Science.gov

Sample records for absolute color calibration

  1. The Carina Project: Absolute and Relative Calibrations

    NASA Astrophysics Data System (ADS)

    Corsi, C. E.; Bono, G.; Walker, A. R.; Brocato, E.; Buonanno, R.; Caputo, F.; Castellani, M.; Castellani, V.; Dall'Ora, M.; Marconi, M.; Monelli, M.; Nonino, M.; Pulone, L.; Ripepi, V.; Smith, H. A.

    We discuss the reduction strategy adopted to perform the relative and the absolute calibration of the Wide Field Imager (WFI) available at the 2.2m ESO/MPI telescope and of the Mosaic Camera (MC) available at the 4m CTIO Blanco telescope. To properly constrain the occurrence of deceptive systematic errors in the relative calibration we observed with each chip the same set of stars. Current photometry seems to suggest that the WFI shows a positional effect when moving from the top to the bottom of individual chips. Preliminary results based on an independent data set collected with the MC suggest that this camera is only marginally affected by the same problem. To perform the absolute calibration we observed with each chip the same set of standard stars. The sample covers a wide color range and the accuracy both in the B and in the V-band appears to be of the order of a few hundredths of magnitude. Finally, we briefly outline the observing strategy to improve both relative and absolute calibrations of mosaic CCD cameras.

  2. Absolute calibration in vivo measurement systems

    SciTech Connect

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs.

  3. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  4. Absolute calibration of remote sensing instruments

    NASA Astrophysics Data System (ADS)

    Biggar, S. F.; Bruegge, C. J.; Capron, B. A.; Castle, K. R.; Dinguirard, M. C.; Holm, R. G.; Lingg, L. J.; Mao, Y.; Palmer, J. M.; Phillips, A. L.

    1985-12-01

    Source-based and detector-based methods for the absolute radiometric calibration of a broadband field radiometer are described. Using such a radiometer, calibrated by both methods, the calibration of the integrating sphere used in the preflight calibration of the Thematic Mapper was redetermined. The results are presented. The in-flight calibration of space remote sensing instruments is discussed. A method which uses the results of ground-based reflectance and atmospheric measurements as input to a radiative transfer code to predict the radiance at the instrument is described. A calibrated, helicopter-mounted radiometer is used to determine the radiance levels at intermediate altitudes to check the code predictions. Results of such measurements for the calibration of the Thematic Mapper on Landsat 5 and an analysis that shows the value of such measurements are described.

  5. Absolute calibration of the Auger fluorescence detectors

    SciTech Connect

    Bauleo, P.; Brack, J.; Garrard, L.; Harton, J.; Knapik, R.; Meyhandan, R.; Rovero, A.C.; Tamashiro, A.; Warner, D.

    2005-07-01

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the combined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.

  6. Pleiades Absolute Calibration : Inflight Calibration Sites and Methodology

    NASA Astrophysics Data System (ADS)

    Lachérade, S.; Fourest, S.; Gamet, P.; Lebègue, L.

    2012-07-01

    In-flight calibration of space sensors once in orbit is a decisive step to be able to fulfil the mission objectives. This article presents the methods of the in-flight absolute calibration processed during the commissioning phase. Four In-flight calibration methods are used: absolute calibration, cross-calibration with reference sensors such as PARASOL or MERIS, multi-temporal monitoring and inter-bands calibration. These algorithms are based on acquisitions over natural targets such as African deserts, Antarctic sites, La Crau (Automatic calibration station) and Oceans (Calibration over molecular scattering) or also new extra-terrestrial sites such as the Moon and selected stars. After an overview of the instrument and a description of the calibration sites, it is pointed out how each method is able to address one or several aspects of the calibration. We focus on how these methods complete each other in their operational use, and how they help building a coherent set of information that addresses all aspects of in-orbit calibration. Finally, we present the perspectives that the high level of agility of PLEIADES offers for the improvement of its calibration and a better characterization of the calibration sites.

  7. Absolute Radiometric Calibration Of The Thematic Mapper

    NASA Astrophysics Data System (ADS)

    Slater, P. N.; Biggar, S. F.; Holm, R. G.; Jackson, R. D.; Mao, Y.; Moran, M. S.; Palmer, J. M.; Yuan, B.

    1986-11-01

    The results are presented of five in-flight absolute radiometric calibrations, made in the period July 1984 to November 1985, at White Sands, New Mexico, of the solar reflective bands of the Landsat-5 Thematic Mapper (TM) . The 23 bandcalibrations made on the five dates show a ± 2.8% RMS variation from the mean as a percentage of the mean.

  8. Absolute Radiometric Calibration of EUNIS-06

    NASA Technical Reports Server (NTRS)

    Thomas, R. J.; Rabin, D. M.; Kent, B. J.; Paustian, W.

    2007-01-01

    The Extreme-Ultraviolet Normal-Incidence Spectrometer (EUNIS) is a soundingrocket payload that obtains imaged high-resolution spectra of individual solar features, providing information about the Sun's corona and upper transition region. Shortly after its successful initial flight last year, a complete end-to-end calibration was carried out to determine the instrument's absolute radiometric response over its Longwave bandpass of 300 - 370A. The measurements were done at the Rutherford-Appleton Laboratory (RAL) in England, using the same vacuum facility and EUV radiation source used in the pre-flight calibrations of both SOHO/CDS and Hinode/EIS, as well as in three post-flight calibrations of our SERTS sounding rocket payload, the precursor to EUNIS. The unique radiation source provided by the Physikalisch-Technische Bundesanstalt (PTB) had been calibrated to an absolute accuracy of 7% (l-sigma) at 12 wavelengths covering our bandpass directly against the Berlin electron storage ring BESSY, which is itself a primary radiometric source standard. Scans of the EUNIS aperture were made to determine the instrument's absolute spectral sensitivity to +- 25%, considering all sources of error, and demonstrate that EUNIS-06 was the most sensitive solar E W spectrometer yet flown. The results will be matched against prior calibrations which relied on combining measurements of individual optical components, and on comparisons with theoretically predicted 'insensitive' line ratios. Coordinated observations were made during the EUNIS-06 flight by SOHO/CDS and EIT that will allow re-calibrations of those instruments as well. In addition, future EUNIS flights will provide similar calibration updates for TRACE, Hinode/EIS, and STEREO/SECCHI/EUVI.

  9. The Absolute Radiometric Calibration of Space - Sensors.

    NASA Astrophysics Data System (ADS)

    Holm, Ronald Gene

    1987-09-01

    The need for absolute radiometric calibration of space-based sensors will continue to increase as new generations of space sensors are developed. A reflectance -based in-flight calibration procedure is used to determine the radiance reaching the entrance pupil of the sensor. This procedure uses ground-based measurements coupled with a radiative transfer code to characterize the effects the atmosphere has on the signal reaching the sensor. The computed radiance is compared to the digital count output of the sensor associated with the image of a test site. This provides an update to the preflight calibration of the system and a check on the on-board internal calibrator. This calibration procedure was used to perform a series of five calibrations of the Landsat-5 Thematic Mapper (TM). For the 12 measurements made in TM bands 1-3, the RMS variation from the mean as a percentage of the mean is (+OR-) 1.9%, and for measurements in the IR, TM bands 4,5, and 7, the value is (+OR-) 3.4%. The RMS variation for all 23 measurements is (+OR-) 2.8%. The absolute calibration techniques were put to another test with a series of three calibration of the SPOT-1 High Resolution Visible, (HRV), sensors. The ratio, HRV-2/HRV-1, of absolute calibration coefficients compared very well with ratios of histogrammed data obtained when the cameras simultaneously imaged the same ground site. Bands PA, B1 and B3 agreed to within 3%, while band B2 showed a 7% difference. The procedure for performing a satellite calibration was then used to demonstrate how a calibrated satellite sensor can be used to quantitatively evaluate surface reflectance over a wide range of surface features. Predicted reflectance factors were compared to values obtained from aircraft -based radiometer data. This procedure was applied on four dates with two different surface conditions per date. A strong correlation, R('2) = .996, was shown between reflectance values determined from satellite imagery and low-flying aircraft

  10. Sentinel-2/MSI absolute calibration: first results

    NASA Astrophysics Data System (ADS)

    Lonjou, V.; Lachérade, S.; Fougnie, B.; Gamet, P.; Marcq, S.; Raynaud, J.-L.; Tremas, T.

    2015-10-01

    Sentinel-2 is an optical imaging mission devoted to the operational monitoring of land and coastal areas. It is developed in partnership between the European Commission and the European Space Agency. The Sentinel-2 mission is based on a satellites constellation deployed in polar sun-synchronous orbit. It will offer a unique combination of global coverage with a wide field of view (290km), a high revisit (5 days with two satellites), a high resolution (10m, 20m and 60m) and multi-spectral imagery (13 spectral bands in visible and shortwave infra-red domains). CNES is involved in the instrument commissioning in collaboration with ESA. This paper reviews all the techniques that will be used to insure an absolute calibration of the 13 spectral bands better than 5% (target 3%), and will present the first results if available. First, the nominal calibration technique, based on an on-board sun diffuser, is detailed. Then, we show how vicarious calibration methods based on acquisitions over natural targets (oceans, deserts, and Antarctica during winter) will be used to check and improve the accuracy of the absolute calibration coefficients. Finally, the verification scheme, exploiting photometer in-situ measurements over Lacrau plain, is described. A synthesis, including spectral coherence, inter-methods agreement and temporal evolution, will conclude the paper.

