Science.gov

Sample records for absolute color calibration

  1. Absolute calibration in vivo measurement systems

    SciTech Connect

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs.

  2. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  3. Absolute calibration of the Auger fluorescence detectors

    SciTech Connect

    Bauleo, P.; Brack, J.; Garrard, L.; Harton, J.; Knapik, R.; Meyhandan, R.; Rovero, A.C.; Tamashiro, A.; Warner, D.

    2005-07-01

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the combined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.

  4. Documentation for the machine-readable version of the Absolute Calibration of Stellar Spectrophotometry

    NASA Technical Reports Server (NTRS)

    Warren, W. H., Jr.

    1982-01-01

    The machine-readable data file of The Absolute Calibration of Stellar Spectrophotometry as distributed by the Astronomical Data Center is described. The data file contains the absolute fluxes for 16 stars published in Tables 1 and 2 of Johnson (1980). The absolute calibrations were accomplished by combining the 13-color photometry calibrations of Johnson and Mitchell (1975) with spectra obtained with a Michelson spectrophotometer and covering the wavelength range 4000 to 10300 A (Johnson 1977). The agreement between this absolute calibration and another recent one based upon data for a Lyr and 109 Vir by Tug, White and Lockwood (1977) is shown by Johnson (1980) to be quite good.

  5. Sentinel-2/MSI absolute calibration: first results

    NASA Astrophysics Data System (ADS)

    Lonjou, V.; Lachérade, S.; Fougnie, B.; Gamet, P.; Marcq, S.; Raynaud, J.-L.; Tremas, T.

    2015-10-01

    Sentinel-2 is an optical imaging mission devoted to the operational monitoring of land and coastal areas. It is developed in partnership between the European Commission and the European Space Agency. The Sentinel-2 mission is based on a satellites constellation deployed in polar sun-synchronous orbit. It will offer a unique combination of global coverage with a wide field of view (290km), a high revisit (5 days with two satellites), a high resolution (10m, 20m and 60m) and multi-spectral imagery (13 spectral bands in visible and shortwave infra-red domains). CNES is involved in the instrument commissioning in collaboration with ESA. This paper reviews all the techniques that will be used to insure an absolute calibration of the 13 spectral bands better than 5% (target 3%), and will present the first results if available. First, the nominal calibration technique, based on an on-board sun diffuser, is detailed. Then, we show how vicarious calibration methods based on acquisitions over natural targets (oceans, deserts, and Antarctica during winter) will be used to check and improve the accuracy of the absolute calibration coefficients. Finally, the verification scheme, exploiting photometer in-situ measurements over Lacrau plain, is described. A synthesis, including spectral coherence, inter-methods agreement and temporal evolution, will conclude the paper.

  6. Absolute calibration of TFTR helium proportional counters

    SciTech Connect

    Strachan, J.D.; Diesso, M.; Jassby, D.; Johnson, L.; McCauley, S.; Munsat, T.; Roquemore, A.L.; Barnes, C.W. |; Loughlin, M. |

    1995-06-01

    The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments.

  7. Absolute Radiometric Calibration of KOMPSAT-3A

    NASA Astrophysics Data System (ADS)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  8. Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Casertano, Stefano

    1991-01-01

    A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.

  9. Absolute calibration of ultraviolet filter photometry

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Fairchild, T.; Code, A. D.

    1972-01-01

    The essential features of the calibration procedure can be divided into three parts. First, the shape of the bandpass of each photometer was determined by measuring the transmissions of the individual optical components and also by measuring the response of the photometer as a whole. Secondly, each photometer was placed in the essentially-collimated synchrotron radiation bundle maintained at a constant intensity level, and the output signal was determined from about 100 points on the objective. Finally, two or three points on the objective were illuminated by synchrotron radiation at several different intensity levels covering the dynamic range of the photometers. The output signals were placed on an absolute basis by the electron counting technique described earlier.

  10. Absolute calibration of forces in optical tweezers

    NASA Astrophysics Data System (ADS)

    Dutra, R. S.; Viana, N. B.; Maia Neto, P. A.; Nussenzveig, H. M.

    2014-07-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past 15 years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spot, adapting frequently employed video microscopy techniques. Combined with interface spherical aberration, it reveals a previously unknown window of instability for trapping. Comparison with experimental data leads to an overall agreement within error bars, with no fitting, for a broad range of microsphere radii, from the Rayleigh regime to the ray optics one, for different polarizations and trapping heights, including all commonly employed parameter domains. Besides signaling full first-principles theoretical understanding of optical tweezers operation, the results may lead to improved instrument design and control over experiments, as well as to an extended domain of applicability, allowing reliable force measurements, in principle, from femtonewtons to nanonewtons.

  11. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  12. Absolute calibration of sniffer probes on Wendelstein 7-X.

    PubMed

    Moseev, D; Laqua, H P; Marsen, S; Stange, T; Braune, H; Erckmann, V; Gellert, F; Oosterbeek, J W

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m(2) per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m(2) per MW injected beam power is measured. PMID:27587121

  13. Absolute calibration of sniffer probes on Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m2 per MW injected beam power is measured.

  14. A practical method for sensor absolute calibration.

    PubMed

    Meisenholder, G W

    1966-04-01

    This paper describes a method of performing sensor calibrations using an NBS standard of spectral irradiance. The method shown, among others, was used for calibration of the Mariner IV Canopus sensor. Agreement of inflight response to preflight calibrations performed by this technique has been found to be well within 10%. PMID:20048890

  15. Absolute Antenna Calibration at the US National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.

    2012-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. Determination of antenna phase center behavior is known as "antenna calibration". Since 1994, NGS has computed relative antenna calibrations for more than 350 antennas. In recent years, the geodetic community has moved to absolute calibrations - the IGS adopted absolute antenna phase center calibrations in 2006 for use in their orbit and clock products, and NGS's CORS group began using absolute antenna calibration upon the release of the new CORS coordinates in IGS08 epoch 2005.00 and NAD 83(2011,MA11,PA11) epoch 2010.00. Although NGS relative calibrations can be and have been converted to absolute, it is considered best practice to independently measure phase center characteristics in an absolute sense. Consequently, NGS has developed and operates an absolute calibration system. These absolute antenna calibrations accommodate the demand for greater accuracy and for 2-dimensional (elevation and azimuth) parameterization. NGS will continue to provide calibration values via the NGS web site www.ngs.noaa.gov/ANTCAL, and will publish calibrations in the ANTEX format as well as the legacy ANTINFO

  16. System and method for calibrating a rotary absolute position sensor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  17. Absolute sensitivity calibration of extreme ultraviolet photoresists

    SciTech Connect

    Jones, Juanita; Naulleau, Patrick P.; Gullikson, Eric M.; Aquila, Andrew; George, Simi; Niakoula, Dimitra

    2008-05-16

    One of the major challenges facing the commercialization of extreme ultraviolet (EUV) lithography remains simultaneously achieving resist sensitivity, line-edge roughness, and resolution requirement. Sensitivity is of particular concern owing to its direct impact on source power requirements. Most current EUV exposure tools have been calibrated against a resist standard with the actual calibration of the standard resist dating back to EUV exposures at Sandia National Laboratories in the mid 1990s. Here they report on an independent sensitivity calibration of two baseline resists from the SEMATECH Berkeley MET tool performed at the Advanced Light Source Calibrations and Standards beamline. The results show the baseline resists to be approximately 1.9 times faster than previously thought based on calibration against the long standing resist standard.

  18. Medical color displays and their calibration

    NASA Astrophysics Data System (ADS)

    Fan, Jiahua; Roehrig, Hans; Dallas, W.; Krupinski, Elizabeth

    2009-08-01

    Color displays are increasingly used for medical imaging, replacing the traditional monochrome displays in radiology for multi-modality applications, 3D representation applications, etc. Color displays are also used increasingly because of wide spread application of Tele-Medicine, Tele-Dermatology and Digital Pathology. At this time, there is no concerted effort for calibration procedures for this diverse range of color displays in Telemedicine and in other areas of the medical field. Using a colorimeter to measure the display luminance and chrominance properties as well as some processing software we developed a first attempt to a color calibration protocol for the medical imaging field.

  19. Stitching interferometry: recent results and absolute calibration

    NASA Astrophysics Data System (ADS)

    Bray, Michael

    2004-02-01

    Stitching Interferometry is a method of analysing large optical components using a standard "small" interferometer. This result is obtained by taking multiple overlapping images of the large component, and numerically "stitching" these sub-apertures together. We have already reported the industrial use our Stitching Interferometry systems (Previous SPIE symposia), but experimental results had been lacking because this technique is still new, and users needed to get accustomed to it before producing reliable measurements. We now have more results. We will report user comments and show new, unpublished results. We will discuss sources of error, and show how some of these can be reduced to arbitrarily small values. These will be discussed in some detail. We conclude with a few graphical examples of absolute measurements performed by us.

  20. Absolute calibration technique for broadband ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1994-01-01

    Calibrating an ultrasonic transducer can be performed with a reduced number of calculations and testing. A wide-band pulser is connected to an ultrasonic transducer under test to generate ultrasonic waves in a liquid. A single frequency is transmitted to the electrostatic acoustic transducer (ESAT) and the voltage change produced is monitored. Then a broadband ultrasonic pulse is generated by the ultrasonic transducer and received by the ESAT. The output of the ESAT is amplified and input to a digitized oscilloscope for fast Fourier transform. The resulting plot is normalized with the monitored signal from the single frequency pulse. The plot is then corrected for characteristics of the membrane and diffraction effects. The transfer function of the final plot is determined. The transfer function gives the final sensitivity of the ultrasonic transducer as a function of frequency. The advantage of the system is the speed of calibrating the transducer by a reduced number of measurements and removal of the membrane and diffraction effects.

  1. GNSS Absolute Antenna Calibration at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.; Geoghegan, C.

    2011-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. To help meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) now operates an absolute antenna calibration facility. Located in Corbin, Virginia, this facility uses field measurements and actual GNSS satellite signals to quantitatively determine the carrier phase advance/delay introduced by the antenna element. The NGS facility was built to serve traditional NGS constituents such as the surveying and geodesy communities, however calibration services are open and available to all GNSS users as the calibration schedule permits. All phase center patterns computed by this facility will be publicly available and disseminated in both the ANTEX and NGS formats. We describe the NGS calibration facility, and discuss the observation models and strategy currently used to generate NGS absolute calibrations. We demonstrate that NGS absolute phase center variation (PCV) patterns are consistent with published values determined by other absolute antenna calibration facilities, and compare absolute calibrations to the traditional NGS relative calibrations.

  2. Prelaunch absolute radiometric calibration of LANDSAT-4 protoflight Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Ball, D. L.; Leung, K. C.; Walker, J. A.

    1984-01-01

    Results are summarized and analyzed from several prelaunch tests with a 122 cm integrating sphere used as part of the absolute radiometric calibration experiments for the protoflight TM sensor carried on the LANDSAT-4 satellite. The calibration procedure is presented and the radiometric sensitivity of the TM is assessed. The internal calibrator and dynamic range after calibration are considered. Tables show dynamic range after ground processing, spectral radiance to digital number and digital number to spectral radiance values for TM bands 1, 2, 3, 4, 5, 7 and for channel 4 of band 6.

  3. Overspecification of color, pattern, and size: salience, absoluteness, and consistency

    PubMed Central

    Tarenskeen, Sammie; Broersma, Mirjam; Geurts, Bart

    2015-01-01

    The rates of overspecification of color, pattern, and size are compared, to investigate how salience and absoluteness contribute to the production of overspecification. Color and pattern are absolute and salient attributes, whereas size is relative and less salient. Additionally, a tendency toward consistent responses is assessed. Using a within-participants design, we find similar rates of color and pattern overspecification, which are both higher than the rate of size overspecification. Using a between-participants design, however, we find similar rates of pattern and size overspecification, which are both lower than the rate of color overspecification. This indicates that although many speakers are more likely to include color than pattern (probably because color is more salient), they may also treat pattern like color due to a tendency toward consistency. We find no increase in size overspecification when the salience of size is increased, suggesting that speakers are more likely to include absolute than relative attributes. However, we do find an increase in size overspecification when mentioning the attributes is triggered, which again shows that speakers tend to refer in a consistent manner, and that there are circumstances in which even size overspecification is frequently produced. PMID:26594190

  4. Variations in in-flight absolute radiometric calibration. [satellite remote sensors

    NASA Technical Reports Server (NTRS)

    Slater, Philip N.

    1986-01-01

    Variations in the in-flight absolute radiometric calibration of the Coastal Zone Color Scanner and the Thematic Mapper (TM) are reviewed. At short wavelengths, the sensors show a gradual reduction in response, while in the mid-IR the TM shows oscillatory variations. One set of measurements made at White Sands, New Mexico shows anomalous results in TM bands 2 and 4. The results of a reflectance-based and a radiance-based calibration method at White Sands are described. An analysis of the radiance-based method shows the value of such measurements from helicopter altitudes for calibration.

  5. In-flight absolute radiometric calibration of the thematic mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

    1983-01-01

    The TM multispectral scanner system was calibrated in an absolute manner before launch. To determine the temporal changes of the absolute radiometric calibration of the entire system, spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM collections over White Sands, New Mexico. By entering the measured values in an atmospheric radiative transfer program, the radiance levels of the in four of the spectral bands of the TM were determined. Tables show values for the reflectance of snow at White Sands measured by a modular 8 channel radiometer, and values for exoatmospheric irradiance within the TM passbands, calculated for the Earth-Sun distance using a solar radiometer.

  6. Landsat-5 TM reflective-band absolute radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Markham, B.L.; Dewald, J.D.; Kaita, E.; Thome, K.J.; Micijevic, E.; Ruggles, T.A.

    2004-01-01

    The Landsat-5 Thematic Mapper (TM) sensor provides the longest running continuous dataset of moderate spatial resolution remote sensing imagery, dating back to its launch in March 1984. Historically, the radiometric calibration procedure for this imagery used the instrument's response to the Internal Calibrator (IC) on a scene-by-scene basis to determine the gain and offset of each detector. Due to observed degradations in the IC, a new procedure was implemented for U.S.-processed data in May 2003. This new calibration procedure is based on a lifetime radiometric calibration model for the instrument's reflective bands (1-5 and 7) and is derived, in part, from the IC response without the related degradation effects and is tied to the cross calibration with the Landsat-7 Enhanced Thematic Mapper Plus. Reflective-band absolute radiometric accuracy of the instrument tends to be on the order of 7% to 10%, based on a variety of calibration methods.

  7. Absolute irradiance of the Moon for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.

    2002-01-01

    The recognized need for on-orbit calibration of remote sensing imaging instruments drives the ROLO project effort to characterize the Moon for use as an absolute radiance source. For over 5 years the ground-based ROLO telescopes have acquired spatially-resolved lunar images in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands at phase angles within ??90 degrees. A numerical model for lunar irradiance has been developed which fits hundreds of ROLO images in each band, corrected for atmospheric extinction and calibrated to absolute radiance, then integrated to irradiance. The band-coupled extinction algorithm uses absorption spectra of several gases and aerosols derived from MODTRAN to fit time-dependent component abundances to nightly observations of standard stars. The absolute radiance scale is based upon independent telescopic measurements of the star Vega. The fitting process yields uncertainties in lunar relative irradiance over small ranges of phase angle and the full range of lunar libration well under 0.5%. A larger source of uncertainty enters in the absolute solar spectral irradiance, especially in the SWIR, where solar models disagree by up to 6%. Results of ROLO model direct comparisons to spacecraft observations demonstrate the ability of the technique to track sensor responsivity drifts to sub-percent precision. Intercomparisons among instruments provide key insights into both calibration issues and the absolute scale for lunar irradiance.

  8. Lyman alpha SMM/UVSP absolute calibration and geocoronal correction

    NASA Technical Reports Server (NTRS)

    Fontenla, Juan M.; Reichmann, Edwin J.

    1987-01-01

    Lyman alpha observations from the Ultraviolet Spectrometer Polarimeter (UVSP) instrument of the Solar Maximum Mission (SMM) spacecraft were analyzed and provide instrumental calibration details. Specific values of the instrument quantum efficiency, Lyman alpha absolute intensity, and correction for geocoronal absorption are presented.

  9. Absolute calibration of Landsat instruments using the moon.

    USGS Publications Warehouse

    Kieffer, H.H.; Wildey, R.L.

    1985-01-01

    A lunar observation by Landsat could provide improved radiometric and geometric calibration of both the Thematic Mapper and the Multispectral Scanner in terms of absolute radiometry, determination of the modulation transfer function, and sensitivity to scattered light. A pitch of the spacecraft would be required. -Authors

  10. Absolute charge calibration of scintillating screens for relativistic electron detection

    SciTech Connect

    Buck, A.; Popp, A.; Schmid, K.; Karsch, S.; Krausz, F.; Zeil, K.; Jochmann, A.; Kraft, S. D.; Sauerbrey, R.; Cowan, T.; Schramm, U.; Hidding, B.; Kudyakov, T.; Sears, C. M. S.; Veisz, L.; Pawelke, J.

    2010-03-15

    We report on new charge calibrations and linearity tests with high-dynamic range for eight different scintillating screens typically used for the detection of relativistic electrons from laser-plasma based acceleration schemes. The absolute charge calibration was done with picosecond electron bunches at the ELBE linear accelerator in Dresden. The lower detection limit in our setup for the most sensitive scintillating screen (KODAK Biomax MS) was 10 fC/mm{sup 2}. The screens showed a linear photon-to-charge dependency over several orders of magnitude. An onset of saturation effects starting around 10-100 pC/mm{sup 2} was found for some of the screens. Additionally, a constant light source was employed as a luminosity reference to simplify the transfer of a one-time absolute calibration to different experimental setups.

  11. Absolute charge calibration of scintillating screens for relativistic electron detection

    NASA Astrophysics Data System (ADS)

    Buck, A.; Zeil, K.; Popp, A.; Schmid, K.; Jochmann, A.; Kraft, S. D.; Hidding, B.; Kudyakov, T.; Sears, C. M. S.; Veisz, L.; Karsch, S.; Pawelke, J.; Sauerbrey, R.; Cowan, T.; Krausz, F.; Schramm, U.

    2010-03-01

    We report on new charge calibrations and linearity tests with high-dynamic range for eight different scintillating screens typically used for the detection of relativistic electrons from laser-plasma based acceleration schemes. The absolute charge calibration was done with picosecond electron bunches at the ELBE linear accelerator in Dresden. The lower detection limit in our setup for the most sensitive scintillating screen (KODAK Biomax MS) was 10 fC/mm2. The screens showed a linear photon-to-charge dependency over several orders of magnitude. An onset of saturation effects starting around 10-100 pC/mm2 was found for some of the screens. Additionally, a constant light source was employed as a luminosity reference to simplify the transfer of a one-time absolute calibration to different experimental setups.

  12. In-flight Absolute Radiometric Calibration of the Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, D.; Savage, R. K.

    1984-01-01

    The Thematic Mapper (TM) multispectral scanner system was placed into Earth orbit on July 16, 1982, as part of NASA's LANDSAT 4 payload. To determine temporal changes of the absolute radiometric calibration of the entire system in flight, spectroradiometric measurements of the ground and the atmosphere are made simultaneously with TM image acquisitions over the White Sands, New Mexico area. By entering the measured values into an atmospheric radiative transfer program, the radiance levels at the entrance pupil of the TM in four of the TM spectral bands are determined. These levels are compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors. By reference to an adjacent, larger uniform area, the calibration is extended to all 16 detectors in each of the three bands.

  13. Absolute GNSS Antenna Calibration at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G.; Bilich, A.; Geoghegan, C.

    2012-04-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. To help meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) now operates an absolute antenna calibration facility. Located in Corbin, Virginia, this facility uses field measurements and actual GNSS satellite signals to quantitatively determine the carrier phase advance/delay introduced by the antenna element. The NGS facility was built to serve traditional NGS constituents such as the surveying and geodesy communities, however calibration services are open and available to all GNSS users as the calibration schedule permits. All phase center patterns computed by this facility will be publicly available and disseminated in both the ANTEX and NGS formats. We describe the NGS calibration facility, and discuss the observation models and strategy currently used to generate NGS absolute calibrations. We demonstrate that NGS absolute phase center variation (PCV) patterns are consistent with published values determined by other absolute antenna calibration facilities, and outline future planned refinements to the system.

  14. Absolute calibration for a broad range single shot electron spectrometer

    SciTech Connect

    Glinec, Y.; Faure, J.; Guemnie-Tafo, A.; Malka, V.; Monard, H.; Larbre, J. P.; De Waele, V.; Marignier, J. L.; Mostafavi, M.

    2006-10-15

    This article gives a detailed description of a single shot electron spectrometer which was used to characterize electron beams produced by laser-plasma interaction. Contrary to conventional electron sources, electron beams from laser-plasma accelerators can produce a broad range of energies. Therefore, diagnosing these electron spectra requires specific attention and experimental development. Here, we provide an absolute calibration of the Lanex Kodak Fine screen on a laser-triggered radio frequency picosecond electron accelerator. The efficiency of scintillating screens irradiated by electron beams has never been investigated so far. This absolute calibration is then compared to charge measurements from an integrating current transformer for quasimonoenergetic electron spectra from laser-plasma interaction.

  15. In-flight absolute radiometric calibration of the thematic mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

    1984-01-01

    In order to determine temporal changes of the absolute radiometric calibration of the entire TM system in flight spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM image collections over the White Sands, New Mexico area. By entering the measured values in an atmospheric radiative transfer program, the radiance levels in four of the spectral bands of the TM were determined, band 1:0.45 to 0.52 micrometers, band 2:0.53 to 0.61 micrometers band 3:0.62 to 0.70 micrometers and 4:0.78 to 0.91 micrometers. These levels were compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors.

  16. In-flight absolute radiometric calibration of the Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

    1984-01-01

    In order to determine temporal changes of the absolute radiometric calibration of the entire TM system in flight spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM image collections over the White Sands, NM area. By entering the measured values in an atmospheric radiative transfer program, the radiance levels in four of the spectral bands of the TM were determined, band 1: 0.45 to 0.52 micrometers, band 2: 0.53 to 0.61 micrometers, band 3: 0.62 to 0.70 micrometers, and 4: 0.78 to 0.91 micrometers. These levels were compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors. Previously announced in STAR as N84-15633

  17. Absolute calibration for a broad range single shot electron spectrometer

    NASA Astrophysics Data System (ADS)

    Glinec, Y.; Faure, J.; Guemnie-Tafo, A.; Malka, V.; Monard, H.; Larbre, J. P.; De Waele, V.; Marignier, J. L.; Mostafavi, M.

    2006-10-01

    This article gives a detailed description of a single shot electron spectrometer which was used to characterize electron beams produced by laser-plasma interaction. Contrary to conventional electron sources, electron beams from laser-plasma accelerators can produce a broad range of energies. Therefore, diagnosing these electron spectra requires specific attention and experimental development. Here, we provide an absolute calibration of the Lanex Kodak Fine screen on a laser-triggered radio frequency picosecond electron accelerator. The efficiency of scintillating screens irradiated by electron beams has never been investigated so far. This absolute calibration is then compared to charge measurements from an integrating current transformer for quasimonoenergetic electron spectra from laser-plasma interaction.

  18. Landsat-7 ETM+ radiometric stability and absolute calibration

    USGS Publications Warehouse

    Markham, B.L.; Barker, J.L.; Barsi, J.A.; Kaita, E.; Thome, K.J.; Helder, D.L.; Palluconi, Frank Don; Schott, J.R.; Scaramuzza, P.

    2002-01-01

    Launched in April 1999, the Landsat-7 ETM+ instrument is in its fourth year of operation. The quality of the acquired calibrated imagery continues to be high, especially with respect to its three most important radiometric performance parameters: reflective band instrument stability to better than ??1%, reflective band absolute calibration to better than ??5%, and thermal band absolute calibration to better than ??0.6 K. The ETM+ instrument has been the most stable of any of the Landsat instruments, in both the reflective and thermal channels. To date, the best on-board calibration source for the reflective bands has been the Full Aperture Solar Calibrator, which has indicated changes of at most -1.8% to -2.0% (95% C.I.) change per year in the ETM+ gain (band 4). However, this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on ground observations, which bound the changes in gain in band 4 at -0.7% to +1.5%. Also, ETM+ stability is indicated by the monitoring of desert targets. These image-based results for four Saharan and Arabian sites, for a collection of 35 scenes over the three years since launch, bound the gain change at -0.7% to +0.5% in band 4. Thermal calibration from ground observations revealed an offset error of +0.31 W/m 2 sr um soon after launch. This offset was corrected within the U. S. ground processing system at EROS Data Center on 21-Dec-00, and since then, the band 6 on-board calibration has indicated changes of at most +0.02% to +0.04% (95% C.I.) per year. The latest ground observations have detected no remaining offset error with an RMS error of ??0.6 K. The stability and absolute calibration of the Landsat-7 ETM+ sensor make it an ideal candidate to be used as a reference source for radiometric cross-calibrating to other land remote sensing satellite systems.

  19. Vicarious calibration of the Geostationary Ocean Color Imager.

    PubMed

    Ahn, Jae-Hyun; Park, Young-Je; Kim, Wonkook; Lee, Boram; Oh, Im Sang

    2015-09-01

    Measurements of ocean color from Geostationary Ocean Color Imager (GOCI) with a moderate spatial resolution and a high temporal frequency demonstrate high value for a number of oceanographic applications. This study aims to propose and evaluate the calibration of GOCI as needed to achieve the level of radiometric accuracy desired for ocean color studies. Previous studies reported that the GOCI retrievals of normalized water-leaving radiances (nLw) are biased high for all visible bands due to the lack of vicarious calibration. The vicarious calibration approach described here relies on the assumed constant aerosol characteristics over the open-ocean sites to accurately estimate atmospheric radiances for the two near-infrared (NIR) bands. The vicarious calibration of visible bands is performed using in situ nLw measurements and the satellite-estimated atmospheric radiance using two NIR bands over the case-1 waters. Prior to this analysis, the in situ nLw spectra in the NIR are corrected by the spectrum optimization technique based on the NIR similarity spectrum assumption. The vicarious calibration gain factors derived for all GOCI bands (except 865nm) significantly improve agreement in retrieved remote-sensing reflectance (Rrs) relative to in situ measurements. These gain factors are independent of angular geometry and possible temporal variability. To further increase the confidence in the calibration gain factors, a large data set from shipboard measurements and AERONET-OC is used in the validation process. It is shown that the absolute percentage difference of the atmospheric correction results from the vicariously calibrated GOCI system is reduced by ~6.8%. PMID:26368426

  20. GNSS Absolute Antenna Calibration at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Bilich, A. L.; Mader, G. L.

    2009-12-01

    GNSS applications now routinely demand measurement and instrument biases at the centimeter to millimeter level in order to achieve the high precision and accuracy required for geodetic position solutions. One of these biases is the antenna phase center, the point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. As baseline lengths increase, or with antenna mixing, phase center effects on carrier phase data become more pronounced. To meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) has constructed an absolute antenna calibration facility which uses field measurements and actual GNSS satellite signals to determine antenna phase center patterns. A pan/tilt motor changes the orientation of the antenna under test; signals are received at a wide range of angles, allowing computation of a robust phase center pattern. Ultimately, this facility will be used to measure antenna phase center variations of commonly-used geodetic GNSS antennas, as well as antennas submitted by users. The phase center patterns will be publicly available and disseminated in both the ANTEX and NGS formats. We provide information on the observation models and strategy currently used to generate NGS absolute calibrations, and propose some future refinements. We discuss the multipath mitigation strategy currently in use, and provide examples of antenna calibrations from the NGS facility. These examples are compared to the NGS relative calibrations as well as absolute calibrations generated by other organizations.

  1. Direct comparisons between absolute and relative geomagnetic paleointensities: Absolute calibration of a relative paleointensity stack

    NASA Astrophysics Data System (ADS)

    Mochizuki, N.; Yamamoto, Y.; Hatakeyama, T.; Shibuya, H.

    2013-12-01

    Absolute geomagnetic paleointensities (APIs) have been estimated from igneous rocks, while relative paleomagnetic intensities (RPIs) have been reported from sediment cores. These two datasets have been treated separately, as correlations between APIs and RPIs are difficult on account of age uncertainties. High-resolution RPI stacks have been constructed from globally distributed sediment cores with high sedimentation rates. Previous studies often assumed that the RPI stacks have a linear relationship with geomagnetic axial dipole moments, and calibrated the RPI values to API values. However, the assumption of a linear relationship between APIs and RPIs has not been evaluated. Also, a quantitative calibration method for the RPI is lacking. We present a procedure for directly comparing API and RPI stacks, thus allowing reliable calibrations of RPIs. Direct comparisons between APIs and RPIs were conducted with virtually no associated age errors using both tephrochronologic correlations and RPI minima. Using the stratigraphic positions of tephra layers in oxygen isotope stratigraphic records, we directly compared the RPIs and APIs reported from welded tuffs contemporaneously extruded with the tephra layers. In addition, RPI minima during geomagnetic reversals and excursions were compared with APIs corresponding to the reversals and excursions. The comparison of APIs and RPIs at these exact points allowed a reliable calibration of the RPI values. We applied this direct comparison procedure to the global RPI stack PISO-1500. For six independent calibration points, virtual axial dipole moments (VADMs) from the corresponding APIs and RPIs of the PISO-1500 stack showed a near-linear relationship. On the basis of the linear relationship, RPIs of the stack were successfully calibrated to the VADMs. The direct comparison procedure provides an absolute calibration method that will contribute to the recovery of temporal variations and distributions of geomagnetic axial dipole

  2. Updated Absolute Flux Calibration of the COS FUV Modes

    NASA Astrophysics Data System (ADS)

    Massa, D.; Ely, J.; Osten, R.; Penton, S.; Aloisi, A.; Bostroem, A.; Roman-Duval, J.; Proffitt, C.

    2014-03-01

    We present newly derived point source absolute flux calibrations for the COS FUV modes at both the original and second lifetime positions. The analysis includes observa- tions through the Primary Science Aperture (PSA) of the standard stars WD0308-565, GD71, WD1057+729 and WD0947+857 obtained as part of two calibration programs. Data were were obtained for all of the gratings at all of the original CENWAVE settings at both the original and second lifetime positions and for the G130M CENWAVE = 1222 at the second lifetime position. Data were also obtained with the FUVB segment for the G130M CENWAVE = 1055 and 1096 setting at the second lifetime position. We also present the derivation of L-flats that were used in processing the data and show that the internal consistency of the primary standards is 1%. The accuracy of the absolute flux calibrations over the UV are estimated to be 1-2% for the medium resolution gratings, and 2-3% over most of the wavelength range of the G140L grating, although the uncertainty can be as large as 5% or more at some G140L wavelengths. We note that these errors are all relative to the optical flux near the V band and small additional errors may be present due to inaccuracies in the V band calibration. In addition, these error estimates are for the time at which the flux calibration data were obtained; the accuracy of the flux calibration at other times can be affected by errors in the time dependent sensitivity (TDS) correction.

  3. New approach to color calibration of high fidelity color digital camera by using unique wide gamut color generator based on LED diodes

    NASA Astrophysics Data System (ADS)

    Kretkowski, M.; Shimodaira, Y.; Jabłoński, R.

    2008-11-01

    Development of a high accuracy color reproduction system requires certain instrumentation and reference for color calibration. Our research led to development of a high fidelity color digital camera with implemented filters that realize the color matching functions. The output signal returns XYZ values which provide absolute description of color. In order to produce XYZ output a mathematical conversion must be applied to CCD output values introducing a conversion matrix. The conversion matrix coefficients are calculated by using a color reference with known XYZ values and corresponding output signals from the CCD sensor under each filter acquisition from a certain amount of color samples. The most important feature of the camera is its ability to acquire colors from the complete theoretically visible color gamut due to implemented filters. However market available color references such as various color checkers are enclosed within HDTV gamut, which is insufficient for calibration in the whole operating color range. This led to development of a unique color reference based on LED diodes called the LED Color Generator (LED CG). It is capable of displaying colors in a wide color gamut estimated by chromaticity coordinates of 12 primary colors. The total amount of colors possible to produce is 25512. The biggest advantage is a possibility of displaying colors with desired spectral distribution (with certain approximations) due to multiple primary colors it consists. The average color difference obtained for test colors was found to be ▵E~0.78 for calibration with LED CG. The result is much better and repetitive in comparison with the Macbeth ColorCheckerTM which typically gives ▵E~1.2 and in the best case ▵E~0.83 with specially developed techniques.

  4. Absolute Efficiency Calibration of a Beta-Gamma Detector

    SciTech Connect

    Cooper, Matthew W.; Ely, James H.; Haas, Derek A.; Hayes, James C.; McIntyre, Justin I.; Lidey, Lance S.; Schrom, Brian T.

    2013-04-10

    Abstract- Identification and quantification of nuclear events such as the Fukushima reactor failure and nuclear explosions rely heavily on the accurate measurement of radioxenon releases. One radioxenon detection method depends on detecting beta-gamma coincident events paired with a stable xenon measurement to determine the concentration of a plume. Like all measurements, the beta-gamma method relies on knowing the detection efficiency for each isotope measured. Several methods are commonly used to characterize the detection efficiency for a beta-gamma detector. The most common method is using a NIST certified sealed source to determine the efficiency. A second method determines the detection efficiencies relative to an already characterized detector. Finally, a potentially more accurate method is to use the expected sample to perform an absolute efficiency calibration; in the case of a beta-gamma detector, this relies on radioxenon gas samples. The complication of the first method is it focuses only on the gamma detectors and does not offer a solution for determining the beta efficiency. The second method listed is not similarly constrained, however it relies on another detector to have a well-known efficiency calibration. The final method using actual radioxenon samples to make an absolute efficiency determination is the most desirable, but until recently it was not possible to produce all four isotopically pure radioxenon. The production, by University of Texas (UT), of isotopically pure radioxenon has allowed the beta-gamma detectors to be calibrated using the absolute efficiency method. The first four radioxenon isotope calibration will be discussed is this paper.

  5. On the Error Sources in Absolute Individual Antenna Calibrations

    NASA Astrophysics Data System (ADS)

    Aerts, Wim; Baire, Quentin; Bilich, Andria; Bruyninx, Carine; Legrand, Juliette

    2013-04-01

    field) multi path errors, both during calibration and later on at the station, absolute sub-millimeter positioning with GPS is not (yet) possible. References [1] G. Wübbena, M. Schmitz, G. Boettcher, C. Schumann, "Absolute GNSS Antenna Calibration with a Robot: Repeatability of Phase Variations, Calibration of GLONASS and Determination of Carrier-to-Noise Pattern", International GNSS Service: Analysis Center workshop, 8-12 May 2006, Darmstadt, Germany. [2] P. Zeimetz, H. Kuhlmann, "On the Accuracy of Absolute GNSS Antenna Calibration and the Conception of a New Anechoic Chamber", FIG Working Week 2008, 14-19 June 2008, Stockholm, Sweden. [3] P. Zeimetz, H. Kuhlmann, L. Wanninger, V. Frevert, S. Schön and K. Strauch, "Ringversuch 2009", 7th GNSS-Antennen-Workshop, 19-20 March 2009, Dresden, Germany.

  6. Absolute Timing Calibration of the USA Experiment Using Pulsar Observations

    NASA Astrophysics Data System (ADS)

    Ray, P. S.; Wood, K. S.; Wolff, M. T.; Lovellette, M. N.; Sheikh, S.; Moon, D.-S.; Eikenberry, S. S.; Roberts, M.; Lyne, A.; Jordon, C.; Bloom, E. D.; Tournear, D.; Saz Parkinson, P.; Reilly, K.

    2003-03-01

    We update the status of the absolute time calibration of the USA Experiment as determined by observations of X-ray emitting rotation-powered pulsars. The brightest such source is the Crab Pulsar and we have obtained observations of the Crab at radio, IR, optical, and X-ray wavelengths. We directly compare arrival time determinations for 2--10 keV X-ray observations made contemporaneously with the PCA on the Rossi X-ray Timing Explorer and the USA Experiment on ARGOS. These two X-ray measurements employ very different means of measuring time and satellite position and thus have different systematic error budgets. The comparison with other wavelengths requires additional steps such as dispersion measure corrections and a precise definition of the ``peak'' of the light curve since the light curve shape varies with observing wavelength. We will describe each of these effects and quantify the magnitude of the systematic error that each may contribute. We will also include time comparison results for other pulsars, such as PSR B1509-58 and PSR B1821-24. Once the absolute time calibrations are well understood, comparing absolute arrival times at multiple energies can provide clues to the magnetospheric structure and emission region geometry. Basic research on X-ray Astronomy at NRL is funded by NRL/ONR.

  7. Absolute calibration of vacuum ultraviolet spectrograph system for plasma diagnostics

    SciTech Connect

    Yoshikawa, M.; Kubota, Y.; Kobayashi, T.; Saito, M.; Numada, N.; Nakashima, Y.; Cho, T.; Koguchi, H.; Yagi, Y.; Yamaguchi, N.

    2004-10-01

    A space- and time-resolving vacuum ultraviolet (VUV) spectrograph system has been applied to diagnose impurity ions behavior in plasmas produced in the tandem mirror GAMMA 10 and the reversed field pinch TPE-RX. We have carried out ray tracing calculations for obtaining the characteristics of the VUV spectrograph and calibration experiments to measure the absolute sensitivities of the VUV spectrograph system for the wavelength range from 100 to 1100 A. By changing the incident angle, 50.6 deg. -51.4 deg., to the spectrograph whose nominal incident angle is 51 deg., we can change the observing spectral range of the VUV spectrograph. In this article, we show the ray tracing calculation results and absolute sensitivities when the angle of incidence into the VUV spectrograph is changed, and the results of VUV spectroscopic measurement in both GAMMA 10 and TPE-RX plasmas.

  8. Flow rate calibration for absolute cell counting rationale and design.

    PubMed

    Walker, Clare; Barnett, David

    2006-05-01

    There is a need for absolute leukocyte enumeration in the clinical setting, and accurate, reliable (and affordable) technology to determine absolute leukocyte counts has been developed. Such technology includes single platform and dual platform approaches. Derivations of these counts commonly incorporate the addition of a known number of latex microsphere beads to a blood sample, although it has been suggested that the addition of beads to a sample may only be required to act as an internal quality control procedure for assessing the pipetting error. This unit provides the technical details for undertaking flow rate calibration that obviates the need to add reference beads to each sample. It is envisaged that this report will provide the basis for subsequent clinical evaluations of this novel approach. PMID:18770842

  9. Stability of array spectroradiometers and their suitability for absolute calibrations

    NASA Astrophysics Data System (ADS)

    Nevas, Saulius; Teuber, Annette; Sperling, Armin; Lindemann, Matthias

    2012-04-01

    An investigation of the short- and long-term stability of various low-end and high-end array spectroradiometers is presented. Potentially weak points of array spectroradiometers with respect to their suitability for absolute calibrations are pointed out. The influence of ambient conditions on relevant instrumental characteristics and their temporal stability is discussed. It is shown that the temporal stability of some instruments can be significantly affected by high ambient humidity. Most important ambient temperature effects on instrument properties are also discussed.

  10. SPRED spectrograph upgrade: high resolution grating and improved absolute calibrations

    SciTech Connect

    Stratton, B.C.; Fonck, R.J.; Ida, K.; Jaehnig, K.P.; Ramsey, A.T.

    1986-05-01

    Two improvements to the SPRED multichannel VUV spectrographs used on the TFTR and PBX tokamaks have been made: (1) A new 2100-g/mm grating covering the 100 to 320 A region with 0.4 A resolution (FWHM) has been added to the existing 450 g/mm grating (100 to 1100 A with 2 A resolution), and (2) the TFTR SPRED has been absolutely calibrated using synchrotron radiation from the NBS SURF II facility, while the PBX system has been calibrated using conventional branching ratios along with line ratios from charge-exchange-recombination-excited lines. The availability of high resolution spectra in the 100 to 320 A range provides improved measurements of metallic ion emissions and, when the instrument views across a neutral beam as in PBX, allows carbon and oxygen densities to be measured via charge exchange recombination spectroscopy.

  11. Active radiometric calorimeter for absolute calibration of radioactive sources

    NASA Astrophysics Data System (ADS)

    Stump, K. E.; DeWerd, L. A.; Rudman, D. A.; Schima, S. A.

    2005-03-01

    This report describes the design and initial noise floor measurements of a radiometric calorimeter designed to measure therapeutic medical radioactive sources. The instrument demonstrates a noise floor of approximately 2 nW. This low noise floor is achieved by using high temperature superconducting (HTS) transition edge sensor (TES) thermometers in a temperature-control feedback loop. This feedback loop will be used to provide absolute source calibrations based upon the electrical substitution method. Other unique features of the calorimeter are (a) its ability to change sources for calibration without disrupting the vacuum of the instrument, and (b) the ability to measure the emitted power of a source in addition to the total contained source power.

  12. Absolute radiometric calibration of Landsat using a pseudo invariant calibration site

    USGS Publications Warehouse

    Helder, D.; Thome, K.J.; Mishra, N.; Chander, G.; Xiong, Xiaoxiong; Angal, A.; Choi, Tae-young

    2013-01-01

    Pseudo invariant calibration sites (PICS) have been used for on-orbit radiometric trending of optical satellite systems for more than 15 years. This approach to vicarious calibration has demonstrated a high degree of reliability and repeatability at the level of 1-3% depending on the site, spectral channel, and imaging geometries. A variety of sensors have used this approach for trending because it is broadly applicable and easy to implement. Models to describe the surface reflectance properties, as well as the intervening atmosphere have also been developed to improve the precision of the method. However, one limiting factor of using PICS is that an absolute calibration capability has not yet been fully developed. Because of this, PICS are primarily limited to providing only long term trending information for individual sensors or cross-calibration opportunities between two sensors. This paper builds an argument that PICS can be used more extensively for absolute calibration. To illustrate this, a simple empirical model is developed for the well-known Libya 4 PICS based on observations by Terra MODIS and EO-1 Hyperion. The model is validated by comparing model predicted top-of-atmosphere reflectance values to actual measurements made by the Landsat ETM+ sensor reflective bands. Following this, an outline is presented to develop a more comprehensive and accurate PICS absolute calibration model that can be Système international d'unités (SI) traceable. These initial concepts suggest that absolute calibration using PICS is possible on a broad scale and can lead to improved on-orbit calibration capabilities for optical satellite sensors.

  13. Monochromator-Based Absolute Calibration of a Standard Radiation Thermometer

    NASA Astrophysics Data System (ADS)

    Mantilla, J. M.; Hernanz, M. L.; Campos, J.; Martín, M. J.; Pons, A.; del Campo, D.

    2014-04-01

    Centro Español de Metrología (CEM) is disseminating the International Temperature Scale (ITS-90), at high temperatures, by using the fixed points of Ag and Cu and a standard radiation thermometer. However, the future mise-en-pratique for the definition of the kelvin ( MeP-K) will include the dissemination of the kelvin by primary methods and by indirect approximations capable of exceptionally low uncertainties or increased reliability. Primary radiometry is, at present, able to achieve uncertainties competitive with the ITS-90 above the silver point with one of the possible techniques the calibration for radiance responsivity of an imaging radiometer (radiance method). In order to carry out this calibration, IO-CSIC (Spanish Designated Institute for luminous intensity and luminous flux) has collaborated with CEM, allowing traceability to its cryogenic radiometer. A monochromator integrating sphere-based spectral comparator facility has been used to calibrate one of the CEM standard radiation thermometers. The absolute calibrated standard radiation thermometer has been used to determine the temperatures of the fixed points of Cu, Co-C, Pt-C, and Re-C. The results obtained are 1357.80 K, 1597.10 K, 2011.66 K, and 2747.64 K, respectively, with uncertainties ranging from 0.4 K to 1.1 K.

  14. The Absolute Calibration of the HiRes Detectors

    NASA Astrophysics Data System (ADS)

    Matthews, J. N.; Thomas, S. B.; HiRes Collaboration

    2003-07-01

    The HiRes experiment studies ultra high energy cosmic rays using the air fluorescence technique. The experiment uses large mirrors that collect the fluorescence light and fo cus it onto arrays of photomultiplier tubes (PMTs). The PMTs measure the intensity and time of arrival of the collected light. Our primary system for in situ calibration of the PMTs uses a high stability (<1%) portable light source. This source is transferred from the lab to the field where it is employed as a standard candle to calibrate the 64 detectors (>16,000 PMTs). To determine the absolute response it is necessary to understand the absolute light output of this source. We have measured the source irradiance using a hybrid photo dio de system, two NIST calibrated photo-dio des, and by observing the photo electron statistics of the PMTs. 2. Introduction The goal of the High Resolution Fly's Eye (HiRes) project is to study cosmic rays at the highest energies. An ultra high energy cosmic ray entering the earth's atmosphere collides with atmospheric nuclei triggering the development of an Extensive Air Shower (EAS). The EAS emits fluorescence light as it develops. HiRes uses the air fluorescence signal to measure properties of the primary cosmic ray particle. The fundamental detector elements in HiRes are photomultiplier tubes (PMTs). The light from an EAS is collected by large mirrors and fo cused into cameras each consisting of 256 PMTs [1]. Routine monitoring and calibration of the PMTs and associated electronics are crucial to the proper interpretation of the data. The primary system for in situ calibration of the PMTs involves the use of a high stability portable xenon flash lamp. The Roving Xenon Flasher (RXF) offers several advantages. The pulse-to-pulse variation in intensity is very small ˜0.3% and the stability over a night is better than 2%. The emission spectrum of the RXF is sufficiently broad to allow calibration over a wide range of wavelengths. It is also readily transported

  15. On the absolute calibration of SO2 cameras

    NASA Astrophysics Data System (ADS)

    Lübcke, P.; Bobrowski, N.; Illing, S.; Kern, C.; Alvarez Nieves, J. M.; Vogel, L.; Zielcke, J.; Delgado Granados, H.; Platt, U.

    2012-09-01

    Sulphur dioxide emission flux measurements are an important tool for volcanic monitoring and eruption risk assessment. The SO2 camera technique remotely measures volcanic emissions by analysing the ultraviolet absorption of SO2 in a narrow spectral window between 305 nm and 320 nm using solar radiation scattered in the atmosphere. The SO2 absorption is selectively detected by mounting band-pass interference filters in front of a two-dimensional, UV-sensitive CCD detector. While this approach is simple and delivers valuable insights into the two-dimensional SO2 distribution, absolute calibration has proven to be difficult. An accurate calibration of the SO2 camera (i.e., conversion from optical density to SO2 column density, CD) is crucial to obtain correct SO2 CDs and flux measurements that are comparable to other measurement techniques and can be used for volcanological applications. The most common approach for calibrating SO2 camera measurements is based on inserting quartz cells (cuvettes) containing known amounts of SO2 into the light path. It has been found, however, that reflections from the windows of the calibration cell can considerably affect the signal measured by the camera. Another possibility for calibration relies on performing simultaneous measurements in a small area of the camera's field-of-view (FOV) by a narrow-field-of-view Differential Optical Absorption Spectroscopy (NFOV-DOAS) system. This procedure combines the very good spatial and temporal resolution of the SO2 camera technique with the more accurate column densities obtainable from DOAS measurements. This work investigates the uncertainty of results gained through the two commonly used, but quite different calibration methods (DOAS and calibration cells). Measurements with three different instruments, an SO2 camera, a NFOV-DOAS system and an Imaging DOAS (IDOAS), are presented. We compare the calibration-cell approach with the calibration from the NFOV-DOAS system. The respective

  16. Absolute Calibration of Optical Satellite Sensors Using Libya 4 Pseudo Invariant Calibration Site

    NASA Technical Reports Server (NTRS)

    Mishra, Nischal; Helder, Dennis; Angal, Amit; Choi, Jason; Xiong, Xiaoxiong

    2014-01-01

    The objective of this paper is to report the improvements in an empirical absolute calibration model developed at South Dakota State University using Libya 4 (+28.55 deg, +23.39 deg) pseudo invariant calibration site (PICS). The approach was based on use of the Terra MODIS as the radiometer to develop an absolute calibration model for the spectral channels covered by this instrument from visible to shortwave infrared. Earth Observing One (EO-1) Hyperion, with a spectral resolution of 10 nm, was used to extend the model to cover visible and near-infrared regions. A simple Bidirectional Reflectance Distribution function (BRDF) model was generated using Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations over Libya 4 and the resulting model was validated with nadir data acquired from satellite sensors such as Aqua MODIS and Landsat 7 (L7) Enhanced Thematic Mapper (ETM+). The improvements in the absolute calibration model to account for the BRDF due to off-nadir measurements and annual variations in the atmosphere are summarized. BRDF models due to off-nadir viewing angles have been derived using the measurements from EO-1 Hyperion. In addition to L7 ETM+, measurements from other sensors such as Aqua MODIS, UK-2 Disaster Monitoring Constellation (DMC), ENVISAT Medium Resolution Imaging Spectrometer (MERIS) and Operational Land Imager (OLI) onboard Landsat 8 (L8), which was launched in February 2013, were employed to validate the model. These satellite sensors differ in terms of the width of their spectral bandpasses, overpass time, off-nadir-viewing capabilities, spatial resolution and temporal revisit time, etc. The results demonstrate that the proposed empirical calibration model has accuracy of the order of 3% with an uncertainty of about 2% for the sensors used in the study.

  17. Color standardization in whole slide imaging using a color calibration slide

    PubMed Central

    Bautista, Pinky A.; Hashimoto, Noriaki; Yagi, Yukako

    2014-01-01

    Background: Color consistency in histology images is still an issue in digital pathology. Different imaging systems reproduced the colors of a histological slide differently. Materials and Methods: Color correction was implemented using the color information of the nine color patches of a color calibration slide. The inherent spectral colors of these patches along with their scanned colors were used to derive a color correction matrix whose coefficients were used to convert the pixels’ colors to their target colors. Results: There was a significant reduction in the CIELAB color difference, between images of the same H & E histological slide produced by two different whole slide scanners by 3.42 units, P < 0.001 at 95% confidence level. Conclusion: Color variations in histological images brought about by whole slide scanning can be effectively normalized with the use of the color calibration slide. PMID:24672739

  18. RGB calibration for color image analysis in machine vision.

    PubMed

    Chang, Y C; Reid, J F

    1996-01-01

    A color calibration method for correcting the variations in RGB color values caused by vision system components was developed and tested in this study. The calibration scheme concentrated on comprehensively estimating and removing the RGB errors without specifying error sources and their effects. The algorithm for color calibration was based upon the use of a standardized color chart and developed as a preprocessing tool for color image analysis. According to the theory of image formation, RGB errors in color images were categorized into multiplicative and additive errors. Multiplicative and additive errors contained various error sources-gray-level shift, a variation in amplification and quantization in camera electronics or frame grabber, the change of color temperature of illumination with time, and related factors. The RGB errors of arbitrary colors in an image were estimated from the RGB errors of standard colors contained in the image. The color calibration method also contained an algorithm for correcting the nonuniformity of illumination in the scene. The algorithm was tested under two different conditions-uniform and nonuniform illumination in the scene. The RGB errors of arbitrary colors in test images were almost completely removed after color calibration. The maximum residual error was seven gray levels under uniform illumination and 12 gray levels under nonuniform illumination. Most residual RGB errors were caused by residual nonuniformity of illumination in images, The test results showed that the developed method was effective in correcting the variations in RGB color values caused by vision system components. PMID:18290059

  19. Relative vs Absolute Antenna Calibrations: How, when, and why do they differ? A Comparison of Antenna Calibration Catalogs

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.

    2013-12-01

    Since 1994, NGS has computed relative antenna calibrations for more than 350 antenna models used by NGS customers and geodetic networks worldwide. In a 'relative' calibration, the antenna under test is calibrated relative to a standard reference antenna, the AOA D/M_T chokering. The majority of NGS calibrations have been made publicly available at the web site www.ngs.noaa.gov/ANTCAL as well as via the NGS master calibrations file ant_info.003. In the mid-2000's, institutions in Germany began distributing 'absolute' antenna calibrations, where the antenna under test is calibrated independent of any reference antenna. These calibration methods also overcame some limitations of relative calibrations by going to lower elevation angles and capturing azimuthal variations. Soon thereafter (2008), the International GNSS Service (IGS) initiated a geodetic community movement away from relative calibrations and toward absolute calibrations as the defacto standard. The IGS now distributes a catalog of absolute calibrations taken from several institutions, distributed as the IGS master calibrations file igs08.atx. The competing methods and files have raised many questions about when it is or is not valid to process a geodetic network using a combination of relative and absolute calibrations, and if/when it is valid to combine the NGS and IGS catalogs. Therefore, in this study, we compare the NGS catalog of relative calibrations against the IGS catalog of absolute calibrations. As of the writing of this abstract, there are 77 antenna+radome combinations which are common to both the NGS relative and IGS absolute catalogs, spanning 16 years of testing (1997 to present). 50 different antenna models and 8 manufacturers are represented in the study sample. We apply the widely-accepted standard method for converting relative to absolute, then difference the calibrations. Various statistics describe the observed differences between phase center offset (PCO), phase center variation

  20. Methods to calibrate the absolute receive sensitivity of single-element, focused transducers

    PubMed Central

    Rich, Kyle T.; Mast, T. Douglas

    2015-01-01

    Absolute pressure measurements of acoustic emissions by single-element, focused passive cavitation detectors would be facilitated by improved wideband receive calibration techniques. Here, calibration methods were developed to characterize the absolute, frequency-dependent receive sensitivity of a spherically focused, single-element transducer using pulse-echo and pitch-catch techniques. Validation of these calibration methods on a focused receiver were made by generating a pulse from a small diameter source at the focus of the transducer and comparing the absolute pressure measured by a calibrated hydrophone to that of the focused transducer using the receive sensitivities determined here. PMID:26428812

  1. Methods to calibrate the absolute receive sensitivity of single-element, focused transducers.

    PubMed

    Rich, Kyle T; Mast, T Douglas

    2015-09-01

    Absolute pressure measurements of acoustic emissions by single-element, focused passive cavitation detectors would be facilitated by improved wideband receive calibration techniques. Here, calibration methods were developed to characterize the absolute, frequency-dependent receive sensitivity of a spherically focused, single-element transducer using pulse-echo and pitch-catch techniques. Validation of these calibration methods on a focused receiver were made by generating a pulse from a small diameter source at the focus of the transducer and comparing the absolute pressure measured by a calibrated hydrophone to that of the focused transducer using the receive sensitivities determined here. PMID:26428812

  2. Development of an XYZ Digital Camera with Embedded Color Calibration System for Accurate Color Acquisition

    NASA Astrophysics Data System (ADS)

    Kretkowski, Maciej; Jablonski, Ryszard; Shimodaira, Yoshifumi

    Acquisition of accurate colors is important in the modern era of widespread exchange of electronic multimedia. The variety of device-dependent color spaces causes troubles with accurate color reproduction. In this paper we present the outlines of accomplished digital camera system with device-independent output formed from tristimulus XYZ values. The outstanding accuracy and fidelity of acquired color is achieved in our system by employing an embedded color calibration system based on emissive device generating reference calibration colors with user-defined spectral distribution and chromaticity coordinates. The system was tested by calibrating the camera using 24 reference colors spectrally reproduced from 24 color patches of the Macbeth Chart. The average color difference (CIEDE2000) has been found to be ΔE =0.83, which is an outstanding result compared to commercially available digital cameras.

  3. [In-flight absolute radiometric calibration of UAV multispectral sensor].

    PubMed

    Chen, Wei; Yan, Lei; Gou, Zhi-Yang; Zhao, Hong-Ying; Liu, Da-Ping; Duan, Yi-Ni

    2012-12-01

    Based on the data of the scientific experiment in Urad Front Banner for UAV Remote Sensing Load Calibration Field project, with the help of 6 hyperspectral radiometric targets with good Lambertian property, the wide-view multispectral camera in UAV was calibrated adopting reflectance-based method. The result reveals that for green, red and infrared channel, whose images were successfully captured, the linear correlation coefficients between the DN and radiance are all larger than 99%. In final analysis, the comprehensive error is no more than 6%. The calibration results demonstrate that the hyperspectral targets equipped by the calibration field are well suitable for air-borne multispectral load in-flight calibration. The calibration result is reliable and could be used in the retrieval of geophysical parameters. PMID:23427528

  4. Absolute spectral radiance responsivity calibration of sun photometers

    SciTech Connect

    Xu Qiuyun; Zheng Xiaobing; Zhang Wei; Wang Xianhua; Li Jianjun; Li Xin; Li Zhengqiang

    2010-03-15

    Sun photometers are designed to measure direct solar irradiance and diffused sky radiance for the purpose of atmospheric parameters characterization. A sun photometer is usually calibrated by using a lamp-illuminated integrating sphere source for its band-averaged radiance responsivity, which normally has an uncertainty of 3%-5% at present. Considering the calibration coefficients may also change with time, a regular high precision calibration is important to maintain data quality. In this paper, a tunable-laser-based facility for spectral radiance responsivity calibration has been developed at the Key Laboratory of Optical Calibration and Characterization, Chinese Academy of Sciences. A reference standard radiance radiometer, calibrated against cryogenic radiometer, is used to determine the radiance from a laser-illuminated integrating sphere source. Spectral radiance responsivity of CIMEL CE318-2 sun photometer is calibrated using this new calibration system with a combined standard uncertainty of about 0.8%. As a validation, the derived band-averaged radiance responsivity are compared to that from a Goddard Space Flight Center lamp-based sphere calibration and good agreements (difference <1.4%) are found from 675 to 1020 nm bands.

  5. Calibration Adjustments to the MODIS Aqua Ocean Color Bands

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard

    2012-01-01

    After the end of the SeaWiFS mission in 2010 and the MERIS mission in 2012, the ocean color products of the MODIS on Aqua are the only remaining source to continue the ocean color climate data record until the VIIRS ocean color products become operational (expected for summer 2013). The MODIS on Aqua is well beyond its expected lifetime, and the calibration accuracy of the short wavelengths (412nm and 443nm) has deteriorated in recent years_ Initially, SeaWiFS data were used to improve the MODIS Aqua calibration, but this solution was not applicable after the end of the SeaWiFS mission_ In 2012, a new calibration methodology was applied by the MODIS calibration and support team using desert sites to improve the degradation trending_ This presentation presents further improvements to this new approach. The 2012 reprocessing of the MODIS Aqua ocean color products is based on the new methodology.

  6. Inter-printer color calibration using constrained printer gamut

    NASA Astrophysics Data System (ADS)

    Zeng, Huanzhao; Humet, Jacint

    2005-01-01

    Due to the drop size variation of the print heads in inkjet printers, consistent color reproduction becomes challenge for high quality color printing. To improve the color consistency, we developed a method and system to characterize a pair of printers using a colorimeter or a color scanner. Different from prior known approaches that simply try to match colors of one printer to the other without considering the gamut differences, we first constructed an overlapped gamut in which colors can be produced by both printers, and then characterized both printers using a pair of 3-D or 4-D lookup tables (LUT) to produce same colors limited to the overlapped gamut. Each LUT converts nominal device color values into engine-dependent device color values limited to the overlapped gamut. Compared to traditional approaches, the color calibration accuracy is significantly improved. This method can be simply extended to calibrate more than two engines. In a color imaging system that includes a scanner and more than one print engine, this method improves the color consistency very effectively without increasing hardware costs. A few examples for applying this method are: 1) one-pass bi-directional inkjet printing; 2) a printer with two or more sets of pens for printing; and 3) a system embedded with a pair of printers (the number of printers could be easily incremented).

