui, M.

    2009-01-22

    We proposed a novel method for tailoring the current distribution of relativistic electron bunches. The technique relies on a recently proposed transverse-to-longitudinal phase space exchange. The bunch is transversely shaped and the phase space exchange mechanism converts this transverse profile into a current profile. The technique provides a tool for generating arbitrary current profiles in a tunable fashion. We demonstrate, via computer simulations, the method and its application to tailor specific current profiles such as, e.g., linearly ramped profiles and train of femtosecond micro-bunches that have application in plasma and dielectric wakefield accelerators.

  2. Production of relativistic electron bunch with tunable current distribution

    SciTech Connect

    Piot, P.; Sun, Y.-E.; Rihaoui, M.; /Northern Illinois U. /NICADD, DeKalb

    2008-11-01

    We propose a novel method for tailoring the current distribution of relativistic electron bunches. The technique relies on a recently proposed transverse-to-longitudinal phase space exchange. The bunch is transversely shaped and the phase space exchange mechanism converts this transverse profile into a current profile. The technique provides a tool for generating arbitrary current profiles in a tunable fashion.We demonstrate, via computer simulations, the method and its application to tailor specific current profiles such as, e.g., linearly ramped profiles and train of femtosecond micro-bunches that have application in plasma and dielectric wakefield accelerators.

  3. Observing atom bunching by the Fourier slice theorem.

    PubMed

    Blumkin, A; Rinott, S; Schley, R; Berkovitz, A; Shammass, I; Steinhauer, J

    2013-06-28

    By a novel reciprocal space analysis of the measurement, we report a calibrated in situ observation of the bunching effect in a 3D ultracold gas. The calibrated measurement with no free parameters confirms the role of the exchange symmetry and the Hanbury Brown-Twiss effect in the bunching. Also, the enhanced fluctuations of the bunching effect give a quantitative measure of the increased isothermal compressibility. We use 2D images to probe the 3D gas, using the same principle by which computerized tomography reconstructs a 3D image of a body. The powerful reciprocal space technique presented is applicable to systems with one, two, or three dimensions.

  4. Bunch-Kaufman factorization for real symmetric indefinite banded matrices

    NASA Technical Reports Server (NTRS)

    Jones, Mark T.; Patrick, Merrell L.

    1989-01-01

    The Bunch-Kaufman algorithm for factoring symmetric indefinite matrices was rejected for banded matrices because it destroys the banded structure of the matrix. Herein, it is shown that for a subclass of real symmetric matrices which arise in solving the generalized eigenvalue problem using Lanczos's method, the Bunch-Kaufman algorithm does not result in major destruction of the bandwidth. Space time complexities of the algorithm are given and used to show that the Bunch-Kaufman algorithm is a significant improvement over LU factorization.

  5. Developing electron beam bunching technology for improving light sources

    SciTech Connect

    Carlsten, B.E.; Chan, K.C.D.; Feldman, D.W.

    1997-08-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of this project was to develop a new electron bunch compression technology, experimentally demonstrate subpicosecond compression of bunches with charges on the order of 1 nC, and to theoretically investigate fundamental limitations to electron bunch compression. All of these goals were achieved, and in addition, the compression system built for this project was used to generate 22 nm light in a plasma-radiator light source.

  6. Singular perturbation of absolute stability.

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.

    1972-01-01

    It was previously shown (author, 1969) that the regions of absolute stability in the parameter space can be determined when the parameters appear on the right-hand side of the system equations, i.e., the regular case. Here, the effect on absolute stability of a small parameter attached to higher derivatives in the equations (the singular case) is studied. The Lur'e-Postnikov class of nonlinear systems is considered.

  7. Two-Bunch Self-Seeding for Narrow-Bandwidth Hard X-Ray Free-Electron Lasers

    SciTech Connect

    Ding, Yuantao; Huang, Zhirong; Ruth, Ronald D.; /SLAC

    2010-06-04

    It is well-known that seeding can be used to produce narrow-bandwidth and fully-coherent x- ray free-electron lasers. Self-seeding, which uses an extra undulator to generate the seed pulse, is perhaps one of the most promising methods to accomplish this. In the hard x-ray regime with high- energy electrons, this method requires a large magnetic chicane to match the path length delay of the x-ray monochromator that selects a narrow bandwidth of radiation. Such a chicane not only takes large footprint to build, but also may degrade the electron beam qualities through incoherent and coherent synchrotron radiation. In this paper, we present an alternative two-bunch self-seeding scheme. The two bunches are precisely separated to match the x-ray delay of the monochromator and eliminate the need for a long, complex magnetic chicane. The spectrally filtered SASE x-ray pulse produced by the first bunch is combined with the second electron bunch at the entrance of the second undulator and then amplified to the saturation level. We present start-to-end simulation results based on the LCLS hard x-ray FEL and show that this method can produce a nearly fully coherent x-ray pulse at a few GW power level.

  8. Phase modulation of the bucket stops bunch oscillations at the Fermilab Tevatron

    SciTech Connect

    Tan, C.Y.; Burov, A.; /Fermilab

    2012-04-02

    Bunches in the Tevatron are known to exhibit longitudinal oscillations which persist indefinitely. These oscillations are colloquially called 'dancing bunches.' Although the dancing proton bunches do not cause single bunch emittance growth or beam loss at injection, they lead to bunch lengthening at collisions. In Tevatron operations, a longitudinal damper has been built which stops this dance and damps out coupled bunch modes. Recent theoretical work predicts that the dance can also be stopped by an appropriate change in the bunch distribution. This paper describes the Tevatron experiments which support this theory.

  9. following an electron bunch for free electron laser

    SciTech Connect

    2012-01-01

    A video artist's ultra-slow-motion impression of an APEX-style electron gun firing a continuous train of electron bunches into a superconducting linear accelerator (in reality this would happen a million times a second). As they approach the speed of light the bunches contract, maintaining beam quality. After acceleration, the electron bunches are diverted into one or more undulators, the key components of free electron lasers. Oscillating back and forth in the changing magnetic field, they create beams of structured x-ray pulses. Before entering the experimental areas the electron bunches are diverted to a beam dump. (Animation created by Illumina Visual, http://www.illuminavisual.com/, for Lawrence Berkeley National Laboratory. Music for this excerpt, "Feeling Dark (Behind The Mask)" is by 7OOP3D http://ccmixter.org/files/7OOP3D/29126 and is licensed under a Creative Commons license: http://creativecommons.org/licenses/by-nc/3.0/)

  10. Wake excited in plasma by an ultrarelativistic pointlike bunch

    NASA Astrophysics Data System (ADS)

    Stupakov, G.; Breizman, B.; Khudik, V.; Shvets, G.

    2016-10-01

    We study propagation of a relativistic electron bunch through a cold plasma assuming that the transverse and longitudinal dimensions of the bunch are much smaller than the plasma collisionless skin depth. Treating the bunch as a point charge and assuming that its charge is small, we derive a simplified system of equations for the plasma electrons and show that, through a simple rescaling of variables, the bunch charge can be eliminated from the equations. The equations demonstrate an ion cavity formed behind the driver. They are solved numerically and the scaling of the cavity parameters with the driver charge is obtained. A numerical solution for the case of a positively charged driver is also found.

  11. STOCHASTIC COOLING OF HIGH-ENERGY BUNCHED BEAMS

    SciTech Connect

    BLASKIEWICZ,M.; BRENNAN, J.M.

    2007-06-25

    Stochastic cooling of 100 GeV/nucleon bunched beams has been achieved in the Relativistic Heavy Ion Collider (RHIC). The physics and technology of the longitudinal cooling system are discussed, and plans for a transverse cooling system are outlined.

  12. A two-bunch beam position monitor performance evaluation

    SciTech Connect

    Traller, Robert; Medvedko, Evgeny; Smith, Steve; Aiello, Roberto

    1998-12-10

    New beam position processing electronics for the Linear Accelerator allow faster feedback and processing of both positron and electron bunch positions in a single machine pulse. More than 30 electron-positron beam position monitors (epBPMs) have been installed at SLAC in various applications and have met all design requirements. The SLC production electron bunch follows the positron bunch down the linac separated by 58.8 nS. The epBPM measures the position of both bunches with an accuracy of better than 5 {mu}m at nominal operating intensities. For SLC, the epBPMs have measured the position of bunches consisting of from 1 to 8x10{sup 10} particles per bunch. For PEP-II (B Factory) injection, epBPMs have been used with larger electrodes and several BPMs have been combined on a single cable set. The signals are separated for measurement in the epBPM by timing. In PEP-II injection we have measured the position of bunches of as little as 2x10{sup 9} particles per bunch. To meet the demands of SLC and PEP-II injection, the epBPM has been designed with three triggering modes: 1. As a self-triggering detector, it can trigger off the beam and hold the peak signal until read out by the control program. 2. The gated mode uses external timing signals to gate the beam trigger. 3. The external trigger mode uses the external timing signals offset with internal vernier delays to precisely catch peak signals in noisy environments. Finally, the epBPM also has built-in timing verniers capable of nulling errors in cable set fabrication and differences in channel-to-channel signal delay. Software has made all this functionality available through the SLC control system.

  13. Dependence of bunch energy loss in cavities on beam velocity

    NASA Astrophysics Data System (ADS)

    Kurennoy, Sergey S.

    1999-03-01

    Beam energy loss in a cavity can be easily computed for a relativistic bunch using time-domain codes like MAFIA or ABCI. However, for nonrelativistic beams the problem is more complicated because of difficulties with its numerical formulation in the time domain. We calculate the cavity loss factors for a bunch in frequency domain as a function of its velocity and compare results with the relativistic case.

  14. Single bunch beam measurements for the proposed SLAC linear collider

    SciTech Connect

    Clendenin, J.E.; Loew, G.A.; Miller, R.H.; Pellegrin, J.L.; Truher, J.B.

    1981-02-01

    Single S-band bunches of approx. 10/sup 9/ electrons have been used to study the characteristics of the SLAC linac in anticipation of its operation as a linear collider. Emittance measurements have been made, the longitudinal charge distribution within single bunches has been determined and transverse emittance growth has been produced by deliberately missteering the beam. New equipment is being installed and checked out, and the sensitivity of new traveling-wave beam position monitors has been measured.

  15. Bunch-by-bunch detection of coherent transverse modes from digitized single-bpm signals in the Tevatron

    SciTech Connect

    Stancari, G.; Valishev, A.; Semenov, A.; /Fermilab

    2010-05-01

    A system was developed for bunch-by-bunch detection of transverse proton and antiproton coherent oscillations based on the signal from a single beam-position monitor (BPM) located in a region of the ring with large amplitude functions. The signal is digitized over a large number of turns and Fourier-analyzed offline with a dedicated algorithm. To enhance the signal, the beam is excited with band-limited noise for about one second, and this was shown not to significantly affect the circulating beams even at high luminosity. The system is used to measure betatron tunes of individual bunches and to study beam-beam effects. In particular, it is one of the main diagnostic tools in an ongoing study of nonlinear beam-beam compensation studies with Gaussian electron lenses. We present the design and operation of this tool, together with results obtained with proton and antiproton bunches.

  16. 1500 MHZ Passive SRF Cavity for Bunch Lengthening in the NSLS-II Storage Ring

    SciTech Connect

    Yanagisawa,T.; Rose, J.; Grimm, T.; Bogle, A.

    2009-05-04

    NSLS-II is a new ultra-bright 3 GeV 3rd generation synchrotron radiation light source. The performance goals require operation with a beam current of 500mA and a bunch current of at least 0.5mA. Ion clearing gaps are required to suppress ion effects on the beam. The natural bunch length of 3mm is planned to be lengthened by means of a third harmonic cavity in order to increase the Touschek limited lifetime. After an extensive investigation of different cavity geometries, a passive, superconducting two-cell cavity has been selected for prototyping. The cavity is HOM damped with ferrite absorbers on the beam pipes. The two-cell cavity simplifies the tuner design, compared to having two independent cells. Tradeoffs between the damping of the higher order modes, thermal isolation associated with the large beam tubes, and overall cavity length are described. A copper prototype has been constructed, and measurements of fundamental and higher order modes will be compared to calculated values.

  17. Absolute flux scale for radioastronomy

    SciTech Connect

    Ivanov, V.P.; Stankevich, K.S.

    1986-07-01

    The authors propose and provide support for a new absolute flux scale for radio astronomy, which is not encumbered with the inadequacies of the previous scales. In constructing it the method of relative spectra was used (a powerful tool for choosing reference spectra). A review is given of previous flux scales. The authors compare the AIS scale with the scale they propose. Both scales are based on absolute measurements by the ''artificial moon'' method, and they are practically coincident in the range from 0.96 to 6 GHz. At frequencies above 6 GHz, 0.96 GHz, the AIS scale is overestimated because of incorrect extrapolation of the spectra of the primary and secondary standards. The major results which have emerged from this review of absolute scales in radio astronomy are summarized.

  18. Ultrafast microlocalized photoelectron bunches: formation and applications

    NASA Astrophysics Data System (ADS)

    Aseyev, S. A.; Mironov, B. N.; Minogin, V. G.; Chekalin, S. V.

    2010-09-01

    The ultrafast e--bunches produced by femtosecond laser (fsl) radiation are powerful tool in modern physics to observe different ultrashort processes induced by fsl pulses and to reach high spatio-temporal resolution. In Letokhov's projection microscope such a beam transfers an information from a tip with a sample illluminated by fsl pulses to a detector. Here the fsl radiation provides for an effective photoelectron multiphoton emission without significant heating of the sample. Two organic samples, formed from dye molecules and the organic conducting polymers has been vizualized using the nanocapillary as a tip. The advantages of the nanocapillary tip are described in the report. The temporal resolution depends upon the pulse duration of the e--beam, τe. One of the most powerful way to measure τe is to use the Gaponov-Miller force (GMf), or the ponderomotive force, which the electrons experience in the inhomogeneous field of a focused laser pulse. Such a force helped us to demonstrate the «instantaneousness» of multiphoton emission process from solid targets. As the beam propagated, it spread in time. Using GMf we temporally characterized the e--pulse transmitted through microcapillary (which can be the basis of the promising scanning microscope) and combined spatial nanoresolution and picosecond temporal resolution. Also the ultrafast microlocalized e--beam is an ideal tool to measure the GMf created by focused fsl pulses and to characterize very intense laser beam profile in-situ. In principal, such approach may allow for direct subwave spatio-temporal probing of superintense laser beam profiles.

  19. Relativistic Absolutism in Moral Education.

    ERIC Educational Resources Information Center

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  20. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  1. Enhanced growth of whistlers due to bunching of untrapped electrons

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.

    1985-01-01

    Man-made signals propagating in the whistler mode in the magnetoshere have been observed to be amplified and to trigger other VLF emissions in the absence of other detectable magnetospheric signals in ground-based recordings. The absence of other magnetospheric signals implies that the growth rate of the triggered wave is enhanced over background noise. It is shown that, for at least low amplitude triggering waves, the phase bunching of untrapped electrons can account for the observed enhanced growth. The phase bunching is initially produced by perturbations in the electron trajectories due to their interactions with the front of the wave. Due to the inhomogeneity of the geomagnetic field, the phase-bunched electrons are able to gyroresonantly interact with a later portion of the triggering wave. Because the electrons are phase bunched, the electrons can lose energy to the wave faster than phase-random electrons and are thereby able to produce enhanced growth. Plasma conditions for which this phase bunching is effective in producing enhanced growth are derived.

  2. Dynamics of Flat Bunches with Second Harmonic RF

    SciTech Connect

    Sen, Tanaji; Bhat, Chandra; Kim, Hyung Jin; Ostiguy, Jean-Francois; /Fermilab

    2010-05-01

    We investigate the dynamics of longitudinally flat bunches created with a second harmonic cavity in a high energy collider. We study Landau damping in a second harmonic cavity with analytical and numerical methods. The latter include particle tracking and evolution of the phase space density. The results are interpreted in the context of possible application to the LHC. A possible path to a luminosity upgrade at the LHC is through the creation of longitudinally flat bunches. They can increase the luminosity roughly by 40% when the beam intensities are at the beam-beam limit. Lower momentum spread which can reduce backgrounds and make collimation easier as well lower peak fields which can mitigate electron cloud effects are other advantages. Use of a second harmonic rf system is a frequently studied method to create such flat bunches. Here we consider some aspects of longitudinal dynamics of these bunches in the LHC at top energy. First we consider intensity limits set by the loss of Landau damping against rigid dipole oscillations. Next we describe numerical simulations using both particle tracking and evolution of the phase space density. These simulations address the consequences of driving a bunch at a frequency that corresponds to the maximum of the synchrotron frequency.

  3. Coupled bunch instabilities in a p anti p collider

    SciTech Connect

    Bjorken, J.D.

    1984-02-01

    These notes summarize a small amount of work done during preparation of the Fermilab Dedicated Collider proposal last year. The basic problem is as follows: Consider a storage ring with k proton bunches and k antiproton bunches, where electrostatic deflection devices are used to separate the beams except at the collision points in the interaction regions. Then the normal betatron motions of the bunches become coupled not only by the usual beam-beam force at collision points, but also by the forces exerted in the close encounters as one bunch passes nearby another. The problem we pose is simply to determine necessary and sufficient conditions for stability, given a linear approximation to the forces and motions as well as an assumption of rigid (coherent) bunch motion. This problem-essentially one of coupled oscillators-has been studied before, and the main result here may be folklore. However, this author has had some trouble, as usual, in identifying it all from the literature. We hope that the formalism and results here may be of use in exploring this phenomenon in more generality.

  4. Destructive interferences results in bosons anti bunching: refining Feynman's argument

    NASA Astrophysics Data System (ADS)

    Marchewka, Avi; Granot, Er'el

    2014-09-01

    The effect of boson bunching is frequently mentioned and discussed in the literature. This effect is the manifestation of bosons tendency to "travel" in clusters. One of the core arguments for boson bunching was formulated by Feynman in his well-known lecture series and has been frequently used ever since. By comparing the scattering probabilities of two bosons and of two distinguishable particles, he concluded: "We have the result that it is twice as likely to find two identical Bose particles scattered into the same state as you would calculate assuming the particles were different" [R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics: Quantum mechanics (Addison-Wesley, 1965)]. This argument was rooted in the scientific community (see for example [C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (John Wiley & Sons, Paris, 1977); W. Pauli, Exclusion Principle and Quantum Mechanics, Nobel Lecture (1946)]), however, while this sentence is completely valid, as is proved in [C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (John Wiley & Sons, Paris, 1977)], it is not a synonym of bunching. In fact, as it is shown in this paper, wherever one of the wavefunctions has a zero, bosons can anti-bunch and fermions can bunch. It should be stressed that zeros in the wavefunctions are ubiquitous in Quantum Mechanics and therefore the effect should be common. Several scenarios are suggested to witness the effect.

  5. Simulations of a High-Transformer-Ratio Plasma Wakefield Accelerator Using Multiple Electron Bunches

    SciTech Connect

    Kallos, Efthymios; Muggli, Patric; Katsouleas, Thomas; Yakimenko, Vitaly; Park, Jangho

    2009-01-22

    Particle-in-cell simulations of a plasma wakefield accelerator in the linear regime are presented, consisting of four electron bunches that are fed into a high-density plasma. It is found that a high transformer ratio can be maintained over 43 cm of plasma if the charge in each bunch is increased linearly, the bunches are placed 1.5 plasma wavelengths apart and the bunch emmitances are adjusted to compensate for the nonlinear focusing forces. The generated wakefield is sampled by a test witness bunch whose energy gain after the plasma is six times the energy loss of the drive bunches.

  6. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    NASA Astrophysics Data System (ADS)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.; Lefevre, T.; Lunin, A.; Lyapin, A.; Søby, L.; Towler, J.; Wendt, M.

    2015-11-01

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2 /3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.

  7. Stimulated coherent emission from short electron bunches in free space

    SciTech Connect

    Robb, G.R.M.; Phelps, A.D.R.; Ginzburg, N.S.

    1995-12-31

    In previous papers stimulated coherent emission of short electron bunches (superradiance-SR) was considered in the frame of 1-D models. In the present work we study superradiance of an electron bunch which has a finite transverse size in the frame of a 2-D model. This model include effects of optical guiding as well as transverse electromagnetic energy escaping and diffraction. Using a nonstationary parabolic equation we described SR of a sheet shaped electron bunch in free space. It is shown that the radiation is composed of a sequence of e.m. pulses which are diffracted after escaping from the channel formed by the electron beam. This process is accompanied by a progressive increase of the electron efficiency. This enhancement is caused by the phenomenon of permanent self supporting resonance due to the variation of the radiation angle and frequency.

  8. Commissioning of the LCLS Linac and Bunch Compressors

    SciTech Connect

    Akre, R.; Brachmann, A.; Decker, F.-J.; Ding, Y.; Dowell, D.; Emma#, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Limborg-Deprey, C.; Loos, H.; Molloy, S.; Miahnahri, A.; Nuhn, H.-D.; Ratner, D.; Turner, J.; Welch, J.; White, W.; /SLAC

    2008-08-20

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) project under construction at SLAC [1]. The injector section, from drive-laser and RF photocathode gun through the first bunch compressor, was commissioned in the spring and summer of 2007. The second phase of commissioning, including the second bunch compressor and various main linac modifications, was completed in January through August of 2008. We report here on experience gained during this second phase of machine commissioning, including the injector, the first and second bunch compressor stages, the linac up to 14 GeV, and beam stability measurements. The final commissioning phase, including the undulator and the long transport line from the linac, is set to begin in December 2008, with first light expected in July 2009.

  9. Studying and applying channeling at extremely high bunch charges

    SciTech Connect

    Carrigan, R.A.; /Fermilab

    2005-01-01

    The potentially high plasma densities possible in solids might produce extremely high acceleration gradients. However solid-state plasmas could pose daunting challenges. Crystal channeling has been suggested as a mechanism to ameliorate these problems. A high-density plasma in a crystal lattice could quench the channeling process. There is no experimental or theoretical guidance on channeling for intense charged particle beams. An experiment has been carried out at the Fermilab A0 photoinjector to observe electron channeling radiation at high bunch charges. An electron beam with up to 8 nC per electron bunch was used to investigate the electron-crystal interaction. No evidence was found of quenching of channeling at charge densities two orders of magnitude larger than in earlier experiments. Possible new channeling experiments are discussed for the much higher bunch charge densities and shorter times required to probe channeling breakdown and plasma behavior.

  10. Moral absolutism and ectopic pregnancy.

    PubMed

    Kaczor, C

    2001-02-01

    If one accepts a version of absolutism that excludes the intentional killing of any innocent human person from conception to natural death, ectopic pregnancy poses vexing difficulties. Given that the embryonic life almost certainly will die anyway, how can one retain one's moral principle and yet adequately respond to a situation that gravely threatens the life of the mother and her future fertility? The four options of treatment most often discussed in the literature are non-intervention, salpingectomy (removal of tube with embryo), salpingostomy (removal of embryo alone), and use of methotrexate (MXT). In this essay, I review these four options and introduce a fifth (the milking technique). In order to assess these options in terms of the absolutism mentioned, it will also be necessary to discuss various accounts of the intention/foresight distinction. I conclude that salpingectomy, salpingostomy, and the milking technique are compatible with absolutist presuppositions, but not the use of methotrexate.

  11. Moral absolutism and ectopic pregnancy.

    PubMed

    Kaczor, C

    2001-02-01

    If one accepts a version of absolutism that excludes the intentional killing of any innocent human person from conception to natural death, ectopic pregnancy poses vexing difficulties. Given that the embryonic life almost certainly will die anyway, how can one retain one's moral principle and yet adequately respond to a situation that gravely threatens the life of the mother and her future fertility? The four options of treatment most often discussed in the literature are non-intervention, salpingectomy (removal of tube with embryo), salpingostomy (removal of embryo alone), and use of methotrexate (MXT). In this essay, I review these four options and introduce a fifth (the milking technique). In order to assess these options in terms of the absolutism mentioned, it will also be necessary to discuss various accounts of the intention/foresight distinction. I conclude that salpingectomy, salpingostomy, and the milking technique are compatible with absolutist presuppositions, but not the use of methotrexate. PMID:11262641

  12. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  13. Classification images predict absolute efficiency.

    PubMed

    Murray, Richard F; Bennett, Patrick J; Sekuler, Allison B

    2005-02-24

    How well do classification images characterize human observers' strategies in perceptual tasks? We show mathematically that from the classification image of a noisy linear observer, it is possible to recover the observer's absolute efficiency. If we could similarly predict human observers' performance from their classification images, this would suggest that the linear model that underlies use of the classification image method is adequate over the small range of stimuli typically encountered in a classification image experiment, and that a classification image captures most important aspects of human observers' performance over this range. In a contrast discrimination task and in a shape discrimination task, we found that observers' absolute efficiencies were generally well predicted by their classification images, although consistently slightly (approximately 13%) higher than predicted. We consider whether a number of plausible nonlinearities can account for the slight under prediction, and of these we find that only a form of phase uncertainty can account for the discrepancy.

  14. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  15. Optical plasma torch electron bunch generation in plasma wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Wittig, G.; Karger, O.; Knetsch, A.; Xi, Y.; Deng, A.; Rosenzweig, J. B.; Bruhwiler, D. L.; Smith, J.; Manahan, G. G.; Sheng, Z.-M.; Jaroszynski, D. A.; Hidding, B.

    2015-08-01

    A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydrodynamically controlled gas density transition injection methods.

  16. The impact of the surface on step-bunching and diffusion of Ga on GaAs (001) in metal-organic vapour phase epitaxy

    NASA Astrophysics Data System (ADS)

    Pristovsek, Markus; Poser, Florian; Richter, Wolfgang

    2016-07-01

    We studied diffusion by measuring step-bunching, island spacing, and the transition from step-flow growth to two-dimensional island growth of (001) GaAs in metal-organic vapour phase epitaxy and correlated them with the surface reconstruction measured by reflectance anisotropy spectroscopy. The V/III ratio had a small effect, while the square root of the growth rate was anti-proportional to the diffusion length. The thermal activation energy was about 2.3 eV on {{c}}(4× 4) terraces and 1.6 eV on (2× 4) domains at higher temperatures. Pronounced step-bunching coincided with large (4× 2) domains at the step-edges, causing smoother steps for the [11̅0] misorientation. This Ga-rich reconstruction at the step-edges is needed for the Schwoebel barrier to induce step-bunching. At higher temperatures of (2× 4) domains grow in size, the Schwoebel barrier reduces and nucleation becomes easier on this surface which reduces diffusion length and thus step-bunching.