  11. Absolute radiometric calibration of the CCRS SAR

    NASA Astrophysics Data System (ADS)

    Ulander, Lars M. H.; Hawkins, Robert K.; Livingstone, Charles E.; Lukowski, Tom I.

    1991-11-01

    Determining the radar scattering coefficients from SAR (synthetic aperture radar) image data requires absolute radiometric calibration of the SAR system. The authors describe an internal calibration methodology for the airborne Canada Centre for Remote Sensing (CCRS) SAR system, based on radar theory, a detailed model of the radar system, and measurements of system parameters. The methodology is verified by analyzing external calibration data acquired over a 6-month period in 1988 by the C-band radar using HH polarization. The results indicate that the overall error is +/- 0.8 dB (1-sigma) for incidence angles +/- 20 deg from antenna boresight. The dominant error contributions are due to the antenna radome and uncertainties in the elevation angle relative to the antenna boresight.

  12. Absolute radiometric calibration of the Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Biggar, S. F.; Holm, R. G.; Jackson, R. D.; Mao, Y.

    1986-01-01

    Calibration data for the solar reflective bands of the Landsat-5 TM obtained from five in-flight absolute radiometric calibrations from July 1984-November 1985 at White Sands, New Mexico are presented and analyzed. Ground reflectance and atmospheric data were utilized to predict the spectral radiance at the entrance pupil of the TM and the average number of digital counts in each TM band. The calibration of each of the TM solar reflective bands was calculated in terms of average digital counts/unit spectral radiance for each band. It is observed that for the 12 reflectance-based measurements the rms variation from the means as a percentage of the mean is + or - 1.9 percent; for the 11 measurements in the IR bands, it is + or - 3.4 percent; and the rms variation for all 23 measurements is + or - 2.8 percent.

  13. Absolute Radiometric Calibration of KOMPSAT-3A

    NASA Astrophysics Data System (ADS)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  14. Absolute calibration of ultraviolet filter photometry

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Fairchild, T.; Code, A. D.

    1972-01-01

    The essential features of the calibration procedure can be divided into three parts. First, the shape of the bandpass of each photometer was determined by measuring the transmissions of the individual optical components and also by measuring the response of the photometer as a whole. Secondly, each photometer was placed in the essentially-collimated synchrotron radiation bundle maintained at a constant intensity level, and the output signal was determined from about 100 points on the objective. Finally, two or three points on the objective were illuminated by synchrotron radiation at several different intensity levels covering the dynamic range of the photometers. The output signals were placed on an absolute basis by the electron counting technique described earlier.

  15. Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Casertano, Stefano

    1991-01-01

    A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.

  16. Issues in Absolute Spectral Radiometric Calibration: Intercomparison of Eight Sources

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.; Kindel, Bruce; Pilewskie, Peter

    1998-01-01

    The application of atmospheric models to AVIRIS and other spectral imaging data to derive surface reflectance requires that the sensor output be calibrated to absolute radiance. Uncertainties in absolute calibration are to be expected, and claims of 92% accuracy have been published. Measurements of accurate surface albedos and cloud absorption to be used in radiative balance calculations depend critically on knowing the absolute spectral-radiometric response of the sensor. The Earth Observing System project is implementing a rigorous program of absolute radiometric calibration for all optical sensors. Since a number of imaging instruments that provide output in terms of absolute radiance are calibrated at different sites, it is important to determine the errors that can be expected among calibration sites. Another question exists about the errors in the absolute knowledge of the exoatmospheric spectral solar irradiance.

  17. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  18. Absolute calibration of sniffer probes on Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m2 per MW injected beam power is measured.

  19. Absolute calibration of sniffer probes on Wendelstein 7-X.

    PubMed

    Moseev, D; Laqua, H P; Marsen, S; Stange, T; Braune, H; Erckmann, V; Gellert, F; Oosterbeek, J W

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m(2) per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m(2) per MW injected beam power is measured. PMID:27587121

  20. A practical method for sensor absolute calibration.

    PubMed

    Meisenholder, G W

    1966-04-01

    This paper describes a method of performing sensor calibrations using an NBS standard of spectral irradiance. The method shown, among others, was used for calibration of the Mariner IV Canopus sensor. Agreement of inflight response to preflight calibrations performed by this technique has been found to be well within 10%. PMID:20048890

  1. Absolute Antenna Calibration at the US National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.

    2012-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. Determination of antenna phase center behavior is known as "antenna calibration". Since 1994, NGS has computed relative antenna calibrations for more than 350 antennas. In recent years, the geodetic community has moved to absolute calibrations - the IGS adopted absolute antenna phase center calibrations in 2006 for use in their orbit and clock products, and NGS's CORS group began using absolute antenna calibration upon the release of the new CORS coordinates in IGS08 epoch 2005.00 and NAD 83(2011,MA11,PA11) epoch 2010.00. Although NGS relative calibrations can be and have been converted to absolute, it is considered best practice to independently measure phase center characteristics in an absolute sense. Consequently, NGS has developed and operates an absolute calibration system. These absolute antenna calibrations accommodate the demand for greater accuracy and for 2-dimensional (elevation and azimuth) parameterization. NGS will continue to provide calibration values via the NGS web site www.ngs.noaa.gov/ANTCAL, and will publish calibrations in the ANTEX format as well as the legacy ANTINFO

  2. Calibrated Color and Albedo Maps of Mercury

    NASA Astrophysics Data System (ADS)

    Robinson, M. S.; Lucey, P. G.

    1996-03-01

    In order to determine the albedo and color of the mercurian surface, we are completing calibrated mosaics of Mariner 10 image data. A set of clear filter mosaics is being compiled in such a way as to maximize the signal-to-noise-ratio of the data and to allow for a quantitative measure of the precision of the data on a pixel-by-pixel basis. Three major imaging sequences of Mercury were acquired by Mariner 10: incoming first encounter (centered at 20S, 2E), outgoing first encounter (centered at 20N, 175E), and southern hemisphere second encounter (centered at 40S, 100E). For each sequence we are making separate mosaics for each camera (A and B) in order to have independent measurements. For each mosaic, regions of overlap from frame-to-frame are being averaged and the attendant standard deviations are being calculated. Due to the highly redundant nature of the data, each pixel in each mosaic will be an average calculated from 1-10 images. Each mosaic will have a corresponding standard deviation and n (number of measurements) map. A final mosaic will be created by averaging the six independent mosaics. This procedure lessens the effects of random noise and calibration residuals. From these data an albedo map will be produced using an improved photometric function for the Moon. A similar procedure is being followed for the lower resolution color sequences (ultraviolet, blue, orange, ultraviolet polarized). These data will be calibrated to absolute units through comparison of Mariner 10 images acquired of the Moon and Jupiter. Spectral interpretation of these new color and albedo maps will be presented with an emphasis on comparison with the Moon.

  3. System and method for calibrating a rotary absolute position sensor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  4. Absolute flux density calibrations: Receiver saturation effects

    NASA Technical Reports Server (NTRS)

    Freiley, A. J.; Ohlson, J. E.; Seidel, B. L.

    1978-01-01

    The effect of receiver saturation was examined for a total power radiometer which uses an ambient load for calibration. Extension to other calibration schemes is indicated. The analysis shows that a monotonic receiver saturation characteristic could cause either positive or negative measurement errors, with polarity depending upon operating conditions. A realistic model of the receiver was made by using a linear-cubic voltage transfer characteristic. The evaluation of measurement error for this model provided a means for correcting radio source measurements.

  5. Absolute calibration technique for broadband ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1994-01-01

    Calibrating an ultrasonic transducer can be performed with a reduced number of calculations and testing. A wide-band pulser is connected to an ultrasonic transducer under test to generate ultrasonic waves in a liquid. A single frequency is transmitted to the electrostatic acoustic transducer (ESAT) and the voltage change produced is monitored. Then a broadband ultrasonic pulse is generated by the ultrasonic transducer and received by the ESAT. The output of the ESAT is amplified and input to a digitized oscilloscope for fast Fourier transform. The resulting plot is normalized with the monitored signal from the single frequency pulse. The plot is then corrected for characteristics of the membrane and diffraction effects. The transfer function of the final plot is determined. The transfer function gives the final sensitivity of the ultrasonic transducer as a function of frequency. The advantage of the system is the speed of calibrating the transducer by a reduced number of measurements and removal of the membrane and diffraction effects.

  6. GNSS Absolute Antenna Calibration at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.; Geoghegan, C.

    2011-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. To help meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) now operates an absolute antenna calibration facility. Located in Corbin, Virginia, this facility uses field measurements and actual GNSS satellite signals to quantitatively determine the carrier phase advance/delay introduced by the antenna element. The NGS facility was built to serve traditional NGS constituents such as the surveying and geodesy communities, however calibration services are open and available to all GNSS users as the calibration schedule permits. All phase center patterns computed by this facility will be publicly available and disseminated in both the ANTEX and NGS formats. We describe the NGS calibration facility, and discuss the observation models and strategy currently used to generate NGS absolute calibrations. We demonstrate that NGS absolute phase center variation (PCV) patterns are consistent with published values determined by other absolute antenna calibration facilities, and compare absolute calibrations to the traditional NGS relative calibrations.