  7. Inter-printer color calibration using constrained printer gamut

    NASA Astrophysics Data System (ADS)

    Zeng, Huanzhao; Humet, Jacint

    2004-12-01

    Due to the drop size variation of the print heads in inkjet printers, consistent color reproduction becomes challenge for high quality color printing. To improve the color consistency, we developed a method and system to characterize a pair of printers using a colorimeter or a color scanner. Different from prior known approaches that simply try to match colors of one printer to the other without considering the gamut differences, we first constructed an overlapped gamut in which colors can be produced by both printers, and then characterized both printers using a pair of 3-D or 4-D lookup tables (LUT) to produce same colors limited to the overlapped gamut. Each LUT converts nominal device color values into engine-dependent device color values limited to the overlapped gamut. Compared to traditional approaches, the color calibration accuracy is significantly improved. This method can be simply extended to calibrate more than two engines. In a color imaging system that includes a scanner and more than one print engine, this method improves the color consistency very effectively without increasing hardware costs. A few examples for applying this method are: 1) one-pass bi-directional inkjet printing; 2) a printer with two or more sets of pens for printing; and 3) a system embedded with a pair of printers (the number of printers could be easily incremented).

  8. Digital camera calibration for color measurements on prints

    NASA Astrophysics Data System (ADS)

    Andersson, Mattias

    2007-01-01

    Flatbed scanners and digital cameras have become established and widely used color imaging devices. If colorimetrically calibrated, these trichromatic devices can provide fast color measurement tools in applications such as printer calibration, process control, objective print quality measurements and color management. However, in calibrations intended to be used for color measurements on printed matter, the media dependency must be considered. Very good results can be achieved when the calibration is carried out on a single media and then applied for measurements on the same media, or at least a media of a very similar type. Significantly poorer results can be observed when the calibration is carried out for one printer-substrate combination and then applied for measurements on targets produced with another printer-substrate combination. Even if the problem is restricted to the color calibration of a scanner or camera for different paper media printed on a single printer, it is still tedious work to make a separate calibration for each new paper grade to be used in the printer. Therefore, it would be of interest to find a method where it is sufficient to characterize for only one or a few papers within a grade segment and then be able to apply a correction based on measurable optical paper properties. However, before being able to make any corrections, the influence of measurable paper properties on color characterizations must be studied and modeled. Fluorescence has been mentioned1-3 as a potential source of error in color calibrations for measurements on printed matter. In order to improve paper whiteness, producers of printing paper add bluish dye and fluorescent whitening agents (FWA) to the paper4. In this study, the influence of FWA in printing paper on the color calibration of a digital camera for color measurements on printed targets is discussed. To study the effect of FWA in the paper, a set of papers with varying additions of FWA but otherwise

  9. On the absolute calibration of SO2 cameras

    USGS Publications Warehouse

    Lübcke, Peter; Bobrowski, Nicole; Illing, Sebastian; Kern, Christoph; Alvarez Nieves, Jose Manuel; Vogel, Leif; Zielcke, Johannes; Delgados Granados, Hugo; Platt, Ulrich

    2013-01-01

    This work investigates the uncertainty of results gained through the two commonly used, but quite different, calibration methods (DOAS and calibration cells). Measurements with three different instruments, an SO2 camera, a NFOVDOAS system and an Imaging DOAS (I-DOAS), are presented. We compare the calibration-cell approach with the calibration from the NFOV-DOAS system. The respective results are compared with measurements from an I-DOAS to verify the calibration curve over the spatial extent of the image. The results show that calibration cells, while working fine in some cases, can lead to an overestimation of the SO2 CD by up to 60% compared with CDs from the DOAS measurements. Besides these errors of calibration, radiative transfer effects (e.g. light dilution, multiple scattering) can significantly influence the results of both instrument types. The measurements presented in this work were taken at Popocatepetl, Mexico, between 1 March 2011 and 4 March 2011. Average SO2 emission rates between 4.00 and 14.34 kg s−1 were observed.

  10. Quantum Efficient Detectors for Use in Absolute Calibration

    NASA Technical Reports Server (NTRS)

    Faust, Jessica; Eastwood, Michael; Pavri, Betina; Raney, James

    1998-01-01

    The trap or quantum efficient detector has a quantum efficiency of greater than 0.98 for the region from 450 to 900 nm. The region of flattest response is from 600 to 900 nm. The QED consists of three windowless Hamamatsu silicon detectors. The QED was mounted below AVIRIS to monitor the Spectralon panel for changes in radiance during radiometric calibration. The next step is to permanently mount the detector to AVIRIS and monitor the overall radiance of scenes along with calibration.

  11. The absolute radiometric calibration of the advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1988-01-01

    The need for independent, redundant absolute radiometric calibration methods is discussed with reference to the Thematic Mapper. Uncertainty requirements for absolute calibration of between 0.5 and 4 percent are defined based on the accuracy of reflectance retrievals at an agricultural site. It is shown that even very approximate atmospheric corrections can reduce the error in reflectance retrieval to 0.02 over the reflectance range 0 to 0.4.

  12. Simple and accurate empirical absolute volume calibration of a multi-sensor fringe projection system

    NASA Astrophysics Data System (ADS)

    Gdeisat, Munther; Qudeisat, Mohammad; AlSa`d, Mohammed; Burton, David; Lilley, Francis; Ammous, Marwan M. M.

    2016-05-01

    This paper suggests a novel absolute empirical calibration method for a multi-sensor fringe projection system. The optical setup of the projector-camera sensor can be arbitrary. The term absolute calibration here means that the centre of the three dimensional coordinates in the resultant calibrated volume coincides with a preset centre to the three-dimensional real-world coordinate system. The use of a zero-phase fringe marking spot is proposed to increase depth calibration accuracy, where the spot centre is determined with sub-pixel accuracy. Also, a new method is proposed for transversal calibration. Depth and transversal calibration methods have been tested using both single sensor and three-sensor fringe projection systems. The standard deviation of the error produced by this system is 0.25 mm. The calibrated volume produced by this method is 400 mm×400 mm×140 mm.

  13. On the precision of absolute sensitivity calibration and specifics of spectroscopic quantities interpretation in tokamaks.

    PubMed

    Naydenkova, D I; Weinzettl, V; Stockel, J; Matějíček, J

    2014-12-01

    Typical situations, which can be met during the process of absolute calibration, are shown in the case of a visible light observation system for the COMPASS tokamak. Technical issues and experimental limitations of absolute measurements connected with tokamak operation are discussed. PMID:25607972

  14. Confidence-Accuracy Calibration in Absolute and Relative Face Recognition Judgments

    ERIC Educational Resources Information Center

    Weber, Nathan; Brewer, Neil

    2004-01-01

    Confidence-accuracy (CA) calibration was examined for absolute and relative face recognition judgments as well as for recognition judgments from groups of stimuli presented simultaneously or sequentially (i.e., simultaneous or sequential mini-lineups). When the effect of difficulty was controlled, absolute and relative judgments produced…

  15. VIIRS On-Orbit Calibration for Ocean Color Data Processing

    NASA Technical Reports Server (NTRS)

    Eplee, Robert E., Jr.; Turpie, Kevin R.; Fireman, Gwyn F.; Meister, Gerhard; Stone, Thomas C.; Patt, Frederick S.; Franz, Bryan; Bailey, Sean W.; Robinson, Wayne D.; McClain, Charles R.

    2012-01-01

    The NASA VIIRS Ocean Science Team (VOST) has the task of evaluating Suomi NPP VIIRS ocean color data for the continuity of the NASA ocean color climate data records. The generation of science quality ocean color data products requires an instrument calibration that is stable over time. Since the VIIRS NIR Degradation Anomaly directly impacts the bands used for atmospheric correction of the ocean color data (Bands M6 and M7), the VOST has adapted the VIIRS on-orbit calibration approach to meet the ocean science requirements. The solar diffuser calibration time series and the solar diffuser stability monitor time series have been used to derive changes in the instrument response and diffuser reflectance over time for bands M1-M11.

  16. On the absolute calibration of SO2 cameras

    NASA Astrophysics Data System (ADS)

    Lübcke, P.; Bobrowski, N.; Illing, S.; Kern, C.; Alvarez Nieves, J. M.; Vogel, L.; Zielcke, J.; Delgado Granados, H.; Platt, U.

    2013-03-01

    Sulphur dioxide emission rate measurements are an important tool for volcanic monitoring and eruption risk assessment. The SO2 camera technique remotely measures volcanic emissions by analysing the ultraviolet absorption of SO2 in a narrow spectral window between 300 and 320 nm using solar radiation scattered in the atmosphere. The SO2 absorption is selectively detected by mounting band-pass interference filters in front of a two-dimensional, UV-sensitive CCD detector. One important step for correct SO2 emission rate measurements that can be compared with other measurement techniques is a correct calibration. This requires conversion from the measured optical density to the desired SO2 column density (CD). The conversion factor is most commonly determined by inserting quartz cells (cuvettes) with known amounts of SO2 into the light path. Another calibration method uses an additional narrow field-of-view Differential Optical Absorption Spectroscopy system (NFOV-DOAS), which measures the column density simultaneously in a small area of the camera's field-of-view. This procedure combines the very good spatial and temporal resolution of the SO2 camera technique with the more accurate column densities obtainable from DOAS measurements. This work investigates the uncertainty of results gained through the two commonly used, but quite different, calibration methods (DOAS and calibration cells). Measurements with three different instruments, an SO2 camera, a NFOV-DOAS system and an Imaging DOAS (I-DOAS), are presented. We compare the calibration-cell approach with the calibration from the NFOV-DOAS system. The respective results are compared with measurements from an I-DOAS to verify the calibration curve over the spatial extent of the image. The results show that calibration cells, while working fine in some cases, can lead to an overestimation of the SO2 CD by up to 60% compared with CDs from the DOAS measurements. Besides these errors of calibration, radiative transfer

  17. Absolute calibration of the RADSCAT scatterometer using precision spheres

    NASA Technical Reports Server (NTRS)

    Grantham, W. L.; Schroeder, L. C.; Mitchell, J. L.

    1976-01-01

    Tests using precision sphere targets suspended from balloons were conducted to calibrate the received-power/transmitted-power tatio of the RADSCAT scatterometer. Comparisons were made of these measured results with theoretical return from spheres. The RADSCAT scatterometer measurements at 13.9 GHz should be corrected by -2.4 dB, and those at 9.3 GHz, by -4.3 dB. The techniques described should be generally applicable to calibration of scatterometers where measurement precision is of prime importance. Inferred from the magnitude of these RADSCAT corrections was the present state of technology in building precision scatterometers.

  18. Verification of Absolute Calibration of Quantum Efficiency for LSST CCDs

    NASA Astrophysics Data System (ADS)

    Coles, Rebecca; Chiang, James; Cinabro, David; Gilbertson, Woodrow; Haupt, justine; Kotov, Ivan; Neal, Homer; Nomerotski, Andrei; O'Connor, Paul; Stubbs, Christopher; Takacs, Peter

    2016-01-01

    We describe a system to measure the Quantum Efficiency in the wavelength range of 300nm to 1100nm of 40x40 mm n-channel CCD sensors for the construction of the 3.2 gigapixel LSST focal plane. The technique uses a series of instruments to create a very uniform flux of photons of controllable intensity in the wavelength range of interest across the face of the sensor. This allows the absolute Quantum Efficiency to be measured with an accuracy in the 1% range. This system will be part of a production facility at Brookhaven National Lab for the basic components of the LSST camera.

  19. First Absolutely Calibrated Localized Measurements of Ion Velocity in the MST in Locked and Rotating Plasmas

    NASA Astrophysics Data System (ADS)

    Baltzer, M.; Craig, D.; den Hartog, D. J.; Nornberg, M. D.; Munaretto, S.

    2015-11-01

    An Ion Doppler Spectrometer (IDS) is used on MST for high time-resolution passive and active measurements of impurity ion emission. Absolutely calibrated measurements of flow are difficult because the spectrometer records data within 0.3 nm of the C+5 line of interest, and commercial calibration lamps do not produce lines in this narrow range . A novel optical system was designed to absolutely calibrate the IDS. The device uses an UV LED to produce a broad emission curve in the desired region. A Fabry-Perot etalon filters this light, cutting transmittance peaks into the pattern of the LED emission. An optical train of fused silica lenses focuses the light into the IDS with f/4. A holographic diffuser blurs the light cone to increase homogeneity. Using this light source, the absolute Doppler shift of ion emissions can be measured in MST plasmas. In combination with charge exchange recombination spectroscopy, localized ion velocities can now be measured. Previously, a time-averaged measurement along the chord bisecting the poloidal plane was used to calibrate the IDS; the quality of these central chord calibrations can be characterized with our absolute calibration. Calibration errors may also be quantified and minimized by optimizing the curve-fitting process. Preliminary measurements of toroidal velocity in locked and rotating plasmas will be shown. This work has been supported by the US DOE.

  20. Improved Calibration Shows Images True Colors

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Innovative Imaging and Research, located at Stennis Space Center, used a single SBIR contract with the center to build a large-scale integrating sphere, capable of calibrating a whole array of cameras simultaneously, at a fraction of the usual cost for such a device. Through the use of LEDs, the company also made the sphere far more efficient than existing products and able to mimic sunlight.

  1. Medical color displays and their color calibration: investigations of various calibration methods, tools, and potential improvement in color difference ΔE

    NASA Astrophysics Data System (ADS)

    Roehrig, Hans; Hashmi, Syed F.; Dallas, William J.; Krupinski, Elizabeth A.; Rehm, Kelly; Fan, Jiahua

    2010-08-01

    Our laboratory has investigated the efficacy of a suite of color calibration and monitor profiling packages which employ a variety of color measurement sensors. Each of the methods computes gamma correction tables for the red, green and blue color channels of a monitor that attempt to: a) match a desired luminance range and tone reproduction curve; and b) maintain a target neutral point across the range of grey values. All of the methods examined here produce International Color Consortium (ICC) profiles that describe the color rendering capabilities of the monitor after calibration. Color profiles incorporate a transfer matrix that establishes the relationship between RGB driving levels and the International Commission on Illumination (CIE) XYZ (tristimulus) values of the resulting on-screen color; the matrix is developed by displaying color patches of known RGB values on the monitor and measuring the tristimulus values with a sensor. The number and chromatic distribution of color patches varies across methods and is usually not under user control. In this work we examine the effect of employing differing calibration and profiling methods on rendition of color images. A series of color patches encoded in sRGB color space were presented on the monitor using color-management software that utilized the ICC profile produced by each method. The patches were displayed on the calibrated monitor and measured with a Minolta CS200 colorimeter. Differences in intended and achieved luminance and chromaticity were computed using the CIE DE2000 color-difference metric, in which a value of ΔE = 1 is generally considered to be approximately one just noticeable difference (JND) in color. We observed between one and 17 JND's for individual colors, depending on calibration method and target. As an extension of this fundamental work1, we further improved our calibration method by defining concrete calibration parameters for the display, using the NEC wide gamut puck, and making sure

  2. A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    NASA Astrophysics Data System (ADS)

    Doerr, H.-P.; Steinmetz, T.; Holzwarth, R.; Kentischer, T.; Schmidt, W.

    2012-10-01

    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut für Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut für Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.

  3. Calibrating the absolute amplitude scale for air showers measured at LOFAR

    NASA Astrophysics Data System (ADS)

    Nelles, A.; Hörandel, J. R.; Karskens, T.; Krause, M.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Erdmann, M.; Falcke, H.; Haungs, A.; Hiller, R.; Huege, T.; Krause, R.; Link, K.; Norden, M. J.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; Schröder, F. G.; ter Veen, S.; Thoudam, S.; Trinh, T. N. G.; Weidenhaupt, K.; Wijnholds, S. J.; Anderson, J.; Bähren, L.; Bell, M. E.; Bentum, M. J.; Best, P.; Bonafede, A.; Bregman, J.; Brouw, W. N.; Brüggen, M.; Butcher, H. R.; Carbone, D.; Ciardi, B.; de Gasperin, F.; Duscha, S.; Eislöffel, J.; Fallows, R. A.; Frieswijk, W.; Garrett, M. A.; van Haarlem, M. P.; Heald, G.; Hoeft, M.; Horneffer, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Kohler, J.; Kondratiev, V. I.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; McFadden, R.; McKay-Bukowski, D.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Schwarz, D.; Serylak, M.; Sluman, J.; Smirnov, O.; Tasse, C.; Toribio, M. C.; Vermeulen, R.; van Weeren, R. J.; Wijers, R. A. M. J.; Wucknitz, O.; Zarka, P.

    2015-11-01

    Air showers induced by cosmic rays create nanosecond pulses detectable at radio frequencies. These pulses have been measured successfully in the past few years at the LOw-Frequency ARray (LOFAR) and are used to study the properties of cosmic rays. For a complete understanding of this phenomenon and the underlying physical processes, an absolute calibration of the detecting antenna system is needed. We present three approaches that were used to check and improve the antenna model of LOFAR and to provide an absolute calibration of the whole system for air shower measurements. Two methods are based on calibrated reference sources and one on a calibration approach using the diffuse radio emission of the Galaxy, optimized for short data-sets. An accuracy of 19% in amplitude is reached. The absolute calibration is also compared to predictions from air shower simulations. These results are used to set an absolute energy scale for air shower measurements and can be used as a basis for an absolute scale for the measurement of astronomical transients with LOFAR.

  4. SMOV Absolute Flux Calibration of the COS FUV Modes

    NASA Astrophysics Data System (ADS)

    Massa, Derck; Keyes, Charles; Penton, Steve; Bohlin, Ralph; Froning, Cynthia

    2010-01-01

    Point source sensitivity curves are determined for the COS FUV gratings: G140L, G130M and G160M. Observations through the Primary Science Aperture (PSA) were obtained of the standard star LDS749b for all central wavelength settings of all the gratings. In addition, PSA observations of the standard stars WD1057+729 and GD71 were obtained at selected settings. Further, observations of the standard star GD71 were also obtained at selected settings through the Bright Object Aperture (BOA), in order to characterize its transmission and, hence, the COS sensitivity using the BOA. The accuracy of the calibration is estimated to be 5%. Issues limiting the current accuracy and approaches to address them are discussed.

  5. Calibration of the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; Barnes, Robert; Baize, Rosemary; O'Connell, Joseph; Hair, Jason

    2010-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) plans to observe climate change trends over decadal time scales to determine the accuracy of climate projections. The project relies on spaceborne earth observations of SI-traceable variables sensitive to key decadal change parameters. The mission includes a reflected solar instrument retrieving at-sensor reflectance over the 320 to 2300 nm spectral range with 500-m spatial resolution and 100-km swath. Reflectance is obtained from the ratio of measurements of the earth s surface to those while viewing the sun relying on a calibration approach that retrieves reflectance with uncertainties less than 0.3%. The calibration is predicated on heritage hardware, reduction of sensor complexity, adherence to detector-based calibration standards, and an ability to simulate in the laboratory on-orbit sources in both size and brightness to provide the basis of a transfer to orbit of the laboratory calibration including a link to absolute solar irradiance measurements.

  6. Color calibration of a CMOS digital camera for mobile imaging

    NASA Astrophysics Data System (ADS)

    Eliasson, Henrik

    2010-01-01

    As white balance algorithms employed in mobile phone cameras become increasingly sophisticated by using, e.g., elaborate white-point estimation methods, a proper color calibration is necessary. Without such a calibration, the estimation of the light source for a given situation may go wrong, giving rise to large color errors. At the same time, the demands for efficiency in the production environment require the calibration to be as simple as possible. Thus it is important to find the correct balance between image quality and production efficiency requirements. The purpose of this work is to investigate camera color variations using a simple model where the sensor and IR filter are specified in detail. As input to the model, spectral data of the 24-color Macbeth Colorchecker was used. This data was combined with the spectral irradiance of mainly three different light sources: CIE A, D65 and F11. The sensor variations were determined from a very large population from which 6 corner samples were picked out for further analysis. Furthermore, a set of 100 IR filters were picked out and measured. The resulting images generated by the model were then analyzed in the CIELAB space and color errors were calculated using the ΔE94 metric. The results of the analysis show that the maximum deviations from the typical values are small enough to suggest that a white balance calibration is sufficient. Furthermore, it is also demonstrated that the color temperature dependence is small enough to justify the use of only one light source in a production environment.

  7. Absolute wavelength calibration of pulsed lasers by use of machine vision.

    PubMed

    Nayuki, T; Fujii, T; Nemoto, K

    2001-04-01

    We developed a new absolute wavelength calibration system that uses machine vision for measurement of low-repetition-rate, short-pulse-duration (10-Hz, 5-ns) tunable lasers. Weak fluorescence from an iodine cell was measured by use of machine vision as a spatially gated integrator, and a pulsed dye-laser wavelength was calibrated with an accuracy of +/-0.005 nm , which is precise enough for differential absorption lidar application. PMID:18040341

  8. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak

    SciTech Connect

    Liu, X.; Zhao, H. L.; Liu, Y. Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D.; Domier, C. W.; Luhmann, N. C.

    2014-09-15

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.

  9. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak.

    PubMed

    Liu, X; Zhao, H L; Liu, Y; Li, E Z; Han, X; Domier, C W; Luhmann, N C; Ti, A; Hu, L Q; Zhang, X D

    2014-09-01

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems. PMID:25273727

  10. Artifact correction and absolute radiometric calibration techniques employed in the Landsat 7 image assessment system

    USGS Publications Warehouse

    Boncyk, Wayne C.; Markham, Brian L.; Barker, John L.; Helder, Dennis

    1996-01-01

    The Landsat-7 Image Assessment System (IAS), part of the Landsat-7 Ground System, will calibrate and evaluate the radiometric and geometric performance of the Enhanced Thematic Mapper Plus (ETM +) instrument. The IAS incorporates new instrument radiometric artifact correction and absolute radiometric calibration techniques which overcome some limitations to calibration accuracy inherent in historical calibration methods. Knowledge of ETM + instrument characteristics gleaned from analysis of archival Thematic Mapper in-flight data and from ETM + prelaunch tests allow the determination and quantification of the sources of instrument artifacts. This a priori knowledge will be utilized in IAS algorithms designed to minimize the effects of the noise sources before calibration, in both ETM + image and calibration data.

  11. Electron cyclotron emission measurements on JET: Michelson interferometer, new absolute calibration, and determination of electron temperature.

    PubMed

    Schmuck, S; Fessey, J; Gerbaud, T; Alper, B; Beurskens, M N A; de la Luna, E; Sirinelli, A; Zerbini, M

    2012-12-01

    At the fusion experiment JET, a Michelson interferometer is used to measure the spectrum of the electron cyclotron emission in the spectral range 70-500 GHz. The interferometer is absolutely calibrated using the hot/cold technique and, in consequence, the spatial profile of the plasma electron temperature is determined from the measurements. The current state of the interferometer hardware, the calibration setup, and the analysis technique for calibration and plasma operation are described. A new, full-system, absolute calibration employing continuous data acquisition has been performed recently and the calibration method and results are presented. The noise level in the measurement is very low and as a result the electron cyclotron emission spectrum and thus the spatial profile of the electron temperature are determined to within ±5% and in the most relevant region to within ±2%. The new calibration shows that the absolute response of the system has decreased by about 15% compared to that measured previously and possible reasons for this change are presented. Temperature profiles measured with the Michelson interferometer are compared with profiles measured independently using Thomson scattering diagnostics, which have also been recently refurbished and recalibrated, and agreement within experimental uncertainties is obtained. PMID:23282107

  12. Glassy Carbon as an Absolute Intensity Calibration Standard for Small-Angle Scattering

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Ilavsky, Jan; Long, Gabrielle G.; Quintana, John P. G.; Allen, Andrew J.; Jemian, Pete R.

    2010-05-01

    Absolute calibration of small-angle scattering (SAS) intensity data (measured in terms of the differential scattering cross section per unit sample volume per unit solid angle) is essential for many important aspects of quantitative SAS analysis, such as obtaining the number density, volume fraction, and specific surface area of the scatterers. It also enables scattering data from different instruments (light, X-ray, or neutron scattering) to be combined, and it can even be useful to detect the existence of artifacts in the experimental data. Different primary or secondary calibration methods are available. In the latter case, absolute intensity calibration requires a stable artifact with the necessary scattering profile. Glassy carbon has sometimes been selected as this intensity calibration standard. Here we review the spatial homogeneity and temporal stability of one type of commercially available glassy carbon that is being used as an intensity calibration standard at a number of SAS facilities. We demonstrate that glassy carbon is sufficiently homogeneous and stable during routine use to be relied upon as a suitable standard for absolute intensity calibration of SAS data.

  13. Glassy carbon as an absolute intensity calibration standard for small-angle scattering.

    SciTech Connect

    Zhang, F.; Ilavsky, J.; Long, G.; Allen, A.; Quintana, J.; Jemian, P.; NIST

    2010-05-01

    Absolute calibration of small-angle scattering (SAS) intensity data (measured in terms of the differential scattering cross section per unit sample volume per unit solid angle) is essential for many important aspects of quantitative SAS analysis, such as obtaining the number density, volume fraction, and specific surface area of the scatterers. It also enables scattering data from different instruments (light, X-ray, or neutron scattering) to be combined, and it can even be useful to detect the existence of artifacts in the experimental data. Different primary or secondary calibration methods are available. In the latter case, absolute intensity calibration requires a stable artifact with the necessary scattering profile. Glassy carbon has sometimes been selected as this intensity calibration standard. Here we review the spatial homogeneity and temporal stability of one type of commercially available glassy carbon that is being used as an intensity calibration standard at a number of SAS facilities. We demonstrate that glassy carbon is sufficiently homogeneous and stable during routine use to be relied upon as a suitable standard for absolute intensity calibration of SAS data.

  14. How to measure color using spectrometers and calibrated photographs.

    PubMed

    Johnsen, Sönke

    2016-03-01

    The measurement of color in biology has become increasingly common. These measurements are not limited to color vision research, but are also found in studies of communication, signaling, camouflage, evolution and behavior, and in the examination of environmental, artificial and biogenic light. Although the recent availability of portable spectrometers has made it simpler to measure color, guidance on how to make these measurements has not kept pace. Because most biologists receive little training in optics, many measure the wrong thing, or measure the right thing in the wrong way. This Commentary attempts to give biologists a brief overview of how to measure light and color using spectrometers and calibrated photographs. It focuses in particular on the inherent ambiguities of many optical measurements, and how these can be addressed. PMID:26985049

  15. Image plate characterization and absolute calibration to low kilo-electron-volt electrons

    SciTech Connect

    Busold, S.; Philipp, K.; Otten, A.; Roth, M.

    2014-11-15

    We report on the characterization of an image plate and its absolute calibration to electrons in the low keV energy range (1–30 keV). In our case, an Agfa MD4.0 without protection layer was used in combination with a Fuji FLA7000 scanner. The calibration data are compared to other published data and a consistent picture of the sensitivity of image plates to electrons is obtained, which suggests a validity of the obtained calibration up to 100 keV.

  16. Possibility of absolute calibration of analog detectors by using parametric downconversion: a systematic study

    SciTech Connect

    Brida, Giorgio; Genovese, Marco; Ruo-Berchera, Ivano; Chekhova, Maria; Penin, Alexander

    2006-10-15

    Prompted by the need for various studies ranging from quantum information to foundations of quantum mechanics, we systematically study the possibility of the absolute calibration of analog photodetectors based on the properties of parametric amplifiers. Our results show that such a method can be effectively developed with interesting possible applications in metrology.

  17. Absolute flux density calibrations of radio sources: 2.3 GHz

    NASA Technical Reports Server (NTRS)

    Freiley, A. J.; Batelaan, P. D.; Bathker, D. A.

    1977-01-01

    A detailed description of a NASA/JPL Deep Space Network program to improve S-band gain calibrations of large aperture antennas is reported. The program is considered unique in at least three ways; first, absolute gain calibrations of high quality suppressed-sidelobe dual mode horns first provide a high accuracy foundation to the foundation to the program. Second, a very careful transfer calibration technique using an artificial far-field coherent-wave source was used to accurately obtain the gain of one large (26 m) aperture. Third, using the calibrated large aperture directly, the absolute flux density of five selected galactic and extragalactic natural radio sources was determined with an absolute accuracy better than 2 percent, now quoted at the familiar 1 sigma confidence level. The follow-on considerations to apply these results to an operational network of ground antennas are discussed. It is concluded that absolute gain accuracies within + or - 0.30 to 0.40 db are possible, depending primarily on the repeatability (scatter) in the field data from Deep Space Network user stations.

  18. [Research on absolute calibration of sun channel of sun photometer using laser raster scanning method].

    PubMed

    Xu, Wen-Bin; Li, Jian-Jun; Zheng, Xiao-Bing

    2013-01-01

    In the present paper, a new calibration method of absolute spectral irradiance responsivity of sun channel of sun photometer was developed. A tunable laser was used as source and a standard tranfer detector, calibrated against cryogenic absolute radiometer, was used to measure laser beam power. By raster scanning of a single collimated laser beam to generate the uniform irradiance field at the plane of effective aperture stop of sun photometer, the absolute irradiance responsivity of center wavelength of the 870 nm unpolarized sun channels of sun photometer was obtained accurately. The relative spectral irradiance responsivity of corresponding channel was obtained by using lamp-monochromator system and then used to acquire the absolute spectral irradiance responsivity in the laboratory. On the basis of the above results, the top-of-the-atmosphere responsive constant V0 was obtained by integration with extraterrestrial solar spectral irradiance data. Comparing the calibration result with that from GSFC, NASA in 2009, the difference is only 3.75%. In the last, the uncertainties of calibration were evaluated and reached to 2.06%. The principle feasibility of the new method was validated. PMID:23586268

  19. A new determination of the Geneva photometric passbands and their absolute calibration

    NASA Astrophysics Data System (ADS)

    Rufener, F.; Nicolet, B.

    The consensus regarding the absolute calibrations of the spectra of alpha Lyr and subdwarfs provoked a revision of the calibration of the Geneva photometric system passbands. The alterations made to the earlier version by Rufener and Maeder (1971) are smaller than plus or minus -5 percent. The new response functions are presented in tabular form for an equiphotonic flux. An absolute spectrophotometric adjustment allows to obtain for each entry of the Geneva catalog (28,000 stars) a corresponding spectrophotometric description in SI units. The definition and the means of computing the necessary quasi-isophotal frequencies or wavelengths are given. The coherence of the Geneva catalog with several sets of absolute spectrophotometric data is examined. A correction for the entire Gunn and Stryker (1983) catalog is proposed.

  20. Spectrophotometry of Wolf-Rayet stars - Intrinsic colors and absolute magnitudes

    NASA Technical Reports Server (NTRS)

    Torres-Dodgen, Ana V.; Massey, Philip

    1988-01-01

    Absolute spectrophotometry of about 10-A resolution in the range 3400-7300 A have been obtained for southern Wolf-Rayet stars, and line-free magnitudes and colors have been constructed. The emission-line contamination in the narrow-band ubvr systems of Westerlund (1966) and Smith (1968) is shown to be small for most WN stars, but to be quite significant for WC stars. It is suggested that the more severe differences in intrinsic color from star to star of the same spectral subtype noted at shorter wavelengths are due to differences in atmospheric extent. True continuum absolute visual magnitudes and intrinsic colors are obtained for the LMC WR stars. The most visually luminous WN6-WN7 stars are found to be located in the core of the 30 Doradus region.

  1. Absolute radiometric calibration of the RapidEye multispectral imager using the reflectance-based vicarious calibration method

    NASA Astrophysics Data System (ADS)

    Naughton, Denis; Brunn, Andreas; Czapla-Myers, Jeff; Douglass, Scott; Thiele, Michael; Weichelt, Horst; Oxfort, Michael

    2011-01-01

    RapidEye AG is a commercial provider of geospatial information products and customized solutions derived from Earth observation image data. The source of the data is the RapidEye constellation consisting of five low-earth-orbit imaging satellites. We describe the rationale, methods, and results of a reflectance-based vicarious calibration campaign that was conducted between April 2009 and May 2010 at Railroad Valley Playa and Ivanpah Playa to determine the on-orbit radiometric accuracy of the RapidEye sensor. In situ surface spectral reflectance measurements of known ground targets and an assessment of the atmospheric conditions above the sites were taken during spacecraft overpasses. The ground data are used as input to a radiative transfer code to compute a band-specific top-of-atmosphere spectral radiance. A comparison of these predicted values based on absolute physical data to the measured at-sensor spectral radiance provide the absolute calibration of the sensor. Initial assessments show that the RapidEye sensor response is within 8% of the predicted values. Outcomes from this campaign are then used to update the calibration parameters in the ground segment processing system. Subsequent verification events confirmed that the measured RapidEye response improved to within 4% of the predictions based on the vicarious calibration method.

  2. Rapid, absolute calibration of x-ray filters employed by laser-produced plasma diagnostics.

    PubMed

    Brown, G V; Beiersdorfer, P; Emig, J; Frankel, M; Gu, M F; Heeter, R F; Magee, E; Thorn, D B; Widmann, K; Kelley, R L; Kilbourne, C A; Porter, F S

    2008-10-01

    The Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory is being used to absolutely calibrate the transmission efficiency of x-ray filters employed by diodes and spectrometers used to diagnose laser-produced plasmas. EBIT emits strong, discrete monoenergetic lines at appropriately chosen x-ray energies. X rays are detected using the high resolution EBIT Calorimeter Spectrometer (ECS), developed for LLNL at the NASA/Goddard Space Flight Center. X-ray filter transmission efficiency is determined by dividing the x-ray counts detected when the filter is in the line of sight by those detected when out of the line of sight. Verification of filter thickness can be completed in only a few hours, and absolute efficiencies can be calibrated in a single day over a broad range from about 0.1 to 15 keV. The EBIT calibration lab has been used to field diagnostics (e.g., the OZSPEC instrument) with fully calibrated x-ray filters at the OMEGA laser. Extensions to use the capability for calibrating filter transmission for the DANTE instrument on the National Ignition Facility are discussed. PMID:19044471

  3. Rapid, absolute calibration of x-ray filters employed by laser-produced plasma diagnostics

    SciTech Connect

    Brown, G. V.; Beiersdorfer, P.; Emig, J.; Frankel, M.; Gu, M. F.; Heeter, R. F.; Magee, E.; Thorn, D. B.; Widmann, K.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.

    2008-10-15

    The Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory is being used to absolutely calibrate the transmission efficiency of x-ray filters employed by diodes and spectrometers used to diagnose laser-produced plasmas. EBIT emits strong, discrete monoenergetic lines at appropriately chosen x-ray energies. X rays are detected using the high resolution EBIT Calorimeter Spectrometer (ECS), developed for LLNL at the NASA/Goddard Space Flight Center. X-ray filter transmission efficiency is determined by dividing the x-ray counts detected when the filter is in the line of sight by those detected when out of the line of sight. Verification of filter thickness can be completed in only a few hours, and absolute efficiencies can be calibrated in a single day over a broad range from about 0.1 to 15 keV. The EBIT calibration lab has been used to field diagnostics (e.g., the OZSPEC instrument) with fully calibrated x-ray filters at the OMEGA laser. Extensions to use the capability for calibrating filter transmission for the DANTE instrument on the National Ignition Facility are discussed.

  4. Rapid, Absolute Calibration of X-ray Filters Employed By Laser-Produced Plasma Diagnostics

    SciTech Connect

    Brown, G V; Beiersdorfer, P; Emig, J; Frankel, M; Gu, M F; Heeter, R F; Magee, E; Thorn, D B; Widmann, K; . Kelley, R L; Kilbourne, C A; Porter, F S

    2008-05-11

    The electron beam ion trap (EBIT) facility at the Lawrence Livermore National Laboratory is being used to absolutely calibrate the transmission efficiency of X-ray filters employed by diodes and spectrometers used to diagnose laser-produced plasmas. EBIT emits strong, discrete monoenergetic lines at appropriately chosen X-ray energies. X-rays are detected using the high-resolution EBIT calorimeter spectrometer (ECS), developed for LLNL at the NASA/Goddard Space Flight Center. X-ray filter transmission efficiency is determined by dividing the X-ray counts detected when the filter is in the line of sight by those detected when out of the line of sight. Verification of filter thickness can be completed in only a few hours, and absolute efficiencies can be calibrated in a single day over a broad range from about 0.1 to 15 keV. The EBIT calibration lab has been used to field diagnostics (e.g., the OZSPEC instrument) with fully calibrated X-ray filters at the OMEGA laser. Extensions to use the capability for calibrating filter transmission for the DANTE instrument on the National Ignition Facility are discussed.

  5. A liquid-helium-cooled absolute reference cold load for long-wavelength radiometric calibration

    NASA Technical Reports Server (NTRS)

    Bensadoun, Marc; Witebsky, Chris; Smoot, George; De Amici, Giovanni; Kogut, AL; Levin, Steve

    1992-01-01

    Design, radiometric and thermal performance, and operation of a large diameter (78 cm) liquid-helium-cooled blackbody absolute reference cold load (CL) for the calibration of microwave radiometers is described. CL provides an absolute calibration near the liquid-helium (LHe) boiling point, with total uncertainty in the radiometric temperature of less than 30 mK over the 2.5-23 cm wavelength operating range. CL was used at several wavelengths at the South Pole, Antarctica and the White Mountain Research Center, California. Results show that, for the instruments operated at 20-, 12-, 7.9-, and 4.0 cm wavelength at the South Pole, the total corrections to the LHe boiling-point temperature (about 3.8 K) were 48 +/-23, 18 +/-10, 10 +/-18, and 15 +/-mK.

  6. A Liquid-Helium-Cooled Absolute Reference Cold Load forLong-Wavelength Radiometric Calibration

    SciTech Connect

    Bensadoun, M.; Witebsky, C.; Smoot, George F.; De Amici,Giovanni; Kogut, A.; Levin, S.

    1990-05-01

    We describe a large (78-cm) diameter liquid-helium-cooled black-body absolute reference cold load for the calibration of microwave radiometers. The load provides an absolute calibration near the liquid helium (LHe) boiling point, accurate to better than 30 mK for wavelengths from 2.5 to 25 cm (12-1.2 GHz). The emission (from non-LHe temperature parts of the cold load) and reflection are small and well determined. Total corrections to the LHe boiling point temperature are {le} 50 mK over the operating range. This cold load has been used at several wavelengths at the South Pole and at the White Mountain Research Station. In operation, the average LHe loss rate was {le} 4.4 l/hr. Design considerations, radiometric and thermal performance and operational aspects are discussed. A comparison with other LHe-cooled reference loads including the predecessor of this cold load is given.

  7. Color excesses, intrinsic colors, and absolute magnitudes of Galactic and Large Magellanic Cloud Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Vacca, William D.; Torres-Dodgen, Ana V.

    1990-01-01

    A new method of determining the color excesses of WR stars in the Galaxy and the LMC has been developed and is used to determine the excesses for 44 Galactic and 32 LMC WR stars. The excesses are combined with line-free, narrow-band spectrophotometry to derive intrinsic colors of the WR stars of nearly all spectral subtypes. No correlation of UV spectral index or intrinsic colors with spectral subtype is found for the samples of single WN or WC stars. There is evidence that early WN stars in the LMC have flatter UV continua and redder intrinsic colors than early WN stars in the Galaxy. No separation is found between the values derived for Galactic WC stars and those obtained for LMC WC stars. The intrinsic colors are compared with those calculated from model atmospheres of WR stars and generally good agreement is found. Absolute magnitudes are derived for WR stars in the LMC and for those Galactic WR stars located in clusters and associations for which there are reliable distance estimates.

  8. The absolute radiometric calibration of the advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1988-01-01

    An increasing number of remote sensing investigations require radiometrically calibrated imagery from NOAA Advanced Very High Resolution Radiation (AVHRR) sensors. Although a prelaunch calibration is done for these sensors, there is no capability for monitoring any changes in the in-flight absolute calibration for the visible and near infrared spectral channels. Hence, the possibility of using the reflectance-based method developed at White Sands for in-orbit calibration of LANDSAT Thematic Mapper (TM) and SPOT Haute Resolution Visible (HVR) data to calibrate the AVHRR sensor was investigated. Three diffrent approaches were considered: Method 1 - ground and atmospheric measurements and reference to another calibrated satellite sensor; Method 2 - ground and atmospheric measurements with no reference to another sensor; and Method 3 - no ground and atmospheric measurements but reference to another satellite sensor. The purpose is to describe an investigation on the use of Method 2 to calibrate NOAA-9 AVHRR channels 1 and 2 with the help of ground and atmospheric measurements at Rogers (dry) Lake, Edwards Air Force Base (EAFB) in the Mojave desert of California.

  9. Absolute calibration of photon-number-resolving detectors with an analog output using twin beams

    NASA Astrophysics Data System (ADS)

    Peřina, Jan; Haderka, Ondřej; Allevi, Alessia; Bondani, Maria

    2014-01-01

    A method for absolute calibration of a photon-number resolving detector producing analog signals as the output is developed using a twin beam. The method gives both analog-to-digital conversion parameters and quantum detection efficiency for the photon fields. Characteristics of the used twin beam are also obtained. A simplified variant of the method applicable to fields with high signal to noise ratios and suitable for more intense twin beams is suggested.

  10. Absolute calibration of a charge-coupled device camera with twin beams

    SciTech Connect

    Meda, A.; Ruo-Berchera, I. Degiovanni, I. P.; Brida, G.; Rastello, M. L.; Genovese, M.

    2014-09-08

    We report on the absolute calibration of a Charge-Coupled Device (CCD) camera by exploiting quantum correlation. This method exploits a certain number of spatial pairwise quantum correlated modes produced by spontaneous parametric-down-conversion. We develop a measurement model accounting for all the uncertainty contributions, and we reach the relative uncertainty of 0.3% in low photon flux regime. This represents a significant step forward for the characterization of (scientific) CCDs used in mesoscopic light regime.

  11. A New Approach For Absolute Temperature Calibration: Application to the CLARREO Mission

    NASA Astrophysics Data System (ADS)

    Best, F. A.; Adler, D. P.; Ellington, S. D.; Thielman, D. J.; Revercomb, H. E.; Anderson, J. G.

    2007-12-01

    A novel scheme to provide on-orbit absolute calibration of blackbody temperature sensors (on-demand) has been demonstrated using a copy of the engineering model version of a space flight hardware blackbody design (GIFTS). The scheme uses the phase change signature of reference materials to assign an absolute temperatures scale to the blackbody sensors over a large temperature range. Uncertainties of better than 0.020 K have been demonstrated over the temperature range from 234 to 303 K. Thermal modeling has been conducted to optimize the design, and to show that accuracies comparable to those measured in the laboratory should be obtainable in the less-controlled on-orbit temperature environment. The implementation if this scheme is very attractive due to its simplicity and relatively low mass. In addition, all aspects of the electronics (control and temperature readout) needed to support this scheme have been developed and demonstrated in the as-delivered GIFTS Engineering Model blackbody calibration system developed by the University of Wisconsin. NASA's anticipated plan for a mission dedicated to Climate (CLARREO) will hinge upon the ability to fly absolute standards that can provide the basis to meet stringent requirements on measurement accuracy. For example, instrumentation designed to measure spectrally resolved infrared radiances will require high-emissivity calibration blackbodies having absolute temperature uncertainties of better than 0.020 K (3 sigma). The novel blackbody temperature calibration scheme described here is very well suited for the CLARREO mission because if its low mass, high accuracy, and ease of implementation into a demonstrated flight blackbody design.

  12. Absolute calibration of photon-number-resolving detectors with an analog output using twin beams

    SciTech Connect

    Peřina, Jan; Haderka, Ondřej; Allevi, Alessia; Bondani, Maria

    2014-01-27

    A method for absolute calibration of a photon-number resolving detector producing analog signals as the output is developed using a twin beam. The method gives both analog-to-digital conversion parameters and quantum detection efficiency for the photon fields. Characteristics of the used twin beam are also obtained. A simplified variant of the method applicable to fields with high signal to noise ratios and suitable for more intense twin beams is suggested.

  13. Ink limit control for ink-jet printer color calibration

    NASA Astrophysics Data System (ADS)

    Zeng, Huanzhao

    2000-12-01

    Ink limit is an important parameter for printer color calibration, especially for inkjet printers. A GCR approach is often used to control the total ink amount for CMYK printers. However, a tradition GCR approach has the following limitations: 1) it can not reduce the total ink amount to less than 200 percent for CMYK printers; 2) it can not be applied to reduce ink for CMY printers; 3) to achieve highest image quality, ink amount may be limited to different values in different regions, in which the GCR approach fails. In this paper, a new approach is presented to control ink limit. It controls ink limit globally as well as locally. An algorithm was developed to construct a gamut boundary for gamut mapping that guarantees that the constructed gamut surface covers only colors within the ink limit. If the ink limit needs to be modified, the gamut surface is reconstructed based on the original measured data. Therefore redoing and remeasuring a target is avoided. It greatly simplifies the ink limit control and color calibration.

  14. On-orbit absolute temperature calibration using multiple phase change materials: overview of recent technology advancements

    NASA Astrophysics Data System (ADS)

    Best, Fred A.; Adler, Douglas P.; Pettersen, Claire; Revercomb, Henry E.; Perepezko, John H.

    2010-11-01

    NASA's anticipated plan for a mission dedicated to Climate (CLARREO) will hinge upon the ability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances will require high-emissivity calibration blackbodies that have absolute temperature uncertainties of better than 0.045K (3 sigma). A novel scheme to provide absolute calibration of temperature sensors onorbit, that uses the transient melt signatures from multiple phase change materials, has been demonstrated in the laboratory at the University of Wisconsin and is now undergoing technology advancement under NASA Instrument Incubator Program funding. Using small quantities of phase change material (less than half of a percent of the mass of the cavity), melt temperature accuracies of better than 10 mK have been demonstrated for mercury, water, and gallium (providing calibration from 233K to 303K). Refinements currently underway focus on ensuring that the melt materials in their sealed confinement housings perform as expected in the thermal and microgravity environment of a multi-year spaceflight mission. Thermal soak and cycling tests are underway to demonstrate that there is no dissolution from the housings into the melt materials that could alter melt temperature, and that there is no liquid metal embrittlement of the housings from the metal melt materials. In addition, NASA funding has been recently secured to conduct a demonstration of this scheme in the microgravity environment of the International Space Station.

  15. Absolute calibration of a hydrogen discharge lamp in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Nealy, J. E.

    1975-01-01

    A low-pressure hydrogen discharge lamp was calibrated for radiant intensity in the vacuum ultraviolet spectral region on an absolute basis and was employed as a laboratory standard source in spectrograph calibrations. This calibration was accomplished through the use of a standard photodiode detector obtained from the National Bureau of Standards together with onsite measurements of spectral properties of optical components used. The stability of the light source for use in the calibration of vacuum ultraviolet spectrographs and optical systems was investigated and found to be amenable to laboratory applications. The lamp was studied for a range of operating parameters; the results indicate that with appropriate peripheral instrumentation, the light source can be used as a secondary laboratory standard source when operated under preset controlled conditions. Absolute intensity measurements were recorded for the wavelengths 127.7, 158.0, 177.5, and 195.0 nm for a time period of over 1 month, and the measurements were found to be repeatable to within 11 percent.

  16. New apparatus for calibrations in the range of 2 kPa absolute pressure

    NASA Astrophysics Data System (ADS)

    Woo, S. Y.; Choi, I. M.

    2005-12-01

    Capacitance diaphragm gauges (CDGs) are precise electromechanical pressure sensors in which the displacement of a stretched thin metal diaphragm is detected by the measurement of a capacitance. These are very accurate gauges, and are frequently used as transfer gauges. To calibrate such accurate low-pressure gauges, precise mercury manometers have been used. However, complexity, concern about mercury vapour, and cost of mercury manometers have made it difficult to use these manometers in many industrial calibration laboratories. As a substitute, gas-operated piston gauges can be used for the calibration of such low-pressure gauges. However, the minimum pressure that is necessary to balance the tare weight, which generally corresponds to a pressure of several kilopascals, is a major obstacle. To reduce this minimum operating pressure, we adopted a variable bell-jar pressure method. To realize this method effectively, we developed a new mass-handling device that makes it possible to add or remove weights up to 200 g easily, with a resolution of 10 g, without breaking the vacuum during the calibration. This calibration system can be used to measure pressures from 100 Pa to 2 kPa in the absolute mode. In this paper, we also present the calibration results for two types of CDGs with full-scale ranges of 1330 Pa and 1000 Pa, respectively.

  17. A new method for the absolute radiance calibration for UV-vis measurements of scattered sunlight

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Beirle, S.; Dörner, S.; Penning de Vries, M.; Remmers, J.; Rozanov, A.; Shaiganfar, R.

    2015-10-01

    Absolute radiometric calibrations are important for measurements of the atmospheric spectral radiance. Such measurements can be used to determine actinic fluxes, the properties of aerosols and clouds, and the shortwave energy budget. Conventional calibration methods in the laboratory are based on calibrated light sources and reflectors and are expensive, time consuming and subject to relatively large uncertainties. Also, the calibrated instruments might change during transport from the laboratory to the measurement sites. Here we present a new calibration method for UV-vis instruments that measure the spectrally resolved sky radiance, for example zenith sky differential optical absorption spectroscopy (DOAS) instruments or multi-axis (MAX)-DOAS instruments. Our method is based on the comparison of the solar zenith angle dependence of the measured zenith sky radiance with radiative transfer simulations. For the application of our method, clear-sky measurements during periods with almost constant aerosol optical depth are needed. The radiative transfer simulations have to take polarisation into account. We show that the calibration results are almost independent from the knowledge of the aerosol optical properties and surface albedo, which causes a rather small uncertainty of about < 7 %. For wavelengths below about 330 nm it is essential that the ozone column density during the measurements be constant and known.

  18. Absolute photometric calibration of detectors to 0.3 mmag using amplitude-stabilized lasers and a helium-cooled absolute radiometer

    NASA Technical Reports Server (NTRS)

    Miller, Peter J.

    1988-01-01

    Laser sources whose intensity is determined with a cryogenic electrical substitution radiometer are described. Detectors are then calibrated against this known flux, with an overall error of 0.028 percent (0.3 mmag). Ongoing research has produced laser intensity stabilizers with flicker and drift of less than 0.01 percent. Recently, the useful wavelength limit of these stabilizers have been extended to 1.65 microns by using a new modular technology and InGaAs detector systems. Data from Si photodiode calibration using the method of Zalewski and Geist are compared against an absolute cavity radiometer calibration as an internal check on the calibration system.

  19. Simple method for absolute calibration of geophones, seismometers, and other inertial vibration sensors

    SciTech Connect

    Kann, Frank van; Winterflood, John

    2005-03-01

    A simple but powerful method is presented for calibrating geophones, seismometers, and other inertial vibration sensors, including passive accelerometers. The method requires no cumbersome or expensive fixtures such as shaker platforms and can be performed using a standard instrument commonly available in the field. An absolute calibration is obtained using the reciprocity property of the device, based on the standard mathematical model for such inertial sensors. It requires only simple electrical measurement of the impedance of the sensor as a function of frequency to determine the parameters of the model and hence the sensitivity function. The method is particularly convenient if one of these parameters, namely the suspended mass is known. In this case, no additional mechanical apparatus is required and only a single set of impedance measurements yields the desired calibration function. Moreover, this measurement can be made with the device in situ. However, the novel and most powerful aspect of the method is its ability to accurately determine the effective suspended mass. For this, the impedance measurement is made with the device hanging from a simple spring or flexible cord (depending on the orientation of its sensitive axis). To complete the calibration, the device is weighed to determine its total mass. All the required calibration parameters, including the suspended mass, are then determined from a least-squares fit to the impedance as a function of frequency. A demonstration using both a 4.5 Hz geophone and a 1 Hz seismometer shows that the method can yield accurate absolute calibrations with an error of 0.1% or better, assuming no a priori knowledge of any parameters.

  20. On-Orbit Absolute Temperature Calibration for CLARREO Using Multiple Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Best, F. A.; Adler, D. P.; Ellington, S. D.; Thielman, D. J.; Revercomb, H. E.; Perepezko, J. H.

    2008-12-01

    NASA's anticipated plan for a mission dedicated to Climate (CLARREO) will hinge upon the ability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances will require high-emissivity calibration blackbodies that have absolute temperature uncertainties of better than 0.045K (3 sigma). A novel scheme to provide absolute calibration of temperature sensors, suitable for CLARREO on-orbit operation, has been demonstrated in the laboratory at the University of Wisconsin, and is now undergoing refinement under NASA Instrument Incubator Program funding. In this scheme, small quantities of reference materials (mercury, water, and gallium - to date) are imbedded into the blackbody cavity wall, in a manner similar to the temperature sensors to be calibrated. As the blackbody cavity is slowly heated through a reference material melt temperature, the transient temperature signature of the imbedded thermistor sensors provides a very accurate indication of the melt temperature. Using small quantities of phase change material (less than half of a percent of the mass of the cavity), melt temperature accuracies of better than 10 mK have been demonstrated for mercury, water, and gallium (providing calibration from 233K to 303K). The flight implementation of this new scheme will involve special considerations for packaging the phase change materials to ensure long-term compatibility with the containment system, and design features that help ensure that the on-orbit melt behavior in a microgravity environment is unchanged from pre-flight full gravitational conditions under which the system is characterized.

  1. On-Orbit Absolute Temperature Calibration Using Multiple Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Best, F. A.; Adler, D. P.; Pettersen, C.; Revercomb, H. E.; Perepezko, J. H.

    2009-12-01

    NASA’s anticipated plan for a mission dedicated to Climate (CLARREO) will hinge upon the ability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances will require high-emissivity calibration blackbodies that have absolute temperature uncertainties of better than 0.045K (3 sigma). A novel scheme to provide absolute calibration of temperature sensors, suitable for CLARREO on-orbit operation, has been demonstrated in the laboratory at the University of Wisconsin, and is now undergoing refinement under NASA Instrument Incubator Program funding. In this scheme, small quantities of reference materials (mercury, water, and gallium) are imbedded into the blackbody cavity wall, in a manner similar to the temperature sensors to be calibrated. As the blackbody cavity is slowly heated through the melt point of each reference material, the transient temperature signature from the imbedded thermistor sensors provides a very accurate indication of the melt temperature. Using small quantities of phase change material (less than half of a percent of the mass of the cavity), melt temperature accuracies of better than 10 mK have been demonstrated for mercury, water, and gallium (providing calibration from 233K to 303K). Refinements currently underway focus on ensuring that the melt materials in their sealed confinement housings perform as expected in the thermal and microgravity environment of a multi-year spaceflight mission. Thermal soak and cycling tests are underway to demonstrate that there is no dissolution from the housings into the melt materials that could alter melt temperature, and that there is no liquid metal embrittlement of the housings from the metal melt materials. In addition, NASA funding has been recently secured to conduct a demonstration of this scheme in the microgravity environment of the International Space Station.

  2. Multispectral Photometry of the Moon and Absolute Calibration of the Clementine UV/Vis Camera

    NASA Astrophysics Data System (ADS)

    Hillier, John K.; Buratti, Bonnie J.; Hill, Kathryn

    1999-10-01

    We present a multispectral photometric study of the Moon between solar phase angles of 0 and 85°. Using Clementine images obtained between 0.4 and 1.0 μm, we produce a comprehensive study of the lunar surface containing the following results: (1) empirical photometric functions for the spectral range and viewing and illumination geometries mentioned, (2) photometric modeling that derives the physical properties of the upper regolith and includes a detailed study of the causes for the lunar opposition surge, (3) an absolute calibration of the Clementine UV/Vis camera. The calibration procedure given on the Clementine calibration web site produces reflectances relative to a halon standard and further appear significantly higher than those seen in groundbased observations. By comparing Clementine observations with prior groundbased observations of 15 sites on the Moon we have determined a good absolute calibration of the Clementine UV/Vis camera. A correction factor of 0.532 has been determined to convert the web site (www.planetary.brown.edu/clementine/calibration.html) reflectances to absolute values. From the calibrated data, we calculate empirical phase functions useful for performing photometric corrections to observations of the Moon between solar phase angles of 0 and 85° and in the spectral range 0.4 to 1.0μm. Finally, the calibrated data is used to fit a version of Hapke's photometric model modified to incorporate a new formulation, developed in this paper, of the lunar opposition surge which includes coherent backscatter. Recent studies of the lunar opposition effect have yielded contradictory results as to the mechanism responsible: shadow hiding, coherent backscatter, or both. We find that most of the surge can be explained by shadow hiding with a halfwidth of ˜8°. However, for the brightest regions (the highlands at 0.75-1.0μm) a small additional narrow component (halfwidth of <2°) of total amplitude ˜1/6 to 1/4 that of the shadow hiding surge is

  3. PREMOS Absolute Radiometer Calibration and Implications to on-orbit Measurements of the Total Solar Irradiance

    NASA Astrophysics Data System (ADS)

    Fehlmann, A.; Kopp, G.; Schmutz, W. K.; Winkler, R.; Finsterle, W.; Fox, N.

    2011-12-01

    On orbit measurements starting in the late 1970's, have revealed the 11 year cycle of the Total Solar Irradiance (TSI). However, the absolute results from individual experiments differ although all instrument teams claim to measure an absolute value. Especially the data from the TIM/SORCE experiment confused the community as it measures 0.3 % lower than the other instruments, e.g. VIRGO/SOHO by PMOD/WRC, which clearly exceeds the uncertainty stated for the absolute characterization of the experiments. The PREMOS package on the PICARD platform launched in June 2010 is the latest space experiment by PMOD/WRC measuring the TSI. We have put great effort in the calibration and characterization of this instrument in order to resolve the inter-instrument differences. We performed calibrations at the National Physical Laboratory (NPL) in London and the Laboratory for Atmospheric and Space Physics (LASP) in Boulder against national SI standards for radiant power using a laser beam with a diameter being smaller than the aperture of the instrument. These measurements together with the World Radiometric Reference (WRR) calibration in Davos allowed to compare the WRR and the SI radiant power scale. We found that the WRR lies 0.18 % above the SI radiant power scale which explains a part of the VIRGO-TIM difference. The Total solar irradiance Radiometer Facility (TRF) at the LASP allows to generate a beam that over fills the apertures of our instruments, giving the presently best available representation of solar irradiance in a laboratory. These irradiance calibrations revealed a stray light contribution between 0.09 and 0.3 % to the measurements which had been underestimated in the characterization of our instruments. Using the irradiance calibrations, we found that the WRR lies 0.32 % above the TRF scale which in turn explains the full VIRGO-TIM difference. The first light PREMOS measurements in space confirmed our findings. If we use the WRR calibration, PREMOS yields a TSI

  4. Method to calibrate the absolute energy scale of air showers with ultrahigh energy photons.

    PubMed

    Homola, Piotr; Risse, Markus

    2014-04-18

    Calibrating the absolute energy scale of air showers initiated by ultrahigh energy (UHE) cosmic rays is an important experimental issue. Currently, the corresponding systematic uncertainty amounts to 14%-21% using the fluorescence technique. Here, we describe a new, independent method which can be applied if ultrahigh energy photons are observed. While such photon-initiated showers have not yet been identified, the capabilities of present and future cosmic-ray detectors may allow their discovery. The method makes use of the geomagnetic conversion of UHE photons (preshower effect), which significantly affects the subsequent longitudinal shower development. The conversion probability depends on photon energy and can be calculated accurately by QED. The comparison of the observed fraction of converted photon events to the expected one allows the determination of the absolute energy scale of the observed photon air showers and, thus, an energy calibration of the air shower experiment. We provide details of the method and estimate the accuracy that can be reached as a function of the number of observed photon showers. Already a very small number of UHE photons may help to test and fix the absolute energy scale. PMID:24785024

  5. Absolute Calibration of Si iRMs used for Si Paleo-nutrient proxies

    NASA Astrophysics Data System (ADS)

    Vocke, Robert; Rabb, Savelas

    2016-04-01

    The Avogadro Project is an ongoing international effort, coordinated by the International Bureau of Weights and Measures (BIPM) and the International Avogadro Coordination (IAC) to redefine the SI unit mole in terms of the Avogadro constant and the SI unit kg in terms of the Planck constant. One of the outgrowths of this effort has been the development of a novel, precise and highly accurate method to measure calibrated (absolute) isotopic ratios that are traceable to the SI (Vocke et al., 2014 Metrologia 51, 361, Azuma et al., 2015 Metrologia 52 360). This approach has also been able to produce absolute Si isotope ratio data with lower levels of uncertainty when compared to the traditional "Atomic Weights" method of absolute isotope ratio measurement. Silicon isotope variations (reported as delta(Si30)and delta(Si29)) in silicic acid dissolved in ocean waters, in biogenic silica and in diatoms are extremely informative paleo-nutrient proxies. The utility and comparability of such measurements however depends on calibration with artifact isotopic Reference Materials (iRMs). We will be reporting new measurements on the iRMs NBS-28 (RM 8546 - Silica Sand), Diatomite, Big Batch and SRM 990 using the Avogadro measurement approach, comparing them with prior assessments of these iRMs.