  17. The beam bunching and transport system of the Argonne positive ion injector

    SciTech Connect

    Den Hartog, P.K.; Bogaty, J.M.; Bollinger, L.M.; Clifft, B.E.; Pardo, R.C.; Shepard, K.W.

    1989-01-01

    A new positive ion injector (PII) is currently under construction at Argonne that will replace the existing 9-MV tandem electrostatic accelerator as an injector into ATLAS. It consists of an electron-cyclotron resonance-ion source on a 350-kV platform injecting into a superconducting linac optimized for very slow (..beta.. less than or equal to .007 c) ions. This combination can potentially produce even higher quality heavy-ion beams than are currently available from the tandem since the emittance growth within the linac is largely determined by the quality of the bunching and beam transport. The system we have implemented uses a two-stage bunching system, composed of a 4-harmonic gridded buncher located on the ECR high-voltage platform and a room temperature spiral-loaded buncher of novel design. A sinusoidal beam chopper is used for removal of tails. The beam transport is designed to provide mass resolution of M/..delta..M > 250 and a doubly-isochronous beamline is used to minimize time spread due to path length differences. 4 refs., 2 figs.

  18. A Bunch Compression Method for Free Electron Lasers that Avoids Parasitic Compressions

    SciTech Connect

    Benson, Stephen V.; Douglas, David R.; Tennant, Christopher D.; Wilson, Frederick G.; Nguyen, Dinh

    2015-09-01

    Virtually all existing high energy (>few MeV) linac-driven FELs compress the electron bunch length though the use of off-crest acceleration on the rising side of the RF waveform followed by transport through a magnetic chicane. This approach has at least three flaws: 1) it is difficult to correct aberrations--particularly RF curvature, 2) rising side acceleration exacerbates space charge-induced distortion of the longitudinal phase space, and 3) all achromatic "negative compaction" compressors create parasitic compression during the final compression process, increasing the CSR-induced emittance growth. One can avoid these deficiencies by using acceleration on the falling side of the RF waveform and a compressor with M56>0. This approach offers multiple advantages: 1) It is readily achieved in beam lines supporting simple schemes for aberration compensation, 2) Longitudinal space charge (LSC)-induced phase space distortion tends, on the falling side of the RF waveform, to enhance the chirp, and 3) Compressors with M56>0 can be configured to avoid spurious over-compression. We will discuss this bunch compression scheme in detail and give results of a successful beam test in April 2012 using the JLab UV Demo FEL

  19. Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches.

    PubMed

    Rodríguez, Alejandro; Serrano, Luis; Moral, Ana; Pérez, Antonio; Jiménez, Luis

    2008-04-01

    Oil palm empty fruit bunches were used as an alternative raw material to obtain cellulosic pulp. Pulping was done by using high-boiling point organic solvents of decreased polluting power relative to classical (Kraft, sulphite) solvents but affording operation at similar pressure levels. The holocellulose, alpha-cellulose and lignin contents of oil palm empty fruit bunches (viz. 66.97%, 47.91% and 24.45%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using ethyleneglycol, diethyleneglycol, ethanolamine and diethanolamine under two different sets of operating conditions, namely: (a) a 70% solvent concentration, 170 degrees C and 90 min; and (b) 80% solvent, 180 degrees C and 150 min. The solid/liquid ratio was six in both cases. The amine solvents were found to provide pulp with better properties than did the glycol solvents. Ethanolamine pulp exhibited the best viscosity and drainage index (viz. 636 mL/g and 17 degrees SR, respectively), and paper made from it the best breaking length (1709 m), stretch (1.95%), burst index (0.98 kN/g) and tear index (0.33 mNm(2)/g). Operating costs can be reduced by using milder conditions, which provide similar results. In any case, the amines are to be preferred to the glycols as solvents for this purpose.

  20. FINAL DESIGN OF ILC RTML EXTRACTION LINE FOR SINGLE STAGE BUNCH COMPRESSOR

    SciTech Connect

    Seletskiy, S.; Solyak, N.

    2011-03-28

    The use of single stage bunch compressor (BC) in the International Linear Collider (ILC) Damping Ring to the Main Linac beamline (RTML) requires new design for the extraction line (EL). The EL located downstream of the BC will be used for both an emergency abort dumping of the beam and the tune-up continuous train-by-train extraction. It must accept both compressed and uncompressed beam with energy spread of 3.54% and 0.15% respectively. In this paper we report the final design that allowed minimizing the length of such extraction line while offsetting the beam dumps from the main line by 5m distance required for acceptable radiation level in the service tunnel. Proposed extraction line can accommodate beams with different energy spreads at the same time providing the beam size suitable for the aluminum ball dump window. We described the final design of the ILC RTML extraction line located downstream of the new single-stage bunch compressor. The extraction line is only 24m long and is capable of accepting and transmitting 220kW of beam power. The EL can be used for both fast intra-train and continual extraction, and is capable of accepting both 0.15% and 3.54% energy spread beams at 5MeV and 4.37MeV respectively.

  1. Flat bunch creation and acceleration: a possible path for the LHC luminosity upgrade

    SciTech Connect

    Bhat, C.M.; /Fermilab

    2009-05-01

    Increasing the collider luminosity by replacing bunches having Gaussian line-charge distribution with flat bunches, but with same beam-beam tune shift at collision, has been studied widely in recent years. But, creation of 'stable' flat bunches (and their acceleration) using a multiple harmonic RF system has not been fully explored. Here, we review our experience with long flat bunches in the barrier RF buckets at Fermilab.We presentsome preliminary results from beam dynamics simulations and recent beam studies in the LHC injectors to create stable flat bunches using double harmonic RF systems. The results deduced from these studies will be used to model the necessary scheme for luminosity upgrade in the LHC. We have also described a viable (and economical) way for creation and acceleration of flat bunches in the LHC. The flat bunch scheme may have many advantages over the LHC baseline scenario, particularly because of the reduced momentum spread of the bunch for increased intensities.

  2. Tunable subpicosecond electron bunch train generation using a transverse-to-longitudinal phase space exchange technique

    SciTech Connect

    Sun, Y.-E; Piot, P.; Johnson, A.; Lumpkin, A.H.; Maxwell, T.J.; Ruan, J.; Thurman-Keup, R.; /Fermilab

    2010-11-01

    We report on the experimental generation of a train of subpicosecond electron bunches. The bunch train generation is accomplished using a beamline capable of exchanging the coordinates between the horizontal and longitudinal degrees of freedom. An initial beam consisting of a set of horizontally-separated beamlets is converted into a train of bunches temporally separated with tunable bunch duration and separation. The experiment reported in this Letter unambiguously demonstrates the conversion process and its versatility.

  3. Ultra-Short Electron Bunch and X-Ray Temporal Diagnostics with an X-Band Transverse Deflector

    SciTech Connect

    Ding, Y.; Emma, P.; Frisch, J.; Huang, Z.; Loos, H.; Krejcik, P.; Wang, M-H.; Behrens, C.; /DESY

    2011-12-13

    The measurement of ultra-short electron bunches on the femtosecond time scale constitutes a very challenging problem. In X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS), generation of sub-ten femtosecond X-ray pulses is possible, and some efforts have been put into both ultra-short electron and X-ray beam diagnostics. Here we propose a single-shot method using a transverse rf deflector (X-band) after the undulator to reconstruct both the electron bunch and X-ray temporal profiles. Simulation studies show that about 1 fs (rms) time resolution may be achievable in the LCLS and is applicable to a wide range of FEL wavelengths and pulse lengths. The jitter, resolution and other related issues will be discussed. The successful operation of the Linac Coherent Light Source (LCLS), with its capability of generating free-electron laser (FEL) X-ray pulses from a few femtoseconds (fs) up to a few hundred fs, opens up vast opportunities for studying atoms and molecules on this unprecedented ultrashort time scale. However, tremendous challenges remain in the measurement and control of these ultrashort pulses with femtosecond precision, for both the electron beam (e-beam) and the X-ray pulses. For ultrashort e-beam bunch length measurements, a standard method has been established at LCLS using an S-band radio-frequency (rf) deflector, which works like a streak camera for electrons and is capable of resolving bunch lengths as short as {approx} 10 fs rms. However, the e-beam with low charges of 20 pC at LCLS, which is expected to be less than 10 fs in duration, is too short to be measured using this transverse deflector. The measurement of the electron bunch length is helpful in estimating the FEL X-ray pulse duration. However, for a realistic beam, such as that with a Gaussian shape or even a spiky profile, the FEL amplification varies along the bunch due to peak current or emittance variation. This will cause differences between the temporal

  4. Effect of the Coupled-bunch Modes on the Longitudinal Feedback System

    SciTech Connect

    Heifets, S.; Teytelman, D.; /SLAC

    2006-11-30

    The Pedersen analysis [1, 2] of the low-level rf feedback system assumes that all bunches oscillate in phase what corresponds to the lowest coupled bunch mode. This analysis is extended here to take into account all other coupled-bunch modes what might be important for the strongly detuned cavities in large storage rings such as PEP-II.

  5. The AFGL absolute gravity program

    NASA Technical Reports Server (NTRS)

    Hammond, J. A.; Iliff, R. L.

    1978-01-01

    A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.

  6. Familial Aggregation of Absolute Pitch

    PubMed Central

    Baharloo, Siamak; Service, Susan K.; Risch, Neil; Gitschier, Jane; Freimer, Nelson B.

    2000-01-01

    Absolute pitch (AP) is a behavioral trait that is defined as the ability to identify the pitch of tones in the absence of a reference pitch. AP is an ideal phenotype for investigation of gene and environment interactions in the development of complex human behaviors. Individuals who score exceptionally well on formalized auditory tests of pitch perception are designated as “AP-1.” As described in this report, auditory testing of siblings of AP-1 probands and of a control sample indicates that AP-1 aggregates in families. The implications of this finding for the mapping of loci for AP-1 predisposition are discussed. PMID:10924408

  7. Peak power tunable mid-infrared oscillator pumped by a high power picosecond pulsed fiber amplifier with bunch output

    NASA Astrophysics Data System (ADS)

    Wei, Kaihua; Guo, Yan; Lai, Xiaomin; Fan, Shanhui

    2016-07-01

    A high power mid-infrared optical parametric oscillator (OPO) with picosecond pulse bunch output is experimentally demonstrated. The pump source was a high power master oscillation power amplifier (MOPA) picosecond pulsed fiber amplifier. The seed of the MOPA was a gain-switched distributed Bragg reflector (DBR) laser diode (LD) with picosecond pulse operation at a high repetition rate. The seed laser was amplified to 50 W by two-stage pre-amplifiers and a large mode area (LMA) Yb fiber based power-amplifier. A fiber-pigtailed acousto-optic modulator with the first order diffraction transmission was inserted into the second pre-amplifier to form a picosecond pulse bunch train and to change the peak power simultaneously. The power-amplified pulse bunches were focused to pump a wavelength-tunable OPO for emitting high power mid-infrared laser. By adjusting the OPO cavity length, the maximum average idler powers obtained at 3.1, 3.3 and 3.5 μm were 7, 6.6 and 6.4 W respectively.

  8. Single Bunch Stability in LER of PEP II

    SciTech Connect

    Heifets, S.; Sabbi, G.; /Fermilab

    2011-10-11

    The note describes results of studies of the single bunch stability in the low energy ring (LER) of the PEP-II B-factory. Simulations describe the potential well distortion (PWD) obtained by numerical solution of the Haiisinski equation and results on the beam stability obtained with the code TRISIM. Both longitudinal and transverse wake fields are taken into account. Preliminary estimates indicate that single bunch in the LER of the PEP-II B-factory has to be stable, both longitudinally and transversely, at the maximum design bunch current 1.8 mA (beam current 3A). However, realistic wakes of the machine has been constructed only recently using results of the extensive numerical simulations of the vacuum components of the ring. Additional to that, the code TRISIM, a simulation program for single-bunch collective effects written by one of the authors (G. S.), became recently available. This allows us to study beam stability in a more reliable way than it is possible analytically.

  9. Dissipating Step Bunches during Crystallization under Transport Control

    NASA Technical Reports Server (NTRS)

    Lin, Hong; Yau, S.-T.; Vekilov, Peter, G.

    2003-01-01

    In studies of crystal formation by the generation and spreading of layers, equidistant step trains are considered unstable---bunches and other spatiotemporal patterns of the growth steps are viewed as ubiquitous. We provide an example to the opposite. We monitor the spatiotemporal dynamics of steps and the resulting step patterns during crystallization of the proteins ferritin and apoferritin using the atomic force microscope. The variations in step velocity and density are not correlated, indicating the lack of a long-range attraction between the steps. We show that (i) because of its coupling to bulk transport, nucleation of new layers is chaotic and occurs at the facet edges, where the interfacial supersaturation is higher; (ii) step bunches self-organize via the competition for supply from the solution; and, (iii) bunches of weakly interacting steps decay as they move along the face. Tests by numerical modeling support the conclusions about the mechanisms underlying our observations. The results from these systems suggest that during crystallization controlled by transport, with weakly or noninteracting growth steps, the stable kinetic state of the surface is an equidistant step train, and step bunches only arise during nucleation of new layers. Since nucleation only occurs at a few sites on the surface, the surface morphology may be controllably patterned or smoothened by locally controlling nucleation.

  10. BUNCHED BEAM STOCHASTIC COOLING SIMULAITONS AND COMPARISON WITH DATA

    SciTech Connect

    BLASKIEWICZ,M.; BRENNAN, J.M.

    2007-09-10

    With the experimental success of longitudinal, bunched beam stochastic cooling in RHIC it is natural to ask whether the system works as well as it might and whether upgrades or new systems are warranted. A computer code, very similar to those used for multi-particle coherent instability simulations, has been written and is being used to address these questions.

  11. Simulations of Merging Helion Bunches on the AGS Injection Porch

    SciTech Connect

    Gardner, C. J.

    2014-08-29

    During the setup of helions for the FY2014 RHIC run it was discovered that the standard scheme for merging bunches on the AGS injection porch required an injection kicker pulse shorter than what was available. To overcome this difficulty, K. Zeno proposed and developed an interesting and unusual alternative which uses RF harmonic numbers 12, 4, 2 (rather than the standard 8, 4, 2) to merge 8 helion bunches into 2. In this note we carry out simulations that illustrate how the alternative scheme works and how it compares with the standard scheme. This is done in Sections 13 and 14. A scheme in which 6 bunches are merged into 1 is simulated in Section 15. This may be useful if more helions per merged bunch are needed in future runs. General formulae for the simulations are given in Sections 9 through 12. For completeness, Sections 1 through 8 give a derivation of the turn-by-turn equations of longitudinal motion at constant magnetic field. The derivation is based on the work of MacLachlan. The reader may wish to skip over these Sections and start with Section 9.

  12. Scanning Synchronization of Colliding Bunches for MEIC Project

    SciTech Connect

    Derbenev, Yaroslav S.; Popov, V. P.; Chernousov, Yu D.; Kazakevich, G. M.

    2015-09-01

    Synchronization of colliding beams is one of the major issues of an electron-ion collider (EIC) design because of sensitivity of ion revolution frequency to beam energy. A conventional solution for this trouble is insertion of bent chicanes in the arcs space. In our report we consider a method to provide space coincidence of encountering bunches in the crab-crossing orbits Interaction Region (IR) while repetition rates of two beams do not coincide. The method utilizes pair of fast kickers realizing a bypass for the electron bunches as the way to equalize positions of the colliding bunches at the Interaction Point (IP). A dipole-mode warm or SRF cavities fed by the magnetron transmitters are used as fast kickers, allowing a broad-band phase and amplitude control. The proposed scanning synchronization method implies stabilization of luminosity at a maximum via a feedback loop. This synchronization method is evaluated as perspective for the Medium Energy Electron-Ion collider (MEIC) project of JLab with its very high bunch repetition rate.

  13. String formulation of space charge forces in a deflecting bunch

    NASA Astrophysics Data System (ADS)

    Talman, Richard

    2004-10-01

    The force between two moving point charges, because of its inverse square law singularity, cannot be applied directly in the numerical simulation of bunch dynamics; radiative effects make this especially true for short bunches being deflected by magnets. This paper describes a formalism circumventing this restriction in which the basic ingredient is the total force on a point charge comoving with a longitudinally aligned, uniformly charged string. Bunch evolution can then be treated using direct particle-to-particle, intrabeam scattering, with no need for an intermediate, particle-in-cell, step. Electric and magnetic fields do not appear individually in the theory. Since the basic formulas are both exact (in paraxial approximation) and fully relativistic, they are applicable to beams of all particle types and all energies. But the theory is expected to be especially useful for calculating the emittance growth of the ultrashort electron bunches of current interest for energy recovery linacs and free-electron lasers. The theory subsumes coherent synchrotron radiation and centrifugal space charge force. Renormalized, on-axis, longitudinal field components are in excellent agreement with values from Saldin et al. [DESY Report No. DESY-TESLA-FEL-96-14, 1995;

    Nucl. Instrum. Methods Phys. Res., Sect. ANIMAER0168-9002 417, 158 (1998).10.1016/S0168-9002(98)00623-8

  14. Modeling Multi-Bunch X-band Photoinjector Challenges

    SciTech Connect

    Marsh, R A; Anderson, S G; Gibson, D J; Barty, C J

    2012-05-09

    An X-band test station is being developed at LLNL to investigate accelerator optimization for future upgrades to mono-energetic gamma-ray technology at LLNL. The test station will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. Of critical import to the functioning of the LLNL X-band system with multiple electron bunches is the performance of the photoinjector. In depth modeling of the Mark 1 LLNL/SLAC X-band rf photoinjector performance will be presented addressing important challenges that must be addressed in order to fabricate a multi-bunch Mark 2 photoinjector. Emittance performance is evaluated under different nominal electron bunch parameters using electrostatic codes such as PARMELA. Wake potential is analyzed using electromagnetic time domain simulations using the ACE3P code T3P. Plans for multi-bunch experiments and implementation of photoinjector advances for the Mark 2 design will also be discussed.

  15. Operational experience with nanocoulomb bunch charges in the Cornell photoinjector

    NASA Astrophysics Data System (ADS)

    Bartnik, Adam; Gulliford, Colwyn; Bazarov, Ivan; Cultera, Luca; Dunham, Bruce

    2015-08-01

    Characterization of 9-9.5 MeV electron beams produced in the dc-gun based Cornell photoinjector is given for bunch charges ranging from 20 pC to 2 nC. Comparison of the measured emittances and longitudinal current profiles to optimized 3D space charge simulations yields excellent agreement for bunch charges up to 1 nC when the measured laser distribution is used to generate initial particle distributions in simulation. Analysis of the scaling of the measured emittance with bunch charge shows that the emittance scales roughly as the square root of the bunch charge up to 300 pC, above which the trend becomes linear. These measurements demonstrate that the Cornell photoinjector can produce cathode emittance dominated beams meeting the emittance and peak current specifications for next generation free electron lasers operating at high repetition rate. In addition, the 1 and 2 nC results are relevant to the electron ion collider community.

  16. Radiation sources and diagnostics with ultrashort electron bunches

    SciTech Connect

    Catravas, P.; Esarey, E.; Leemans, W.P.

    2001-11-02

    The basic principles and design of radiation sources (transition radiation, Cerenkov radiation, radiation from periodic structures, etc.) and radiation-based diagnostics will be discussed, with emphasis on radiation from ultra-short electron bunches. Ultra-short electron bunches have the potential to produce high peak flux radiation sources that cover wavelength regimes where sources are currently not widely available (coherent THz/IR) as well as ultrashort X-ray pulses (3-100 fs). While radiation from the electron bunch contains the full signature of the electron beam and/or medium it has travelled through, the deconvolution of a single property of interest can be difficult due to a large number of contributing properties. The experimental implementation of novel solutions to this problem will be described for beams from 30 MeV to 30 GeV, including fluctuational interferometry, source imaging, phase matched cone angles and laser-based techniques, which utilize optical transition radiation, wiggler and Cerenkov radiation, and Thomson scattering. These novel diagnostic methods have the potential to resolve fs bunch durations, slice emittance on fs scales, etc. The advantages and novel features of these techniques will be discussed.

  17. Growth of Quantum Wires on Step-Bunched Substrate

    SciTech Connect

    Liu, Feng

    2005-02-01

    This proposal initiates a combined theoretical and experimental multidisciplinary research effort to explore a novel approach for growing metallic and magnetic nanowires on step-bunched semiconductor and dielectric substrates, and to lay the groundwork for understanding the growth mechanisms and the electronic, electrical, and magnetic properties of metallic and magnetic nanowires. The research will focus on four topics: (1) fundamental studies of step bunching and self-organization in a strained thin film for creating step-bunched substrates. (2) Interaction between metal adatoms (Al,Cu, and Ni) and semiconductor (Si and SiGe) and dielectric (CaF2) surface steps. (3) growth and characterization of metallic and magnetic nanowires on step-bunched templates. (4) fabrication of superlattices of nanowires by growing multilayer films. We propose to attack these problems at both a microscopic and macroscopic level, using state-of-the-art theoretical and experimental techniques. Multiscale (electronic-atomic-continuum) theories will be applied to investigate growth mechanisms of nanowires: mesoscopic modeling and simulation of step flow growth of strained thin films, in particular, step bunching and self-organization will be carried out within the framework of continuum linear elastic theory; atomistic calculation of interaction between metal adatoms and semiconductor and dielectric surface steps will be done by large-scale computations using first-principles total-energy methods. In parallel, thin films and nanowires will be grown by molecular beam epitaxy (MBE), and the resultant structure and morphology will be characterized at the atomic level up to micrometer range, using a combination of different surface/interface probes, including scanning tunneling microscopy (STM, atomic resolution), atomic force microscopy (AFM, nanometer resolution), low-energy electron microscopy (LEEM, micrometer resolution), reflectance high-energy electron diffraction (RHEED), and x

  18. Influence of emittance on transverse dynamics of accelerated bunches in the plasma-dielectric wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Kniaziev, R. R.; Sotnikov, G. V.

    2016-09-01

    We study theoretically transverse dynamics of the bunch of charged particles with the finite emittance in the plasma-dielectric wakefield accelerator. Parameters of bunches are chosen the same as available from the 15 MeV Argonne Wakefield Accelerator beamline. The goal of the paper is to study the behavior of bunches of charged particles with different emittances while accelerating these bunches by wakefields in plasma-dielectric structures. Obtained results allow us to determine the limits of the emittance of the bunch where dynamics of the accelerated particles remains stable.

  19. Sequential control of step-bunching during graphene growth on SiC (0001)

    NASA Astrophysics Data System (ADS)

    Bao, Jianfeng; Yasui, Osamu; Norimatsu, Wataru; Matsuda, Keita; Kusunoki, Michiko

    2016-08-01

    We have investigated the relation between the step-bunching and graphene growth phenomena on an SiC substrate. We found that only a minimum amount of step-bunching occurred during the graphene growth process with a high heating rate. On the other hand, a large amount of step-bunching occurred using a slow heating process. These results indicated that we can control the degree of step-bunching during graphene growth by controlling the heating rate. We also found that graphene coverage suppressed step bunching, which is an effective methodology not only in the graphene technology but also in the SiC-based power electronics.

  20. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  1. Apparatus for absolute pressure measurement

    NASA Technical Reports Server (NTRS)

    Hecht, R. (Inventor)

    1969-01-01

    An absolute pressure sensor (e.g., the diaphragm of a capacitance manometer) was subjected to a superimposed potential to effectively reduce the mechanical stiffness of the sensor. This substantially increases the sensitivity of the sensor and is particularly useful in vacuum gauges. An oscillating component of the superimposed potential induced vibrations of the sensor. The phase of these vibrations with respect to that of the oscillating component was monitored, and served to initiate an automatic adjustment of the static component of the superimposed potential, so as to bring the sensor into resonance at the frequency of the oscillating component. This establishes a selected sensitivity for the sensor, since a definite relationship exists between resonant frequency and sensitivity.

  2. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < -1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  3. CSR Interaction for a 2D Energy-Chirped Bunch on a General Orbit

    SciTech Connect

    Rui Li

    2009-05-01

    When an electron bunch with initial linear energy chirp traverses a bunch compression chicane, the bunch interacts with itself via coherent synchrotron radiation (CSR) and space charge force. The effective longitudinal CSR force for such kind of 2D bunch on a circular orbit has been analyzed earlier [1]. In this paper, we present the analytical results of the effective longitudinal CSR force for a 2D energy-chirped bunch going through a general orbit, which includes the entrance and exit of a circular orbit. In particular, we will show the behavior of the force in the last bend of a chicane when the bunch is under extreme compression. This is the condition when bifurcation of bunch phase space occurs in many CSR measurements. [1] R. Li, Phys. Rev. ST Accel. Beams 11, 024401 (2008)

  4. Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator

    SciTech Connect

    Kirby, Neil; /SLAC

    2009-10-30

    Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped electron

  5. Coherent spontaneous radiation from highly bunched electron beams

    SciTech Connect

    Berryman, K.W.; Crosson, E.R.; Ricci, K.N.

    1995-12-31

    Coherent spontaneous radiation has now been observed in several FELs, and is a subject of great importance to the design of self-amplified spontaneous emission (SASE) devices. We report observations of coherent spontaneous radiation in both FIREFLY and the mid-infrared FEL at the Stanford Picosecond FEL Center. Coherent emission has been observed at wavelengths as short as 5 microns, and enhancement over incoherent levels by as much as a factor of 4x10{sup 4} has been observed at longer wavelengths. The latter behavior was observed at 45 microns in FIREFLY with short bunches produced by off-peak acceleration and dispersive compression. We present temporal measurements of the highly bunched electron distributions responsible for the large enhancements, using both transition radiation and energy-phase techniques.