  7. Prelaunch absolute radiometric calibration of LANDSAT-4 protoflight Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Ball, D. L.; Leung, K. C.; Walker, J. A.

    1984-01-01

    Results are summarized and analyzed from several prelaunch tests with a 122 cm integrating sphere used as part of the absolute radiometric calibration experiments for the protoflight TM sensor carried on the LANDSAT-4 satellite. The calibration procedure is presented and the radiometric sensitivity of the TM is assessed. The internal calibrator and dynamic range after calibration are considered. Tables show dynamic range after ground processing, spectral radiance to digital number and digital number to spectral radiance values for TM bands 1, 2, 3, 4, 5, 7 and for channel 4 of band 6.

  8. Medical color displays and their calibration

    NASA Astrophysics Data System (ADS)

    Fan, Jiahua; Roehrig, Hans; Dallas, W.; Krupinski, Elizabeth

    2009-08-01

    Color displays are increasingly used for medical imaging, replacing the traditional monochrome displays in radiology for multi-modality applications, 3D representation applications, etc. Color displays are also used increasingly because of wide spread application of Tele-Medicine, Tele-Dermatology and Digital Pathology. At this time, there is no concerted effort for calibration procedures for this diverse range of color displays in Telemedicine and in other areas of the medical field. Using a colorimeter to measure the display luminance and chrominance properties as well as some processing software we developed a first attempt to a color calibration protocol for the medical imaging field.

  9. In-flight absolute radiometric calibration of the thematic mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

    1983-01-01

    The TM multispectral scanner system was calibrated in an absolute manner before launch. To determine the temporal changes of the absolute radiometric calibration of the entire system, spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM collections over White Sands, New Mexico. By entering the measured values in an atmospheric radiative transfer program, the radiance levels of the in four of the spectral bands of the TM were determined. Tables show values for the reflectance of snow at White Sands measured by a modular 8 channel radiometer, and values for exoatmospheric irradiance within the TM passbands, calculated for the Earth-Sun distance using a solar radiometer.

  10. Variations in in-flight absolute radiometric calibration. [satellite remote sensors

    NASA Technical Reports Server (NTRS)

    Slater, Philip N.

    1986-01-01

    Variations in the in-flight absolute radiometric calibration of the Coastal Zone Color Scanner and the Thematic Mapper (TM) are reviewed. At short wavelengths, the sensors show a gradual reduction in response, while in the mid-IR the TM shows oscillatory variations. One set of measurements made at White Sands, New Mexico shows anomalous results in TM bands 2 and 4. The results of a reflectance-based and a radiance-based calibration method at White Sands are described. An analysis of the radiance-based method shows the value of such measurements from helicopter altitudes for calibration.

  11. Landsat-5 TM reflective-band absolute radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Markham, B.L.; Dewald, J.D.; Kaita, E.; Thome, K.J.; Micijevic, E.; Ruggles, T.A.

    2004-01-01

    The Landsat-5 Thematic Mapper (TM) sensor provides the longest running continuous dataset of moderate spatial resolution remote sensing imagery, dating back to its launch in March 1984. Historically, the radiometric calibration procedure for this imagery used the instrument's response to the Internal Calibrator (IC) on a scene-by-scene basis to determine the gain and offset of each detector. Due to observed degradations in the IC, a new procedure was implemented for U.S.-processed data in May 2003. This new calibration procedure is based on a lifetime radiometric calibration model for the instrument's reflective bands (1-5 and 7) and is derived, in part, from the IC response without the related degradation effects and is tied to the cross calibration with the Landsat-7 Enhanced Thematic Mapper Plus. Reflective-band absolute radiometric accuracy of the instrument tends to be on the order of 7% to 10%, based on a variety of calibration methods.

  12. Absolute calibration and beam background of the Squid Polarimeter

    SciTech Connect

    Blaskiewicz, M.M.; Cameron, P.R.; Shea, T.J.

    1996-12-31

    The problem of beam background in Squid Polarimetry is not without residual benefits. The authors may deliberately generate beam background by gently kicking the beam at the spin tune frequency. This signal may be used to accomplish a simple and accurate absolute calibration of the polarimeter. The authors present details of beam background calculations and their application to polarimeter calibration, and suggest a simple proof-of-principle accelerator experiment.

  13. Absolute irradiance of the Moon for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; ,

    2002-01-01

    The recognized need for on-orbit calibration of remote sensing imaging instruments drives the ROLO project effort to characterize the Moon for use as an absolute radiance source. For over 5 years the ground-based ROLO telescopes have acquired spatially-resolved lunar images in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands at phase angles within ??90 degrees. A numerical model for lunar irradiance has been developed which fits hundreds of ROLO images in each band, corrected for atmospheric extinction and calibrated to absolute radiance, then integrated to irradiance. The band-coupled extinction algorithm uses absorption spectra of several gases and aerosols derived from MODTRAN to fit time-dependent component abundances to nightly observations of standard stars. The absolute radiance scale is based upon independent telescopic measurements of the star Vega. The fitting process yields uncertainties in lunar relative irradiance over small ranges of phase angle and the full range of lunar libration well under 0.5%. A larger source of uncertainty enters in the absolute solar spectral irradiance, especially in the SWIR, where solar models disagree by up to 6%. Results of ROLO model direct comparisons to spacecraft observations demonstrate the ability of the technique to track sensor responsivity drifts to sub-percent precision. Intercomparisons among instruments provide key insights into both calibration issues and the absolute scale for lunar irradiance.

  14. Lyman alpha SMM/UVSP absolute calibration and geocoronal correction

    NASA Technical Reports Server (NTRS)

    Fontenla, Juan M.; Reichmann, Edwin J.

    1987-01-01

    Lyman alpha observations from the Ultraviolet Spectrometer Polarimeter (UVSP) instrument of the Solar Maximum Mission (SMM) spacecraft were analyzed and provide instrumental calibration details. Specific values of the instrument quantum efficiency, Lyman alpha absolute intensity, and correction for geocoronal absorption are presented.

  15. Absolute calibration of Landsat instruments using the moon.

    USGS Publications Warehouse

    Kieffer, H.H.; Wildey, R.L.

    1985-01-01

    A lunar observation by Landsat could provide improved radiometric and geometric calibration of both the Thematic Mapper and the Multispectral Scanner in terms of absolute radiometry, determination of the modulation transfer function, and sensitivity to scattered light. A pitch of the spacecraft would be required. -Authors

  16. In-flight Absolute Radiometric Calibration of the Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, D.; Savage, R. K.

    1984-01-01

    The Thematic Mapper (TM) multispectral scanner system was placed into Earth orbit on July 16, 1982, as part of NASA's LANDSAT 4 payload. To determine temporal changes of the absolute radiometric calibration of the entire system in flight, spectroradiometric measurements of the ground and the atmosphere are made simultaneously with TM image acquisitions over the White Sands, New Mexico area. By entering the measured values into an atmospheric radiative transfer program, the radiance levels at the entrance pupil of the TM in four of the TM spectral bands are determined. These levels are compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors. By reference to an adjacent, larger uniform area, the calibration is extended to all 16 detectors in each of the three bands.

  17. Overspecification of color, pattern, and size: salience, absoluteness, and consistency

    PubMed Central

    Tarenskeen, Sammie; Broersma, Mirjam; Geurts, Bart

    2015-01-01

    The rates of overspecification of color, pattern, and size are compared, to investigate how salience and absoluteness contribute to the production of overspecification. Color and pattern are absolute and salient attributes, whereas size is relative and less salient. Additionally, a tendency toward consistent responses is assessed. Using a within-participants design, we find similar rates of color and pattern overspecification, which are both higher than the rate of size overspecification. Using a between-participants design, however, we find similar rates of pattern and size overspecification, which are both lower than the rate of color overspecification. This indicates that although many speakers are more likely to include color than pattern (probably because color is more salient), they may also treat pattern like color due to a tendency toward consistency. We find no increase in size overspecification when the salience of size is increased, suggesting that speakers are more likely to include absolute than relative attributes. However, we do find an increase in size overspecification when mentioning the attributes is triggered, which again shows that speakers tend to refer in a consistent manner, and that there are circumstances in which even size overspecification is frequently produced. PMID:26594190

  18. Absolute GNSS Antenna Calibration at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G.; Bilich, A.; Geoghegan, C.

    2012-04-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. To help meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) now operates an absolute antenna calibration facility. Located in Corbin, Virginia, this facility uses field measurements and actual GNSS satellite signals to quantitatively determine the carrier phase advance/delay introduced by the antenna element. The NGS facility was built to serve traditional NGS constituents such as the surveying and geodesy communities, however calibration services are open and available to all GNSS users as the calibration schedule permits. All phase center patterns computed by this facility will be publicly available and disseminated in both the ANTEX and NGS formats. We describe the NGS calibration facility, and discuss the observation models and strategy currently used to generate NGS absolute calibrations. We demonstrate that NGS absolute phase center variation (PCV) patterns are consistent with published values determined by other absolute antenna calibration facilities, and outline future planned refinements to the system.