  6. GNSS Absolute Antenna Calibration in the Field at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G.; Bilich, A.

    2008-12-01

    Geodetic GNSS applications now routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers, and can be affected by the presence of a radome or other installation-specific factors. As GNSS geodesy increasingly moves toward real-time applications and high-rate or kinematic positioning, it is all the more important to have the most complete picture of antenna phase center variations possible, as a function of both elevation and azimuth. To meet the needs of the geodetic GNSS community, the National Geodetic Survey (NGS) has constructed an absolute antenna calibration facility. Located in Corbin, Virgina, adjacent to the NGS relative antenna calibration site, this facility uses field measurements and actual GNSS satellite signals to determine antenna phase center patterns. A pan/tilt motor changes the orientation of the antenna under test, so that signals are received and their phase center subsequently measured for a wide range of angles. The NGS phase center models are generated for all possible azimuths and over 90 to -30 degrees elevation angles; negative elevation angles are included to support studies where valid signals are received below the antenna's horizon. Ultimately, this facility will be used to measure antenna phase center variations of commonly-used geodetic GNSS antennas, as well as antennas submitted by users. The phase center patterns will be publicly available and disseminated in the ANTEX format. We present information on the current status of and future plans for the NGS antenna calibration facility. We outline the observation models and software used to generate absolute calibrations, and provide examples of

  7. Availability of color calibration for consistent color display in medical images and optimization of reference brightness for clinical use

    NASA Astrophysics Data System (ADS)

    Iwai, Daiki; Suganami, Haruka; Hosoba, Minoru; Ohno, Kazuko; Emoto, Yutaka; Tabata, Yoshito; Matsui, Norihisa

    2013-03-01

    Color image consistency has not been accomplished yet except the Digital Imaging and Communication in Medicine (DICOM) Supplement 100 for implementing a color reproduction pipeline and device independent color spaces. Thus, most healthcare enterprises could not check monitor degradation routinely. To ensure color consistency in medical color imaging, monitor color calibration should be introduced. Using simple color calibration device . chromaticity of colors including typical color (Red, Green, Blue, Green and White) are measured as device independent profile connection space value called u'v' before and after calibration. In addition, clinical color images are displayed and visual differences are observed. In color calibration, monitor brightness level has to be set to quite lower value 80 cd/m2 according to sRGB standard. As Maximum brightness of most color monitors available currently for medical use have much higher brightness than 80 cd/m2, it is not seemed to be appropriate to use 80 cd/m2 level for calibration. Therefore, we propose that new brightness standard should be introduced while maintaining the color representation in clinical use. To evaluate effects of brightness to chromaticity experimentally, brightness level is changed in two monitors from 80 to 270cd/m2 and chromaticity value are compared with each brightness levels. As a result, there are no significant differences in chromaticity diagram when brightness levels are changed. In conclusion, chromaticity is close to theoretical value after color calibration. Moreover, chromaticity isn't moved when brightness is changed. The results indicate optimized reference brightness level for clinical use could be set at high brightness in current monitors .

  8. Precision evaluation of calibration factor of a superconducting gravimeter using an absolute gravimeter

    NASA Astrophysics Data System (ADS)

    Feng, Jin-yang; Wu, Shu-qing; Li, Chun-jian; Su, Duo-wu; Xu, Jin-yi; Yu, Mei

    2016-01-01

    The precision of the calibration factor of a superconducting gravimeter (SG) using an absolute gravimeter (AG) is analyzed based on linear least square fitting and error propagation theory and factors affecting the accuracy are discussed. It can improve the accuracy to choose the observation period of solid tide as a significant change or increase the calibration time. Simulation is carried out based on synthetic gravity tides calculated with T-soft at observed site from Aug. 14th to Sept. 2nd in 2014. The result indicates that the highest precision using half a day's observation data is below 0.28% and the precision exponentially increases with the increase of peak-to-peak gravity change. The comparison of results obtained from the same observation time indicated that using properly selected observation data has more beneficial on the improvement of precision. Finally, the calibration experiment of the SG iGrav-012 is introduced and the calibration factor is determined for the first time using AG FG5X-249. With 2.5 days' data properly selected from solid tide period with large tidal amplitude, the determined calibration factor of iGrav-012 is (-92.54423+/-0.13616) μGal/V (1μGal=10-8m/s2), with the relative accuracy of about 0.15%.

  9. Absolute calibration of the fast-delivery SAR product processed at Tromso satellite station

    NASA Astrophysics Data System (ADS)

    Weydahl, Dan J.

    1994-12-01

    Tromso Satellite Station (TSS) is the Norwegian national receiving station for ERS-1 SAR data. The TSS Fast Delivery (FD) SAR processor was upgraded during spring 1994 so that the whole processing chain will now be performed in power rather than in voltage. This new FD SAR product from TSS needs absolute calibration, and a calibration constant is therefore estimated. First, a TSS Power-processed ERS-1 SAR image was used. This image covers the ESA transponders in Flevoland. The integration method was used to estimate the backscattered power from the 3 transponders. The Earth ellipsoid, local incidence angle, antenna pattern, range-spread loss, pixel size and RCS were also taken into account in the calculation. The result was a calibration constant of 53.51 dB. An other method is to compare the backscatter from an ESA processed PRI product and a TSS Power-processed FD product acquired at the same place and time. Areas were extracted from two such SAR images, and the pixel values averaged in power. The known calibration constant for the PRI product was used in the comparison of the image products. The calibration constant for the TSS FD product was then found to be 54.20 dB. This is close to the result from using the ESA transponders.

  10. In-progress absolute radiometric inflight calibration of the LANDSAT-4 sensors

    NASA Technical Reports Server (NTRS)

    Castle, K.; Dinguirard, M.; Ezra, C. E.; Holm, R. G.; Jackson, R. J.; Kastner, C. J.; Palmer, J. M.; Savage, R.; Slater, P. N.

    1983-01-01

    An approach is described for providing periodic inflight absolute radiometric calibrations of the LANDSAT-4 sensors by reference to selected, instrumented ground areas. Results of some early ground measurements and computer simulations are presented. Selection of a suitable ground reference site, accurate measurement of the spectral reflectance of the selected area, determination of atmospheric characteristics during the morning of the sensor overpass, reduction of the measured data and their use in an appropriate atmospheric radiative transfer program, and comparison of the radiance level data with the digital counts of for the images of the selected areas are discussed. Preliminary measurements of gypsum are being made as an aid in defining the characteristics of field equipment to be constructed and calibrated for use over the White Sands Missile Range.

  11. An imaging technique for detection and absolute calibration of scintillation light

    SciTech Connect

    Pappalardo, Alfio; Cosentino, Luigi; Finocchiaro, Paolo

    2010-03-15

    Triggered by the need of a detection system to be used in experiments of nuclear fusion in laser-generated plasmas, we developed an imaging technique for the measurement and calibration of the scintillation light yield of scintillating materials. As in such experiments, all the reaction products are generated in an ultrashort time frame, the event-by-event data acquisition scheme is not feasible. As an alternative to the emulsion technique (or the equivalent CR39 sheets) we propose a scintillating screen readout by means of a high performance charge coupled device camera. Even though it is not strictly required in the particular application, this technique allows the absolute calibration of the scintillation light yield.

  12. Absolute Current Calibrations of 1muA CW Electron Beam

    SciTech Connect

    A. Freyberger, M.E. Bevins, A.R. Day, P. Degtiarenko, A. Saha, S. Slachtouski, R. Gilman

    2005-06-06

    The future experimental program at Jefferson Lab requires an absolute current calibration of a 1{mu}A CW electron beam to better than 1% accuracy. This paper presents the mechanical and electrical design of a Tungsten calorimeter that is being constructed to provide an accurate measurement of the deposited energy. The energy is determined by measuring the change in temperature after beam exposure. Knowledge of the beam energy then yields number of electrons stopped by the calorimeter during the exposure. Simulations show that the energy losses due to electromagnetic and hadronic losses are the dominant uncertainty. Details of the precision thermometry and calibration, mechanical design, thermal simulations and GEANT simulations will be presented.

  13. Absolute Current Calibration of 1$\\mu$A CW Electron Beam

    SciTech Connect

    Arne Freyberger; Mike Bevins; Anthony Day; Arunava Saha; Stephanie Slachtouski; Ronald Gilman; Pavel Degtiarenko

    2005-06-01

    The future experimental program at Jefferson Lab requires an absolute current calibration of a 1 {mu}A CW electron beam to better than 1% accuracy. This paper presents the mechanical and electrical design of a Tungsten calorimeter that is being constructed to provide an accurate measurement of the deposited energy. The energy is determined by measuring the change in temperature after beam exposure. Knowledge of the beam energy then yields number of electrons stopped by the calorimeter during the exposure. Simulations show that the energy lost due to electromagnetic and hadronic particle losses are the dominant uncertainty. Details of the precision thermometry and calibration, mechanical design, thermal simulations and simulations will be presented.

  14. First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan University.

    PubMed

    Hu, Zhigang; Zhao, Qile; Chen, Guo; Wang, Guangxing; Dai, Zhiqiang; Li, Tao

    2015-01-01

    GNSS receiver antenna phase center variations (PCVs), which arise from the non-spherical phase response of GNSS signals have to be well corrected for high-precision GNSS applications. Without using a precise antenna phase center correction (PCC) model, the estimated position of a station monument will lead to a bias of up to several centimeters. The Chinese large-scale research project "Crustal Movement Observation Network of China" (CMONOC), which requires high-precision positions in a comprehensive GPS observational network motived establishment of a set of absolute field calibrations of the GPS receiver antenna located at Wuhan University. In this paper the calibration facilities are firstly introduced and then the multipath elimination and PCV estimation strategies currently used are elaborated. The validation of estimated PCV values of test antenna are finally conducted, compared with the International GNSS Service (IGS) type values. Examples of TRM57971.00 NONE antenna calibrations from our calibration facility demonstrate that the derived PCVs and IGS type mean values agree at the 1 mm level. PMID:26580616

  15. [In-flight absolute radiometric calibration of UAV hyperspectral camera and its validation analysis].

    PubMed

    Gou, Zhi-yang; Yan, Lei; Chen, Wei; Jing, Xin; Yin, Zhong-yi; Duan, Yi-ni

    2012-02-01

    With the data in Urad Front Banner, Inner Mongolia on November 14th, 2010, hyper-spectral camera on UAV was calibrated adopting reflectance-based method. During the in-flight absolute radiometric calibration, 6 hyper-spectral radiometric gray-scale targets were arranged in the validation field. These targets' reflectances are 4.5%, 20%, 30%, 40%, 50% and 60% separately. To validate the calibration result, four extra hyper-spectral targets with sharp-edge spectrum were arranged to simulate the reflection and absorption peaks in natural objectives. With these peaks, the apparent radiance calculated by radiation transfer model and that calculated through calibration coefficients are much different. The result shows that in the first 15 bands (blue bands), errors are somewhat huge due to the noises of equipment. In the rest bands with quite even spectrum, the errors are small, most of which are less than 10%. For those bands with sharp changes in spectral curves, the errors are quite considerable, varying from 10% to 25%. PMID:22512184

  16. The absolute radiometric calibration of the advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Teillet, P. M.; Mao, Y.

    1987-01-01

    The early results of an absolute radiometric calibration of the NOAA-9 AVHRR sensor indicate significant degradations in the response of bands 1 and 2 compared to prelaunch values. The results are currently in the process of being verified and it may be that refinements of the methodology will be in order as additional data sets are analyzed. The LANDSAT TM calibration used in this approach is known to be very precise and the Herman radiative transfer code, supplemented by the 5-S code for gaseous transmission, is reliable as well. The extent to which other steps in the analysis procedure give rise to uncertainties in the results is currently under investigation. Particular attention is being given to the geometric matching of the AVHRR and TM imagery, as well as to the spectral redistribution procedure. By taking advantage of a reasonably precise calibration of TM imagery acquired on the same day as the AVHRR data at White Sands, a promising approach to the in-orbit calibration of AVHRR sensors is being developed. Current efforts involve primarily the examination of additional test cases and the investigation of possible simplifications in the procedure through judicious use of atmospheric models.

  17. First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan University

    PubMed Central

    Hu, Zhigang; Zhao, Qile; Chen, Guo; Wang, Guangxing; Dai, Zhiqiang; Li, Tao

    2015-01-01

    GNSS receiver antenna phase center variations (PCVs), which arise from the non-spherical phase response of GNSS signals have to be well corrected for high-precision GNSS applications. Without using a precise antenna phase center correction (PCC) model, the estimated position of a station monument will lead to a bias of up to several centimeters. The Chinese large-scale research project “Crustal Movement Observation Network of China” (CMONOC), which requires high-precision positions in a comprehensive GPS observational network motived establishment of a set of absolute field calibrations of the GPS receiver antenna located at Wuhan University. In this paper the calibration facilities are firstly introduced and then the multipath elimination and PCV estimation strategies currently used are elaborated. The validation of estimated PCV values of test antenna are finally conducted, compared with the International GNSS Service (IGS) type values. Examples of TRM57971.00 NONE antenna calibrations from our calibration facility demonstrate that the derived PCVs and IGS type mean values agree at the 1 mm level. PMID:26580616

  18. Absolute calibration of TFTR neutron detectors for D-T plasma operation

    SciTech Connect

    Jassby, D.L.; Johnson, L.C.; Roquemore, A.L.; Strachan, J.D.; Johnson, D.W.; Medley, S.S.; Young, K.M.; Barnes, C.W.

    1995-03-01

    The two most sensitive TFTR fission-chamber detectors were absolutely calibrated in situ by a D-T neutron generator ({approximately}5 {times} 10{sup 7} n/s) rotated once around the torus in each direction, with data taken at about 45 positions. The combined uncertainty for determining fusion neutron rates, including the uncertainty in the total neutron generator output ({plus_minus}9%), counting statistics, the effect of coil coolant, detector stability, cross-calibration to the current mode or log Campbell mode and to other fission chambers, and plasma position variation, is about {plus_minus}13%. The NE-451 (ZnS) scintillators and {sup 4}He proportional counters that view the plasma in up to 10 collimated sightlines were calibrated by scanning. the neutron generator radially and toroidally in the horizontal midplane across the flight tubes of 7 cm diameter. Spatial integration of the detector responses using the calibrated signal per unit chord-integrated neutron emission gives the global neutron source strength with an overall uncertainty of {plus_minus}14% for the scintillators and {plus_minus}15% for the {sup 4}He counters.

  19. Landsat-7 ETM+ on-orbit reflective-band radiometric stability and absolute calibration

    USGS Publications Warehouse

    Markham, B.L.; Thome, K.J.; Barsi, J.A.; Kaita, E.; Helder, Dennis L.; Barker, J. L.; Scaramuzza, Pat

    2004-01-01

    Launched in April 1999, the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) instrument is in its sixth year of operation. The ETM+ instrument has been the most stable of any of the Landsat instruments. To date, the best onboard calibration source for the reflective bands has been the Full Aperture Solar Calibrator, a solar-diffuser-based system, which has indicated changes of between 1% to 2% per year in the ETM+ gain for bands 1-4 and 8 and less than 0.5%/year for bands 5 and 7. However, most of this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on vicarious calibrations and observations of "invariant sites", hyperarid sites of the Sahara and Arabia. Weighted average slopes determined from these datasets suggest changes of 0.0% to 0.4% per year for bands 1-4 and 8 and 0.4% to 0.5% per year for bands 5 and 7. Absolute calibration of the reflective bands of the ETM+ is consistent with vicarious observations and other sensors generally at the 5% level, though there appear to be some systematic differences.

  20. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems

    SciTech Connect

    Johnston, Mark D.; Oliver, Bryan V.; Droemer, Darryl W.; Frogget, Brent; Crain, Marlon D.; Maron, Yitzhak

    2012-08-15

    This paper describes a convenient and accurate method to calibrate fast (<1 ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such systems are inherently difficult to calibrate due to the lack of sufficiently intense, calibrated light sources. Such a system is used to collect spectral data on plasmas generated in electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA) at Sandia National Laboratories. On RITS, plasma light is collected through a small diameter (200 {mu}m) optical fiber and recorded on a fast streak camera at the output of a 1 meter Czerny-Turner monochromator. For this paper, a 300 W xenon short arc lamp (Oriel Model 6258) was used as the calibration source. Since the radiance of the xenon arc varies from cathode to anode, just the area around the tip of the cathode ('hotspot') was imaged onto the fiber, to produce the highest intensity output. To compensate for chromatic aberrations, the signal was optimized at each wavelength measured. Output power was measured using 10 nm bandpass interference filters and a calibrated photodetector. These measurements give power at discrete wavelengths across the spectrum, and when linearly interpolated, provide a calibration curve for the lamp. The shape of the spectrum is determined by the collective response of the optics, monochromator, and streak tube across the spectral region of interest. The ratio of the spectral curve to the measured bandpass filter curve at each wavelength produces a correction factor (Q) curve. This curve is then applied to the experimental data and the resultant spectra are given in absolute intensity units (photons/sec/cm{sup 2}/steradian/nm). Error analysis shows this method to be accurate to within +/- 20%, which represents a high level of accuracy for this type of measurement.

  1. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems

    NASA Astrophysics Data System (ADS)

    Johnston, Mark D.; Oliver, Bryan V.; Droemer, Darryl W.; Frogget, Brent; Crain, Marlon D.; Maron, Yitzhak

    2012-08-01

    This paper describes a convenient and accurate method to calibrate fast (<1 ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such systems are inherently difficult to calibrate due to the lack of sufficiently intense, calibrated light sources. Such a system is used to collect spectral data on plasmas generated in electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA) at Sandia National Laboratories. On RITS, plasma light is collected through a small diameter (200 μm) optical fiber and recorded on a fast streak camera at the output of a 1 meter Czerny-Turner monochromator. For this paper, a 300 W xenon short arc lamp (Oriel Model 6258) was used as the calibration source. Since the radiance of the xenon arc varies from cathode to anode, just the area around the tip of the cathode ("hotspot") was imaged onto the fiber, to produce the highest intensity output. To compensate for chromatic aberrations, the signal was optimized at each wavelength measured. Output power was measured using 10 nm bandpass interference filters and a calibrated photodetector. These measurements give power at discrete wavelengths across the spectrum, and when linearly interpolated, provide a calibration curve for the lamp. The shape of the spectrum is determined by the collective response of the optics, monochromator, and streak tube across the spectral region of interest. The ratio of the spectral curve to the measured bandpass filter curve at each wavelength produces a correction factor (Q) curve. This curve is then applied to the experimental data and the resultant spectra are given in absolute intensity units (photons/sec/cm2/steradian/nm). Error analysis shows this method to be accurate to within +/- 20%, which represents a high level of accuracy for this type of measurement.

  2. Absolute Calibration of the Radio Astronomy Flux Density Scale at 22 to 43 GHz Using Planck

    NASA Astrophysics Data System (ADS)

    Partridge, B.; López-Caniego, M.; Perley, R. A.; Stevens, J.; Butler, B. J.; Rocha, G.; Walter, B.; Zacchei, A.

    2016-04-01

    The Planck mission detected thousands of extragalactic radio sources at frequencies from 28 to 857 GHz. Planck's calibration is absolute (in the sense that it is based on the satellite’s annual motion around the Sun and the temperature of the cosmic microwave background), and its beams are well characterized at sub-percent levels. Thus, Planck's flux density measurements of compact sources are absolute in the same sense. We have made coordinated Very Large Array (VLA) and Australia Telescope Compact Array (ATCA) observations of 65 strong, unresolved Planck sources in order to transfer Planck's calibration to ground-based instruments at 22, 28, and 43 GHz. The results are compared to microwave flux density scales currently based on planetary observations. Despite the scatter introduced by the variability of many of the sources, the flux density scales are determined to 1%–2% accuracy. At 28 GHz, the flux density scale used by the VLA runs 2%–3% ± 1.0% below Planck values with an uncertainty of +/- 1.0%; at 43 GHz, the discrepancy increases to 5%–6% ± 1.4% for both ATCA and the VLA.

  3. Field Measurement of Sand Dune Bidirectional Reflectance Characteristics for Absolute Radiometric Calibration of Optical Remote Sensing Data.

    NASA Astrophysics Data System (ADS)

    Coburn, C. A.; Logie, G.; Beaver, J.; Helder, D.

    2015-12-01

    The use of Pseudo Invariant Calibration Sites (PICS) for establishing the radiometric trending of optical remote sensing systems has a long history of successful implementation. Past studies have shown that the PICS method is useful for evaluating the trend of sensors over time or cross-calibration of sensors but was not considered until recently for deriving absolute calibration. Current interest in using this approach to establish absolute radiometric calibration stems from recent research that indicates that with empirically derived models of the surface properties and careful atmospheric characterisation Top of Atmosphere (TOA) reflectance values can be predicted and used for absolute sensor radiometric calibration. Critical to the continued development of this approach is the accurate characterization of the Bidirectional Reflectance Distribution Function (BRDF) of PICS sites. This paper presents the field data collected by a high-performance portable goniometer system in order to develop a BRDF model for the Algodones Dunes in California. These BRDF data are part of a larger study that is seeking to evaluate and quantify all aspects of this dune system (from regional effects to the micro scale optical properties of the sand) in order to provide an absolute radiometric calibration PICS. This paper presents the results of a dense temporal measurement sequence (several measurements per hour with high angular resolution), to yield detailed information on the nature of the surface reflectance properties. The BRDF data were collected covering typical view geometry of space borne sensors and will be used to close the loop on the calibration to create an absolute calibration target for optical satellite absolute radiometric calibration.

  4. The absolute radiometric calibration of Terra imaging sensors: MODIS, MISR, and ASTER

    NASA Astrophysics Data System (ADS)

    Czapla-Myers, Jeffrey; Thome, Kurtis; Anderson, Nikolaus; Biggar, Stuart

    2014-10-01

    The Terra spacecraft contains five Earth-observation instruments, three of which are multispectral imaging sensors that complement each other in spectral and spatial coverage. The Moderate Resolution Imaging Spectroradiometer (MODIS) has 36 channels ranging from 0.4-14.4 μm, with spatial resolutions of 250, 500, and 1000 m. The Multi-angle Imaging SpectroRadiometer (MISR) uses individual imaging sensors to view the earth at nine discreet angles. Each radiometer has four channels in the visible and near infrared (VNIR), and the nadir-viewing camera has a spatial resolution of 275 m. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was designed with fourteen bands ranging from 0.5-11.6 μm. It is the high-resolution sensor on Terra, with a spatial resolution of 15 m in the VNIR, and 30 m in the shortwave infrared (SWIR). This work describes the vicarious techniques used to perform the absolute radiometric calibration of MODIS, MISR, and ASTER in the solar-reflective region (0.4-2.5 μm). It includes the reflectance-based approach, which uses ground-based personnel to make in situ measurements during the time of overpass. It also includes more recent results that were obtained using the University of Arizona's automated Radiometric Calibration Test Site (RadCaTS) at Railroad Valley, Nevada. In addition to the absolute radiometric calibration of Terra sensors, RadCaTS is used to perform the cross comparison of MODIS, MISR, and ASTER with Landsat 7 ETM+ and Landsat 8 OLI.

  5. Absolute calibration method for laser megajoule neutron yield measurement by activation diagnostics.

    PubMed

    Landoas, Olivier; Glebov, Vladimir Yu; Rossé, Bertrand; Briat, Michelle; Disdier, Laurent; Sangster, Thomas C; Duffy, Tim; Marmouget, Jean Gabriel; Varignon, Cyril; Ledoux, Xavier; Caillaud, Tony; Thfoin, Isabelle; Bourgade, Jean-Luc

    2011-07-01

    The laser megajoule (LMJ) and the National Ignition Facility (NIF) plan to demonstrate thermonuclear ignition using inertial confinement fusion (ICF). The neutron yield is one of the most important parameters to characterize ICF experiment performance. For decades, the activation diagnostic was chosen as a reference at ICF facilities and is now planned to be the first nuclear diagnostic on LMJ, measuring both 2.45 MeV and 14.1 MeV neutron yields. Challenges for the activation diagnostic development are absolute calibration, accuracy, range requirement, and harsh environment. At this time, copper and zirconium material are identified for 14.1 MeV neutron yield measurement and indium material for 2.45 MeV neutrons. A series of calibrations were performed at Commissariat à l'Energie Atomique (CEA) on a Van de Graff facility to determine activation diagnostics efficiencies and to compare them with results from calculations. The CEA copper activation diagnostic was tested on the OMEGA facility during DT implosion. Experiments showed that CEA and Laboratory for Laser Energetics (LLE) diagnostics agree to better than 1% on the neutron yield measurement, with an independent calibration for each system. Also, experimental sensitivities are in good agreement with simulations and allow us to scale activation diagnostics for the LMJ measurement range. PMID:21806179

  6. ScaRaB: first results of absolute and cross calibration

    NASA Astrophysics Data System (ADS)

    Trémas, Thierry L.; Aznay, Ouahid; Chomette, Olivier

    2015-10-01

    ScaRaB (SCAnner for RAdiation Budget) is the name of three radiometers whose two first flight models have been launched in 1994 and 1997. The instruments were mounted on-board Russian satellites, METEOR and RESURS. On October 12th 2011, a last model has been launched from the Indian site of Sriharikota. ScaRaB is a passenger of MEGHA-TROPIQUES, an Indo-French joint Satellite Mission for studying the water cycle and energy exchanges in the tropics. ScaRaB is composed of four parallel and independent channels. Channel-2 and channel-3 are considered as the main ones. Channel-1 is dedicated to measure solar radiance (0.5 to 0.7 μm) while channel-4 (10 to 13 μm) is an infrared window. The absolute calibration of ScaRab is assured by internal calibration sources (black bodies and a lamp for channel-1). However, during the commissioning phase, the lamp used for the absolute calibration of channel-1 revealed to be inaccurate. We propose here an alternative calibration method based on terrestrial targets. Due to the spectral range of channel-1, only calibration over desert sites (temporal monitoring) and clouds (cross band) is suitable. Desert sites have been widely used for sensor calibration since they have a stable spectral response over time. Because of their high reflectances, the atmospheric effect on the upward radiance is relatively minimal. In addition, they are spatially uniform. Their temporal instability without atmospheric correction has been determined to be less than 1-2% over a year. Very-high-altitude (10 km) bright clouds are good validation targets in the visible and near-infrared spectra because of their high spectrally consistent reflectance. If the clouds are very high, there is no need to correct aerosol scattering and water vapor absorption as both aerosol and water vapor are distributed near the surface. Only Rayleigh scattering and ozone absorption need to be considered. This method has been found to give a 4% uncertainty. Radiometric cross

  7. Absolute calibration of an EMCCD camera by quantum correlation, linking photon counting to the analog regime.

    PubMed

    Avella, A; Ruo-Berchera, I; Degiovanni, I P; Brida, G; Genovese, M

    2016-04-15

    We show how the same setup and procedure, exploiting spatially multimode quantum correlations, allows the absolute calibration of an electron-multiplying charge-coupled (EMCCD) camera from the analog regime down to the single-photon-counting level, just by adjusting the brightness of the quantum source. At the single-photon level, an EMCCD can be operated as an on-off detector, where quantum efficiency depends on the discriminating threshold. We develop a simple model to explain the connection of the two different regimes demonstrating that the efficiency estimated in the analog (bright) regime allows us to accurately predict the detector behavior in the photocounting regime and vice versa. This work establishes a bridge between two regions of the optical measurements that up to now have been based on completely different standards, detectors, and measurement techniques. PMID:27082359

  8. Absolute Density Calibration Cell for Laser Induced Fluorescence Erosion Rate Measurements

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Stevens, Richard E.

    2001-01-01

    Flight qualification of ion thrusters typically requires testing on the order of 10,000 hours. Extensive knowledge of wear mechanisms and rates is necessary to establish design confidence prior to long duration tests. Consequently, real-time erosion rate measurements offer the potential both to reduce development costs and to enhance knowledge of the dependency of component wear on operating conditions. Several previous studies have used laser-induced fluorescence (LIF) to measure real-time, in situ erosion rates of ion thruster accelerator grids. Those studies provided only relative measurements of the erosion rate. In the present investigation, a molybdenum tube was resistively heated such that the evaporation rate yielded densities within the tube on the order of those expected from accelerator grid erosion. This work examines the suitability of the density cell as an absolute calibration source for LIF measurements, and the intrinsic error was evaluated.

  9. Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements.

    PubMed

    Baumann, Esther; Giorgetta, Fabrizio R; Coddington, Ian; Sinclair, Laura C; Knabe, Kevin; Swann, William C; Newbury, Nathan R

    2013-06-15

    We demonstrate a comb-calibrated frequency-modulated continuous-wave laser detection and ranging (FMCW ladar) system for absolute distance measurements. The FMCW ladar uses a compact external cavity laser that is swept quasi-sinusoidally over 1 THz at a 1 kHz rate. The system simultaneously records the heterodyne FMCW ladar signal and the instantaneous laser frequency at sweep rates up to 3400 THz/s, as measured against a free-running frequency comb (femtosecond fiber laser). Demodulation of the ladar signal against the instantaneous laser frequency yields the range to the target with 1 ms update rates, bandwidth-limited 130 μm resolution and a ~100 nm accuracy that is directly linked to the counted repetition rate of the comb. The precision is <100 nm at the 1 ms update rate and reaches ~6 nm for a 100 ms average. PMID:23938965

  10. Pantomime-Grasping: Advance Knowledge of Haptic Feedback Availability Supports an Absolute Visuo-Haptic Calibration

    PubMed Central

    Davarpanah Jazi, Shirin; Heath, Matthew

    2016-01-01

    An emerging issue in movement neurosciences is whether haptic feedback influences the nature of the information supporting a simulated grasping response (i.e., pantomime-grasping). In particular, recent work by our group contrasted pantomime-grasping responses performed with (i.e., PH+ trials) and without (i.e., PH− trials) terminal haptic feedback in separate blocks of trials. Results showed that PH− trials were mediated via relative visual information. In contrast, PH+ trials showed evidence of an absolute visuo-haptic calibration—a finding attributed to an error signal derived from a comparison between expected and actual haptic feedback (i.e., an internal forward model). The present study examined whether advanced knowledge of haptic feedback availability influences the aforementioned calibration process. To that end, PH− and PH+ trials were completed in separate blocks (i.e., the feedback schedule used in our group’s previous study) and a block wherein PH− and PH+ trials were randomly interleaved on a trial-by-trial basis (i.e., random feedback schedule). In other words, the random feedback schedule precluded participants from predicting whether haptic feedback would be available at the movement goal location. We computed just-noticeable-difference (JND) values to determine whether responses adhered to, or violated, the relative psychophysical principles of Weber’s law. Results for the blocked feedback schedule replicated our group’s previous work, whereas in the random feedback schedule PH− and PH+ trials were supported via relative visual information. Accordingly, we propose that a priori knowledge of haptic feedback is necessary to support an absolute visuo-haptic calibration. Moreover, our results demonstrate that the presence and expectancy of haptic feedback is an important consideration in contrasting the behavioral and neural properties of natural and simulated grasping. PMID:27199718

  11. Absolute calibration accuracy of L4 TM and L5 TM sensor image pairs

    USGS Publications Warehouse

    Chander, G.; Micijevic, E.

    2006-01-01

    The Landsat suite of satellites has collected the longest continuous archive of multispectral data of any land-observing space program. From the Landsat program's inception in 1972 to the present, the Earth science user community has benefited from a historical record of remotely sensed data. However, little attention has been paid to ensuring that the data are calibrated and comparable from mission to mission, Launched in 1982 and 1984 respectively, the Landsat 4 (L4) and Landsat 5 (L5) Thematic Mappers (TM) are the backbone of an extensive archive of moderate resolution Earth imagery. To evaluate the "current" absolute accuracy of these two sensors, image pairs from the L5 TM and L4 TM sensors were compared. The approach involves comparing image statistics derived from large common areas observed eight days apart by the two sensors. The average percent differences in reflectance estimates obtained from the L4 TM agree with those from the L5 TM to within 15 percent. Additional work to characterize the absolute differences between the two sensors over the entire mission is in progress.

  12. Color calibration of swine gastrointestinal tract images acquired by radial imaging capsule endoscope

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Mang; Jeng, Wei-De; Lai, Chien-Cheng; Wu, Hsien-Ming; Lin, Jyh-Hung

    2016-01-01

    The type of illumination systems and color filters used typically generate varying levels of color difference in capsule endoscopes, which influence medical diagnoses. In order to calibrate the color difference caused by the optical system, this study applied a radial imaging capsule endoscope (RICE) to photograph standard color charts, which were then employed to calculate the color gamut of RICE. Color gamut was also measured using a spectrometer in order to get a high-precision color information, and the results obtained using both methods were compared. Subsequently, color-correction methods, namely polynomial transform and conformal mapping, were used to improve the color difference. Before color calibration, the color difference value caused by the influences of optical systems in RICE was 21.45±1.09. Through the proposed polynomial transformation, the color difference could be reduced effectively to 1.53±0.07. Compared to another proposed conformal mapping, the color difference value was substantially reduced to 1.32±0.11, and the color difference is imperceptible for human eye because it is <1.5. Then, real-time color correction was achieved using this algorithm combined with a field-programmable gate array, and the results of the color correction can be viewed from real-time images.

  13. Absolute energy calibration for relativistic electron beams with pointing instability from a laser-plasma accelerator

    SciTech Connect

    Cha, H. J.; Choi, I. W.; Kim, H. T.; Kim, I J.; Nam, K. H.; Jeong, T. M.; Lee, J.

    2012-06-15

    The pointing instability of energetic electron beams generated from a laser-driven accelerator can cause a serious error in measuring the electron spectrum with a magnetic spectrometer. In order to determine a correct electron spectrum, the pointing angle of an electron beam incident on the spectrometer should be exactly defined. Here, we present a method for absolutely calibrating the electron spectrum by monitoring the pointing angle using a scintillating screen installed in front of a permanent dipole magnet. The ambiguous electron energy due to the pointing instability is corrected by the numerical and analytical calculations based on the relativistic equation of electron motion. It is also possible to estimate the energy spread of the electron beam and determine the energy resolution of the spectrometer using the beam divergence angle that is simultaneously measured on the screen. The calibration method with direct measurement of the spatial profile of an incident electron beam has a simple experimental layout and presents the full range of spatial and spectral information of the electron beams with energies of multi-hundred MeV level, despite the limited energy resolution of the simple electron spectrometer.

  14. A dedicated pistonphone for absolute calibration of infrasound sensors at very low frequencies

    NASA Astrophysics Data System (ADS)

    He, Wen; He, Longbiao; Zhang, Fan; Rong, Zuochao; Jia, Shushi

    2016-02-01

    Aimed at the absolute calibration of infrasound sensors at very low frequencies, an upgraded and improved infrasonic pistonphone has been developed. The pistonphone was designed such that a very narrow clearance between the piston and its guide was realized based on an automatically-centered clearance-sealing structure, and a large volume rigid-walled chamber was also adopted, which improved the leakage time-constant of the chamber. A composite feedback control system was applied to the electromagnetic vibrator to control the precise motion of the piston. Performance tests and uncertainty analysis show that the leakage time-constant is so large, and the distortion of the sound pressure is so small, that the pistonphone can be used as a standard infrasound source in the frequency range from 0.001 Hz to 20 Hz. The low frequency property of the pistonphone has been verified through calibrating low frequency microphones. Comparison tests with the reciprocity method have shown that the pressure sensitivities from the pistonphone are not only reliable at common frequencies but also have smaller uncertainties at low frequencies.

  15. Absolute calibration of Saral/altiKa on Lake Issykkul from GPS field

    NASA Astrophysics Data System (ADS)

    Crétaux, Jean-Francois; Calmant, Stephane; Romanovsky, Vladimir; Bonnefond, Pascal; Tashbaeva, Saadat; Berge-Nguyen, Muriel; Maisongrande, Philippe

    2015-04-01

    Within the framework of Jason-2 mission, a Cal-Val project including continental waters (Rivers and lakes) had been setup in 2007. It includes installation of permanent site (meteo station, limnigraphs, GPS reference point) and regular field campaign for the whole lifetime of the satellite. The lake Issykkul in Kyrgyzstan has been chosen as site dedicated to lakes following a preliminary project in 2004 on this lake. It is funded by CNES. Over the last decade more and more scientific studies were using satellite altimetry to monitor inland waters. However, same as for ocean studies, linking time series from different missions require to accurately monitoring the biases and drifts for each parameter contributing to the final estimate of the reflector height. Moreover there is clear evidence that the calibration of satellite altimetry over ocean does not apply to inland seas (e.g., corrections, retracking, geographical effects). Regional Cal/Val sites supply invaluable data to formally establish the error budget of altimetry over continental water bodies, in addition to the global mission biases and drift monitoring. Moreover the variety of calibration sites for altimetry had to be enlarged in order to have more global distribution and more robust assessment of the altimetry system, and to check if specific conditions lead to different estimation of absolute bias of the instruments. Calibration over lakes surfaces for example has interesting characteristics with respect to ocean surface: wave and ocean tides are generally low, and to summarize, dynamic variability is much smaller than in the oceanic domain. CAL/VAL activities on the oceanic domain have a long history and protocols are well established. CAL/VAL activities on lakes are much recent but in turn they address other problems such as the performance of the various tracking/retracking algorithms and more globally assess the quality of the geophysical corrections. This is achievable when measurements of

  16. Coastal zone color scanner 'system calibration': A retrospective examination

    NASA Technical Reports Server (NTRS)

    Evans, Robert H.; Gordon, Howard R.

    1994-01-01

    During its lifetime the Coastal Zone Color Scanner (CZCS) produced approximately 66,000 images. These have been placed in an archive of 'raw' radiance (sensor counts) in a subsampled format that is easily accessible. They have also been processed to form global fields, at reduced resolution, of normalized water-leaving radiance, phytoplankton pigments, and diffuse attenuation coefficient. Using this archive, we have tried to characterize some aspects of the 'system calibration' for the 8-year lifetime of CZCS. Specifically, we have assumed that the sensitivity of the red band decayed in a simple manner similar to the well-known long-term degradation of the shorter-wavelength bands, and we examined the sensitivity of the green and yellow bands by computing the globally averaged water-leaving radiance, over 10-day periods, for all of the imagery. The results provided evidence that in addition to the long-term degradation, short-term (2 weeks to 1 month) variations in the radiometric sensitivity of these bands started in early fall 1981 and continued for the rest of the mission. In contrast, the data suggested the absence of such variations prior to August 1981. It is reasonable to believe that the sensitivity of the blue (and probably the red) band underwent such variations as well; however our methodology cannot be used to study the other bands. Thus, after these fluctuations began, the actual values of CZCS - estimated pigment concentrations at a given location should be viewed with skepticism; however, the global patterns of derived pigment concentrations should be valid. Had an extensive set of surface measurements of water-leaving radiance, e.r., from moored buoyes or drifters, had been available during the CZCS mission, these fluctuations could have been removed from the data set, and this would have greatly increased its value. The lessons learned from CZCS that is, the requirement of good radiometric calibration and stability and the necessity of 'sea truth

  17. Corrections to the MODIS Aqua Calibration Derived From MODIS Aqua Ocean Color Products

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Franz, Bryan Alden

    2013-01-01

    Ocean color products such as, e.g., chlorophyll-a concentration, can be derived from the top-of-atmosphere radiances measured by imaging sensors on earth-orbiting satellites. There are currently three National Aeronautics and Space Administration sensors in orbit capable of providing ocean color products. One of these sensors is the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, whose ocean color products are currently the most widely used of the three. A recent improvement to the MODIS calibration methodology has used land targets to improve the calibration accuracy. This study evaluates the new calibration methodology and describes further calibration improvements that are built upon the new methodology by including ocean measurements in the form of global temporally averaged water-leaving reflectance measurements. The calibration improvements presented here mainly modify the calibration at the scan edges, taking advantage of the good performance of the land target trending in the center of the scan.

  18. Development of Absolute Calibration of the Phase Contrast Imaging Diagnostic and Experimental Tests in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Tsujii, N.; Porkolab, M.; Edlund, E. M.; Lin, L.

    2007-11-01

    The Phase Contrast Imaging (PCI) system in Alcator C-Mod is used to measure density perturbations from MHD modes, turbulence and RF waves. Recently, an absolutely calibrated system has been installed. This system consists of a set of transducers which cover frequency from 30 kHz to 200 kHz, and wavenumber from 5.5 cm-1 to 36.6 cm-1. The amplitude and phase of the transducer wavefronts are measured using a calibrated microphone. We will present the system design and modeling of this calibration system. Initial results, including a comparison with experimental measurements will also be discussed, if available.

  19. A BAYESIAN METHOD FOR CALCULATING REAL-TIME QUANTITATIVE PCR CALIBRATION CURVES USING ABSOLUTE PLASMID DNA STANDARDS

    EPA Science Inventory

    In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignore...

  20. Spectral Irradiance Calibration in the Infrared. X. A Self-Consistent Radiometric All-Sky Network of Absolutely Calibrated Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Cohen, Martin; Walker, Russell G.; Carter, Brian; Hammersley, Peter; Kidger, Mark; Noguchi, Kunio

    1999-04-01

    We start from our six absolutely calibrated continuous stellar spectra from 1.2 to 35 μm for K0, K1.5, K3, K5, and M0 giants. These were constructed as far as possible from actual observed spectral fragments taken from the ground, the Kuiper Airborne Observatory, and the IRAS Low Resolution Spectrometer, and all have a common calibration pedigree. From these we spawn 422 calibrated ``spectral templates'' for stars with spectral types in the ranges G9.5-K3.5 III and K4.5-M0.5 III. We normalize each template by photometry for the individual stars using published and/or newly secured near- and mid-infrared photometry obtained through fully characterized, absolutely calibrated, combinations of filter passband, detector radiance response, and mean terrestrial atmospheric transmission. These templates continue our ongoing effort to provide an all-sky network of absolutely calibrated, spectrally continuous, stellar standards for general infrared usage, all with a common, traceable calibration heritage. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors, particularly low- to moderate-resolution spectrometers. We analyze the statistics of probable uncertainties, in the normalization of these templates to actual photometry, that quantify the confidence with which we can assert that these templates truly represent the individual stars. Each calibrated template provides an angular diameter for that star. These radiometric angular diameters compare very favorably with those directly observed across the range from 1.6 to 21 mas.

  1. Test Plan for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; Hair, Jason; McAndrew, Brendan; Daw, Adrian; Jennings, Donald; Rabin, Douglas

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe high-accuracy, long-term climate change trends and to use decadal change observations as the most critical method to determine the accuracy of climate change. One of the major objectives of CLARREO is to advance the accuracy of SI traceable absolute calibration at infrared and reflected solar wavelengths. This advance is required to reach the on-orbit absolute accuracy required to allow climate change observations to survive data gaps while remaining sufficiently accurate to observe climate change to within the uncertainty of the limit of natural variability. While these capabilities exist at NIST in the laboratory, there is a need to demonstrate that it can move successfully from NIST to NASA and/or instrument vendor capabilities for future spaceborne instruments. The current work describes the test plan for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches , alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The end result of efforts with the SOLARIS CDS will be an SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climate-quality data collections. The CLARREO mission addresses the need to observe high-accuracy, long-term climate change trends and advance the accuracy of SI traceable absolute calibration. The current work describes the test plan for the SOLARIS which is the calibration demonstration

  2. A comparison of absolute calibrations of a radiation thermometer based on a monochromator and a tunable source

    NASA Astrophysics Data System (ADS)

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Sperling, A.; Schuster, M.; Nevas, S.

    2013-09-01

    An LP3 radiation thermometer was absolutely calibrated at a newly developed monochromator-based set-up and the TUneable Lasers in Photometry (TULIP) facility of PTB in the wavelength range from 400 nm to 1100 nm. At both facilities, the spectral radiation of the respective sources irradiates an integrating sphere, thus generating uniform radiance across its precision aperture. The spectral irradiance of the integrating sphere is determined via an effective area of a precision aperture and a Si trap detector, traceable to the primary cryogenic radiometer of PTB. Due to the limited output power from the monochromator, the absolute calibration was performed with the measurement uncertainty of 0.17 % (k = 1), while the respective uncertainty at the TULIP facility is 0.14 %. Calibration results obtained by the two facilities were compared in terms of spectral radiance responsivity, effective wavelength and integral responsivity. It was found that the measurement results in integral responsivity at the both facilities are in agreement within the expanded uncertainty (k = 2). To verify the calibration accuracy, the absolutely calibrated radiation thermometer was used to measure the thermodynamic freezing temperatures of the PTB gold fixed-point blackbody.

  3. A comparison of absolute calibrations of a radiation thermometer based on a monochromator and a tunable source

    SciTech Connect

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Sperling, A.; Schuster, M.; Nevas, S.

    2013-09-11

    An LP3 radiation thermometer was absolutely calibrated at a newly developed monochromator-based set-up and the TUneable Lasers in Photometry (TULIP) facility of PTB in the wavelength range from 400 nm to 1100 nm. At both facilities, the spectral radiation of the respective sources irradiates an integrating sphere, thus generating uniform radiance across its precision aperture. The spectral irradiance of the integrating sphere is determined via an effective area of a precision aperture and a Si trap detector, traceable to the primary cryogenic radiometer of PTB. Due to the limited output power from the monochromator, the absolute calibration was performed with the measurement uncertainty of 0.17 % (k= 1), while the respective uncertainty at the TULIP facility is 0.14 %. Calibration results obtained by the two facilities were compared in terms of spectral radiance responsivity, effective wavelength and integral responsivity. It was found that the measurement results in integral responsivity at the both facilities are in agreement within the expanded uncertainty (k= 2). To verify the calibration accuracy, the absolutely calibrated radiation thermometer was used to measure the thermodynamic freezing temperatures of the PTB gold fixed-point blackbody.

  4. A White Dwarf-Based Investigation of the IRAC Photometric Absolute Calibration

    NASA Astrophysics Data System (ADS)

    Holberg, Jay; Bergeron, Pierre

    2006-05-01

    We propose a SPITZER Archive Program to use the extensive set of DA (pure hydrogen) white dwarfs in the SPITZER Science Archive to: 1) perform an independent investigation of the absolute calibration of the IRAC bands, 2) to evaluated the claim (Kilic et al. 2005) that cool white dwarfs possess unexplained flux deficits in the IRAC 4.5 micron and 8 micron channels, and 3) to systematically investigate the effects of Collisionally Induced Opacities and other opacity sources in cool white dwarfs. Our proposed data set consists primarily of the large set of those DA white dwarfs which have been observed with IRAC, AND which possess spectroscopically determined temperatures and gravities. These stars are placed on the HST photometric scale, with its well defined links to Vega, to optical fluxes, and to the 2MASS Near-IR bands. Model atmosphere fluxes, precisely matching the optical and 2MASS photometry and optical spectroscopy, are used to predict the corresponding IRAC fluxes. This procedure is demonstrated for a set of published IRAC observations.

  5. Absolute reactivity calibration of accelerator-driven systems after RACE-T experiments

    SciTech Connect

    Jammes, C. C.; Geslot, B.

    2006-07-01

    The RACE-T experiments that were held in november 2005 in the ENEA-Casaccia research center near Rome allowed us to improve our knowledge of the experimental techniques for absolute reactivity calibration at either startup or shutdown phases of accelerator-driven systems. Various experimental techniques for assessing a subcritical level were inter-compared through three different subcritical configurations SC0, SC2 and SC3, about -0.5, -3 and -6 dollars, respectively. The area-ratio method based of the use of a pulsed neutron source appears as the most performing. When the reactivity estimate is expressed in dollar unit, the uncertainties obtained with the area-ratio method were less than 1% for any subcritical configuration. The sensitivity to measurement location was about slightly more than 1% and always less than 4%. Finally, it is noteworthy that the source jerk technique using a transient caused by the pulsed neutron source shutdown provides results in good agreement with those obtained from the area-ratio technique. (authors)

  6. Techniques and Review of Absolute Flux Calibration from the Ultraviolet to the Mid-Infrared

    NASA Astrophysics Data System (ADS)

    Bohlin, Ralph C.; Gordon, Karl D.; Tremblay, P.-E.

    2014-08-01

    The measurement of precise absolute fluxes for stellar sources has been pursued with increased vigor since the discovery of dark energy and the realization that its detailed understanding requires accurate spectral energy distributions (SEDs) of redshifted Ia supernovae in the rest frame. The flux distributions of spectrophotometric standard stars were initially derived from the comparison of stars to laboratory sources of known flux but are now mostly based on calculated model atmospheres. For example, pure hydrogen white dwarf (WD) models provide the basis for the HST CALSPEC archive of flux standards. The basic equations for quantitative spectrophotometry and photometry are explained in detail. Several historical lab-based flux calibrations are reviewed; and the SEDs of stars in the major online astronomical databases are compared to the CALSPEC reference standard spectrophotometry. There is good evidence that relative fluxes from the visible to the near-IR wavelength of ~2.5 μm are currently accurate to 1% for the primary reference standards, and new comparisons with lab flux standards show promise for improving that precision.

  7. Error budget for a calibration demonstration system for the reflected solar instrument for the climate absolute radiance and refractivity observatory

    NASA Astrophysics Data System (ADS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2013-09-01

    A goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to observe highaccuracy, long-term climate change trends over decadal time scales. The key to such a goal is to improving the accuracy of SI traceable absolute calibration across infrared and reflected solar wavelengths allowing climate change to be separated from the limit of natural variability. The advances required to reach on-orbit absolute accuracy to allow climate change observations to survive data gaps exist at NIST in the laboratory, but still need demonstration that the advances can move successfully from to NASA and/or instrument vendor capabilities for spaceborne instruments. The current work describes the radiometric calibration error budget for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The resulting SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climatequality data collections is given. Key components in the error budget are geometry differences between the solar and earth views, knowledge of attenuator behavior when viewing the sun, and sensor behavior such as detector linearity and noise behavior. Methods for demonstrating this error budget are also presented.

  8. Error Budget for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2013-01-01

    A goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to observe highaccuracy, long-term climate change trends over decadal time scales. The key to such a goal is to improving the accuracy of SI traceable absolute calibration across infrared and reflected solar wavelengths allowing climate change to be separated from the limit of natural variability. The advances required to reach on-orbit absolute accuracy to allow climate change observations to survive data gaps exist at NIST in the laboratory, but still need demonstration that the advances can move successfully from to NASA and/or instrument vendor capabilities for spaceborne instruments. The current work describes the radiometric calibration error budget for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The resulting SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climatequality data collections is given. Key components in the error budget are geometry differences between the solar and earth views, knowledge of attenuator behavior when viewing the sun, and sensor behavior such as detector linearity and noise behavior. Methods for demonstrating this error budget are also presented.

  9. Radiometric absolute noise-temperature measurement system features improved accuracy and calibration ease

    NASA Technical Reports Server (NTRS)

    Brown, W.; Ewen, H.; Haroules, G.

    1970-01-01

    Radiometric receiver system, which measures noise temperatures in degrees Kelvin, does not require cryogenic noise sources for routine operation. It eliminates radiometer calibration errors associated with RF attenuation measurements. Calibrated noise source is required only for laboratory adjustment and calibration.

  10. Improved Strategies and Optimization of Calibration Models for Real-time PCR Absolute Quantification

    EPA Science Inventory

    Real-time PCR absolute quantification applications rely on the use of standard curves to make estimates of DNA target concentrations in unknown samples. Traditional absolute quantification approaches dictate that a standard curve must accompany each experimental run. However, t...

  11. Absolute Dating of Desert Varnish Using Portable X-Ray Fluorescence: Calibration and Testing

    NASA Astrophysics Data System (ADS)

    Pingitore, N. E.; Lytle, F. W.; Rowley, P. D.; Ferris, D. E.

    2004-12-01

    Desert varnish, also called rock varnish, is a thin biogenic layer of Mn-oxides, Fe-oxides, and clays that coats rock surfaces in arid and semi-arid regions. The mass of these metals in the varnish registers cumulative biologic activity over time and presents a possible dating mechanism, subject to appropriate assumptions and restrictions. We have used a portable x-ray fluorescence (PXRF) unit to measure Mn and Fe in numerous desert varnishes, both in the field and laboratory; the anticipated relationship between age and mass emerges from these data. Our attempts to refine the PXRF technique for absolute dating of desert varnish are confounded by the limited number of "dated" varnishes available to calibrate and test the method. Although there is no current method to directly ascertain the age of desert varnish, our search for "dated" varnishes has yielded three suitable types of test materials: (1) The ages of young basalt flows dated by various K/Ar radiometric techniques represent the maximum age of varnish developed on those surfaces. Such rocks are useful in the time range of perhaps 250,000 to 10,000 years; surface spalling with loss of varnish presents an upper time limit and difficulty in dating Holocene basalts presents a lower limit. Basalt flows typically provide horizontal surfaces that are ideal for PXRF measurements because, as a biogenic process, varnish development even at a single site varies with solar orientation. (2) Petroglyphs are the rock art that native peoples produced by pecking away varnish to expose fresh rock. This process restarts varnish development and the pecked surface gradually repatinates over time. At some locales, certain figures, symbols, and stylistic elements can be associated with an archaeological culture of known antiquity and duration, thus providing an age range for such glyphs. In the desert Southwest and Great Basin of the United States, appropriate glyphs are known from the present to at least 7000 years BP. Many of

  12. Calibration Image of Earth by Mars Color Imager

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Three days after the Mars Reconnaissance Orbiter's Aug. 12, 2005, launch, the NASA spacecraft was pointed toward Earth and the Mars Color Imager camera was powered up to acquire a suite of color and ultraviolet images of Earth and the Moon. When it gets to Mars, the Mars Color Imager's main objective will be to obtain daily global color and ultraviolet images of the planet to observe martian meteorology by documenting the occurrence of dust storms, clouds, and ozone. This camera will also observe how the martian surface changes over time, including changes in frost patterns and surface brightness caused by dust storms and dust devils.

    The purpose of acquiring an image of Earth and the Moon just three days after launch was to help the Mars Color Imager science team obtain a measure, in space, of the instrument's sensitivity, as well as to check that no contamination occurred on the camera during launch. Prior to launch, the team determined that, three days out from Earth, the planet would only be about 4.77 pixels across, and the Moon would be less than one pixel in size, as seen from the Mars Color Imager's wide-angle perspective. If the team waited any longer than three days to test the camera's performance in space, Earth would be too small to obtain meaningful results.

    The images were acquired by turning Mars Reconnaissance Orbiter toward Earth, then slewing the spacecraft so that the Earth and Moon would pass before each of the five color and two ultraviolet filters of the Mars Color Imager. The distance to Earth was about 1,170,000 kilometers (about 727,000 miles).

    This image shows a color composite view of Mars Color Imager's image of Earth. As expected, it covers only five pixels. This color view has been enlarged five times. The Sun was illuminating our planet from the left, thus only one quarter of Earth is seen from this perspective. North America was in daylight and facing toward the camera at the time the picture was taken; the data

  13. Absolute radiometric calibration of Als intensity data: effects on accuracy and target classification.

    PubMed

    Kaasalainen, Sanna; Pyysalo, Ulla; Krooks, Anssi; Vain, Ants; Kukko, Antero; Hyyppä, Juha; Kaasalainen, Mikko

    2011-01-01

    Radiometric calibration of airborne laser scanning (ALS) intensity data aims at retrieving a value related to the target scattering properties, which is independent on the instrument or flight parameters. The aim of a calibration procedure is also to be able to compare results from different flights and instruments, but practical applications are sparsely available, and the performance of calibration methods for this purpose needs to be further assessed. We have studied the radiometric calibration with data from three separate flights and two different instruments using external calibration targets. We find that the intensity data from different flights and instruments can be compared to each other only after a radiometric calibration process using separate calibration targets carefully selected for each flight. The calibration is also necessary for target classification purposes, such as separating vegetation from sand using intensity data from different flights. The classification results are meaningful only for calibrated intensity data. PMID:22346660

  14. Absolute Radiometric Calibration of ALS Intensity Data: Effects on Accuracy and Target Classification

    PubMed Central

    Kaasalainen, Sanna; Pyysalo, Ulla; Krooks, Anssi; Vain, Ants; Kukko, Antero; Hyyppä, Juha; Kaasalainen, Mikko

    2011-01-01

    Radiometric calibration of airborne laser scanning (ALS) intensity data aims at retrieving a value related to the target scattering properties, which is independent on the instrument or flight parameters. The aim of a calibration procedure is also to be able to compare results from different flights and instruments, but practical applications are sparsely available, and the performance of calibration methods for this purpose needs to be further assessed. We have studied the radiometric calibration with data from three separate flights and two different instruments using external calibration targets. We find that the intensity data from different flights and instruments can be compared to each other only after a radiometric calibration process using separate calibration targets carefully selected for each flight. The calibration is also necessary for target classification purposes, such as separating vegetation from sand using intensity data from different flights. The classification results are meaningful only for calibrated intensity data. PMID:22346660

  15. Exploring a Black Body Source as an Absolute Radiometric Calibration Standard and Comparison with a NIST Traced Lamp Standard

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Chrien, Thomas; Sarture, Chuck

    2001-01-01

    Radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is required for the scientific research and application objectives pursued with the spectroscopic measurements. Specifically calibration is required for: inter-comparison of AVIRIS data measured at different locations and at different times; analysis of AVIRIS data with data measured by other instruments; and analysis of AVIRIS data in conjunction with computer models. The primary effect of radiometric calibration is conversion of AVIRIS instrument response values (digitized numbers, or DN) to units of absolute radiance. For example, a figure shows the instrument response spectrum measured by AVIRIS over a portion of Rogers Dry Lake, California, and another figure shows the same spectrum calibrated to radiance. Only the calibrated spectrum may be quantitatively analyzed for science research and application objectives. Since the initial development of the AVIRIS instrument-radiometric calibration has been based upon a 1000-W irradiance lamp with a calibration traced to the National Institute of Standards and Technology (NIST). There are several advantages to this irradiance-lamp calibration approach. First, the considerable effort of NIST backs up the calibration. Second, by changing the distance to the lamp, the output can closely span the radiance levels measured by AVIRIS. Third, this type of standard is widely used. Fourth, these calibrated lamps are comparatively inexpensive. Conversely, there are several disadvantages to this approach as well. First, the lamp is not a primary standard. Second, the lamp output characteristics may change in an unknown manner through time. Third, it is difficult to assess, constrain, or improve the calibration uncertainty delivered with the lamp. In an attempt to explore the effect and potentially address some of these disadvantages a set of analyses and measurements comparing an irradiance lamp with a black-body source have been completed

  16. Absolute Calibration of Image Plate for electrons at energy between 100 keV and 4 MeV

    SciTech Connect

    Chen, H; Back, N L; Eder, D C; Ping, Y; Song, P M; Throop, A

    2007-12-10

    The authors measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV to 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on the solid density targets. This paper presents the calibration results of image plate Photon Stimulated Luminescence PSL per electrons at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energies depositions at these angles. These provide a complete set of tools that allows extraction of the absolute calibration to other spectrometer setting at this electron energy range.