  6. Emittance preservation during bunch compression with a magnetized beam

    SciTech Connect

    Stratakis, Diktys

    2015-09-02

    The deleterious effects of coherent synchrotron radiation (CSR) on the phase-space and energy spread of high-energy beams in accelerator light sources can significantly constrain the machine design and performance. In this paper, we present a simple method to preserve the beam emittance by means of using magnetized beams that exhibit a large aspect ratio on their transverse dimensions. The concept is based on combining a finite solenoid field where the beam is generated together with a special optics adapter. Numerical simulations of this new type of beam source show that the induced phase-space density growth can be notably suppressed to less than 1% for any bunch charge. This work elucidates the key parameters that are needed for emittance preservation, such as the required field and aspect ratio for a given bunch charge.

  7. Terahertz radiation source based on self-wake beam bunching

    SciTech Connect

    Antipov, Sergey; Jing Chunguang; Schoessow, Paul; Kanareykin, Alexei; Jiang Bo; Yakimenko, Vitaly; Zholents, Alexander; Gai Wei

    2012-12-21

    A table top device for producing high power T-ray beams is described. A rectangular electron beam that can be produced out of a photoinjector via stacking of the laser pulse, and running off-crest of the photoinjector rf is sent through a dielectric loaded waveguide. Due to the beam's self-wake its energy becomes modulated. In the chicane beamline following the dielectric energy-bunching section this energy modulation is converted to a density modulation-a bunch train. The density modulated beam can be sent through a power extraction section, like a dielectric loaded accelerating structure, or simply can intercept a foil target, producing THz radiation of various bandwidths and power levels.

  8. Electron channeling radiation experiments at very high electron bunch charges

    SciTech Connect

    Carrigan, R.A. Jr.; Freudenberger, J.; Fritzler, S.; Genz, H.; Richter, A.; Ushakov, A.; Zilges, A.; Sellschop, J.P.F.

    2003-12-01

    Plasmas offer the possibility of high acceleration gradients. An intriguing suggestion is to use the higher plasma densities possible in solids to get extremely high gradients. Although solid-state plasmas might produce high gradients they would pose daunting problems. Crystal channeling has been suggested as one mechanism to address these challenges. There is no experimental or theoretical guidance on channeling for intense electron beams. A high-density plasma in a crystal lattice could quench the channeling process. An experiment has been carried out at the Fermilab NICADD Photoinjector Laboratory to observe electron channeling radiation at high bunch charges. An electron beam with up to 8 nC per electron bunch was used to investigate the electron-crystal interaction. No evidence was found of quenching of channeling at charge densities two orders of magnitude larger than that in earlier experiments.

  9. Emittance preservation during bunch compression with a magnetized beam

    NASA Astrophysics Data System (ADS)

    Stratakis, Diktys

    2016-03-01

    The deleterious effects of coherent synchrotron radiation (CSR) on the phase-space and energy spread of high-energy beams in accelerator light sources can significantly constrain the machine design and performance. In this paper, we present a simple method to preserve the beam emittance by means of using magnetized beams that exhibit a large aspect ratio on their transverse dimensions. The concept is based in combining a finite solenoid field where the beam is generated with a special optics adapter. Numerical simulations of this new type of beam source show that the induced phase-space density growth from CSR can be notably suppressed to less than 1% for any bunch charge. This work elucidates the key parameters that are needed for emittance preservation, such as the required field and aspect ratio for a given bunch charge.

  10. Compensating tune spread induced by space charge in bunched beams

    SciTech Connect

    Litvinenko, V.; Wang, G.

    2015-05-03

    The effects of space charge play a significant role in modern-day accelerators, frequently constraining the beam parameters attainable in an accelerator or in an accelerator chain. They also can limit the luminosity of hadron colliders operating either at low energies or with sub-TeV high-brightness hadron beams. The latter is applied for strongly cooled proton and ion beams in eRHIC – the proposed future electron-ion collider at Brookhaven National Laboratory. Using an appropriate electron beam would compensate both the tune shift and the tune spread in the hadron beam in a coasting beam. But these methods cannot compensate space charge tune spread in a bunched hadron beam. In this paper we propose and evaluate a novel idea of using a co-propagating electron bunch with mismatched longitudinal velocity to compensate the space charge induced tune-shift and tune spread.

  11. Control of synchrotron radiation effects during recirculation with bunch compression

    SciTech Connect

    Douglas, David; Benson, Stephen; Li, Rui; Roblin, Yves; Tennant, Christopher; Krafft, Geoffrey; Terzic, Balsa; Tsai, Cheng

    2015-05-01

    Studies of beam quality during recirculation have been extended to an arc providing bunch compression with positive momentum compaction. It controls both incoherent and coherent synchrotron radiation (ISR and CSR) using methods including optics balance and generates little microbunching gain. We detail the dynamical basis for the design, discuss the design process, give an example, and provide simulations of ISR and CSR effects. Reference will be made to a complete analysis of microbunching effects.

  12. New method of beam bunching in free-ion lasers

    SciTech Connect

    Bessonov, E.G.

    1995-12-31

    An effective ion beam bunching method is suggested. This method is based on a selective interaction of line spectrum laser light (e.g. axial mode structure light) with non-fully stripped ion beam cooled in a storage rings, arranging the ion beam in layers in radial direction of an energy-longitudinal coordinate plane and following rotation of the beam at the right angle after switching on the RF cavity or undulator grouper/buncher. Laser cooling of the ion beam can be used at this position after switching off the resonator to decrease the energy spread caused by accelerating field of the resonator. A relativistic multilayer ion mirror will be produced this way. Both monochromatic laser beams and intermediate monochromaticity and bandwidth light sources of spontaneous incoherent radiation can be used for production of hard and high power electromagnetic radiation by reflection from this mirror. The reflectivity of the mirror is rather high because of the cross-section of the backward Rayleigh scattering of photon light by non-fully stripped relativistic ions ({approximately}{lambda}{sup 2}) is much greater ({approximately} 10{divided_by}15 orders) then Thompson one ({approximately} r{sub e}{sup 2}). This position is valid even in the case of non-monochromatic laser light ({Delta}{omega}/{omega} {approximately} 10{sup -4}). Ion cooling both in longitudinal plane and three-dimensional radiation ion cooling had been proposed based on this observation. The using of these cooling techniques will permit to store high current and low emittance relativistic ion beams in storage rings. The bunched ion beam can be used in ordinary Free-Ion Lasers as well. After bunching the ion beam can be extracted from the storage ring in this case. Storage rings with zero momentum compaction function will permit to keep bunching of the ion beam for a long time.

  13. Stability of Flat Bunches in the Recycler Barrier Bucket

    SciTech Connect

    Sen, T.; Bhat, C.; Ostiguy, J.-F.; /Fermilab

    2009-05-01

    We examine the stability of intense flat bunches in barrier buckets used in the Fermilab Recycler. We consider some common stationary distributions and show that they would be unstable against rigid dipole oscillations. We discuss the measurements which identify stable distributions. We also report on experimental studies on the impact of creating a local extremum of the incoherent frequency within the rf bucket. We considered two typical stationary distributions and found they were not adequate descriptions of the Recycler bunches. From the measured line density distribution we find (a) the tanh function is a good fit to the line density, and (b) the coherent frequency of the rigid dipole mode for this distribution is within the incoherent spread at nominal intensities. Stability diagrams when the beam couples to space charge and external impedances will be discussed elsewhere. Our initial experimental investigations indicate that longitudinal stability in the Recycler is, consistent with expectations, influenced by the ratio T{sub 2}/(4T{sub 1}) which determines the location of the extremum of the incoherent tune. The coherent tune depends strongly on the distribution in the bunch tails which is difficult to measure. Numerical studies using both a conventional tracking code and a Vlasov solver are in progress and should provide more insight into conditions that may lead to unstable behavior.

  14. Absolute configuration of isovouacapenol C

    PubMed Central

    Fun, Hoong-Kun; Yodsaoue, Orapun; Karalai, Chatchanok; Chantrapromma, Suchada

    2010-01-01

    The title compound, C27H34O5 {systematic name: (4aR,5R,6R,6aS,7R,11aS,11bR)-4a,6-dihy­droxy-4,4,7,11b-tetra­methyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodeca­hydro­phenanthro[3,2-b]furan-5-yl benzoate}, is a cassane furan­oditerpene, which was isolated from the roots of Caesalpinia pulcherrima. The three cyclo­hexane rings are trans fused: two of these are in chair conformations with the third in a twisted half-chair conformation, whereas the furan ring is almost planar (r.m.s. deviation = 0.003 Å). An intra­molecular C—H⋯O inter­action generates an S(6) ring. The absolute configurations of the stereogenic centres at positions 4a, 5, 6, 6a, 7, 11a and 11b are R, R, R, S, R, S and R, respectively. In the crystal, mol­ecules are linked into infinite chains along [010] by O—H⋯O hydrogen bonds. C⋯O [3.306 (2)–3.347 (2) Å] short contacts and C—H⋯π inter­actions also occur. PMID:21588364

  15. Frequency-domain analysis of absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Svitlov, S.

    2012-12-01

    An absolute gravimeter is analysed as a linear time-invariant system in the frequency domain. Frequency responses of absolute gravimeters are derived analytically based on the propagation of the complex exponential signal through their linear measurement functions. Depending on the model of motion and the number of time-distance coordinates, an absolute gravimeter is considered as a second-order (three-level scheme) or third-order (multiple-level scheme) low-pass filter. It is shown that the behaviour of an atom absolute gravimeter in the frequency domain corresponds to that of the three-level corner-cube absolute gravimeter. Theoretical results are applied for evaluation of random and systematic measurement errors and optimization of an experiment. The developed theory agrees with known results of an absolute gravimeter analysis in the time and frequency domains and can be used for measurement uncertainty analyses, building of vibration-isolation systems and synthesis of digital filtering algorithms.

  16. Absolute thickness metrology with submicrometer accuracy using a low-coherence distance measuring interferometer.

    PubMed

    Zhao, Yang; Schmidt, Greg; Moore, Duncan T; Ellis, Jonathan D

    2015-09-01

    Absolute physical thickness across the sample aperture is critical in determining the index of a refraction profile from the optical path length profile for gradient index (GRIN) materials, which have a designed inhomogeneous refractive index. Motivated by this application, instrumentation was established to measure the absolute thickness of samples with nominally plane-parallel surfaces up to 50 mm thick. The current system is capable of measuring absolute thickness with 120 nm (1σ) repeatability and submicrometer expanded measurement uncertainty. Beside GRIN materials, this method is also capable of measuring other inhomogeneous and opaque materials. PMID:26368894

  17. Muon Bunching and Phase-Energy Rotation for a Neutrino Factory and Muon Collider

    NASA Astrophysics Data System (ADS)

    Neuffer, David; Yoshikawa, Cary

    2008-04-01

    We have developed scenarios for capture, bunching and phase-energy rotation of muons from a proton source, using high-frequency rf systems. The method captures a maximal number of muons into a string of rf bunches with initial application in the neutrino factory design studies. For a muon collider, these bunches must be recombined for maximal luminosity, and our initial design produced a relatively long bunch train. In this paper we present more compact scenarios that obtain a smaller number of bunches, and, after some optimization, obtain cases that are better for both neutrino-factory and collider scenarios. We also consider further modification by incorporating hydrogen gas-filled rf cavities for bunching and cooling. We describe these examples and consider variations toward an optimal factory + collider scenario.

  18. Analysis of the transverse SPS beam coupling impedance with short and long bunches

    SciTech Connect

    Salvant,B.; Calaga, R.; de Maria, R.; Arduini, G.; Burkhardt, H.; Damerau, H.; Hofle, W.; Metral, E.; Papotti, G.; Rumolo, G.; Tomas, R.; White, S.

    2009-05-04

    The upgrade of the CERN Large Hadron Collider (LHC) would require a four- to five-fold increase of the single bunch intensity presently obtained in the Super Proton Synchrotron (SPS). Operating at such high single bunch intensities requires a detailed knowledge of the sources of SPS beam coupling impedance, so that longitudinal and transverse impedance reduction campaigns can be planned and performed effectively if needed. In this paper, the transverse impedance of the SPS is studied by injecting a single long bunch into the SPS, and observing its decay without RF. Longer bunches allow for higher frequency resolution of the longitudinal and transverse bunch spectra acquired with strip line couplers connected to a fast data acquisition. It also gives access to the frequency content of the transverse impedance. Results from measurements with short and long bunches in the SPS performed in 2008 are compared with simulations.

  19. Preliminary calculations of ballistic bunch compression with thermionic cathode rf guns

    SciTech Connect

    Lewellen, J.W.; Milton, S.

    1997-09-01

    Preliminary calculations using the computer code PARMELA indicate that it is possible to achieve peak currents on the order of 1 kA using a thermionic-cathode rf gun and ballistic bunch compression. In contrast to traditional magnetic bunching schemes, ballistic bunch compression uses a series of rf cavities to modify the energy profile of the beam and properly chosen drifts to allow the bunching to occur naturally. The method, suitably modified, should also be directly applicable to photoinjector rf guns. Present work is focusing on simultaneously compressing the bunch while reducing the emittance of the electron beam. At present, the calculated normalized rms emittance is in the neighborhood of 6.8 {pi} mm mrad with a peak current of 0.88 kA, and a peak bunch charge of 0.28 nC from a thermionic-cathode gun.

  20. Absolute determination of local tropospheric OH concentrations

    NASA Technical Reports Server (NTRS)

    Armerding, Wolfgang; Comes, Franz-Josef

    1994-01-01

    Long path absorption (LPA) according to Lambert Beer's law is a method to determine absolute concentrations of trace gases such as tropospheric OH. We have developed a LPA instrument which is based on a rapid tuning of the light source which is a frequency doubled dye laser. The laser is tuned across two or three OH absorption features around 308 nm with a scanning speed of 0.07 cm(exp -1)/microsecond and a repetition rate of 1.3 kHz. This high scanning speed greatly reduces the fluctuation of the light intensity caused by the atmosphere. To obtain the required high sensitivity the laser output power is additionally made constant and stabilized by an electro-optical modulator. The present sensitivity is of the order of a few times 10(exp 5) OH per cm(exp 3) for an acquisition time of a minute and an absorption path length of only 1200 meters so that a folding of the optical path in a multireflection cell was possible leading to a lateral dimension of the cell of a few meters. This allows local measurements to be made. Tropospheric measurements have been carried out in 1991 resulting in the determination of OH diurnal variation at specific days in late summer. Comparison with model calculations have been made. Interferences are mainly due to SO2 absorption. The problem of OH self generation in the multireflection cell is of minor extent. This could be shown by using different experimental methods. The minimum-maximum signal to noise ratio is about 8 x 10(exp -4) for a single scan. Due to the small size of the absorption cell the realization of an open air laboratory is possible in which by use of an additional UV light source or by additional fluxes of trace gases the chemistry can be changed under controlled conditions allowing kinetic studies of tropospheric photochemistry to be made in open air.

  1. Flexible pulse delay control up to picosecond for high-intensity twin electron bunches

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Ding, Yuantao; Emma, Paul; Huang, Zhirong; Marinelli, Agostino; Tang, Chuanxiang

    2015-09-01

    Two closely spaced electron bunches have attracted strong interest due to their applications in two color X-ray free-electron lasers as well as witness bunch acceleration in plasmas and dielectric structures. In this paper, we propose a new scheme of delay system to vary the time delay up to several picoseconds while not affecting the bunch compression. Numerical simulations based on the Linac Coherent Light Source are performed to demonstrate the feasibility of this method.

  2. Spatial configuration of a plasma bunch formed under gyromagnetic resonance in a magnetic mirror trap

    NASA Astrophysics Data System (ADS)

    Andreev, V. V.; Novitskii, A. A.; Umnov, A. M.; Chuprov, D. V.

    2016-06-01

    The spatial configuration of a relativistic plasma bunch generated under the gyromagnetic autoresonance and confined in a magnetic mirror trap has been studied experimentally and numerically. The characteristics of bremsstrahlung generated by the plasma bunch from the gas and chamber walls were investigated using X-ray spectroscopy and radiometry, which made it possible to determine the localization of the bunch and analyze the dynamics of its confinement.

  3. Formation of electron bunches with tailored current profiles using multi-frequency linacs

    SciTech Connect

    Piot, P.; Behrens, C.; Gerth, C.; Lemery, F.; Mihalcea, D.; Stoltz, P.

    2012-12-21

    Tailoring an electron bunch with specific current profile can provide substantial enhancement of the transformer ratio in beam-driven acceleration methods. We present a method relying on the use of a linac with accelerating sections operating at different frequencies followed by a magnetic bunch compressor. The experimental verfification of the technique in a two-frequency linac is presented. The compatibility of the proposed technique with the formation and acceleration of a drive and witness bunches is numerically demonstrated.

  4. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  5. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  6. Preschoolers' Success at Coding Absolute Size Values.

    ERIC Educational Resources Information Center

    Russell, James

    1980-01-01

    Forty-five 2-year-old and forty-five 3-year-old children coded relative and absolute sizes using 1.5-inch, 6-inch, and 18-inch cardboard squares. Results indicate that absolute coding is possible for children of this age. (Author/RH)

  7. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  8. Monolithically integrated absolute frequency comb laser system

    DOEpatents

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  9. Estimating the absolute wealth of households

    PubMed Central

    Gerkey, Drew; Hadley, Craig

    2015-01-01

    Abstract Objective To estimate the absolute wealth of households using data from demographic and health surveys. Methods We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. Findings The median absolute wealth estimates of 1 403 186 households were 2056 international dollars per capita (interquartile range: 723–6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R2 = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Conclusion Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality. PMID:26170506

  10. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  11. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  12. The source of THz radiation based on dielectric waveguide excited by sequence of electron bunches

    NASA Astrophysics Data System (ADS)

    Altmark, A. M.; Kanareykin, A. D.

    2016-07-01

    We present a new method for excitation of THz Cherenkov radiation in a dielectric waveguide by relativistic electron bunches. A sequence of bunches generates monochromatic radiation. The frequency of radiation is defined by the distance between the bunches. The studies were carried by using the newly updated BBU-3000 code which permits taking into account a number of additional options: an external quadrupole focusing system, group velocity of the wakefield, and the dielectric material loss factor. In this paper, we present our algorithm for optimizing the number and sequential positions of bunches for generation of narrow band high power THz radiation.

  13. A search for coupled-bunch instability in the Fermilab Main Injector

    SciTech Connect

    C. M. Bhat et al.

    2001-07-03

    In the Fermilab Main Injector (MI) we are planning to double the bunch intensity from its design value by slip stacking. The accelerator consists of 18 rf cavities which operate at a harmonic number of 588. These cavities are known to have many higher ordered resonances. Longitudinal coupled-bunch instability induced by excitation of the rf cavities may be an important issue to be addressed in the intensity upgrade. Here we have carried out some simulation studies of the longitudinal coupled bunch instability to investigate bunch intensity limits. The results are presented in this paper.

  14. Temporal Electron-bunch Shaping from a Photoinjector for Advanced Accelerator Applications

    SciTech Connect

    Lemery, Francois; Piot, Philippe

    2014-07-01

    Advanced-accelerator applications often require the production of bunches with shaped temporal distributions. An example of sought-after shape is a linearly-ramped current profile that can be improve the transformer ratio in beam-driven acceleration, or produce energy-modulated pulse for, e.g., the subsequent generation of THz radiation. Typically,  such a shaping is achieved by manipulating ultra-relativistic electron bunches. In this contribution we discuss the possibility of shaping the bunch via photoemission and demonstrate using particle-in-cell simulations the production of MeV electron bunches with quasi-ramped current profile.

  15. High-charge energetic electron bunch generated by 100 TW laser pulse

    NASA Astrophysics Data System (ADS)

    Shen, Baifei; Wu, Yuchi; Dong, Kegong; Zhu, Bin; Gu, Yuqiu; Ji, Liangliang; Jiao, Chunye; Teng, Jian; Hong, Wei; Zhao, Zhongqing; Cao, Leifeng; Wang, Xiaofang; Yu, M. Y.

    2012-03-01

    Energetic electron bunches with more than 20 nC charge are generated from 100 TW level laser pulse interaction with 2% critical density plasma. Three-dimensional particle-in-cell simulations show that the unexpected high bunch-charge can be attributed to the multiple intensity peaks of the laser pulse and the resulting multiple-bubble wake structure. This charge is one of the highest among experiments on electron-bunch generation by laser-plasma interaction. Such highly charged ultra-short electron bunches are crucial for producing sufficiently bright Bremsstrahlung x-rays required in high-resolution flash radiography of large samples.

  16. Undulator superradiance of short electron bunches in a confocal resonating cavity

    NASA Astrophysics Data System (ADS)

    Seo, Y. H.

    2016-09-01

    An undulator-based superradiant oscillator as a source of intense terahertz pulses is investigated in an open resonating cavity. A confocal configuration for the optical cavity is found to be favorable for electron-radiation coupling. Constructive accumulation of superradiance over successive bunches of electrons is achieved if the bunch period is an even multiple of the round-trip time of the radiation pulse. Numerical simulations show that the bunch slippage relative to the radiation pulse determines the pulse width and the corresponding bandwidth. Automatic bunch-pulse positioning with which energy extraction is optimized is also observed, as was first observed in a closed-cavity environment.

  17. Density of bunches of native bluebunch wheatgrass and alien crested wheatgrass

    SciTech Connect

    Rickard, W.H.

    1985-10-01

    The density of bunches of bluebunch wheatgrass in a natural undisturbed stand averaged 3.28 per m/sup 2/ as compared to 2.96 per m/sup 2/ for a nearby stand of crested wheatgrass that was planted 30 years ago. Bunch density was similar in both stands indicating that spacing is a response to an environment deficient in soil water. Bunches of crested wheatgrass on the average weighed 3.5 times more than bunches of bluebunch wheatgrass and they also produced a greater weight of seedheads.

  18. Mechanical Properties of Oil Palm Empty Fruit Bunch Fiber

    NASA Astrophysics Data System (ADS)

    Gunawan, Fergyanto E.; Homma, Hiroomi; Brodjonegoro, Satryo S.; Hudin, Afzer Bin Baseri; Zainuddin, Aryanti Binti

    In tropical countries such as Indonesia and Malaysia, the empty fruit bunches are wastes of the oil palm industry. The wastes are abundantly available and has reached a level that severely threats the environment. Therefore, it is a great need to find useful applications of those waste materials; but firstly, the mechanical properties of the EFB fiber should be quantified. In this work, a small tensile test machine is manufactured, and the tensile test is performed on the EFB fibers. The results show that the strength of the EFB fiber is strongly affected by the fiber diameter; however, the fiber strength is relatively low in comparison to other natural fibers.

  19. Magnetic Bunch Compression for a Compact Compton Source

    SciTech Connect

    Gamage, B.; Satogata, Todd J.

    2013-12-01

    A compact electron accelerator suitable for Compton source applications is in design at the Center for Accelerator Science at Old Dominion University and Jefferson Lab. Here we discuss two options for transverse magnetic bunch compression and final focus, each involving a 4-dipole chicane with M_{56} tunable over a range of 1.5-2.0m with independent tuning of final focus to interaction point $\\beta$*=5mm. One design has no net bending, while the other has net bending of 90 degrees and is suitable for compact corner placement.

  20. A BUNCH TO BUCKET PHASE DETECTOR USING DIGITAL RECEIVER TECHNOLOGY.

    SciTech Connect

    DELONG,J.; BRENNAN, J. M.; HAYES,T.; TUONG, N. LE,; SMITH, K.

    2003-05-12

    Transferring high-speed digital signals to a Digital Signal Processor is limited by the IO bandwidth of the DSP. A digital receiver circuit is used to translate high frequency W signals to base-band. The translated output frequency is close to DC and the data rate can be reduced, by decimation, before transfer to the DSP. By translating both the longitudinal beam (bunch) and RF cavity pick-ups (bucket) to DC, a DSP can be used to measure their relative phase angle. The result can be used as an error signal in a beam control servo loop and any phase differences can be compensated.

  1. Theory and simulation of CSR microbunching in bunch compressors

    NASA Astrophysics Data System (ADS)

    Huang, Zhirong; Borland, Michael; Emma, Paul; Kim, Kwang-Je

    2003-07-01

    CSR microbunching instability in bunch compressors is studied both analytically and numerically. The iterative solutions of the integral equation for the instability provide approximate expressions of CSR microbunching due to initial density and energy modulation, and can be applied to a series of bending systems consisting of multiple compressor chicanes and transport lines. Two similar but independent simulation methods are developed and are compared to each other as well as with theory. We determine the total gain in density modulation for all bend systems of the Linac Coherent Light Source and discuss initial conditions that start the unstable process.

  2. Towards demonstration of electron cooling with bunched electron beam

    SciTech Connect

    Fedotov, A.

    2012-01-11

    All electron cooling systems which were in operation so far employed electron beam generated with an electrostatic electron gun in DC operating mode, immersed in a longitudinal magnetic field. At low energies magnetic field is also being used to transport electron beam through the cooling section from the gun to the collector. At higher energies (few MeV), it was shown that one can have simpler electron beam transport without continuous magnetic field. Because of a rather weak magnetic field on the cathode and in the cooling section the latter approach was referred to as 'non-magnetized cooling', since there was no suppression of the transverse angular spread of the electron beam with the magnetic field in the cooling section. Such a cooler successfully operated at FNAL (2005-11) at electron beam energy of 4.3 MeV. Providing cooling at even higher energies would be easier with RF acceleration of electron beam, and thus using bunched electron beam for cooling. Significant efforts were devoted to explore various aspects of such bunched electron beam cooling as part of R and D of high-energy electron cooling for RHIC. However, experimental studies of such cooling are still lacking. Establishing this technique experimentally would be extremely useful for future high-energy applications. Presently there is an ongoing effort to build Proof-of-Principle (PoP) experiment of Coherent Electron Cooling (CEC) at RHIC, which promises to be superior to conventional electron cooling for high energies. Since the CEC experiment is based on bunched electron beam and it has sections where electron beam co-propagates with the ion beam at the same velocity, it also provides a unique opportunity to explore experimentally conventional electron cooling but for the first time with a bunched electron beam. As a result, it allows us to explore techniques needed for the high-energy electron cooling such as 'painting' with a short electron beam and control of ion beam distribution under

  3. Beam manipulation with velocity bunching for PWFA applications

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Galletti, M.; Gallo, A.; Giribono, A.; Li, W.; Marocchino, A.; Mostacci, A.; Petrarca, M.; Petrillo, V.; Di Pirro, G.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zhu, J.