  19. The absolute radiometric calibration of space-based sensors

    NASA Astrophysics Data System (ADS)

    Holm, Ronald Gene

    A reflectance based inflight calibration procedure is used to determine the radiance reaching the entrance pupil of a sensor. This procedure uses ground based measurements coupled with a radiative transfer code to characterize the effects the atmosphere has on the signal reaching the sensor. The computed radiance is compared to the digital count output of the sensor associated with the image of a test site. This provides an update to the preflight calibration of the system and a check on the on-board internal calibrator. This calibration procedure was used to perform a series of 5 calibrations of the LANDSAT-5 Thematic Mapper. The absolute calibration techniques were put to another test with a series of 3 calibration of the SPOT-1 High Resolution Visible sensors. The procedure for performing a satellite calibration was then used to demonstrate how a calibrated satellite sensor can be used to quantitatively evaluate surface reflectance over a wide range of surface features. Predicted reflectance factors were compared to values obtained from aircraft based radiometer data. A strong correlation was shown between reflectance values determined from satellite imagery and low flying aircraft data.

  20. In-flight absolute radiometric calibration of the thematic mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

    1984-01-01

    In order to determine temporal changes of the absolute radiometric calibration of the entire TM system in flight spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM image collections over the White Sands, New Mexico area. By entering the measured values in an atmospheric radiative transfer program, the radiance levels in four of the spectral bands of the TM were determined, band 1:0.45 to 0.52 micrometers, band 2:0.53 to 0.61 micrometers band 3:0.62 to 0.70 micrometers and 4:0.78 to 0.91 micrometers. These levels were compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors.

  1. In-flight absolute radiometric calibration of the Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

    1984-01-01

    In order to determine temporal changes of the absolute radiometric calibration of the entire TM system in flight spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM image collections over the White Sands, NM area. By entering the measured values in an atmospheric radiative transfer program, the radiance levels in four of the spectral bands of the TM were determined, band 1: 0.45 to 0.52 micrometers, band 2: 0.53 to 0.61 micrometers, band 3: 0.62 to 0.70 micrometers, and 4: 0.78 to 0.91 micrometers. These levels were compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors. Previously announced in STAR as N84-15633

  2. Landsat-7 ETM+ radiometric stability and absolute calibration

    USGS Publications Warehouse

    Markham, B.L.; Barker, J.L.; Barsi, J.A.; Kaita, E.; Thome, K.J.; Helder, D.L.; Palluconi, Frank Don; Schott, J.R.; Scaramuzza, P.; ,

    2002-01-01

    Launched in April 1999, the Landsat-7 ETM+ instrument is in its fourth year of operation. The quality of the acquired calibrated imagery continues to be high, especially with respect to its three most important radiometric performance parameters: reflective band instrument stability to better than ??1%, reflective band absolute calibration to better than ??5%, and thermal band absolute calibration to better than ??0.6 K. The ETM+ instrument has been the most stable of any of the Landsat instruments, in both the reflective and thermal channels. To date, the best on-board calibration source for the reflective bands has been the Full Aperture Solar Calibrator, which has indicated changes of at most -1.8% to -2.0% (95% C.I.) change per year in the ETM+ gain (band 4). However, this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on ground observations, which bound the changes in gain in band 4 at -0.7% to +1.5%. Also, ETM+ stability is indicated by the monitoring of desert targets. These image-based results for four Saharan and Arabian sites, for a collection of 35 scenes over the three years since launch, bound the gain change at -0.7% to +0.5% in band 4. Thermal calibration from ground observations revealed an offset error of +0.31 W/m 2 sr um soon after launch. This offset was corrected within the U. S. ground processing system at EROS Data Center on 21-Dec-00, and since then, the band 6 on-board calibration has indicated changes of at most +0.02% to +0.04% (95% C.I.) per year. The latest ground observations have detected no remaining offset error with an RMS error of ??0.6 K. The stability and absolute calibration of the Landsat-7 ETM+ sensor make it an ideal candidate to be used as a reference source for radiometric cross-calibrating to other land remote sensing satellite systems.

  3. Landsat-7 ETM+ radiometric stability and absolute calibration

    NASA Astrophysics Data System (ADS)

    Markham, Brian L.; Barker, John L.; Barsi, Julia A.; Kaita, Ed; Thome, Kurtis J.; Helder, Dennis L.; Palluconi, Frank D.; Schott, John R.; Scaramuzza, Pat

    2003-04-01

    Launched in April 1999, the Landsat-7 ETM+ instrument is in its fourth year of operation. The quality of the acquired calibrated imagery continues to be high, especially with respect to its three most important radiometric performance parameters: reflective band instrument stability to better than +/-1%, reflective band absolute calibration to better than +/-5%, and thermal band absolute calibration to better than +/- 0.6 K. The ETM+ instrument has been the most stable of any of the Landsat instruments, in both the reflective and thermal channels. To date, the best on-board calibration source for the reflective bands has been the Full Aperture Solar Calibrator, which has indicated changes of at most -1.8% to -2.0% (95% C.I.) change per year in the ETM+ gain (band 4). However, this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on ground observations, which bound the changes in gain in band 4 at -0.7% to +1.5%. Also, ETM+ stability is indicated by the monitoring of desert targets. These image-based results for four Saharan and Arabian sites, for a collection of 35 scenes over the three years since launch, bound the gain change at -0.7% to +0.5% in band 4. Thermal calibration from ground observations revealed an offset error of +0.31 W/m2 sr um soon after launch. This offset was corrected within the U. S. ground processing system at EROS Data Center on 21-Dec-00, and since then, the band 6 on-board calibration has indicated changes of at most +0.02% to +0.04% (95% C.I.) per year. The latest ground observations have detected no remaining offset error with an RMS error of +/- 0.6 K. The stability and absolute calibration of the Landsat-7 ETM+ sensor make it an ideal candidate to be used as a reference source for radiometric cross-calibrating to other land remote sensing satellite systems.

  4. Absolute calibration in the 1750 - 3350 A region

    NASA Technical Reports Server (NTRS)

    Strongylis, G. J.; Bohlin, R. C.

    1977-01-01

    The absolute flux measurements in the rocket ultraviolet made by Bohlin, Frimout, and Lillie (BFL) are revised using a more correct treatment of the air extinction that enters the air calibration of their instrument. The absorption by molecular oxygen and ozone, Rayleigh scattering, and extinction by aerosols is tabulated for general use in ultraviolet calibrations performed in air. The revised absolute flux of eta UMa and final fluxes for alpha Lyr and zeta Oph are presented in the 1750-3350 A region. The absolute flux of the star eta UMa is compared to four other independent determinations in the 1200-3400 A region and a maximum difference of 35% is found near 1500 A between the OAO-2 and Apollo 17 fluxes. The rocket measurements of BFL, the ANS and TD-1 satellite data, and the Apollo 17 data are compared to the ultraviolet fluxes from the OAO-2, demonstrating a photometric reproducibility of about + or - 3 percent. Therefore, all four sets of spectrophotometry can be reduced to a common absolute scale.

  5. Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Biggar, S. F.; Holm, R. G.; Jackson, R. D.; Mao, Y.

    1987-01-01

    Variations reported in the in-flight absolute radiometric calibration of the Coastal Zone Color Scanner (CZCS) and the Thematic Mapper (TM) on Landsat 4 are reviewed. At short wavelengths these sensors exhibited a gradual reduction in response, while in the midinfrared the TM showed oscillatory variations, according to the results of TM internal calibration. The methodology and results are presented for five reflectance-based calibrations of the Landsat 5 TM at White Sands, NM, in the period July 1984 to November 1985. These show a + or - 2.8 percent standard deviation for the six solar-reflective bands. Analysis and preliminary results of a second, independent calibration method, based on radiance measurements from a helicopter at White Sands, indicate that this is potentially an accurate method for corroborating the results from the reflectance-based method.

  6. Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors

    NASA Astrophysics Data System (ADS)

    Slater, P. N.; Biggar, S. F.; Holm, R. G.; Jackson, R. D.; Mao, Y.

    1987-06-01

    Variations reported in the in-flight absolute radiometric calibration of the Coastal Zone Color Scanner (CZCS) and the Thematic Mapper (TM) on Landsat 4 are reviewed. At short wavelengths these sensors exhibited a gradual reduction in response, while in the midinfrared the TM showed oscillatory variations, according to the results of TM internal calibration. The methodology and results are presented for five reflectance-based calibrations of the Landsat 5 TM at White Sands, NM, in the period July 1984 to November 1985. These show a + or - 2.8 percent standard deviation for the six solar-reflective bands. Analysis and preliminary results of a second, independent calibration method, based on radiance measurements from a helicopter at White Sands, indicate that this is potentially an accurate method for corroborating the results from the reflectance-based method.

  7. Updated Absolute Flux Calibration of the COS FUV Modes

    NASA Astrophysics Data System (ADS)

    Massa, D.; Ely, J.; Osten, R.; Penton, S.; Aloisi, A.; Bostroem, A.; Roman-Duval, J.; Proffitt, C.