  17. Auxiliary instruments for the absolute calibration of the ASTRI SST-2M prototype for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Maccarone, Maria C.; Segreto, Alberto; Catalano, Osvaldo; La Rosa, Giovanni; Russo, Francesco; Sottile, Giuseppe; Gargano, Carmelo; Biondo, Benedetto; Fiorini, Mauro; Incorvaia, Salvatore; Toso, Giorgio

    2014-08-01

    ASTRI SST-2M is the end-to-end prototype telescope under development by the Italian National Institute of Astrophysics, INAF, proposed for the investigation of the highest-energy gamma-ray band in the framework of the Cherenkov Telescope Array, CTA. The ASTRI SST-2M prototype will be installed in Italy at the INAF station located at Serra La Nave on Mount Etna during Fall 2014. The calibration and scientific validation phase will start soon after. The calibration of a Cherenkov telescope includes several items and tools. The ASTRI SST- 2M camera is equipped with an internal fiber illumination system that allows to perform the relative calibration through monitoring of gain and efficiency variations of each pixel. The absolute calibration of the overall system, including optics, will take advantage from auxiliary instrumentation, namely UVscope and UVSiPM, two small-aperture multi-pixels photon detectors NIST calibrated in lab. During commissioning phase, to measure the main features of ASTRI SST-2M, as its overall spectral response, the main telescope and the auxiliary UVscope-UVSiPM will be illuminated simultaneously by a spatially uniform flux generated by a ground-based light source, named Illuminator, placed at a distance of few hundreds meters. Periodically, during clear nights, the flux profiles of a reference star tracked simultaneously by ASTRI SST-2M and UVscope-UVSiPM will allow to evaluate the total atmospheric attenuation and the absolute calibration constant of the ASTRI SST-2M prototype. In this contribution we describe the auxiliary UVscope-UVSiPM and Illuminator sub-system together with an overview of the end-to-end calibration procedure foreseen for the ASTRI SST-2M telescope prototype.

  18. Absolute Radiometric Calibration of Narrow-Swath Imaging Sensors with Reference to Non-Coincident Wide-Swath Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Thome, Kurtis; Lockwood, Ronald

    2012-01-01

    An inter-calibration method is developed to provide absolute radiometric calibration of narrow-swath imaging sensors with reference to non-coincident wide-swath sensors. The method predicts at-sensor radiance using non-coincident imagery from the reference sensor and knowledge of spectral reflectance of the test site. The imagery of the reference sensor is restricted to acquisitions that provide similar view and solar illumination geometry to reduce uncertainties due to directional reflectance effects. Spectral reflectance of the test site is found with a simple iterative radiative transfer method using radiance values of a well-understood wide-swath sensor and spectral shape information based on historical ground-based measurements. At-sensor radiance is calculated for the narrow-swath sensor using this spectral reflectance and atmospheric parameters that are also based on historical in situ measurements. Results of the inter-calibration method show agreement on the 2 5 percent level in most spectral regions with the vicarious calibration technique relying on coincident ground-based measurements referred to as the reflectance-based approach. While the variability of the inter-calibration method based on non-coincident image pairs is significantly larger, results are consistent with techniques relying on in situ measurements. The method is also insensitive to spectral differences between the sensors by transferring to surface spectral reflectance prior to prediction of at-sensor radiance. The utility of this inter-calibration method is made clear by its flexibility to utilize image pairings with acquisition dates differing in excess of 30 days allowing frequent absolute calibration comparisons between wide- and narrow-swath sensors.

  19. ISS nocturnal images as a scientic tool against Light Pollution: Flux calibration and colors

    NASA Astrophysics Data System (ADS)

    Sánchez de Miguel, A.; Zamorano, J.; Pascual, S.; López Cayuela, M.; Ocaña, F.; Challupner, P.; Gómez Castaño, J.; Fernández-Renau, A.; Gómez, J. A.; de Miguel, E.

    2013-05-01

    The potential of the pictures of the Earth taken at night from the International Space Station (ISS) with a Nikon D3s digital camera to fight against light pollution is shown. We show that RAW pictures should be used to obtain fluxes. We have developed a method to perform absolute photometric calibration measuring fluxes of the stars recorded in the pictures and also calibrated sources at earth.

  20. Determining the importance of model calibration for forecasting absolute/relative changes in streamflow from LULC and climate changes

    USGS Publications Warehouse

    Niraula, Rewati; Meixner, Thomas; Norman, Laura M.

    2015-01-01

    Land use/land cover (LULC) and climate changes are important drivers of change in streamflow. Assessing the impact of LULC and climate changes on streamflow is typically done with a calibrated and validated watershed model. However, there is a debate on the degree of calibration required. The objective of this study was to quantify the variation in estimated relative and absolute changes in streamflow associated with LULC and climate changes with different calibration approaches. The Soil and Water Assessment Tool (SWAT) was applied in an uncalibrated (UC), single outlet calibrated (OC), and spatially-calibrated (SC) mode to compare the relative and absolute changes in streamflow at 14 gaging stations within the Santa Cruz River Watershed in southern Arizona, USA. For this purpose, the effect of 3 LULC, 3 precipitation (P), and 3 temperature (T) scenarios were tested individually. For the validation period, Percent Bias (PBIAS) values were >100% with the UC model for all gages, the values were between 0% and 100% with the OC model and within 20% with the SC model. Changes in streamflow predicted with the UC and OC models were compared with those of the SC model. This approach implicitly assumes that the SC model is “ideal”. Results indicated that the magnitude of both absolute and relative changes in streamflow due to LULC predicted with the UC and OC results were different than those of the SC model. The magnitude of absolute changes predicted with the UC and SC models due to climate change (both P and T) were also significantly different, but were not different for OC and SC models. Results clearly indicated that relative changes due to climate change predicted with the UC and OC were not significantly different than that predicted with the SC models. This result suggests that it is important to calibrate the model spatially to analyze the effect of LULC change but not as important for analyzing the relative change in streamflow due to climate change. This

  1. Novel calibration and color adaptation schemes in three-fringe RGB photoelasticity

    NASA Astrophysics Data System (ADS)

    Swain, Digendranath; Thomas, Binu P.; Philip, Jeby; Pillai, S. Annamala

    2015-03-01

    Isochromatic demodulation in digital photoelasticity using RGB calibration is a two step process. The first step involves the construction of a look-up table (LUT) from a calibration experiment. In the second step, isochromatic data is demodulated by matching the colors of an analysis image with the colors existing in the LUT. As actual test and calibration experiment tint conditions vary due to different sources, color adaptation techniques for modifying an existing primary LUT are employed. However, the primary LUT is still generated from bending experiments. In this paper, RGB demodulation based on a theoretically constructed LUT has been attempted to exploit the advantages of color adaptation schemes. Thereby, the experimental mode of LUT generation and some uncertainties therein can be minimized. Additionally, a new color adaptation algorithm is proposed using quadratic Lagrangian interpolation polynomials, which is numerically better than the two-point linear interpolations available in the literature. The new calibration and color adaptation schemes are validated and applied to demodulate fringe orders in live models and stress frozen slices.

  2. Absolute calibration of optical power for PDT: report of AAPM TG140.

    PubMed

    Zhu, Timothy C; Bonnerup, Chris; Colussi, Valdir C; Dowell, Marla L; Finlay, Jarod C; Lilge, Lothar; Slowey, Thomas W; Sibata, Claudio

    2013-08-01

    This report is primarily concerned with methods for optical calibration of laser power for continuous wave (CW) light sources, predominantly used in photodynamic therapy (PDT). Light power calibration is very important for PDT, however, no clear standard has been established for the calibration procedure nor the requirements of power meters suitable for optical power calibration. The purposes of the report are to provide guidance for establishing calibration procedures for thermopile type power meters and establish calibration uncertainties for most commercially available detectors and readout assemblies. The authors have also provided a review of the use of various power meters for CW and pulsed optical sources, and provided recommended temporal frequencies for optical power meter calibrations and guidance for routine quality assurance procedure. PMID:23927297

  3. Telescope Spectrophotometric and Absolute Flux Calibration, and National Security Applications, Using a Turntable Laser on a Satellite

    NASA Astrophysics Data System (ADS)

    Albert, J.; Burgett, W.; Rhodes, J.

    We propose a tunable laser-based satellite-mounted spectrophotometric and absolute flux calibration system, to be utilized by ground- and space-based telescopes. As uncertainties on the photometry, due to imperfect knowledge of both telescope optics and the atmosphere, will in the near future begin to dominate the uncertainties on fundamental cosmological parameters such as WL (Omega_Lambda) and w in measurements from SNIa, weak gravitational lensing, and baryon oscillations, a method for reducing such uncertainties is needed. We propose to improve spectrophotometric calibration, currently obtained using standard stars, by placing a tunable laser and a wide-angle light source on a satellite by early next decade (perhaps included in the upgrade to the GPS satellite network) to improve absolute flux calibration to 0.1% and relative spectrophotometric calibration to better than 0.001% across the visible and near-infrared spectrum. As well as fundamental astrophysical applications, the system proposed here potentially has broad utility for defense and national security applications such as ground target illumination and space communication. For further details please see http://www.arxiv.org/abs/astro-ph/0604339.

  4. A new method for the absolute radiance calibration for UV/vis measurements of scattered sun light

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Beirle, S.; Dörner, S.; Penning de Vries, M.; Remmers, J.; Rozanov, A.; Shaiganfar, R.

    2015-05-01

    Absolute radiometric calibrations are important for measurements of the atmospheric spectral radiance. Such measurements can be used to determine actinic fluxes, the properties of aerosols and clouds and the short wave energy budget. Conventional calibration methods in the laboratory are based on calibrated light sources and reflectors and are expensive, time consuming and subject to relatively large uncertainties. Also, the calibrated instruments might change during transport from the laboratory to the measurement sites. Here we present a new calibration method for UV/vis instruments that measure the spectrally resolved sky radiance, like for example zenith sky Differential Optical Absorption Spectroscopy (DOAS-) instruments or Multi-AXis (MAX-) DOAS instruments. Our method is based on the comparison of the solar zenith angle dependence of the measured zenith sky radiance with radiative transfer simulations. For the application of our method clear sky measurements during periods with almost constant aerosol optical depth are needed. The radiative transfer simulations have to take polarisation into account. We show that the calibration results are almost independent from the knowledge of the aerosol optical properties and surface albedo, which causes a rather small uncertainty of about <7%. For wavelengths below about 330 nm it is essential that the ozone column density during the measurements is constant and known.

  5. Absolute intensity calibration of the Wendelstein 7-X high efficiency extreme ultraviolet overview spectrometer system

    NASA Astrophysics Data System (ADS)

    Greiche, Albert; Biel, Wolfgang; Marchuk, Oleksandr; Burhenn, Rainer

    2008-09-01

    The new high effiency extreme ultraviolet overview spectrometer (HEXOS) system for the stellarator Wendelstein 7-X is now mounted for testing and adjustment at the tokamak experiment for technology oriented research (TEXTOR). One part of the testing phase was the intensity calibration of the two double spectrometers which in total cover a spectral range from 2.5 to 160.0 nm with overlap. This work presents the current intensity calibration curves for HEXOS and describes the method of calibration. The calibration was implemented with calibrated lines of a hollow cathode light source and the branching ratio technique. The hollow cathode light source provides calibrated lines from 16 up to 147 nm. We could extend the calibrated region in the spectrometers down to 2.8 nm by using the branching line pairs emitted by an uncalibrated pinch extreme ultraviolet light source as well as emission lines from boron and carbon in TEXTOR plasmas. In total HEXOS is calibrated from 2.8 up to 147 nm, which covers most of the observable wavelength region. The approximate density of carbon in the range of the minor radius from 18 to 35 cm in a TEXTOR plasma determined by simulating calibrated vacuum ultraviolet emission lines with a transport code was 5.5×1017 m-3 which corresponds to a local carbon concentration of 2%.

  6. Absolute calibration of photostimulable image plate detectors used as (0.5-20 MeV) high-energy proton detectors.

    PubMed

    Mancić, A; Fuchs, J; Antici, P; Gaillard, S A; Audebert, P

    2008-07-01

    In this paper, the absolute calibration of photostimulable image plates (IPs) used as proton detectors is presented. The calibration is performed in a wide range of proton energies (0.5-20 MeV) by exposing simultaneously the IP and calibrated detectors (radiochromic films and solid state detector CR39) to a source of broadband laser-accelerated protons, which are spectrally resolved. The final result is a calibration curve that enables retrieving the proton number from the IP signal. PMID:18681694

  7. ABSOLUTE FLUX CALIBRATION OF THE IRAC INSTRUMENT ON THE SPITZER SPACE TELESCOPE USING HUBBLE SPACE TELESCOPE FLUX STANDARDS

    SciTech Connect

    Bohlin, R. C.; Gordon, K. D.; Deustua, S.; Ferguson, H. C.; Flanagan, K.; Kalirai, J.; Meixner, M.; Rieke, G. H.; Engelbracht, C.; Su, K. Y. L.; Ardila, D.; Tremblay, P.-E.

    2011-05-15

    The absolute flux calibration of the James Webb Space Telescope (JWST) will be based on a set of stars observed by the Hubble and Spitzer Space Telescopes. In order to cross-calibrate the two facilities, several A, G, and white dwarf stars are observed with both Spitzer and Hubble and are the prototypes for a set of JWST calibration standards. The flux calibration constants for the four Spitzer IRAC bands 1-4 are derived from these stars and are 2.3%, 1.9%, 2.0%, and 0.5% lower than the official cold-mission IRAC calibration of Reach et al., i.e., in agreement within their estimated errors of {approx}2%. The causes of these differences lie primarily in the IRAC data reduction and secondarily in the spectral energy distributions of our standard stars. The independent IRAC 8 {mu}m band-4 fluxes of Rieke et al. are about 1.5% {+-} 2% higher than those of Reach et al. and are also in agreement with our 8 {mu}m result.

  8. Human wound photogrammetry with low-cost hardware based on automatic calibration of geometry and color

    NASA Astrophysics Data System (ADS)

    Jose, Abin; Haak, Daniel; Jonas, Stephan; Brandenburg, Vincent; Deserno, Thomas M.

    2015-03-01

    Photographic documentation and image-based wound assessment is frequently performed in medical diagnostics, patient care, and clinical research. To support quantitative assessment, photographic imaging is based on expensive and high-quality hardware and still needs appropriate registration and calibration. Using inexpensive consumer hardware such as smartphone-integrated cameras, calibration of geometry, color, and contrast is challenging. Some methods involve color calibration using a reference pattern such as a standard color card, which is located manually in the photographs. In this paper, we adopt the lattice detection algorithm by Park et al. from real world to medicine. At first, the algorithm extracts and clusters feature points according to their local intensity patterns. Groups of similar points are fed into a selection process, which tests for suitability as a lattice grid. The group which describes the largest probability of the meshes of a lattice is selected and from it a template for an initial lattice cell is extracted. Then, a Markov random field is modeled. Using the mean-shift belief propagation, the detection of the 2D lattice is solved iteratively as a spatial tracking problem. Least-squares geometric calibration of projective distortions and non-linear color calibration in RGB space is supported by 35 corner points of 24 color patches, respectively. The method is tested on 37 photographs taken from the German Calciphylaxis registry, where non-standardized photographic documentation is collected nationwide from all contributing trial sites. In all images, the reference card location is correctly identified. At least, 28 out of 35 lattice points were detected, outperforming the SIFT-based approach previously applied. Based on these coordinates, robust geometry and color registration is performed making the photographs comparable for quantitative analysis.

  9. Comparison of absolute gain photometric calibration between Planck/HFI and Herschel/SPIRE at 545 and 857 GHz

    NASA Astrophysics Data System (ADS)

    Bertincourt, B.; Lagache, G.; Martin, P. G.; Schulz, B.; Conversi, L.; Dassas, K.; Maurin, L.; Abergel, A.; Beelen, A.; Bernard, J.-P.; Crill, B. P.; Dole, H.; Eales, S.; Gudmundsson, J. E.; Lellouch, E.; Moreno, R.; Perdereau, O.

    2016-04-01

    We compare the absolute gain photometric calibration of the Planck/HFI and Herschel/SPIRE instruments on diffuse emission. The absolute calibration of HFI and SPIRE each relies on planet flux measurements and comparison with theoretical far-infrared emission models of planetary atmospheres. We measure the photometric cross calibration between the instruments at two overlapping bands, 545 GHz/500 μm and 857 GHz/350 μm. The SPIRE maps used have been processed in the Herschel Interactive Processing Environment (Version 12) and the HFI data are from the 2015 Public Data Release 2. For our study we used 15 large fields observed with SPIRE, which cover a total of about 120 deg2. We have selected these fields carefully to provide high signal-to-noise ratio, avoid residual systematics in the SPIRE maps, and span a wide range of surface brightness. The HFI maps are bandpass-corrected to match the emission observed by the SPIRE bandpasses. The SPIRE maps are convolved to match the HFI beam and put on a common pixel grid. We measure the cross-calibration relative gain between the instruments using two methods in each field, pixel-to-pixel correlation and angular power spectrum measurements. The SPIRE/HFI relative gains are 1.047 (±0.0069) and 1.003 (±0.0080) at 545 and 857 GHz, respectively, indicating very good agreement between the instruments. These relative gains deviate from unity by much less than the uncertainty of the absolute extended emission calibration, which is about 6.4% and 9.5% for HFI and SPIRE, respectively, but the deviations are comparable to the values 1.4% and 5.5% for HFI and SPIRE if the uncertainty from models of the common calibrator can be discounted. Of the 5.5% uncertainty for SPIRE, 4% arises from the uncertainty of the effective beam solid angle, which impacts the adopted SPIRE point source to extended source unit conversion factor, highlighting that as a focus for refinement.

  10. Landsat-7 ETM+ On-Orbit Reflective-Band Radiometric Stability and Absolute Calibration

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Thome, Kurtis J.; Barsi, Julia A.; Kaita, Ed; Helder, Dennis L.; Barker, John L.

    2003-01-01

    The Landsat-7 spacecraft carries the Enhanced Thematic Mapper Plus (ETM+) instrument. This instrument images the Earth land surface in eight parts of the electromagnetic spectrum, termed spectral bands. These spectral images are used to monitor changes in the land surface, so a consistent relationship, i.e., calibration, between the image data and the Earth surface brightness, is required. The ETM+ has several on- board calibration devices that are used to monitor this calibration. The best on-board calibration source employs a flat white painted reference panel and has indicated changes of between 0.5% to 2% per year in the ETM+ response, depending on the spectral band. However, most of these changes are believed to be caused by changes in the reference panel, as opposed to changes in the instrument's sensitivity. This belief is based partially on on-orbit calibrations using instrumented ground sites and observations of "invariant sites", hyper-arid sites of the Sahara and Arabia. Changes determined from these data sets indicate are 0.1% - 0.6% per year. Tests and comparisons to other sensors also indicate that the uncertainty of the calibration is at the 5% level.

  11. Absolute calibration of OH density in a nanosecond pulsed plasma filament in atmospheric pressure He-H2O: comparison of independent calibration methods

    NASA Astrophysics Data System (ADS)

    Verreycken, T.; van der Horst, R. M.; Sadeghi, N.; Bruggeman, P. J.

    2013-11-01

    The absolute density of OH radicals generated in a nanosecond pulsed filamentary discharge in atmospheric pressure He +0.84% H2O is measured independently by UV absorption and laser induced fluorescence (LIF) calibrated with Rayleigh scattering. For the calibration of LIF with Rayleigh scattering, two LIF models, with six levels and four levels, are studied to investigate the influence of the rotational and vibrational energy transfers. In addition, a chemical model is used to deduce the OH density in the afterglow from the relative LIF intensity as function of time. The different models show good correspondence and by comparing these different methods, the accuracy and the effect of assumptions on the obtained OH density are discussed in detail. This analysis includes an analysis of the sensitivity to parameters used in the LIF models.

  12. Calibration Uncertainty in Ocean Color Satellite Sensors and Trends in Long-term Environmental Records

    NASA Technical Reports Server (NTRS)

    Turpie, Kevin R.; Eplee, Robert E., Jr.; Franz, Bryan A.; Del Castillo, Carlos

    2014-01-01

    Launched in late 2011, the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) spacecraft is being evaluated by NASA to determine whether this sensor can continue the ocean color data record established through the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and the MODerate resolution Imaging Spectroradiometer (MODIS). To this end, Goddard Space Flight Center generated evaluation ocean color data products using calibration techniques and algorithms established by NASA during the SeaWiFS and MODIS missions. The calibration trending was subjected to some initial sensitivity and uncertainty analyses. Here we present an introductory assessment of how the NASA-produced time series of ocean color is influenced by uncertainty in trending instrument response over time. The results help quantify the uncertainty in measuring regional and global biospheric trends in the ocean using satellite remote sensing, which better define the roles of such records in climate research.

  13. Absolute calibration of a variable attenuator using few-photon pulses.

    PubMed

    Levine, Zachary H; Glebov, Boris L; Pintar, Adam L; Migdall, Alan L

    2015-06-15

    We demonstrate the ability to calibrate a variable optical attenuator directly at the few-photon level using a superconducting Transition Edge Sensor (TES). Because of the inherent linearity of photon-number resolving detection, no external calibrations are required, even for the energy of the laser pulses, which ranged from means of 0.15 to 18 photons per pulse at the detector. To verify this method, calibrations were compared to an independent conventional calibration made at much higher photon fluxes using analog detectors. In all cases, the attenuations estimated by the two methods agree within their uncertainties.Our few-photon measurement determined attenuations using the Poisson-Influenced K-Means Algorithm (PIKA) to extract mean numbers of photons per pulse along with the uncertainties of these means. The robustness of the method is highlighted by the agreement of the two calibrations even in the presence of significant drifts in the optical power over the course of the experiment.Work of the United States Government. Not subject to copyright. PMID:26193610

  14. The absolute radiometric calibration of the advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1989-01-01

    The measurement conditions are described for an intensive field campaign at White Sands Missile Range for the calibration of the AVHRRs on NOAA-9, NOAA-10 and NOAA-11, LANDSAT-4 TM and SPOT. Three different methods for calibration of AVHRRs by reference to a ground surface site are reported, and results from these methods are compared. Significant degradations in NOAA-9 and NOAA-10 AVHRR responsivities occurred since prelaunch calibrations were completed. As of February 1988, degradations in NOAA-9 AVHRR responsivities were on the order of 37 percent in channel and 41 percent in channel 2, and for the NOAA-10 AVHRR these degradations were 42 and 59 percent in channels 1 and 2, respectively.

  15. Absolute calibration of the Gamma Knife{sup ®} Perfexion™ and delivered dose verification using EPR/alanine dosimetry

    SciTech Connect

    Hornbeck, Amaury E-mail: tristan.garcia@cea.fr; Garcia, Tristan E-mail: tristan.garcia@cea.fr; Cuttat, Marguerite; Jenny, Catherine

    2014-06-15

    Purpose: Elekta Leksell Gamma Knife{sup ®} (LGK) is a radiotherapy beam machine whose features are not compliant with the international calibration protocols for radiotherapy. In this scope, the Laboratoire National Henri Becquerel and the Pitié-Salpêtrière Hospital decided to conceive a new LKG dose calibration method and to compare it with the currently used one. Furthermore, the accuracy of the dose delivered by the LGK machine was checked using an “end-to-end” test. This study also aims to compare doses delivered by the two latest software versions of the Gammaplan treatment planning system (TPS). Methods: The dosimetric method chosen is the electron paramagnetic resonance (EPR) of alanine. Dose rate (calibration) verification was done without TPS using a spherical phantom. Absolute calibration was done with factors calculated by Monte Carlo simulation (MCNP-X). For “end-to-end” test, irradiations in an anthropomorphic head phantom, close to real treatment conditions, are done using the TPS in order to verify the delivered dose. Results: The comparison of the currently used calibration method with the new one revealed a deviation of +0.8% between the dose rates measured by ion chamber and EPR/alanine. For simple fields configuration (less than 16 mm diameter), the “end-to-end” tests showed out average deviations of −1.7% and −0.9% between the measured dose and the calculated dose by Gammaplan v9 and v10, respectively. Conclusions: This paper shows there is a good agreement between the new calibration method and the currently used one. There is also a good agreement between the calculated and delivered doses especially for Gammaplan v10.

  16. Mapping the Galaxy Color-Redshift Relation: Optimal Photo-z Calibration Strategies for Cosmology Surveys

    NASA Astrophysics Data System (ADS)

    Masters, Daniel C.; Capak, Peter L.; Stern, Daniel; Rhodes, Jason; Mobasher, Bahram; Schmidt, Samuel; Steinhardt, Charles L.; Faisst, Andreas; Speagle, Josh S.

    2016-01-01

    A primary objective of the upcoming dark energy surveys LSST, Euclid, and WFIRST is to map the 3D distribution of matter over a significant fraction of the universe via the weak lensing cosmic shear field. Doing so will require accurate distance estimates to billions of faint galaxies, meaning that photo-z's will be essential for the ultimate scientific success of these missions. Because galaxy colors drive photo-z estimates, spectroscopic calibration samples must at least be representative in color. Here we present a technique, based on the self-organizing map (Kohonen 1990), to map the empirical distribution of galaxies in the high-dimensional color space of a given survey. We apply the technique to Euclid-like data for ~131k galaxies from the COSMOS survey, allowing us to determine where - in galaxy color space - spectroscopic coverage exists and where it is systematically missing. We show that the mapping technique lets us develop efficient spectroscopic sampling strategies to measure the color-redshift relation by focusing effort on poorly constrained regions of multicolor space. We discuss the nature of the galaxies in un-sampled regions of galaxy color space, and show that a fiducial survey with Keck (making use of LRIS, DEIMOS, and MOSFIRE) could meet the Euclid calibration requirements in ~40 nights of observing.

  17. Visible Infrared Imaging Radiometer Suite (VIIRS) and uncertainty in the ocean color calibration methodology

    NASA Astrophysics Data System (ADS)

    Turpie, Kevin R.; Eplee, Robert E.; Meister, Gerhard

    2015-09-01

    During the first few years of the Suomi National Polar-orbiting Partnership (NPP) mission, the NASA Ocean Color calibration team continued to improve on their approach to the on-orbit calibration of the Visible Infrared Imaging Radiometer Suite (VIIRS). As the calibration was adjusted for changes in ocean band responsitivity, the team also estimated a theoretic residual error in the calibration trends well within a few tenths of a percent, which could be translated into trend uncertainties in regional time series of surface reflectance and derived products, where biases as low as a few tenths of a percent in certain bands can lead to significant effects. This study looks at effects from spurious trends inherent to the calibration and biases that arise between reprocessing efforts because of extrapolation of the timedependent calibration table. With the addition of new models for instrument and calibration system trend artifacts, new calibration trends led to improved estimates of ocean time series uncertainty. Table extrapolation biases are presented for the first time. The results further the understanding of uncertainty in measuring regional and global biospheric trends in the ocean using VIIRS, which better define the roles of such records in climate research.

  18. BOUSSOLE: A Joint CNRS-INSU, ESA, CNES, and NASA Ocean Color Calibration and Validation Activity

    NASA Technical Reports Server (NTRS)

    Antoine, David; Chami, Malik; Claustre, Herve; d'Ortenzio, Fabrizio; Morel, Andre; Becu, Guislain; Gentili, Bernard; Louis, Francis; Ras, Josephine; Roussier, Emmanuel; Scott, Alec J.; Tailliez, Dominique; Hooker, Stanford B.; Guevel, Pierre; Deste, Jean-Francois; Dempsey, Cyril; Adams, Darrell

    2006-01-01

    This report presents the Bouee pour l'acquisition de Series Optiques a Long Terme (BOUSSOLE) project, the primary objectives of which are to provide a long-term time series of optical properties in support of a) calibration and validation activities associated with satellite ocean color missions, and b) bio-optical research in oceanic waters. The following are included in the report: 1) an introduction to the rationale for establishing the project; 2) a definition of vicarious calibration and the specific requirements attached to it; 3) the organization of the project and the characteristics of the measurement site--in the northwestern Mediterranean Sea; 4) a qualitative overview of the collected data; 5) details about the buoy that was specifically designed and built for this project; 6) data collection protocols and data processing techniques; 7) a quantitative summary of the collected data, and a discussion of some sample results, including match-up analyses for the currently operational ocean color sensors, namely MERIS, SeaWiFS, and MODIS; and 8) preliminary results of the vicarious radiometric calibration of MERIS, including a tentative uncertainty budget. The results of this match-up analysis allow performance comparisons of various ocean color sensors to be performed, demonstrating the ability of the BOUSSOLE activity, i.e., combining a dedicated platform and commercial-off-the-shelf instrumentation, to provide data qualified to monitor the quality of ocean color products on the long term.

  19. The Importance of Post-Launch, On-Orbit Absolute Radiometric Calibration for Remote Sensing Applications

    NASA Astrophysics Data System (ADS)

    Kuester, M. A.

    2015-12-01

    Remote sensing is a powerful tool for monitoring changes on the surface of the Earth at a local or global scale. The use of data sets from different sensors across many platforms, or even a single sensor over time, can bring a wealth of information when exploring anthropogenic changes to the environment. For example, variations in crop yield and health for a specific region can be detected by observing changes in the spectral signature of the particular species under study. However, changes in the atmosphere, sun illumination and viewing geometries during image capture can result in inconsistent image data, hindering automated information extraction. Additionally, an incorrect spectral radiometric calibration will lead to false or misleading results. It is therefore critical that the data being used are normalized and calibrated on a regular basis to ensure that physically derived variables are as close to truth as is possible. Although most earth observing sensors are well-calibrated in a laboratory prior to launch, a change in the radiometric response of the system is inevitable due to thermal, mechanical or electrical effects caused during the rigors of launch or by the space environment itself. Outgassing and exposure to ultra-violet radiation will also have an effect on the sensor's filter responses. Pre-launch lamps and other laboratory calibration systems can also fall short in representing the actual output of the Sun. A presentation of the differences in the results of some example cases (e.g. geology, agriculture) derived for science variables using pre- and post-launch calibration will be presented using DigitalGlobe's WorldView-3 super spectral sensor, with bands in the visible and near infrared, as well as in the shortwave infrared. Important defects caused by an incomplete (i.e. pre-launch only) calibration will be discussed using validation data where available. In addition, the benefits of using a well-validated surface reflectance product will be

  20. RGB color calibration for quantitative image analysis: the "3D thin-plate spline" warping approach.

    PubMed

    Menesatti, Paolo; Angelini, Claudio; Pallottino, Federico; Antonucci, Francesca; Aguzzi, Jacopo; Costa, Corrado

    2012-01-01

    In the last years the need to numerically define color by its coordinates in n-dimensional space has increased strongly. Colorimetric calibration is fundamental in food processing and other biological disciplines to quantitatively compare samples' color during workflow with many devices. Several software programmes are available to perform standardized colorimetric procedures, but they are often too imprecise for scientific purposes. In this study, we applied the Thin-Plate Spline interpolation algorithm to calibrate colours in sRGB space (the corresponding Matlab code is reported in the Appendix). This was compared with other two approaches. The first is based on a commercial calibration system (ProfileMaker) and the second on a Partial Least Square analysis. Moreover, to explore device variability and resolution two different cameras were adopted and for each sensor, three consecutive pictures were acquired under four different light conditions. According to our results, the Thin-Plate Spline approach reported a very high efficiency of calibration allowing the possibility to create a revolution in the in-field applicative context of colour quantification not only in food sciences, but also in other biological disciplines. These results are of great importance for scientific color evaluation when lighting conditions are not controlled. Moreover, it allows the use of low cost instruments while still returning scientifically sound quantitative data. PMID:22969337

  1. Absolute calibration method for fast-streaked, fiber optic light collection, spectroscopy systems.

    SciTech Connect

    Johnston, Mark D.; Frogget, Brent; Oliver, Bryan Velten; Maron, Yitzhak; Droemer, Darryl W.; Crain, Marlon D.

    2010-04-01

    This report outlines a convenient method to calibrate fast (<1ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such a system is used to collect spectral data on plasmas generated in the A-K gap of electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA). On RITS, light is collected through a small diameter (200 micron) optical fiber and recorded on a fast streak camera at the output of 1 meter Czerny-Turner monochromator (F/7 optics). To calibrate such a system, it is necessary to efficiently couple light from a spectral lamp into a 200 micron diameter fiber, split it into its spectral components, with 10 Angstroms or less resolution, and record it on a streak camera with 1ns or less temporal resolution.

  2. Absolute Sea Level Monitoring and Altimeter Calibration At Gavdos, Crete, Greece

    NASA Astrophysics Data System (ADS)

    Pavlis, E. C.; Gavdos Team

    We present the mean sea level (MSL) monitoring aspect of the altimeter calibration fa- cility under deployment on western Crete and the isle of Gavdos. The Eastern Mediter- ranean area is one of great interest for its intense tectonic activity as well as for its regional oceanography. Recent observations have convincingly demonstrated the im- portance of that area for the regional meteorological and climatological changes. Tide- gauge monitoring with GPS has gained importance lately since tectonics contaminate the inferred sea level variations, and a global network of tide-gauges with long his- torical records can be used as satellite altimeter calibration sites for current and fu- ture missions (e.g. TOPEX/POSEIDON, GFO, JASON-1, ENVISAT, etc.). This is at present a common IOC-GLOSS-IGS effort, already underway (TIGA). Crete hosts two of the oldest tide-gauges in the regional network and our project will further ex- pand it to the south of the island with a new site on the isle of Gavdos, the southernmost European parcel of land. One component of our "GAVDOS" project is the repeated occupation of two already in existence tide-gauge sites at Souda Bay and Heraklion, and their tie to the new facility. We show here initial results from positioning of these sites and some of the available tidal records. Gavdos is situated under a ground-track crossing point of the present T/P and JASON-1 orbits. It is an ideal calibration site if the tectonic motions are monitored precisely and continuously. Our plans include the deployment of additional instrumentation at this site: GPS and DORIS beacons for positioning, transponders for direct calibration, water vapor radiometers, GPS-loaded buoys, airborne surveys with gravimeters and laser profiling lidars, etc., to ensure the best possible and most reliable results.

  3. First preliminary results for the absolute calibration of the Chinese HY-2 altimetric mission using the CRS1 calibration facilities in West Crete, Greece

    NASA Astrophysics Data System (ADS)

    Mertikas, Stelios P.; Zhou, Xinghua; Qiao, Fangli; Daskalakis, Antonis; Lin, Mingsen; Peng, Hailong; Tziavos, Ilias N.; Vergos, George; Tripolitsiotis, Achilleas; Frantzis, Xenophon

    2016-01-01

    In this work, absolute calibration of the Chinese HY-2 satellite altimetry mission is carried out, employing Pass No. 280 and the calibration facility, CRS1, located in the Southwest end of the island of Crete, Greece. Satellite Pass No. 280 is descending and follows a ground track almost parallel to the west coast of Crete. It comes close to the coast, at a distance of about 9 km from the CRS1 calibration site, and finally goes away south of Crete. The HY-2 sensor geophysical data records (S-GDR) have been incorporated into the calibration procedures and processing has taken place for cycles No. 54-62, at 20 Hz data rate. Some peculiarities in the HY-2 satellite altimeter data, as delivered and depicted in the I-GDR and S-GDR data, have also been noticed. All calibration results have been determined using a regional, precise and detailed geoid, along with a good knowledge of local ocean circulation and site characteristics and a well-defined sea-surface calibration methodology. The first preliminary results for the HY-2 altimeter calibration have shown that the initial cycles, up to No. 51, display an erratic behavior. After those cycles, the altimeter range bias values seem to be stable and reach a value of B = -45.6 cm ± 4.4 cm, when applying the net instrument corrections as provided in the GDR. If the relativistic effects of the satellite clocks are properly applied for the net instrument corrections, then the altimeter range bias goes down to B = -27 cm ± 3 cm. Also, preliminary cross-over analysis with the SARAL/AliKa and Jason-2 satellites show a bias of B = -23 cm, and B = -28.5 cm, respectively. The performance of the HY-2 on-board radiometer has also been examined in terms of the wet troposphere corrections and shows a mean difference of -1 cm ± 0.1 cm with respect to in-situ GNSS-derived corrections. Finally, the ionosphere path corrections of the HY-2 satellite show a difference of +1 cm ± 1.1 cm, when compared against the GNSS-derived ionosphere

  4. Calibration between color camera and 3D LIDAR instruments with a polygonal planar board.

    PubMed

    Park, Yoonsu; Yun, Seokmin; Won, Chee Sun; Cho, Kyungeun; Um, Kyhyun; Sim, Sungdae

    2014-01-01

    Calibration between color camera and 3D Light Detection And Ranging (LIDAR) equipment is an essential process for data fusion. The goal of this paper is to improve the calibration accuracy between a camera and a 3D LIDAR. In particular, we are interested in calibrating a low resolution 3D LIDAR with a relatively small number of vertical sensors. Our goal is achieved by employing a new methodology for the calibration board, which exploits 2D-3D correspondences. The 3D corresponding points are estimated from the scanned laser points on the polygonal planar board with adjacent sides. Since the lengths of adjacent sides are known, we can estimate the vertices of the board as a meeting point of two projected sides of the polygonal board. The estimated vertices from the range data and those detected from the color image serve as the corresponding points for the calibration. Experiments using a low-resolution LIDAR with 32 sensors show robust results. PMID:24643005

  5. Calibration between Color Camera and 3D LIDAR Instruments with a Polygonal Planar Board

    PubMed Central

    Park, Yoonsu; Yun, Seokmin; Won, Chee Sun; Cho, Kyungeun; Um, Kyhyun; Sim, Sungdae

    2014-01-01

    Calibration between color camera and 3D Light Detection And Ranging (LIDAR) equipment is an essential process for data fusion. The goal of this paper is to improve the calibration accuracy between a camera and a 3D LIDAR. In particular, we are interested in calibrating a low resolution 3D LIDAR with a relatively small number of vertical sensors. Our goal is achieved by employing a new methodology for the calibration board, which exploits 2D-3D correspondences. The 3D corresponding points are estimated from the scanned laser points on the polygonal planar board with adjacent sides. Since the lengths of adjacent sides are known, we can estimate the vertices of the board as a meeting point of two projected sides of the polygonal board. The estimated vertices from the range data and those detected from the color image serve as the corresponding points for the calibration. Experiments using a low-resolution LIDAR with 32 sensors show robust results. PMID:24643005

  6. A calibration-independent laser-induced incandescence technique for soot measurement by detecting absolute light intensity.

    PubMed

    Snelling, David R; Smallwood, Gregory J; Liu, Fengshan; Gülder, Omer L; Bachalo, William D

    2005-11-01

    Laser-induced incandescence (LII) has proved to be a useful diagnostic tool for spatially and temporally resolved measurement of particulate (soot) volume fraction and primary particle size in a wide range of applications, such as steady flames, flickering flames, and Diesel engine exhausts. We present a novel LII technique for the determination of soot volume fraction by measuring the absolute incandescence intensity, avoiding the need for ex situ calibration that typically uses a source of particles with known soot volume fraction. The technique developed in this study further extends the capabilities of existing LII for making practical quantitative measurements of soot. The spectral sensitivity of the detection system is determined by calibrating with an extended source of known radiance, and this sensitivity is then used to interpret the measured LII signals. Although it requires knowledge of the soot temperature, either from a numerical model of soot particle heating or experimentally determined by detecting LII signals at two different wavelengths, this technique offers a calibration-independent procedure for measuring soot volume fraction. Application of this technique to soot concentration measurements is demonstrated in a laminar diffusion flame. PMID:16270566

  7. Enhanced color ratio calibration for two-dimensional surface thermometry using laser-induced phosphorescence

    NASA Astrophysics Data System (ADS)

    Knappe, C.; Lindén, J.; Richter, M.; Aldén, M.

    2013-08-01

    An alternative concept for calibrating spectral image intensity ratios is described, which provides simple, but effective means of compensation for systematic errors, caused by nonlinearities in signal detection. The method relies on image segmentation by means of signal thresholds, where pixels are organized into different subgroups according to their corresponding signal count value. Instead of defining one global spectral ratio per calibration temperature, the phosphor-coated target surface is illuminated inhomogeneously and resulting image ratios are calibrated individually for each pixel intensity subgroup. This allows the exploitation of high intensity regions on the camera chip which offer great precision advantages, but suffer from systematic errors caused by signal nonlinearities. Temperature calibration data of BaMg2Al16O27:Eu in the temperature range between 270 and 470 K was used to assess and compare the potential of both calibration approaches. In comparison to the conventional, e.g. global calibration approach, accuracy improvements of up to 39% were gained even while keeping average signal intensities below 15% of the detector's full dynamic range. Image ratio evaluations, based on segregated pixel subgroups, could help improve measurement accuracy also for other techniques, relying on the calibration of measured quantities. In two-dimensional phosphor thermometry, it helps bridge the current precision gap between two-color ratio methods and more elaborate lifetime-imaging approaches.

  8. In-progress Absolute Radiometric Inflight Calibration of the LANDSAT-4 Sensors. [New Mexico

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Dinguirard, M.; Ezra, C. E.; Holm, R. G.; Jackson, R. D.; Kastner, C. J.; Palmer, J. M.; Savage, R.; Slater, P. N.

    1985-01-01

    Using selected instrumented areas at White Sands Missile Range, New Mexico as reference, radiometric calibration is to be effected on the sensors of LANDSAT 4, particularly the thematic mapper. Optical measurements made during a TM overpass are discussed. The radiances of selected large ground areas are measured in the spectral bandpasses of the TM; the total optical thickness of the atmosphere is measured in nine narrow spectral intervals. Ground truth in the form of reflectances collected for the alkalai flat region of gypsum and for the snow at White Sands is described.

  9. Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for O - M stars

    NASA Astrophysics Data System (ADS)

    Bessell, M. S.; Castelli, F.; Plez, B.

    1998-05-01

    Broad band colors and bolometric corrections in the Johnson-Cousins-Glass system (Bessell, 1990; Bessell & Brett, 1988) have been computed from synthetic spectra from new model atmospheres of Kurucz (1995a), Castelli (1997), Plez, Brett & Nordlund (1992), Plez (1995-97), and Brett (1995a,b). These atmospheres are representative of larger grids that are currently being completed. We discuss differences between the different grids and compare theoretical color-temperature relations and the fundamental color temperature relations derived from: (a) the infrared-flux method (IRFM) for A-K stars (Blackwell & Lynas-Gray 1994; Alonso et al. 1996) and M dwarfs (Tsuji et al. 1996a); (b) lunar occultations (Ridgway et al. 1980) and (c) Michelson interferometry (Di Benedetto & Rabbia 1987; Dyck et al. 1996; Perrin et al. 1997) for K-M giants, and (d) eclipsing binaries for M dwarfs. We also compare color - color relations and color - bolometric correction relations and find good agreement except for a few colors. The more realistic fluxes and spectra of the new model grids should enable accurate population synthesis models to be derived and permit the ready calibration of non-standard photometric passbands. As well, the theoretical bolometric corrections and temperature - color relations will permit reliable transformation from observed color magnitude diagrams to theoretical HR diagrams. Tables 1-6 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  10. Validation of short-pulse-laser-based measurement setup for absolute spectral irradiance responsivity calibration.

    PubMed

    Schuster, Michaela; Nevas, Saulius; Sperling, Armin

    2014-05-01

    This paper describes the validation process of mode-locked lasers in the "tunable lasers in photometry" (TULIP) setup at Physikalisch-Technische Bundesanstalt (PTB) regarding spectral irradiance responsivity calibrations. Validation has been carried out in the visible spectral range, 400-700 nm, with two different photometer heads and in the long wavelength range, 690-780 nm, with a filtered radiometer. A comparison of the results against those from two different validated measurement setups has been carried out for validation. For the visible spectral range, the comparison is conducted against the data obtained from a lamp-based monochromator setup for spectral irradiance responsivity calibrations and against the photometric values (integral quantity) measured at the photometric bench setup of PTB. For the long wavelength range, comparisons against results from two different lamp-based monochromator measurement setups were made. Additionally, the effect of different radiation bandwidths on interference oscillations has been determined for a filter radiometer without a diffuser. A procedure for the determination of the optimum bandwidth of the setup for the respective measurement device is presented. PMID:24921865

  11. SkyProbe: Real-Time Precision Monitoring in the Optical of the Absolute Atmospheric Absorption on the Telescope Science and Calibration Fields

    NASA Astrophysics Data System (ADS)

    Cuillandre, J.-C.; Magnier, E.; Sabin, D.; Mahoney, B.

    2016-05-01

    Mauna Kea is known for its pristine seeing conditions but sky transparency can be an issue for science operations since at least 25% of the observable (i.e. open dome) nights are not photometric, an effect mostly due to high-altitude cirrus. Since 2001, the original single channel SkyProbe mounted in parallel on the Canada-France-Hawaii Telescope (CFHT) has gathered one V-band exposure every minute during each observing night using a small CCD camera offering a very wide field of view (35 sq. deg.) encompassing the region pointed by the telescope for science operations, and exposures long enough (40 seconds) to capture at least 100 stars of Hipparcos' Tycho catalog at high galactic latitudes (and up to 600 stars at low galactic latitudes). The measurement of the true atmospheric absorption is achieved within 2%, a key advantage over all-sky direct thermal infrared imaging detection of clouds. The absolute measurement of the true atmospheric absorption by clouds and particulates affecting the data being gathered by the telescope's main science instrument has proven crucial for decision making in the CFHT queued service observing (QSO) representing today all of the telescope time. Also, science exposures taken in non-photometric conditions are automatically registered for a new observation at a later date at 1/10th of the original exposure time in photometric conditions to ensure a proper final absolute photometric calibration. Photometric standards are observed only when conditions are reported as being perfectly stable by SkyProbe. The more recent dual color system (simultaneous B & V bands) will offer a better characterization of the sky properties above Mauna Kea and should enable a better detection of the thinnest cirrus (absorption down to 0.01 mag., or 1%).

  12. SU-E-J-85: Leave-One-Out Perturbation (LOOP) Fitting Algorithm for Absolute Dose Film Calibration

    SciTech Connect

    Chu, A; Ahmad, M; Chen, Z; Nath, R

    2014-06-01

    Purpose: To introduce an outliers-recognition fitting routine for film dosimetry. It cannot only be flexible with any linear and non-linear regression but also can provide information for the minimal number of sampling points, critical sampling distributions and evaluating analytical functions for absolute film-dose calibration. Methods: The technique, leave-one-out (LOO) cross validation, is often used for statistical analyses on model performance. We used LOO analyses with perturbed bootstrap fitting called leave-one-out perturbation (LOOP) for film-dose calibration . Given a threshold, the LOO process detects unfit points (“outliers”) compared to other cohorts, and a bootstrap fitting process follows to seek any possibilities of using perturbations for further improvement. After that outliers were reconfirmed by a traditional t-test statistics and eliminated, then another LOOP feedback resulted in the final. An over-sampled film-dose- calibration dataset was collected as a reference (dose range: 0-800cGy), and various simulated conditions for outliers and sampling distributions were derived from the reference. Comparisons over the various conditions were made, and the performance of fitting functions, polynomial and rational functions, were evaluated. Results: (1) LOOP can prove its sensitive outlier-recognition by its statistical correlation to an exceptional better goodness-of-fit as outliers being left-out. (2) With sufficient statistical information, the LOOP can correct outliers under some low-sampling conditions that other “robust fits”, e.g. Least Absolute Residuals, cannot. (3) Complete cross-validated analyses of LOOP indicate that the function of rational type demonstrates a much superior performance compared to the polynomial. Even with 5 data points including one outlier, using LOOP with rational function can restore more than a 95% value back to its reference values, while the polynomial fitting completely failed under the same conditions

  13. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    NASA Astrophysics Data System (ADS)

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.20, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  14. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata.

    PubMed

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.2(0), respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result. PMID:23464200

  15. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    SciTech Connect

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-15

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and {+-}0.2{sup 0}, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ('Dee' voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  16. Calibration and absolute normalization procedure of a new Deep Inelastic Neutron Scattering spectrometer

    NASA Astrophysics Data System (ADS)

    Rodríguez Palomino, L. A.; Blostein, J. J.; Dawidowski, J.

    2011-08-01

    We describe the calibration process of a new Deep Inelastic Neutron Scattering (DINS) spectrometer, recently implemented at the Bariloche Electron LINAC (Argentina), consisting in the determination of the incident neutron spectrum, dead-time and electronic delay of the data acquisition line, and detector bank efficiency. For this purpose, samples of lead, polyethylene and graphite of different sizes were employed. Their measured spectra were corrected by multiple scattering, attenuation and detector efficiency effects, by means of an ad hoc Monte Carlo code. We show that the corrected spectra are correctly scaled with respect to the scattering power of the tested materials within a 2% of experimental error, thus allowing us to define an experimental constant that links the arbitrary experimental scale (number of recorded counts per monitor counts) with the involved cross-sections. The present work also serves to analyze the existence of possible sources of systematic errors.

  17. Auditory color constancy: calibration to reliable spectral properties across nonspeech context and targets.

    PubMed

    Stilp, Christian E; Alexander, Joshua M; Kiefte, Michael; Kluender, Keith R

    2010-02-01

    Brief experience with reliable spectral characteristics of a listening context can markedly alter perception of subsequent speech sounds, and parallels have been drawn between auditory compensation for listening context and visual color constancy. In order to better evaluate such an analogy, the generality of acoustic context effects for sounds with spectral-temporal compositions distinct from speech was investigated. Listeners identified nonspeech sounds-extensively edited samples produced by a French horn and a tenor saxophone-following either resynthesized speech or a short passage of music. Preceding contexts were "colored" by spectral envelope difference filters, which were created to emphasize differences between French horn and saxophone spectra. Listeners were more likely to report hearing a saxophone when the stimulus followed a context filtered to emphasize spectral characteristics of the French horn, and vice versa. Despite clear changes in apparent acoustic source, the auditory system calibrated to relatively predictable spectral characteristics of filtered context, differentially affecting perception of subsequent target nonspeech sounds. This calibration to listening context and relative indifference to acoustic sources operates much like visual color constancy, for which reliable properties of the spectrum of illumination are factored out of perception of color. PMID:20139460

  18. An absolutely calibrated survey of polarized emission from the northern sky at 1.4 GHz. Observations and data reduction

    NASA Astrophysics Data System (ADS)

    Wolleben, M.; Landecker, T. L.; Reich, W.; Wielebinski, R.

    2006-03-01

    A new polarization survey of the northern sky at 1.41 GHz is presented. The observations were carried out using the 25.6 m telescope at the Dominion Radio Astrophysical Observatory in Canada, with an angular resolution of 36 arcmin. The data are corrected for ground radiation to obtain Stokes U and Q maps on a well-established intensity scale tied to absolute determinations of zero levels, containing emission structures of large angular extent, with an rms noise of 12 mK. Survey observations were carried out by drift scanning the sky between -29° and +90° declination. The fully sampled drift scans, observed in steps of 0.25° to ˜ 2.5° in declination, result in a northern sky coverage of 41.7% of full Nyquist sampling. The survey surpasses by a factor of 200 the coverage, and by a factor of 5 the sensitivity, of the Leiden/Dwingeloo polarization survey that was until now the most complete large-scale survey. The temperature scale is tied to the Effelsberg scale. Absolute zero-temperature levels are taken from the Leiden/Dwingeloo survey after rescaling those data by the factor of 0.94. The paper describes the observations, data processing, and calibration steps. The data are publicly available at http://www.mpifr-bonn.mpg.de/div/konti/26msurvey or http://www.drao.nrc.ca/26msurvey.

  19. Absolute temperature measurements using a two-color QWIP focal plane array

    NASA Astrophysics Data System (ADS)

    Bundas, Jason; Dennis, Richard; Patnaude, Kelly; Burrows, Douglas; Faska, Ross; Sundaram, Mani; Reisinger, Axel; Manitakos, Dan

    2010-04-01

    The infrared photon flux emitted by an object depends not only on its temperature but also on a proportionality factor referred to as its emissivity. Since the latter parameter is usually not known quantitatively a priori, any temperature determination based on single-band radiometric measurements suffers from an inherent uncertainty. Recording photon fluxes in two separate spectral bands can in principle circumvent this limitation. The technique amounts to solving a system of two equations in two unknowns, namely, temperature and emissivity. The temperature derived in this manner can be considered absolute in the sense that it is independent of the emissivity, as long as that emissivity is the same in both bands. QmagiQ has previously developed a 320x256 midwave/longwave staring focal plane array which has been packaged into a dual-band laboratory camera. The camera in question constitutes a natural tool to generate simultaneous and independent emissivity maps and temperature maps of entire two-dimensional scenes, rather than at a single point on an object of interest. We describe a series of measurements we have performed on a variety of targets of different emissivities and temperatures. We examine various factors that affect the accuracy of the technique. They include the influence of the ambient radiation reflected off the target, which must be properly accounted for and subtracted from the collected signal in order to lead to the true target temperature. We also quantify the consequences of spectrally varying emissivities.

  20. In-flight calibration of the experimental Absolute Scalar Magnetometer vector mode on board the Swarm satellites

    NASA Astrophysics Data System (ADS)

    Leger, J. M.; Jager, T.; Bertrand, F.; Cattin, V.; Fratter, I.; Brocco, L.; Vigneron, P.; Lalanne, X.; Hulot, G.

    2014-12-01

    While the role of the ASM is to provide absolute measurements of the magnetic field's strength for the in-flight calibration of the Vector Fluxgate Magnetometer, it can also deliver simultaneously vector measurements with no impact on its scalar performance. Since these scalar and vector measurements are both perfectly synchronous and spatially coherent, their comparison can be directly used to assess the ASM performances at instrument level with no need to correct for the various magnetic perturbations generated by the satellites. This presentation will detail the ASM vector calibration process, with an emphasis on its susceptibility to the ASM operational conditions (primarily the sensor temperature and attitude, but also sun exposition parameters). The evolution of the instrument's performances during the first year of the Swarm mission will then be discussed, with a particular interest in the long term scalar residuals behaviour. These results will be analyzed to demonstrate both the noise performances of the ASM scalar and vector measurements and their excellent long term stability.

  1. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    SciTech Connect

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Petrasso, R. D.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2015-05-27

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  2. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE PAGESBeta

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Petrasso, R. D.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2015-05-27

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less

  3. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    SciTech Connect

    Waugh, C. J. Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Petrasso, R. D.; Rosenberg, M. J.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2015-05-15

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  4. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors.

    PubMed

    Waugh, C J; Rosenberg, M J; Zylstra, A B; Frenje, J A; Séguin, F H; Petrasso, R D; Glebov, V Yu; Sangster, T C; Stoeckl, C

    2015-05-01

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule. PMID:26026524

  5. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    NASA Astrophysics Data System (ADS)

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Petrasso, R. D.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2015-05-01

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  6. Absolute sensitivity calibration of vacuum and extreme ultraviolet spectrometer systems and Z(eff) measurement based on bremsstrahlung continuum in HL-2A tokamak.

    PubMed

    Zhou, Hangyu; Cui, Zhengying; Morita, Shigeru; Fu, Bingzhong; Goto, Motoshi; Sun, Ping; Dong, Chunfeng; Gao, Yadong; Xu, Yuan; Lu, Ping; Yang, Qingwei; Duan, Xuru

    2012-10-01

    A grazing-incidence flat-field extreme ultraviolet (EUV) spectrometer has been newly developed in HL-2A tokamak. Typical spectral lines are observed from intrinsic impurities of carbon, oxygen, iron, and extrinsic impurity of helium in the wavelength range of 20 Å-500 Å. Bremsstrahlung continuum is measured at different electron densities of HL-2A discharges to calibrate absolute sensitivity of the EUV spectrometer system and to measure effective ionic charge, Z(eff). The sensitivity of a vacuum ultraviolet (VUV) spectrometer system is also absolutely calibrated in overlapped wavelength range of 300 Å-500 Å by comparing the intensity between VUV and EUV line emissions. PMID:23126850

  7. Absolute sensitivity calibration of vacuum and extreme ultraviolet spectrometer systems and Z{sub eff} measurement based on bremsstrahlung continuum in HL-2A tokamak

    SciTech Connect

    Zhou Hangyu; Cui Zhengying; Fu Bingzhong; Sun Ping; Gao Yadong; Xu Yuan; Lu Ping; Yang Qingwei; Duan Xuru; Morita, Shigeru; Goto, Motoshi; Dong Chunfeng

    2012-10-15

    A grazing-incidence flat-field extreme ultraviolet (EUV) spectrometer has been newly developed in HL-2A tokamak. Typical spectral lines are observed from intrinsic impurities of carbon, oxygen, iron, and extrinsic impurity of helium in the wavelength range of 20 A-500 A. Bremsstrahlung continuum is measured at different electron densities of HL-2A discharges to calibrate absolute sensitivity of the EUV spectrometer system and to measure effective ionic charge, Z{sub eff}. The sensitivity of a vacuum ultraviolet (VUV) spectrometer system is also absolutely calibrated in overlapped wavelength range of 300 A-500 A by comparing the intensity between VUV and EUV line emissions.

  8. NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors.

    PubMed

    Wang, Menghua; Shi, Wei; Jiang, Lide; Voss, Kenneth

    2016-09-01

    The near-infrared (NIR) and shortwave infrared (SWIR)-based atmospheric correction algorithms are used in satellite ocean color data processing, with the SWIR-based algorithm particularly useful for turbid coastal and inland waters. In this study, we describe the NIR- and two SWIR-based on-orbit vicarious calibration approaches for satellite ocean color sensors, and compare results from these three on-orbit vicarious calibrations using satellite measurements from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). Vicarious calibration gains for VIIRS spectral bands are derived using the in situ normalized water-leaving radiance nLw(λ) spectra from the Marine Optical Buoy (MOBY) in waters off Hawaii. The SWIR vicarious gains are determined using VIIRS measurements from the South Pacific Gyre region, where waters are the clearest and generally stable. Specifically, vicarious gain sets for VIIRS spectral bands of 410, 443, 486, 551, and 671 nm derived from the NIR method using the NIR 745 and 862 nm bands, the SWIR method using the SWIR 1238 and 1601 nm bands, and the SWIR method using the SWIR 1238 and 2257 nm bands are (0.979954, 0.974892, 0.974685, 0.965832, 0.979042), (0.980344, 0.975344, 0.975357, 0.965531, 0.979518), and (0.980820, 0.975609, 0.975761, 0.965888, 0.978576), respectively. Thus, the NIR-based vicarious calibration gains are consistent with those from the two SWIR-based approaches with discrepancies mostly within ~0.05% from three data processing methods. In addition, the NIR vicarious gains (745 and 862 nm) derived from the two SWIR methods are (0.982065, 1.00001) and (0.981811, 1.00000), respectively, with the difference ~0.03% at the NIR 745 nm band. This is the fundamental basis for the NIR-SWIR combined atmospheric correction algorithm, which has been used to derive improved satellite ocean color products over open oceans and turbid coastal/inland waters. Therefore, a unified

  9. Registration and color calibration for dermoscopy images in time-course analysis

    NASA Astrophysics Data System (ADS)

    Furusho, Daiji; Iyatomi, Hitoshi

    2014-03-01

    Since melanomas grow and metastasize rapidly, the mutation in their appearance is much larger than that of nevi. If the variation of skin tumor can be evaluated quantitatively, it is of substantial help not only for clinical diagnosis, but also for development of computer-based diagnostic systems. However, photographic conditions of skin tumor are in most cases not uniform during the follow-up. In this study, we proposed a fully automated image registration and color calibration method between dermoscopy images in the time-course analysis. Our proposed algorithm aligned the time-course images with a precision of 91.6 ± 5.1% and a recall of 95.7 ± 5.9%, respectively whereas the fully manual registrations with Exif data as a performance reference did 95.4 ± 3.2% and 92.4 ± 6.5%, respectively. Our color calibration method largely reduced the color difference between timecourse images ΔE from 10.9 ± 5.6 to 3.9 1.7. These results showed that the proposed method was effective to compensate both geometrical and chronological changes between dermoscopy images in the time-course analysis.