    2016-09-01

    The activity of the SPARC_LAB test-facility (LNF-INFN, Frascati) is currently focused on the development of new plasma-based accelerators. Particle accelerators are used in many fields of science, with applications ranging from particle physics research to advanced radiation sources (e.g. FEL). The demand to accelerate particles to higher and higher energies is currently limited by the effective efficiency in the acceleration process that requires the development of km-size facilities. By increasing the accelerating gradient, the compactness can be improved and costs reduced. Recently, the new technique which attracts main efforts relies on plasma acceleration. In the following, the current status of plasma-based activities at SPARC_LAB is presented. Both laser- and beam-driven schemes will be adopted with the aim to provide an adequate accelerating gradient (1-10 GV/m) while preserving the brightness of the accelerated beams to the level of conventional photo-injectors. This aspect, in particular, requires the use of ultra-short (< 100 fs) electron beams, consisting in one or more bunches. We show, with the support of simulations and experimental results, that such beams can be produced using RF compression by velocity-bunching.

  4. Reducing energy spread for long bunch train at SLAC

    SciTech Connect

    Decker, F.-J.; Farkas, D.; Rinolfi, L.; Truher, J.

    1996-06-01

    The normal energy gain of the SLC RF system, using SLED (SLAC Energy Development) cavities, can accelerate only about 150 ns beam pulse within an energy spread of 0.5% with 10(exp 11) particles per pulse. By applying two additional 180 deg. phase inversions for about 20% of all SLC klystrons, the classical SLED pulse is flattened to achieve an energy spread of 0.3% over 240 ns which corresponds to 680 bunches in S-band. This scheme was developed for the fixed target experiment E-154, to study the neutron spin. It was used to run at a beam energy of 48.8 GeV and a beam charge of up to 10(exp 11) e- per pulse. This paper describes the beam loading compensation using early beam injection scheme and new RF phase inversions which have been implemented for the SLED devices. The experimental results, obtained during fall 1995, are compared to simulations. The results surpassed the initial requested beam qualities. A similar approach might be useful for future linear colliders with long bunch trains.

  5. A Drive Laser for Multi-Bunch Photoinjector Operation

    SciTech Connect

    Gibson, D J; Cormier, E; Messerly, M J; Prantil, M A; Barty, C J

    2012-05-11

    Numerous electron beam applications would benefit from increased average current without sacrificing beam brightness. Work is underway at LLNL to investigate the performance of X-band photoinjectors that would generate electron bunches at a rate matching the RF drive frequency, i.e. one bunch per RF cycle. A critical part of this effort involves development of photo-cathode drive laser technology. Here we present a new laser architecture that can generate pulse trains at repetition rates up to several GHz. This compact, fiber-based system is driven directly by the accelerator RF and so is inherently synchronized with the accelerating fields, and scales readily over a wide range of drive frequencies (L-band through X-band). The system will be required to produce 0.5 {mu}J, {approx}200 fs rise time, spatially and temporally shaped UV pulses designed to optimize the electron beam brightness. Presented is the current status of this system, producing 2 ps pulses from a continuous-wave source.

  6. Absolute magnitudes of trans-neptunian objects

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Alvarez-candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Morales, N.; Santos-Sanz, P.; Thirouin, A.

    2015-10-01

    Accurate measurements of diameters of trans- Neptunian objects are extremely complicated to obtain. Radiomatric techniques applied to thermal measurements can provide good results, but precise absolute magnitudes are needed to constrain diameters and albedos. Our objective is to measure accurate absolute magnitudes for a sample of trans- Neptunian objects, many of which have been observed, and modelled, by the "TNOs are cool" team, one of Herschel Space Observatory key projects grantes with ~ 400 hours of observing time. We observed 56 objects in filters V and R, if possible. These data, along with data available in the literature, was used to obtain phase curves and to measure absolute magnitudes by assuming a linear trend of the phase curves and considering magnitude variability due to rotational light-curve. In total we obtained 234 new magnitudes for the 56 objects, 6 of them with no reported previous measurements. Including the data from the literature we report a total of 109 absolute magnitudes.

  7. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  8. The Simplicity Argument and Absolute Morality

    ERIC Educational Resources Information Center

    Mijuskovic, Ben

    1975-01-01

    In this paper the author has maintained that there is a similarity of thought to be found in the writings of Cudworth, Emerson, and Husserl in his investigation of an absolute system of morality. (Author/RK)

  9. A Proposal to Build Evaluation Capacity at the Bunche-Da Vinci Learning Partnership Academy

    ERIC Educational Resources Information Center

    King, Jean A.

    2005-01-01

    The author describes potential evaluation capacity-building activities in contrast to the specifics of an evaluation design. Her response to the case of the Bunche-Da Vinci Learning Partnership Academy is developed in three parts: (1) an initial framing of the Bunche-Da Vinci situation; (2) what should be done before signing a contract; and (3)…

  10. Matching into the Helical Bunch Coalescing Channel for a High Luminosity Muon Collider

    SciTech Connect

    Sy, Amy; Ankenbrandt, Charles; Derbenev, Yaroslav; Morozov, Vasiliy; Neuffer, David; Yonehara, Katsuya; Yoshikawa, Cary; Johnson, R. P.

    2015-09-01

    For high luminosity in a muon collider, muon bunches that have been cooled in the six-dimensional helical cooling channel (HCC) must be merged into a single bunch and further cooled in preparation for acceleration and transport to the collider ring. The helical bunch coalescing channel has been previously simulated and provides the most natural match from helical upstream and downstream subsystems. This work focuses on the matching from the exit of the multiple bunch HCC into the start of the helical bunch coalescing channel. The simulated helical matching section simultaneously matches the helical spatial period lambda in addition to providing the necessary acceleration for efficient bunch coalescing. Previous studies assumed that the acceleration of muon bunches from p=209.15 MeV/c to 286.816 MeV/c and matching of lambda from 0.5 m to 1.0 m could be accomplished with zero particle losses and zero emittance growth in the individual bunches. This study demonstrates nonzero values for both particle loss and emittance growth, and provides considerations for reducing these adverse effects to best preserve high luminosity.

  11. Transverse coherent instability of a bunch in a rectangular potential well

    SciTech Connect

    Balbekov, V.; /Fermilab

    2006-04-01

    Theory of transverse instability of a bunch in a rectangular potential well is developed. Series of equations adequately describing the instability is derived and solved both analytically and numerically. Dependence of the instability increment and threshold on bunch factor is investigated for various beam coupling impedances. The theory is applied to the Fermilab Recycler Ring.

  12. Time scaling relations for step bunches from models with step-step attractions (B1-type models)

    NASA Astrophysics Data System (ADS)

    Krasteva, A.; Popova, H.; Akutsu, N.; Tonchev, V.

    2016-03-01

    The step bunching instability is studied in three models of step motion defined in terms of ordinary differential equations (ODE). The source of instability in these models is step-step attraction, it is opposed by step-step repulsion and the developing surface patterns reflect the balance between the two. The first model, TE2, is a generalization of the seminal model of Tersoff et al. (1995). The second one, LW2, is obtained from the model of Liu and Weeks (1998) using the repulsions term to construct the attractions one with retained possibility to change the parameters in the two independently. The third model, MM2, is a minimal one constructed ad hoc and in this article it plays a central role. New scheme for scaling the ODE in vicinal studies is applied towards deciphering the pre-factors in the time-scaling relations. In all these models the patterned surface is self-similar - only one length scale is necessary to describe its evolution (hence B1-type). The bunches form finite angles with the terraces. Integrating numerically the equations for step motion and changing systematically the parameters we obtain the overall dependence of time-scaling exponent β on the power of step-step attractions p as β = 1/(3+p) for MM2 and hypothesize based on restricted set of data that it is β = 1/(5+p) for LW2 and TE2.

  13. Measuring Thermodynamic Length

    SciTech Connect

    Crooks, Gavin E

    2007-09-07

    Thermodynamic length is a metric distance between equilibrium thermodynamic states. Among other interesting properties, this metric asymptotically bounds the dissipation induced by a finite time transformation of a thermodynamic system. It is also connected to the Jensen-Shannon divergence, Fisher information, and Rao's entropy differential metric. Therefore, thermodynamic length is of central interestin understanding matter out of equilibrium. In this Letter, we will consider how to denethermodynamic length for a small system described by equilibrium statistical mechanics and how to measure thermodynamic length within a computer simulation. Surprisingly, Bennett's classic acceptance ratio method for measuring free energy differences also measures thermodynamic length.

  14. Stability of higher-order longitudinal modes in a bunched beam without mode coupling

    SciTech Connect

    Satoh, K.

    1981-05-01

    The theory of longitudinal instabilities of bunched beams was proposed by F. Sacherer. Starting from the Vlasov equation, he derived the integral equation for the perturbed distribution function. While the general method to solve the integral equation was given by Sacherer, a number of other papers discussing longitudinal bunched beam instability have also been published. Here we want to propose another formalism with which we can treat the integral equation without mode coupling for the case of a Gaussian bunch. We then generalize the formalism for the other bunch distributions, and derive a practical method to analyze the instability for the case of a parabolic bunch. While the solution of the Sacherer equation that we find is not new, we present another approach to solve it. Since the integral equation for the transverse instability is similar to that for the longitudinal instability, this formalism is also useful for the transverse case. 12 figs., 4 figs.

  15. Performance of the RF bunch coalescing system in the Fermilab main ring

    SciTech Connect

    Martin, P.; Meisner, K.; Miller, H.; Nicholls, G.; Wildman, D.

    1985-10-01

    Both the proton and antiproton bunches which will collide in the Tevatron have longitudinal emittance greater than can be accelerated by the Main Ring from 8 GeV without large loss and emittance growth. To circumvent this restriction, several bunches of smaller intensity are accelerated in the Main Ring to an energy of 150 GeV where these bunches are coalesced into a single high-intensity bunch. Coalescing has possible uses in other applications. Applications could be any time that a beam which has been accelerated by an rf system of one frequency must be captured by another rf frequency. The bunch coalescing system is described and some preliminary coalescing results are shown.

  16. An Electron Bunch Compression Scheme for a Superconducting Radio Frequency Linear Accelerator Driven Light Source

    SciTech Connect

    C. Tennant, S.V. Benson, D. Douglas, P. Evtushenko, R.A. Legg

    2011-09-01

    We describe an electron bunch compression scheme suitable for use in a light source driven by a superconducting radio frequency (SRF) linac. The key feature is the use of a recirculating linac to perform the initial bunch compression. Phasing of the second pass beam through the linac is chosen to de-chirp the electron bunch prior to acceleration to the final energy in an SRF linac ('afterburner'). The final bunch compression is then done at maximum energy. This scheme has the potential to circumvent some of the most technically challenging aspects of current longitudinal matches; namely transporting a fully compressed, high peak current electron bunch through an extended SRF environment, the need for a RF harmonic linearizer and the need for a laser heater. Additional benefits include a substantial savings in capital and operational costs by efficiently using the available SRF gradient.

  17. High power THz source based on coherent radiation of picosecond relativistic electron bunch train

    NASA Astrophysics Data System (ADS)

    You, Yan; Yan, LiXin; Du, YingChao; Hua, JianFei; Huang, WenHui; Tang, ChuanXiang

    2011-12-01

    Tunable and compact high power terahertz (THz) radiation based on coherent radiation (CR) of the picosecond relativistic electron bunch train is under development at the Tsinghua accelerator lab. Coherent synchronization radiation (CSR) and coherent transition radiation (CTR) are researched based on an S-band compact electron linac, a bending magnet or a thin foil. The bunch train's form factors, which are the key factor of THz radiation, are analyzed by the PARMELA simulation. The effects of electron bunch trains under different conditions, such as the bunch number, bunch charges, micro-pulses inter-distance, and accelerating gradient of the gun are investigated separately in this paper. The optimal radiated THz power and spectra should take these factors as a whole into account.

  18. MICRO-BUNCHING OF THE AGS SLOW EXTRACTED BEAM FOR A RARE KAON DECAY SEARCH.

    SciTech Connect

    GLENN,J.; SIVERTZ,M.; CHIANG,I.; LAZARUS,D.; KOSCIELNIAK,S.

    2001-06-18

    The AGS Slow Extracted Beam (SEB) must be chopped with 250 ps bursts every 40 ns to permit time-of-flight (ToF) measurement of the secondary K{sup 0} beam. Standard techniques to produce this level of bunching would require excessive rf voltage, thus we have developed a ''Micro-Bunching'' technique of extracting the beam as it is forced between empty rf buckets. A specification of the required rf system will be given. Four-dimensional model simulations of particle dynamics for the planned rf and extraction systems will be shown. Simulations of previous tests along with the test measurements are also presented. Measurement of tight bunching requires dedicated instrumentation. The design of a detector system to measure bunch widths and the extinction factor between bunches will be given; considerations include the various particles produced and transported, timing precision and background.

  19. Dynamics of electron bunches at the laser-plasma interaction in the bubble regime

    NASA Astrophysics Data System (ADS)

    Maslov, V. I.; Svystun, O. M.; Onishchenko, I. N.; Tkachenko, V. I.

    2016-09-01

    The multi-bunches self-injection, observed in laser-plasma accelerators in the bubble regime, affects the energy gain of electrons accelerated by laser wakefield. However, understanding of dynamics of the electron bunches formed at laser-plasma interaction may be challenging. We present here the results of fully relativistic electromagnetic particle-in-cell (PIC) simulation of laser wakefield acceleration driven by a short laser pulse in an underdense plasma. The trapping and acceleration of three witness electron bunches by the bubble-like structures were observed. It has been shown that with time the first two witness bunches turn into drivers and contribute to acceleration of the last witness bunch.

  20. Particle Swarm Optimization with Dynamic Step Length

    NASA Astrophysics Data System (ADS)

    Cui, Zhihua; Cai, Xingjuan; Zeng, Jianchao; Sun, Guoji

    Particle swarm optimization (PSO) is a robust swarm intelligent technique inspired from birds flocking and fish schooling. Though many effective improvements have been proposed, however, the premature convergence is still its main problem. Because each particle's movement is a continuous process and can be modelled with differential equation groups, a new variant, particle swarm optimization with dynamic step length (PSO-DSL), with additional control coefficient- step length, is introduced. Then the absolute stability theory is introduced to analyze the stability character of the standard PSO, the theoretical result indicates the PSO with constant step length can not always be stable, this may be one of the reason for premature convergence. Simulation results show the PSO-DSL is effective.

  1. Much Ado about Microbunching: Coherent Bunching in High Brightness Electron Beams

    SciTech Connect

    Ratner, Daniel

    2011-05-01

    The push to provide ever brighter coherent radiation sources has led to the creation of correspondingly bright electron beams. With billions of electrons packed into normalized emittances (phase space) below one micron, collective effects may dominate both the preservation and use of such ultra-bright beams. An important class of collective effects is due to density modulations within the bunch, or microbunching. Microbunching may be deleterious, as in the case of the Microbunching Instability (MBI), or it may drive radiation sources of unprecedented intensity, as in the case of Free Electron Lasers (FELs). In this work we begin by describing models of microbunching due to inherent beam shot noise, which sparks both the MBI as well as SLAC's Linac Coherent Light Source, the world's first hard X-ray laser. We first use this model to propose a mechanism for reducing the inherent beam shot noise as well as for predicting MBI effects. We then describe experimental measurements of the resulting microbunching at LCLS, including optical radiation from the MBI, as well as the first gain length and harmonic measurements from a hard X-ray FEL. In the final chapters, we describe schemes that use external laser modulations to microbunch light sources of the future. In these sections we describe coherent light source schemes for both both linacs and storage rings.

  2. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed.

  3. Emittance Correction in the 2006 ILC Bunch Compressor

    SciTech Connect

    Tenenbaum, P.; /SLAC

    2007-03-05

    A recent study [1] has indicated substantial potential emittance growth in the ILC bunch compressor due to quad misalignments, BPM misalignments, and pitches in the RF cavities. Table 1 summarizes several results from [1]. In this simulation, quad misalignments and cavity pitches are Gaussian distributed and are considered with respect to the nominal survey line; BPM misalignments are also Gaussian-distributed but are considered with respect to the quadrupole axis. It is assumed that the BPM offsets with respect to the quads are found in a previous quad-shunting BBA step which is not simulated. In this study we seek to repeat the studies documented above, and additionally to perform a study in which additional dispersion bumps are used to further reduce the projected emittance.

  4. Characterization of cellulose extracted from oil palm empty fruit bunch

    NASA Astrophysics Data System (ADS)

    Sisak, Muhammad Asri Abdul; Daik, Rusli; Ramli, Suria

    2015-09-01

    Recently, cellulose has been studied by many researchers due to its promising properties such as biodegradability, biocompatibility, hydrophilicity and robustness. Due to that it is applied in many fields such as paper, film, drug delivery, membranes, etc. Cellulose can be extracted from various plants while oil palm empty fruit bunch (OPEFB) is the one of its sources. In this study, cellulose was extracted by chemical treatments which involved the use of formic acid and hydrogen peroxide to remove hemicellulose and lignin components. Maximum yield was 43.22%. Based on the FT-IR spectra, the peak of wax (1735 cm-1), hemicellulose (1375 cm-1) and lignin (1248 cm-1 and 1037 cm-1) were not observed in extracted cellulose. TGA analysis showed that the extracted cellulose starts to thermally degrade at 340 °C. The SEM analysis suggested that the cellulose extracted from OPEFB was not much different from commercial cellulose.

  5. Linear Vlasov Analysis for Stability of a Bunched Beam

    SciTech Connect

    Warnock, R

    2004-08-12

    The authors study the linearized Vlasov equation for a bunched beam subject to an arbitrary wake function. Following Oide and Yokoya, the equation is reduced to an integral equation expressed in angle-action coordinates of the distorted potential well. Numerical solution of the equation as a formal eigenvalue problem leads to difficulties, because of singular eigenmodes from the incoherent spectrum. The authors rephrase the equation so that it becomes non-singular in the sense of operatory theory, and has only regular solutions for coherent modes. They report on a code that finds thresholds of instability by detecting zeros of the determinant of the system as they enter the upper-half frequency plane, upon increase of current. Results are compared with a time-domain integration of the nonlinear Vlasov equation with a realistic wake function for the SLC damping rings. There is close agreement between the two calculations.

  6. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  7. Effect of Reinforcement Shape and Fiber Treatment on the Mechanical Properties of Oil Palm Empty Fruit Bunch-Polyethylene Composites

    NASA Astrophysics Data System (ADS)

    Arif, M. F.; Yusoff, P. S. M. M.; Eng, K. K.

    2010-03-01

    High Density Polyethylene (HDPE) composites were fabricated using oil palm empty fruit bunch (EFB) as the reinforcing material. The effect of reinforcement shape on the tensile and flexural properties, that is 5 mm average length of short fiber and 325-400 μm size distribution of particulate filler have been studied. Overall, EFB short fiber-HDPE composites yield higher mechanical properties compared to EFB particulate-HDPE composites. For both types of composites, considerable improvement showed in tensile and flexural modulus. However, the tensile strength decreased with increase in EFB content. Attempts to improve these properties using alkali and two types of silane, namely γ-Methacryloxypropyltrimethoxysilane (MTS) and vinyltriethoxysilane (VTS) were described. It is found that both types of silane enhanced the mechanical properties of composites. MTS showed better tensile strength compared to VTS. However, only marginal improvement obtained from alkali treatments.

  8. Effect of Reinforcement Shape and Fiber Treatment on the Mechanical Properties of Oil Palm Empty Fruit Bunch-Polyethylene Composites

    SciTech Connect

    Arif, M. F.; Yusoff, P. S. M. M.; Eng, K. K.

    2010-03-11

    High Density Polyethylene (HDPE) composites were fabricated using oil palm empty fruit bunch (EFB) as the reinforcing material. The effect of reinforcement shape on the tensile and flexural properties, that is 5 mm average length of short fiber and 325-400 {mu}m size distribution of particulate filler have been studied. Overall, EFB short fiber-HDPE composites yield higher mechanical properties compared to EFB particulate-HDPE composites. For both types of composites, considerable improvement showed in tensile and flexural modulus. However, the tensile strength decreased with increase in EFB content. Attempts to improve these properties using alkali and two types of silane, namely gamma-Methacryloxypropyltrimethoxysilane (MTS) and vinyltriethoxysilane (VTS) were described. It is found that both types of silane enhanced the mechanical properties of composites. MTS showed better tensile strength compared to VTS. However, only marginal improvement obtained from alkali treatments.

  9. Beam Test of Multi-Bunch Energy Compensation System in the Accelerator Test Facility at KEK

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Shigeru; Hayano, Hitoshi; Kubo, Kiyoshi; Korhonen, Timo; Nakamura, Shogo; Naito, Takashi; Oide, Katsunobu; Takeda, Seishi; Terunuma, Nobuhiro; Urakawa, Junji

    2004-08-01

    A beam test of the multi-bunch energy compensation system (ECS) was performed using the Δ F method with the 2856± 4.327 MHz accelerating structures in the accelerator test facility (ATF) at KEK. The 1.54 GeV S-band linac of the ATF was designed to accelerate a multi-bunch beam that consists of 20 bunches with 2.8 ns spacing. The multi-bunch beam with 2.0× 1010 electrons/bunch has an energy deviation of about 8.5% at the end of the linac due to transient beam loading without ECS. The ATF linac is the injector of the ATF damping ring (DR), whose energy acceptance is ± 0.5%. The beam loading compensation system is necessary in the ATF linac for the successful injection of multi-bunch into DR. The rf system of the linac consists of 8 regular rf units with the SLED system and 2 ECS rf units without the SLED system. The accelerating structures of the regular units are driven at 2856 MHz and the 2 ECS structures are operated with slightly different rf frequencies of 2856± 4.327 MHz. In the beam test, we have succeeded in compressing the multi-bunch energy spread within the energy acceptance of the DR using Δ F ECS. The principle of the beam loading compensation system of KEK-ATF and the experimental results are described in this paper.

  10. Capture, acceleration and bunching rf systems for the MEIC booster and storage rings

    SciTech Connect

    Wang, Shaoheng; Guo, Jiquan; Lin, Fanglei; Morozov, Vasiliy; Rimmer, Robert A.; Wang, Haipeng; Zhang, Yuhong

    2015-09-01

    The Medium-energy Electron Ion Collider (MEIC), proposed by Jefferson Lab, consists of a series of accelerators. The electron collider ring accepts electrons from CEBAF at energies from 3 to 12 GeV. Protons and ions are delivered to a booster and captured in a long bunch before being ramped and transferred to the ion collider ring. The ion collider ring accelerates a small number of long ion bunches to colliding energy before they are re-bunched into a high frequency train of very short bunches for colliding. Two sets of low frequency RF systems are needed for the long ion bunch energy ramping in the booster and ion collider ring. Another two sets of high frequency RF cavities are needed for re-bunching in the ion collider ring and compensating synchrotron radiation energy loss in the electron collider ring. The requirements from energy ramping, ion beam bunching, electron beam energy compensation, collective effects, beam loading and feedback capability, RF power capability, etc. are presented. The preliminary designs of these RF systems are presented. Concepts for the baseline cavity and RF station configurations are described, as well as some options that may allow more flexible injection and acceleration schemes.

  11. Quantum theory allows for absolute maximal contextuality

    NASA Astrophysics Data System (ADS)

    Amaral, Barbara; Cunha, Marcelo Terra; Cabello, Adán

    2015-12-01

    Contextuality is a fundamental feature of quantum theory and a necessary resource for quantum computation and communication. It is therefore important to investigate how large contextuality can be in quantum theory. Linear contextuality witnesses can be expressed as a sum S of n probabilities, and the independence number α and the Tsirelson-like number ϑ of the corresponding exclusivity graph are, respectively, the maximum of S for noncontextual theories and for the theory under consideration. A theory allows for absolute maximal contextuality if it has scenarios in which ϑ /α approaches n . Here we show that quantum theory allows for absolute maximal contextuality despite what is suggested by the examination of the quantum violations of Bell and noncontextuality inequalities considered in the past. Our proof is not constructive and does not single out explicit scenarios. Nevertheless, we identify scenarios in which quantum theory allows for almost-absolute-maximal contextuality.

  12. Absolute calibration in vivo measurement systems

    SciTech Connect

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs.

  13. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record

  14. Quantitative standards for absolute linguistic universals.

    PubMed

    Piantadosi, Steven T; Gibson, Edward

    2014-01-01

    Absolute linguistic universals are often justified by cross-linguistic analysis: If all observed languages exhibit a property, the property is taken to be a likely universal, perhaps specified in the cognitive or linguistic systems of language learners and users. In many cases, these patterns are then taken to motivate linguistic theory. Here, we show that cross-linguistic analysis will very rarely be able to statistically justify absolute, inviolable patterns in language. We formalize two statistical methods--frequentist and Bayesian--and show that in both it is possible to find strict linguistic universals, but that the numbers of independent languages necessary to do so is generally unachievable. This suggests that methods other than typological statistics are necessary to establish absolute properties of human language, and thus that many of the purported universals in linguistics have not received sufficient empirical justification.

  15. Absolute photoacoustic thermometry in deep tissue.

    PubMed

    Yao, Junjie; Ke, Haixin; Tai, Stephen; Zhou, Yong; Wang, Lihong V

    2013-12-15

    Photoacoustic thermography is a promising tool for temperature measurement in deep tissue. Here we propose an absolute temperature measurement method based on the dual temperature dependences of the Grüneisen parameter and the speed of sound in tissue. By taking ratiometric measurements at two adjacent temperatures, we can eliminate the factors that are temperature irrelevant but difficult to correct for in deep tissue. To validate our method, absolute temperatures of blood-filled tubes embedded ~9 mm deep in chicken tissue were measured in a biologically relevant range from 28°C to 46°C. The temperature measurement accuracy was ~0.6°C. The results suggest that our method can be potentially used for absolute temperature monitoring in deep tissue during thermotherapy.

  16. Molecular iodine absolute frequencies. Final report

    SciTech Connect

    Sansonetti, C.J.