    2014-03-01

    We present newly derived point source absolute flux calibrations for the COS FUV modes at both the original and second lifetime positions. The analysis includes observa- tions through the Primary Science Aperture (PSA) of the standard stars WD0308-565, GD71, WD1057+729 and WD0947+857 obtained as part of two calibration programs. Data were were obtained for all of the gratings at all of the original CENWAVE settings at both the original and second lifetime positions and for the G130M CENWAVE = 1222 at the second lifetime position. Data were also obtained with the FUVB segment for the G130M CENWAVE = 1055 and 1096 setting at the second lifetime position. We also present the derivation of L-flats that were used in processing the data and show that the internal consistency of the primary standards is 1%. The accuracy of the absolute flux calibrations over the UV are estimated to be 1-2% for the medium resolution gratings, and 2-3% over most of the wavelength range of the G140L grating, although the uncertainty can be as large as 5% or more at some G140L wavelengths. We note that these errors are all relative to the optical flux near the V band and small additional errors may be present due to inaccuracies in the V band calibration. In addition, these error estimates are for the time at which the flux calibration data were obtained; the accuracy of the flux calibration at other times can be affected by errors in the time dependent sensitivity (TDS) correction.

  8. On the Error Sources in Absolute Individual Antenna Calibrations

    NASA Astrophysics Data System (ADS)

    Aerts, Wim; Baire, Quentin; Bilich, Andria; Bruyninx, Carine; Legrand, Juliette

    2013-04-01

    field) multi path errors, both during calibration and later on at the station, absolute sub-millimeter positioning with GPS is not (yet) possible. References [1] G. Wübbena, M. Schmitz, G. Boettcher, C. Schumann, "Absolute GNSS Antenna Calibration with a Robot: Repeatability of Phase Variations, Calibration of GLONASS and Determination of Carrier-to-Noise Pattern", International GNSS Service: Analysis Center workshop, 8-12 May 2006, Darmstadt, Germany. [2] P. Zeimetz, H. Kuhlmann, "On the Accuracy of Absolute GNSS Antenna Calibration and the Conception of a New Anechoic Chamber", FIG Working Week 2008, 14-19 June 2008, Stockholm, Sweden. [3] P. Zeimetz, H. Kuhlmann, L. Wanninger, V. Frevert, S. Schön and K. Strauch, "Ringversuch 2009", 7th GNSS-Antennen-Workshop, 19-20 March 2009, Dresden, Germany.

  9. Vicarious calibration of the Geostationary Ocean Color Imager.

    PubMed

    Ahn, Jae-Hyun; Park, Young-Je; Kim, Wonkook; Lee, Boram; Oh, Im Sang

    2015-09-01

    Measurements of ocean color from Geostationary Ocean Color Imager (GOCI) with a moderate spatial resolution and a high temporal frequency demonstrate high value for a number of oceanographic applications. This study aims to propose and evaluate the calibration of GOCI as needed to achieve the level of radiometric accuracy desired for ocean color studies. Previous studies reported that the GOCI retrievals of normalized water-leaving radiances (nLw) are biased high for all visible bands due to the lack of vicarious calibration. The vicarious calibration approach described here relies on the assumed constant aerosol characteristics over the open-ocean sites to accurately estimate atmospheric radiances for the two near-infrared (NIR) bands. The vicarious calibration of visible bands is performed using in situ nLw measurements and the satellite-estimated atmospheric radiance using two NIR bands over the case-1 waters. Prior to this analysis, the in situ nLw spectra in the NIR are corrected by the spectrum optimization technique based on the NIR similarity spectrum assumption. The vicarious calibration gain factors derived for all GOCI bands (except 865nm) significantly improve agreement in retrieved remote-sensing reflectance (Rrs) relative to in situ measurements. These gain factors are independent of angular geometry and possible temporal variability. To further increase the confidence in the calibration gain factors, a large data set from shipboard measurements and AERONET-OC is used in the validation process. It is shown that the absolute percentage difference of the atmospheric correction results from the vicariously calibrated GOCI system is reduced by ~6.8%.

  10. Absolute calibration for complex-geometry biomedical diffuse optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Mastanduno, Michael A.; Jiang, Shudong; El-Ghussein, Fadi; diFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.

    2013-03-01

    We have presented methodology to calibrate data in NIRS/MRI imaging versus an absolute reference phantom and results in both phantoms and healthy volunteers. This method directly calibrates data to a diffusion-based model, takes advantage of patient specific geometry from MRI prior information, and generates an initial guess without the need for a large data set. This method of calibration allows for more accurate quantification of total hemoglobin, oxygen saturation, water content, scattering, and lipid concentration as compared with other, slope-based methods. We found the main source of error in the method to be derived from incorrect assignment of reference phantom optical properties rather than initial guess in reconstruction. We also present examples of phantom and breast images from a combined frequency domain and continuous wave MRI-coupled NIRS system. We were able to recover phantom data within 10% of expected contrast and within 10% of the actual value using this method and compare these results with slope-based calibration methods. Finally, we were able to use this technique to calibrate and reconstruct images from healthy volunteers. Representative images are shown and discussion is provided for comparison with existing literature. These methods work towards fully combining the synergistic attributes of MRI and NIRS for in-vivo imaging of breast cancer. Complete software and hardware integration in dual modality instruments is especially important due to the complexity of the technology and success will contribute to complex anatomical and molecular prognostic information that can be readily obtained in clinical use.

  11. Flow rate calibration for absolute cell counting rationale and design.

    PubMed

    Walker, Clare; Barnett, David

    2006-05-01

    There is a need for absolute leukocyte enumeration in the clinical setting, and accurate, reliable (and affordable) technology to determine absolute leukocyte counts has been developed. Such technology includes single platform and dual platform approaches. Derivations of these counts commonly incorporate the addition of a known number of latex microsphere beads to a blood sample, although it has been suggested that the addition of beads to a sample may only be required to act as an internal quality control procedure for assessing the pipetting error. This unit provides the technical details for undertaking flow rate calibration that obviates the need to add reference beads to each sample. It is envisaged that this report will provide the basis for subsequent clinical evaluations of this novel approach. PMID:18770842

  12. Absolute radiometric calibration of Landsat using a pseudo invariant calibration site

    USGS Publications Warehouse

    Helder, D.; Thome, K.J.; Mishra, N.; Chander, G.; Xiong, Xiaoxiong; Angal, A.; Choi, Tae-young

    2013-01-01

    Pseudo invariant calibration sites (PICS) have been used for on-orbit radiometric trending of optical satellite systems for more than 15 years. This approach to vicarious calibration has demonstrated a high degree of reliability and repeatability at the level of 1-3% depending on the site, spectral channel, and imaging geometries. A variety of sensors have used this approach for trending because it is broadly applicable and easy to implement. Models to describe the surface reflectance properties, as well as the intervening atmosphere have also been developed to improve the precision of the method. However, one limiting factor of using PICS is that an absolute calibration capability has not yet been fully developed. Because of this, PICS are primarily limited to providing only long term trending information for individual sensors or cross-calibration opportunities between two sensors. This paper builds an argument that PICS can be used more extensively for absolute calibration. To illustrate this, a simple empirical model is developed for the well-known Libya 4 PICS based on observations by Terra MODIS and EO-1 Hyperion. The model is validated by comparing model predicted top-of-atmosphere reflectance values to actual measurements made by the Landsat ETM+ sensor reflective bands. Following this, an outline is presented to develop a more comprehensive and accurate PICS absolute calibration model that can be Système international d'unités (SI) traceable. These initial concepts suggest that absolute calibration using PICS is possible on a broad scale and can lead to improved on-orbit calibration capabilities for optical satellite sensors.

  13. Absolute calibration of a laser system for atmospheric probing.

    PubMed

    Hall, F F; Ageno, H Y

    1970-08-01

    In order to obtain quantitative data on the backscatter function from laser irradiance backscattered from the atmosphere, the ratio of power transmitted to power received must be accurately known. No absolute measurements of power, optical system transmittance, detector quantum efficiency, or electronic gain are necessarily required. The technique of measuring the power ratio by irradiating a smoked or painted target of known diffuse reflectance at a fixed range is used to calibrate a complete lidar system. The relative area of the output power pulse is monitored by a fast response photodiode, and the relative area of the returned pulse is also recorded after passing through a filter of known high optical density. It is essential to control the temperatures of the laser rod and receiver interference prefilter to ensure proper spectral matching. Field experience gained using this technique is described, and examples of calibration measurements and backscatter functions for smog and cirrus clouds are presented.

  14. Active radiometric calorimeter for absolute calibration of radioactive sources

    SciTech Connect

    Stump, K.E.; DeWerd, L.A.; Rudman, D.A.; Schima, S.A.

    2005-03-01

    This report describes the design and initial noise floor measurements of a radiometric calorimeter designed to measure therapeutic medical radioactive sources. The instrument demonstrates a noise floor of approximately 2 nW. This low noise floor is achieved by using high temperature superconducting (HTS) transition edge sensor (TES) thermometers in a temperature-control feedback loop. This feedback loop will be used to provide absolute source calibrations based upon the electrical substitution method. Other unique features of the calorimeter are (a) its ability to change sources for calibration without disrupting the vacuum of the instrument, and (b) the ability to measure the emitted power of a source in addition to the total contained source power.