  10. Absolute calibration of the Jenoptik CHM15k-x ceilometer and its applicability for quantitative aerosol monitoring

    NASA Astrophysics Data System (ADS)

    Geiß, Alexander; Wiegner, Matthias

    2014-05-01

    The knowledge of the spatiotemporal distribution of atmospheric aerosols and its optical characterization is essential for the understanding of the radiation budget, air quality, and climate. For this purpose, lidar is an excellent system as it is an active remote sensing technique. As multi-wavelength research lidars with depolarization channels are quite complex and cost-expensive, increasing attention is paid to so-called ceilometers. They are simple one-wavelength backscatter lidars with low pulse energy for eye-safe operation. As maintenance costs are low and continuous and unattended measurements can be performed, they are suitable for long-term aerosol monitoring in a network. However, the signal-to-noise ratio is low, and the signals are not calibrated. The only optical property that can be derived from a ceilometer is the particle backscatter coefficient, but even this quantity requires a calibration of the signals. With four years of measurements from a Jenoptik ceilometer CHM15k-x, we developed two methods for an absolute calibration on this system. This advantage of our approach is that only a few days with favorable meteorological conditions are required where Rayleigh-calibration and comparison with our research lidar is possible to estimate the lidar constant. This method enables us to derive the particle backscatter coefficient at 1064 nm, and we retrieved for the first time profiles in near real-time within an accuracy of 10 %. If an appropriate lidar ratio is assumed the aerosol optical depth of e.g. the mixing layer can be determined with an accuracy depending on the accuracy of the lidar ratio estimate. Even for 'simple' applications, e.g. assessment of the mixing layer height, cloud detection, detection of elevated aerosol layers, the particle backscatter coefficient has significant advantages over the measured (uncalibrated) attenuated backscatter. The possibility of continuous operation under nearly any meteorological condition with temporal

  11. (18)F primary standard at ENEA-INMRI by three absolute techniques and calibration of a well-type IG11 ionization chamber.

    PubMed

    Capogni, Marco; Carconi, Pierluigi; De Felice, Pierino; Fazio, Aldo

    2016-03-01

    A new (18)F primary standardization carried out at ENEA-INMRI by three different absolute techniques, i.e. 4πγNaI(Tl)γ high-efficiency counting, TDCR and 4πβ(LS)-γ[NaI(Tl)] coincidence counting method, allowed the calibration of a fixed well-reentrant IG11 ionization chamber (IC), with an uncertainty lower than 1%, and to check the calibration factor of a portable well-type IC NPL-CRC model, previously calibrated. By the new standard the ENEA-INMRI was linked to the BIPM International Reference System (SIR) through the BIPM SIR Transfer Instrument (SIRTI). PMID:26774395

  12. Continuous absolute g monitoring of the mobile LNE-SYRTE Cold Atom Gravimeter - a new tool to calibrate superconducting gravimeters -

    NASA Astrophysics Data System (ADS)

    Merlet, Sébastien; Gillot, Pierre; Cheng, Bing; Pereira Dos Santos, Franck

    2016-04-01

    Atom interferometry allows for the realization of a new generation of instruments for inertial sensing based on laser cooled atoms. We have developed an absolute gravimeter (CAG) based on this technic, which can perform continuous gravity measurements at a high cycling rate. This instrument, operating since summer 2009, is the new metrological french standard for gravimetry. The CAG has been designed to be movable, so as to participate to international comparisons and on field measurements. It took part to several comparisons since ICAG'09 and operated in both urban environments and low noise underground facilities. The atom gravimeter operates with a high cycling rate of 3 Hz. Its sensitivity is predominantly limited by ground vibration noise which is rejected thanks to isolation platforms and correlation with other sensors, such as broadband accelerometers or sismometers. These developments allow us to perform continuous gravity measurements, no matter what the sismic conditions are and even in the worst cases such as during earthquakes. At best, a sensitivity of 5.6 μGal at 1 s measurement time has been demonstrated. The long term stability averages down to 0.1 μGal for long term measurements. Presently, the measurement accuracy is 4 μGal, which we plan to reduce to 1 μGal or below. I will present the instrument, the principle of the gravity acceleration measurement and its performances. I will focus on continuous gravity measurements performed over several years and compared with our superconducting gravimeter iGrav signal. This comparison allows us to calibrate the iGrav scale factor and follow its evolution. Especially, we demonstrate that, thanks to the CAG very high cycling rate, a single day gravity measurement allows to calibrate the iGrav scaling factor with a relative uncertainty as good as 4.10-4.

  13. DAQ Software Contributions, Absolute Scale Energy Calibration and Background Evaluation for the NOvA Experiment at Fermilab

    SciTech Connect

    Flumerfelt, Eric Lewis

    2015-08-01

    The NOvA (NuMI Off-axis ve [nu_e] Appearance) Experiment is a long-baseline accelerator neutrino experiment currently in its second year of operations. NOvA uses the Neutrinos from the Main Injector (NuMI) beam at Fermilab, and there are two main off-axis detectors: a Near Detector at Fermilab and a Far Detector 810 km away at Ash River, MN. The work reported herein is in support of the NOvA Experiment, through contributions to the development of data acquisition software, providing an accurate, absolute-scale energy calibration for electromagnetic showers in NOvA detector elements, crucial to the primary electron neutrino search, and through an initial evaluation of the cosmic background rate in the NOvA Far Detector, which is situated on the surface without significant overburden. Additional support work for the NOvA Experiment is also detailed, including DAQ Server Administration duties and a study of NOvA’s sensitivity to neutrino oscillations into a “sterile” state.

  14. Absolutely calibrated radio polarimetry of the inner Galaxy at 2.3 and 4.8 GHz

    NASA Astrophysics Data System (ADS)

    Sun, X. H.; Gaensler, B. M.; Carretti, E.; Purcell, C. R.; Staveley-Smith, L.; Bernardi, G.; Haverkorn, M.

    2014-01-01

    We present high-sensitivity and absolutely calibrated images of diffuse radio polarization at a resolution of about 10 arcmin covering the range 10° < l < 34° and |b| < 5° at 2.3 GHz from the S-band Polarization All Sky Survey and at 4.8 GHz from the Sino-German λ6 cm polarization survey of the Galactic plane. Strong depolarization near the Galactic plane is seen at 2.3 GHz, which correlates with strong Hα emission. We ascribe the depolarization to spatial Faraday rotation measure fluctuations of about 65 rad m-2 on scales smaller than 6-9 pc. We argue that most (about 90 per cent) of the polarized emission seen at 4.8 GHz originates from a distance of 3-4 kpc in the Scutum arm and that the random magnetic field dominates the regular field there. A branch extending from the North Polar Spur towards lower latitudes can be identified from the polarization image at 4.8 GHz but only partly from the polarization image at 2.3 GHz, implying that the branch is at a distance larger than 2-3 kpc. We show that comparison of structure functions of complex polarized intensity with those of polarized intensity can indicate whether the observed polarized structures are intrinsic or caused by Faraday screens. The probability distribution function of gradients from the polarization images at 2.3 GHz indicates that the turbulence in the warm ionized medium is transonic.

  15. A non-invasive diffuse reflectance calibration-free method for absolute determination of exogenous biochemicals concentration in biological tissues

    NASA Astrophysics Data System (ADS)

    Lappa, Alexander V.; Kulikovskiy, Artem N.; Busarov, Oleg G.

    2014-03-01

    The paper presents a new method for distant non-destructive determination of concentration of light absorbing admixtures in turbid media. In particular, it is intended for non-invasive in vivo control of accumulation in patient tissues of various biochemicals introduced to the patients for chemotherapy, photodynamic therapy or diagnostics. It is require that the admixture absorption spectrum should have a clearly marked peak in the wavelength region where the pure medium one varies regularly. Fluorescence of admixtures is not required. The method uses the local diffuse reflectance spectroscopy with optical fiber probe including one emitting and two reading There are several features in the method: the value to be determined is absolute concentration of admixtures; the method needs no calibration measurements on phantoms; it needs no reference measurements on sample with zero admixture concentration; it uses a two parametric kinetic light propagation model and original algorithms to resolve direct and inverse tasks of radiation transport theory. Experimental testing passed with tissue equivalent phantoms and different admixtures, including a chlorine photosensitizer, showed accuracy under 10% in all cases.

  16. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction

    PubMed Central

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2016-01-01

    Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed “digital color fusion microscopy” (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available. PMID:27283459

  17. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction.

    PubMed

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2016-01-01

    Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed "digital color fusion microscopy" (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available. PMID:27283459

  18. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction

    NASA Astrophysics Data System (ADS)

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2016-06-01

    Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed “digital color fusion microscopy” (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available.

  19. Use of commercial off-the-shelf digital cameras for scientific data acquisition and scene-specific color calibration.

    PubMed

    Akkaynak, Derya; Treibitz, Tali; Xiao, Bei; Gürkan, Umut A; Allen, Justine J; Demirci, Utkan; Hanlon, Roger T

    2014-02-01

    Commercial off-the-shelf digital cameras are inexpensive and easy-to-use instruments that can be used for quantitative scientific data acquisition if images are captured in raw format and processed so that they maintain a linear relationship with scene radiance. Here we describe the image-processing steps required for consistent data acquisition with color cameras. In addition, we present a method for scene-specific color calibration that increases the accuracy of color capture when a scene contains colors that are not well represented in the gamut of a standard color-calibration target. We demonstrate applications of the proposed methodology in the fields of biomedical engineering, artwork photography, perception science, marine biology, and underwater imaging. PMID:24562030

  20. Stellar Color Regression: A Spectroscopy-based Method for Color Calibration to a Few Millimagnitude Accuracy and the Recalibration of Stripe 82

    NASA Astrophysics Data System (ADS)

    Yuan, Haibo; Liu, Xiaowei; Xiang, Maosheng; Huang, Yang; Zhang, Huihua; Chen, Bingqiu

    2015-02-01

    In this paper we propose a spectroscopy-based stellar color regression (SCR) method to perform accurate color calibration for modern imaging surveys, taking advantage of millions of stellar spectra now available. The method is straightforward, insensitive to systematic errors in the spectroscopically determined stellar atmospheric parameters, applicable to regions that are effectively covered by spectroscopic surveys, and capable of delivering an accuracy of a few millimagnitudes for color calibration. As an illustration, we have applied the method to the Sloan Digital Sky Survey (SDSS) Stripe 82 data. With a total number of 23,759 spectroscopically targeted stars, we have mapped out the small but strongly correlated color zero-point errors present in the photometric catalog of Stripe 82, and we improve the color calibration by a factor of two to three. Our study also reveals some small but significant magnitude dependence errors in the z band for some charge-coupled devices (CCDs). Such errors are likely to be present in all the SDSS photometric data. Our results are compared with those from a completely independent test based on the intrinsic colors of red galaxies presented by Ivezić et al. The comparison, as well as other tests, shows that the SCR method has achieved a color calibration internally consistent at a level of about 5 mmag in u - g, 3 mmag in g - r, and 2 mmag in r - i and i - z. Given the power of the SCR method, we discuss briefly the potential benefits by applying the method to existing, ongoing, and upcoming imaging surveys.

  1. STELLAR COLOR REGRESSION: A SPECTROSCOPY-BASED METHOD FOR COLOR CALIBRATION TO A FEW MILLIMAGNITUDE ACCURACY AND THE RECALIBRATION OF STRIPE 82

    SciTech Connect

    Yuan, Haibo; Liu, Xiaowei; Xiang, Maosheng; Huang, Yang; Zhang, Huihua; Chen, Bingqiu E-mail: x.liu@pku.edu.cn

    2015-02-01

    In this paper we propose a spectroscopy-based stellar color regression (SCR) method to perform accurate color calibration for modern imaging surveys, taking advantage of millions of stellar spectra now available. The method is straightforward, insensitive to systematic errors in the spectroscopically determined stellar atmospheric parameters, applicable to regions that are effectively covered by spectroscopic surveys, and capable of delivering an accuracy of a few millimagnitudes for color calibration. As an illustration, we have applied the method to the Sloan Digital Sky Survey (SDSS) Stripe 82 data. With a total number of 23,759 spectroscopically targeted stars, we have mapped out the small but strongly correlated color zero-point errors present in the photometric catalog of Stripe 82, and we improve the color calibration by a factor of two to three. Our study also reveals some small but significant magnitude dependence errors in the z band for some charge-coupled devices (CCDs). Such errors are likely to be present in all the SDSS photometric data. Our results are compared with those from a completely independent test based on the intrinsic colors of red galaxies presented by Ivezić et al. The comparison, as well as other tests, shows that the SCR method has achieved a color calibration internally consistent at a level of about 5 mmag in u – g, 3 mmag in g – r, and 2 mmag in r – i and i – z. Given the power of the SCR method, we discuss briefly the potential benefits by applying the method to existing, ongoing, and upcoming imaging surveys.

  2. The RCT 1.3 m robotic telescope: broadband color transformation and extinction calibration

    SciTech Connect

    Strolger, L.-G.; Gott, A. M.; Carini, M.; Gelderman, R.; Laney, C. D.; McGruder, C.; Engle, S.; Guinan, E.; Treffers, R. R.; Walter, D. K.

    2014-03-01

    The Robotically Controlled Telescope (RCT) 1.3 m telescope, formerly known as the Kitt Peak National Observatory (KPNO) 50 inch telescope, has been refurbished as a fully robotic telescope, with an autonomous scheduler to take full advantage of the observing site without the requirement of a human presence. Here we detail the current configuration of the RCT and present, as a demonstration of its high-priority science goals, the broadband UBVRI photometric calibration of the optical facility. In summary, we find the linear color transformation and extinction corrections to be consistent with similar optical KPNO facilities, to within a photometric precision of 10% (at 1σ). While there were identified instrumental errors that likely added to the overall uncertainty, associated with since-resolved issues in engineering and maintenance of the robotic facility, a preliminary verification of this calibration gave a good indication that the solution is robust, perhaps to a higher precision than this initial calibration implies. The RCT has been executing regular science operations since 2009 and is largely meeting the science requirements set during its acquisition and redesign.

  3. Radiometric calibration of ocean color satellite sensors using AERONET-OC data.

    PubMed

    Hlaing, Soe; Gilerson, Alexander; Foster, Robert; Wang, Menghua; Arnone, Robert; Ahmed, Sam

    2014-09-22

    Radiometric vicarious calibration of ocean color (OC) satellite sensors is carried out through the full sunlight path radiative transfer (RT) simulations of the coupled ocean-atmosphere system based on the aerosol and water-leaving radiance data from AERONET-OC sites for the visible and near-infrared (NIR) bands. Quantitative evaluation of the potential of such approach for achieving the radiometric accuracies of OC satellite sensors is made by means of direct comparisons between simulated and satellite measured top of atmosphere (TOA) radiances. Very high correlations (R ≥ 0.96 for all visible channels) are achieved for the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor when this approach is applied with the data from the LISCO and WaveCIS AERONET-OC sites. Vicarious calibration gain factors derived with this approach are highly consistent, with comparisons between the two sites exhibiting around 0.5% discrepancy in the blue and green parts of the spectrum, while their average temporal variability is also within 0.28% - 1.23% permitting the approach to be used, at this stage, for verification of sensor calibration performance. PMID:25321808

  4. Improved absolute calibration of LOPES measurements and its impact on the comparison with REAS 3.11 and CoREAS simulations

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velázquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hiller, R.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Nehls, S.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.

    2016-02-01

    LOPES was a digital antenna array detecting the radio emission of cosmic-ray air showers. The calibration of the absolute amplitude scale of the measurements was done using an external, commercial reference source, which emits a frequency comb with defined amplitudes. Recently, we obtained improved reference values by the manufacturer of the reference source, which significantly changed the absolute calibration of LOPES. We reanalyzed previously published LOPES measurements, studying the impact of the changed calibration. The main effect is an overall decrease of the LOPES amplitude scale by a factor of 2.6 ± 0.2, affecting all previously published values for measurements of the electric-field strength. This results in a major change in the conclusion of the paper 'Comparing LOPES measurements of air-shower radio emission with REAS 3.11 and CoREAS simulations' published by Apel et al. (2013) : With the revised calibration, LOPES measurements now are compatible with CoREAS simulations, but in tension with REAS 3.11 simulations. Since CoREAS is the latest version of the simulation code incorporating the current state of knowledge on the radio emission of air showers, this new result indicates that the absolute amplitude prediction of current simulations now is in agreement with experimental data.

  5. NASA In Situ Data Needs to Support the Operational Calibration and Validation of Ocean Color Satellite Data Products

    NASA Technical Reports Server (NTRS)

    Werdel, P. Jeremy

    2012-01-01

    Calibrating ocean color satellite instruments and validating their data products requires temporal and spatial abundances of high quality in situ oceanographic data. The Consortium for Ocean Leadership Ocean Observing Initiative (OOl) is currently implementing a distributed array of in-water sensors that could provide a significant contribution to future ocean color activities. This workshop will scope the optimal way to use and possibly supplement the planned OOl infrastructure to maximize its utility and relevance for calibration and validation activities that support existing and planned NASA ocean color missions. Here, I present the current state of the art of NASA validation of ocean color data products, with attention to autonomous time-series (e.g., the AERONET -OC network of above-water radiometers), and outline NASA needs for data quality assurance metrics and adherence to community-vetted data collection protocols

  6. Improving Ocean Color Data Products using a Purely Empirical Approach: Reducing the Requirement for Radiometric Calibration Accuracy

    NASA Technical Reports Server (NTRS)

    Gregg, Watson

    2008-01-01

    Radiometric calibration is the foundation upon which ocean color remote sensing is built. Quality derived geophysical products, such as chlorophyll, are assumed to be critically dependent upon the quality of the radiometric calibration. Unfortunately, the goals of radiometric calibration are not typically met in global and large-scale regional analyses, and are especially deficient in coastal regions. The consequences of the uncertainty in calibration are very large in terms of global and regional ocean chlorophyll estimates. In fact, stability in global chlorophyll requires calibration uncertainty much greater than the goals, and outside of modern capabilities. Using a purely empirical approach, we show that stable and consistent global chlorophyll values can be achieved over very wide ranges of uncertainty. Furthermore, the approach yields statistically improved comparisons with in situ data, suggesting improved quality. The results suggest that accuracy requirements for radiometric calibration cab be reduced if alternative empirical approaches are used.

  7. Absolute calibration of soft x-ray detectors (photocathodes, XUV photodiodes, thinned CCD, ...) with the synchrotron radiation of SUPER ACO at the LURE, Orsay

    NASA Astrophysics Data System (ADS)

    Reverdin, C.; Troussel, P.; Bourgade, J. L.; Le Guern, F.; Mens, A.; Schirmann, D.; Dalmasso, J. M.; Gontier, D.; Mazataud, D.

    1994-10-01

    To interpret the experimental results in laser matter interaction experiments, the absolute spectral response of soft x-ray detectors is often needed. For this purpose CEL-V uses calibration lines of synchrotron radiation of SUPER-ACO at the LURE. The energy of output photons can be selected from 50 eV to 1000 eV. The output photon flux is absolutely calibrated with a bolometer or a soft x-ray photodiode. Then we measure the response of the studied detector installed at the same location. Measurements of quantum efficiencies of photocathodes (Al and CsI on Al) and of the response of a thinned CCD are presented versus photon energy.

  8. Consistency of L4 TM absolute calibration with respect to the L5 TM sensor based on near-simultaneous image acquisition

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Malla, R.; Micijevic, E.; Mettler, C.J.

    2007-01-01

    The Landsat archive provides more than 35 years of uninterrupted multispectral remotely sensed data of Earth observations. Since 1972, Landsat missions have carried different types of sensors, from the Return Beam Vidicon (RBV) camera to the Enhanced Thematic Mapper Plus (ETM+). However, the Thematic Mapper (TM) sensors on Landsat 4 (L4) and Landsat 5 (L5), launched in 1982 and 1984 respectively, are the backbone of an extensive archive. Effective April 2, 2007, the radiometric calibration of L5 TM data processed and distributed by the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) was updated to use an improved lifetime gain model, based on the instrument's detector response to pseudo-invariant desert site data and cross-calibration with the L7 ETM+. However, no modifications were ever made to the radiometric calibration procedure of the Landsat 4 (L4) TM data. The L4 TM radiometric calibration procedure has continued to use the Internal Calibrator (IC) based calibration algorithms and the post calibration dynamic ranges, as previously defined. To evaluate the "current" absolute accuracy of these two sensors, image pairs from the L5 TM and L4 TM sensors were compared. The number of coincident image pairs in the USGS EROS archive is limited, so the scene selection for the cross-calibration studies proved to be a challenge. Additionally, because of the lack of near-simultaneous images available over well-characterized and traditionally used calibration sites, alternate sites that have high reflectance, large dynamic range, high spatial uniformity, high sun elevation, and minimal cloud cover were investigated. The alternate sites were identified in Yuma, Iraq, Egypt, Libya, and Algeria. The cross-calibration approach involved comparing image statistics derived from large common areas observed eight days apart by the two sensors. This paper summarizes the average percent differences in reflectance estimates obtained between the

  9. An Example Crossover Experiment for Testing New Vicarious Calibration Techniques for Satellite Ocean Color Radiometry

    NASA Technical Reports Server (NTRS)

    Voss, Kenneth J.; McLean, Scott; Lewis, Marlon; Johnson, Carol; Flora, Stephanie; Feinholz, Michael; Yarbrough, Mark; Trees, Charles; Twardowski, Mike; Clark, Dennis

    2010-01-01

    Vicarious calibration of ocean color satellites involves the use of accurate surface measurements of water-leaving radiance to update and improve the system calibration of ocean color satellite sensors. An experiment was performed to compare a free-fall technique with the established MOBY measurement. We found in the laboratory that the radiance and irradiance instruments compared well within their estimated uncertainties for various spectral sources. The spectrally averaged differences between the NIST values for the sources and the instruments were less than 2.5% for the radiance sensors and less than 1.5% for the irradiance sensors. In the field, the sensors measuring the above-surface downwelling irradiance performed nearly as well as they had in the laboratory, with an average difference of less than 2%. While the water-leaving radiance, L(sub w) calculated from each instrument agreed in almost all cases within the combined instrument uncertainties (approximately 7%), there was a relative bias between the two instrument classes/techniques that varied spectrally. The spectrally averaged (400 nm to 600 nm) difference between the two instrument classes/techniques was 3.1 %. However the spectral variation resulted in the free fall instruments being 0.2% lower at 450 nm and 5.9% higher at 550 nm. Based on the analysis of one matchup, the bias in the L(sub w), was similar to that observed for L(sub u)(1 m) with both systems, indicating the difference did not come from propagating L(sub u)(1 m) to L(sub w).

  10. Performance Demonstration of Miniature Phase Transition Cells in Microgravity as a Validation for their use in the Absolute Calibration of Temperature Sensors On-Orbit

    NASA Astrophysics Data System (ADS)

    Pettersen, C.; Adler, D. P.; Best, F. A.; Aguilar, D. M.; Perepezko, J. H.

    2011-12-01

    The next generation of infrared remote sensing missions, including the climate benchmark missions, will require better absolute measurement accuracy than now available, and will most certainly rely on the emerging capability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances with an absolute brightness temperature error of better than 0.1 K will require high-emissivity (>0.999) calibration blackbodies requiring absolute temperature uncertainties of better than 0.045K (k=3). Key elements of an On-Orbit Absolute Radiance Standard (OARS) meeting these stringent requirements have been demonstrated in the laboratory at the University of Wisconsin and are undergoing further refinement under the NASA Instrument Incubator Program (IIP). In particular, the OARS has embedded thermistors that can be periodically calibrated on-orbit using the melt signatures of small quantities (<0.5g) of three reference materials - mercury, water, and gallium (providing calibration from 233K to 303K). One of the many tests to determine the readiness of this technology for on-orbit application is a demonstration of performance in microgravity. We present the details of a demonstration experiment to be conducted on the International Space Station later this year. The demonstration will use the configuration of the phase transition cells developed under our NASA IIP that has been tested extensively in the laboratory under simulated mission life cycle scenarios - these included vibration, thermal soaks, and deep cycling. The planned microgravity demonstration will compare melt signatures obtained pre-flight on the ground with those obtained on the ISS for three phase change materials (water, gallium-tin, and gallium). With a successful demonstration experiment the phase transition cells in a microgravity environment will have cleared the last hurdle before being ready for

  11. High concentration (2500 suns), high throughput, automated flash tester with calibrated color balance and intensity control

    NASA Astrophysics Data System (ADS)

    Ludowise, Michael; Taylor, Sean; Lucow, Ewelina; Chan, Hing

    2008-08-01

    SolFocus has designed and built a flexible and adaptable solar flash tester capable of reaching in excess of 2500x suns flux using a commercially available Xenon flash and power supply. Using calibrated isotype cells and photodetectors, the intensity and color balance of the flash are controlled through software algorithms that compensate for tube aging and thermal drift. The data acquisition system dynamically normalizes each of the 1600 I-V data pairs to the lamp intensity during each flash. Up to 32 cells can be measured simultaneously, with a flash re-cycle time of 3 seconds. The dynamic current range is 100μA to 10A over 0 to 5V. Test ranges are limited by user input through a modern GUI screen. The system is mated to a commercially available probe station tester which allows automated testing of up to 150mm diameter wafers, and is capable of testing a 4000 cell wafer in less than 8 minutes. The core software and optical components are easily adaptable to receiver and full panel testing as well. Data on the calibration and performance of the flash tester, the dynamic range achieved in test, and throughputs obtained during operation are presented.

  12. Absolute Radiometric Calibration of the GÖKTÜRK-2 Satellite Sensor Using Tuz GÖLÜ (landnet Site) from Ndvi Perspective

    NASA Astrophysics Data System (ADS)

    Sakarya, Ufuk; Hakkı Demirhan, İsmail; Seda Deveci, Hüsne; Teke, Mustafa; Demirkesen, Can; Küpçü, Ramazan; Feray Öztoprak, A.; Efendioğlu, Mehmet; Fehmi Şimşek, F.; Berke, Erdinç; Zübeyde Gürbüz, Sevgi

    2016-06-01

    TÜBİTAK UZAY has conducted a research study on the use of space-based satellite resources for several aspects of agriculture. Especially, there are two precision agriculture related projects: HASSAS (Widespread application of sustainable precision agriculture practices in Southeastern Anatolia Project Region (GAP) Project) and AKTAR (Smart Agriculture Feasibility Project). The HASSAS project aims to study development of precision agriculture practice in GAP region. Multi-spectral satellite imagery and aerial hyperspectral data along with ground measurements was collected to analyze data in an information system. AKTAR aims to develop models for irrigation, fertilization and spectral signatures of crops in Inner Anatolia. By the end of the project precision agriculture practices to control irrigation, fertilization, pesticide and estimation of crop yield will be developed. Analyzing the phenology of crops using NDVI is critical for the projects. For this reason, absolute radiometric calibration of the Red and NIR bands in space-based satellite sensors is an important issue. The Göktürk-2 satellite is an earth observation satellite which was designed and built in Turkey and was launched in 2012. The Göktürk-2 satellite sensor has a resolution 2.5 meters in panchromatic and 5 meters in R/G/B/NIR bands. The absolute radiometric calibration of the Göktürk-2 satellite sensor was performed via the ground-based measurements - spectra-radiometer, sun photometer, and meteorological station- in Tuz Gölü cal/val site in 2015. In this paper, the first ground-based absolute radiometric calibration results of the Göktürk-2 satellite sensor using Tuz Gölü is demonstrated. The absolute radiometric calibration results of this paper are compared with the published cross-calibration results of the Göktürk-2 satellite sensor utilizing Landsat 8 imagery. According to the experimental comparison results, the Göktürk-2 satellite sensor coefficients for red and NIR bands

  13. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    NASA Astrophysics Data System (ADS)

    Fat'yanov, O. V.; Asimow, P. D.

    2015-10-01

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  14. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp.

    PubMed

    Fat'yanov, O V; Asimow, P D

    2015-10-01

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30,000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  15. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    SciTech Connect

    Fat’yanov, O. V. Asimow, P. D.

    2015-10-15

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  16. An Empirical Approach to Ocean Color Data: Reducing Bias and the Need for Post-Launch Radiometric Re-Calibration

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Casey, Nancy W.; O'Reilly, John E.; Esaias, Wayne E.

    2009-01-01

    A new empirical approach is developed for ocean color remote sensing. Called the Empirical Satellite Radiance-In situ Data (ESRID) algorithm, the approach uses relationships between satellite water-leaving radiances and in situ data after full processing, i.e., at Level-3, to improve estimates of surface variables while relaxing requirements on post-launch radiometric re-calibration. The approach is evaluated using SeaWiFS chlorophyll, which is the longest time series of the most widely used ocean color geophysical product. The results suggest that ESRID 1) drastically reduces the bias of ocean chlorophyll, most impressively in coastal regions, 2) modestly improves the uncertainty, and 3) reduces the sensitivity of global annual median chlorophyll to changes in radiometric re-calibration. Simulated calibration errors of 1% or less produce small changes in global median chlorophyll (less than 2.7%). In contrast, the standard NASA algorithm set is highly sensitive to radiometric calibration: similar 1% calibration errors produce changes in global median chlorophyll up to nearly 25%. We show that 0.1% radiometric calibration error (about 1% in water-leaving radiance) is needed to prevent radiometric calibration errors from changing global annual median chlorophyll more than the maximum interannual variability observed in the SeaWiFS 9-year record (+/- 3%), using the standard method. This is much more stringent than the goal for SeaWiFS of 5% uncertainty for water leaving radiance. The results suggest ocean color programs might consider less emphasis of expensive efforts to improve post-launch radiometric re-calibration in favor of increased efforts to characterize in situ observations of ocean surface geophysical products. Although the results here are focused on chlorophyll, in principle the approach described by ESRID can be applied to any surface variable potentially observable by visible remote sensing.

  17. A method and results of color calibration for the Chang'e-3 terrain camera and panoramic camera

    NASA Astrophysics Data System (ADS)

    Ren, Xin; Li, Chun-Lai; Liu, Jian-Jun; Wang, Fen-Fei; Yang, Jian-Feng; Liu, En-Hai; Xue, Bin; Zhao, Ru-Jin

    2014-12-01

    The terrain camera (TCAM) and panoramic camera (PCAM) are two of the major scientific payloads installed on the lander and rover of the Chang'e 3 mission respectively. They both use a Bayer color filter array covering CMOS sensor to capture color images of the Moon's surface. RGB values of the original images are related to these two kinds of cameras. There is an obvious color difference compared with human visual perception. This paper follows standards published by the International Commission on Illumination to establish a color correction model, designs the ground calibration experiment and obtains the color correction coefficient. The image quality has been significantly improved and there is no obvious color difference in the corrected images. Ground experimental results show that: (1) Compared with uncorrected images, the average color difference of TCAM is 4.30, which has been reduced by 62.1%. (2) The average color differences of the left and right cameras in PCAM are 4.14 and 4.16, which have been reduced by 68.3% and 67.6% respectively.

  18. RGB Color Calibration for Quantitative Image Analysis: The “3D Thin-Plate Spline” Warping Approach

    PubMed Central

    Menesatti, Paolo; Angelini, Claudio; Pallottino, Federico; Antonucci, Francesca; Aguzzi, Jacopo; Costa, Corrado

    2012-01-01

    In the last years the need to numerically define color by its coordinates in n-dimensional space has increased strongly. Colorimetric calibration is fundamental in food processing and other biological disciplines to quantitatively compare samples' color during workflow with many devices. Several software programmes are available to perform standardized colorimetric procedures, but they are often too imprecise for scientific purposes. In this study, we applied the Thin-Plate Spline interpolation algorithm to calibrate colours in sRGB space (the corresponding Matlab code is reported in the Appendix). This was compared with other two approaches. The first is based on a commercial calibration system (ProfileMaker) and the second on a Partial Least Square analysis. Moreover, to explore device variability and resolution two different cameras were adopted and for each sensor, three consecutive pictures were acquired under four different light conditions. According to our results, the Thin-Plate Spline approach reported a very high efficiency of calibration allowing the possibility to create a revolution in the in-field applicative context of colour quantification not only in food sciences, but also in other biological disciplines. These results are of great importance for scientific color evaluation when lighting conditions are not controlled. Moreover, it allows the use of low cost instruments while still returning scientifically sound quantitative data. PMID:22969337

  19. Absolute calibration of the Agfa Structurix series films at energies between 2.7 and 6.2 keVa)

    NASA Astrophysics Data System (ADS)

    Lanier, N. E.; Cowan, J. S.

    2014-11-01

    Although photo-emulsion technology is many decades old, x-ray film still remains a key asset for diagnosing hydrodynamic features in High-Energy Density (HED) experiments. For decades, the preferred option had been Kodak's direct exposure film. After its discontinuance in 2004, the push to find alternatives began. In many situations, the Agfa Structurix series offers the most favorable substitute, but being new to the HED community, its characterization was lacking. To remedy this, recent experiments, conducted at Brookhaven's National Synchrotron Light Source, provide absolute, monochromatic calibration data for the Agfa Structurix series films at K-shell backlighter energies between 2.7 and 6.2 keV. Absolute response curves are presented for Agfa D8, D7, D4, D4sc, D3, and D2. Moreover, the transmission of each film type is also measured.

  20. Absolute Calibration of Kodak Biomax-MS Film Response to X Rays in the 1.5- to 8-keV Energy Range

    SciTech Connect

    Marshall, F.J.; Knauer, J.P.; Anderson, D.; Schmitt, B.L.

    2006-09-28

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory e-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations.

  1. Absolute calibration of the intramolecular site preference of 15N fractionation in tropospheric N2O by FT-IR spectroscopy.

    PubMed

    Griffith, David W T; Parkes, Stephen D; Haverd, Vanessa; Paton-Walsh, Clare; Wilson, Stephen R

    2009-03-15

    Nitrous oxide (N(2)O) plays important roles in atmospheric chemistry both as a greenhouse gas and in stratospheric ozone depletion. Isotopic measurements of N(2)O have provided an invaluable insight into understanding its atmospheric sources and sinks. The preference for (15)N fractionation between the central and terminal positions (the "site preference") is particularly valuable because it depends principally on the processes involved in N(2)O production or consumption, rather than the (15)N content of the substrate from which it is formed. Despite the value of measurements of the site preference, there is no internationally recognized standard reference material of accurately known and accepted site preference, and there has been some lack of agreement in published studies aimed at providing such a standard. Previous work has been based on isotope ratio mass spectrometry (IRMS); in this work we provide an absolute calibration for the intramolecular site preference of (15)N fractionation of working standard gases used in our laboratory by a completely independent technique--high-resolution Fourier transform infrared (FT-IR) spectroscopy. By reference to this absolute calibration, we determine the site preference for 25 samples of tropospheric N(2)O collected under clean air conditions to be 19.8 per thousand +/- 2.1 per thousand. This result is in agreement with that based on the earlier absolute calibration of Toyoda and Yoshida (Toyoda , S. , and Yoshida , N. Anal. Chem. 1999 , 71, 4711-4718 ) who found an average tropospheric site preference of 18.7 per thousand +/- 2.2 per thousand. We now recommend an interlaboratory exchange of working standard N(2)O gases as the next step to providing an international reference standard. PMID:19231842

  2. Performance Demonstration of Miniature Phase Transition Cells in Microgravity as a Validation for their use in the Absolute Calibration of Temperature Sensors On-Orbit

    NASA Astrophysics Data System (ADS)

    Pettersen, C.; Best, F. A.; Adler, D. P.; Aguilar, D. M.; Perepezko, J. H.

    2012-12-01

    The next generation of infrared remote sensing missions, including the climate benchmark missions, will require better absolute measurement accuracy than now available, and will most certainly rely on the emerging capability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances with an absolute brightness temperature error of better than 0.1 K will require high-emissivity (>0.999) calibration blackbodies requiring absolute temperature uncertainties of better than 0.045K (k=3). Key elements of an On-Orbit Absolute Radiance Standard (OARS) meeting these stringent requirements have been demonstrated in the laboratory at the University of Wisconsin and were further refined under the NASA Instrument Incubator Program (IIP). In particular, the OARS has imbedded thermistors that can be periodically calibrated on-orbit using the melt signatures of small quantities (<0.5g) of three reference materials - mercury, water, and gallium, providing calibration from 233K to 303K. One of the many tests to determine the readiness of this technology for on-orbit application is a demonstration of performance in microgravity to be conducted on the International Space Station (ISS). This demonstration will make use of an Experiment Support Package developed by Utah State Space Dynamics Laboratory to continuously run melt cycles on miniature phase change cells containing gallium, a gallium-tin eutectic, and water. The phase change cells will be mounted in a small aluminum block along with a thermistor temperature sensor. A thermoelectric cooler will be used to change the temperature of the block. The demonstration will use the configuration of the phase transition cells developed under our NASA IIP that has been tested extensively in the laboratory under simulated mission life cycle scenarios - these included vibration, thermal soaks, and deep cycling. Melt signatures

  3. Update to the Cosmic Origins Spectrograph FUV Calibration: Improved Characterization Below 1150 Angstroms and Improved Absolute Flux Calibration at all Wavelengths

    NASA Astrophysics Data System (ADS)

    Sonnentrucker, Paule; Bostroem, K. A.; Ely, J.; Debes, J. H.; DiFelice, A.; Hernandez, S.; Hodge, P. E.; Lindsay, K.; Lockwood, S. A.; Massa, D.; Oliveira, C. M.; Roman-Duval, J.; Penton, S. V.; Proffitt, C. R.; Taylor, J. M.

    2014-01-01

    As of Cycle 20, the three COS/FUV "Blue Mode" wavelength settings at G130M/1055, 1096 and 1222, have become available as regular observing modes. We provide updates on the wavelength and flux calibration of these new Blue Mode settings, which allow medium-resolution spectroscopy down to 900A with effective areas comparable to those of FUSE. We discuss also recent improvements to the COS/FUV flux and flat-field calibrations and present the most recent time-dependent sensitivity trends of the FUV and NUV channels.

  4. Development of an absolute method for efficiency calibration of a coaxial HPGe detector for large volume sources

    NASA Astrophysics Data System (ADS)

    Ortiz-Ramírez, Pablo C.

    2015-09-01

    In this work an absolute method for the determination of the full energy peak efficiency of a gamma spectroscopy system for voluminous sources is presented. The method was tested for a high-resolution coaxial HPGe detector and cylindrical homogeneous volume source. The volume source is represented by a set of point sources filling its volume. We found that the absolute efficiency of a volume source can be determined as the average over its volume of the absolute efficiency of each point source. Experimentally, we measure the intrinsic efficiency as a function upon source-detector position. Then, considering the solid angle and the attenuations of the gamma rays emitted to the detector by each point source, considered as embedded in the source matrix, the absolute efficiency for each point source inside of the volume was determined. The factor associate with the solid angle and the self-attenuation of photons in the sample was deduced from first principles without any mathematical approximation. The method was tested by determining the specific activity of 137Cs in cylindrical homogeneous sources, using IAEA reference materials with specific activities between 14.2 Bq/kg and 9640 Bq/kg at the moment of the experimentation. The results obtained shown a good agreement with the expected values. The relative difference was less than 7% in most of the cases. The main advantage of this method is that it does not require of the use of expensive and hard to produce standard materials. In addition it does not require of matrix effect corrections, which are the main cause of error in this type of measurements, and it is easy to implement in any nuclear physics laboratory.

  5. The influence of the ionizer geometry on the absolute density calibration of reactive neutral species in a molecular beam mass spectrometry.

    PubMed

    Krähling, Tobias; Ellerweg, Dirk; Benedikt, Jan

    2012-04-01

    Molecular beam mass spectrometry is a powerful diagnostic technique, which can be used for the measurement of absolute number densities of reactive species in non-equilibrium reactive plasmas. However, the calibration of absolute number densities is susceptible to systematic errors. Critical issues are the proper design of the sampling system and the correction of the background signal. Here we discuss the effect of reflections of particles from the molecular beam in an ionizer, formation of additional background particle density in the ionizer, and its effect on the density calibration of reactive particle densities. A Monte Carlo simulation of particle trajectories in the ionizer is used to estimate the detection probability of a beam particle after the collision with the ionizer wall. The simulation shows that as much as two-third of the signal can be due to scattered particles in the commercially available mass spectrometers. This effect leads to systematic underestimation of densities of reactive particles, which are reactive at the surface and, therefore, do not have any background density. A simple change in the ionizer geometry is suggested, which can significantly reduce this problem. PMID:22559583

  6. The influence of the ionizer geometry on the absolute density calibration of reactive neutral species in a molecular beam mass spectrometry

    SciTech Connect

    Kraehling, Tobias; Ellerweg, Dirk; Benedikt, Jan

    2012-04-15

    Molecular beam mass spectrometry is a powerful diagnostic technique, which can be used for the measurement of absolute number densities of reactive species in non-equilibrium reactive plasmas. However, the calibration of absolute number densities is susceptible to systematic errors. Critical issues are the proper design of the sampling system and the correction of the background signal. Here we discuss the effect of reflections of particles from the molecular beam in an ionizer, formation of additional background particle density in the ionizer, and its effect on the density calibration of reactive particle densities. A Monte Carlo simulation of particle trajectories in the ionizer is used to estimate the detection probability of a beam particle after the collision with the ionizer wall. The simulation shows that as much as two-third of the signal can be due to scattered particles in the commercially available mass spectrometers. This effect leads to systematic underestimation of densities of reactive particles, which are reactive at the surface and, therefore, do not have any background density. A simple change in the ionizer geometry is suggested, which can significantly reduce this problem.

  7. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    SciTech Connect

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L

    2006-10-15

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3 keV but has reduced sensitivity above 3 keV ({approx}50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  8. Absolutely calibrated vacuum ultraviolet spectra in the 150-250-nm range from plasmas generated by the NIKE KrF laser

    NASA Astrophysics Data System (ADS)

    Seely, J. F.; Feldman, Uri; Holland, G. E.; Weaver, J. L.; Mostovych, A. N.; Obenschain, S. P.; Schmitt, A. J.; Lehmberg, R.; Kjornarattanawanich, Benjawan; Back, C. A.

    2005-06-01

    High-resolution vacuum ultraviolet (VUV) spectra were recorded from plasmas generated by the NIKE KrF laser for the purpose of observing emission from the two-plasmon decay instability (TPDI) at 2/3 the NIKE wavelength (165nm). The targets were irradiated by up to 43 overlapping beams with intensity up to ≈1014W/cm2 and with beam smoothing by induced spatial incoherence (ISI). The targets consisted of planar foils of CH, BN, Al, Si, S, Ti, Pd, and Au. Titanium-doped silica aerogels in Pyrex cylinders were also irradiated. The spectra of the target elements were observed from charge states ranging from the neutral atoms to five times ionized. The spectrometer was absolutely calibrated using synchrotron radiation, and absolute VUV plasma emission intensities were determined. Emission from the TPDI at 165-nm wavelength was not observed from any of the irradiated targets. An upper bound on the possible TPDI emission was less than 4×10-8 the incident NIKE laser energy. The NIKE laser radiation backscattered from the silica aerogel targets at 248nm was typically 6×10-6 the incident NIKE laser energy, and the spectral broadening corresponded to the 1-THz bandwidth of the ISI smoothing. The spectra from the moderately charged plasma ions (up to five times ionized), spectral linewidths, absolute continuum emission level, and slope of the continuum were consistent with plasma temperatures in the 100-300-eV range.

  9. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    NASA Astrophysics Data System (ADS)

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L.

    2006-10-01

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si (Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3keV but has reduced sensitivity above 3keV (˜50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  10. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry

    SciTech Connect

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-15

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  11. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry.

    PubMed

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving. PMID:26628164

  12. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  13. Precision absolute frequency laser spectroscopy of argon II in parallel and antiparallel geometry using a frequency comb for calibration

    NASA Astrophysics Data System (ADS)

    Lioubimov, Vladimir

    A collinear fast ion beam laser apparatus was constructed and tested. It will be used on-line to the SLOW RI radioactive beam facility in RIKEN (Japan) and as in the present experiment for precision absolute frequency measurements of astrophysically important reference lines. In the current work we conducted absolute measurements of spectral lines of Ar+ ions using parallel and antiparallel geometries. To provide a reference for the laser wavelength iodine saturation spectroscopy was used. The precision of this reference was enhanced by simultaneously observing the beat node between the spectroscopy laser and the corresponding mode of a femtosecond laser frequency comb. When performing collinear and anticollinear measurements simultaneously for the laser induced fluorescence, the exact relativistic formula for the transition frequency n0=ncoll˙n anticoll can be applied. In this geometry ion source instabilities due to pressure and anode voltage fluctuation are minimized. The procedure of fluorescence lineshapes fitting is discussed and the errors in the measurements are estimated. The result is n0 = 485, 573, 619.7 +/- 0.3MHz corresponding to Dnn = 6 x 10-10 and is an improvement of two orders of magnitude over the NIST published value.

  14. Absorption by ground-state lead atoms of the 283. 3-nm resonant line from a lead hollow cathode lamp. An absolute number density calibration

    SciTech Connect

    Simons, J.W. ); Oldenborg, R.C.; Baughcum, S.L. )

    1989-10-19

    An accurate absolute number density calibration curve for absorption by gaseous lead atoms of the 283.3-nm resonant line from a typical lead hollow cathode lamp is reported. This calibration shows the usual curvature in the Beer-Lambert plot for atomic absorption at moderate to high absorbances that is commonly attributed to self-absorption leading to line reversal in the source and/or preferential absorption at the line center when the absorber temperature is not much greater than the source Doppler temperature. A theoretical calculation utilizing a Doppler-limited Fourier transform spectrum of the 283.3-nm emission from the lamp and a tabulated value of the absorption cross section and accounting for the isotopic and nuclear hyperfine components in both the emission and absorption due to naturally occurring lead quantitatively reproduces the experimental calibration curve without any parameter adjustments. It is found that the curvature in the Beer-Lambert plot has more to do with the fact that the absorbing and emitting atoms are a mixture of isotopes giving several isotopic and nuclear hyperfine transitions at slightly different frequencies than it does with preferential absorption at line centers.

  15. Sensor-centric calibration and characterization of the VIIRS Ocean Color bands using Suomi NPP operational data

    NASA Astrophysics Data System (ADS)

    Pratt, P.

    2012-12-01

    Ocean color bands on VIIRS span the visible spectrum and include two NIR bands. There are sixteen detectors per band and two HAM (Half-angle mirror) sides giving a total of thirty two independent systems. For each scan, thirty two hundred pixels are collected and each has a fixed specific optical path and a dynamic position relative to the earth geoid. For a given calibration target where scene variation is minimized, sensor characteristics can be observed. This gives insight into the performance and calibration of the instrument from a sensor-centric perspective. Calibration of the blue bands is especially challenging since there are few blue targets on land. An ocean region called the South Pacific Gyre (SPG) was chosen for its known stability and large area to serve as a calibration target for this investigation. Thousands of pixels from every granule that views the SPG are collected daily through an automated system and tabulated along with the detector, HAM and scan position. These are then collated and organized in a sensor-centric set of tables. The data are then analyzed by slicing by each variable and then plotted in a number of ways over time. Trends in the data show that the VIIRS sensor is largely behaving as expected according to heritage data and also reveals weaknesses where additional characterization of the sensor is possible. This work by Northrop Grumman NPP CalVal Team is supporting the VIIRS on-orbit calibration and validation teams for the sensor and ocean color as well as providing scientists interested in performing ground truth with results that show which detectors and scan angles are the most reliable over time. This novel approach offers a comprehensive sensor-centric on-orbit characterization of the VIIRS instrument on the NASA Suomi NPP mission.

  16. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response

    SciTech Connect

    Troussel, Ph.; Villette, B.; Oudot, G.; Tassin, V.; Bridou, F.; Delmotte, F.; Krumrey, M.

    2014-01-15

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV < photon energy < 5 keV) use only a filter and a coaxial detector. A further improvement of DMX consists in flat-response X-ray channels for a precise absolute measurement of the photon flux in the photon energy range from 0.1 keV to 6 keV. Such channels are equipped with a filter, a Multilayer Mirror (MLM), and a coaxial detector. We present as an example the development of channel for the gold M emission lines in the photon energy range from 2 keV to 4 keV which has been successfully used on the OMEGA laser facility. The results of the radiant power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

  17. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response.

    PubMed

    Troussel, Ph; Villette, B; Emprin, B; Oudot, G; Tassin, V; Bridou, F; Delmotte, F; Krumrey, M

    2014-01-01

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV < photon energy < 5 keV) use only a filter and a coaxial detector. A further improvement of DMX consists in flat-response X-ray channels for a precise absolute measurement of the photon flux in the photon energy range from 0.1 keV to 6 keV. Such channels are equipped with a filter, a Multilayer Mirror (MLM), and a coaxial detector. We present as an example the development of channel for the gold M emission lines in the photon energy range from 2 keV to 4 keV which has been successfully used on the OMEGA laser facility. The results of the radiant power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods. PMID:24517761

  18. Relative and Absolute Calibration of a Multihead Camera System with Oblique and Nadir Looking Cameras for a Uas

    NASA Astrophysics Data System (ADS)

    Niemeyer, F.; Schima, R.; Grenzdörffer, G.

    2013-08-01

    Numerous unmanned aerial systems (UAS) are currently flooding the market. For the most diverse applications UAVs are special designed and used. Micro and mini UAS (maximum take-off weight up to 5 kg) are of particular interest, because legal restrictions are still manageable but also the payload capacities are sufficient for many imaging sensors. Currently a camera system with four oblique and one nadir looking cameras is under development at the Chair for Geodesy and Geoinformatics. The so-called "Four Vision" camera system was successfully built and tested in the air. A MD4-1000 UAS from microdrones is used as a carrier system. Light weight industrial cameras are used and controlled by a central computer. For further photogrammetric image processing, each individual camera, as well as all the cameras together have to be calibrated. This paper focuses on the determination of the relative orientation between the cameras with the „Australis" software and will give an overview of the results and experiences of test flights.

  19. Galactic model parameters of cataclysmic variables: Results from a new absolute magnitude calibration with 2MASS and WISE

    NASA Astrophysics Data System (ADS)

    Özdönmez, A.; Ak, T.; Bilir, S.

    2015-01-01

    In order to determine the spatial distribution, Galactic model parameters and luminosity function of cataclysmic variables (CVs), a J-band magnitude limited sample of 263 CVs has been established using a newly constructed period-luminosity-colours (PLCs) relation which includes J,Ks and W1-band magnitudes in 2MASS and WISE photometries, and the orbital periods of the systems. This CV sample is assumed to be homogeneous regarding to distances as the new PLCs relation is calibrated with new or re-measured trigonometric parallaxes. Our analysis shows that the scaleheight of CVs is increasing towards shorter periods, although selection effects for the periods shorter than 2.25 h dramatically decrease the scaleheight: the scaleheight of the systems increases from 192 pc to 326 pc as the orbital period decreases from 12 to 2.25 h. The z-distribution of all CVs in the sample is well fitted by an exponential function with a scaleheight of 213-10+11 pc. However, we suggest that the scaleheight of CVs in the Solar vicinity should be ∼300 pc and that the scaleheights derived using the sech2 function should be also considered in the population synthesis models. The space density of CVs in the Solar vicinity is found 5.58(1.35)×10-6 pc-3 which is in the range of previously derived space densities and not in agreement with the predictions of the population models. The analysis based on the comparisons of the luminosity function of white dwarfs with the luminosity function of CVs in this study show that the best fits are obtained by dividing the luminosity functions of white dwarfs by a factor of 350-450.

  20. Calibration View of Earth and the Moon by Mars Color Imager

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Three days after the Mars Reconnaissance Orbiter's Aug. 12, 2005, launch, the spacecraft was pointed toward Earth and the Mars Color Imager camera was powered up to acquire a suite of images of Earth and the Moon. When it gets to Mars, the Mars Color Imager's main objective will be to obtain daily global color and ultraviolet images of the planet to observe martian meteorology by documenting the occurrence of dust storms, clouds, and ozone. This camera will also observe how the martian surface changes over time, including changes in frost patterns and surface brightness caused by dust storms and dust devils.

    The purpose of acquiring an image of Earth and the Moon just three days after launch was to help the Mars Color Imager science team obtain a measure, in space, of the instrument's sensitivity, as well as to check that no contamination occurred on the camera during launch. Prior to launch, the team determined that, three days out from Earth, the planet would only be about 4.77 pixels across, and the Moon would be less than one pixel in size, as seen from the Mars Color Imager's wide-angle perspective. If the team waited any longer than three days to test the camera's performance in space, Earth would be too small to obtain meaningful results.

    The Earth and Moon images were acquired by turning Mars Reconnaissance Orbiter toward Earth, then slewing the spacecraft so that the Earth and Moon would pass before each of the five color and two ultraviolet filters of the Mars Color Imager. The distance to the Moon was about 1,440,000 kilometers (about 895,000 miles); the range to Earth was about 1,170,000 kilometers (about 727,000 miles).

    This view combines a sequence of frames showing the passage of Earth and the Moon across the field of view of a single color band of the Mars Color Imager. As the spacecraft slewed to view the two objects, they passed through the camera's field of view. Earth has been saturated white in this image so that both Earth

  1. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  2. Calibration

    NASA Astrophysics Data System (ADS)

    Kunze, Hans-Joachim

    Commercial spectrographic systems are usually supplied with some wave-length calibration, but it is essential that the experimenter performs his own calibration for reliable measurements. A number of sources emitting well-known emission lines are available, and the best values of their wavelengths may be taken from data banks accessible on the internet. Data have been critically evaluated for many decades by the National Institute of Standards and Technology (NIST) of the USA [13], see also p. 3. Special data bases have been established by the astronomy and fusion communities (Appendix B).

  3. Absolute number density calibration of the absorption by ground-state lead atoms of the 283. 3-nm resonance line from a high-intensity lead hollow cathode lamp and the calculated effect of argon pressures

    SciTech Connect

    Simons, J.W.; McClean, R.E. ); Oldenborg, R.C. )

    1991-03-21

    The absolute number density calibration for the absorption by ground-state lead atoms of the 283.3-nm resonance line from a high-intensity lead hollow cathode lamp (Photron superlamp) is determined and found to be the same as that of a standard hollow cathode lamp. Comparisons of the calibrations to theoretical calculations are found to be quite satisfactory. The effects of argon pressures in the absorption cell on the calibration are examined theoretically by using a simple Lorentzian broadening and shifting model. These calculations show the expected reduction in sensitivity and increasing linearity of Beer-Lambert plots with increasing argon pressure.

  4. Uncalibrated color

    NASA Astrophysics Data System (ADS)

    Moroney, Nathan

    2006-01-01

    Color calibration or the use of color measurement processes to characterize the color properties of a device or workflow is often expected or assumed for many color reproduction applications. However it is interesting to consider applications or situations in which color calibration is not as critical. In the first case it is possible to imagine an implicit color calibration resulting from a standardization or convergence of the colorant and substrate spectrum. In the second case it is possible to imagine cases where the device color variability is significantly less than the user color thresholds or expectations for color consistency. There are still general requirements for this form of pragmatic color but they are generally lower than for the higher end of digital color reproduction. Finally it is possible to imagine an implicit calibration that leverages in some way the highly accurate memory color for the hue of common objects. This scenario culminates with a challenge to create a natural capture calibration standard that does not require individual calibration, is spectrally diverse, is inexpensive and is environmentally friendly.

  5. Corrections to MODIS Terra Calibration and Polarization Trending Derived from Ocean Color Products

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Eplee, Robert E.; Franz, Bryan A.

    2014-01-01

    Remotely sensed ocean color products require highly accurate top-of-atmosphere (TOA) radiances, on the order of 0.5% or better. Due to incidents both prelaunch and on-orbit, meeting this requirement has been a consistent problem for the MODIS instrument on the Terra satellite, especially in the later part of the mission. The NASA Ocean Biology Processing Group (OBPG) has developed an approach to correct the TOA radiances of MODIS Terra using spatially and temporally averaged ocean color products from other ocean color sensors (such as the SeaWiFS instrument on Orbview-2 or the MODIS instrument on the Aqua satellite). The latest results suggest that for MODIS Terra, both linear polarization parameters of the Mueller matrix are temporally evolving. A change to the functional form of the scan angle dependence improved the quality of the derived coefficients. Additionally, this paper demonstrates that simultaneously retrieving polarization and gain parameters improves the gain retrieval (versus retrieving the gain parameter only).

  6. Absolute calibration and atmospheric versus mineralogic origin of absorption features in 2.0 to 2.5 micron Mars spectra obtained during 1993

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Pollack, James B.; Geballe, Thomas R.; Cruikshank, Dale P.; Freedman, Richard

    1994-01-01

    We obtained new high resolution reflectance spectra of Mars during the 1993 opposition from Mauna Kea Observatory using the UKIRT CGS4 spectrometer. Fifty spectra of 1600-2000 km surface regions and a number of standard star spectra were obtained in the 2.04 to 2.44 micron wavelength region on 4 February 1993 UT. Near-simultaneous observations of bright standard stars were used to perform terrestrial atmospheric corrections and an absolute flux calibration. Using the known magnitude of the stars and assuming blackbody continuum behavior, the flux from Mars could be derived. A radiative transfer model and the HITRAN spectral line data base were used to compute atmospheric transmission spectra for Mars and the Earth in order to simulate the contributions of these atmospheres to our observed data. Also, we examined the ATMOS solar spectrum in the near-IR to try to identify absorption features in the spectrum of the Sun that could be misinterpreted as Mars features. Eleven absorption features were detected in our Mars spectra. Our data provide no conclusive identification of the mineralogy responsible for the absorption features we detected. However, examination of terrestrial spectral libraries and previous high spectral resolution mineral studies indicates that the most likely origin of these features is either CO3(sup 2-), HCO3(-), or HSO4(-) anions in framework silicates or possibly (Fe, Mg)-OH bonds in sheet silicates.