    1990-06-25

    Fifty specified lines of {sup 127}I{sub 2} were studied by Doppler-free frequency modulation spectroscopy. For each line the classification of the molecular transition was determined, hyperfine components were identified, and one well-resolved component was selected for precise determination of its absolute frequency. In 3 cases, a nearby alternate line was selected for measurement because no well-resolved component was found for the specified line. Absolute frequency determinations were made with an estimated uncertainty of 1.1 MHz by locking a dye laser to the selected hyperfine component and measuring its wave number with a high-precision Fabry-Perot wavemeter. For each line results of the absolute measurement, the line classification, and a Doppler-free spectrum are given.

  17. High intensity single bunch operation with heavy periodic transient beam loading in wide band rf cavities

    NASA Astrophysics Data System (ADS)

    Tamura, Fumihiko; Hotchi, Hideaki; Schnase, Alexander; Yoshii, Masahito; Yamamoto, Masanobu; Ohmori, Chihiro; Nomura, Masahiro; Toda, Makoto; Shimada, Taihei; Hasegawa, Katsushi; Hara, Keigo

    2015-09-01

    The rapid cycling synchrotron (RCS) in the Japan Proton Accelerator Research Complex (J-PARC) was originally designed to accelerate two high intensity bunches, while some of neutron experiments in the materials and life science experimental facility and a muon experiment using main ring beams require a single bunch operation mode, in which one of the two rf buckets is filled and the other is empty. The beam intensity in the single bunch operation has been limited by longitudinal beam losses due to the rf bucket distortions by the wake voltage of the odd harmonics (h =1 ,3 ,5 ) in the wide band magnetic alloy cavities. We installed an additional rf feedforward system to compensate the wake voltages of the odd harmonics (h =1 ,3 ,5 ). The additional system has a similar structure as the existing feedforward system for the even harmonics (h =2 ,4 ,6 ). We describe the function of the feedforward system for the odd harmonics, the commissioning methodology, and the commissioning results. The longitudinal beam losses during the single bunch acceleration disappeared with feedforward for the odd harmonics. We also confirmed that the beam quality in the single bunch acceleration are similar to that of the normal operation with two bunches. Thus, high intensity single bunch acceleration at the intensity of 2.3 ×1013 protons per bunch has been achieved in the J-PARC RCS. This article is a follow-up of our previous article, Phys. Rev. ST Accel. Beams 14, 051004 (2011). The feedforward system extension for single bunch operation was successful.

  18. Absolute Stability And Hyperstability In Hilbert Space

    NASA Technical Reports Server (NTRS)

    Wen, John Ting-Yung

    1989-01-01

    Theorems on stabilities of feedback control systems proved. Paper presents recent developments regarding theorems of absolute stability and hyperstability of feedforward-and-feedback control system. Theorems applied in analysis of nonlinear, adaptive, and robust control. Extended to provide sufficient conditions for stability in system including nonlinear feedback subsystem and linear time-invariant (LTI) feedforward subsystem, state space of which is Hilbert space, and input and output spaces having finite numbers of dimensions. (In case of absolute stability, feedback subsystem memoryless and possibly time varying. For hyperstability, feedback system dynamical system.)

  19. Transverse modes and instabilities of a bunched beam with space charge and resistive wall impedance

    SciTech Connect

    Balbekov, V.; /Fermilab

    2011-11-01

    Transverse instability of a bunch in a ring accelerator is considered with space charge and wakefield taken into account. It is assumed that space charge tune shift significantly exceeds the synchrotron tune. Bunch spectrum, instability growth rate, and effects of chromaticity are studied with different bunch and wake forms. Fast instability caused by coupling of transverse modes is studied in detail. It is shown that, for monotonic wakes, the transverse mode coupling instability is possible only with a certain sign of the wake. Its threshold and growth rate are calculated precisely over a wide range of parameters.

  20. Generation and characterization of electron bunches with ramped current profile at the FLASH facility

    SciTech Connect

    Piot, P.; Behrens, C.; Gerth, C.; Lemery, F.; Mihalcea, D.; Vogt, M.; /DESY

    2011-09-01

    We report on the successful generation of electron bunches with current prof les that have a quasi-linear dependency on the longitudinal coordinate. The technique relies on impressing nonlinear correlations in the longitudinal phase space using a linac operating at two frequencies (1.3 and 3.9 GHz) and a bunch compressor. Data taken for various accelerator settings demonstrate the versatility of the method. The produced bunches have parameters well matched to drive high-gradient accelerating field with enhanced transformer ratio in beam-driven accelerators based on sub-mm-sizes dielectric or plasma structures.

  1. An AGS experiment to test bunching for the proton driver of the muon collider.

    SciTech Connect

    Norem, J.

    1998-04-27

    The proton driver for the muon collider must produce short pulses of protons in order to facilitate muon cooling and operation with polarized beams. In order to test methods of producing these bunches they have operated the AGS near transition and studied procedures which involved moving the transition energy {gamma} to the beam energy. They were able to produce stable bunches with RMS widths of {sigma} = 2.2-2.7 ns for longitudinal bunch areas of {minus}1.5 V-s, in addition to making measurements of the lowest two orders of the momentum compaction factor.

  2. Experiment and simulations of sub-ps electron bunch train generation at Fermilab photoinjectors

    SciTech Connect

    Sun, Y.-E; Church, M.; Piot, P.; Prokop, C.R.; /Fermilab /Northern Illinois U.

    2011-10-01

    Recently the generation of electron bunch trains with sub-picosecond time structure has been experimentally demonstrated at the A0 photoinjector of Fermilab using a transverse-longitudinal phase-space exchange beamline. The temporal profile of the bunch train can be easily tuned to meet the requirements of the applications of modern accelerator beams. In this paper we report the A0 bunch-train experiment and explore numerically the possible extension of this technique to shorter time scales at the Fermilab SRF Accelerator Test Facility, a superconducting linear electron accelerator currently under construction in the NML building.

  3. Distortion of Crabbed Bunch Due to Electron Cloud and Global Crabbing

    SciTech Connect

    Wang, L.; Raubenheimer, T.O.; Cai, Y.; /SLAC

    2008-08-01

    Crab cavities may be used improve the luminosity in colliding beam colliders with crab crossing. In a global crab crossing correction, only one crab cavity is installed in each ring and the crab cavities generate a horizontally titled bunch oscillating around the ring. The electron cloud in positively charged rings may distort the crabbed bunch and cause the luminosity drop. This paper briefly estimates the distortion of positron bunch due to the electron cloud with global crab and estimates the effect in the KEKB and possible LHC upgrades.

  4. Quantitative study of the trapped particle bunching instability in Langmuir waves

    SciTech Connect

    Hara, Kentaro Boyd, Iain D.; Chapman, Thomas; Joseph, Ilon; Berger, Richard L.; Banks, Jeffrey W.; Brunner, Stephan

    2015-02-15

    The bunching instability of particles trapped in Langmuir waves is studied using Vlasov simulations. A measure of particle bunching is defined and used to extract the growth rate from numerical simulations, which are compared with theory [Dodin et al., Phys. Rev. Lett. 110, 215006 (2013)]. In addition, the general theory of trapped particle instability in 1D is revisited and a more accurate description of the dispersion relation is obtained. Excellent agreement between numerical and theoretical predictions of growth rates of the bunching instability is shown over a range of parameters.

  5. Modes on a short SPEAR bunch as observed with a streak camera

    SciTech Connect

    Sabersky, A.P.; Donald, M.H.R.

    1981-02-01

    The longitudinal structure of electron bunches in the storage ring SPEAR on a single pass was studied with time resolution approx. 10 ps. The measuring instrument used is an image-converter streak camera, a specialized device heretofore used mostly by laser workers. Unexpectedly, under some conditions the charge in a single RF bucket breaks up into two short sub-bunches which seem to rotate about a common center in energy-phase space. No evidence is seen for other, higher-frequency structure on the bunches.

  6. Computer Algorithm for Longitudinal Single Bunch Stability Study in a Storage Ring

    SciTech Connect

    Novokhatski, Sasha; /SLAC

    2005-06-22

    We propose a new method for simulation study of the nonlinear interaction of a single bunch and accelerator vacuum chamber elements. We numerically solve the Fokker-Planck time-domain equation for the phase-space distribution function. Original implicit finite-difference scheme is used. The method is very stable and free of the ''numerical'' diffusion, distortion, or modulation. We introduce quasi-Green function to describe the wake field potentials of bunches of any shape. This allows to get high definition resolution of the bunch particle distribution. We present results and comparison for different kind of instabilities.

  7. Temporal Characterization of Femtosecond Laser-Plasma-AcceleratedElectron Bunches using THz Radiation

    SciTech Connect

    van Tilborg, J.; Schroeder, C.B.; Filip, C.V.; Toth, Cs.; Geddes,C.G.R.; Fubiani, G.; Huber, R.; Kaindl, R.A.; Esarey, E.; Leemans, W.P.

    2005-07-12

    The temporal pro le of relativistic laser-plasma-acceleratedelectron bunches has been characterized. Coherent transition radiation atTHz frequencies, emitted at the plasma-vacuum boundary, is measuredthrough electro-optic sampling. The data indicates that THz radiation isemitted by a skewed bunch with a sub-50 fs rise time and a ~; 600 fs tail(half-width-at-half-maximum), consistent with ballistic debunching of 100percent-energy-spread beams. The measurement demonstrates bothshot-to-shot stability of the laser-plasma accelerator and femtosecondsynchronization between bunch and probe beam.

  8. Absolute Points for Multiple Assignment Problems

    ERIC Educational Resources Information Center

    Adlakha, V.; Kowalski, K.

    2006-01-01

    An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…

  9. Absolute partial photoionization cross sections of ozone.

    SciTech Connect

    Berkowitz, J.; Chemistry

    2008-04-01

    Despite the current concerns about ozone, absolute partial photoionization cross sections for this molecule in the vacuum ultraviolet (valence) region have been unavailable. By eclectic re-evaluation of old/new data and plausible assumptions, such cross sections have been assembled to fill this void.

  10. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  11. Teaching Absolute Value Inequalities to Mature Students

    ERIC Educational Resources Information Center

    Sierpinska, Anna; Bobos, Georgeana; Pruncut, Andreea

    2011-01-01

    This paper gives an account of a teaching experiment on absolute value inequalities, whose aim was to identify characteristics of an approach that would realize the potential of the topic to develop theoretical thinking in students enrolled in prerequisite mathematics courses at a large, urban North American university. The potential is…

  12. Solving Absolute Value Equations Algebraically and Geometrically

    ERIC Educational Resources Information Center

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  13. Increasing Capacity: Practice Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Dodds, Pennie; Donkin, Christopher; Brown, Scott D.; Heathcote, Andrew

    2011-01-01

    In most of the long history of the study of absolute identification--since Miller's (1956) seminal article--a severe limit on performance has been observed, and this limit has resisted improvement even by extensive practice. In a startling result, Rouder, Morey, Cowan, and Pfaltz (2004) found substantially improved performance with practice in the…

  14. Absolute Radiometric Calibration Of The Thematic Mapper

    NASA Astrophysics Data System (ADS)

    Slater, P. N.; Biggar, S. F.; Holm, R. G.; Jackson, R. D.; Mao, Y.; Moran, M. S.; Palmer, J. M.; Yuan, B.

    1986-11-01

    The results are presented of five in-flight absolute radiometric calibrations, made in the period July 1984 to November 1985, at White Sands, New Mexico, of the solar reflective bands of the Landsat-5 Thematic Mapper (TM) . The 23 bandcalibrations made on the five dates show a ± 2.8% RMS variation from the mean as a percentage of the mean.

  15. On Relative and Absolute Conviction in Mathematics

    ERIC Educational Resources Information Center

    Weber, Keith; Mejia-Ramos, Juan Pablo

    2015-01-01

    Conviction is a central construct in mathematics education research on justification and proof. In this paper, we claim that it is important to distinguish between absolute conviction and relative conviction. We argue that researchers in mathematics education frequently have not done so and this has lead to researchers making unwarranted claims…

  16. Self Consistent Monte Carlo Method to Study CSR Effects in Bunch Compressors

    SciTech Connect

    Warnock, R.L.; Bassi, G.; Ellison, J.A.; Heinemann, K.A.; /New Mexico U.

    2008-01-08

    In this paper we report on the results of a self-consistent calculation of CSR effects on a particle bunch moving through the benchmark Zeuthen bunch compressors. The theoretical framework is based on a 4D Vlasov-Maxwell approach including shielding from the vacuum chamber. We calculate the fields in the lab frame, where time is the independent variable, and evolve the phase space density/points in the beam frame, where arc length, s, along a reference orbit, is the independent variable. Some details are given in [2], where we also discuss three approaches, the unperturbed source model (UPS), the self consistent Monte Carlo (SCMC) method and the method of local characteristics. Results for the UPS have been presented for 5 GeV before [3], here we compare them with our new results from the SCMC and study the 500MeV case. Our work using the method of characteristics is in progress. The SCMC algorithm begins by randomly generating an initial ensemble of beam frame phase space points according to a given initial phase space density. The algorithm then reduces to laying out one arc length step. Assume that at arc length s we know the location of the phase space points and the history of the source prior to s. We then (1) create a smooth representation of the lab frame charge and current densities, {rho}{sub L} and J{sub L}, (2) calculate the fields at s from the history of {rho}{sub L} and J{sub L}, and (3) move the beam frame phase space points according to the beam frame equations of motion. This is then iterated. The UPS calculation is similar except the fields are calculated from a function of s computed a priori from the beam frame equations of motion without the self-fields. The phase space points are then evolved according to the equations of motion with these ''unperturbed'' fields. In the UPS we use a Gaussian initial density which evolves under the linear beam frame equations as a Gaussian. This gives us an analytic formula for the source, which significantly

  17. Simulation of absolute amplitudes of ultrasound signals using equivalent circuits.

    PubMed

    Johansson, Jonny; Martinsson, Pär-Erik; Delsing, Jerker

    2007-10-01

    Equivalent circuits for piezoelectric devices and ultrasonic transmission media can be used to cosimulate electronics and ultrasound parts in simulators originally intended for electronics. To achieve efficient system-level optimization, it is important to simulate correct, absolute amplitude of the ultrasound signal in the system, as this determines the requirements on the electronics regarding dynamic range, circuit noise, and power consumption. This paper presents methods to achieve correct, absolute amplitude of an ultrasound signal in a simulation of a pulse-echo system using equivalent circuits. This is achieved by taking into consideration loss due to diffraction and the effect of the cable that connects the electronics and the piezoelectric transducer. The conductive loss in the transmission line that models the propagation media of the ultrasound pulse is used to model the loss due to diffraction. Results show that the simulated amplitude of the echo follows measured values well in both near and far fields, with an offset of about 10%. The use of a coaxial cable introduces inductance and capacitance that affect the amplitude of a received echo. Amplitude variations of 60% were observed when the cable length was varied between 0.07 m and 2.3 m, with simulations predicting similar variations. The high precision in the achieved results show that electronic design and system optimization can rely on system simulations alone. This will simplify the development of integrated electronics aimed at ultrasound systems. PMID:18019234

  18. Generation of powerful subnanosecond microwave pulses by intense electron bunches moving in a periodic backward wave structure in the superradiative regime.

    PubMed

    Ginzburg, N S; Novozhilova, N Y; Zotova, I V; Sergeev, A S; Peskov, N Y; Phelps, A D; Wiggins, S M; Cross, A W; Ronald, K; He, W; Shpak, V G; Yalandin, M I; Shunailov, S A; Ulmaskulov, M R; Tarakanov, V P

    1999-09-01

    Experimental results of the observation of coherent stimulated radiation from subnanosecond electron bunches moving through a periodic waveguide and interacting with a backward propagating wave are presented. The subnanosecond microwave pulses in Ka and W bands were generated with repetition frequencies of up to 25 Hz. The mechanism of microwave pulse generation was associated with self-bunching, and the mutual influence of different parts of the electron pulse due to slippage of the wave with respect to the electrons; this can be interpreted as superradiance. The illumination of a panel of neon bulbs resulted in a finely structured pattern corresponding to the excitation of the TM01 mode. Observation of rf breakdown of ambient air, as well as direct measurements by hot-carrier germanium detectors, leads to an estimate of the absolute peak power as high as 60 MW for the 300-ps pulses at 38 GHz. These results are compared with numerical simulations. The initial observation of 75-GHz, 10-15-MW radiation pulses with a duration of less than 150 ps is also reported.

  19. Reshape of the bunch-by-bunch BPM signal to turn-by-turn matrix during the fast rf frequency sweeping time in Booster

    SciTech Connect

    Yang, Xi; Ankenbrandt, Charles M.; Lackey, James; Scarpine, Vic; /Fermilab

    2004-11-01

    The bunch-by-bunch BPM signal array has to be reshaped into a turn-by-turn (TBT) matrix in order to make the TBT beam position information of a single bunch available for further data analysis, such as via the Fourier transform to obtain the synchrotron tune and betatron tune, etc. Since the RF frequency sweeps more than 10 MHz in the first 8 ms of a Booster cycle, the revolution time decreases more than 20%. The number of data points for each Booster turn (BT) should be varied in the same pace with the revolution time since the sampling rate of a digital oscilloscope is usually fixed. And this can be done by pre-determining the relationship between the RF frequency and the time in a cycle via the curve fit.

  20. Myofilament length dependent activation

    SciTech Connect

    de Tombe, Pieter P.; Mateja, Ryan D.; Tachampa, Kittipong; Mou, Younss Ait; Farman, Gerrie P.; Irving, Thomas C.

    2010-05-25

    The Frank-Starling law of the heart describes the interrelationship between end-diastolic volume and cardiac ejection volume, a regulatory system that operates on a beat-to-beat basis. The main cellular mechanism that underlies this phenomenon is an increase in the responsiveness of cardiac myofilaments to activating Ca{sup 2+} ions at a longer sarcomere length, commonly referred to as myofilament length-dependent activation. This review focuses on what molecular mechanisms may underlie myofilament length dependency. Specifically, the roles of inter-filament spacing, thick and thin filament based regulation, as well as sarcomeric regulatory proteins are discussed. Although the 'Frank-Starling law of the heart' constitutes a fundamental cardiac property that has been appreciated for well over a century, it is still not known in muscle how the contractile apparatus transduces the information concerning sarcomere length to modulate ventricular pressure development.

  1. Length Paradox in Relativity

    ERIC Educational Resources Information Center

    Martins, Roberto de A.

    1978-01-01

    Describes a thought experiment using a general analysis approach with Lorentz transformations to show that the apparent self-contradictions of special relativity concerning the length-paradox are really non-existant. (GA)

  2. Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source

    NASA Astrophysics Data System (ADS)

    Xin, T.; Brutus, J. C.; Belomestnykh, Sergey A.; Ben-Zvi, I.; Boulware, C. H.; Grimm, T. L.; Hayes, T.; Litvinenko, Vladimir N.; Mernick, K.; Narayan, G.; Orfin, P.; Pinayev, I.; Rao, T.; Severino, F.; Skaritka, J.; Smith, K.; Than, R.; Tuozzolo, J.; Wang, E.; Xiao, B.; Xie, H.; Zaltsman, A.

    2016-09-01

    High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers. Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory to produce high-brightness and high-bunch-charge bunches for the coherent electron cooling proof-of-principle experiment. The gun utilizes a quarter-wave resonator geometry for assuring beam dynamics and uses high quantum efficiency multi-alkali photocathodes for generating electrons.

  3. Short electron bunch generation using single-cycle ultrafast electron guns

    NASA Astrophysics Data System (ADS)

    Fallahi, Arya; Fakhari, Moein; Yahaghi, Alireza; Arrieta, Miguel; Kärtner, Franz X.

    2016-08-01

    We introduce a solution for producing ultrashort (˜fs ) high charge (˜pC ) from ultracompact guns utilizing single-cycle THz pulses. We show that the readily available THz pulses with energies as low as 20 μ J are sufficient to generate multi-10 keV electron bunches. Moreover, it is demonstrated that THz energies of 2 mJ are sufficient to generate relativistic electron bunches with higher than 2 MeV energy. The high acceleration gradients possible in the structures provide 30 fs electron bunches at 30 keV energy and 45 fs bunches at 2 MeV energy. These structures will underpin future devices for strong field THz physics in general and miniaturized electron guns, in which the high fields combined with the short pulse duration enable electron beams with ultrahigh brightness.

  4. Synthesis and Electrochemical Sensing Toward Heavy Metals of Bunch-like Bismuth Nanostructures

    PubMed Central

    2010-01-01

    Large-scale bunch-like bismuth (Bi) nanostructures were the first time to be synthesized via two-step electrochemical deposition. The growth mechanism of the nanostructures was discussed. Such a designed bunch-like Bi electrode has high sensitivity to detect the heavy metal ions due to its unique three-dimensional structures and strong ability of adsorbing the heavy metal ions. The bunch-like Bi electrode’s detection of heavy metals was statically performed using anodic stripping voltammetry (ASV). The detection in the Pb(II) concentration range of 2.5–50 μg/l was also performed. Based on the experimental results, this bunch-like Bi electrode can be considered as an interesting alternative to common mercury electrodes and bismuth film electrodes for possible use in electrochemical studies and electroanalytical applications. PMID:20672072

  5. Electron bunch profile reconstruction based on phase-constrained iterative algorithm

    NASA Astrophysics Data System (ADS)

    Bakkali Taheri, F.; Konoplev, I. V.; Doucas, G.; Baddoo, P.; Bartolini, R.; Cowley, J.; Hooker, S. M.

    2016-03-01

    The phase retrieval problem occurs in a number of areas in physics and is the subject of continuing investigation. The one-dimensional case, e.g., the reconstruction of the temporal profile of a charged particle bunch, is particularly challenging and important for particle accelerators. Accurate knowledge of the longitudinal (time) profile of the bunch is important in the context of linear colliders, wakefield accelerators and for the next generation of light sources, including x-ray SASE FELs. Frequently applied methods, e.g., minimal phase retrieval or other iterative algorithms, are reliable if the Blaschke phase contribution is negligible. This, however, is neither known a priori nor can it be assumed to apply to an arbitrary bunch profile. We present a novel approach which gives reproducible, most-probable and stable reconstructions for bunch profiles (both artificial and experimental) that would otherwise remain unresolved by the existing techniques.

  6. Role of multiphoton bunching in high-order ghost imaging with thermal light sources

    SciTech Connect

    Liu Qian; Chen Xihao; Luo Kaihong; Wu Lingan; Wu Wei

    2009-05-15

    The intrinsic higher-order correlation of intensities which gives a measure of 'pure' correlations among photons (corresponding to multiphoton bunching) is investigated with regard to ghost imaging with thermal light. The synchronous detection of the same light field by all reference detectors, which is a necessary condition for achieving an Nth-order ghost image based on N-photon bunching, is discussed. Furthermore, it is found that the enhanced high visibility of Nth-order ghost imaging is a consequence of the contribution of N-photon bunching, which is not a small value but is equal to the sum of all contributions from (N-1)-photon bunching. These results differ from those obtained by certain other groups.

  7. Electron bunch structure in energy recovery linac with high-voltage dc photoelectron gun

    NASA Astrophysics Data System (ADS)

    Saveliev, Y. M.; Jackson, F.; Jones, J. K.; McKenzie, J. W.

    2016-09-01

    The internal structure of electron bunches generated in an injector line with a dc photoelectron gun is investigated. Experiments were conducted on the ALICE (accelerators and lasers in combined experiments) energy recovery linac at Daresbury Laboratory. At a relatively low dc gun voltage of 230 kV, the bunch normally consisted of two beamlets with different electron energies, as well as transverse and longitudinal characteristics. The beamlets are formed at the head and the tail of the bunch. At a higher gun voltage of 325 kV, the beam substructure is much less pronounced and could be observed only at nonoptimal injector settings. Experiments and computer simulations demonstrated that the bunch structure develops during the initial beam acceleration in the superconducting rf booster cavity and can be alleviated either by increasing the gun voltage to the highest possible level or by controlling the beam acceleration from the gun voltage in the first accelerating structure.

  8. Measurement of Sub-Picosecond Electron Bunches via Electro-Optic Sampling of Coherent Transition Radiation

    SciTech Connect

    Maxwell, Timothy John

    2012-01-01

    Future collider applications as well as present high-gradient laser plasma wakefield accelerators and free-electron lasers operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. We present results on the single-shot electro-optic spectral decoding of coherent transition radiation from bunches generated at the Fermilab A0 photoinjector laboratory. A longitudinal double-pulse modulation of the electron beam is also realized by transverse beam masking followed by a transverse-to-longitudinal phase-space exchange beamline. Live profile tuning is demonstrated by upstream beam focusing in conjunction with downstream monitoring of single-shot electro-optic spectral decoding of the coherent transition radiation.

  9. Noninvasive Laser Probing of Ultrashort Single Electron Bunches for Accelerator And Light Source Development

    SciTech Connect

    Bolton, P.R.; /SLAC

    2007-06-11

    Companion development of ultrafast electron beam diagnostics capable of noninvasively resolving single bunch detail is essential for the development of high energy, high brightness accelerator facilities and associated beam-based light source applications. Existing conventional accelerators can exhibit timing-jitter down to the 100 femtosecond level which exceeds their single bunch duration capability. At the other extreme, in relatively jitterless environments, laser-plasma wakefield accelerators (LWFA) can generate single electron bunches of duration estimated to be of order 10 femtoseconds making this setting a valuable testbed for development of broadband electron bunch diagnostics. Characteristics of electro-optic schemes and laser-induced reflectance are discussed with emphasis on temporal resolution.

  10. 132 ns Bunch Spacing in the Tevatron Proton-Antiproton Collider

    SciTech Connect

    Holmes, S.D.; Holt, J.; Johnstone, J.A.; Marriner, J.; Martens, M.; McGinnis, D.

    1994-12-01

    Following completion of the Fermilab Main Injector it is expected that the Tevatron proton-antiproton collider will be operating at a luminosity in excess of 5{times}10{sup 3l} cm{sup {minus}2} with 36 proton and antiproton bunches spaced at 396 nsec. At this luminosity, each of the experimental detectors will see approximately 1.3 interactions per crossing. Potential improvements to the collider low beta and rf systems could push the luminosity beyond 10{times}10{sup 3l} cm{sup {minus}2}sec{sup {minus}1}, resulting in more than three interactions per crossing if the bunch separation is left unchanged. This paper discusses issues related to moving to {approx}100 bunch operation, with bunch spacings of 132 nsec, in the Tevatron. Specific scenarios and associated hardware requirements are described.