  15. Monochromator-Based Absolute Calibration of a Standard Radiation Thermometer

    NASA Astrophysics Data System (ADS)

    Mantilla, J. M.; Hernanz, M. L.; Campos, J.; Martín, M. J.; Pons, A.; del Campo, D.

    2014-04-01

    Centro Español de Metrología (CEM) is disseminating the International Temperature Scale (ITS-90), at high temperatures, by using the fixed points of Ag and Cu and a standard radiation thermometer. However, the future mise-en-pratique for the definition of the kelvin ( MeP-K) will include the dissemination of the kelvin by primary methods and by indirect approximations capable of exceptionally low uncertainties or increased reliability. Primary radiometry is, at present, able to achieve uncertainties competitive with the ITS-90 above the silver point with one of the possible techniques the calibration for radiance responsivity of an imaging radiometer (radiance method). In order to carry out this calibration, IO-CSIC (Spanish Designated Institute for luminous intensity and luminous flux) has collaborated with CEM, allowing traceability to its cryogenic radiometer. A monochromator integrating sphere-based spectral comparator facility has been used to calibrate one of the CEM standard radiation thermometers. The absolute calibrated standard radiation thermometer has been used to determine the temperatures of the fixed points of Cu, Co-C, Pt-C, and Re-C. The results obtained are 1357.80 K, 1597.10 K, 2011.66 K, and 2747.64 K, respectively, with uncertainties ranging from 0.4 K to 1.1 K.

  16. The Absolute Calibration of the HiRes Detectors

    NASA Astrophysics Data System (ADS)

    Matthews, J. N.; Thomas, S. B.; HiRes Collaboration

    2003-07-01

    The HiRes experiment studies ultra high energy cosmic rays using the air fluorescence technique. The experiment uses large mirrors that collect the fluorescence light and fo cus it onto arrays of photomultiplier tubes (PMTs). The PMTs measure the intensity and time of arrival of the collected light. Our primary system for in situ calibration of the PMTs uses a high stability (<1%) portable light source. This source is transferred from the lab to the field where it is employed as a standard candle to calibrate the 64 detectors (>16,000 PMTs). To determine the absolute response it is necessary to understand the absolute light output of this source. We have measured the source irradiance using a hybrid photo dio de system, two NIST calibrated photo-dio des, and by observing the photo electron statistics of the PMTs. 2. Introduction The goal of the High Resolution Fly's Eye (HiRes) project is to study cosmic rays at the highest energies. An ultra high energy cosmic ray entering the earth's atmosphere collides with atmospheric nuclei triggering the development of an Extensive Air Shower (EAS). The EAS emits fluorescence light as it develops. HiRes uses the air fluorescence signal to measure properties of the primary cosmic ray particle. The fundamental detector elements in HiRes are photomultiplier tubes (PMTs). The light from an EAS is collected by large mirrors and fo cused into cameras each consisting of 256 PMTs [1]. Routine monitoring and calibration of the PMTs and associated electronics are crucial to the proper interpretation of the data. The primary system for in situ calibration of the PMTs involves the use of a high stability portable xenon flash lamp. The Roving Xenon Flasher (RXF) offers several advantages. The pulse-to-pulse variation in intensity is very small ˜0.3% and the stability over a night is better than 2%. The emission spectrum of the RXF is sufficiently broad to allow calibration over a wide range of wavelengths. It is also readily transported

  17. New approach to color calibration of high fidelity color digital camera by using unique wide gamut color generator based on LED diodes

    NASA Astrophysics Data System (ADS)

    Kretkowski, M.; Shimodaira, Y.; Jabłoński, R.

    2008-11-01

    Development of a high accuracy color reproduction system requires certain instrumentation and reference for color calibration. Our research led to development of a high fidelity color digital camera with implemented filters that realize the color matching functions. The output signal returns XYZ values which provide absolute description of color. In order to produce XYZ output a mathematical conversion must be applied to CCD output values introducing a conversion matrix. The conversion matrix coefficients are calculated by using a color reference with known XYZ values and corresponding output signals from the CCD sensor under each filter acquisition from a certain amount of color samples. The most important feature of the camera is its ability to acquire colors from the complete theoretically visible color gamut due to implemented filters. However market available color references such as various color checkers are enclosed within HDTV gamut, which is insufficient for calibration in the whole operating color range. This led to development of a unique color reference based on LED diodes called the LED Color Generator (LED CG). It is capable of displaying colors in a wide color gamut estimated by chromaticity coordinates of 12 primary colors. The total amount of colors possible to produce is 25512. The biggest advantage is a possibility of displaying colors with desired spectral distribution (with certain approximations) due to multiple primary colors it consists. The average color difference obtained for test colors was found to be ▵E~0.78 for calibration with LED CG. The result is much better and repetitive in comparison with the Macbeth ColorCheckerTM which typically gives ▵E~1.2 and in the best case ▵E~0.83 with specially developed techniques.

  18. On the absolute calibration of SO2 cameras

    NASA Astrophysics Data System (ADS)

    Lübcke, P.; Bobrowski, N.; Illing, S.; Kern, C.; Alvarez Nieves, J. M.; Vogel, L.; Zielcke, J.; Delgado Granados, H.; Platt, U.

    2012-09-01

    Sulphur dioxide emission flux measurements are an important tool for volcanic monitoring and eruption risk assessment. The SO2 camera technique remotely measures volcanic emissions by analysing the ultraviolet absorption of SO2 in a narrow spectral window between 305 nm and 320 nm using solar radiation scattered in the atmosphere. The SO2 absorption is selectively detected by mounting band-pass interference filters in front of a two-dimensional, UV-sensitive CCD detector. While this approach is simple and delivers valuable insights into the two-dimensional SO2 distribution, absolute calibration has proven to be difficult. An accurate calibration of the SO2 camera (i.e., conversion from optical density to SO2 column density, CD) is crucial to obtain correct SO2 CDs and flux measurements that are comparable to other measurement techniques and can be used for volcanological applications. The most common approach for calibrating SO2 camera measurements is based on inserting quartz cells (cuvettes) containing known amounts of SO2 into the light path. It has been found, however, that reflections from the windows of the calibration cell can considerably affect the signal measured by the camera. Another possibility for calibration relies on performing simultaneous measurements in a small area of the camera's field-of-view (FOV) by a narrow-field-of-view Differential Optical Absorption Spectroscopy (NFOV-DOAS) system. This procedure combines the very good spatial and temporal resolution of the SO2 camera technique with the more accurate column densities obtainable from DOAS measurements. This work investigates the uncertainty of results gained through the two commonly used, but quite different calibration methods (DOAS and calibration cells). Measurements with three different instruments, an SO2 camera, a NFOV-DOAS system and an Imaging DOAS (IDOAS), are presented. We compare the calibration-cell approach with the calibration from the NFOV-DOAS system. The respective

  19. Absolute calorimetric calibration of low energy brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Stump, Kurt E.

    In the past decade there has been a dramatic increase in the use of permanent radioactive source implants in the treatment of prostate cancer. A small radioactive source encapsulated in a titanium shell is used in this type of treatment. The radioisotopes used are generally 125I or 103Pd. Both of these isotopes have relatively short half-lives, 59.4 days and 16.99 days, respectively, and have low-energy emissions and a low dose rate. These factors make these sources well suited for this application, but the calibration of these sources poses significant metrological challenges. The current standard calibration technique involves the measurement of ionization in air to determine the source air-kerma strength. While this has proved to be an improvement over previous techniques, the method has been shown to be metrologically impure and may not be the ideal means of calbrating these sources. Calorimetric methods have long been viewed to be the most fundamental means of determining source strength for a radiation source. This is because calorimetry provides a direct measurement of source energy. However, due to the low energy and low power of the sources described above, current calorimetric methods are inadequate. This thesis presents work oriented toward developing novel methods to provide direct and absolute measurements of source power for low-energy low dose rate brachytherapy sources. The method is the first use of an actively temperature-controlled radiation absorber using the electrical substitution method to determine total contained source power of these sources. The instrument described operates at cryogenic temperatures. The method employed provides a direct measurement of source power. The work presented here is focused upon building a metrological foundation upon which to establish power-based calibrations of clinical-strength sources. To that end instrument performance has been assessed for these source strengths. The intent is to establish the limits of

  20. THE ABSOLUTE CALIBRATION OF THE EUV IMAGING SPECTROMETER ON HINODE

    SciTech Connect

    Warren, Harry P.; Ugarte-Urra, Ignacio; Landi, Enrico

    2014-07-01

    We investigate the absolute calibration of the EUV Imaging Spectrometer (EIS) on Hinode by comparing EIS full-disk mosaics with irradiance observations from the EUV Variability Experiment on the Solar Dynamics Observatory. We also use extended observations of the quiet corona above the limb combined with a simple differential emission measure model to establish new effective area curves that incorporate information from the most recent atomic physics calculations. We find that changes to the EIS instrument sensitivity are a complex function of both time and wavelength. We find that the sensitivity is decaying exponentially with time and that the decay constants vary with wavelength. The EIS short wavelength channel shows significantly longer decay times than the long wavelength channel.