  7. Determination of Delta m(d) and absolute calibration of flavor taggers for the Delta m(s) analysis, in fully reconstructed decays at the CDF experiment

    SciTech Connect

    Gomez, Jonatan Piedra

    2005-07-01

    The new trigger processor, the Silicon Vertex Tracking (SVT), has dramatically improved the B physics capabilities of the upgraded CDF II Detector; for the first time in a hadron collider, the SVT has enabled the access to non-lepton-triggered B meson decays. Within the new available range of decay modes, the B{sub s}{sup 0} {yields} D{sub s}{sup -}{pi}{sup +} signature is of paramount importance in the measurement of the {Delta}m{sub s} mixing frequency. The analysis reported here is a step towards the measurement of this frequency; two where our goals: carrying out the absolute calibration of the opposite side flavor taggers, used in the {Delta}m{sub s} measurement; and measuring the B{sub d}{sup 0} mixing frequency in a B {yields} D{pi} sample, establishing the feasibility of the mixing measurement in this sample whose decay-length is strongly biased by the selective SVT trigger. We analyze a total integrated luminosity of 355 pb{sup -1} collected with the CDF II Detector. By triggering on muons, using the conventional di-muon trigger; or displaced tracks, using the SVT trigger, we gather a sample rich in bottom and charm mesons.

  8. Automatic conjunctival provocation test combining Hough circle transform and self-calibrated color measurements

    NASA Astrophysics Data System (ADS)

    Bista, Suman Raj; Sárándi, István.; Dogan, Serkan; Astvatsatourov, Anatoli; Mösges, Ralph; Deserno, Thomas M.

    2013-02-01

    Computer-aided diagnosis is developed for assessment of allergic rhinitis/rhinoconjunctivitis measuring the relative redness of sclera under application of allergen solution. Images of the patient's eye are taken using a commercial digital camera. The iris is robustly localized using a gradient-based Hough circle transform. From the center of the pupil, the region of interest within the sclera is extracted using geometric anatomy-based apriori information. The red color pixels are extracted thresholding in the hue, saturation and value color space. Then, redness is measured by taking mean of saturation projected into zero hue. Evaluation is performed with 98 images taken from 14 subjects, 8 responders and 6 non-responders, which were classified according to an experienced otorhinolaryngologist. Provocation is performed with 100, 1,000 and 10,000 AU/ml allergic solution and normalized to control images without provocation. The evaluation yields relative redness of 1.01, 1.05, 1.30 and 0.95, 1.00, 0.96 for responders and non-responders, respectively. Variations in redness measurements were analyzed according to alteration of parameters of the image processing chain proving stability and robustness of our approach. The results indicate that the method improves visual inspection and may be suitable as reliable surrogate endpoint in controlled clinical trials.

  9. Theoretical impact of fast rotation on calibrating the surface brightness-color relation for early-type stars

    NASA Astrophysics Data System (ADS)

    Challouf, M.; Nardetto, N.; Domiciano de Souza, A.; Mourard, D.; Aroui, H.; Stee, P.; Delaa, O.; Graczyk, D.; Pietrzyński, G.; Gieren, W.

    2015-07-01

    Context. The eclipsing binary method for determining distance in the local group is based on the surface brightness-color relation (SBCR), and early-type stars are preferred targets because of their intrinsic brightness. However, this type of star exhibits wind, mass-loss, pulsation, and rotation, which may generate bias on the angular diameter determination. An accurate calibration of the SBCR relation thus requires careful analysis. Aims: In this paper we aim to quantify the impact of stellar rotation on the SBCR when the calibration of the relation is based on interferometric measurements of angular diameters. Methods: Six stars with V - K color indices ranging between -1 and 0.5 were modeled using the code for high angular resolution of rotating objects in nature (CHARRON) with various rotational velocities (0, 25, 50, 75, and 95% of the critical rotational velocity) and inclination (0, 25, 50, 75, and 90 degrees). All these models have their equatorial axis aligned in an east-west orientation in the sky. We then simulated interferometric observations of these theoretical stars using three representative sets of the CHARA baseline configurations. The simulated data were then interpreted as if the stars were non-rotating to determine an angular diameter and estimate the surface-brightness relation. The V - K color of the rotating star was calculated directly from the CHARRON code. This provides an estimate of the intrinsic dispersion of the SBCR relation when the rotation effects of flattening and gravity darkening are not considered in the analysis of interferometric data. Results: We find a clear relation between the rotational velocity and (1) the shift in zero point (Δa0) of the SBCR (compared to the static relation) and (2) its dispersion (σ). When considering stars rotating at less than 50% of their critical velocity, Δa0 and σ have about 0.01 mag, while these quantities can reach 0.08 and 0.04 mag, respectively, when the rotation is larger than 75% of

  10. Absolute Spectrophotometry of 237 Open Cluster Stars

    NASA Astrophysics Data System (ADS)

    Clampitt, L.; Burstein, D.

    1994-12-01

    We present absolute spectrophotometry of 237 stars in 7 nearby open clusters: Hyades, Pleiades, Alpha Persei, Praesepe, Coma Berenices, IC 4665, and M 39. The observations were taken using the Wampler single-channel scanner (Wampler 1966) on the Crossley 0.9m telescope at Lick Observatory from July 1973 through December 1974. 21 bandpasses spanning the spectral range 3500 Angstroms to 7780 Angstroms were observed for each star, with bandwiths ranging from 32Angstroms to 64 Angstroms. Data are standardized to the Hayes--Latham (1975) system. Our measurements are compared to filter colors on the Johnson BV, Stromgren ubvy, and Geneva U V B_1 B_2 V_1 G systems, as well as to spectrophotometry of a few stars published by Gunn, Stryker & Tinsley and in the Spectrophotometric Standards Catalog (Adelman; as distributed by the NSSDC). Both internal and external comparisons to the filter systems indicate a formal statistical accuracy per bandpass of 0.01 to 0.02 mag, with apparent larger ( ~ 0.03 mag) differences in absolute calibration between this data set and existing spectrophotometry. These data will comprise part of the spectrophotometry that will be used to calibrate the Beijing-Arizona-Taipei-Connecticut Color Survey of the Sky (see separate paper by Burstein et al. at this meeting).

  11. Color measurements based on a color camera

    NASA Astrophysics Data System (ADS)

    Marszalec, Elzbieta A.; Pietikaeinen, Matti

    1997-08-01

    The domain of color camera applications is increasing all time due to recent progress in color machine vision research. Colorimetric measurement tasks are quite complex as the purpose of color measurement is to provide a quantitative evaluation of the phenomenon of colors as perceived by human vision. A proper colorimetric calibration of the color camera system is needed in order to make color a practical tool in machine vision. This paper discuses two approaches to color measurements based on a color camera and includes an overview of practical approaches to color camera calibration under unstable illumination conditions.

  12. Calibration of a high spatial resolution laser two-color heterodyne interferometer for density profile measurements in the TJ-II stellarator

    SciTech Connect

    Acedo, Pablo; Pedreira, P.; Criado, A. R.; Lamela, Horacio; Sanchez, Miguel; Sanchez, Joaquin

    2008-10-15

    A high spatial resolution two-color (CO{sub 2}, {lambda}=10.6 {mu}m, He-Ne, {lambda}=633 nm) interferometer for density profile measurements in the TJ-II stellarator is under development and installation, based in the currently operational single channel two-color heterodyne interferometer. To achieve the objectives of 32 channels, with 4-5 mm lateral separation between plasma chords, careful design and calibration of the interferometric waveforms for both the measurement and vibration compensation wavelengths are undertaken. The first step has been to set up in our laboratories an expanded-beam heterodyne/homodyne interferometer to evaluate the quality of both interferometric wavefronts, a reported source of poor vibration compensation and thus low resolution in the density profile measurements. This novel interferometric setup has allowed us to calibrate the spatial resolution in the profile measurements resulting in {approx}2 mm lateral resolution in the reconstruction of the interferometric wavefront.

  13. Calibration Monitor for Dark Energy Experiments

    SciTech Connect

    Kaiser, M. E.

    2009-11-23

    The goal of this program was to design, build, test, and characterize a flight qualified calibration source and monitor for a Dark Energy related experiment: ACCESS - 'Absolute Color Calibration Experiment for Standard Stars'. This calibration source, the On-board Calibration Monitor (OCM), is a key component of our ACCESS spectrophotometric calibration program. The OCM will be flown as part of the ACCESS sub-orbital rocket payload in addition to monitoring instrument sensitivity on the ground. The objective of the OCM is to minimize systematic errors associated with any potential changes in the ACCESS instrument sensitivity. Importantly, the OCM will be used to monitor instrument sensitivity immediately after astronomical observations while the instrument payload is parachuting to the ground. Through monitoring, we can detect, track, characterize, and thus correct for any changes in instrument senstivity over the proposed 5-year duration of the assembled and calibrated instrument.

  14. MOBY, A Radiometric Buoy for Performance Monitoring and Vicarious Calibration of Satellite Ocean Color Sensors: Measurement and Data Analysis Protocols. Chapter 2

    NASA Technical Reports Server (NTRS)

    Clark, Dennis K.; Yarbrough, Mark A.; Feinholz, Mike; Flora, Stephanie; Broenkow, William; Kim, Yong Sung; Johnson, B. Carol; Brown, Steven W.; Yuen, Marilyn; Mueller, James L.

    2003-01-01

    The Marine Optical Buoy (MOBY) is the centerpiece of the primary ocean measurement site for calibration of satellite ocean color sensors based on independent in situ measurements. Since late 1996, the time series of normalized water-leaving radiances L(sub WN)(lambda) determined from the array of radiometric sensors attached to MOBY are the primary basis for the on-orbit calibrations of the USA Sea-viewing Wide Field-of-view Sensor (SeaWiFS), the Japanese Ocean Color and Temperature Sensor (OCTS), the French Polarization Detection Environmental Radiometer (POLDER), the German Modular Optoelectronic Scanner on the Indian Research Satellite (IRS1-MOS), and the USA Moderate Resolution Imaging Spectrometer (MODIS). The MOBY vicarious calibration L(sub WN)(lambda) reference is an essential element in the international effort to develop a global, multi-year time series of consistently calibrated ocean color products using data from a wide variety of independent satellite sensors. A longstanding goal of the SeaWiFS and MODIS (Ocean) Science Teams is to determine satellite-derived L(sub WN)(labda) with a relative combined standard uncertainty of 5 %. Other satellite ocean color projects and the Sensor Intercomparison for Marine Biology and Interdisciplinary Oceanic Studies (SIMBIOS) project have also adopted this goal, at least implicitly. Because water-leaving radiance contributes at most 10 % of the total radiance measured by a satellite sensor above the atmosphere, a 5 % uncertainty in L(sub WN)(lambda) implies a 0.5 % uncertainty in the above-atmosphere radiance measurements. This level of uncertainty can only be approached using vicarious-calibration approaches as described below. In practice, this means that the satellite radiance responsivity is adjusted to achieve the best agreement, in a least-squares sense, for the L(sub WN)(lambda) results determined using the satellite and the independent optical sensors (e.g. MOBY). The end result of this approach is to

  15. Behavior of Mira Variables in Bandstrength-Color Diagrams. Comparison of Dynamic Models with Calibrated Spectral Scans

    NASA Astrophysics Data System (ADS)

    Wing, R. F.; Alvarez, R.; Plez, B.; Yuan, Y.

    We compare 26-color scanner observations of Mira variables (Wing 1967, recently rereduced and recalibrated) with model calculations. The measurements were made through a 30 AA exit slot at 26 selected wavelengths between 7800 and 11000 AA. They include the best available continuum points, and points sensitive to the presence of bands of TiO, VO, CN, ZrO, and H_2O. We present molecular bandstrength-color diagrams in which the variables execute loops. This behavior was first shown in a review article (Spinrad & Wing 1969) and discussed further by Wing (1980). Here we present comparisons with model calculations, following the work of Alvarez & Plez (1998). Detailed synthetic spectra from hydrostatic models reproduce the observed colors. The loops followed by the Mira variables in color-color diagrams are reasonably well reproduced by hydrodynamic model atmospheres. We show the effects of pulsation on the behavior of the different molecular bands seen in this spectral region.

  16. Broad-band photometric colors and effective temperature calibrations for late-type giants. II. Z < 0.02

    NASA Astrophysics Data System (ADS)

    Kučinskas, A.; Hauschildt, P. H.; Brott, I.; Vansevičius, V.; Lindegren, L.; Tanabé, T.; Allard, F.

    2006-06-01

    We investigate the effects of metallicity on the broad-band photometric colors of late-type giants, and make a comparison of synthetic colors with observed photometric properties of late-type giants over a wide range of effective temperatures (T_eff=3500-4800 K) and gravities (log g=0.0-2.5), at [M/H]=-1.0 and -2.0. The influence of metallicity on the synthetic photometric colors is small at effective temperatures above 3800 K, but the effects grow larger at lower T_eff, due to the changing efficiency of molecule formation which reduces molecular opacities at lower [M/H]. To make a detailed comparison of the synthetic and observed photometric colors of late type giants in the T_eff-color and color-color planes (which is done at two metallicities, [M/H]=-1.0 and -2.0), we derive a set of new T_eff-log g-color relations based on synthetic photometric colors, at [M/H]=-0.5, -1.0, -1.5, and -2.0. These relations are based on the T_eff-log g scales that we derive employing literature data for 178 late-type giants in 10 Galactic globular clusters (with metallicities of the individual stars between [M/H]=-0.7 and -2.5), and synthetic colors produced with the PHOENIX, MARCS and ATLAS stellar atmosphere codes. Combined with the T_eff-log g-color relations at [M/H]=0.0 (Kučinskas et al. 2005), the set of new relations covers metallicities [M/H]=0.0dots-2.0 (Δ[M/H]=0.5), effective temperatures T_eff=3500dots4800 K (Δ T_eff=100 K), and gravities log g=-0.5dots3.0. The new T_eff-log g-color relations are in good agreement with published T_eff-color relations based on observed properties of late-type giants, both at [M/H]=-1.0 and -2.0. The differences in all T_eff-color planes are typically well within 100 K. We find, however, that effective temperatures predicted by the scales based on synthetic colors tend to be slightly higher than those resulting from the T_eff-color relations based on observations, with the offsets up to 100 K. This is clearly seen both at [M/H]=-1

  17. Absolute and relative quantification and calibration for sectioning fluorescence microscopy using standardized uniform fluorescent layers and SIPchart-based correction procedures

    NASA Astrophysics Data System (ADS)

    Zwier, J. M.; Oomen, L.; Brocks, L.; Jalink, K.; Brakenhoff, G. J.

    2007-02-01

    The total or integrated fluorescence intensity of a through-focus series of a thin standardized uniform fluorescent or calibration layer is shown to be suitable for image intensity correction and calibration in sectioning microscopy. This integrated intensity can be derived from the earlier introduced SectionedImagingProperty or SIPcharts, derived from the 3D layer datasets. By correcting the 3D image of an object with the 3D image of the standardized uniform fluorescent layer obtained under identical conditions one is able to express the object fluorescence in units fluorescence of the calibration layer. With object fluorescence intensities in fluorescence layer unit's or FLU's the object image intensities becomes independent of microscope system and imaging conditions. A direct result is that the often-appreciable lateral intensity variations present in confocal microscopy are eliminated (shading correction). Of more general value is that images obtained with different objectives, magnifications or from different microscope systems can be quantitatively related to each other. The effectiveness of shading correction and relating images obtained under various microscope conditions is demonstrated on images of standard fluorocent beads. Expressing the object fluorescence in FLU units seems to be a promising approach for general quantification of sectioning imaging enabling cross-correlation of imaging results over time and between imaging systems.

  18. Absolute vicarious calibration of Landsat-8 OLI and Resourcesat-2 AWiFS sensors over Rann of Kutch site in Gujarat

    NASA Astrophysics Data System (ADS)

    Sharma, Shweta; Sridhar, V. N.; Prajapati, R. P.; Rao, K. M.; Mathur, A. K.

    2016-05-01

    In this work, vicarious calibration coefficients for all the four bands (green, red, NIR and SWIR) of Resourcesat-2 AWiFS sensor for four dates during Dec 2013-Nov 2014 and for seven bands (blue, green, red, NIR, SWIR1, SWIR2 and PAN) of OLI sensor onboard Landsat-8 for six dates during Dec 2013-Feb 2015 were estimated using field measured reflectance and measured atmospheric parameters during sensor image acquisition over Rann of Kutch site in Gujarat. The top of atmosphere (TOA) at-satellite radiances for all the bands were simulated using 6S radiative transfer code with field measured reflectance, synchronous atmospheric measurements and respective sensor's spectral response functions as an input. These predicted spectral radiances were compared with the radiances from the respective sensor's image in the respective band over the calibration site. Cross-calibration between the sensors AWiFS and OLI was also attempted using near-simultaneous same day image acquisition. Effect of spectral band adjustment factor was also studied with OLI sensor taken as reference sensor. Results show that the variation in average estimated radiance ratio for the AWiFS sensor was found to be within 10% for all the bands, whereas, for OLI sensor, the variation was found to be within 6% for all the bands except green and SWIR2 for which the variation was 8% and 11% respectively higher than the 5% uncertainty of the OLI sensor specification for TOA spectral radiance. At the 1σ level, red, NIR, SWIR1 and Panchromatic bands of OLI sensor showed close agreement between sensor-measured and vicarious TOA radiance resulting no change in calibration coefficient and hence indicating no sensor degradation. Two sets of near-simultaneous SBAFs were derived from respective ground measured target reflectance profiles and applied to the AWiFS and it was observed that overall, SBAF compensation provides a significant improvement in sensor agreement. The reduction in the difference between AWiFS and

  19. Design, Construction and Calibration of a Near-Infrared Four-Color Pyrometry System for Laser-Driven High Pressure Experiments

    NASA Astrophysics Data System (ADS)

    Ali, S. J.; Jeanloz, R.; Collins, G.; Spaulding, D. K.

    2010-12-01

    Current dynamic compression experiments, using both quasi-isentropic and shock-compression, allow access to pressure-temperature states both on and off the principle Hugoniot and over a wide range of conditions of direct relevance to planetary interiors. Such studies necessitate reliable temperature measurements below 4000-5000 K. Such relatively low temperature states are also of particular interest for materials such as methane and water that do not experience much heating under shock compression. In order to measure these temperatures as a function of time across the sample, a four-color, near-infrared pyrometry system is being developed for use at the Janus laser facility (LLNL) with channels at wavelengths of 932nm-1008nm, 1008nm-1108nm, 1108nm-1208nm, and 1208nm-1300nm. Each color band is fiber-coupled to an InGaAs PIN photodiode with a rise time of less than 60 ps, read using an 18 GHz oscilloscope in order to ensure time resolutions of under 200 ps. This will allow for high temporal resolution measurements of laser-driven shock compression experiments with total durations of 5-15 ns as well as correlation with simultaneous time-resolved velocity interferometry and visual-wavelength pyrometry. Calibration of the system is being accomplished using quartz targets, as the EOS for quartz is well known, along with a calibrated integrating sphere of known spectral radiance.

  20. Absolute Zero

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.

    2006-12-01

    Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.

  1. Cognitive aspects of color

    NASA Astrophysics Data System (ADS)

    Derefeldt, Gunilla A. M.; Menu, Jean-Pierre; Swartling, Tiina

    1995-04-01

    This report surveys cognitive aspects of color in terms of behavioral, neuropsychological, and neurophysiological data. Color is usually defined as psychophysical color or as perceived color. Behavioral data on categorical color perception, absolute judgement of colors, color coding, visual search, and visual awareness refer to the more cognitive aspects of color. These are of major importance in visual synthesis and spatial organization, as already shown by the Gestalt psychologists. Neuropsychological and neurophysiological findings provide evidence for an interrelation between cognitive color and spatial organization. Color also enhances planning strategies, as has been shown by studies on color and eye movements. Memory colors and the color- language connections in the brain also belong among the cognitive aspects of color.

  2. Absolute Energy Calibration of X-ray TESs with 0.04 eV Uncertainty at 6.4 keV in a Hadron-Beam Environment

    NASA Astrophysics Data System (ADS)

    Tatsuno, H.; Doriese, W. B.; Bennett, D. A.; Curceanu, C.; Fowler, J. W.; Gard, J.; Gustafsson, F. P.; Hashimoto, T.; Hayano, R. S.; Hays-Wehle, J. P.; Hilton, G. C.; Iliescu, M.; Ishimoto, S.; Itahashi, K.; Iwasaki, M.; Kuwabara, K.; Ma, Y.; Marton, J.; Noda, H.; O'Neil, G. C.; Okada, S.; Outa, H.; Reintsema, C. D.; Sato, M.; Schmidt, D. R.; Shi, H.; Suzuki, K.; Suzuki, T.; Uhlig, J.; Ullom, J. N.; Widmann, E.; Yamada, S.; Zmeskal, J.; Swetz, D. S.

    2016-01-01

    A performance evaluation of superconducting transition-edge sensors (TESs) in the environment of a pion beam line at a particle accelerator is presented. Averaged across the 209 functioning sensors in the array, the achieved energy resolution is 5.2 eV FWHM at Co K_{α } (6.9 keV) when the pion beam is off and 7.3 eV at a beam rate of 1.45 MHz. Absolute energy uncertainty of ± 0.04 eV is demonstrated for Fe K_{α } (6.4 keV) with in-situ energy calibration obtained from other nearby known X-ray lines. To achieve this small uncertainty, it is essential to consider the non-Gaussian energy response of the TESs and thermal cross-talk pile-up effects due to charged particle hits in the silicon substrate of the TES array.

  3. Absolute Energy Calibration of X-ray TESs with 0.04 eV Uncertainty at 6.4 keV in a Hadron-Beam Environment

    NASA Astrophysics Data System (ADS)

    Tatsuno, H.; Doriese, W. B.; Bennett, D. A.; Curceanu, C.; Fowler, J. W.; Gard, J.; Gustafsson, F. P.; Hashimoto, T.; Hayano, R. S.; Hays-Wehle, J. P.; Hilton, G. C.; Iliescu, M.; Ishimoto, S.; Itahashi, K.; Iwasaki, M.; Kuwabara, K.; Ma, Y.; Marton, J.; Noda, H.; O'Neil, G. C.; Okada, S.; Outa, H.; Reintsema, C. D.; Sato, M.; Schmidt, D. R.; Shi, H.; Suzuki, K.; Suzuki, T.; Uhlig, J.; Ullom, J. N.; Widmann, E.; Yamada, S.; Zmeskal, J.; Swetz, D. S.

    2016-08-01

    A performance evaluation of superconducting transition-edge sensors (TESs) in the environment of a pion beam line at a particle accelerator is presented. Averaged across the 209 functioning sensors in the array, the achieved energy resolution is 5.2 eV FWHM at Co K_{α } (6.9 keV) when the pion beam is off and 7.3 eV at a beam rate of 1.45 MHz. Absolute energy uncertainty of ± 0.04 eV is demonstrated for Fe K_{α } (6.4 keV) with in-situ energy calibration obtained from other nearby known X-ray lines. To achieve this small uncertainty, it is essential to consider the non-Gaussian energy response of the TESs and thermal cross-talk pile-up effects due to charged particle hits in the silicon substrate of the TES array.

  4. Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements.

    PubMed

    Diop, Mamadou; Verdecchia, Kyle; Lee, Ting-Yim; St Lawrence, Keith

    2011-07-01

    A primary focus of neurointensive care is the prevention of secondary brain injury, mainly caused by ischemia. A noninvasive bedside technique for continuous monitoring of cerebral blood flow (CBF) could improve patient management by detecting ischemia before brain injury occurs. A promising technique for this purpose is diffuse correlation spectroscopy (DCS) since it can continuously monitor relative perfusion changes in deep tissue. In this study, DCS was combined with a time-resolved near-infrared technique (TR-NIR) that can directly measure CBF using indocyanine green as a flow tracer. With this combination, the TR-NIR technique can be used to convert DCS data into absolute CBF measurements. The agreement between the two techniques was assessed by concurrent measurements of CBF changes in piglets. A strong correlation between CBF changes measured by TR-NIR and changes in the scaled diffusion coefficient measured by DCS was observed (R(2) = 0.93) with a slope of 1.05 ± 0.06 and an intercept of 6.4 ± 4.3% (mean ± standard error). PMID:21750781

  5. Absolute calibration of a photodiode array with the use of the synchrotron radiation in the range of 1-10 keV

    NASA Astrophysics Data System (ADS)

    Beck, L.; Bizeuil, C.; Soullie, G.

    1995-02-01

    The silicon photodiode array Hamamatsu S3901 series (1024, 25 μm pixel) were primarily developed for the visible-UV spectral range, mainly for photon wavelengths between 200 and 1100 nm. By utilizing it without a quartz window, it is demonstrated that this sensor can be used for x rays, especially in the 1-10 keV range. Experimental measurements of the absolute detection efficiency of the photodiode array between 1.5 and 12 keV are presented. The experiments were performed on an x-ray tube-excited secondary targets and on the SB3 beamline at the Super ACO storage ring (LURE-Orsay). The measured spectral efficiency is compared with the results of a simple model calculation based on the data given in the Hamamatsu note. The simulation is in good agreement with the experimental data for a silicon active depth of 6 μm and a silicon dioxide passivation layer of 5 μm. The linearity is better than 1% and the spatial resolution is estimated to be 120 μm.

  6. Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements

    PubMed Central

    Diop, Mamadou; Verdecchia, Kyle; Lee, Ting-Yim; St Lawrence, Keith

    2011-01-01

    A primary focus of neurointensive care is the prevention of secondary brain injury, mainly caused by ischemia. A noninvasive bedside technique for continuous monitoring of cerebral blood flow (CBF) could improve patient management by detecting ischemia before brain injury occurs. A promising technique for this purpose is diffuse correlation spectroscopy (DCS) since it can continuously monitor relative perfusion changes in deep tissue. In this study, DCS was combined with a time-resolved near-infrared technique (TR-NIR) that can directly measure CBF using indocyanine green as a flow tracer. With this combination, the TR-NIR technique can be used to convert DCS data into absolute CBF measurements. The agreement between the two techniques was assessed by concurrent measurements of CBF changes in piglets. A strong correlation between CBF changes measured by TR-NIR and changes in the scaled diffusion coefficient measured by DCS was observed (R2 = 0.93) with a slope of 1.05 ± 0.06 and an intercept of 6.4 ± 4.3% (mean ± standard error). PMID:21750781

  7. Rapid, absolute, and simultaneous quantification of specific pathogenic strain and total bacterial cells using an ultrasensitive dual-color flow cytometer.

    PubMed

    Yang, Lingling; Wu, Lina; Zhu, Shaobin; Long, Yao; Hang, Wei; Yan, Xiaomei

    2010-02-01

    This paper describes a rapid and sensitive strategy for the absolute and simultaneous quantification of specific pathogenic strain and total bacterial cells in a mixture. A laboratory-built compact, high-sensitivity, dual channel flow cytometer (HSDCFCM) was modified to enable dual fluorescence detection. A bacterial cell mixture comprising heat-killed pathogenic Escherichia coli E. coli O157:H7 and harmless E. coli DH5alpha was used as a model system. Pathogenic E. coli O157:H7 cells were selectively labeled by red fluorescent probe via antibody-antigen interaction, and all bacterial cells were stained with membrane-permeable nucleic acid dye that fluoresces green. When each individual bacterium passes through the interrogating laser beam, E. coli O157:H7 emits both red and green fluorescence, while E. coli DH5alpha exhibits only green fluorescence. Because the fluorescence burst generated from each individual bacterial cell was easily distinguished from the background, accurate enumeration and consequently absolute quantification were achieved for both pathogenic and total bacterial cells. By using this strategy, accurate counting of bacteria at a density above 1.0 x 10(5) cells/mL can be accomplished with 1 min of data acquisition time after fluorescent staining. Excellent correlation between the concentrations measured by the HSDCFCM and the conventional plate-counting method were obtained for pure-cultured E. coli O157:H7 (R(2) = 0.9993) and E. coli DH5alpha (R(2) = 0.9998). Bacterial cell mixtures with varying proportions of E. coli O157:H7 and E. coli DH5alpha were measured with good ratio correspondence. We applied the established approach to detecting artificially contaminated drinking water samples; E. coli O157:H7 of 1.0 x 10(2) cells/mL were accurately quantified upon sample enrichment. It is believed that the proposed method will find wide applications in many fields demanding bacterial identification and quantification. PMID:20039721

  8. A New Method for Calibrating Perceptual Salience across Dimensions in Infants: The Case of Color vs. Luminance

    ERIC Educational Resources Information Center

    Kaldy, Zsuzsa; Blaser, Erik A.; Leslie, Alan M.

    2006-01-01

    We report a new method for calibrating differences in perceptual salience across feature dimensions, in infants. The problem of inter-dimensional salience arises in many areas of infant studies, but a general method for addressing the problem has not previously been described. Our method is based on a preferential looking paradigm, adapted to…

  9. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  10. ACCESS: Design, Calibration Strategy, and Status

    NASA Astrophysics Data System (ADS)

    Kaiser, M. E.; Access Team

    2016-05-01

    ACCESS, Absolute Color Calibration Experiment for Standard Stars, is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35–1.7μm bandpass. Establishing improved spectrophotometric standards is important for a broad range of missions and is relevant to many astrophysical problems. Systematic errors associated with problems such as dark energy now compete with the statistical errors and thus limit our ability to answer fundamental questions in astrophysics.

  11. M Dwarf Flare Continuum Variations on One-second Timescales: Calibrating and Modeling of ULTRACAM Flare Color Indices

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.; Wisniewski, John P.; Dhillon, Vik S.; Marsh, Tom R.; Hilton, Eric J.; Brown, Benjamin P.

    2016-04-01

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color-color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 104 K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100. Based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium, based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias, and observations, and based on observations made with the ESO Telescopes

  12. Spectral calibration analysis of the airborne oceanographic lidar

    NASA Technical Reports Server (NTRS)

    Rousey, Carlton E.

    1989-01-01

    Efforts were concentrated on the spectral resolution of the Airborne Oceanographic Lidar (AOL). This year's work was targeted towards the analysis of calibration techniques to enable the AOL to measure absolute radiances of both passive and active modes of operation. Absolute spectral calibration of the AOL is necessary in order to fully understand and monitor the sensitivity and stability of the total system. Calibration is also needed to obtain valid surface truth data, with which to improve the accuracy of satellite-borne oceanic color scanners. In particular, accurate measurements of oceanic chlorophyll concentrations rests upon reliable irradiance calibrations of both laser induced and solar induced chlorophyll fluoresence. An analysis was performed on the spectral calibration methods used by the AOL. The optical path of the instrumentation was examined to study how the radiance from a calibration sphere was influenced. Ray tracing analysis was performed, including the Cassegrain-telescope optics. It was determined that the calibration radiance was significantly effected by optical-defocusing, due to close positioning of the calibration sphere with respect to the telescope. Since the multi-mode usages of the AOL require varying altitudes and trajectories, a computational algorithm was developed to compensate for image distortions of the telescope optics. Secondary mirror blockage, secondary vignetting, and beam divergence was determined, in order to account for the actual amount of calibrated flux received at the spectral sensors.

  13. Calibration and performance of a new in situ multi-channel fluorometer for measurement of colored dissolved organic matter in the ocean

    NASA Astrophysics Data System (ADS)

    Conmy, Robyn N.; Coble, Paula G.; Castillo, Carlos E. Del

    2004-02-01

    The development of multispectral in situ fluorescence instruments greatly enhances the study of the optical properties of Colored Organic Matter (COM). Here, we tested the inter-instrument variability of three WetLabs, Inc. SAFIres using quinine sulfate standards. As with any fluorometer, intensity and spectral biases in fluorescence output due to properties of the SAFIre's optical components necessitate corrections. Low response of the instrument to quinine sulfate and lack of an excitation/emission channel at the fluorescence maximum of this standard precluded direct spectral calibration. Calibrations conducted using seawater as a secondary standard provided an acceptable alternative. The field performance of the SAFIre from two experiments is presented here. Time series contour plots show that the instrument has the ability to detect small differences in COM optical properties, and observed fluorescence emission ratios are indicative of changes in sources of the material over the course of the study. The SAFIre was found to extend multispectral measurements to include high spatial and high temporal resolution.

  14. Polar Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 3 May 2004 This nighttime visible color image was collected on January 1, 2003 during the Northern Summer season near the North Polar Troughs.

    This daytime visible color image was collected on September 4, 2002 during the Northern Spring season in Vastitas Borealis. The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude 79, Longitude 346 East (14 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with

  15. Colored Chaos

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 7 May 2004 This daytime visible color image was collected on May 30, 2002 during the Southern Fall season in Atlantis Chaos.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -34.5, Longitude 183.6 East (176.4 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of

  16. Calibration and Validation of Images from the Mars Reconnaissance Orbiter Mars Color Imager (MARCI) and Context Camera (CTX) Instruments

    NASA Astrophysics Data System (ADS)

    Schaeffer, Derek; Bell, J. F., III; Malin, M.; Caplinger, M.; Calvin, W. M.; Cantor, B.; Clancy, R. T.; Haberle, R. M.; James, P. B.; Lee, S.; Thomas, P.; Wolff, M. J.

    2006-09-01

    The MRO CTX instrument is a monochrome (611±189; nm), linear array CCD pushbroom camera with a nominal surface resolution of 6 m/pixel. The MARCI instrument is a 2-D CCD framing camera with 5 visible (420, 550, 600, 650, and 720 nm) and 2 UV (260 and 320 nm) filters, a 180° field of view, and a nominal resolution of about 1 km/pixel at nadir. Following Mars Orbital Insertion (MOI) in March 2006, CTX and MARCI images were acquired for initial instrument checkouts and validation of the pre-flight and in-flight calibration pipeline. CTX in-flight bias and dark current levels are derived from masked pixels at the edges of the array. A dark current model derived during pre-flight calibration is applied if the masked pixels exhibit a gradient across the field or noise above an acceptable threshold. The CTX flatfield removes residual pixel non-uniformities and a subtle ''jail bar'' effect caused by the CCD's alternating register readout. Radiances are derived from bias, dark, and flat-corrected images using pre-flight scaling factors. Dividing the average radiances by the solar spectral radiance convolved over the CTX filter transmission and applying a Minnaert phase angle correction yields an average I/F level in the CTX post-MOI Mars images near an expected value of 0.2. Bias and dark current subtraction of the MARCI images uses either a pre-flight model or dark sky data from the far left or far right parts of the field (nominally off the Mars limb). The preflight flatfield data were modified based on in-flight performance to remove residual non-pixel uniformities. Some residual pixel-dependent bias nonuniformities were also corrected using in-flight data. Bias, dark, and flat-corrected images were converted to radiance using pre-flight scaling factors. Phase-corrected 7-filter I/F values for the region of Mars imaged during the post-MOI campaign are consistent with previous data.

  17. The 238U/235U isotope ratio of the Earth and the solar system: Constrains from a gravimetrically calibrated U double spike and implications for absolute Pb-Pb ages

    NASA Astrophysics Data System (ADS)

    Weyer, Stefan; Noordmann, Janine; Brennecka, Greg; Richter, Stephan

    2010-05-01

    The ratio of 238U and 235U, the two primordial U isotopes, has been assumed to be constant on Earth and in the solar system. The commonly accepted value for the 238U/235U ratio, which has been used in Pb-Pb dating for the last ~ 30 years, was 137.88. Within the last few years, it has been shown that 1) there are considerable U isotope variations (~1.3‰) within terrestrial material produced by isotope fractionation during chemical reactions [1-3] and 2) there are even larger isotope variations (at least 3.5‰) in calcium-aluminum-rich inclusions (CAIs) in meoteorites that define the currently accepted age of the solar system [4]. These findings are dramatic for geochronology, as a known 238U/235U is a requirement for Pb-Pb dating, the most precise dating technique for absolute ages. As 238U/235U variations can greatly affect the reported absolute Pb-Pb age, understanding and accurately measuring variation of the 238U/235U ratio in various materials is critical, With these new findings, the questions also arises of "How well do we know the average U isotope composition of the Earth and the solar system?" and "How accurate can absolute Pb-Pb ages be?" Our results using a gravimetrically calibrated 233U/236U double spike IRMM 3636 [5] indicate that the U standard NBL 950a, which was commonly used to define the excepted "natural" 238U/235U isotope ratio, has a slightly lower 238U/235U of 137.836 ± 0.024. This value is indistinguishable from the U isotope compositions for NBL 960 and NBL112A, which have been determined by several laboratories, also using the newly calibrated U double spike IRMM 3636 [6]. These findings provide new implications about the average U isotope composition of the Earth and the solar system. Basalts display a very tight range of U isotope variations (~0.25-0.32‰ relative to SRM 950a). Their U isotope composition is also very similar to that of chondrites [4], which however appear to show a slightly larger spread. Accepting terrestrial

  18. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  19. True Colors Shining Through

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image mosaic illustrates how scientists use the color calibration targets (upper left) located on both Mars Exploration Rovers to fine-tune the rovers' sense of color. In the center, spectra, or light signatures, acquired in the laboratory of the colored chips on the targets are shown as lines. Actual data from Mars Exploration Rover Spirit's panoramic camera is mapped on top of these lines as dots. The plot demonstrates that the observed colors of Mars match the colors of the chips, and thus approximate the red planet's true colors. This finding is further corroborated by the picture taken on Mars of the calibration target, which shows the colored chips as they would appear on Earth.

  20. Color image segmentation considering human sensitivity for color pattern variations

    NASA Astrophysics Data System (ADS)

    Yoon, Kuk-Jin; Kweon, In-So

    2001-10-01

    Color image segmentation plays an important role in the computer vision and image processing area. In this paper, we propose a novel color image segmentation algorithm in consideration of human visual sensitivity for color pattern variations by generalizing K-means clustering. Human visual system has different color perception sensitivity according to the spatial color pattern variation. To reflect this effect, we define the CCM (Color Complexity Measure) by calculating the absolute deviation with Gaussian weighting within the local mask and assign weight value to each color vector using the CCM values.

  1. Precise Measurement of the Absolute Fluorescence Yield

    NASA Astrophysics Data System (ADS)

    Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; di Giulio, C.; San Luis, P. Facal; Gonzales, D.; Hojvat, C.; Hörandel, J. R.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; D'Orfeuil, B. Rouille; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.

    2011-09-01

    We present preliminary results of the absolute yield of fluorescence emission in atmospheric gases. Measurements were performed at the Fermilab Test Beam Facility with a variety of beam particles and gases. Absolute calibration of the fluorescence yield to 5% level was achieved by comparison with two known light sources--the Cherenkov light emitted by the beam particles, and a calibrated nitrogen laser. The uncertainty of the energy scale of current Ultra-High Energy Cosmic Rays experiments will be significantly improved by the AIRFLY measurement.

  2. THE INFRARED COLORS OF THE SUN

    SciTech Connect

    Casagrande, L.; Asplund, M.; Ramirez, I.; Melendez, J.

    2012-12-10

    Solar infrared colors provide powerful constraints on the stellar effective temperature scale, but they must be measured with both accuracy and precision in order to do so. We fulfill this requirement by using line-depth ratios to derive in a model-independent way the infrared colors of the Sun, and we use the latter to test the zero point of the Casagrande et al. effective temperature scale, confirming its accuracy. Solar colors in the widely used Two Micron All Sky Survey (2MASS) JHK{sub s} and WISE W1-4 systems are provided: (V - J){sub Sun} = 1.198, (V - H){sub Sun} = 1.484, (V - K{sub s} ){sub Sun} = 1.560, (J - H){sub Sun} = 0.286, (J - K{sub s} ){sub Sun} = 0.362, (H - K{sub s} ){sub Sun} = 0.076, (V - W1){sub Sun} = 1.608, (V - W2){sub Sun} = 1.563, (V - W3){sub Sun} = 1.552, and (V - W4){sub Sun} = 1.604. A cross-check of the effective temperatures derived implementing 2MASS or WISE magnitudes in the infrared flux method confirms that the absolute calibration of the two systems agrees within the errors, possibly suggesting a 1% offset between the two, thus validating extant near- and mid-infrared absolute calibrations. While 2MASS magnitudes are usually well suited to derive T{sub eff}, we find that a number of bright, solar-like stars exhibit anomalous WISE colors. In most cases, this effect is spurious and can be attributed to lower-quality measurements, although for a couple of objects (3% {+-} 2% of the total sample) it might be real, and may hint at the presence of warm/hot debris disks.

  3. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  4. On-orbit calibration of SeaWiFS.

    PubMed

    Eplee, Robert E; Meister, Gerhard; Patt, Frederick S; Barnes, Robert A; Bailey, Sean W; Franz, Bryan A; McClain, Charles R

    2012-12-20

    Ocean color climate data records (CDRs) require water-leaving radiances with 5% absolute and 1% relative accuracies as input. Because of the amplification of any sensor calibration errors by the atmospheric correction, the 1% relative accuracy requirement translates into a 0.1% long-term radiometric stability requirement for top-of-the-atmosphere (TOA) radiances. The rigorous prelaunch and on-orbit calibration program developed and implemented for Sea-viewing Wide Field-of-view Sensor (SeaWiFS) by the NASA Ocean Biology Processing Group (OBPG) has led to the incorporation of significant changes into the on-orbit calibration methodology over the 13-year lifetime of the instrument. Evolving instrument performance and ongoing algorithm refinement have resulted in updates to approaches for the lunar, solar, and vicarious calibration of SeaWiFS. The uncertainties in the calibrated TOA radiances are addressed in terms of accuracy (biases in the measurements), precision (scatter in the measurements), and stability (repeatability of the measurements). The biases are 2%-3% from lunar calibration and 1%-2% from vicarious calibration. The precision is 0.16% from solar signal-to-noise ratios, 0.13% from lunar residuals, and 0.10% from vicarious gains. The long-term stability of the TOA radiances, derived from the lunar time series, is 0.13%. The stability of the vicariously calibrated TOA radiances, incorporating the uncertainties of the in situ measurements and the atmospheric correction, is 0.30%. This stability of the radiometric calibration of SeaWiFS over its 13-year on-orbit lifetime has allowed the OBPG to produce CDRs from the ocean color data set. PMID:23262612

  5. Improving Photometric Calibration of Meteor Video Camera Systems

    NASA Technical Reports Server (NTRS)

    Ehlert, Steven; Kingery, Aaron; Cooke, William

    2016-01-01

    Current optical observations of meteors are commonly limited by systematic uncertainties in photometric calibration at the level of approximately 0.5 mag or higher. Future improvements to meteor ablation models, luminous efficiency models, or emission spectra will hinge on new camera systems and techniques that significantly reduce calibration uncertainties and can reliably perform absolute photometric measurements of meteors. In this talk we discuss the algorithms and tests that NASA's Meteoroid Environment Office (MEO) has developed to better calibrate photometric measurements for the existing All-Sky and Wide-Field video camera networks as well as for a newly deployed four-camera system for measuring meteor colors in Johnson-Cousins BV RI filters. In particular we will emphasize how the MEO has been able to address two long-standing concerns with the traditional procedure, discussed in more detail below.

  6. The Science of Calibration

    NASA Astrophysics Data System (ADS)

    Kent, S. M.

    2016-05-01

    This paper presents a broad overview of the many issues involved in calibrating astronomical data, covering the full electromagnetic spectrum from radio waves to gamma rays, and considering both ground-based and space-based missions. These issues include the science drivers for absolute and relative calibration, the physics behind calibration and the mechanisms used to transfer it from the laboratory to an astronomical source, the need for networks of calibrated astronomical standards, and some of the challenges faced by large surveys and missions.

  7. Calibrated Tully-fisher Relations For Improved Photometric Estimates Of Disk Rotation Velocities

    NASA Astrophysics Data System (ADS)

    Reyes, Reinabelle; Mandelbaum, R.; Gunn, J. E.; Pizagno, J.

    2011-01-01

    We present calibrated scaling relations (also referred to as Tully-Fisher relations or TFRs) between rotation velocity and photometric quantities-- absolute magnitude, stellar mass, and synthetic magnitude (a linear combination of absolute magnitude and color)-- of disk galaxies at z 0.1. First, we selected a parent disk sample of 170,000 galaxies from SDSS DR7, with redshifts between 0.02 and 0.10 and r band absolute magnitudes between -18.0 and -22.5. Then, we constructed a child disk sample of 189 galaxies that span the parameter space-- in absolute magnitude, color, and disk size-- covered by the parent sample, and for which we have obtained kinematic data. Long-slit spectroscopy were obtained from the Dual Imaging Spectrograph (DIS) at the Apache Point Observatory 3.5 m for 99 galaxies, and from Pizagno et al. (2007) for 95 galaxies (five have repeat observations). We find the best photometric estimator of disk rotation velocity to be a synthetic magnitude with a color correction that is consistent with the Bell et al. (2003) color-based stellar mass ratio. The improved rotation velocity estimates have a wide range of scientific applications, and in particular, in combination with weak lensing measurements, they enable us to constrain the ratio of optical-to-virial velocity in disk galaxies.

  8. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  9. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  10. Improving HST Pointing & Absolute Astrometry

    NASA Astrophysics Data System (ADS)

    Lallo, Matthew; Nelan, E.; Kimmer, E.; Cox, C.; Casertano, S.

    2007-05-01

    Accurate absolute astrometry is becoming increasingly important in an era of multi-mission archives and virtual observatories. Hubble Space Telescope's (HST's) Guidestar Catalog II (GSC2) has reduced coordinate error to around 0.25 arcsecond, a factor 2 or more compared with GSC1. With this reduced catalog error, special attention must be given to calibrate and maintain the Fine Guidance Sensors (FGSs) and Science Instruments (SIs) alignments in HST to a level well below this in order to ensure that the accuracy of science product's astrometry keywords and target positioning are limited only by the catalog errors. After HST Servicing Mission 4, such calibrations' improvement in "blind" pointing accuracy will allow for more efficient COS acquisitions. Multiple SIs and FGSs each have their own footprints in the spatially shared HST focal plane. It is the small changes over time in primarily the whole-body positions & orientations of these instruments & guiders relative to one another that is addressed by this work. We describe the HST Cycle 15 program CAL/OTA 11021 which, along with future variants of it, determines and maintains positions and orientations of the SIs and FGSs to better than 50 milli- arcseconds and 0.04 to 0.004 degrees of roll, putting errors associated with the alignment sufficiently below GSC2 errors. We present recent alignment results and assess their errors, illustrate trends, and describe where and how the observer sees benefit from these calibrations when using HST.

  11. DVCS via color dipoles

    SciTech Connect

    Kopeliovich, B.; Schmidt, I.; Siddikov, M.

    2009-03-23

    We study the DVCS amplitude within the color dipole approach employing a nonperturbative wave function for the real photon. We found that the model is able to decribe the absolute value of the cross section and the t-slope, but predicts too steep Q{sup 2}-dependence in comparison with H1 data.

  12. Achieving consistent color and grayscale presentation on medial color displays

    NASA Astrophysics Data System (ADS)

    Fan, Jiahua; Roehrig, Hans; Dallas, William; Krupinski, Elizabeth A.

    2008-03-01

    Color displays are increasingly used for medical imaging, replacing the traditional monochrome displays in radiology for multi-modality applications, 3D representation applications, etc. Color displays are also used increasingly because of wide spread application of Tele-Medicine, Tele-Dermatology and Digital Pathology. At this time, there is no concerted effort for calibration procedures for this diverse range of color displays in Telemedicine and in other areas of the medical field. Using a colorimeter to measure the display luminance and chrominance properties as well as some processing software we developed a first attempt to a color calibration protocol for the medical imaging field.

  13. SAR calibration: A technology review

    NASA Technical Reports Server (NTRS)

    Larson, R. W.; Politis, D. T.; Shuchman, R. A.

    1983-01-01

    Various potential applications of amplitude-calibrated SAR systems are briefly described, along with an estimate of calibration performance requirements. A review of the basic SAR calibration problem is given. For background purposes and to establish consistent definition of terms, various conventional SAR performance parameters are reviewed along with three additional parameters which are directly related to calibrated SAR systems. Techniques for calibrating a SAR are described. Included in the results presented are: calibration philosophy and procedures; review of the calibration signal generator technology development with results describing both the development of instrumentation and internal calibration measurements for two SAR systems; summary of analysis and measurements required to determine optimum retroreflector design and configuration for use as a reference for the absolute calibration of a SAR system; and summary of techniques for in-flight measurements of SAR antenna response.

  14. Absolute brightness temperature measurements at 2.1-mm wavelength

    NASA Technical Reports Server (NTRS)

    Ulich, B. L.

    1974-01-01

    Absolute measurements of the brightness temperatures of the Sun, new Moon, Venus, Mars, Jupiter, Saturn, and Uranus, and of the flux density of DR21 at 2.1-mm wavelength are reported. Relative measurements at 3.5-mm wavelength are also preented which resolve the absolute calibration discrepancy between The University of Texas 16-ft radio telescope and the Aerospace Corporation 15-ft antenna. The use of the bright planets and DR21 as absolute calibration sources at millimeter wavelengths is discussed in the light of recent observations.

  15. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876

  16. Color Blindness

    MedlinePlus

    ... rose in full bloom. If you have a color vision defect, you may see these colors differently than most people. There are three main kinds of color vision defects. Red-green color vision defects are the most ...

  17. Color Blindness

    MedlinePlus

    ... three color cone cells to determine our color perception. Color blindness can occur when one or more ... Anyone who experiences a significant change in color perception should see an ophthalmologist (Eye M.D.). Next ...

  18. Color Blindness

    MedlinePlus

    ... rose in full bloom. If you have a color vision defect, you may see these colors differently than most people. There are three main kinds of color vision defects. Red-green color vision defects are the ...

  19. Applying Color.

    ERIC Educational Resources Information Center

    Burton, David

    1984-01-01

    Most schools teach the triadic color system, utilizing red, blue, and yellow as primary colors. Other systems, such as additive and subtractive color systems, Munsell's Color Notation System, and the Hering Opponent Color Theory, can broaden children's concepts and free them to better choose color in their own work. (IS)

  20. Mars Exploration Rover Navigation Camera in-flight calibration

    USGS Publications Warehouse

    Soderblom, J.M.; Bell, J.F., III; Johnson, J. R.; Joseph, J.; Wolff, M.J.

    2008-01-01

    The Navigation Camera (Navcam) instruments on the Mars Exploration Rover (MER) spacecraft provide support for both tactical operations as well as scientific observations where color information is not necessary: large-scale morphology, atmospheric monitoring including cloud observations and dust devil movies, and context imaging for both the thermal emission spectrometer and the in situ instruments on the Instrument Deployment Device. The Navcams are a panchromatic stereoscopic imaging system built using identical charge-coupled device (CCD) detectors and nearly identical electronics boards as the other cameras on the MER spacecraft. Previous calibration efforts were primarily focused on providing a detailed geometric calibration in line with the principal function of the Navcams, to provide data for the MER navigation team. This paper provides a detailed description of a new Navcam calibration pipeline developed to provide an absolute radiometric calibration that we estimate to have an absolute accuracy of 10% and a relative precision of 2.5%. Our calibration pipeline includes steps to model and remove the bias offset, the dark current charge that accumulates in both the active and readout regions of the CCD, and the shutter smear. It also corrects pixel-to-pixel responsivity variations using flat-field images, and converts from raw instrument-corrected digital number values per second to units of radiance (W m-2 nm-1 sr-1), or to radiance factor (I/F). We also describe here the initial results of two applications where radiance-calibrated Navcam data provide unique information for surface photometric and atmospheric aerosol studies. Copyright 2008 by the American Geophysical Union.

  1. Mars Exploration Rover Navigation Camera in-flight calibration

    NASA Astrophysics Data System (ADS)

    Soderblom, Jason M.; Bell, James F.; Johnson, Jeffrey R.; Joseph, Jonathan; Wolff, Michael J.

    2008-06-01

    The Navigation Camera (Navcam) instruments on the Mars Exploration Rover (MER) spacecraft provide support for both tactical operations as well as scientific observations where color information is not necessary: large-scale morphology, atmospheric monitoring including cloud observations and dust devil movies, and context imaging for both the thermal emission spectrometer and the in situ instruments on the Instrument Deployment Device. The Navcams are a panchromatic stereoscopic imaging system built using identical charge-coupled device (CCD) detectors and nearly identical electronics boards as the other cameras on the MER spacecraft. Previous calibration efforts were primarily focused on providing a detailed geometric calibration in line with the principal function of the Navcams, to provide data for the MER navigation team. This paper provides a detailed description of a new Navcam calibration pipeline developed to provide an absolute radiometric calibration that we estimate to have an absolute accuracy of 10% and a relative precision of 2.5%. Our calibration pipeline includes steps to model and remove the bias offset, the dark current charge that accumulates in both the active and readout regions of the CCD, and the shutter smear. It also corrects pixel-to-pixel responsivity variations using flat-field images, and converts from raw instrument-corrected digital number values per second to units of radiance (W m-2 nm-1 sr-1), or to radiance factor (I/F). We also describe here the initial results of two applications where radiance-calibrated Navcam data provide unique information for surface photometric and atmospheric aerosol studies.

  2. Mid-infrared absolute spectral responsivity scale based on an absolute cryogenic radiometer and an optical parametric oscillator laser

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Shi, Xueshun; Chen, Haidong; Liu, Yulong; Liu, Changming; Chen, Kunfeng; Li, Ligong; Gan, Haiyong; Ma, Chong

    2016-06-01

    We are reporting on a laser-based absolute spectral responsivity scale in the mid-infrared spectral range. By using a mid-infrared tunable optical parametric oscillator as the laser source, the absolute responsivity scale has been established by calibrating thin-film thermopile detectors against an absolute cryogenic radiometer. The thin-film thermopile detectors can be then used as transfer standard detectors. The extended uncertainty of the absolute spectral responsivity measurement has been analyzed to be 0.58%–0.68% (k  =  2).

  3. Crater Floor in Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 5 May 2004 This daytime visible color image was collected on November 18, 2003 during the Southern Summer season in Terra Cimmeria.

    This daytime visible color image was collected on September 4, 2002 during the Northern Spring season in Vastitas Borealis. The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -23.7, Longitude 135.6 East (224.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with

  4. The absolute path command

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  5. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  6. Polar Cap Colors

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 12 May 2004 This daytime visible color image was collected on June 6, 2003 during the Southern Spring season near the South Polar Cap Edge.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -77.8, Longitude 195 East (165 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA

  7. Extension of the absolute flux density scale to 22.285 GHz. [radio astronomy

    NASA Technical Reports Server (NTRS)

    Janssen, M. A.; Golden, L. M.; Welch, W. J.

    1974-01-01

    Extending the absolute flux density scale at microwave wavelengths, the absolute flux densities at 22.285 GHz of several standard sources were determined using the absolute calibrations of the 6.1 meter antenna of the Hat Creek Observatory. Interpolation formulas for each nonthermal standard source have been derived by combining these data with those determined at lower frequencies. The suitability of employing the standard sources for calibrating other antennas is discussed.

  8. Task-dependent color discrimination

    NASA Technical Reports Server (NTRS)

    Poirson, Allen B.; Wandell, Brian A.

    1990-01-01

    When color video displays are used in time-critical applications (e.g., head-up displays, video control panels), the observer must discriminate among briefly presented targets seen within a complex spatial scene. Color-discrimination threshold are compared by using two tasks. In one task the observer makes color matches between two halves of a continuously displayed bipartite field. In a second task the observer detects a color target in a set of briefly presented objects. The data from both tasks are well summarized by ellipsoidal isosensitivity contours. The fitted ellipsoids differ both in their size, which indicates an absolute sensitivity difference, and orientation, which indicates a relative sensitivity difference.

  9. Color correction using color-flow eigenspace model in color face recognition

    NASA Astrophysics Data System (ADS)

    Choi, JaeYoung; Ro, Yong Man

    2009-02-01

    We propose a new color correction approach which, as opposed to existing methods, take advantages of a given pair of two color face images (probe and gallery) in the color face recognition (FR) framework. In the proposed color correction method, the color-flow vector and color-flow eigenspace model are developed to generate color corrected probe images. The main contribution of this paper is threefold: 1) the proposed method can reliably compensate the non-linear photic variations imposed on probe face images comparing to traditional color correction techniques; 2) to the best of our knowledge, for the first time, we conduct extensive experiment studies to compare the effectiveness of various color correction methods to deal with photometrical distortions in probe images; 3) the proposed method can significantly enhance the recognition performance degraded by severely illuminant probe face images. Two standard face databases CMU PIE and XM2VTSDB were used to demonstrate the effectiveness of the proposed color correction method. The usefulness of the proposed method in the color FR is shown in terms of both absolute and comparative recognition performances against four traditional color correction solutions of White balance, Gray-world, Retinex, and Color-by-correlation.

  10. Uncertainty Assessment of the SeaWiFS On-Orbit Calibration

    NASA Technical Reports Server (NTRS)

    Eplee, Robert E., Jr.; Meister, Gerhard; Patt, Frederick S.; Franz, Bryan A.; McClain, Charles R.

    2011-01-01

    Ocean color climate data records require water-leaving radiances with 5% absolute and 1% relative accuracies as input. Because of the amplification of any sensor calibration errors by the atmospheric correction, the 1% relative accuracy requirement translates into a 0.1% long-term radiometric stability requirement for top-of-the atmosphere radiances. The rigorous on-orbit calibration program developed and implemented for SeaWiFS by the NASA Ocean Biology Processing Group (OBPG) Calibration and Validation Team (CVT) has allowed the CVT to maintain the stability of the radiometric calibration of SeaWiFS at 0.13% or better over the mission. The uncertainties in the resulting calibrated top-of-the-atmosphere (TOA) radiances can be addressed in terms of accuracy (biases in the measurements), precision (scatter in the measurements), and stability (repeatability of the measurements). The calibration biases of lunar observations relative to the USGS RObotic Lunar Observatory (ROLO) photometric model of the Moon are 2-3%. The biases from the vicarious calibration against the Marine Optical Buoy (MOBY) are 1-2%. The precision of the calibration derived from the solar calibration signal-tonoise ratios are 0.16%, from the lunar residuals are 0.13%, and from the vicarious gains are 0.10%. The long-term stability of the TOA radiances, derived from the lunar time series, is 0.13%. The stability of the vicariouslycalibrated TOA radiances, incorporating the uncertainties in the MOBY measurements and the atmospheric correction, is 0.30%. These results allow the OBPG to produce climate data records from the SeaWiFS ocean color data.

  11. Strategy for the absolute neutron emission measurement on ITER

    SciTech Connect

    Sasao, M.; Bertalot, L.; Ishikawa, M.; Popovichev, S.

    2010-10-15

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10{sup 10} n/s (neutron/second) for DT and 10{sup 8} n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  12. Color blindness

    MedlinePlus

    ... have trouble telling the difference between red and green. This is the most common type of color ... color blindness often have problems seeing reds and greens, too. The most severe form of color blindness ...

  13. Color blindness

    MedlinePlus

    ... care provider or eye specialist can check your color vision in several ways. Testing for color blindness is ... Adams AJ, Verdon WA, Spivey BE. Color vision. In: Tasman W, Jaeger EA, eds. ... PA: Lippincott Williams & Wilkins; 2013:vol. 2, chap ...

  14. Absolute dosimetry for extreme-ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Berger, Kurt W.; Campiotti, Richard H.