  11. Self-Modulation Instability of a Long Proton Bunch in Plasmas

    SciTech Connect

    Kumar, Naveen; Pukhov, Alexander; Lotov, Konstantin

    2010-06-25

    An analytical model for the self-modulation instability of a long relativistic proton bunch propagating in uniform plasmas is developed. The self-modulated proton bunch resonantly excites a large amplitude plasma wave (wakefield), which can be used for acceleration of plasma electrons. Analytical expressions for the linear growth rates and the number of exponentiations are given. We use full three-dimensional particle-in-cell (PIC) simulations to study the beam self-modulation and transition to the nonlinear stage. It is shown that the self-modulation of the proton bunch competes with the hosing instability which tends to destroy the plasma wave. A method is proposed and studied through PIC simulations to circumvent this problem, which relies on the seeding of the self-modulation instability in the bunch.

  12. Editorial: Redefining Length

    SciTech Connect

    Sprouse, Gene D.

    2011-07-15

    Technological changes have moved publishing to electronic-first publication where the print version has been relegated to simply another display mode. Distribution in HTML and EPUB formats, for example, changes the reading environment and reduces the need for strict pagination. Therefore, in an effort to streamline the calculation of length, the APS journals will no longer use the printed page as the determining factor for length. Instead the journals will now use word counts (or word equivalents for tables, figures, and equations) to establish length; for details please see http://publish.aps.org/authors/length-guide. The title, byline, abstract, acknowledgment, and references will not be included in these counts allowing authors the freedom to appropriately credit coworkers, funding sources, and the previous literature, bringing all relevant references to the attention of readers. This new method for determining length will be easier for authors to calculate in advance, and lead to fewer length-associated revisions in proof, yet still retain the quality of concise communication that is a virtue of short papers.

  13. Equilibrium CO bond lengths

    NASA Astrophysics Data System (ADS)

    Demaison, Jean; Császár, Attila G.

    2012-09-01

    Based on a sample of 38 molecules, 47 accurate equilibrium CO bond lengths have been collected and analyzed. These ultimate experimental (reEX), semiexperimental (reSE), and Born-Oppenheimer (reBO) equilibrium structures are compared to reBO estimates from two lower-level techniques of electronic structure theory, MP2(FC)/cc-pVQZ and B3LYP/6-311+G(3df,2pd). A linear relationship is found between the best equilibrium bond lengths and their MP2 or B3LYP estimates. These (and similar) linear relationships permit to estimate the CO bond length with an accuracy of 0.002 Å within the full range of 1.10-1.43 Å, corresponding to single, double, and triple CO bonds, for a large number of molecules. The variation of the CO bond length is qualitatively explained using the Atoms in Molecules method. In particular, a nice correlation is found between the CO bond length and the bond critical point density and it appears that the CO bond is at the same time covalent and ionic. Conditions which permit the computation of an accurate ab initio Born-Oppenheimer equilibrium structure are discussed. In particular, the core-core and core-valence correlation is investigated and it is shown to roughly increase with the bond length.

  14. Combined Use of Absolute and Differential Seismic Arrival Time Data to Improve Absolute Event Location

    NASA Astrophysics Data System (ADS)

    Myers, S.; Johannesson, G.

    2012-12-01

    Arrival time measurements based on waveform cross correlation are becoming more common as advanced signal processing methods are applied to seismic data archives and real-time data streams. Waveform correlation can precisely measure the time difference between the arrival of two phases, and differential time data can be used to constrain relative location of events. Absolute locations are needed for many applications, which generally requires the use of absolute time data. Current methods for measuring absolute time data are approximately two orders of magnitude less precise than differential time measurements. To exploit the strengths of both absolute and differential time data, we extend our multiple-event location method Bayesloc, which previously used absolute time data only, to include the use of differential time measurements that are based on waveform cross correlation. Fundamentally, Bayesloc is a formulation of the joint probability over all parameters comprising the multiple event location system. The Markov-Chain Monte Carlo method is used to sample from the joint probability distribution given arrival data sets. The differential time component of Bayesloc includes scaling a stochastic estimate of differential time measurement precision based the waveform correlation coefficient for each datum. For a regional-distance synthetic data set with absolute and differential time measurement error of 0.25 seconds and 0.01 second, respectively, epicenter location accuracy is improved from and average of 1.05 km when solely absolute time data are used to 0.28 km when absolute and differential time data are used jointly (73% improvement). The improvement in absolute location accuracy is the result of conditionally limiting absolute location probability regions based on the precise relative position with respect to neighboring events. Bayesloc estimates of data precision are found to be accurate for the synthetic test, with absolute and differential time measurement

  15. Synchrotron frequency spread independence of bunched-beam stochastic cooling at the Fermilab Recycler

    SciTech Connect

    Broemmelsiek, D.; Burov, Alexey V.; Nagaitsev, S.; Neuffer, D.; /Fermilab

    2005-11-01

    It is generally accepted that longitudinal stochastic cooling of bunched beams is not possible without a synchrotron frequency spread. Experiments in the Recycler storage ring (Fermilab) demonstrate the opposite: with an antiproton bunch in a parabolic potential well (no synchrotron frequency spread), the cooling was almost as efficient as in a trapezoidal potential well (with a relative synchrotron frequency spread of {approx} 100%). A possible explanation is that, at Recycler parameters, diffusion processes are sufficient to provide particle mixing.

  16. Coherent Synchrotron Radiation and Space Charge for a 1-D Bunch on an Arbitrary Planar Orbit

    SciTech Connect

    Warnock, R.L.; /SLAC

    2008-01-08

    Realistic modeling of coherent synchrotron radiation (CSR) and the space charge force in single-pass systems and rings usually requires at least a two-dimensional (2-D) description of the charge/current density of the bunch. Since that leads to costly computations, one often resorts to a 1-D model of the bunch for first explorations. This paper provides several improvements to previous 1-D theories, eliminating unnecessary approximations and physical restrictions.

  17. Longitudinal Bunch Shape Diagnostics With Coherent Radiation And a Transverse Deflecting Cavity at TTF2

    SciTech Connect

    Grimm, O.; Frohlich, L.; Klose, K.; Nagl, M.; Peters, O.; Rossbach, J.; Schlarb, H.; Emma, P.J.; McCormick, D.; Ross, M.; Smith, T.J.; /SLAC

    2005-08-04

    At the DESY TTF2 linear accelerator three special techniques to characterize the longitudinal charge distribution of the electron bunches that drive the free-electron laser are currently under study: electro-optical sampling, far-infrared spectral analysis of coherent radiation and the use of a transverse deflecting cavity to streak the bunch. The principles and implementations of the latter two are described in this paper. Details on electro-optical sampling can be found in [1].

  18. Effects of bunch density gradient in high-gain free-electron lasers.

    SciTech Connect

    Huang, Z.; Kim, K.-J.

    1999-09-01

    The authors investigate effects of the bunch density gradient in self-amplified spontaneous emission (SASE), including the role of coherent spontaneous emission (CSE) in the evolution of the free-electron laser (FEL) process. In the exponential gain regime, the authors solve the coupled Maxwell-Vlasov equations and extend the linear theory to a bunched beam with energy spread. A time-dependent, nonlinear simulation algorithm is used to study the CSE effect and the nonlinear evolution of the radiation pulse.

  19. Luminosity Variations Along Bunch Trains in PEP-II

    SciTech Connect

    Decker, F.J.; Boyes, M.; Colocho, W.S.; Novokhatski, A.; Sullivan, M.K.; Turner, J.L.; Weathersby, S.P.; Wienands, U.; Yocky, G.; /SLAC

    2007-05-18

    In the spring of 2005 after a long shut-down, the luminosity of the B-Factory PEP-II decreased along the bunch trains by about 25-30%. There were many reasons studied which could have caused this performance degradation, like a bigger phase transient due to an additional RF station in the Low-Energy-Ring (LER), bad initial vacuum, electron cloud, chromaticity, steering, dispersion in cavities, beam optics, etc. The initial specific luminosity of 4.2 sloped down to 3.2 and even 2.8 for a long train (typical: 130 of 144), later in the run with higher currents and shorter trains (65 of 72) the numbers were more like 3.2 down to 2.6. Finally after steering the interaction region for an unrelated reason (overheated BPM buttons) and the consequential lower luminosity for two weeks, the luminosity slope problem was mysteriously gone. Several parameters got changed and there is still some discussion about which one finally fixed the problem. Among others, likely candidates are: the LER betatron function in x at the interaction point got reduced, making the LER x stronger, dispersion reduction in the cavities, and finding and fixing a partially shorted magnet.

  20. COMPARISON OF SIMULATION CODES FOR MICROWAVE INSTABILITY IN BUNCHED BEAMS

    SciTech Connect

    Bane, K.L.F.; Cai, Y.; Stupakov, G.; /SLAC

    2010-08-25

    In accelerator design, there is often a need to evaluate the threshold to the (longitudinal) microwave instability for a bunched beam in an electron storage ring. Several computational tools are available that allow them, once given the wakefield representing a ring, to numerically find the threshold current and to simulate the development of the instability. In this work, they present results of coputer simulations using two codes recently developed at the SLAC National Accelerator Laboratory: a Vlasov-Fokker-Planck (VFP) solver based on an algorithm by Warnock and Ellison, and a program that find the threshold from the linearized Vlasov equation. They apply the programs to find the instability threshold for three models of ring impedances: that of a Q = 1 resonator, of shielded coherent synchrotron radiation (CSR), and of a resistive wall. The first example is wel-bheaved, but the other two are singular wakes that need special care. Note that similar numerical studies of the threshold of a Q = 1 resonantor wake have been performed by Oide and Yokova, and others. They compare the results of the two programs and discuss their respective capabilities and limitations. In this report they assume the slippage factor {eta} is always positive. They work in Gaussian units.

  1. Stochastic cooling of bunched beams from fluctuation and kinetic theory

    SciTech Connect

    Chattopadhyay, S.

    1982-09-01

    A theoretical formalism for stochastic phase-space cooling of bunched beams in storage rings is developed on the dual basis of classical fluctuation theory and kinetic theory of many-body systems in phase-space. The physics is that of a collection of three-dimensional oscillators coupled via retarded nonconservative interactions determined by an electronic feedback loop. At the heart of the formulation is the existence of several disparate time-scales characterizing the cooling process. Both theoretical approaches describe the cooling process in the form of a Fokker-Planck transport equation in phase-space valid up to second order in the strength and first order in the auto-correlation of the cooling signal. With neglect of the collective correlations induced by the feedback loop, identical expressions are obtained in both cases for the coherent damping and Schottky noise diffusion coefficients. These are expressed in terms of Fourier coefficients in a harmonic decomposition in angle of the generalized nonconservative cooling force written in canonical action-angle variables of the particles in six-dimensional phase-space. Comparison of analytic results to a numerical simulation study with 90 pseudo-particles in a model cooling system is presented.

  2. On electron bunching and stratification of glow discharges

    SciTech Connect

    Golubovskii, Yuri B.; Kolobov, Vladimir I.; Nekuchaev, Vladimir O.

    2013-10-15

    Plasma stratification and excitation of ionization waves is one of the fundamental problems in gas discharge physics. Significant progress in this field is associated with the name of Lev Tsendin. He advocated the need for the kinetic approach to this problem contrary to the traditional hydrodynamic approach, introduced the idea of electron bunching in spatially periodic electric fields, and developed a theory of kinetic resonances for analysis of moving striations in rare gases. The present paper shows how Tsendin's ideas have been further developed and applied for understanding the nature of the well-known S-, P-, and R-striations observed in glow discharges of inert gases at low pressures and currents. We review numerical solutions of a Fokker-Planck kinetic equation in spatially periodic electric fields under the effects of elastic and inelastic collisions of electrons with atoms. We illustrate the formation of kinetic resonances at specific field periods for different shapes of injected Electron Distribution Functions (EDF). Computer simulations illustrate how self-organization of the EDFs occurs under nonlocal conditions and how Gaussian-like peaks moving along resonance trajectories are formed in a certain range of discharge conditions. The calculated EDFs agree well with the experimentally measured EDFs for the S, P, and R striations in noble gases. We discuss how kinetic resonances affect dispersion characteristics of moving striations and mention some non-linear effects associated with glow discharge stratification. We propose further studies of stratification phenomena combining physical kinetics and non-linear physics.

  3. A high resolution, single bunch, beam profile monitor

    SciTech Connect

    Norem, J.

    1992-08-26

    Efficient linear colliders require very small beam spots to produce high luminosities with reasonable input power, which limits the number of electrons which can be accelerated to high energies. The small beams, in turn, require high precision and stability in all accelerator components. Producing, monitoring and maintaining beams of the required quality has been, and will continue to be, difficult. A beam monitoring system which could be used to measure beam profile, size and stability at the final focus of a beamline or collider has been developed and is described here. The system uses nonimaging bremsstrahlung optics. The immediate use for this system would be examining the final focus spot at the SLAC/FFTB. The primary alternatives to this technique are those proposed by P. Chen / J. Buon, which analyses the energy and angular distributions of ion recoils to determine the aspect ratio of the electron bunch, and a method proposed by Shintake, which measures intensity variation of compton backscattered photons as the beam is moved across a pattern of standing waves produced by a laser.

  4. Single bunch transverse instability in a circular accelerator with chromaticity and space charge

    SciTech Connect

    Balbekov, V.

    2015-10-21

    The transverse instability of a bunch in a circular accelerator is elaborated in this paper. A new tree-modes model is proposed and developed to describe the most unstable modes of the bunch. This simple and flexible model includes chromaticity and space charge, and can be used with any bunch and wake forms. The dispersion equation for the bunch eigentunes is obtained in form of a third-order algebraic equation. The known head-tail and TMCI modes appear as the limiting cases which are distinctly bounded at zero chromaticity only. It is shown that the instability parameters depend only slightly on the bunch model but they are rather sensitive to the wake shape. In particular, space charge effects are investigated in the paper and it is shown that their influence depends on sign of wake field enhancing the bunch stability if the wake is negative. In addition, the resistive wall wake is considered in detail including a comparison of single and collective effects. A comparison of the results with earlier publications is carried out.

  5. Stably propagating trains of attosecond electron bunches generated along the target back

    NASA Astrophysics Data System (ADS)

    Pan, K. Q.; Zheng, C. Y.; Cao, L. H.; Liu, Z. J.; He, X. T.

    2016-09-01

    With the help of particle-in-cell simulations, we show a stably propagating train of attosecond ( 10 - 18 s) electron bunches which are generated along the target back surface via laser-solid interactions. The electron bunches are generated by the oscillating electric fields of the surface plasma wave. Because of the combinational effects of the electrostatic field and the static magnetic field on the target back surface, the electron bunches are stably propagating along the target back surface, which means they are totally separated from the laser pulse. The averaged energy of these electron bunches is over 20 MeV , the maximum averaged density is about 6 n c (where n c ≈ 1.1 × 10 21 cm - 3 is the critical density of the incident laser), and the averaged duration is less than 200 as. Such electron bunches are easily applied to the generation of attosecond x-rays via Compton backscattering. The energy conversion efficiency from the laser to the attosecond electron bunches is about 1.5%.

  6. Temporal characterization of ultrashort linearly chirped electron bunches generated from a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Zhang, C. J.; Hua, J. F.; Wan, Y.; Guo, B.; Pai, C.-H.; Wu, Y. P.; Li, F.; Chu, H.-H.; Gu, Y. Q.; Mori, W. B.; Joshi, C.; Wang, J.; Lu, W.

    2016-06-01

    A new method for diagnosing the temporal characteristics of ultrashort electron bunches with linear energy chirp generated from a laser wakefield accelerator is described. When the ionization-injected bunch interacts with the back of the drive laser, it is deflected and stretched along the direction of the electric field of the laser. Upon exiting the plasma, if the bunch goes through a narrow slit in front of the dipole magnet that disperses the electrons in the plane of the laser polarization, it can form a series of bunchlets that have different energies but are separated by half a laser wavelength. Since only the electrons that are undeflected by the laser go through the slit, the energy spectrum of the bunch is modulated. By analyzing the modulated energy spectrum, the shots where the bunch has a linear energy chirp can be recognized. Consequently, the energy chirp and beam current profile of those bunches can be reconstructed. This method is demonstrated through particle-in-cell simulations and experiment.

  7. Pulse Length Control in an X-Ray FEL by Using Wakefields

    SciTech Connect

    Reiche, S.; Pellegrini, Claudio; Emma, P.; /UCLA /SLAC

    2008-03-18

    For the users of the high-brightness radiation sources of free-electron lasers it is desirable to reduce the FEL pulse length to 10 fs and below for time-resolved pump and probe experiments. Although it can be achieved by conventional compression methods for the electron beam or the chirped FEL pulse, the technical realization is demanding. In this presentation we study the impact of longitudinal wakefields in the undulator and how their properties can be used to reduced the amplifying part of the bunch to the desired length. Methods of actively controlling the wakefields are presented.

  8. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  9. Probing absolute spin polarization at the nanoscale.

    PubMed

    Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus

    2014-12-10

    Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum. PMID:25423049

  10. Absolute radiometry and the solar constant

    NASA Technical Reports Server (NTRS)

    Willson, R. C.

    1974-01-01

    A series of active cavity radiometers (ACRs) are described which have been developed as standard detectors for the accurate measurement of irradiance in absolute units. It is noted that the ACR is an electrical substitution calorimeter, is designed for automatic remote operation in any environment, and can make irradiance measurements in the range from low-level IR fluxes up to 30 solar constants with small absolute uncertainty. The instrument operates in a differential mode by chopping the radiant flux to be measured at a slow rate, and irradiance is determined from two electrical power measurements together with the instrumental constant. Results are reported for measurements of the solar constant with two types of ACRs. The more accurate measurement yielded a value of 136.6 plus or minus 0.7 mW/sq cm (1.958 plus or minus 0.010 cal/sq cm per min).

  11. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  12. Impact of Winko on absolute discharges.

    PubMed

    Balachandra, Krishna; Swaminath, Sam; Litman, Larry C

    2004-01-01

    In Canada, case laws have had a significant impact on the way mentally ill offenders are managed, both in the criminal justice system and in the forensic mental health system. The Supreme Court of Canada's decision with respect to Winko has set a major precedent in the application of the test of significant risk to the safety of the public in making dispositions by the Ontario Review Board and granting absolute discharges to the mentally ill offenders in the forensic health system. Our study examines the impact of the Supreme Court of Canada's decision before and after Winko. The results show that the numbers of absolute discharges have increased post-Winko, which was statistically significant, but there could be other factors influencing this increase.

  13. Asteroid absolute magnitudes and slope parameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  14. Absolute-magnitude distributions of supernovae

    SciTech Connect

    Richardson, Dean; Wright, John; Jenkins III, Robert L.; Maddox, Larry

    2014-05-01

    The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.

  15. Absolute and relative dosimetry for ELIMED

    SciTech Connect

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F.; Carpinelli, M.; Presti, D. Lo; Raffaele, L.; Tramontana, A.; Cirio, R.; Sacchi, R.; Monaco, V.; Marchetto, F.; Giordanengo, S.

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  16. The length-scaling properties of topography

    NASA Technical Reports Server (NTRS)

    Weissel, Jeffrey K.; Pratson, Lincoln F.; Malinverno, Alberto

    1994-01-01

    The scaling properties of synthetic topographic surfaces and digital elevation models (DEMs) of topography are examined by analyzing their 'structure functions,' i.e., the qth order powers of the absolute elevation differences: delta h(sub q) (l) = E((absolute value of h(x + l) - h(x))(exp q)). We find that the relation delta h(sub 1 l) approximately equal cl(exp H) describes well the scaling behavior of natural topographic surfaces, as represented by DEMs gridded at 3 arc sec. Average values of the scaling exponent H between approximately 0.5 and 0.7 characterize DEMs from Ethiopia, Saudi Arabia, and Somalia over 3 orders of magnitude range in length scale l (approximately 0.1-150 km). Differences in appparent topographic roughness among the three areas most likely reflect differences in the amplitude factor c. Separate determination of scaling properties in the x and y coordinate directions allows us to assess whether scaling exponents are azimuthally dependent (anisotropic) or whether they are isotropic while the surface itself is anisotropic over a restricted range of length scale. We explore ways to determine whether topographic surfaces are characterized by simple or multiscaling properties.

  17. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  18. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  19. Relative errors can cue absolute visuomotor mappings.

    PubMed

    van Dam, Loes C J; Ernst, Marc O

    2015-12-01

    When repeatedly switching between two visuomotor mappings, e.g. in a reaching or pointing task, adaptation tends to speed up over time. That is, when the error in the feedback corresponds to a mapping switch, fast adaptation occurs. Yet, what is learned, the relative error or the absolute mappings? When switching between mappings, errors with a size corresponding to the relative difference between the mappings will occur more often than other large errors. Thus, we could learn to correct more for errors with this familiar size (Error Learning). On the other hand, it has been shown that the human visuomotor system can store several absolute visuomotor mappings (Mapping Learning) and can use associated contextual cues to retrieve them. Thus, when contextual information is present, no error feedback is needed to switch between mappings. Using a rapid pointing task, we investigated how these two types of learning may each contribute when repeatedly switching between mappings in the absence of task-irrelevant contextual cues. After training, we examined how participants changed their behaviour when a single error probe indicated either the often-experienced error (Error Learning) or one of the previously experienced absolute mappings (Mapping Learning). Results were consistent with Mapping Learning despite the relative nature of the error information in the feedback. This shows that errors in the feedback can have a double role in visuomotor behaviour: they drive the general adaptation process by making corrections possible on subsequent movements, as well as serve as contextual cues that can signal a learned absolute mapping. PMID:26280315

  20. The absolute spectrophotometric catalog by Anita Cochran

    NASA Astrophysics Data System (ADS)

    Burnashev, V. I.; Burnasheva, B. A.; Ruban, E. V.; Hagen-Torn, E. I.

    2014-06-01

    The absolute spectrophotometric catalog by Anita Cochran is presented in a machine-readable form. The catalog systematizes observations acquired at the McDonald Observatory in 1977-1978. The data are compared with other sources, in particular, the calculated broadband stellar magnitudes are compared with photometric observations by other authors, to show that the observational data given in the catalog are reliable and suitable for a variety of applications. Observations of variable stars of different types make Cochran's catalog especially valuable.

  1. Absolute magnitudes and kinematics of barium stars.

    NASA Astrophysics Data System (ADS)

    Gomez, A. E.; Luri, X.; Grenier, S.; Prevot, L.; Mennessier, M. O.; Figueras, F.; Torra, J.

    1997-03-01

    The absolute magnitude of barium stars has been obtained from kinematical data using a new algorithm based on the maximum-likelihood principle. The method allows to separate a sample into groups characterized by different mean absolute magnitudes, kinematics and z-scale heights. It also takes into account, simultaneously, the censorship in the sample and the errors on the observables. The method has been applied to a sample of 318 barium stars. Four groups have been detected. Three of them show a kinematical behaviour corresponding to disk population stars. The fourth group contains stars with halo kinematics. The luminosities of the disk population groups spread a large range. The intrinsically brightest one (M_v_=-1.5mag, σ_M_=0.5mag) seems to be an inhomogeneous group containing barium binaries as well as AGB single stars. The most numerous group (about 150 stars) has a mean absolute magnitude corresponding to stars in the red giant branch (M_v_=0.9mag, σ_M_=0.8mag). The third group contains barium dwarfs, the obtained mean absolute magnitude is characteristic of stars on the main sequence or on the subgiant branch (M_v_=3.3mag, σ_M_=0.5mag). The obtained mean luminosities as well as the kinematical results are compatible with an evolutionary link between barium dwarfs and classical barium giants. The highly luminous group is not linked with these last two groups. More high-resolution spectroscopic data will be necessary in order to better discriminate between barium and non-barium stars.

  2. Chemical composition of French mimosa absolute oil.

    PubMed

    Perriot, Rodolphe; Breme, Katharina; Meierhenrich, Uwe J; Carenini, Elise; Ferrando, Georges; Baldovini, Nicolas

    2010-02-10

    Since decades mimosa (Acacia dealbata) absolute oil has been used in the flavor and perfume industry. Today, it finds an application in over 80 perfumes, and its worldwide industrial production is estimated five tons per year. Here we report on the chemical composition of French mimosa absolute oil. Straight-chain analogues from C6 to C26 with different functional groups (hydrocarbons, esters, aldehydes, diethyl acetals, alcohols, and ketones) were identified in the volatile fraction. Most of them are long-chain molecules: (Z)-heptadec-8-ene, heptadecane, nonadecane, and palmitic acid are the most abundant, and constituents such as 2-phenethyl alcohol, methyl anisate, and ethyl palmitate are present in smaller amounts. The heavier constituents were mainly triterpenoids such as lupenone and lupeol, which were identified as two of the main components. (Z)-Heptadec-8-ene, lupenone, and lupeol were quantified by GC-MS in SIM mode using external standards and represents 6%, 20%, and 7.8% (w/w) of the absolute oil. Moreover, odorant compounds were extracted by SPME and analyzed by GC-sniffing leading to the perception of 57 odorant zones, of which 37 compounds were identified by their odorant description, mass spectrum, retention index, and injection of the reference compound. PMID:20070087

  3. Measurement of absolute gravity acceleration in Firenze

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2011-01-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  4. A Methodology for Absolute Isotope Composition Measurement

    NASA Astrophysics Data System (ADS)

    Shen, J. J.; Lee, D.; Liang, W.

    2007-12-01

    Double spike technique was a well defined method for isotope composition measurement by TIMS of samples which have natural mass fractionation effect, but it is still a problem to define the isotope composition for double spike itself. In this study, we modified the old double spike technique and found that we could use the modified technique to solve the ¡§true¡¨ isotope composition of double spike itself. According the true isotope composition of double spike, we can measure the absolute isotope composition if the sample has natural fractionation effect. A new vector analytical method has been developed in order to obtain the true isotopic composition of a 42Ca-48Ca double spike, and this is achieved by using two different sample-spike mixtures combined with the double spike and the natural Ca data. Because the natural sample, the two mixtures, and the spike should all lie on a single mixing line, we are able to constrain the true isotopic composition of our double spike using this new approach. This method not only can be used in Ca system but also in Ti, Cr, Fe, Ni, Zn, Mo, Ba and Pb systems. The absolute double spike isotopic ratio is important, which can save a lot of time to check different reference standards. Especially for Pb, radiogenic isotope system, the decay systems embodied in three of four naturally occurring isotopes induce difficult to obtain true isotopic ratios for absolute dating.