  1. Color calibration of liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Cazes, Albert N.; Braudaway, Gordon W.; Christensen, James; Cordes, Michael; DeCain, Don; Lien, Shui-Chih A.; Mintzer, Frederick C.; Wright, Steven L.

    1999-04-01

    For more than a decade the Image Applications department at IBMs Watson Research Center has been involved in cultural and commercial imaging projects that demand high-fidelity color reproduction of precious objects like paintings, illuminated manuscripts or jewelry. Our primary display media have been high-resolution cathode ray tubes (CRT), but for the last three years our customers have been replacing them with liquid crystal displays (LCD). The color calibration model we have been using for the CRT is the one described in the literature. It assumes that the chromas of the primaries are independent of intensity, that the colors produced from them are additive and that the intensity of black is almost zero. We measured several models of LCDs and observed that they poorly satisfied these assumptions at medium to low intensities. This becomes noticeable if the image has dark areas or if the display is viewed under a weak ambient light. In this paper, we use a modified version of the CRT model to calibrate the LCD. First we measure four sets of red, green, blue and gray patches. THen we determine the correction factor needed to make, at each level,the sum of the primaries equal to the corresponding gray. Finally, we use these factors to modify the data of red, green and blue.

  2. Absolute Calibration of Optical Satellite Sensors Using Libya 4 Pseudo Invariant Calibration Site

    NASA Technical Reports Server (NTRS)

    Mishra, Nischal; Helder, Dennis; Angal, Amit; Choi, Jason; Xiong, Xiaoxiong

    2014-01-01

    The objective of this paper is to report the improvements in an empirical absolute calibration model developed at South Dakota State University using Libya 4 (+28.55 deg, +23.39 deg) pseudo invariant calibration site (PICS). The approach was based on use of the Terra MODIS as the radiometer to develop an absolute calibration model for the spectral channels covered by this instrument from visible to shortwave infrared. Earth Observing One (EO-1) Hyperion, with a spectral resolution of 10 nm, was used to extend the model to cover visible and near-infrared regions. A simple Bidirectional Reflectance Distribution function (BRDF) model was generated using Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations over Libya 4 and the resulting model was validated with nadir data acquired from satellite sensors such as Aqua MODIS and Landsat 7 (L7) Enhanced Thematic Mapper (ETM+). The improvements in the absolute calibration model to account for the BRDF due to off-nadir measurements and annual variations in the atmosphere are summarized. BRDF models due to off-nadir viewing angles have been derived using the measurements from EO-1 Hyperion. In addition to L7 ETM+, measurements from other sensors such as Aqua MODIS, UK-2 Disaster Monitoring Constellation (DMC), ENVISAT Medium Resolution Imaging Spectrometer (MERIS) and Operational Land Imager (OLI) onboard Landsat 8 (L8), which was launched in February 2013, were employed to validate the model. These satellite sensors differ in terms of the width of their spectral bandpasses, overpass time, off-nadir-viewing capabilities, spatial resolution and temporal revisit time, etc. The results demonstrate that the proposed empirical calibration model has accuracy of the order of 3% with an uncertainty of about 2% for the sensors used in the study.

  3. Alignment and absolute wavelength calibration of imaging Bragg spectrometers

    NASA Astrophysics Data System (ADS)

    Bertschinger, G.; Marchuk, O.; Barnsley, R.

    2016-11-01

    In the present and the next generation of fusion devices, imaging Bragg spectrometers are key diagnostics to measure plasma parameters in the hot core, especially ion temperature and plasma rotation. The latter quantities are routinely obtained using the Doppler-width and -shift of the emitted spectral lines, respectively. Line shift measurements require absolute accuracies Δλ/λ of about 10 ppm, where λ-is the observed wavelength. For ITER and the present fusion devices, spectral lines of He-and H-like argon, iron, and krypton as well as Ne-like tungsten are foreseen for the measurements. For these lines, Kα lines can be found, some in higher order, which fit into the narrow energy window of the spectrometers. For arbitrary wavelength settings, Kα lines are also used to measure the miscut of the spherical crystals; afterwards the spectrometers can be set according to the geometrical imaging properties using coordinate measurement machines. For the spectrometers measuring Lyα lines of H-like ions, fluorescence targets can provide in situ localized calibration lines on the spectra. The fluorescence targets are used best in transmission and are excited by the thermal x-ray radiation of the plasma. An analytic theory of fluorescence is worked out.

  4. Relative vs Absolute Antenna Calibrations: How, when, and why do they differ? A Comparison of Antenna Calibration Catalogs

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.

    2013-12-01

    Since 1994, NGS has computed relative antenna calibrations for more than 350 antenna models used by NGS customers and geodetic networks worldwide. In a 'relative' calibration, the antenna under test is calibrated relative to a standard reference antenna, the AOA D/M_T chokering. The majority of NGS calibrations have been made publicly available at the web site www.ngs.noaa.gov/ANTCAL as well as via the NGS master calibrations file ant_info.003. In the mid-2000's, institutions in Germany began distributing 'absolute' antenna calibrations, where the antenna under test is calibrated independent of any reference antenna. These calibration methods also overcame some limitations of relative calibrations by going to lower elevation angles and capturing azimuthal variations. Soon thereafter (2008), the International GNSS Service (IGS) initiated a geodetic community movement away from relative calibrations and toward absolute calibrations as the defacto standard. The IGS now distributes a catalog of absolute calibrations taken from several institutions, distributed as the IGS master calibrations file igs08.atx. The competing methods and files have raised many questions about when it is or is not valid to process a geodetic network using a combination of relative and absolute calibrations, and if/when it is valid to combine the NGS and IGS catalogs. Therefore, in this study, we compare the NGS catalog of relative calibrations against the IGS catalog of absolute calibrations. As of the writing of this abstract, there are 77 antenna+radome combinations which are common to both the NGS relative and IGS absolute catalogs, spanning 16 years of testing (1997 to present). 50 different antenna models and 8 manufacturers are represented in the study sample. We apply the widely-accepted standard method for converting relative to absolute, then difference the calibrations. Various statistics describe the observed differences between phase center offset (PCO), phase center variation

  5. Methods to calibrate the absolute receive sensitivity of single-element, focused transducers.

    PubMed

    Rich, Kyle T; Mast, T Douglas

    2015-09-01

    Absolute pressure measurements of acoustic emissions by single-element, focused passive cavitation detectors would be facilitated by improved wideband receive calibration techniques. Here, calibration methods were developed to characterize the absolute, frequency-dependent receive sensitivity of a spherically focused, single-element transducer using pulse-echo and pitch-catch techniques. Validation of these calibration methods on a focused receiver were made by generating a pulse from a small diameter source at the focus of the transducer and comparing the absolute pressure measured by a calibrated hydrophone to that of the focused transducer using the receive sensitivities determined here. PMID:26428812

  6. Methods to calibrate the absolute receive sensitivity of single-element, focused transducers

    PubMed Central

    Rich, Kyle T.; Mast, T. Douglas

    2015-01-01

    Absolute pressure measurements of acoustic emissions by single-element, focused passive cavitation detectors would be facilitated by improved wideband receive calibration techniques. Here, calibration methods were developed to characterize the absolute, frequency-dependent receive sensitivity of a spherically focused, single-element transducer using pulse-echo and pitch-catch techniques. Validation of these calibration methods on a focused receiver were made by generating a pulse from a small diameter source at the focus of the transducer and comparing the absolute pressure measured by a calibrated hydrophone to that of the focused transducer using the receive sensitivities determined here. PMID:26428812

  7. [Study on the absolute spectral irradiation calibration method for far ultraviolet spectrometer in remote sensing].

    PubMed

    Yu, Lei; Lin, Guan-Yu; Chen, Bin

    2013-01-01

    The present paper studied spectral irradiation responsivities calibration method which can be applied to the far ultraviolet spectrometer for upper atmosphere remote sensing. It is difficult to realize the calibration for far ultraviolet spectrometer for many reasons. Standard instruments for far ultraviolet waveband calibration are few, the degree of the vacuum experiment system is required to be high, the stabilities of the experiment are hardly maintained, and the limitation of the far ultraviolet waveband makes traditional diffuser and the integrating sphere radiance calibration method difficult to be used. To solve these problems, a new absolute spectral irradiance calibration method was studied, which can be applied to the far ultraviolet calibration. We build a corresponding special vacuum experiment system to verify the calibration method. The light source system consists of a calibrated deuterium lamp, a vacuum ultraviolet monochromater and a collimating system. We used the calibrated detector to obtain the irradiance responsivities of it. The three instruments compose the calibration irradiance source. We used the "calibration irradiance source" to illuminate the spectrometer prototype and obtained the spectral irradiance responsivities. It realized the absolute spectral irradiance calibration for the far ultraviolet spectrometer utilizing the calibrated detector. The absolute uncertainty of the calibration is 7.7%. The method is significant for the ground irradiation calibration of the far ultraviolet spectrometer in upper atmosphere remote sensing.