    2000-06-01

    The accurate measurement of an exposure dose reaching the wafer on an extreme ultraviolet (EUV) lithographic system has been a technical challenge directly applicable to the evaluation of candidate EUV resist materials and calculating lithography system throughputs. We have developed a dose monitoring sensor system that can directly measure EUV intensities at the wafer plane of a prototype EUV lithographic system. This sensor system, located on the wafer stage adjacent to the electrostatic chuck used to grip wafers, operates by translating the sensor into the aerial image, typically illuminating an 'open' (unpatterned) area on the reticle. The absolute signal strength can be related to energy density at the wafer, and thus used to determine resist sensitivity, and the signal as a function of position can be used to determine illumination uniformity at the wafer plane. Spectral filtering to enhance the detection of 13.4 nm radiation was incorporated into the sensor. Other critical design parameters include the packaging and amplification technologies required to place this device into the space and vacuum constraints of a EUV lithography environment. We describe two approaches used to determine the absolute calibration of this sensor. The first conventional approach requires separate characterization of each element of the sensor. A second novel approach uses x-ray emission from a mildly radioactive iron source to calibrate the absolute response of the entire sensor system (detector and electronics) in a single measurement.

  15. High-resolution color photographic reproductions

    NASA Astrophysics Data System (ADS)

    McCann, John J.

    1997-04-01

    This paper will describe a fine-art reproduction process that: captures painting information with high-resolution color photographs; scans the information into a 300 megabyte digital file; performs a 3D color calibration in a dedicated hardware color-transform circuit; makes a master positive color transparency and makes a reproduction on polaroid color print film. The master transparency can be used to expose a large number of images. This combines the efficiency of instant photography with the color fidelity of digital color transforms.

  16. The LED calibration system of the SPHERE-2 detector

    NASA Astrophysics Data System (ADS)

    Antonov, R. A.; Bonvech, E. A.; Chernov, D. V.; Podgrudkov, D. A.; Roganova, T. M.

    2016-04-01

    An absolute calibration method for the PMT mosaic used in the SPHERE-2 experiment is presented. The method is based on the relative calibration of all PMTs in the mosaic to a single stable PMT, incorporated in it, during each measurement event and subsequent absolute calibration of that single PMT using a known stable light source. The results of the SPHERE-2 detector PMTs calibration are presented and are discussed.

  17. Phoenix Color Targets

    NASA Technical Reports Server (NTRS)

    2008-01-01

    These images of three Phoenix color targets were taken on sols 1 and 2 by the Surface Stereo Imager (SSI) on board the Phoenix lander. The bottom target was imaged in approximate color (SSI's red, green, and blue filters: 600, 530, and 480 nanometers), while the others were imaged with an infrared filter (750 nanometers). All of them will be imaged many times over the mission to monitor the color calibration of the camera. The two at the top show grains 2 to 3 millimeters in size that were likely lifted to the Phoenix deck during landing. Each of the large color chips on each target contains a strong magnet to protect the interior material from Mars' magnetic dust.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Photometer calibration error using extended standard sources

    NASA Technical Reports Server (NTRS)

    Torr, M. R.; Hays, P. B.; Kennedy, B. C.; Torr, D. G.

    1976-01-01

    As part of a project to compare measurements of the night airglow made by the visible airglow experiment on the Atmospheric Explorer-C satellite, the standard light sources of several airglow observatories were compared with the standard source used in the absolute calibration of the satellite photometer. In the course of the comparison, it has been found that serious calibration errors (up to a factor of two) can arise when a calibration source with a reflecting surface is placed close to an interference filter. For reliable absolute calibration, the source should be located at a distance of at least five filter radii from the interference filter.

  19. Colorful Chemistry.

    ERIC Educational Resources Information Center

    Williams, Suzanne

    1991-01-01

    Described is an color-making activity where students use food coloring, eyedroppers, and water to make various colored solutions. Included are the needed materials and procedures. Students are asked to write up the formulas for making their favorite color. (KR)

  20. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  1. Testing the quasi-absolute method in photon activation analysis

    SciTech Connect

    Sun, Z. J.; Wells, D.; Starovoitova, V.; Segebade, C.

    2013-04-19

    In photon activation analysis (PAA), relative methods are widely used because of their accuracy and precision. Absolute methods, which are conducted without any assistance from calibration materials, are seldom applied for the difficulty in obtaining photon flux in measurements. This research is an attempt to perform a new absolute approach in PAA - quasi-absolute method - by retrieving photon flux in the sample through Monte Carlo simulation. With simulated photon flux and database of experimental cross sections, it is possible to calculate the concentration of target elements in the sample directly. The QA/QC procedures to solidify the research are discussed in detail. Our results show that the accuracy of the method for certain elements is close to a useful level in practice. Furthermore, the future results from the quasi-absolute method can also serve as a validation technique for experimental data on cross sections. The quasi-absolute method looks promising.

  2. Color and the worldwide web

    NASA Astrophysics Data System (ADS)

    Kinlock, Raymond S.

    2002-06-01

    Guidelines to publishing and transmitting color via the Internet. An introduction to how individuals can cope with color issues using off the shelf package solutions and a glimpse to what there is on the development frontier. Topics to be discussed include: (1) Optimizing your files for transfer via the net with an off the shelf software package. (2) Embedded color management packages in some off the shelf packages. (3) Mac and Window differences. (4) A look at compression pros and cons. (5) An introduction to some of the high end color calibration systems and equipment.

  3. ABSOLUTE POLARIMETRY AT RHIC.

    SciTech Connect

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  4. Automatic beamline calibration procedures

    SciTech Connect

    Corbett, W.J.; Lee, M.J.; Zambre, Y.

    1992-03-01

    Recent experience with the SLC and SPEAR accelerators have led to a well-defined set of procedures for calibration of the beamline model using the orbit fitting program, RESOLVE. Difference orbit analysis is used to calibrate quadrupole strengths, BPM sensitivities, corrector strengths, focusing effects from insertion devices, and to determine the source of dispersion and coupling errors. Absolute orbit analysis is used to locate quadrupole misalignments, BPM offsets, or beam loss. For light source applications, the photon beam source coordinates can be found. The result is an accurate model of the accelerator which can be used for machine control. In this paper, automatable beamline calibration procedures are outlined and illustrated with recent examples. 5 refs.

  5. Characterization of the DARA solar absolute radiometer

    NASA Astrophysics Data System (ADS)

    Finsterle, W.; Suter, M.; Fehlmann, A.; Kopp, G.

    2011-12-01

    The Davos Absolute Radiometer (DARA) prototype is an Electrical Substitution Radiometer (ESR) which has been developed as a successor of the PMO6 type on future space missions and ground based TSI measurements. The DARA implements an improved thermal design of the cavity detector and heat sink assembly to minimize air-vacuum differences and to maximize thermal symmetry of measuring and compensating cavity. The DARA also employs an inverted viewing geometry to reduce internal stray light. We will report on the characterization and calibration experiments which were carried out at PMOD/WRC and LASP (TRF).

  6. Swarm's Absolute Scalar Magnetometer metrological performances

    NASA Astrophysics Data System (ADS)

    Leger, J.; Fratter, I.; Bertrand, F.; Jager, T.; Morales, S.

    2012-12-01

    The Absolute Scalar Magnetometer (ASM) has been developed for the ESA Earth Observation Swarm mission, planned for launch in November 2012. As its Overhauser magnetometers forerunners flown on Oersted and Champ satellites, it will deliver high resolution scalar measurements for the in-flight calibration of the Vector Field Magnetometer manufactured by the Danish Technical University. Latest results of the ground tests carried out to fully characterize all parameters that may affect its accuracy, both at instrument and satellite level, will be presented. In addition to its baseline function, the ASM can be operated either at a much higher sampling rate (burst mode at 250 Hz) or in a dual mode where it also delivers vector field measurements as a by-product. The calibration procedure and the relevant vector performances will be discussed.

  7. Gafchromic EBT2 film dosimetry in reflection mode with a novel plan-based calibration method

    SciTech Connect

    Mendez, I.; Hartman, V.; Hudej, R.; Strojnik, A.; Casar, B.

    2013-01-15

    Purpose:A dosimetric system formed by Gafchromic EBT2 radiochromic film and Epson Expression 10000XL flatbed scanner was commissioned for dosimetry. In this paper, several open questions concerning the commissioning of radiochromic films for dosimetry were addressed: (a) is it possible to employ this dosimetric system in reflection mode; (b) if so, can the methods used in transmission mode also be used in reflection mode; (c) is it possible to obtain accurate absolute dose measurements with Gafchromic EBT2 films; (d) which calibration method should be followed; (e) which calibration models should be used; and (f) does three-color channel dosimetry offer a significant improvement over single channel dosimetry. The purpose of this paper is to help clarify these questions. Methods: In this study, films were scanned in reflection mode, the effect of surrounding film was evaluated and the feasibility of EBT2 film dosimetry in reflection mode was studied. EBT2's response homogeneity has been reported to lead to excessive dose uncertainties. To overcome this problem, a new plan-based calibration method was implemented. Plan-based calibration can use every pixel and each of the three color channels of the scanned film to obtain the parameters of the calibration model. A model selection analysis was conducted to select lateral correction and sensitometric curve models. The commonly used calibration with fragments was compared with red-channel plan-based calibration and with three-channel plan-based calibration. Results: No effect of surrounding film was found in this study. The film response inhomogeneity in EBT2 films was found to be important not only due to differences in the fog but also due to differences in sensitivity. The best results for lateral corrections were obtained using absolute corrections independent of the dose. With respect to the sensitometric curves, an empirical polynomial fit of order 4 was found to obtain results equivalent to a gamma

  8. Automatic and robust extrinsic camera calibration for high-accuracy mobile mapping

    NASA Astrophysics Data System (ADS)

    Goeman, Werner; Douterloigne, Koen; Bogaert, Peter; Pires, Rui; Gautama, Sidharta

    2012-10-01

    A mobile mapping system (MMS) is the answer of the geoinformation community to the exponentially growing demand for various geospatial data with increasingly higher accuracies and captured by multiple sensors. As the mobile mapping technology is pushed to explore its use for various applications on water, rail, or road, the need emerges to have an external sensor calibration procedure which is portable, fast and easy to perform. This way, sensors can be mounted and demounted depending on the application requirements without the need for time consuming calibration procedures. A new methodology is presented to provide a high quality external calibration of cameras which is automatic, robust and fool proof.The MMS uses an Applanix POSLV420, which is a tightly coupled GPS/INS positioning system. The cameras used are Point Grey color video cameras synchronized with the GPS/INS system. The method uses a portable, standard ranging pole which needs to be positioned on a known ground control point. For calibration a well studied absolute orientation problem needs to be solved. Here, a mutual information based image registration technique is studied for automatic alignment of the ranging pole. Finally, a few benchmarking tests are done under various lighting conditions which proves the methodology's robustness, by showing high absolute stereo measurement accuracies of a few centimeters.

  9. Implants as absolute anchorage.

    PubMed

    Rungcharassaeng, Kitichai; Kan, Joseph Y K; Caruso, Joseph M

    2005-11-01

    Anchorage control is essential for successful orthodontic treatment. Each tooth has its own anchorage potential as well as propensity to move when force is applied. When teeth are used as anchorage, the untoward movements of the anchoring units may result in the prolonged treatment time, and unpredictable or less-than-ideal outcome. To maximize tooth-related anchorage, techniques such as differential torque, placing roots into the cortex of the bone, the use of various intraoral devices and/or extraoral appliances have been implemented. Implants, as they are in direct contact with bone, do not possess a periodontal ligament. As a result, they do not move when orthodontic/orthopedic force is applied, and therefore can be used as "absolute anchorage." This article describes different types of implants that have been used as orthodontic anchorage. Their clinical applications and limitations are also discussed. PMID:16463910

  10. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  11. Radiation calibration targets

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Several prominent features of Mars Pathfinder and surrounding terrain are seen in this image, taken by the Imager for Mars Pathfinder on July 4 (Sol 1), the spacecraft's first day on the Red Planet. Portions of a lander petal are at the lower part of the image. At the left, the mechanism for the high-gain antenna can be seen. The dark area along the right side of the image represents a portion of the low-gain antenna. The radiation calibration target is at the right. The calibration target is made up of a number of materials with well-characterized colors. The known colors of the calibration targets allow scientists to determine the true colors of the rocks and soils of Mars. Three bull's-eye rings provide a wide range of brightness for the camera, similar to a photographer's grayscale chart. In the middle of the bull's-eye is a 5-inch tall post that casts a shadow, which is distorted in this image due to its location with respect to the lander camera.

    A large rock is located at the near center of the image. Smaller rocks and areas of soil are strewn across the Martian terrain up to the horizon line.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C.

  12. Color realism and color science.

    PubMed

    Byrne, Alex; Hilbert, David R

    2003-02-01

    The target article is an attempt to make some progress on the problem of color realism. Are objects colored? And what is the nature of the color properties? We defend the view that physical objects (for instance, tomatoes, radishes, and rubies) are colored, and that colors are physical properties, specifically, types of reflectance. This is probably a minority opinion, at least among color scientists. Textbooks frequently claim that physical objects are not colored, and that the colors are "subjective" or "in the mind." The article has two other purposes: First, to introduce an interdisciplinary audience to some distinctively philosophical tools that are useful in tackling the problem of color realism and, second, to clarify the various positions and central arguments in the debate. The first part explains the problem of color realism and makes some useful distinctions. These distinctions are then used to expose various confusions that often prevent people from seeing that the issues are genuine and difficult, and that the problem of color realism ought to be of interest to anyone working in the field of color science. The second part explains the various leading answers to the problem of color realism, and (briefly) argues that all views other than our own have serious difficulties or are unmotivated. The third part explains and motivates our own view, that colors are types of reflectances and defends it against objections made in the recent literature that are often taken as fatal. PMID:14598439

  13. Techniques of absolute low energy x-ray calibration

    SciTech Connect

    Day, R.H.

    1986-01-01

    Recent advances in pulsed plasma research, materials science, and astrophysics have required many new diagnostic instruments for use in the low energy x-ray regime. The characterization of these instruments has provided a challenge to instrument designers and provided the momentum to improve x-ray sources and dosimetry techniques. In this paper, the present state-of-the-art in low energy x-ray characterization techniques is reviewed. A summary is given of low energy x-ray generator technology and dosimetry techniques including a discussion of thin window proportional counters and ionization chambers. A review is included of the widely used x-ray data bases and a sample of ultrasoft x-ray measuring procedures, chopped x-ray source generators, phase sensitive detection of ultralow currents, and angular divergence measurements.

  14. Improved cavity-type absolute total-radiation radiometer

    NASA Technical Reports Server (NTRS)

    Kendall, J. M., Sr.; Plamondon, J. A., Jr.

    1967-01-01

    Conical cavity-type absolute radiometer measures the intensity of radiant energy to an accuracy of one to two percent in a vacuum of ten to the minus fifth torr or lower. There is a uniform response over the ultraviolet, visible, and infrared range, and it requires no calibration or comparison with a radiation standard.

  15. Seeing Color

    ERIC Educational Resources Information Center

    Texley, Juliana

    2005-01-01

    Colors are powerful tools for engaging children, from the youngest years onward. We hang brightly patterned mobiles above their cribs and help them learn the names of colors as they begin to record their own ideas in pictures and words. Colors can also open the door to an invisible world of electromagnetism, even when children can barely imagine…

  16. Method for calibration of plutonium NDA

    SciTech Connect

    Lemming, J.F.; Campbell, A.R.; Rodenburg, W.W.

    1980-01-01

    Calibration materials characterized by calorimetric assay can be a practical alternative to synthetic standards for the calibration of plutonium nondestructive assay. Calorimetric assay is an effective measurement system for the characterization because: it can give an absolute assay from first principles when the isotopic composition is known, it is insensitive to most matrix effects, and its traceability to international measurement systems has been demonstrated.

  17. Absolute cavity pyrgeometer

    DOEpatents

    Reda, Ibrahim

    2013-10-29

    Implementations of the present disclosure involve an apparatus and method to measure the long-wave irradiance of the atmosphere or long-wave source. The apparatus may involve a thermopile, a concentrator and temperature controller. The incoming long-wave irradiance may be reflected from the concentrator to a thermopile receiver located at the bottom of the concentrator to receive the reflected long-wave irradiance. In addition, the thermopile may be thermally connected to a temperature controller to control the device temperature. Through use of the apparatus, the long-wave irradiance of the atmosphere may be calculated from several measurements provided by the apparatus. In addition, the apparatus may provide an international standard of pyrgeometers' calibration that is traceable back to the International System of Units (SI) rather than to a blackbody atmospheric simulator.

  18. STIS Calibration Pipeline

    NASA Astrophysics Data System (ADS)

    Hulbert, S.; Hodge, P.; Lindler, D.; Shaw, R.; Goudfrooij, P.; Katsanis, R.; Keener, S.; McGrath, M.; Bohlin, R.; Baum, S.

    1997-05-01

    Routine calibration of STIS observations in the HST data pipeline is performed by the CALSTIS task. CALSTIS can: subtract the over-scan region and a bias image from CCD observations; remove cosmic ray features from CCD observations; correct global nonlinearities for MAMA observations; subtract a dark image; and, apply flat field corrections. In the case of spectral data, CALSTIS can also: assign a wavelength to each pixel; apply a heliocentric correction to the wavelengths; convert counts to absolute flux; process the automatically generated spectral calibration lamp observations to improve the wavelength solution; rectify two-dimensional (longslit) spectra; subtract interorder and sky background; and, extract one-dimensional spectra. CALSTIS differs in significant ways from the current HST calibration tasks. The new code is written in ANSI C and makes use of a new C interface to IRAF. The input data, reference data, and output calibrated data are all in FITS format, using IMAGE or BINTABLE extensions. Error estimates are computed and include contributions from the reference images. The entire calibration can be performed by one task, but many steps can also be performed individually.

  19. Absolute neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Wolf, Joachim

    2011-10-01

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.

  20. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  1. Determination of CRT color gamut boundaries in perceptual color space

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Xu, Haisong

    2005-02-01

    CRT color gamut boundaries can be determined by two steps workflow. Firstly, the display should be calibrated with the method recommended by CIE to characterize the relationship between CIE tristimulus values and DAC values. The nonlinear relationship of each electronic channel between the color of the radiant output of CRT displays and the digital DAC values can be characterized accurately with GOG model using parameters of gain, offset, and gamma. Secondly, color gamut boundary can be determined using a fast and accurate algorithm. Generally, in a color space, any chosen degree of lightness will reduce that space to a plane. The color gamut on this equal-lightness plane can be transformed into RGB DAC value space. Since locations on the edges and surfaces of RGB DAC value space will correspond colors with relatively high saturation, the boundary of the curved surface in RGB DAC value space can be quickly computed for certain lightness. The accurate color gamut is obtained by mapping this boundary over to such a perceptual color space as CIELAB or CIELUV uniform color space. The key issue of this algorithm is to compute the equal-lightness curved surface in RGB DAC value space. The resolution of device gamut description depends on the number of segments that the lightness axis is separated into in the perceptual color space.

  2. A color sensor wavelength meter

    NASA Astrophysics Data System (ADS)

    Durfee, Dallin; Jackson, Jarom; Otterstrom, Nils; Jones, Tyler; Archibald, James

    2016-05-01

    We will discuss a laser wavelength meter based on a commercial color sensor chip consisting of an array of photodiodes with different absorptive color filters. By comparing the relative amplitudes of light on the photodiodes, the wavelength of light can be determined with picometer-level precision and with picometer-scale calibration drift over a period longer than a month. This work was supported by NSF Grant Number PHY-1205736.

  3. Color Categories and Color Appearance

    ERIC Educational Resources Information Center

    Webster, Michael A.; Kay, Paul

    2012-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue-green boundary, to test whether chromatic differences across the boundary…

  4. Color Terms and Color Concepts

    ERIC Educational Resources Information Center

    Davidoff, Jules

    2006-01-01

    In their lead articles, both Kowalski and Zimiles (2006) and O'Hanlon and Roberson (2006) declare a general relation between color term knowledge and the ability to conceptually represent color. Kowalski and Zimiles, in particular, argue for a priority for the conceptual representation in color term acquisition. The complexities of the interaction…

  5. 1987 calibration of the TFTR neutron spectrometers

    SciTech Connect

    Barnes, C.W.; Strachan, J.D.; Princeton Univ., NJ . Plasma Physics Lab.)

    1989-12-01

    The {sup 3}He neutron spectrometer used for measuring ion temperatures and the NE213 proton recoil spectrometer used for triton burnup measurements were absolutely calibrated with DT and DD neutron generators placed inside the TFTR vacuum vessel. The details of the detector response and calibration are presented. Comparisons are made to the neutron source strengths measured from other calibrated systems. 23 refs., 19 figs., 6 tabs.

  6. Redetermining CEBAF's Absolute Energy

    NASA Astrophysics Data System (ADS)

    Su, Tong; Jlab Marathon Collaboration

    2015-04-01

    With the upgrade of the Jefferson Lab accelerator (CEBAF) from 6 GeV max energy to 12 GeV, all the dipole magnets in the machine were refurbished. Most of them were switched from open c-shaped to closed h-shaped by adding extra iron. With these upgraded magnets, the energy calibration of the accelerator needed to be redetermined. We will show how an extra external dipole, which is run in series with those in the machine, helps us cross check the current in the magnets as well as precisely map out the integral field for any machine setting. Using knowledge of the relative performance of the dipoles as well as the bend angle into the Hall, has allowed us to already determine a 4th pass 7 GeV beam to better than 7 MeV. In the future, we will use g-2 spin precession as a second independent energy determination. This work is supported by Kent State University, NSF Grant PHY-1405814, and DOE Contract DE-AC05-06OR23177 (JLab).

  7. Color Analysis

    NASA Astrophysics Data System (ADS)

    Wrolstad, Ronald E.; Smith, Daniel E.

    Color, flavor, and texture are the three principal quality attributes that determine food acceptance, and color has a far greater influence on our judgment than most of us appreciate. We use color to determine if a banana is at our preferred ripeness level, and a discolored meat product can warn us that the product may be spoiled. The marketing departments of our food corporations know that, for their customers, the color must be "right." The University of California Davis scorecard for wine quality designates four points out of 20, or 20% of the total score, for color and appearance (1). Food scientists who establish quality control specifications for their product are very aware of the importance of color and appearance. While subjective visual assessment and use of visual color standards are still used in the food industry, instrumental color measurements are extensively employed. Objective measurement of color is desirable for both research and industrial applications, and the ruggedness, stability, and ease of use of today's color measurement instruments have resulted in their widespread adoption.

  8. Processing of Color Words Activates Color Representations

    ERIC Educational Resources Information Center

    Richter, Tobias; Zwaan, Rolf A.

    2009-01-01

    Two experiments were conducted to investigate whether color representations are routinely activated when color words are processed. Congruency effects of colors and color words were observed in both directions. Lexical decisions on color words were faster when preceding colors matched the color named by the word. Color-discrimination responses…

  9. Psychophysical contrast calibration

    PubMed Central

    To, Long; Woods, Russell L; Goldstein, Robert B; Peli, Eli

    2013-01-01

    Electronic displays and computer systems offer numerous advantages for clinical vision testing. Laboratory and clinical measurements of various functions and in particular of (letter) contrast sensitivity require accurately calibrated display contrast. In the laboratory this is achieved using expensive light meters. We developed and evaluated a novel method that uses only psychophysical responses of a person with normal vision to calibrate the luminance contrast of displays for experimental and clinical applications. Our method combines psychophysical techniques (1) for detection (and thus elimination or reduction) of display saturating nonlinearities; (2) for luminance (gamma function) estimation and linearization without use of a photometer; and (3) to measure without a photometer the luminance ratios of the display’s three color channels that are used in a bit-stealing procedure to expand the luminance resolution of the display. Using a photometer we verified that the calibration achieved with this procedure is accurate for both LCD and CRT displays enabling testing of letter contrast sensitivity to 0.5%. Our visual calibration procedure enables clinical, internet and home implementation and calibration verification of electronic contrast testing. PMID:23643843

  10. Absolute Identification by Relative Judgment

    ERIC Educational Resources Information Center

    Stewart, Neil; Brown, Gordon D. A.; Chater, Nick

    2005-01-01

    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…

  11. Be Resolute about Absolute Value

    ERIC Educational Resources Information Center

    Kidd, Margaret L.

    2007-01-01

    This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

  12. Calibration of X-Ray Observatories

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; L'Dell, Stephen L.

    2011-01-01

    Accurate calibration of x-ray observatories has proved an elusive goal. Inaccuracies and inconsistencies amongst on-ground measurements, differences between on-ground and in-space performance, in-space performance changes, and the absence of cosmic calibration standards whose physics we truly understand have precluded absolute calibration better than several percent and relative spectral calibration better than a few percent. The philosophy "the model is the calibration" relies upon a complete high-fidelity model of performance and an accurate verification and calibration of this model. As high-resolution x-ray spectroscopy begins to play a more important role in astrophysics, additional issues in accurately calibrating at high spectral resolution become more evident. Here we review the challenges of accurately calibrating the absolute and relative response of x-ray observatories. On-ground x-ray testing by itself is unlikely to achieve a high-accuracy calibration of in-space performance, especially when the performance changes with time. Nonetheless, it remains an essential tool in verifying functionality and in characterizing and verifying the performance model. In the absence of verified cosmic calibration sources, we also discuss the notion of an artificial, in-space x-ray calibration standard. 6th

  13. THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET

    SciTech Connect

    Brown, Peter J.; Roming, Peter W. A.; Ciardullo, Robin; Gronwall, Caryl; Hoversten, Erik A.; Pritchard, Tyler; Milne, Peter; Bufano, Filomena; Mazzali, Paolo; Elias-Rosa, Nancy; Filippenko, Alexei V.; Li Weidong; Foley, Ryan J.; Hicken, Malcolm; Kirshner, Robert P.; Gehrels, Neil; Holland, Stephen T.; Immler, Stefan; Phillips, Mark M.; Still, Martin

    2010-10-01

    We examine the absolute magnitudes and light-curve shapes of 14 nearby (redshift z = 0.004-0.027) Type Ia supernovae (SNe Ia) observed in the ultraviolet (UV) with the Swift Ultraviolet/Optical Telescope. Colors and absolute magnitudes are calculated using both a standard Milky Way extinction law and one for the Large Magellanic Cloud that has been modified by circumstellar scattering. We find very different behavior in the near-UV filters (uvw1{sub rc} covering {approx}2600-3300 A after removing optical light, and u {approx} 3000-4000 A) compared to a mid-UV filter (uvm2 {approx}2000-2400 A). The uvw1{sub rc} - b colors show a scatter of {approx}0.3 mag while uvm2-b scatters by nearly 0.9 mag. Similarly, while the scatter in colors between neighboring filters is small in the optical and somewhat larger in the near-UV, the large scatter in the uvm2 - uvw1 colors implies significantly larger spectral variability below 2600 A. We find that in the near-UV the absolute magnitudes at peak brightness of normal SNe Ia in our sample are correlated with the optical decay rate with a scatter of 0.4 mag, comparable to that found for the optical in our sample. However, in the mid-UV the scatter is larger, {approx}1 mag, possibly indicating differences in metallicity. We find no strong correlation between either the UV light-curve shapes or the UV colors and the UV absolute magnitudes. With larger samples, the UV luminosity might be useful as an additional constraint to help determine distance, extinction, and metallicity in order to improve the utility of SNe Ia as standardized candles.

  14. Colored Crater in Vastitas Borealis

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 30 April 2004 This daytime visible color image was collected on September 4, 2002 during the Northern Spring season in Vastitas Borealis.

    This daytime visible color image was collected on September 4, 2002 during the Northern Spring season in Vastitas Borealis. The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude 69.3, Longitude 40.9 East ( 319.1 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with

  15. [Hair colorants].

    PubMed

    Urbanek-Karłowska, B; Luks, E; Jedra, M; Kiss, E; Malanowska, M

    1997-01-01

    The properties, mode of action and its duration of the preparations used for hair dyeing are described, together with their chemical components, and also preparations of herbal origin. The chemical reactions are described in detail which lead the development of a color polymer occurring during hair dyeing. The studies are presented which are used for toxicological assessment of the raw materials which are the components of the colorants, and the list is included of hair colorants permitted for use in Poland. PMID:9562811

  16. Quantum Color

    ScienceCinema

    Lincoln, Don

    2016-07-16

    The idea of electric charges and electricity in general is a familiar one to the science savvy viewer. However, electromagnetism is but one of the four fundamental forces and not the strongest one. The strongest of the fundamental forces is called the strong nuclear force and it has its own associated charge. Physicists call this charge ?color? in analogy with the primary colors, although there is no real connection with actual color. In this video, Fermilab?s Dr. Don Lincoln explains why it is that we live in a colorful world.

  17. White Rock in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image shows the wind eroded deposit in Pollack Crater called 'White Rock'. This image was collected during the Southern Fall Season.

    Image information: VIS instrument. Latitude -8, Longitude 25.2 East (334.8 West). 0 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of

  18. False-color Dalmatian Terrain

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 10 May 2004 This daytime visible color image was collected on May 18, 2003 during the Southern Spring season in Noachis Terra.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -74, Longitude 351.9 East (8.1 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space

  19. Iani Chaos in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image of a portion of the Iani Chaos region was collected during the Southern Fall season.

    Image information: VIS instrument. Latitude -2.6 Longitude 342.4 East (17.6 West). 36 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The

  20. Color Metric.

    ERIC Educational Resources Information Center

    Illinois State Office of Education, Springfield.

    This booklet was designed to convey metric information in pictoral form. The use of pictures in the coloring book enables the more mature person to grasp the metric message instantly, whereas the younger person, while coloring the picture, will be exposed to the metric information long enough to make the proper associations. Sheets of the booklet…

  1. Color Poetry.

    ERIC Educational Resources Information Center

    Ferry, John E.

    1980-01-01

    Elementary students were asked to find 12 colors and 5 sounds in their immediate natural environment and to describe in writing where they saw each color in relationship to themselves. The writings formed a type of poetry which expressed involvement with and observation of the environment. (CM)

  2. Eleven Colors That Are Almost Never Confused

    NASA Astrophysics Data System (ADS)

    Boynton, Robert M.

    1989-08-01

    1.1. Three functions of color vision. Setting aside the complex psychological effects of color, related to esthetics, fashion, and mood, three relatively basic functions of color vision, which can be examined scientifically, are discernable. (1) With the eye in a given state of adaptation, color vision allows the perception of signals that otherwise would be below threshold, and therefore lost to perception. Evidence for this comes from a variety of two-color threshold experiments. (2) Visible contours can be maintained by color differences alone, regardless of the relative radiances of the two parts of the field whose junction defines the border. For achromatic vision, contour disappears at the isoluminant point. (3) Color specifies what seems to be an absolute property of a surface, one that enhances its recognizability and allows a clearer separation and classification of non-contiguous elements in the visual field.

  3. MAGSAT: Vector magnetometer absolute sensor alignment determination

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1981-01-01

    A procedure is described for accurately determining the absolute alignment of the magnetic axes of a triaxial magnetometer sensor with respect to an external, fixed, reference coordinate system. The method does not require that the magnetic field vector orientation, as generated by a triaxial calibration coil system, be known to better than a few degrees from its true position, and minimizes the number of positions through which a sensor assembly must be rotated to obtain a solution. Computer simulations show that accuracies of better than 0.4 seconds of arc can be achieved under typical test conditions associated with existing magnetic test facilities. The basic approach is similar in nature to that presented by McPherron and Snare (1978) except that only three sensor positions are required and the system of equations to be solved is considerably simplified. Applications of the method to the case of the MAGSAT Vector Magnetometer are presented and the problems encountered discussed.

  4. Pathfinder Landing Site in Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 14 May 2004 This image of the Mars Pathfinder Landing site was acquired July 17, 2002, during northern spring.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude 19.4, Longitude 326.8 East (33.2 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science

  5. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  6. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXI - Absolute energy distribution of stars in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Code, A. D.; Fairchild, E. T.

    1976-01-01

    The absolute energy distribution in the ultraviolet is given for the stars alpha Vir, eta UMa, and alpha Leo. The calibration is based on absolute heterochromatic photometry between 2920 and 1370 A carried out with an Aerobee sounding rocket. The fundamental radiation standard is the synchrotron radiation from 240-MeV electrons in a certain synchrotron storage ring. On the basis of the sounding-rocket calibration, the preliminary OAO-2 spectrometer calibration has been revised; the fluxes for the three program stars are tabulated in energy per second per square centimeter per unit wavelength interval.

  7. Anemometer calibrator

    NASA Technical Reports Server (NTRS)

    Bate, T.; Calkins, D. E.; Price, P.; Veikins, O.

    1971-01-01

    Calibrator generates accurate flow velocities over wide range of gas pressure, temperature, and composition. Both pressure and flow velocity can be maintained within 0.25 percent. Instrument is essentially closed loop hydraulic system containing positive displacement drive.

  8. SU-E-I-87: Calibrating Cherenkov Emission to Match Superficial Dose in Tissue

    SciTech Connect

    Zhang, R; Pogue, B; Glaser, A; Gladstone, D

    2015-06-15

    Purpose: Through Monte Carlo simulations and phantom studies, the dominant factors affecting the calibration of superficial Cherenkov intensity to absolute surface dose was investigated, including tissue optical properties, curvatures, beam properties and imaging angle. Methods: The phasespace files for the TrueBeam system from Varian were used in GAMOS (a GEANT4 based Monte Carlo simulation toolkit) to simulate surface emission Cherenkov signals and the correlated deposited dose. The parameters examined were: i) different tissue optical properties (skin color from light to dark), ii) beam types (X-ray and electron beam), iii) beam energies, iv) thickness of tissues (2.5 cm to 20 cm), v) SSD (80 cm to 120 cm), vi) field sizes (0.5×0.5 cm2 to 20×20 cm2), vii) entrance/exit sides, viii) curvatures (cylinders with diameters from 2.5 cm to 20cm) and ix) imaging angles (0 to 90 degrees). In a specific case, for any Cherenkov photon emitted from the surface, the original position and direction, final position and direction and energy were recorded. Similar experimental measurements were taken in a range of the most pertinent parameters using tissue phantoms. Results: Combining the dose distribution and sampling sensitivity of Cherenkov emission, quantitatively accurate calibration factors (the amount of radiation dose represented by a single Cherenkov photon) were calculated. The data showed relatively large dependence upon different optical properties, curvature, entrance/exit and beam types. For a diffusive surface, the calibration factor was insensitive to imaging angles smaller than 60 degrees. Normalization with the reflectance image was experimentally validated as a simple and accurate method for calibrations of different optical properties. Conclusion: This study sheds light on how and to what extent different conditions affect the calibration from Cherenkov intensity to absolute superficial dose and provides practical solutions to allow quantitative Cherenkov

  9. Inflight calibration of AVIRIS in 1992 and 1993

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Conel, James E.; Helmlinger, Mark; Vandenbosch, Jeannette; Chovit, Chris; Chrien, Tom

    1993-01-01

    In order to pursue the quantitative research objective of AVIRIS, the spectral, radiometric characteristic of the sensor must be known at the time of flight data acquisition. AVIRIS is rigorously calibrated in the laboratory. In addition, three times each year these characteristics of AVIRIS are validated through an inflight calibration experiment. Absolute radiometric calibration and signal-to-noise results are present for the inflight calibration experiment orchestrated in 1992 and 1993.

  10. An atlas of selected calibrated stellar spectra

    NASA Technical Reports Server (NTRS)

    Walker, Russell G.; Cohen, Martin

    1992-01-01

    Five hundred and fifty six stars in the IRAS PSC-2 that are suitable for stellar radiometric standards and are brighter than 1 Jy at 25 microns were identified. In addition, 123 stars that meet all of our criteria for calibration standards, but which lack a luminosity class were identified. An approach to absolute stellar calibration of broadband infrared filters based upon new models of Vega and Sirius due to Kurucz (1992) is presented. A general technique used to assemble continuous wide-band calibrated infrared spectra is described and an absolutely calibrated 1-35 micron spectrum of alpha(Tau) is constructed and the method using new and carefully designed observations is independently validated. The absolute calibration of the IRAS Low Resolution Spectrometer (LRS) database is investigated by comparing the observed spectrum of alpha(Tau) with that assumed in the original LRS calibration scheme. Neglect of the SiO fundamental band in alpha(Tau) has led to the presence of a specious 'emission' feature in all LRS spectra near 8.5 microns, and to an incorrect spectral slope between 8 and 12 microns. Finally, some of the properties of asteroids that effect their utility as calibration objects for the middle and far infrared region are examined. A technique to determine, from IRAS multiwaveband observations, the basic physical parameters needed by various asteroid thermal models that minimize the number of assumptions required is developed.

  11. uvby-β photometry of solar twins . The solar colors, model atmospheres, and the Teff and metallicity scales

    NASA Astrophysics Data System (ADS)

    Meléndez, J.; Schuster, W. J.; Silva, J. S.; Ramírez, I.; Casagrande, L.; Coelho, P.

    2010-11-01

    Aims: Solar colors have been determined on the uvby-β photometric system to test absolute solar fluxes, to examine colors predicted by model atmospheres as a function of stellar parameters (Teff, log g, [Fe/H]), and to probe zero-points of Teff and metallicity scales. Methods: New uvby-β photometry is presented for 73 solar-twin candidates. Most stars of our sample have also been observed spectroscopically to obtain accurate stellar parameters. Using the stars that most closely resemble the Sun, and complementing our data with photometry available in the literature, the solar colors on the uvby-β system have been inferred. Our solar colors are compared with synthetic solar colors computed from absolute solar spectra and from the latest Kurucz (ATLAS9) and MARCS model atmospheres. The zero-points of different Teff and metallicity scales are verified and corrections are proposed. Results: Our solar colors are (b-y)⊙ = 0.4105 ± 0.0015, m1, ⊙ = 0.2122 ± 0.0018, c1, ⊙ = 0.3319 ± 0.0054, and β⊙ = 2.5915 ± 0.0024. The (b-y)⊙ and m1, ⊙ colors obtained from absolute spectrophotometry of the Sun agree within 3-σ with the solar colors derived here when the photometric zero-points are determined from either the STIS HST observations of Vega or an ATLAS9 Vega model, but the c1, ⊙ and β⊙ synthetic colors inferred from absolute solar spectra agree with our solar colors only when the zero-points based on the ATLAS9 model are adopted. The Kurucz solar model provides a better fit to our observations than the MARCS model. For photometric values computed from the Kurucz models, (b-y)⊙ and m1, ⊙ are in excellent agreement with our solar colors independently of the adopted zero-points, but for c1, ⊙ and β⊙ agreement is found only when adopting the ATLAS9 zero-points. The c1, ⊙ color computed from both the Kurucz and MARCS models is the most discrepant, probably revealing problems either with the models or observations in the u band. The Teff

  12. On-Orbit Calibration of ADEOS OCTS with an AVIRIS Underflight

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Pavri, Betina; Boardman, Joseph W.; Shimada, Masanobu; Oaku, Hiromi

    2000-01-01

    The Ocean Color Temperature Scanner (OCTS) onboard the Advanced Earth Observation Satellite (ADEOS) was launched on August 17, 1996. Calibration of OCTS is required for use of the on-orbit measured data for retrieval of physical properties of the ocean. In the solar reflected portion of the electromagnetic spectrum, OCTS measures images with nominally 700-m spatial resolution through eight multispectral bands. The objective of this research was to establish the absolute radiometric calibration of OCTS on orbit through an underflight by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS is a NASA earth-observing imaging spectrometer designed, built and operated by the Jet Propulsion Laboratory (JPL). AVIRIS acquires data from 20-km altitude on a NASA ER-2 aircraft, above most of the Earth's atmosphere. AVIRIS measures the solar reflected spectrum from 370 nm to 2500 nm through 224 contiguous spectral channels. The full width at half maximum (FWHM) of the spectral channels is nominally 10-nm. AVIRIS spectra are acquired as images of 11 km by up to 800 km extent with 20-m spatial resolution. The high spectral resolution of AVIRIS data allows direct convolution to the spectral response functions of the eight multispectral bands of OCTS. The high spatial resolution of AVIRIS data allows for spatial re-sampling of the data to match the ADEOS sensors spatial resolution. In addition, the AVIRIS high spatial resolution allows assessment of the scaling effects due to environmental factors of thin cirrus clouds, sub-pixel cloud cover, white caps, ocean foam, sun-glint, and bright-target adjacency. The platform navigation information recorded by AVIRIS allows calculation of the position and observation geometry of each spectrum for matching to the OCTS measurement. AVIRIS is rigorously characterized and calibrated in the laboratory prior to and following the flight season. The stability and repeatability of AVIRIS calibration have been validated through an

  13. Auditory color constancy

    NASA Astrophysics Data System (ADS)

    Kluender, Keith R.; Kiefte, Michael

    2003-10-01

    It is both true and efficient that sensorineural systems respond to change and little else. Perceptual systems do not record absolute level be it loudness, pitch, brightness, or color. This fact has been demonstrated in every sensory domain. For example, the visual system is remarkable at maintaining color constancy over widely varying illumination such as sunlight and varieties of artificial light (incandescent, fluorescent, etc.) for which spectra reflected from objects differ dramatically. Results will be reported for a series of experiments demonstrating how auditory systems similarly compensate for reliable characteristics of spectral shape in acoustic signals. Specifically, listeners' perception of vowel sounds, characterized by both local (e.g., formants) and broad (e.g., tilt) spectral composition, changes radically depending upon reliable spectral composition of precursor signals. These experiments have been conducted using a variety of precursor signals consisting of meaningful and time-reversed vocoded sentences, as well as novel nonspeech precursors consisting of multiple filter poles modulating sinusoidally across a source spectrum with specific local and broad spectral characteristics. Constancy across widely varying spectral compositions shares much in common with visual color constancy. However, auditory spectral constancy appears to be more effective than visual constancy in compensating for local spectral fluctuations. [Work supported by NIDCD DC-04072.

  14. The Colors of Saturn

    NASA Astrophysics Data System (ADS)

    DeVogel, Kayla; Chanover, Nancy; Thelen, Alexander

    2015-11-01

    Very little is known about the coloring agents, or chromophores, that color the clouds of Saturn’s belts and zones. Although the clouds of Saturn are more muted in their coloration and do not exhibit the more striking variations seen among Jupiter’s belts, zones, and cyclonic storm features, the physical processes that render Saturn’s clouds a yellowish hue are likely similar to those at work on Jupiter. Thus, a comprehensive color study that includes both Jupiter and Saturn is warranted to advance our understanding of chromophores in the giant planet atmospheres. Here we report on our efforts to characterize the colors of Saturn’s clouds.This study involves the analysis of two imaging data sets: those from Cassini’s Imaging Science Subsystem (ISS), and Wide Field Planetary Camera 2 images taken with the Hubble Space Telescope (HST). The HST data were acquired in 1994, 1998, 2002 and 2004 using eleven different filters spanning 255-973 nm. After the images were photometrically and geometrically calibrated, we used them to create low resolution spectra for six different latitude regions: the Equatorial Zone, the Equatorial Belt, the South Equatorial Belt, the South Temperate Zone, the South Temperate Belt and the South South Temperate Belt. The Cassini ISS images were acquired in 2004 and 2011 using twelve different filters spanning 258-938 nm, and corresponding low resolution spectra of the same latitude regions were generated using the ISS images. We compare these low resolution spectra to Saturn’s full-disk spectrum (Karkoschka, E., 1994, Icarus 111, 174) to examine colors of discrete latitudes versus the full-disk spectrum of Saturn. The extensive temporal coverage afforded by the combination of the HST and ISS images will enable us to explore possible seasonal variations in Saturn’s cloud colors. Finally, we examine the color evolution of the major 2011 storm on Saturn using the ISS data.This work was supported by the Discovery Scholars Program in

  15. The PREMOS/PICARD instrument calibration

    NASA Astrophysics Data System (ADS)

    Schmutz, Werner; Fehlmann, André; Hülsen, Gregor; Meindl, Peter; Winkler, Rainer; Thuillier, Gérard; Blattner, Peter; Buisson, François; Egorova, Tatiana; Finsterle, Wolfgang; Fox, Nigel; Gröbner, Julian; Hochedez, Jean-François; Koller, Silvio; Meftah, Mustapha; Meisonnier, Mireille; Nyeki, Stephan; Pfiffner, Daniel; Roth, Hansjörg; Rozanov, Eugene; Spescha, Marcel; Wehrli, Christoph; Werner, Lutz; Wyss, Jules U.

    2009-08-01

    PREMOS is a space experiment scheduled to fly on the French solar mission PICARD. The experiment comprises filter radiometers and absolute radiometers to measure the spectral and total solar irradiance. The aim of PREMOS is to contribute to the long term monitoring of the total solar irradiance, to use irradiance observations for 'nowcasting' the state of the terrestrial middle atmosphere and to provide long term sensitivity calibration for the solar imaging instrument SODISM on PICARD. In this paper we describe the calibration of the instruments. The filter radiometer channels in the visible and near IR were characterized at PMOD/WRC and the UV channels were calibrated at PTB Berlin. The absolute radiometers were compared with the World Radiometric Reference at PMOD/WRC and a power calibration relative to a primary cryogenic radiometer standard was performed in vacuum and air at NPL.

  16. Color vision test

    MedlinePlus

    ... from birth) color vision problems: Achromatopsia -- complete color blindness , seeing only shades of gray Deuteranopia -- difficulty telling ... test -- color; Ishihara color vision test Images Color blindness tests References Adams AJ, Verdon WA, Spivey BE. ...

  17. Image Calibration

    NASA Technical Reports Server (NTRS)

    Peay, Christopher S.; Palacios, David M.

    2011-01-01

    Calibrate_Image calibrates images obtained from focal plane arrays so that the output image more accurately represents the observed scene. The function takes as input a degraded image along with a flat field image and a dark frame image produced by the focal plane array and outputs a corrected image. The three most prominent sources of image degradation are corrected for: dark current accumulation, gain non-uniformity across the focal plane array, and hot and/or dead pixels in the array. In the corrected output image the dark current is subtracted, the gain variation is equalized, and values for hot and dead pixels are estimated, using bicubic interpolation techniques.

  18. VERITAS Distant Laser Calibration and Atmospheric Monitoring

    SciTech Connect

    Hui, C. M.

    2008-12-24

    As a calibrated laser pulse propagates through the atmosphere, the intensity of the Rayleigh scattered light arriving at the VERITAS telescopes can be calculated precisely. This allows for absolute calibration of imaging atmospheric Cherenkov telescopes (IACT) to be simple and straightforward. In these proceedings, we present the comparison between laser data and simulation to estimate the light collection efficiencies of the VERITAS telescopes, and the analysis of multiple laser data sets taken in different months for atmospheric monitoring purpose.

  19. Conditioning procedure and color discrimination in the honeybee Apis mellifera

    NASA Astrophysics Data System (ADS)

    Giurfa, Martin

    We studied the influence of the conditioning procedure on color discrimination by free-flying honeybees. We asked whether absolute and differential conditioning result in different discrimination capabilities for the same pairs of colored targets. In absolute conditioning, bees were rewarded on a single color; in differential conditioning, bees were rewarded on the same color but an alternative, non-rewarding, similar color was also visible. In both conditioning procedures, bees learned their respective task and could also discriminate the training stimulus from a novel stimulus that was perceptually different from the trained one. Discrimination between perceptually closer stimuli was possible after differential conditioning but not after absolute conditioning. Differences in attention inculcated by these training procedures may underlie the different discrimination performances of the bees.

  20. Biogeographic calibrations for the molecular clock

    PubMed Central

    Ho, Simon Y. W.; Tong, K. Jun; Foster, Charles S. P.; Ritchie, Andrew M.; Lo, Nathan; Crisp, Michael D.

    2015-01-01

    Molecular estimates of evolutionary timescales have an important role in a range of biological studies. Such estimates can be made using methods based on molecular clocks, including models that are able to account for rate variation across lineages. All clock models share a dependence on calibrations, which enable estimates to be given in absolute time units. There are many available methods for incorporating fossil calibrations, but geological and climatic data can also provide useful calibrations for molecular clocks. However, a number of strong assumptions need to be made when using these biogeographic calibrations, leading to wide variation in their reliability and precision. In this review, we describe the nature of biogeographic calibrations and the assumptions that they involve. We present an overview of the different geological and climatic events that can provide informative calibrations, and explain how such temporal information can be incorporated into dating analyses. PMID:26333662

  1. Absolute luminosity measurements with the LHCb detector at the LHC

    NASA Astrophysics Data System (ADS)

    LHCb Collaboration

    2012-01-01

    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic ``van der Meer scan'' method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overal precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.

  2. Color superconductivity

    SciTech Connect

    Wilczek, F.

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  3. Electron-Photon Coincidence Calibration Of Photon Detectors

    NASA Technical Reports Server (NTRS)

    Srivastava, Santosh K.

    1988-01-01

    Absolute and relative detector efficiencies measured. Apparatus uses coincidence-counting techniques to measure efficiency of ultraviolet or vacuum ultraviolet detector at very low radiation intensity. Crossed electron and atomic beams generate photons used to calibrate photon detector. Pulses from electron counter and photon detector(s) processed by standard coincidence-counting techniques. Used to calibrate other detectors or make absolute measurements of incident photon fluxes.

  4. An Alpha-Gamma Counter for Absolute Neutron Flux Measurement

    NASA Astrophysics Data System (ADS)

    Yue, A.; Greene, G.; Dewey, M.; Gilliam, D.; Nico, J.; Laptev, A.

    2012-03-01

    An alpha-gamma counter was used to measure the absolute neutron flux of a monochromatic cold neutron beam to sub-0.1,% precision. Simultaneously, the counter was used to calibrate a thin neutron flux monitor based on neutron absorption on ^6Li to the same precision. This monitor was used in the most precise beam-based measurement of the neutron lifetime, where the limiting systematic effect was the uncertainty in the neutron counting efficiency (0.3,%). The counter uses a thick target of ^10B-enriched boron carbide to completely absorb the beam. The rate of absorbed neutrons is determined by counting 478 keV gamma rays from neutron capture on ^10B with calibrated high-purity germanium detectors. The calibration results and the implications for the neutron lifetime will be discussed.

  5. The blue anbd visual absolute magnitude distributions of Type IA supernovae

    NASA Astrophysics Data System (ADS)

    Vaughan, Thomas E.; Branch, David; Miller, Douglas L.; Perlmutter, Saul

    1995-02-01

    Tully-Fisher (TF), surface brightness fluctuation (SBF), and Hubble law distances to the parent galaxies of Type Ia supernovae (SNs Ia) are used in order to study the SN Ia blue and visual peak absolute magnitude (MB and MV) distributions. We propose two objective cuts, each of which produces a subsample with small intrinsic dispersion in M. One cut, which can be applied to either band, distinguishes between a subsample of bright events and a smaller subsample of dim events, some of which were extinquished in the parent galaxy and some of which were intrinsically subluminous. The bright events are found to be distributed with an observed dispersions of 0.3 less than or approximately = Sigmaobs less than or approximately = 0.4 about a mean absolut magnitude (M-barB or M-barV). Each of the dim SNs was spectroscopically peculiar and/or had a red B-V color; this motivates the adoption of an alternative cut that is based on B-V rather than on M. To wit, SNs Ia that are both known to have -0.25 less than B-V less than + 0.25 and not known to be spectroscopically peculiar show observational dispersion of only Sigmaobs(MB) = Sigmaobs(MV) = 0.3. Because characteristics observational errors produce Sigmaerr(M) greater than 0.2,the intrinsic dispersion among such SNs Ia is Sigmaint(M) less than or approximately = 0.2. The small observational dispersion indicates that SNs Ia, the TF relation, and SBFs all good relative distances to those galaxies that produce SNs Ia. The conflict between those who use SNs Ia in order to determine the value of the Hubble constant (H0) and those who use TF and SBF distances to determine H0 results from discrepant calibrations.

  6. Flight calibration assessment of HiRAP accelerometer data

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Larman, Kevin T.; Moast, Christina D.

    1993-01-01

    A flight derived method of calibrating the High Resolution Accelerometer Package (HiRAP) flight data has been developed and is discussed for Shuttle Orbiter missions STS-35 and STS-40. These two mission data sets have been analyzed using ground calibration factors and flight derived calibration factors. This flight technique evolved early in the flight program when it was recognized that ground calibration factors are insufficient to determine absolute low-acceleration levels. The application of flight calibration factors to the data sets from these missions produced calibrated acceleration levels within an accuracy of less than +/- 1.5 microgravity of zero during a time in the flight when the acceleration level was known to be less than 1.0 microgravity. This analysis further confirms the theory that flight calibrations are required in order to obtain the absolute measurement of low-frequency, low-acceleration flight signals.

  7. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  8. Calibration strategies for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Gaug, Markus; Berge, David; Daniel, Michael; Doro, Michele; Förster, Andreas; Hofmann, Werner; Maccarone, Maria C.; Parsons, Dan; de los Reyes Lopez, Raquel; van Eldik, Christopher

    2014-08-01

    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration efforts of the different telescopes. The latter include LED-based light pulsers, and various methods and instruments to achieve a calibration of the overall optical throughput. On the array level, methods for the inter-telescope calibration and the absolute calibration of the entire observatory are being developed. Additionally, the atmosphere above the telescopes, used as a calorimeter, will be monitored constantly with state-of-the-art instruments to obtain a full molecular and aerosol profile up to the stratosphere. The aim is to provide a maximal uncertainty of 10% on the reconstructed energy-scale, obtained through various independent methods. Different types of LIDAR in combination with all-sky-cameras will provide the observatory with an online, intelligent scheduling system, which, if the sky is partially covered by clouds, gives preference to sources observable under good atmospheric conditions. Wide-field optical telescopes and Raman Lidars will provide online information about the height-resolved atmospheric extinction, throughout the field-of-view of the cameras, allowing for the correction of the reconstructed energy of each gamma-ray event. The aim is to maximize the duty cycle of the observatory, in terms of usable data, while reducing the dead time introduced by calibration activities to an absolute minimum.

  9. Infrared stereo calibration for unmanned ground vehicle navigation

    NASA Astrophysics Data System (ADS)

    Harguess, Josh; Strange, Shawn

    2014-06-01

    The problem of calibrating two color cameras as a stereo pair has been heavily researched and many off-the-shelf software packages, such as Robot Operating System and OpenCV, include calibration routines that work in most cases. However, the problem of calibrating two infrared (IR) cameras for the purposes of sensor fusion and point could generation is relatively new and many challenges exist. We present a comparison of color camera and IR camera stereo calibration using data from an unmanned ground vehicle. There are two main challenges in IR stereo calibration; the calibration board (material, design, etc.) and the accuracy of calibration pattern detection. We present our analysis of these challenges along with our IR stereo calibration methodology. Finally, we present our results both visually and analytically with computed reprojection errors.

  10. [True color accuracy in digital forensic photography].

    PubMed

    Ramsthaler, Frank; Birngruber, Christoph G; Kröll, Ann-Katrin; Kettner, Mattias; Verhoff, Marcel A

    2016-01-01

    Forensic photographs not only need to be unaltered and authentic and capture context-relevant images, along with certain minimum requirements for image sharpness and information density, but color accuracy also plays an important role, for instance, in the assessment of injuries or taphonomic stages, or in the identification and evaluation of traces from photos. The perception of color not only varies subjectively from person to person, but as a discrete property of an image, color in digital photos is also to a considerable extent influenced by technical factors such as lighting, acquisition settings, camera, and output medium (print, monitor). For these reasons, consistent color accuracy has so far been limited in digital photography. Because images usually contain a wealth of color information, especially for complex or composite colors or shades of color, and the wavelength-dependent sensitivity to factors such as light and shadow may vary between cameras, the usefulness of issuing general recommendations for camera capture settings is limited. Our results indicate that true image colors can best and most realistically be captured with the SpyderCheckr technical calibration tool for digital cameras tested in this study. Apart from aspects such as the simplicity and quickness of the calibration procedure, a further advantage of the tool is that the results are independent of the camera used and can also be used for the color management of output devices such as monitors and printers. The SpyderCheckr color-code patches allow true colors to be captured more realistically than with a manual white balance tool or an automatic flash. We therefore recommend that the use of a color management tool should be considered for the acquisition of all images that demand high true color accuracy (in particular in the setting of injury documentation). PMID:27386623

  11. Color Sense

    ERIC Educational Resources Information Center

    Johnson, Heidi S. S.; Maki, Jennifer A.

    2009-01-01

    This article reports a study conducted by members of the WellU Academic Integration Subcommittee of The College of St. Scholastica's College's Healthy Campus Initiative plan whose purpose was to determine whether changing color in the classroom could have a measurable effect on students. One simple improvement a school can make in a classroom is…

  12. Colorful television

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    What are the challenges and rewards for American men and women of color who chose to become scientists? The Public Broadcasting Service intends to show us through an upcoming 6-hour documentary series entitled “Breakthrough: The Changing Face of Science in America.”

  13. Colorful Accounting

    ERIC Educational Resources Information Center

    Warrick, C. Shane

    2006-01-01

    As instructors of accounting, we should take an abstract topic (at least to most students) and connect it to content known by students to help increase the effectiveness of our instruction. In a recent semester, ordinary items such as colors, a basketball, and baseball were used to relate the subject of accounting. The accounting topics of account…

  14. Characterization of Fricke-gel layers for absolute dose measurements in radiotherapy

    SciTech Connect

    Gambarini, G.; Carrara, M.; Rrushi, B.; Guilizzoni, R.; Borroni, M.; Tomatis, S.; Pirola, L.; Battistoni, G.

    2011-07-01

    Fricke-gel layer dosimeters (FGLDs) have shown promising features for attaining absolute measurements of the spatial distribution of the absorbed dose in radiotherapy. Good precision of results (within 3%) is achieved by means of calibration of each single dosimeter before measurement. The calibration is performed irradiating the dosimeter at a uniform and precisely known dose, in order to get a calibration matrix that must be used, with pixel-to-pixel manipulation, to obtain the dose image. A study of the trend in time of dosimeter response after one or more exposures was carried out and calibration protocols were suitably established and verified. (authors)

  15. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  16. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  17. Specialized Color Function for Display of Signed Data

    NASA Technical Reports Server (NTRS)

    Kalb, Virginia

    2008-01-01

    This Mathematica script defines a color function to be used with Mathematica's plotting modules for differentiating data attaining both positive and negative values. Positive values are shown as shades of blue, and negative values are shown in red. The intensity of the color reflects the absolute value of the data value.

  18. Asteroid magnitudes, UBV colors, and IRAS albedos and diameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1989-01-01

    This paper lists absolute magnitudes and slope parameters for known asteroids numbered through 3318. The values presented are those used in reducing asteroid IR flux data obtained with the IRAS. U-B colors are given for 938 asteroids, and B-V colors are given for 945 asteroids. The IRAS albedos and diameters are tabulated for 1790 asteroids.

  19. Photometric Calibration of the Lasco-C3 Coronagraph Using Stars

    NASA Astrophysics Data System (ADS)

    Thernisien, A. F.; Morrill, J. S.; Howard, R. A.; Wang, D.

    2006-01-01

    The LASCO-C3 coronagraph on SOHO, launched in December 1995, has been collecting images of the corona and background star fields in a regular manner since 1996. This instrument contains a number of broadband filters with various passbands in the range between 400 and 1100 nm. The filter used most often has been the Clear filter (400 900 nm) but there are four other filters with about 100 nm passbands that are also used periodically. Preliminary calibration of the C3 optical system was done before flight and a number of techniques that use star intensities or magnitudes and position have been applied during flight. In order to understand the long-term behavior of the C3 instrument, we have recently performed an analysis of LASCO data that examines the observed intensities of a set of moderately bright stars whose spectra is known from 13 color photometry. Using these star spectra and the observed count rates we have derived the photometric calibration factors of the C3 coronagraph for all five color filters with an absolute precision of about ± 7%. Observations with the Clear filter have been used to look for long-term trends in the instrument sensitivity. The observations indicate a very slight decrease in the instrument sensitivity of about 3.5% over the 8 years studied here.