  5. Chemical composition of French mimosa absolute oil.

    PubMed

    Perriot, Rodolphe; Breme, Katharina; Meierhenrich, Uwe J; Carenini, Elise; Ferrando, Georges; Baldovini, Nicolas

    2010-02-10

    Since decades mimosa (Acacia dealbata) absolute oil has been used in the flavor and perfume industry. Today, it finds an application in over 80 perfumes, and its worldwide industrial production is estimated five tons per year. Here we report on the chemical composition of French mimosa absolute oil. Straight-chain analogues from C6 to C26 with different functional groups (hydrocarbons, esters, aldehydes, diethyl acetals, alcohols, and ketones) were identified in the volatile fraction. Most of them are long-chain molecules: (Z)-heptadec-8-ene, heptadecane, nonadecane, and palmitic acid are the most abundant, and constituents such as 2-phenethyl alcohol, methyl anisate, and ethyl palmitate are present in smaller amounts. The heavier constituents were mainly triterpenoids such as lupenone and lupeol, which were identified as two of the main components. (Z)-Heptadec-8-ene, lupenone, and lupeol were quantified by GC-MS in SIM mode using external standards and represents 6%, 20%, and 7.8% (w/w) of the absolute oil. Moreover, odorant compounds were extracted by SPME and analyzed by GC-sniffing leading to the perception of 57 odorant zones, of which 37 compounds were identified by their odorant description, mass spectrum, retention index, and injection of the reference compound.

  6. The Carina Project: Absolute and Relative Calibrations

    NASA Astrophysics Data System (ADS)

    Corsi, C. E.; Bono, G.; Walker, A. R.; Brocato, E.; Buonanno, R.; Caputo, F.; Castellani, M.; Castellani, V.; Dall'Ora, M.; Marconi, M.; Monelli, M.; Nonino, M.; Pulone, L.; Ripepi, V.; Smith, H. A.

    We discuss the reduction strategy adopted to perform the relative and the absolute calibration of the Wide Field Imager (WFI) available at the 2.2m ESO/MPI telescope and of the Mosaic Camera (MC) available at the 4m CTIO Blanco telescope. To properly constrain the occurrence of deceptive systematic errors in the relative calibration we observed with each chip the same set of stars. Current photometry seems to suggest that the WFI shows a positional effect when moving from the top to the bottom of individual chips. Preliminary results based on an independent data set collected with the MC suggest that this camera is only marginally affected by the same problem. To perform the absolute calibration we observed with each chip the same set of standard stars. The sample covers a wide color range and the accuracy both in the B and in the V-band appears to be of the order of a few hundredths of magnitude. Finally, we briefly outline the observing strategy to improve both relative and absolute calibrations of mosaic CCD cameras.

  7. Interaction of an ultrarelativistic electron bunch train with a W-band accelerating structure: High power and high gradient

    DOE PAGES

    Wang, D.; Antipov, S.; Jing, C.; Power, J. G.; Conde, M.; Wisniewski, E.; Liu, W.; Qiu, J.; Ha, G.; Dolgashev, V.; et al

    2016-02-05

    Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to themore » interference of the wakefields from the two bunches, was measured as a function of bunch separation. As a result, measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.« less

  8. Interaction of an Ultrarelativistic Electron Bunch Train with a W-Band Accelerating Structure: High Power and High Gradient.

    PubMed

    Wang, D; Antipov, S; Jing, C; Power, J G; Conde, M; Wisniewski, E; Liu, W; Qiu, J; Ha, G; Dolgashev, V; Tang, C; Gai, W

    2016-02-01

    Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to the interference of the wakefields from the two bunches, was measured as a function of bunch separation. Measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method. PMID:26894715

  9. Effect of temperature on pyrolysis product of empty fruit bunches

    SciTech Connect

    Rahman, Aizuddin Abdul; Sulaiman, Fauziah; Abdullah, Nurhayati

    2015-04-24

    Pyrolysis of empty fruit bunches (EFB) was performed in a fixed bed reactor equipped with liquid collecting system. Pyrolysis process was conducted by varying the terminal pyrolysis temperature from 300 to 500°C under heating rate of 10°C/min for at least 2 hours. Char yield was obtained highest at 300°C around 55.88 wt%, and started to decrease as temperature increase. The maximum yield of pyrolysis liquid was obtained around 54.75 wt% as pyrolysis temperature reach 450°C. For gas yield percentage, the yield gained as temperature was increased from 300 to 500°C, within the range between 8.44 to 19.32 wt%. The char obtained at 400°C has great potential as an alternative solid fuel, due to its high heating value of 23.37 MJ/kg, low in volatile matter and ash content which are approximately around 40.32 and 11.12 wt%, respectively. The collected pyrolysis liquid within this temperature range found to have high water content of around 16.15 to 18.20 wt%. The high aqueous fraction seemed to cause the pyrolysis liquid to have low HHV which only ranging from 10.81 to 12.94 MJ/kg. These trends of results showed that necessary enhancement should be employ either on the raw biomass or pyrolysis products in order to approach at least the minimum quality of common hydrocarbon solid or liquid fuel. For energy production, both produced bio-char and pyrolysis liquid are considered as sustainable sources of bio-energy since they contained low amounts of nitrogen and sulphur, which are considered as environmental friendly solid and liquid fuel.

  10. Effect of temperature on pyrolysis product of empty fruit bunches

    NASA Astrophysics Data System (ADS)

    Rahman, Aizuddin Abdul; Sulaiman, Fauziah; Abdullah, Nurhayati

    2015-04-01

    Pyrolysis of empty fruit bunches (EFB) was performed in a fixed bed reactor equipped with liquid collecting system. Pyrolysis process was conducted by varying the terminal pyrolysis temperature from 300 to 500°C under heating rate of 10°C/min for at least 2 hours. Char yield was obtained highest at 300°C around 55.88 wt%, and started to decrease as temperature increase. The maximum yield of pyrolysis liquid was obtained around 54.75 wt% as pyrolysis temperature reach 450°C. For gas yield percentage, the yield gained as temperature was increased from 300 to 500°C, within the range between 8.44 to 19.32 wt%. The char obtained at 400°C has great potential as an alternative solid fuel, due to its high heating value of 23.37 MJ/kg, low in volatile matter and ash content which are approximately around 40.32 and 11.12 wt%, respectively. The collected pyrolysis liquid within this temperature range found to have high water content of around 16.15 to 18.20 wt%. The high aqueous fraction seemed to cause the pyrolysis liquid to have low HHV which only ranging from 10.81 to 12.94 MJ/kg. These trends of results showed that necessary enhancement should be employ either on the raw biomass or pyrolysis products in order to approach at least the minimum quality of common hydrocarbon solid or liquid fuel. For energy production, both produced bio-char and pyrolysis liquid are considered as sustainable sources of bio-energy since they contained low amounts of nitrogen and sulphur, which are considered as environmental friendly solid and liquid fuel.

  11. Mappability and read length

    PubMed Central

    Li, Wentian; Freudenberg, Jan

    2014-01-01

    Power-law distributions are the main functional form for the distribution of repeat size and repeat copy number in the human genome. When the genome is broken into fragments for sequencing, the limited size of fragments and reads may prevent an unique alignment of repeat sequences to the reference sequence. Repeats in the human genome can be as long as 104 bases, or 105 − 106 bases when allowing for mismatches between repeat units. Sequence reads from these regions are therefore unmappable when the read length is in the range of 103 bases. With a read length of 1000 bases, slightly more than 1% of the assembled genome, and slightly less than 1% of the 1 kb reads, are unmappable, excluding the unassembled portion of the human genome (8% in GRCh37/hg19). The slow decay (long tail) of the power-law function implies a diminishing return in converting unmappable regions/reads to become mappable with the increase of the read length, with the understanding that increasing read length will always move toward the direction of 100% mappability. PMID:25426137

  12. Emittance growth and instability induced by space charge effect during final beam bunching in HIF accelerator system

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Someya, T.; Kawata, S.; Nakajima, M.; Horioka, K.

    2006-06-01

    Beam dynamics and emittance growth are investigated by using particle-in-cell simulations during a final beam bunching for a driver system of inertial fusion driven by intense heavy ion beams. Space-charge-dominated beams are transported by a transverse confinement lattice with longitudinal compression, and the emittance increases along the longitudinal beam bunching. Dipole oscillations are excited due to the initial displacement of the beam center. The displacement causes the additional emittance growth during the final beam bunching.

  13. Utilizing a reference material for assessing absolute tumor mechanical properties in modality independent elastography

    NASA Astrophysics Data System (ADS)

    Kim, Dong Kyu; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    There is currently no reliable method for early characterization of breast cancer response to neoadjuvant chemotherapy (NAC) [1,2]. Given that disruption of normal structural architecture occurs in cancer-bearing tissue, we hypothesize that further structural changes occur in response to NAC. Consequently, we are investigating the use of modalityindependent elastography (MIE) [3-8] as a method for monitoring mechanical integrity to predict long term outcomes in NAC. Recently, we have utilized a Demons non-rigid image registration method that allows 3D elasticity reconstruction in abnormal tissue geometries, making it particularly amenable to the evaluation of breast cancer mechanical properties. While past work has reflected relative elasticity contrast ratios [3], this study improves upon that work by utilizing a known stiffness reference material within the reconstruction framework such that a stiffness map becomes an absolute measure. To test, a polyvinyl alcohol (PVA) cryogel phantom and a silicone rubber mock mouse tumor phantom were constructed with varying mechanical stiffness. Results showed that an absolute measure of stiffness could be obtained based on a reference value. This reference technique demonstrates the ability to generate accurate measurements of absolute stiffness to characterize response to NAC. These results support that `referenced MIE' has the potential to reliably differentiate absolute tumor stiffness with significant contrast from that of surrounding tissue. The use of referenced MIE to obtain absolute quantification of biomarkers is also translatable across length scales such that the characterization method is mechanics-consistent at the small animal and human application.

  14. Spatial modulation of in-plane magnetic anisotropy in epitaxial Co(111) films grown on macrostep-bunched Si(111)

    SciTech Connect

    Davydenko, A. V. Kozlov, A. G.; Chebotkevich, L. A.

    2014-10-14

    We compared magnetic properties of epitaxial Co(111) films grown on microstep- and macrostep-bunched vicinal Si(111) substrates. A surface of the microstep-bunched Si(111) substrate represents regular array of step-bunches with height of 1.7 nm divided from each other by flat microterraces with a width of 34 nm. A surface of the macrostep-bunched Si(111) substrate is constituted by macrostep bunches with a height of 75–85 nm divided by atomically flat macroterraces. The average sum width of a macrostep bunch and a macroterrace is 2.3 μm. While in-plane magnetic anisotropy was spatially uniform in Co(111) films grown on the microstep-bunched Si(111), periodic macromodulation of the topography of the Si(111) substrate induced spatial modulation of in-plane magnetic anisotropy in Co(111) film grown on the macrostep-bunched Si(111) surface. The energy of uniaxial magnetic anisotropy in the areas of the Co(111) film deposited on the Si(111) macrosteps was higher more than by the order of magnitude than the energy of the magnetic anisotropy in the areas grown on macroterraces. Magnetization reversal in the areas with different energy of the magnetic anisotropy occurred in different magnetic fields. We showed the possibility of obtaining high density of domain walls in Co(111) film grown on the macrostep-bunched Si(111) by tuning the spatial step density of the Si(111) substrate.

  15. Q-switched-like soliton bunches and noise-like pulses generation in a partially mode-locked fiber laser.

    PubMed

    Wang, Zhenhong; Wang, Zhi; Liu, Yan-Ge; Zhao, Wenjing; Zhang, Hao; Wang, Shangcheng; Yang, Guang; He, Ruijing

    2016-06-27

    We report an intermediate regime between c.w. emission and noise-like pulses (NLPs) regime in an Er-doped partially mode-locked fiber laser with nonlinear polarization rotation. In this regime, the soliton bunches stochastically turn up from a quasi-cw background in the Q-switched-like envelope. The soliton bunches normally last for tens or hundreds of intracavity round-trips. When the soliton bunches vanish, typical NLPs chains are generated sporadically at location where the soliton bunches collapses. These results would be helpful to understand the generation and property of the NLPs regime. PMID:27410624

  16. Absolute Radiometric Calibration of EUNIS-06

    NASA Technical Reports Server (NTRS)

    Thomas, R. J.; Rabin, D. M.; Kent, B. J.; Paustian, W.

    2007-01-01

    The Extreme-Ultraviolet Normal-Incidence Spectrometer (EUNIS) is a soundingrocket payload that obtains imaged high-resolution spectra of individual solar features, providing information about the Sun's corona and upper transition region. Shortly after its successful initial flight last year, a complete end-to-end calibration was carried out to determine the instrument's absolute radiometric response over its Longwave bandpass of 300 - 370A. The measurements were done at the Rutherford-Appleton Laboratory (RAL) in England, using the same vacuum facility and EUV radiation source used in the pre-flight calibrations of both SOHO/CDS and Hinode/EIS, as well as in three post-flight calibrations of our SERTS sounding rocket payload, the precursor to EUNIS. The unique radiation source provided by the Physikalisch-Technische Bundesanstalt (PTB) had been calibrated to an absolute accuracy of 7% (l-sigma) at 12 wavelengths covering our bandpass directly against the Berlin electron storage ring BESSY, which is itself a primary radiometric source standard. Scans of the EUNIS aperture were made to determine the instrument's absolute spectral sensitivity to +- 25%, considering all sources of error, and demonstrate that EUNIS-06 was the most sensitive solar E W spectrometer yet flown. The results will be matched against prior calibrations which relied on combining measurements of individual optical components, and on comparisons with theoretically predicted 'insensitive' line ratios. Coordinated observations were made during the EUNIS-06 flight by SOHO/CDS and EIT that will allow re-calibrations of those instruments as well. In addition, future EUNIS flights will provide similar calibration updates for TRACE, Hinode/EIS, and STEREO/SECCHI/EUVI.

  17. Clock time is absolute and universal

    NASA Astrophysics Data System (ADS)

    Shen, Xinhang

    2015-09-01

    A critical error is found in the Special Theory of Relativity (STR): mixing up the concepts of the STR abstract time of a reference frame and the displayed time of a physical clock, which leads to use the properties of the abstract time to predict time dilation on physical clocks and all other physical processes. Actually, a clock can never directly measure the abstract time, but can only record the result of a physical process during a period of the abstract time such as the number of cycles of oscillation which is the multiplication of the abstract time and the frequency of oscillation. After Lorentz Transformation, the abstract time of a reference frame expands by a factor gamma, but the frequency of a clock decreases by the same factor gamma, and the resulting multiplication i.e. the displayed time of a moving clock remains unchanged. That is, the displayed time of any physical clock is an invariant of Lorentz Transformation. The Lorentz invariance of the displayed times of clocks can further prove within the framework of STR our earth based standard physical time is absolute, universal and independent of inertial reference frames as confirmed by both the physical fact of the universal synchronization of clocks on the GPS satellites and clocks on the earth, and the theoretical existence of the absolute and universal Galilean time in STR which has proved that time dilation and space contraction are pure illusions of STR. The existence of the absolute and universal time in STR has directly denied that the reference frame dependent abstract time of STR is the physical time, and therefore, STR is wrong and all its predictions can never happen in the physical world.

  18. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  19. Absolute calibration of the Auger fluorescence detectors

    SciTech Connect

    Bauleo, P.; Brack, J.; Garrard, L.; Harton, J.; Knapik, R.; Meyhandan, R.; Rovero, A.C.; Tamashiro, A.; Warner, D.

    2005-07-01

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the combined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.

  20. Absolute rate theories of epigenetic stability

    NASA Astrophysics Data System (ADS)

    Walczak, Aleksandra M.; Onuchic, José N.; Wolynes, Peter G.

    2005-12-01

    Spontaneous switching events in most characterized genetic switches are rare, resulting in extremely stable epigenetic properties. We show how simple arguments lead to theories of the rate of such events much like the absolute rate theory of chemical reactions corrected by a transmission factor. Both the probability of the rare cellular states that allow epigenetic escape and the transmission factor depend on the rates of DNA binding and unbinding events and on the rates of protein synthesis and degradation. Different mechanisms of escape from the stable attractors occur in the nonadiabatic, weakly adiabatic, and strictly adiabatic regimes, characterized by the relative values of those input rates. rate theory | stochastic gene expression | gene switches

  1. Characterization of the DARA solar absolute radiometer

    NASA Astrophysics Data System (ADS)

    Finsterle, W.; Suter, M.; Fehlmann, A.; Kopp, G.

    2011-12-01

    The Davos Absolute Radiometer (DARA) prototype is an Electrical Substitution Radiometer (ESR) which has been developed as a successor of the PMO6 type on future space missions and ground based TSI measurements. The DARA implements an improved thermal design of the cavity detector and heat sink assembly to minimize air-vacuum differences and to maximize thermal symmetry of measuring and compensating cavity. The DARA also employs an inverted viewing geometry to reduce internal stray light. We will report on the characterization and calibration experiments which were carried out at PMOD/WRC and LASP (TRF).

  2. Absolute Priority for a Vehicle in VANET

    NASA Astrophysics Data System (ADS)

    Shirani, Rostam; Hendessi, Faramarz; Montazeri, Mohammad Ali; Sheikh Zefreh, Mohammad

    In today's world, traffic jams waste hundreds of hours of our life. This causes many researchers try to resolve the problem with the idea of Intelligent Transportation System. For some applications like a travelling ambulance, it is important to reduce delay even for a second. In this paper, we propose a completely infrastructure-less approach for finding shortest path and controlling traffic light to provide absolute priority for an emergency vehicle. We use the idea of vehicular ad-hoc networking to reduce the imposed travelling time. Then, we simulate our proposed protocol and compare it with a centrally controlled traffic light system.

  3. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  4. Single bunch transverse instability in a circular accelerator with chromaticity and space charge

    DOE PAGES

    Balbekov, V.

    2015-10-21

    The transverse instability of a bunch in a circular accelerator is elaborated in this paper. A new tree-modes model is proposed and developed to describe the most unstable modes of the bunch. This simple and flexible model includes chromaticity and space charge, and can be used with any bunch and wake forms. The dispersion equation for the bunch eigentunes is obtained in form of a third-order algebraic equation. The known head-tail and TMCI modes appear as the limiting cases which are distinctly bounded at zero chromaticity only. It is shown that the instability parameters depend only slightly on the bunchmore » model but they are rather sensitive to the wake shape. In particular, space charge effects are investigated in the paper and it is shown that their influence depends on sign of wake field enhancing the bunch stability if the wake is negative. In addition, the resistive wall wake is considered in detail including a comparison of single and collective effects. A comparison of the results with earlier publications is carried out.« less

  5. Ion emittance growth due to focusing modulation from slipping electron bunch

    SciTech Connect

    Wang, G.

    2015-02-17

    Low energy RHIC operation has to be operated at an energy ranging from γ = 4.1 to γ = 10. The energy variation causes the change of revolution frequency. While the rf system for the circulating ion will operate at an exact harmonic of the revolution frequency (h=60 for 4.5 MHz rf and h=360 for 28 MHz rf.), the superconducting rf system for the cooling electron beam does not have a frequency tuning range that is wide enough to cover the required changes of revolution frequency. As a result, electron bunches will sit at different locations along the ion bunch from turn to turn, i.e. the slipping of the electron bunch with respect to the circulating ion bunch. At cooling section, ions see a coherent focusing force due to the electrons’ space charge, which differs from turn to turn due to the slipping. We will try to estimate how this irregular focusing affects the transverse emittance of the ion bunch.

  6. Coupled bunch instability in Fermilab Booster: Longitudinal phase-space simulation

    SciTech Connect

    Bogacz, S.A.; Stahl, S.

    1988-06-09

    The physical presence of vacuum structures can be expressed in terms of a coupling impedance experienced by the beam. The beam environment considered here consist of parasitic higher order modes of the r.f. cavities. These resonances may have high enough Q's to allow consecutive bunches to interact through mutually induced fields. The cumulative effect of such fields as the particles pass through the cavity may be to induce a coherent buildup in synchrotron motion of the bunches, i.e., a longitudinal coupled-bunch instability. The colliding mode operation of the present generation of high energy synchrotrons and the accompanying r.f. manipulations, make considerations of individual bunch area of paramount importance. Thus, a longitudinal instability in one of a chain of accelerators, while not leading to any immediate reduction in the intensity of the beam in that accelerator, may cause such a reduction of beam quality that later operations are inhibited (resulting in a degradation performance). In this paper we employ a longitudinal phase-space tracking code (ESME) as an effective tool to simulate specific coupled bunch modes arising in a circular accelerator. One of the obvious advantages of the simulation compared to existing analytic formalisms, e.g., based on the Vlasov equation, is that it allows consideration of the instability in a self-consistent manner with respect to the changing accelerating conditions. Furthermore this scheme allows to model nonlinearities of the longitudinal beam dynamics, which are usually not tractable analytically. 5 refs., 3 figs.

  7. Six-dimensional measurements of trains of high brightness electron bunches

    NASA Astrophysics Data System (ADS)

    Cianchi, A.; Alesini, D.; Anania, M. P.; Bacci, A.; Bellaveglia, M.; Castellano, M.; Chiadroni, E.; Di Giovenale, D.; Di Pirro, G. P.; Ferrario, M.; Gallo, A.; Innocenti, L.; Mostacci, A.; Pompili, R.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.

    2015-08-01

    Trains of ultrashort electron pulses with THz repetition rate, so-called comblike beams, are assuming an ever growing interest in plasma-based acceleration. In particle-driven plasma wakefield acceleration (PWFA), a train of driver bunches with separation of the order of plasma wavelength, i.e., 300 μ m , resonantly excites a plasma wake, which accelerates a trailing witness bunch, injected at the accelerating phase. Comblike beams have great potentialities in different fields of applications. In particular, radiation sources, such as free-electron lasers and THz radiation, take advantage from the possibility to tailor electron beams modulated both in time and energy, to customize emission bandwidth and temporal properties. In these scenarios, the manipulation of longitudinal phase space to investigate different bunch configurations, in terms of energy and time separation, is founded on the knowledge of the 6D phase space of each bunch in the train. In this paper we present the methods developed at the SPARC_LAB test facility in order to fulfill the requirements. Starting from conventional diagnostics, therefore applying well-known tools using more than one diagnostic at the same time, we have completely characterized not only the full 6D phase space of a comblike electron beam with THz repetition rate, but also each single bunch within the train. To our knowledge, this is the first time such a measurement has been performed. Experimental results for multibunch trains in different configurations, suitable for PWFA applications, will be shown and discussed.

  8. Experiment to Measure Ramped Electron Bunches at the UCLA Neptune Laboratory Using a Transverse Deflecting Cavity

    SciTech Connect

    England, R. J.; O'Shea, B.; Rosenzweig, J. B.; Travish, G.; Alesini, D.

    2006-11-27

    A proof of principle experiment is underway at the UCLA Neptune laboratory to test the concept of generating linearly ramped relativistic electron bunches (rising in density from head to tail followed by a sharp cutoff) by using a sextupole-corrected dogleg section as a bunch compressor. Bunches with this structure have been predicted to be ideal for use as a plasma wake-field drive beam. The diagnostic being developed to measure the time profile of the beam is an X-Band (9.6 GHz) deflecting cavity. The recently completed cavity is a 9-cell standing wave structure operating in a TM110-like mode, designed to measure the temporal structure of the 2 to 10 ps, 14 MeV electron bunches generated by the Neptune S-band photoinjector and plane-wave transformer (PWT) accelerator beamline, with 50 fs resolution. We discuss the experimental plan for the ramped bunch experiment and present preliminary data related to the tuning and operation of the deflecting cavity.

  9. High-coherence electron and ion bunches from laser-cooled atoms.

    PubMed

    Sparkes, Ben M; Thompson, Daniel J; McCulloch, Andrew J; Murphy, Dene; Speirs, Rory W; Torrance, Joshua S J; Scholten, Robert E

    2014-08-01

    Cold atom electron and ion sources produce electron bunches and ion beams by photoionization of laser-cooled atoms. They offer high coherence and the potential for high brightness, with applications including ultra-fast electron-diffractive imaging of dynamic processes at the nanoscale. The effective brightness of electron sources has been limited by nonlinear divergence caused by repulsive interactions between the electrons, known as the Coulomb explosion. It has been shown that electron bunches with ellipsoidal shape and uniform density distribution have linear internal Coulomb fields, such that the Coulomb explosion can be reversed using conventional optics. Our source can create bunches shaped in three dimensions and hence in principle achieve the transverse spatial coherence and brightness needed for picosecond-diffractive imaging with nanometer resolution. Here we present results showing how the shaping capability can be used to measure the spatial coherence properties of the cold electron source. We also investigate space-charge effects with ions and generate electron bunches with durations of a few hundred picoseconds. Future development of the cold atom electron and ion source will increase the bunch charge and charge density, demonstrate reversal of Coulomb explosion, and ultimately, ultra-fast coherent electron-diffractive imaging.

  10. Transverse Dynamics of the Azimuthally Inhomogeneous Electron Bunch in a Multilayer Dielectric Cylindrical Waveguide

    NASA Astrophysics Data System (ADS)

    Altmark, A. M.; Kanareykin, A. D.

    2014-05-01

    In reference [1], a complete analytical solution for Cherenkov wakefields generated by an azimuthally asymmetric annular beam propagating in a coaxial two-channel dielectric structure was presented. A drive bunch generates Cherenkov radiation (wakefield) inside the dielectric loaded waveguide and a second (witness) bunch passing through the structure at an appropriate delay with respect to the drive bunch is accelerated by the wakefield. Use of a ring beam in a multi-layer waveguide can significantly increase the transformer ratio by providing different paths for the ring driver and the accelerated bunch to pass through the structure. The main challenge of this scheme originates in the transverse dynamics of the drive bunch because of its high charge and relatively low energy. To hold the inner dielectric tube inside the waveguide metal (titanium) threads are used. The threads are located inside the drive beam section of the waveguide that leads to the segmentation of the drive beam. In this paper, we study the transverse dynamics of the annular beam with various types of azimuthally asymmetries that depend on the specifics of the beam generation and multilayer waveguide parameters. The different types of beam asymmetry and hybrid mode dependencies are presented using the original BBU-3000 [7] beam dynamics code.