  20. Musical key perception in relation to color.

    PubMed

    Firth, Ian C

    2014-12-01

    A link between musical keys and colors is common among musicians, although there has never been any agreement about which color matches which key. This study tested two alternative key-color associations: E is red and Eb is green, or vice versa. 21 participants (10 men, 11 women; M age = 20 yr., SD = 3.3) with absolute pitch listened to melodies beginning with an anacrusis and a perfect cadence which were played through in C major. Then the melodies began in another key, while four or two colored squares were displayed (in Experiments 1 and 2, respectively). Participants were asked to chose the color which best matched the quality of the new key. The results showed strong support for the E red / Eb green linkage. PMID:25539177

  1. Orbital Acceleration Research Experiment: Calibration Measurements

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.; Larman, Kevin T.

    1995-01-01

    The Orbital Acceleration Research Experiment (OARE), which has flown on STS-40, STS-50, and STS-58, contains a three-axis accelerometer with a single, nonpendulous, electrostatically suspended proofmass, which can resolve accelerations to the 10(sub -9) g level. The experiment also contains a full calibration station to permit in situ bias and scale-factor calibration. This on-orbit calibration capability eliminates the large uncertainty of ground-based calibrations encountered with accelerometers flown in the past on the Orbiter, and thus provides absolute acceleration measurement accuracy heretofore unachievable. This is the first time accelerometer scale-factor measurements have been performed on orbit. A detailed analysis of the calibration process is given, along with results of the calibration factors from the on-orbit OARE flight measurements on STS-58. In addition, the analysis of OARE flight-maneuver data used to validate the scale-factor measurements in the sensor's most sensitive range are also presented. Estimates on calibration uncertainties are discussed. These uncertainty estimates provides bounds on the STS-58 absolute acceleration measurements for future applications.

  2. Colorful drying.

    PubMed

    Lakio, Satu; Heinämäki, Jyrki; Yliruusi, Jouko

    2010-03-01

    Drying is one of the standard unit operations in the pharmaceutical industry and it is important to become aware of the circumstances that dominate during the process. The purpose of this study was to test microcapsulated thermochromic pigments as heat indicators in a fluid bed drying process. The indicator powders were manually granulated with alpha-lactose monohydrate resulting in three particle-size groups. Also, pellets were coated with the indicator powders. The granules and pellets were fluidized in fluid bed dryer to observe the progress of the heat flow in the material and to study the heat indicator properties of the indicator materials. A tristimulus colorimeter was used to measure CIELAB color values. Color indicator for heat detection can be utilized to test if the heat-sensitive API would go through physical changes during the pharmaceutical drying process. Both the prepared granules and pellets can be used as heat indicator in fluid bed drying process. The colored heat indicators give an opportunity to learn new aspects of the process at real time and could be exploded, for example, for scaling-up studies. PMID:20039220

  3. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  4. Principles and procedures for determining absolute differential electron-molecule (atom) scattering cross sections

    NASA Technical Reports Server (NTRS)

    Nickel, J. C.; Zetner, P. W.; Shen, G.; Trajmar, S.

    1989-01-01

    Procedures and calibration techniques for measuring the absolute elastic and inelastic differential cross sections (DCS) for electron impact on molecular (atomic) species are described and illustrated by examples. The elastic DCS for the molecule under study is first determined by calibration against helium using the relative flow technique. The second step involves the production of energy-loss spectra for the instrument response function, the unfolding of overlapping inelastic structures and the normalization of inelastic intensities to the elastic cross sections. It is concluded that this method of determining absolute differential electron-molecule (atom) scattering cross sections is generally applicable and provides reliable results.

  5. Metrological activity determination of 133Ba by sum-peak absolute method

    NASA Astrophysics Data System (ADS)

    da Silva, R. L.; de Almeida, M. C. M.; Delgado, J. U.; Poledna, R.; Santos, A.; de Veras, E. V.; Rangel, J.; Trindade, O. L.

    2016-07-01

    The National Laboratory for Metrology of Ionizing Radiation provides gamma sources of radionuclide and standardized in activity with reduced uncertainties. Relative methods require standards to determine the sample activity while the absolute methods, as sum-peak, not. The activity is obtained directly with good accuracy and low uncertainties. 133Ba is used in research laboratories and on calibration of detectors for analysis in different work areas. Classical absolute methods don't calibrate 133Ba due to its complex decay scheme. The sum-peak method using gamma spectrometry with germanium detector standardizes 133Ba samples. Uncertainties lower than 1% to activity results were obtained.

  6. Prospects for the Moon as an SI-Traceable Absolute Spectroradiometric Standard for Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Cramer, C. E.; Stone, T. C.; Lykke, K.; Woodward, J. T.

    2015-12-01

    The Earth's Moon has many physical properties that make it suitable for use as a reference light source for radiometric calibration of remote sensing satellite instruments. Lunar calibration has been successfully applied to many imagers in orbit, including both MODIS instruments and NPP-VIIRS, using the USGS ROLO model to predict the reference exoatmospheric lunar irradiance. Sensor response trending was developed for SeaWIFS with a relative accuracy better than 0.1 % per year with lunar calibration techniques. However, the Moon rarely is used as an absolute reference for on-orbit calibration, primarily due to uncertainties in the ROLO model absolute scale of 5%-10%. But this limitation lies only with the models - the Moon itself is radiometrically stable, and development of a high-accuracy absolute lunar reference is inherently feasible. A program has been undertaken by NIST to collect absolute measurements of the lunar spectral irradiance with absolute accuracy <1 % (k=2), traceable to SI radiometric units. Initial Moon observations were acquired from the Whipple Observatory on Mt. Hopkins, Arizona, elevation 2367 meters, with continuous spectral coverage from 380 nm to 1040 nm at ~3 nm resolution. The lunar spectrometer acquired calibration measurements several times each observing night by pointing to a calibrated integrating sphere source. The lunar spectral irradiance at the top of the atmosphere was derived from a time series of ground-based measurements by a Langley analysis that incorporated measured atmospheric conditions and ROLO model predictions for the change in irradiance resulting from the changing Sun-Moon-Observer geometry throughout each night. Two nights were selected for further study. An extensive error analysis, which includes instrument calibration and atmospheric correction terms, shows a combined standard uncertainty under 1 % over most of the spectral range. Comparison of these two nights' spectral irradiance measurements with predictions

  7. Upgraded Calibrations of the Thomson System at DIII-D

    SciTech Connect

    B. Bray; C. Hsieh; T.N. Carlstrom; C.C. Makariou

    2000-08-01

    The DIII-D Thomson system measures electron density and temperature with eight pulsed ND:YAG lasers along three paths through the plasma vessel. The components of the Thomson system are absolutely calibrated so the measurements can be combined into a single profile from a normalized plasma radius ({rho}) of about 0.1 to the edge of the plasma. A monochromator calibration and opto-electronic calibration measure the detectors' absolute sensitivity to background and pulsed light. A Rayleigh scattering calibration and transmission calibrations measure the transmission of light to the detectors. The calibration systems are being upgraded to reduce the effect of systematic errors on the temperature and density measurements. The systematic errors can be checked by a comparison of overlapping channels and estimated from fits to the profiles. The contributions of the systematic uncertainties relative to the statistical uncertainties of the measurement are discussed through simulations and experimental data.

  8. A derivative standard for polarimeter calibration

    SciTech Connect

    Mulhollan, G.; Clendenin, J.; Saez, P.

    1996-10-01

    A long-standing problem in polarized electron physics is the lack of a traceable standard for calibrating electron spin polarimeters. While several polarimeters are absolutely calibrated to better than 2%, the typical instrument has an inherent accuracy no better than 10%. This variability among polarimeters makes it difficult to compare advances in polarized electron sources between laboratories. The authors have undertaken an effort to establish 100 nm thick molecular beam epitaxy grown GaAs(110) as a material which may be used as a derivative standard for calibrating systems possessing a solid state polarized electron source. The near-bandgap spin polarization of photoelectrons emitted from this material has been characterized for a variety of conditions and several laboratories which possess well calibrated polarimeters have measured the photoelectron polarization of cathodes cut from a common wafer. Despite instrumentation differences, the spread in the measurements is sufficiently small that this material may be used as a derivative calibration standard.

  9. Demonstrating the Error Budget for the Climate Absolute Radiance and Refractivity Observatory Through Solar Irradiance Measurements

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2016-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe highaccuracy, long-term climate change trends and to use decadal change observations as a method to determine the accuracy of climate change. A CLARREO objective is to improve the accuracy of SI-traceable, absolute calibration at infrared and reflected solar wavelengths to reach on-orbit accuracies required to allow climate change observations to survive data gaps and observe climate change at the limit of natural variability. Such an effort will also demonstrate National Institute of Standards and Technology (NIST) approaches for use in future spaceborne instruments. The current work describes the results of laboratory and field measurements with the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. SOLARIS allows testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. Results of laboratory calibration measurements are provided to demonstrate key assumptions about instrument behavior that are needed to achieve CLARREO's climate measurement requirements. Absolute radiometric response is determined using laser-based calibration sources and applied to direct solar views for comparison with accepted solar irradiance models to demonstrate accuracy values giving confidence in the error budget for the CLARREO reflectance retrieval.

  10. Morphology and Absolute Magnitudes of the SDSS DR7 QSOs

    NASA Astrophysics Data System (ADS)

    Coelho, B.; Andrei, A. H.; Antón, S.

    2014-10-01

    The ESA mission Gaia will furnish a complete census of the Milky Way, delivering astrometrics, dynamics, and astrophysics information for 1 billion stars. Operating in all-sky repeated survey mode, Gaia will also provide measurements of extra-galactic objects. Among the later there will be at least 500,000 QSOs that will be used to build the reference frame upon which the several independent observations will be combined and interpreted. Not all the QSOs are equally suited to fulfill this role of fundamental, fiducial grid-points. Brightness, morphology, and variability define the astrometric error budget for each object. We made use of 3 morphological parameters based on the PSF sharpness, circularity and gaussianity, which enable us to distinguish the "real point-like" QSOs. These parameters are being explored on the spectroscopically certified QSOs of the SDSS DR7, to compare the performance against other morphology classification schemes, as well as to derive properties of the host galaxy. We present a new method, based on the Gaia quasar database, to derive absolute magnitudes, on the SDSS filters domain. The method can be extrapolated all over the optical window, including the Gaia filters. We discuss colors derived from SDSS apparent magnitudes and colors based on absolute magnitudes that we obtained tanking into account corrections for dust extinction, either intergalactic or from the QSO host, and for the Lyman α forest. In the future we want to further discuss properties of the host galaxies, comparing for e.g. the obtained morphological classification with the color, the apparent and absolute magnitudes, and the redshift distributions.

  11. ALTEA calibration

    NASA Astrophysics Data System (ADS)

    Zaconte, V.; Altea Team

    The ALTEA project is aimed at studying the possible functional damages to the Central Nervous System (CNS) due to particle radiation in space environment. The project is an international and multi-disciplinary collaboration. The ALTEA facility is an helmet-shaped device that will study concurrently the passage of cosmic radiation through the brain, the functional status of the visual system and the electrophysiological dynamics of the cortical activity. The basic instrumentation is composed by six active particle telescopes, one ElectroEncephaloGraph (EEG), a visual stimulator and a pushbutton. The telescopes are able to detect the passage of each particle measuring its energy, trajectory and released energy into the brain and identifying nuclear species. The EEG and the Visual Stimulator are able to measure the functional status of the visual system, the cortical electrophysiological activity, and to look for a correlation between incident particles, brain activity and Light Flash perceptions. These basic instruments can be used separately or in any combination, permitting several different experiments. ALTEA is scheduled to fly in the International Space Station (ISS) in November, 15th 2004. In this paper the calibration of the Flight Model of the silicon telescopes (Silicon Detector Units - SDUs) will be shown. These measures have been taken at the GSI heavy ion accelerator in Darmstadt. First calibration has been taken out in November 2003 on the SDU-FM1 using C nuclei at different energies: 100, 150, 400 and 600 Mev/n. We performed a complete beam scan of the SDU-FM1 to check functionality and homogeneity of all strips of silicon detector planes, for each beam energy we collected data to achieve good statistics and finally we put two different thickness of Aluminium and Plexiglas in front of the detector in order to study fragmentations. This test has been carried out with a Test Equipment to simulate the Digital Acquisition Unit (DAU). We are scheduled to

  12. Evaluation of VIIRS ocean color products

    NASA Astrophysics Data System (ADS)

    Wang, Menghua; Liu, Xiaoming; Jiang, Lide; Son, SeungHyun; Sun, Junqiang; Shi, Wei; Tan, Liqin; Naik, Puneeta; Mikelsons, Karlis; Wang, Xiaolong; Lance, Veronica

    2014-11-01

    The Suomi National Polar-orbiting Partnership (SNPP) was successfully launched on October 28, 2011. The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi NPP, which has 22 spectral bands (from visible to infrared) similar to the NASA's Moderate Resolution Imaging Spectroradiometer (MODIS), is a multi-disciplinary sensor providing observations for the Earth's atmosphere, land, and ocean properties. In this paper, we provide some evaluations and assessments of VIIRS ocean color data products, or ocean color Environmental Data Records (EDR), including normalized water-leaving radiance spectra nLw(λ) at VIIRS five spectral bands, chlorophyll-a (Chl-a) concentration, and water diffuse attenuation coefficient at the wavelength of 490 nm Kd(490). Specifically, VIIRS ocean color products derived from the NOAA Multi-Sensor Level-1 to Level-2 (NOAA-MSL12) ocean color data processing system are evaluated and compared with MODIS ocean color products and in situ measurements. MSL12 is now NOAA's official ocean color data processing system for VIIRS. In addition, VIIRS Sensor Data Records (SDR or Level- 1B data) have been evaluated. In particular, VIIRS SDR and ocean color EDR have been compared with a series of in situ data from the Marine Optical Buoy (MOBY) in the waters off Hawaii. A notable discrepancy of global deep water Chl-a derived from MODIS and VIIRS between 2012 and 2013 is observed. This discrepancy is attributed to the SDR (or Level-1B data) calibration issue and particularly related to VIIRS green band at 551 nm. To resolve this calibration issue, we have worked on our own sensor calibration by combining the lunar calibration effect into the current calibration method. The ocean color products derived from our new calibrated SDR in the South Pacific Gyre show that the Chl-a differences between 2012 and 2013 are significantly reduced. Although there are still some issues, our results show that VIIRS is capable of providing high-quality global

  13. Another look at volume self-calibration: calibration and self-calibration within a pinhole model of Scheimpflug cameras

    NASA Astrophysics Data System (ADS)

    Cornic, Philippe; Illoul, Cédric; Cheminet, Adam; Le Besnerais, Guy; Champagnat, Frédéric; Le Sant, Yves; Leclaire, Benjamin

    2016-09-01

    We address calibration and self-calibration of tomographic PIV experiments within a pinhole model of cameras. A complete and explicit pinhole model of a camera equipped with a 2-tilt angles Scheimpflug adapter is presented. It is then used in a calibration procedure based on a freely moving calibration plate. While the resulting calibrations are accurate enough for Tomo-PIV, we confirm, through a simple experiment, that they are not stable in time, and illustrate how the pinhole framework can be used to provide a quantitative evaluation of geometrical drifts in the setup. We propose an original self-calibration method based on global optimization of the extrinsic parameters of the pinhole model. These methods are successfully applied to the tomographic PIV of an air jet experiment. An unexpected by-product of our work is to show that volume self-calibration induces a change in the world frame coordinates. Provided the calibration drift is small, as generally observed in PIV, the bias on the estimated velocity field is negligible but the absolute location cannot be accurately recovered using standard calibration data.

  14. Accurate determination of absolute carrier-envelope phase dependence using photo-ionization.

    PubMed

    Sayler, A M; Arbeiter, M; Fasold, S; Adolph, D; Möller, M; Hoff, D; Rathje, T; Fetić, B; Milošević, D B; Fennel, T; Paulus, G G

    2015-07-01

    The carrier-envelope phase (CEP) dependence of few-cycle above-threshold ionization (ATI) of Xe is calibrated for use as a reference measurement for determining and controlling the absolute CEP in other interactions. This is achieved by referencing the CEP-dependent ATI measurements of Xe to measurements of atomic H, which are in turn referenced to ab initio calculations for atomic H. This allows for the accurate determination of the absolute CEP dependence of Xe ATI, which enables relatively easy determination of the offset between the relative CEP measured and/or controlled by typical devices and the absolute CEP in the interaction. PMID:26125386

  15. Color space conversion for linear color grading

    NASA Astrophysics Data System (ADS)

    Lee, Dah-Jye

    2000-10-01

    Color grading is an important process for various industries such as food processing, fruit and vegetable grading, etc. Quality and price are often determined by the color of product. For example, darker red color for apples means higher price. In color machine vision applications, image is acquired with a color CCD camera that outputs color information in three channels, red, gree, and blue. When grading color, these three primary colors must be processed to determine the color level for separation. A very popular color space conversion technique for color image processing is RGB-to-HSI, where HSI represents hue, saturation, and intensity, respectively. However, the conversion result is still 3D information that makes determining color grades very difficult. A new color space conversion technique that can be implemented for high-speed real-time processing for color grading is introduced in this paper. Depending on the application, different color space conversion equations must be used. The result of this technique is a simple one-dimensional array that represents different color levels. This linear array makes linear color grading adjustment possible.

  16. Selection of stars to calibrate Gaia

    NASA Astrophysics Data System (ADS)

    Carrasco, J. M.; Voss, H.; Jordi, C.; Fabricius, C.; Pancino, E.; Altavilla, G.

    2015-05-01

    Gaia is an all-sky survey satellite, launched by ESA on 19th December 2013, to obtain parallaxes and proper motions to microarcsecond level precision, radial velocities and astrophysical parameters for about one billion objects down to a limiting magnitude of 20. The chosen strategy to perform the photometric calibration is to split the process into two steps, internal and external calibration. The internal calibration will combine all different transits of a given source to a common reference internal system producing a 'mean' Gaia observation. This internal calibration accounts for the differential instrumental effects (in sensitivity, aperture, PSF, etc.). They depend on the colour and type of the source. For this reason, a selection of calibration sources ensuring a good representation of all kind of observed sources is needed. The entire magnitude and colour range of the sources have to be covered by these calibration stars and for all calibration intervals. It is a challenge to obtain a suitable colour distribution for the standards, especially for bright sources and the daily large scale calibration intervals. Once the mean Gaia observations are produced, a final step, the external calibration, transforms them to absolute fluxes and wavelengths. In principle, few calibration sources are needed (about 200 spectrophotometric standard stars, SPSS, are currently being considered). They need to have accurate determinations of their absolute fluxes and their non-variability need to be ensured below 1% precision. For this purpose, a big international observational effort is being done (using telescopes as 2.2m@CAHA, TNG@LaPalma, NTT@LaSilla, LaRuca@SPM, and others). During this observational effort some cases of non-expected variability of the SPSS candidates have been discovered.

  17. The AFGL absolute gravity program

    NASA Technical Reports Server (NTRS)

    Hammond, J. A.; Iliff, R. L.

    1978-01-01

    A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.

  18. On-orbit absolute radiance standard for the next generation of IR remote sensing instruments

    NASA Astrophysics Data System (ADS)

    Best, Fred A.; Adler, Douglas P.; Pettersen, Claire; Revercomb, Henry E.; Gero, P. Jonathan; Taylor, Joseph K.; Knuteson, Robert O.; Perepezko, John H.

    2012-11-01

    The next generation of infrared remote sensing satellite instrumentation, including climate benchmark missions will require better absolute measurement accuracy than now available, and will most certainly rely on the emerging capability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances with an absolute brightness temperature error of better than 0.1 K will require high-emissivity (<0.999) calibration blackbodies with emissivity uncertainty of better than 0.06%, and absolute temperature uncertainties of better than 0.045K (k=3). Key elements of an On-Orbit Absolute Radiance Standard (OARS) meeting these stringent requirements have been demonstrated in the laboratory at the University of Wisconsin (UW) and refined under the NASA Instrument Incubator Program (IIP). This work recently culminated with an integrated subsystem that was used in the laboratory to demonstrate end-to-end radiometric accuracy verification for the UW Absolute Radiance Interferometer. Along with an overview of the design, we present details of a key underlying technology of the OARS that provides on-orbit absolute temperature calibration using the transient melt signatures of small quantities (<1g) of reference materials (gallium, water, and mercury) imbedded in the blackbody cavity. In addition we present performance data from the laboratory testing of the OARS.

  19. Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases

    SciTech Connect

    Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; Di Giulio, C.; Luis, P.Facal San; Gonzales, D.; Hojvat, C.; Horandel, J.R.; Hrabovsky, M.; Iarlori, M.; /INFN, Aquila /Karlsruhe, Inst. Technol.

    2011-01-01

    We have performed a measurement of the absolute yield of fluorescence photons at the Fermilab Test Beam. A systematic uncertainty at 5% level was achieved by the use of Cherenkov radiation as a reference calibration light source. A cross-check was performed by an independent calibration using a laser light source. A significant improvement on the energy scale uncertainty of Ultra-High Energy Cosmic Rays is expected.

  20. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  1. Spatially resolved absolute spectrophotometry of Saturn - 3390 to 8080 A

    NASA Technical Reports Server (NTRS)

    Bergstralh, J. T.; Diner, D. J.; Baines, K. H.; Neff, J. S.; Allen, M. A.; Orton, G. S.

    1981-01-01

    A series of spatially resolved absolute spectrophotometric measurements of Saturn was conducted for the expressed purpose of calibrating the data obtained with the Imaging Photopolarimeter (IPP) on Pioneer 11 during its recent encounter with Saturn. All observations reported were made at the Mt. Wilson 1.5-m telescope, using a 1-m Ebert-Fastie scanning spectrometer. Spatial resolution was 1.92 arcsec. Photometric errors are considered, taking into account the fixed error, the variable error, and the composite error. The results are compared with earlier observations, as well as with synthetic spectra derived from preliminary physical models, giving attention to the equatorial region and the South Temperate Zone.

  2. Approaches on calibration of bolometer and establishment of bolometer calibration device

    NASA Astrophysics Data System (ADS)

    Xia, Ming; Gao, Jianqiang; Ye, Jun'an; Xia, Junwen; Yin, Dejin; Li, Tiecheng; Zhang, Dong

    2015-10-01

    Bolometer is mainly used for measuring thermal radiation in the field of public places, labor hygiene, heating and ventilation and building energy conservation. The working principle of bolometer is under the exposure of thermal radiation, temperature of black absorbing layer of detector rise after absorption of thermal radiation, which makes the electromotive force produced by thermoelectric. The white light reflective layer of detector does not absorb thermal radiation, so the electromotive force produced by thermoelectric is almost zero. A comparison of electromotive force produced by thermoelectric of black absorbing layer and white reflective layer can eliminate the influence of electric potential produced by the basal background temperature change. After the electromotive force which produced by thermal radiation is processed by the signal processing unit, the indication displays through the indication display unit. The measurement unit of thermal radiation intensity is usually W/m2 or kW/m2. Its accurate and reliable value has important significance for high temperature operation, labor safety and hygiene grading management. Bolometer calibration device is mainly composed of absolute radiometer, the reference light source, electric measuring instrument. Absolute radiometer is a self-calibration type radiometer. Its working principle is using the electric power which can be accurately measured replaces radiation power to absolutely measure the radiation power. Absolute radiometer is the standard apparatus of laser low power standard device, the measurement traceability is guaranteed. Using the calibration method of comparison, the absolute radiometer and bolometer measure the reference light source in the same position alternately which can get correction factor of irradiance indication. This paper is mainly about the design and calibration method of the bolometer calibration device. The uncertainty of the calibration result is also evaluated.

  3. Absolute stellar photometry on moderate-resolution FPA images

    USGS Publications Warehouse

    Stone, T.C.

    2009-01-01

    An extensive database of star (and Moon) images has been collected by the ground-based RObotic Lunar Observatory (ROLO) as part of the US Geological Survey program for lunar calibration. The stellar data are used to derive nightly atmospheric corrections for the observations from extinction measurements, and absolute calibration of the ROLO sensors is based on observations of Vega and published reference flux and spectrum data. The ROLO telescopes were designed for imaging the Moon at moderate resolution, thus imposing some limitations for the stellar photometry. Attaining accurate stellar photometry with the ROLO image data has required development of specialized processing techniques. A key consideration is consistency in discriminating the star core signal from the off-axis point spread function. The analysis and processing methods applied to the ROLO stellar image database are described. ?? 2009 BIPM and IOP Publishing Ltd.

  4. Lunar eclipse photometry: absolute luminance measurements and modeling.

    PubMed

    Hernitschek, Nina; Schmidt, Elmar; Vollmer, Michael

    2008-12-01

    The Moon's time-dependent luminance was determined during the 9 February 1990 and 3 March 2007 total lunar eclipses by using calibrated, industry standard photometers. After the results were corrected to unit air mass and to standard distances for both Moon and Sun, an absolute calibration was accomplished by using the Sun's known luminance and a pre-eclipse lunar albedo of approximately 13.5%. The measured minimum level of brightness in the total phase of both eclipses was relatively high, namely -3.32 m(vis) and -1.7 m(vis), which hints at the absence of pronounced stratospheric aerosol. The light curves were modeled in such a way as to let the Moon move through an artificial Earth shadow composed of a multitude of disk and ring zones, containing a relative luminance data set from an atmospheric radiative transfer calculation. PMID:19037352

  5. Dune-filled Crater in Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 4 May 2004 This daytime visible color image was collected on October 16, 2003 during the Southern Summer season of a crater within Molesworth Crater.

    This daytime visible color image was collected on September 4, 2002 during the Northern Spring season in Vastitas Borealis. The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -27.4, Longitude 149.6 East (210.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in

  6. 3-D Color Separation Maximizing the Printer Gamut

    NASA Astrophysics Data System (ADS)

    Zeng, Huanzhao

    2003-01-01

    Besides having CMY colorants, most of color printers include at lease one extra colorant, black (K), to increase the density for shadow colors and to reduce the colorants required for printing shadow colors. In recent years, CMYKcm, CMYKcmk (Cyan, Magenta, Yellow, blacK, light-cyan, light-magenta, and light-black), and CMYKOG (O and G stand for Orange, and Green) or CMYKOV (V stands for Violet) ink-sets have been used in printers to reduce graininess or to extend printer color gamut. No matter how many colorants are used, a printer is often configured as a three-channel printer to simplify the color mapping process. The traditional GCR/UCR approach has been widely applied for CMY to CMYK color separation. However, this approach is not flexible for controlling K usage locally; it does not guarantee reasonable gamut usage; and it does not work very well for more than CMYK colorants. In order to solve the problems existed in traditional GCR approaches, a color separation method based on 3-D interpolation was developed. In this process, we first determine the color conversion for some important node points, which include primary colors, neutral colors, and other color ramps in the gamut surface. Then different interpolation approaches are applied to fill the entire 3-D lookup table. This approach solves the problem existed in traditional GCR that a lot of high-chroma shadow colors may be lost in the color separation step. It controls K usage globally as well as locally. It well controls ink limit in the entire gamut. It also works for the color separation for more than CMYK four colorants. Because it performs automatically without human interaction, it can be applied to general printer color calibration as well as ICC profile recreation and smart CMM implementation.

  7. Mobile image based color correction using deblurring

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Xu, Chang; Boushey, Carol; Zhu, Fengqing; Delp, Edward J.

    2015-03-01

    Dietary intake, the process of determining what someone eats during the course of a day, provides valuable insights for mounting intervention programs for prevention of many chronic diseases such as obesity and cancer. The goals of the Technology Assisted Dietary Assessment (TADA) System, developed at Purdue University, is to automatically identify and quantify foods and beverages consumed by utilizing food images acquired with a mobile device. Color correction serves as a critical step to ensure accurate food identification and volume estimation. We make use of a specifically designed color checkerboard (i.e. a fiducial marker) to calibrate the imaging system so that the variations of food appearance under different lighting conditions can be determined. In this paper, we propose an image quality enhancement technique by combining image de-blurring and color correction. The contribution consists of introducing an automatic camera shake removal method using a saliency map and improving the polynomial color correction model using the LMS color space.

  8. Canyon in DCS Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released July 26, 2004 This image shows two representations of the same infra-red image covering a portion of Ganges Chasma. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations.

    The northern canyon at the top of this image is dominated by a bright red/magenta area consisting primarly basaltic materials on the floor of the canyon and atmospheric dust. Within that area, there are patches of purple, on the walls and in the landslides, that may be due to an olivine rich mineral layer. In the middle of the image, the green on the mesa between the two canyons is from a layer of dust. The patchy blue areas in the southern canyon are likely due to water ice clouds.

    Image information: IR instrument. Latitude -6.6, Longitude 316 East (44 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics

  9. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  10. Cepheid Calibration of the Peak Brightness of SNe Ia.. 9; SN 1989B in NGC 3627

    NASA Technical Reports Server (NTRS)

    Saha, A.; Sandage, Allan; Tammann, G. A.; Labhardt, Lukas; Macchetto, F. D.; Panagia, N.

    1999-01-01

    Repeated imaging observations have been made of NGC 3627 with the Hubble Space Telescope in 1997/98, over an interval of 58 days. Images were obtained on 12 epochs in the F555W band and on five epochs in the F8141,V band. The galaxy hosted the prototypical, "Branch normal", type la supernova SN 1989B. A total of 83 variables have been found, of which 68 are definite Cepheid variables with periods ranging from 75 days to 3.85 days. The de-reddened distance modulus is determined to be (m - M)(sub 0) = 30.22 +/- 0.12 (internal uncertainty) using a subset of the Cepheid data whose reddening and error parameters are secure. The photometric data of Wells et al. (1994), combined with the Cepheid data for NGC 3627 give MB(max) = -19.36 +/- 0.18 and M(sub V)(max) = -19.34 +/- 0.16 for SN 1989B. Combined with the previous six calibrations in this program, plus two additional calibrations determined by others gives the mean absolute magnitudes at maximum of (M(sub B)) = -19.48 +/- 0.07 for "Brunch normal" SNe Ia at this interim stage in the calibration program. Using the argument by Wells et al. (1994) that SN 1989B here is virtually identical in decay rate and colors at maximum with SN 198ON in NGC 1316 in the Fornax cluster, and that such identity means nearly identical absolute magnitude, it follows that the difference in the distance modulus of NGC 3627 and NGC 1316 is 1.62 +/- 0.03 mag. Thus the NGC 3627 modulus implies that (m - M)(sub 0) = 31.84 for NGC 1316. The second parameter correlations of M(max) of blue SNe la with decay rate, color at maximum, and Hubble type are re-investigated. The dependence of (M(max)) on decay rate is non-linear, showing a minimum for decay rates between 1.0 less than ADelta(sub m)15 less than 1.6. Magnitudes corrected for decay rate show no dependence on Hubble type, but a dependence on color remains. Correcting both the fiducial sample of 34 SNe la with decay-rate data and the current eight calibrating SNe la for the correlation with

  11. Laboratory radiometric calibration for the convex grating imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Zhou, Jiankang; Chen, Xinhua; Chen, Yuheng; Ji, Yiqun; Shen, Weimin

    2014-09-01

    The radiometric calibration of imaging spectrometer plays an import role for scientific application of spectral data. The radiometric calibration accuracy is influenced by many factors, such as the stability and uniformity of light source, the transfer precision of radiation standard and so on. But the deviation from the linear response mode and the polarization effect of the imaging spectrometer are always neglected. In this paper, the linear radiometric calibration model is constructed and the radiometric linear response capacity is test by adjusting electric gain, exposure time and radiance level. The linear polarizer and the sine function fitting algorithm are utilized to measure polarization effect. The integrating sphere calibration system is constructed in our Lab and its spectral radiance is calibrated by a well-characterized and extremely stable NIST traceable transfer spectroradiometer. Our manufactured convex grating imaging spectrometer is relative and absolute calibrated based on the integrating sphere calibration system. The relative radiometric calibration data is used to remove or reduce the radiometric response non-uniformity every pixel of imaging spectrometer while the absolute radiometric calibration is used to construct the relationship between the physical radiant of the scene and the digital number of the image. The calibration coefficients are acquired at ten radiance levels. The diffraction noise in the images can be corrected by the calibration coefficients and the uniform radiance image can be got. The calibration result shows that our manufactured imaging spectrometer with convex grating has 3.0% degree of polarization and the uncertainties of the relative and absolute radiometric calibrations are 2.4% and 5.6% respectively.

  12. KEPLER INPUT CATALOG: PHOTOMETRIC CALIBRATION AND STELLAR CLASSIFICATION

    SciTech Connect

    Brown, Timothy M.; Latham, David W.; Esquerdo, Gilbert A.; Everett, Mark E. E-mail: latham@cfa.harvard.edu E-mail: everett@noao.edu

    2011-10-15

    We describe the photometric calibration and stellar classification methods used by the Stellar Classification Project to produce the Kepler Input Catalog (KIC). The KIC is a catalog containing photometric and physical data for sources in the Kepler mission field of view; it is used by the mission to select optimal targets. Four of the visible-light (g, r, i, z) magnitudes used in the KIC are tied to Sloan Digital Sky Survey magnitudes; the fifth (D51) is an AB magnitude calibrated to be consistent with Castelli and Kurucz (CK) model atmosphere fluxes. We derived atmospheric extinction corrections from hourly observations of secondary standard fields within the Kepler field of view. For these filters and extinction estimates, repeatability of absolute photometry for stars brighter than magnitude 15 is typically 2%. We estimated stellar parameters {l_brace}T{sub eff}, log (g), log (Z), E{sub B-V}{r_brace} using Bayesian posterior probability maximization to match observed colors to CK stellar atmosphere models. We applied Bayesian priors describing the distribution of solar-neighborhood stars in the color-magnitude diagram, in log (Z), and in height above the galactic plane. Several comparisons with samples of stars classified by other means indicate that for 4500 K {<=}T{sub eff} {<=} 6500 K, our classifications are reliable within about {+-}200 K and 0.4 dex in log (g) for dwarfs, with somewhat larger log (g) uncertainties for giants. It is difficult to assess the reliability of our log (Z) estimates, but there is reason to suspect that it is poor, particularly at extreme T{sub eff}. Comparisons between the CK models and observed colors are generally satisfactory with some exceptions, notably for stars cooler than 4500 K. Of great importance for the Kepler mission, for T{sub eff} {<=} 5400 K, comparison with asteroseismic results shows that the distinction between main-sequence stars and giants is reliable with about 98% confidence. Larger errors in log (g) occur

  13. Kepler Input Catalog: Photometric Calibration and Stellar Classification

    NASA Astrophysics Data System (ADS)

    Brown, Timothy M.; Latham, David W.; Everett, Mark E.; Esquerdo, Gilbert A.

    2011-10-01

    We describe the photometric calibration and stellar classification methods used by the Stellar Classification Project to produce the Kepler Input Catalog (KIC). The KIC is a catalog containing photometric and physical data for sources in the Kepler mission field of view; it is used by the mission to select optimal targets. Four of the visible-light (g, r, i, z) magnitudes used in the KIC are tied to Sloan Digital Sky Survey magnitudes; the fifth (D51) is an AB magnitude calibrated to be consistent with Castelli & Kurucz (CK) model atmosphere fluxes. We derived atmospheric extinction corrections from hourly observations of secondary standard fields within the Kepler field of view. For these filters and extinction estimates, repeatability of absolute photometry for stars brighter than magnitude 15 is typically 2%. We estimated stellar parameters {T eff, log (g), log (Z), E B - V } using Bayesian posterior probability maximization to match observed colors to CK stellar atmosphere models. We applied Bayesian priors describing the distribution of solar-neighborhood stars in the color-magnitude diagram, in log (Z), and in height above the galactic plane. Several comparisons with samples of stars classified by other means indicate that for 4500 K <=T eff <= 6500 K, our classifications are reliable within about ±200 K and 0.4 dex in log (g) for dwarfs, with somewhat larger log (g) uncertainties for giants. It is difficult to assess the reliability of our log (Z) estimates, but there is reason to suspect that it is poor, particularly at extreme T eff. Comparisons between the CK models and observed colors are generally satisfactory with some exceptions, notably for stars cooler than 4500 K. Of great importance for the Kepler mission, for T eff <= 5400 K, comparison with asteroseismic results shows that the distinction between main-sequence stars and giants is reliable with about 98% confidence. Larger errors in log (g) occur for warmer stars, for which our filter set

  14. Revised Landsat-5 TM Radiometrie Calibration Procedures and Postcalibration Dynamic Ranges

    USGS Publications Warehouse

    Chander, G.; Markham, B.

    2003-01-01

    Effective May 5, 2003, Landsat-5 (L5) Thematic Mapper (TM) data processed and distributed by the U.S. Geological Survey (USGS) Earth Resources Observation System (EROS) Data Center (EDC) will be radiometrically calibrated using a new procedure and revised calibration parameters. This change will improve absolute calibration accuracy, consistency over time, and consistency with Landsat-7 (L7) Enhanced Thematic Mapper Plus (ETM+) data. Users will need to use new parameters to convert the calibrated data products to radiance. The new procedure for the reflective bands (1-5,7) is based on a lifetime radiometric calibration curve for the instrument derived from the instrument's internal calibrator, cross-calibration with the ETM+, and vicarious measurements. The thermal band will continue to be calibrated using the internal calibrator. Further updates to improve the relative detector-to-detector calibration and thermal band calibration are being investigated, as is the calibration of the Landsat-4 (L4) TM.

  15. Photometric calibration of the APM Proper Motion Project

    NASA Astrophysics Data System (ADS)

    Evans, D. W.

    1989-05-01

    Deep BVR photometry is presented in the magnitude range B = 11-21, obtained using a CCD camera. These magnitudes are used to calibrate the photographic photometry of the APM Proper Motion Project. Useful color-color relationships are also presented, calculated using the stellar spectra of Gunn and Stryker (1983).

  16. Using color management in color document processing

    NASA Astrophysics Data System (ADS)

    Nehab, Smadar

    1995-04-01

    Color Management Systems have been used for several years in Desktop Publishing (DTP) environments. While this development hasn't matured yet, we are already experiencing the next generation of the color imaging revolution-Device Independent Color for the small office/home office (SOHO) environment. Though there are still open technical issues with device independent color matching, they are not the focal point of this paper. This paper discusses two new and crucial aspects in using color management in color document processing: the management of color objects and their associated color rendering methods; a proposal for a precedence order and handshaking protocol among the various software components involved in color document processing. As color peripherals become affordable to the SOHO market, color management also becomes a prerequisite for common document authoring applications such as word processors. The first color management solutions were oriented towards DTP environments whose requirements were largely different. For example, DTP documents are image-centric, as opposed to SOHO documents that are text and charts centric. To achieve optimal reproduction on low-cost SOHO peripherals, it is critical that different color rendering methods are used for the different document object types. The first challenge in using color management of color document processing is the association of rendering methods with object types. As a result of an evolutionary process, color matching solutions are now available as application software, as driver embedded software and as operating system extensions. Consequently, document processing faces a new challenge, the correct selection of the color matching solution while avoiding duplicate color corrections.

  17. Absolute optical surface measurement with deflectometry

    NASA Astrophysics Data System (ADS)

    Li, Wansong; Sandner, Marc; Gesierich, Achim; Burke, Jan

    Deflectometry utilises the deformation and displacement of a sample pattern after reflection from a test surface to infer the surface slopes. Differentiation of the measurement data leads to a curvature map, which is very useful for surface quality checks with sensitivity down to the nanometre range. Integration of the data allows reconstruction of the absolute surface shape, but the procedure is very error-prone because systematic errors may add up to large shape deviations. In addition, there are infinitely many combinations for slope and object distance that satisfy a given observation. One solution for this ambiguity is to include information on the object's distance. It must be known very accurately. Two laser pointers can be used for positioning the object, and we also show how a confocal chromatic distance sensor can be used to define a reference point on a smooth surface from which the integration can be started. The used integration algorithm works without symmetry constraints and is therefore suitable for free-form surfaces as well. Unlike null testing, deflectometry also determines radius of curvature (ROC) or focal lengths as a direct result of the 3D surface reconstruction. This is shown by the example of a 200 mm diameter telescope mirror, whose ROC measurements by coordinate measurement machine and deflectometry coincide to within 0.27 mm (or a sag error of 1.3μm). By the example of a diamond-turned off-axis parabolic mirror, we demonstrate that the figure measurement uncertainty comes close to a well-calibrated Fizeau interferometer.

  18. Advances in radiometry for ocean color

    USGS Publications Warehouse

    Brown, S.W.; Clark, D.K.; Johnson, B.C.; Yoon, H.; Lykke, K.R.; Flora, S.J.; Feinholz, M.E.; Souaidia, N.; Pietras, C.; Stone, T.C.; Yarbrough, M.A.; Kim, Y.S.; Barnes, R.A.; Mueller, J.L.

    2004-01-01

    We have presented a number of recent developments in radiometry that directly impact the uncertainties achievable in ocean-color research. Specifically, a new (2000) U. S. national irradiance scale, a new LASER-based facility for irradiance and radiance responsivity calibrations, and applications of the LASER facility for the calibration of sun photometers and characterization of spectrographs were discussed. For meaningful long-time-series global chlorophyll-a measurements, all instruments involved in radiometric measurements, including satellite sensors, vicarious calibration sensors, sensors used in the development of bio-optical algorithms and atmospheric characterization need to be fully characterized and corrected for systematic errors, including, but not limited to, stray light. A unique, solid-state calibration source is under development to reduce the radiometric uncertainties in ocean color instruments, in particular below 400 nm. Lunar measurements for trending of on-orbit sensor channel degradation were described. Unprecedented assessments, within 0.1 %, of temporal stability and drift in a satellite sensor's radiance responsivity are achievable with this approach. These developments advance the field of ocean color closer to the desired goal of reducing the uncertainty in the fundamental radiometry to a small component of the overall uncertainty in the derivation of remotely sensed ocean-color data products such as chlorophyll a.

  19. Cross-calibration between airborne SAR sensors

    NASA Technical Reports Server (NTRS)

    Zink, Manfred; Olivier, Philippe; Freeman, Anthony

    1993-01-01

    As Synthetic Aperture Radar (SAR) system performance and experience in SAR signature evaluation increase, quantitative analysis becomes more and more important. Such analyses require an absolute radiometric calibration of the complete SAR system. To keep the expenditure on calibration of future multichannel and multisensor remote sensing systems (e.g., X-SAR/SIR-C) within a tolerable level, data from different tracks and different sensors (channels) must be cross calibrated. The 1989 joint E-SAR/DC-8 SAR calibration campaign gave a first opportunity for such an experiment, including cross sensor and cross track calibration. A basic requirement for successful cross calibration is the stability of the SAR systems. The calibration parameters derived from different tracks and the polarimetric properties of the uncalibrated data are used to describe this stability. Quality criteria for a successful cross calibration are the agreement of alpha degree values and the consistency of radar cross sections of equally sized corner reflectors. Channel imbalance and cross talk provide additional quality in case of the polarimetric DC-8 SAR.

  20. COBE differential microwave radiometers - Calibration techniques

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Smoot, G. F.; Janssen, M.; Gulkis, S.; Kogut, A.; Hinshaw, G.; Backus, C.; Hauser, M. G.; Mather, J. C.; Rokke, L.

    1992-01-01

    The COBE spacecraft was launched November 18, 1989 UT carrying three scientific instruments into earth orbit for studies of cosmology. One of these instruments, the Differential Microwave Radiometer (DMR), is designed to measure the large-angular-scale temperature anisotropy of the cosmic microwave background radiation at three frequencies (31.5, 53, and 90 GHz). This paper presents three methods used to calibrate the DMR. First, the signal difference between beam-filling hot and cold targets observed on the ground provides a primary calibration that is transferred to space by noise sources internal to the instrument. Second, the moon is used in flight as an external calibration source. Third, the signal arising from the Doppler effect due to the earth's motion around the barycenter of the solar system is used as an external calibration source. Preliminary analysis of the external source calibration techniques confirms the accuracy of the currently more precise ground-based calibration. Assuming the noise source behavior did not change from the ground-based calibration to flight, a 0.1-0.4 percent relative and 0.7-2.5 percent absolute calibration uncertainty is derived, depending on radiometer channel.

  1. MERIS/ENVISAT vicarious calibration over land

    NASA Astrophysics Data System (ADS)

    Kneubuehler, Mathias; Schaepman, Michael E.; Thome, Kurtis J.; Schlapfer, Daniel R.

    2004-02-01

    The launch of ESA"s ENVISAT in March 2002 was followed by a commissioning phase for all ENVISAT instruments to verify the performance of ENVISAT instruments and recommend possible adjustments of the calibration or the product algorithms before the data was widely distributed. The focus of this paper is on the vicarious calibration of the Medium Resolution Imaging Spectrometer (MERIS) radiance product (Level 1b) over land. From August to October 2002, several vicarious calibration (VC) experiments for MERIS were performed by the Optical Sciences Center, University of Arizona, and the Remote Sensing Laboratories, University of Zurich. The purpose of these activities was the acquisition of in-situ measurements of surface and atmospheric conditions over a bright, uniform land target, preferably during the time of MERIS data acquisition. The experiment was performed on a dedicated desert site (Railroad Valley Playa, Nevada, USA), which has previously been used to calibrate most relevant satellite instruments (e.g., MODIS, ETM+, etc.). In-situ data were then used to compute top-of-atmosphere (TOA) radiances which were compared to the MERIS TOA radiances (Level 1b full resolution product) to determine the in-flight radiometric response of the on-orbit sensor. The absolute uncertainties of the vicarious calibration experiment are found between 3.36-7.15%, depending on the accuracies of the available ground truth data. Based on the uncertainties of the vicarious calibration method and the calibration accuracies of MERIS, no recommendation to update the MERIS calibration is given.

  2. MSTAR: an absolute metrology system with submicrometer accuracy

    NASA Astrophysics Data System (ADS)

    Lay, Oliver P.; Dubovitsky, Serge; Peters, Robert D.; Burger, Johan; Steier, Willian H.; Ahn, Seh-Won; Fetterman, Harrold R.

    2004-10-01

    Laser metrology systems are a key component of stellar interferometers, used to monitor path lengths and dimensions internal to the instrument. Most interferometers use 'relative' metrology, in which the integer number of wavelengths along the path is unknown, and the measurement of length is ambiguous. Changes in the path length can be measured relative to an initial calibration point, but interruption of the metrology beam at any time requires a re-calibration of the system. The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. We describe the design of the system, show results for target distances up to 1 meter, and demonstrate how the system can be scaled to kilometer-scale distances. In recent experiments, we have used white light interferometry to augment the 'truth' measurements and validate the zero-point of the system. MSTAR is a general-purpose tool for conveniently measuring length with much greater accuracy than was previously possible, and has a wide range of possible applications.

  3. Stitching interferometry and absolute surface shape metrology: similarities

    NASA Astrophysics Data System (ADS)

    Bray, Michael

    2001-12-01

    Stitching interferometry is a method of analysing large optical components using a standard small interferometer. This result is obtained by taking multiple overlapping images of the large component, and numerically stitching these sub-apertures together by computing a correcting Tip- Tilt-Piston correction for each sub-aperture. All real-life measurement techniques require a calibration phase. By definition, a perfect surface does not exist. Methods abound for the accurate measurement of diameters (viz., the Three Flat Test). However, we need total surface knowledge of the reference surface, because the stitched overlap areas will suffer from the slightest deformation. One must not be induced into thinking that Stitching is the cause of this error: it simply highlights the lack of absolute knowledge of the reference surface, or the lack of adequate thermal control, issues which are often sidetracked... The goal of this paper is to highlight the above-mentioned calibration problems in interferometry in general, and in stitching interferometry in particular, and show how stitching hardware and software can be conveniently used to provide the required absolute surface shape metrology. Some measurement figures will illustrate this article.

  4. Absolute surface reconstruction by slope metrology and photogrammetry

    NASA Astrophysics Data System (ADS)

    Dong, Yue

    Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.

  5. Toward Millimagnitude Photometric Calibration (Abstract)

    NASA Astrophysics Data System (ADS)

    Dose, E.

    2014-12-01

    (Abstract only) Asteroid roation, exoplanet transits, and similar measurements will increasingly call for photometric precisions better than about 10 millimagnitudes, often between nights and ideally between distant observers. The present work applies detailed spectral simulations to test popular photometric calibration practices, and to test new extensions of these practices. Using 107 synthetic spectra of stars of diverse colors, detailed atmospheric transmission spectra computed by solar-energy software, realistic spectra of popular astronomy gear, and the option of three sources of noise added at realistic millimagnitude levels, we find that certain adjustments to current calibration practices can help remove small systematic errors, especially for imperfect filters, high airmasses, and possibly passing thin cirrus clouds.

  6. Computer simulation of printed colors on textile materials

    NASA Astrophysics Data System (ADS)

    Iwata, Kansei; Marcu, Gabriel G.

    1994-05-01

    The printing process of textile materials uses an ink set dependent of the image to be printed and referred as the primary color palette. The colors of the printed textile material depend on the printing sequence of the ink masks and are referred as the secondary color palette. A single primary color palette may conduct to different secondary color palettes, as a function of printing sequence. This paper provides an analysis of the mechanism of color appearance on the printed textile materials. The analysis conducts to a model to simulate on the computer display the appearance of the textile printed colors as a function of a number of parameters. The simulation includes a generalized Neugebauer model. A hierarchical structure is introduced for the colors of the secondary palette in order to provide the coefficients of the Neugebauer model. For a certain textile material, the color hierarchy is dependent on the ink set and the printing sequence. The color hierarchy is established as result of color calibration process. Printed samples are used for calibration procedure.

  7. Gale Crater in IR Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released August 4, 2004 This image shows two representations of the same infra-red image of Gale Crater. On the left is a grayscale image showing surface temperature, and on the right is a false-color composite made from 3 individual THEMIS bands. The false-color image is colorized using a technique called decorrelation stretch (DCS), which emphasizes the spectral differences between the bands to highlight compositional variations.

    In the bottom of the crater, surrounding the central mound, there are extensive basaltic sand deposits. The basaltic sand spectral signature combined with the warm surface (due to the low albedo of basaltic sand) produces a very strong pink/magenta color. This color signature contrasts with the green/yellow color of soil and dust in the top of the image, and the cyan color due to the presence of water ice clouds at the bottom of the image. This migrating sand may be producing the erosional features seen on the central mound.

    Image information: IR instrument. Latitude -4.4, Longitude 137.4 East (222.6 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University

  8. Absolute oral bioavailability of ciprofloxacin.

    PubMed

    Drusano, G L; Standiford, H C; Plaisance, K; Forrest, A; Leslie, J; Caldwell, J

    1986-09-01

    We evaluated the absolute bioavailability of ciprofloxacin, a new quinoline carboxylic acid, in 12 healthy male volunteers. Doses of 200 mg were given to each of the volunteers in a randomized, crossover manner 1 week apart orally and as a 10-min intravenous infusion. Half-lives (mean +/- standard deviation) for the intravenous and oral administration arms were 4.2 +/- 0.77 and 4.11 +/- 0.74 h, respectively. The serum clearance rate averaged 28.5 +/- 4.7 liters/h per 1.73 m2 for the intravenous administration arm. The renal clearance rate accounted for approximately 60% of the corresponding serum clearance rate and was 16.9 +/- 3.0 liters/h per 1.73 m2 for the intravenous arm and 17.0 +/- 2.86 liters/h per 1.73 m2 for the oral administration arm. Absorption was rapid, with peak concentrations in serum occurring at 0.71 +/- 0.15 h. Bioavailability, defined as the ratio of the area under the curve from 0 h to infinity for the oral to the intravenous dose, was 69 +/- 7%. We conclude that ciprofloxacin is rapidly absorbed and reliably bioavailable in these healthy volunteers. Further studies with ciprofloxacin should be undertaken in target patient populations under actual clinical circumstances. PMID:3777908

  9. Absolute Instability in Coupled-Cavity TWTs

    NASA Astrophysics Data System (ADS)

    Hung, D. M. H.; Rittersdorf, I. M.; Zhang, Peng; Lau, Y. Y.; Simon, D. H.; Gilgenbach, R. M.; Chernin, D.; Antonsen, T. M., Jr.

    2014-10-01

    This paper will present results of our analysis of absolute instability in a coupled-cavity traveling wave tube (TWT). The structure mode at the lower and upper band edges are respectively approximated by a hyperbola in the (omega, k) plane. When the Briggs-Bers criterion is applied, a threshold current for onset of absolute instability is observed at the upper band edge, but not the lower band edge. The nonexistence of absolute instability at the lower band edge is mathematically similar to the nonexistence of absolute instability that we recently demonstrated for a dielectric TWT. The existence of absolute instability at the upper band edge is mathematically similar to the existence of absolute instability in a gyroton traveling wave amplifier. These interesting observations will be discussed, and the practical implications will be explored. This work was supported by AFOSR, ONR, and L-3 Communications Electron Devices.

  10. LED Color Characteristics

    SciTech Connect

    2012-01-01

    Color quality is an important consideration when evaluating LED-based products for general illumination. This fact sheet reviews the basics regarding light and color and summarizes the most important color issues related to white-light LED systems.

  11. Urine - abnormal color

    MedlinePlus

    ... straw-yellow. Abnormally colored urine may be cloudy, dark, or blood-colored. Causes Abnormal urine color may ... red blood cells, or mucus in the urine. Dark brown but clear urine is a sign of ...

  12. Color Blindness Simulations

    MedlinePlus

    ... many disables? The fastest growing segment? Myths of disability The Law The Rules Accessibility Resources Page Updates, additions Contact Us For assistance contact your NOAA Line Office Section 508 Coordinator Color blindness Simulations Normal Color Vision Deuteranopia Color blindness marked ...

  13. Absolute brightness temperature measurements at 3.5-mm wavelength. [of sun, Venus, Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Ulich, B. L.; Rhodes, P. J.; Davis, J. H.; Hollis, J. M.

    1980-01-01

    Careful observations have been made at 86.1 GHz to derive the absolute brightness temperatures of the sun (7914 + or - 192 K), Venus (357.5 + or - 13.1 K), Jupiter (179.4 + or - 4.7 K), and Saturn (153.4 + or - 4.8 K) with a standard error of about three percent. This is a significant improvement in accuracy over previous results at millimeter wavelengths. A stable transmitter and novel superheterodyne receiver were constructed and used to determine the effective collecting area of the Millimeter Wave Observatory (MWO) 4.9-m antenna relative to a previously calibrated standard gain horn. The thermal scale was set by calibrating the radiometer with carefully constructed and tested hot and cold loads. The brightness temperatures may be used to establish an absolute calibration scale and to determine the antenna aperture and beam efficiencies of other radio telescopes at 3.5-mm wavelength.

  14. Calibration of sound calibrators: an overview

    NASA Astrophysics Data System (ADS)

    Milhomem, T. A. B.; Soares, Z. M. D.

    2016-07-01

    This paper presents an overview of calibration of sound calibrators. Initially, traditional calibration methods are presented. Following, the international standard IEC 60942 is discussed emphasizing parameters, target measurement uncertainty and criteria for conformance to the requirements of the standard. Last, Regional Metrology Organizations comparisons are summarized.

  15. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    NASA Technical Reports Server (NTRS)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  16. SI-Traceable Calibrations of Celestial Objects

    NASA Astrophysics Data System (ADS)

    Cramer, C. E.; Lykke, K. R.; Woodward, J. T.

    2016-05-01

    Photometric calibration is currently the leading source of systematic uncertainty in supernova surveys that aim to determine the nature of dark energy. The bulk of this uncertainty is due to imperfect knowledge of the spectral energy distribution of stars used as primary standards. We review the challenges associated with establishing an absolute calibration of stellar spectra and describe how it is possible to do better by using recent advances in optical metrology, paying particular attention to the measurement chain establishing SI-traceability and reporting of measurement uncertainties.

  17. Correction to Method of Establishing the Absolute Radiometric Accuracy of Remote Sensing Systems While On-orbit Using Characterized Stellar Sources

    NASA Technical Reports Server (NTRS)

    Bowen, Howard S.; Cunningham, Douglas M.

    2007-01-01

    The contents include: 1) Brief history of related events; 2) Overview of original method used to establish absolute radiometric accuracy of remote sensing instruments using stellar sources; and 3) Considerations to improve the stellar calibration approach.

  18. Absolute negative mobility of interacting Brownian particles

    NASA Astrophysics Data System (ADS)

    Ou, Ya-li; Hu, Cai-tian; Wu, Jian-chun; Ai, Bao-quan

    2015-12-01

    Transport of interacting Brownian particles in a periodic potential is investigated in the presence of an ac force and a dc force. From Brownian dynamic simulations, we find that both the interaction between particles and the thermal fluctuations play key roles in the absolute negative mobility (the particle noisily moves backwards against a small constant bias). When no the interaction acts, there is only one region where the absolute negative mobility occurs. In the presence of the interaction, the absolute negative mobility may appear in multiple regions. The weak interaction can be helpful for the absolute negative mobility, while the strong interaction has a destructive impact on it.

  19. Continued Monitoring of Landsat Reflective Band Calibration Using Pseudo-Invariant Calibration Sites

    NASA Technical Reports Server (NTRS)

    Barsi, Julia A.; Markham, Brian L.; Helder, Dennis L.

    2012-01-01

    Though both of the current Landsat instruments, Landsat-7 Enhanced Thematic Mapper+ (ETM+) and Landsat-5 Thematic Mapper (TM), include on-board calibration systems, since 2001, pseudo-invariant calibration sites (PICS) have been added to the suite of metrics to assess the instruments calibration. These sites do not provide absolute calibration data since there are no ground measurements of the sites, but in monitoring these PICS over time, the relative calibration can be tracked. The sites used by the Landsat instruments are primarily in the Saharan Desert. To date, the trending from the PICS sites has confirmed that most of the degradation seen in the ETM+ on-board calibration systems is likely not degradation of the instrument, but rather degradation of the calibration systems themselves. However, the PICS data show statistically significant degradation (at 2-sigma) in all the reflective spectral bands of up to -0.22%/year since July 2003. For the TM, the PICS were instrumental in updating the calibration in 2007 and now suggest two bands may require another update. The data show a statistically significant degradation (at 2-sigma) in Bands 1 and 3 of -0.27 and -0.15%/year, respectively, since March 1999. The data filtering and processing methods are currently being reviewed but these PICS results may lead to an update in the reflective band calibration of both Landsat-7 and Landsat-5.

  20. Human vision based color edge detection

    NASA Astrophysics Data System (ADS)

    Kim, Ari; Kim, Hong-suk; Park, Seung-ok

    2011-01-01

    Edge detection can be of great importance to image processing in various digital imaging applications such as digital television and camera. Therefore, extracting more accurate edge properties are significantly demanded for achieving a better image understanding. In vector gradient edge detection, absolute difference of RGB values between a center pixel value, and its neighborhood values are usually used, although such a device-dependent color space does not account for human visual characteristics well. The goal of this study is to test a variety of color difference equations and propose the most effective model that can be used for the purpose of color edge detection. Three of synthetic images generated using perceptibility threshold of the human visual system were used for objectively evaluate to 5 color difference equations studied in this paper. A set of 6 complex color images was also used to testing the 5 color difference equations psychophysically. The equations include ΔRGB, ΔE* ab, ΔECMC, CIEDE2000 (ΔE00) and CIECAM02-UCS delta E (ΔECAM-UCS). Consequently, there were not significant performance variations observed between those 5 color difference equations for the purpose of edge detection. However, ΔE00 and ΔECAM-UCS showed slightly higher mean opinion score (MOS) in detected edge information.