  11. Vowel length in Farsi

    NASA Astrophysics Data System (ADS)

    Shademan, Shabnam

    2001-05-01

    This study tests whether Farsi vowels are contrastive with respective to length. Farsi has a six-vowel system with three lax vowels and three tense vowels. Both traditional grammarians and modern linguists believe that Farsi tense vowels are longer than lax vowels, and that there are no vowel pairs that contrast only in length. However, it has been suggested that Farsi exhibits compensatory lengthening, which is triggered by the deletion of glottal consonants in coda position in informal speech (Darzi, 1991). As a result, minimal pairs such as [tar] and [tarh] should contrast only with respect to vowel length. A corpus of 90 words of the form CVC, CVCG, CVGC, and CVCC (where V=a vowel and G=a glottal consonant) was recorded, and durations of vowels in different contexts were measured and compared. Preliminary results show that lax vowel durations fall into three groups with CVCC longer than CVCG/CVGC, and the latter longer than CVC. It remains to be seen whether CVCG/CVGC words show compensatory lengthening when the glottal consonant is deleted.

  12. Sentinel-2/MSI absolute calibration: first results

    NASA Astrophysics Data System (ADS)

    Lonjou, V.; Lachérade, S.; Fougnie, B.; Gamet, P.; Marcq, S.; Raynaud, J.-L.; Tremas, T.

    2015-10-01

    Sentinel-2 is an optical imaging mission devoted to the operational monitoring of land and coastal areas. It is developed in partnership between the European Commission and the European Space Agency. The Sentinel-2 mission is based on a satellites constellation deployed in polar sun-synchronous orbit. It will offer a unique combination of global coverage with a wide field of view (290km), a high revisit (5 days with two satellites), a high resolution (10m, 20m and 60m) and multi-spectral imagery (13 spectral bands in visible and shortwave infra-red domains). CNES is involved in the instrument commissioning in collaboration with ESA. This paper reviews all the techniques that will be used to insure an absolute calibration of the 13 spectral bands better than 5% (target 3%), and will present the first results if available. First, the nominal calibration technique, based on an on-board sun diffuser, is detailed. Then, we show how vicarious calibration methods based on acquisitions over natural targets (oceans, deserts, and Antarctica during winter) will be used to check and improve the accuracy of the absolute calibration coefficients. Finally, the verification scheme, exploiting photometer in-situ measurements over Lacrau plain, is described. A synthesis, including spectral coherence, inter-methods agreement and temporal evolution, will conclude the paper.

  13. Experimental results for absolute cylindrical wavefront testing

    NASA Astrophysics Data System (ADS)

    Reardon, Patrick J.; Alatawi, Ayshah

    2014-09-01

    Applications for Cylindrical and near-cylindrical surfaces are ever-increasing. However, fabrication of high quality cylindrical surfaces is limited by the difficulty of accurate and affordable metrology. Absolute testing of such surfaces represents a challenge to the optical testing community as cylindrical reference wavefronts are difficult to produce. In this paper, preliminary results for a new method of absolute testing of cylindrical wavefronts are presented. The method is based on the merging of the random ball test method with the fiber optic reference test. The random ball test assumes a large number of interferograms of a good quality sphere with errors that are statistically distributed such that the average of the errors goes to zero. The fiber optic reference test utilizes a specially processed optical fiber to provide a clean high quality reference wave from an incident line focus from the cylindrical wave under test. By taking measurements at different rotation and translations of the fiber, an analogous procedure can be employed to determine the quality of the converging cylindrical wavefront with high accuracy. This paper presents and discusses the results of recent tests of this method using a null optic formed by a COTS cylindrical lens and a free-form polished corrector element.

  14. Absolute Electron Extraction Efficiency of Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter

    2016-03-01

    Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.

  15. Why to compare absolute numbers of mitochondria.

    PubMed

    Schmitt, Sabine; Schulz, Sabine; Schropp, Eva-Maria; Eberhagen, Carola; Simmons, Alisha; Beisker, Wolfgang; Aichler, Michaela; Zischka, Hans

    2014-11-01

    Prompted by pronounced structural differences between rat liver and rat hepatocellular carcinoma mitochondria, we suspected these mitochondrial populations to differ massively in their molecular composition. Aiming to reveal these mitochondrial differences, we came across the issue on how to normalize such comparisons and decided to focus on the absolute number of mitochondria. To this end, fluorescently stained mitochondria were quantified by flow cytometry. For rat liver mitochondria, this approach resulted in mitochondrial protein contents comparable to earlier reports using alternative methods. We determined similar protein contents for rat liver, heart and kidney mitochondria. In contrast, however, lower protein contents were determined for rat brain mitochondria and for mitochondria from the rat hepatocellular carcinoma cell line McA 7777. This result challenges mitochondrial comparisons that rely on equal protein amounts as a typical normalization method. Exemplarily, we therefore compared the activity and susceptibility toward inhibition of complex II of rat liver and hepatocellular carcinoma mitochondria and obtained significant discrepancies by either normalizing to protein amount or to absolute mitochondrial number. Importantly, the latter normalization, in contrast to the former, demonstrated a lower complex II activity and higher susceptibility toward inhibition in hepatocellular carcinoma mitochondria compared to liver mitochondria. These findings demonstrate that solely normalizing to protein amount may obscure essential molecular differences between mitochondrial populations.

  16. Absolute Proper Motions of Southern Globular Clusters

    NASA Astrophysics Data System (ADS)

    Dinescu, D. I.; Girard, T. M.; van Altena, W. F.

    1996-05-01

    Our program involves the determination of absolute proper motions with respect to galaxies for a sample of globular clusters situated in the southern sky. The plates cover a 6(deg) x 6(deg) area and are taken with the 51-cm double astrograph at Cesco Observatory in El Leoncito, Argentina. We have developed special methods to deal with the modelling error of the plate transformation and we correct for magnitude equation using the cluster stars. This careful astrometric treatment leads to accuracies of from 0.5 to 1.0 mas/yr for the absolute proper motion of each cluster, depending primarily on the number of measurable cluster stars which in turn is related to the cluster's distance. Space velocities are then derived which, in association with metallicities, provide key information for the formation scenario of the Galaxy, i.e. accretion and/or dissipational collapse. Here we present results for NGC 1851, NGC 6752, NGC 6584, NGC 6362 and NGC 288.

  17. Relational versus absolute representation in categorization.

    PubMed

    Edwards, Darren J; Pothos, Emmanuel M; Perlman, Amotz

    2012-01-01

    This study explores relational-like and absolute-like representations in categorization. Although there is much evidence that categorization processes can involve information about both the particular physical properties of studied instances and abstract (relational) properties, there has been little work on the factors that lead to one kind of representation as opposed to the other. We tested 370 participants in 6 experiments, in which participants had to classify new items into predefined artificial categories. In 4 experiments, we observed a predominantly relational-like mode of classification, and in 2 experiments we observed a shift toward an absolute-like mode of classification. These results suggest 3 factors that promote a relational-like mode of classification: fewer items per group, more training groups, and the presence of a time delay. Overall, we propose that less information about the distributional properties of a category or weaker memory traces for the category exemplars (induced, e.g., by having smaller categories or a time delay) can encourage relational-like categorization.

  18. Transient absolute robustness in stochastic biochemical networks.

    PubMed

    Enciso, German A

    2016-08-01

    Absolute robustness allows biochemical networks to sustain a consistent steady-state output in the face of protein concentration variability from cell to cell. This property is structural and can be determined from the topology of the network alone regardless of rate parameters. An important question regarding these systems is the effect of discrete biochemical noise in the dynamical behaviour. In this paper, a variable freezing technique is developed to show that under mild hypotheses the corresponding stochastic system has a transiently robust behaviour. Specifically, after finite time the distribution of the output approximates a Poisson distribution, centred around the deterministic mean. The approximation becomes increasingly accurate, and it holds for increasingly long finite times, as the total protein concentrations grow to infinity. In particular, the stochastic system retains a transient, absolutely robust behaviour corresponding to the deterministic case. This result contrasts with the long-term dynamics of the stochastic system, which eventually must undergo an extinction event that eliminates robustness and is completely different from the deterministic dynamics. The transiently robust behaviour may be sufficient to carry out many forms of robust signal transduction and cellular decision-making in cellular organisms. PMID:27581485

  19. Estimate of free electron laser gain length in the presence of electron beam collective effects

    NASA Astrophysics Data System (ADS)

    Di Mitri, S.; Spampinati, S.

    2014-11-01

    We analytically estimated the three-dimensional free electron laser (FEL) power gain length's increase due to the collective effects of an ultrarelativistic electron beam, namely, geometric transverse wakefield, coherent synchrotron radiation, and microbunching instability. We showed that the gain length is affected by an increase of the electron beam projected emittance, even though the slice (local) emittance is preserved. We also proved that the minimum gain length and the maximum of output power may notably differ from the ones derived when collective effects are neglected. Finally, we demonstrated that our model may be handy for a parametric study of electron beam six-dimensional brightness and FEL performance as a function, e.g., of the bunch length compression factor, the accelerator alignment tolerances, and the optics design.

  20. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  1. Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.

    2008-01-01

    Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…

  2. Generation of Electron Bunches at Low Repetition Rates Using a Beat-Frequency Technique

    SciTech Connect

    Poelker, Matt; Grames, Joseph; Hansknecht, John; Kazimi, Reza; Musson, John

    2007-05-01

    Even at a continuous wave facility such as CEBAF at Jefferson Lab, an electron beam with long time intervals (tens of ns) between individual bunches can be useful, for example to isolate sources of background via time of flight detection or to measure the energy of neutral particles that cannot be separated with a magnetic field. This paper describes a demonstrated method to quickly and easily deliver bunches with repetition rates of 20 to 100 MHz corresponding to time intervals between 10 to 50 ns (respectively). This is accomplished by changing the ON/OFF frequency of the RF-pulsed drive laser by a small amount (f/f < 20%), resulting in a bunch frequency equal to the beat frequency between the radio frequencies of the drive laser and the photoinjector chopper system.

  3. A compact radio frequency quadrupole for ion bunching in the WITCH experiment

    NASA Astrophysics Data System (ADS)

    Traykov, E.; Beck, M.; Breitenfeldt, M.; Delahaye, P.; De Leebeeck, V.; Friedag, P.; Herlert, A.; Geeraert, N.; Heirman, W.; Lønne, P.-I.; Mader, J.; Roccia, S.; Soti, G.; Tandecki, M.; Timmermans, M.; Thiboud, J.; Van Gorp, S.; Wauters, F.; Weinheimer, C.; Zákoucký, D.; Severijns, N.

    2011-08-01

    During the last several years the WITCH (Weak Interaction Trap for CHarged particles) experimental setup at ISOLDE has undergone various upgrades aiming at improvement of general performance. An essential innovation, a compact Radio Frequency Quadrupole (RFQ) ion cooler and buncher device, was designed and successfully commissioned as a part of the off-line tuning system of WITCH. The RFQ is coupled to the existing surface ionization ion source providing high intensity ion bunches (up to 107 ions per bunch) towards the pulsed drift tube and the Penning traps of WITCH. This achievement allows for loading and tuning of the Penning traps in the domain of space charge limits and grants off-line operation independently of the REX-ISOLDE ion source. The current upgrade allows for a more thorough and frequent testing with bunched stable ion beams of high intensities, which will be used for studying various systematic effects involved in experiments with radioactive ions.

  4. Method and apparatus for control of coherent synchrotron radiation effects during recirculation with bunch compression

    SciTech Connect

    Douglas, David R; Tennant, Christopher

    2015-11-10

    A modulated-bending recirculating system that avoids CSR-driven breakdown in emittance compensation by redistributing the bending along the beamline. The modulated-bending recirculating system includes a) larger angles of bending in initial FODO cells, thereby enhancing the impact of CSR early on in the beam line while the bunch is long, and 2) a decreased bending angle in the final FODO cells, reducing the effect of CSR while the bunch is short. The invention describes a method for controlling the effects of CSR during recirculation and bunch compression including a) correcting chromatic aberrations, b) correcting lattice and CSR-induced curvature in the longitudinal phase space by compensating T.sub.566, and c) using lattice perturbations to compensate obvious linear correlations x-dp/p and x'-dp/p.

  5. Plasma irregularities caused by cycloid bunching of the CRRES G-2 barium release

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Huba, J. D.; Pongratz, M. B.; Simons, D. J.; Wolcott, J. H.

    1993-01-01

    The Combined Release and Radiation Effects Satellite (CRRES) spacecraft carried a number of barium thermite canisters for release into the upper atmosphere. The barium release labeled G-2 showed evidence of curved irregularities not aligned with the ambient magnetic field B. The newly discovered curved structures can be explained by a process called cycloid bunching. Cycloid bunching occurs when plasma is created by photoionization of a neutral cloud injected at high velocity perpendicular to B. If the injection velocity is much larger than the expansion speed of the cloud, the ion trail will form a cycloid that has irregularities spaced by the product of the perpendicular injection speed and the ion gyroperiod, Images of the solar-illuminated barium ions are compared with the results of a three-dimensional kinetic simulation. Cycloid bunching is shown to be responsible for the rapid generation of both curved and field-aligned irregularities in the CRRES G-2 experiment.

  6. Construction of SSR-based chromosome map in bunching onion (Allium fistulosum).

    PubMed

    Tsukazaki, Hikaru; Yamashita, Ken-Ichiro; Yaguchi, Shigenori; Masuzaki, Shinichi; Fukuoka, Hiroyuki; Yonemaru, Junichi; Kanamori, Hiroyuki; Kono, Izumi; Hang, Tran Thi Minh; Shigyo, Masayoshi; Kojima, Akio; Wako, Tadayuki

    2008-11-01

    We have constructed a linkage map of bunching onion (Allium fistulosum L., 2n = 16) using an F(2) population of 225 plants. The map consists of 17 linkage groups with 212 bunching onion SSR markers and 42 bulb onion (A. cepa L.) SSR, InDel, CAPS or dCAPS markers, covering 2,069 cM. This is the first report of a linkage map mainly based on SSR markers in the genus Allium. With the 103 anchor markers [81 bunching onion SSRs, 11 bulb onion SSRs and 11 bulb onion non-SSRs (1 InDel, 9 CAPSs and 1 dCAPS)] whose chromosome assignments were identified in A. cepa and/or A. fistulosum, via the use of several kinds of Allium alien addition lines, 16 of the 17 linkage groups were connected to the 8 basic chromosomes of A. cepa. PMID:18818898

  7. Generation and Measurement of Relativistic Electron Bunches Characterized by a Linearly Ramped Current Profile

    SciTech Connect

    England, R. J.; Rosenzweig, J. B.; Travish, G.

    2008-05-30

    We report the first successful attempt to generate ultrashort (1-10 ps) relativistic electron bunches characterized by a ramped longitudinal current profile that rises linearly from head to tail and then falls sharply to zero. Bunches with this type of longitudinal shape may be applied to plasma-based accelerator schemes as an optimized drive beam, and to free-electron lasers as a means of reducing asymmetry in microbunching due to slippage. The scheme used to generate the ramped bunches employs an anisochronous dogleg beam line with nonlinear correction elements to compress a beam having an initial positive time-energy chirp. The beam current profile is measured using a deflecting mode cavity, and a pseudoreconstruction of the beam's longitudinal phase space distribution is obtained by using this diagnostic with a residual horizontal dispersion after the dogleg.

  8. Halo formation in three-dimensional bunches with various phase space distributions

    NASA Astrophysics Data System (ADS)

    Fedotov, A. V.; Gluckstern, R. L.; Kurennoy, S. S.; Ryne, R. D.

    1999-01-01

    A realistic treatment of halo formation must take into account 3D beam bunches and 6D phase space distributions. We recently constructed, analytically and numerically, a new class of self-consistent 6D phase space stationary distributions, which allowed us to study the halo development mechanism without being obscured by the effect of beam redistribution. In this paper we consider nonstationary distributions and study how the halo characteristics compare with those obtained using the stationary distribution. We then discuss the effect of redistribution on the halo development mechanism. In contrast to bunches with a large aspect ratio, we find that the effect of coupling between the r and z planes is especially important as the bunch shape becomes more spherical.

  9. Radiation from laser accelerated electron bunches: Coherent terahertz and femtosecond X-rays

    SciTech Connect

    Leemans, W.P.; Esarey, E.; van Tilborg, J.; Michel, P.A.; Schroeder, C.B.; Toth, Cs.; Geddes, C.G.R.; Shadwick, B.A.

    2004-10-01

    Electron beam based radiation sources provide electromagnetic radiation for countless applications. The properties of the radiation are primarily determined by the properties of the electron beam. Compact laser driven accelerators are being developed that can provide ultra-short electron bunches (femtosecond duration) with relativistic energies reaching towards a GeV. The electron bunches are produced when an intense laser interacts with a dense plasma and excites a large amplitude plasma density modulation (wakefield) that can trap background electrons and accelerate them to high energies. The short pulse nature of the accelerated bunches and high particle energy offer the possibility of generating radiation from one compact source that ranges from coherent terahertz to gamma rays. The intrinsic synchronization to a laser pulse and unique character of the radiation offers a wide range of possibilities for scientific applications. Two particular radiation source regimes are discussed: Coherent terahertz emission and x-ray emission based on betatron oscillations and Thomson scattering.

  10. Electron Bunch Profile Reconstruction in the Few fs Regime using Coherent Smith-Purcell Radiation

    SciTech Connect

    Bartolini, R.; Clarke, C.; Delerue, N; Doucas, G; Reichold, A; /Oxford U., JAI

    2012-06-20

    Advanced accelerators for fourth generation light sources based on high brightness linacs or laser-driven wakefield accelerators will operate with intense, highly relativistic electron bunches that are only a few fs long. Diagnostic techniques for the determination of temporal profile of such bunches are required to be non invasive, single shot, economic and with the required resolution in the fs regime. The use of a radiative process such as coherent Smith-Purcell radiation (SPR), is particularly promising with this respect. In this technique the beam is made to radiate a small amount of electromagnetic radiation and the temporal profile is reconstructed from the measured spectral distribution of the radiation. We summarise the advantages of SPR and present the design parameters and preliminary results of the experiments at the FACET facility at SLAC. We also discuss a new approach to the problem of the recovery of the 'missing phase', which is essential for the accurate reconstruction of the temporal bunch profile.

  11. Electron Bunch Profile Diagnostics in the Few FS Regime Using Coherent Smith-Purcell Radiation

    SciTech Connect

    Bartolini, R.; Clarke, C.; Delerue, N.; Doucas, G.; Pattle, K.; Perry, C.; Reichold, A.; Tovey, R.; /Oxford U.

    2011-12-13

    The rapid developments in the field of laser-driven particle acceleration hold the prospect of intense, highly relativistic electron bunches that are only a few fs long. The determination of the temporal profile of such bunches presents new challenges. The use of a radiative process such as Smith-Purcell radiation (SPR), is particularly promising in this respect. In this technique the beam is made to radiate a small amount of e/m radiation and the temporal profile is reconstructed from the measured spectral distribution of the radiation. We summarise the advantages of SPR and present the design parameters and preliminary results of the experiments at the FACET facility at SLAC. We also discuss a new approach to the problem of the recovery of the 'missing phase', which is essential for the accurate reconstruction of the temporal bunch profile.

  12. Bunching properties of a classical microtron-injector for a far infrared free electron laser

    NASA Astrophysics Data System (ADS)

    Kazakevitch, Grigori M.; Serednyakov, Stanislav S.; Vinokurov, Nikolai A.; Jeong, Young Uk; Lee, Byung Cheol; Lee, Jongmin

    2001-12-01

    Longitudinal bunching properties of a classical microtron have been investigated by the numerical simulation of the longitudinal motion of accelerated electrons. The simulations were performed for the 12-turn microtron that has been used as an injector for the KAERI far infrared free electron laser. Based on the bunching properties of the electron beam, the temporal distribution of the coherent undulator radiation power during a macro pulse from the free electron laser was calculated. In the calculations, we took into account the dispersion properties of the accelerating cavity and deviations of the bunch repetition rate that were measured by the heterodyne method in real operating conditions of the microtron. The calculation results are compared with the experimental data.

  13. The Absolute Radiometric Calibration of Space - Sensors.

    NASA Astrophysics Data System (ADS)

    Holm, Ronald Gene

    1987-09-01

    The need for absolute radiometric calibration of space-based sensors will continue to increase as new generations of space sensors are developed. A reflectance -based in-flight calibration procedure is used to determine the radiance reaching the entrance pupil of the sensor. This procedure uses ground-based measurements coupled with a radiative transfer code to characterize the effects the atmosphere has on the signal reaching the sensor. The computed radiance is compared to the digital count output of the sensor associated with the image of a test site. This provides an update to the preflight calibration of the system and a check on the on-board internal calibrator. This calibration procedure was used to perform a series of five calibrations of the Landsat-5 Thematic Mapper (TM). For the 12 measurements made in TM bands 1-3, the RMS variation from the mean as a percentage of the mean is (+OR-) 1.9%, and for measurements in the IR, TM bands 4,5, and 7, the value is (+OR-) 3.4%. The RMS variation for all 23 measurements is (+OR-) 2.8%. The absolute calibration techniques were put to another test with a series of three calibration of the SPOT-1 High Resolution Visible, (HRV), sensors. The ratio, HRV-2/HRV-1, of absolute calibration coefficients compared very well with ratios of histogrammed data obtained when the cameras simultaneously imaged the same ground site. Bands PA, B1 and B3 agreed to within 3%, while band B2 showed a 7% difference. The procedure for performing a satellite calibration was then used to demonstrate how a calibrated satellite sensor can be used to quantitatively evaluate surface reflectance over a wide range of surface features. Predicted reflectance factors were compared to values obtained from aircraft -based radiometer data. This procedure was applied on four dates with two different surface conditions per date. A strong correlation, R('2) = .996, was shown between reflectance values determined from satellite imagery and low-flying aircraft

  14. Use of Absolute and Comparative Performance Feedback in Absolute and Comparative Judgments and Decisions

    ERIC Educational Resources Information Center

    Moore, Don A.; Klein, William M. P.

    2008-01-01

    Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…

  15. Threshold for Trapping Positrons in the Wake Driven by a Ultra-relativistic Electron Bunch

    SciTech Connect

    Wang, X.; Muggli, P.; Katsouleas, T.; Ischebeck, R.; Hogan, M. J.; Joshi, C.; Mori, W. B.

    2009-01-22

    We have recently proposed a new concept for generating, injecting and accelerating positrons in a plasma using a double-pulse electron bunch. Monte Carlo simulations show that the number of the positrons produced in a foil target has an exponentially decay energy spectrum. The energy threshold for the trapping of these positrons in a ultra-relativistic electron wake is investigated numerically. For a typical 28.5 GeV electron drive bunch, the trapping threshold for the positrons is a few MeV, and therefore a majority of positrons generated in the foil target are focused and accelerated by the plasma wake.

  16. Overview of Alternative Bunching and Current-shaping Techniques for Low-Energy Electron Beams

    SciTech Connect

    Piot, Philippe

    2015-12-01

    Techniques to bunch or shape an electron beam at low energies (E <15 MeV) have important implications toward the realization of table-top radiation sources [1] or to the design of compact multi-user free-electron lasers[2]. This paper provides an overview of alternative methods recently developed including techniques such as wakefield-based bunching, space-charge-driven microbunching via wave-breaking [3], ab-initio shaping of the electron-emission process [4], and phase space exchangers. Practical applications of some of these methods to foreseen free-electron-laser configurations are also briefly discussed [5].

  17. Design of bunch compressing system with suppression of coherent synchrotron radiation for ATF upgrade

    SciTech Connect

    Jing, Yichao; Fedurin, Mikhail; Stratakis, Diktys

    2015-05-03

    One of the operation modes for Accelerator Test Facility (ATF) upgrade is to provide high peak current, high quality electron beam for users. Such operation requires a bunch compressing system with a very large compression ratio. The CSR originating from the strong compressors generally could greatly degrade the quality of the electron beam. In this paper, we present our design for the entire bunch compressing system that will limit the effect of CSR on the e-beam’s quality. We discuss and detail the performance from the start to end simulation of such a compressor for ATF.

  18. Temporal profile measurements of relativistic electron bunch based on wakefield generation

    DOE PAGES

    Bettoni, S.; Craievich, P.; Lutman, A. A.; Pedrozzi, M.

    2016-02-25

    A complete characterization of the time-resolved longitudinal beam phase space is important to optimize the final performances of an accelerator, and in particular this is crucial for Free Electron Laser (FEL) facilities. In this study we propose a novel method to characterize the profile of a relativistic electron bunch by passively streaking the beam using its self-interaction with the transverse wakefield excited by the bunch itself passing off-axis through a dielectric-lined or a corrugated waveguide. Results of a proof-of-principle experiment at the SwissFEL Injector Test Facility are discussed.

  19. Gain measurements on a waveguide FEL amplifier with pre-bunched electron beam

    SciTech Connect

    Dearden, G.; Mayhew, S.E.; Lucas, J.

    1995-12-31

    A theory proposed by Doria et al. suggests that a synchronous pre-bunched electron beam should amplify radiation with a power gain which is inversely proportional to the square root of the input power. We have measured the power gain experimentally for a waveguide FEL system using a low-voltage (55kV) pre-bunched electron beam produced by a waveguide cavity buncher. The gain has been observed as a function of the electron beam current and energy; the results are compared with theory.

  20. A new technique for making bright proton bunches using barrier RF systems

    SciTech Connect

    Bhat, C.M.; /Fermilab

    2005-05-01

    I describe here a very promising scheme for producing bright proton bunches for proton-antiproton and proton-proton colliders. The method is based on the use of wide-band barrier rf systems. First, I explain the principle of the method. The beam dynamics simulations applied to the Fermilab Main Injector (MI) suggest that the scheme allows a wide range of bunch intensities and emittances for ppbar collider. This method has the potential to increase the instantaneous luminosity by {ge}30% at the Tevatron.