  8. Color calibration of an RGB camera mounted in front of a microscope with strong color distortion.

    PubMed

    Charrière, Renée; Hébert, Mathieu; Trémeau, Alain; Destouches, Nathalie

    2013-07-20

    This paper aims at showing that performing color calibration of an RGB camera can be achieved even in the case where the optical system before the camera introduces strong color distortion. In the present case, the optical system is a microscope containing a halogen lamp, with a nonuniform irradiance on the viewed surface. The calibration method proposed in this work is based on an existing method, but it is preceded by a three-step preprocessing of the RGB images aiming at extracting relevant color information from the strongly distorted images, taking especially into account the nonuniform irradiance map and the perturbing texture due to the surface topology of the standard color calibration charts when observed at micrometric scale. The proposed color calibration process consists first in computing the average color of the color-chart patches viewed under the microscope; then computing white balance, gamma correction, and saturation enhancement; and finally applying a third-order polynomial regression color calibration transform. Despite the nonusual conditions for color calibration, fairly good performance is achieved from a 48 patch Lambertian color chart, since an average CIE-94 color difference on the color-chart colors lower than 2.5 units is obtained. PMID:23872775

  9. [In-flight absolute radiometric calibration of UAV multispectral sensor].

    PubMed

    Chen, Wei; Yan, Lei; Gou, Zhi-Yang; Zhao, Hong-Ying; Liu, Da-Ping; Duan, Yi-Ni

    2012-12-01

    Based on the data of the scientific experiment in Urad Front Banner for UAV Remote Sensing Load Calibration Field project, with the help of 6 hyperspectral radiometric targets with good Lambertian property, the wide-view multispectral camera in UAV was calibrated adopting reflectance-based method. The result reveals that for green, red and infrared channel, whose images were successfully captured, the linear correlation coefficients between the DN and radiance are all larger than 99%. In final analysis, the comprehensive error is no more than 6%. The calibration results demonstrate that the hyperspectral targets equipped by the calibration field are well suitable for air-borne multispectral load in-flight calibration. The calibration result is reliable and could be used in the retrieval of geophysical parameters.

  10. Absolute calibration of space-resolving soft X-ray spectrograph for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Yoshikawa, M.; Okamoto, Y.; Kawamori, E.; Watanabe, Y.; Watabe, C.; Yamaguchi, N.; Tamano, T.

    2001-07-01

    A grazing incidence flat-field soft X-ray (20-350 Å) spectrograph was constructed and applied for impurity diagnostics in the GAMMA 10 fusion plasma. The spectrograph consisted of a limited height entrance slit, an aberration-corrected concave grating, a microchannel-plate intensified detector and an instant camera/a high speed solid state camera. An absolute calibration experiment for the SX spectrograph was performed at the Photon Factory in the High Energy Accelerator Research Organization with monitoring the incident synchrotron beam intensity by using an absolutely calibrated XUV silicon photodiode. From the results of absolute calibration of the spectrograph, the radiation loss from the plasma was obtained.

  11. Development of an XYZ Digital Camera with Embedded Color Calibration System for Accurate Color Acquisition

    NASA Astrophysics Data System (ADS)

    Kretkowski, Maciej; Jablonski, Ryszard; Shimodaira, Yoshifumi

    Acquisition of accurate colors is important in the modern era of widespread exchange of electronic multimedia. The variety of device-dependent color spaces causes troubles with accurate color reproduction. In this paper we present the outlines of accomplished digital camera system with device-independent output formed from tristimulus XYZ values. The outstanding accuracy and fidelity of acquired color is achieved in our system by employing an embedded color calibration system based on emissive device generating reference calibration colors with user-defined spectral distribution and chromaticity coordinates. The system was tested by calibrating the camera using 24 reference colors spectrally reproduced from 24 color patches of the Macbeth Chart. The average color difference (CIEDE2000) has been found to be ΔE =0.83, which is an outstanding result compared to commercially available digital cameras.

  12. On the absolute calibration of SO2 cameras

    USGS Publications Warehouse

    Lübcke, Peter; Bobrowski, Nicole; Illing, Sebastian; Kern, Christoph; Alvarez Nieves, Jose Manuel; Vogel, Leif; Zielcke, Johannes; Delgados Granados, Hugo; Platt, Ulrich

    2013-01-01

    This work investigates the uncertainty of results gained through the two commonly used, but quite different, calibration methods (DOAS and calibration cells). Measurements with three different instruments, an SO2 camera, a NFOVDOAS system and an Imaging DOAS (I-DOAS), are presented. We compare the calibration-cell approach with the calibration from the NFOV-DOAS system. The respective results are compared with measurements from an I-DOAS to verify the calibration curve over the spatial extent of the image. The results show that calibration cells, while working fine in some cases, can lead to an overestimation of the SO2 CD by up to 60% compared with CDs from the DOAS measurements. Besides these errors of calibration, radiative transfer effects (e.g. light dilution, multiple scattering) can significantly influence the results of both instrument types. The measurements presented in this work were taken at Popocatepetl, Mexico, between 1 March 2011 and 4 March 2011. Average SO2 emission rates between 4.00 and 14.34 kg s−1 were observed.

  13. Quantum Efficient Detectors for Use in Absolute Calibration

    NASA Technical Reports Server (NTRS)

    Faust, Jessica; Eastwood, Michael; Pavri, Betina; Raney, James

    1998-01-01

    The trap or quantum efficient detector has a quantum efficiency of greater than 0.98 for the region from 450 to 900 nm. The region of flattest response is from 600 to 900 nm. The QED consists of three windowless Hamamatsu silicon detectors. The QED was mounted below AVIRIS to monitor the Spectralon panel for changes in radiance during radiometric calibration. The next step is to permanently mount the detector to AVIRIS and monitor the overall radiance of scenes along with calibration.

  14. Calibration Adjustments to the MODIS Aqua Ocean Color Bands

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard

    2012-01-01

    After the end of the SeaWiFS mission in 2010 and the MERIS mission in 2012, the ocean color products of the MODIS on Aqua are the only remaining source to continue the ocean color climate data record until the VIIRS ocean color products become operational (expected for summer 2013). The MODIS on Aqua is well beyond its expected lifetime, and the calibration accuracy of the short wavelengths (412nm and 443nm) has deteriorated in recent years_ Initially, SeaWiFS data were used to improve the MODIS Aqua calibration, but this solution was not applicable after the end of the SeaWiFS mission_ In 2012, a new calibration methodology was applied by the MODIS calibration and support team using desert sites to improve the degradation trending_ This presentation presents further improvements to this new approach. The 2012 reprocessing of the MODIS Aqua ocean color products is based on the new methodology.

  15. Confidence-Accuracy Calibration in Absolute and Relative Face Recognition Judgments

    ERIC Educational Resources Information Center

    Weber, Nathan; Brewer, Neil

    2004-01-01

    Confidence-accuracy (CA) calibration was examined for absolute and relative face recognition judgments as well as for recognition judgments from groups of stimuli presented simultaneously or sequentially (i.e., simultaneous or sequential mini-lineups). When the effect of difficulty was controlled, absolute and relative judgments produced…

  16. On the absolute calibration of SO2 cameras

    NASA Astrophysics Data System (ADS)

    Lübcke, P.; Bobrowski, N.; Illing, S.; Kern, C.; Alvarez Nieves, J. M.; Vogel, L.; Zielcke, J.; Delgado Granados, H.; Platt, U.

    2013-03-01

    Sulphur dioxide emission rate measurements are an important tool for volcanic monitoring and eruption risk assessment. The SO2 camera technique remotely measures volcanic emissions by analysing the ultraviolet absorption of SO2 in a narrow spectral window between 300 and 320 nm using solar radiation scattered in the atmosphere. The SO2 absorption is selectively detected by mounting band-pass interference filters in front of a two-dimensional, UV-sensitive CCD detector. One important step for correct SO2 emission rate measurements that can be compared with other measurement techniques is a correct calibration. This requires conversion from the measured optical density to the desired SO2 column density (CD). The conversion factor is most commonly determined by inserting quartz cells (cuvettes) with known amounts of SO2 into the light path. Another calibration method uses an additional narrow field-of-view Differential Optical Absorption Spectroscopy system (NFOV-DOAS), which measures the column density simultaneously in a small area of the camera's field-of-view. This procedure combines the very good spatial and temporal resolution of the SO2 camera technique with the more accurate column densities obtainable from DOAS measurements. This work investigates the uncertainty of results gained through the two commonly used, but quite different, calibration methods (DOAS and calibration cells). Measurements with three different instruments, an SO2 camera, a NFOV-DOAS system and an Imaging DOAS (I-DOAS), are presented. We compare the calibration-cell approach with the calibration from the NFOV-DOAS system. The respective results are compared with measurements from an I-DOAS to verify the calibration curve over the spatial extent of the image. The results show that calibration cells, while working fine in some cases, can lead to an overestimation of the SO2 CD by up to 60% compared with CDs from the DOAS measurements. Besides these errors of calibration, radiative transfer

  17. Absolute calibration of the RADSCAT scatterometer using precision spheres

    NASA Technical Reports Server (NTRS)

    Grantham, W. L.; Schroeder, L. C.; Mitchell, J. L.

    1976-01-01

    Tests using precision sphere targets suspended from balloons were conducted to calibrate the received-power/transmitted-power tatio of the RADSCAT scatterometer. Comparisons were made of these measured results with theoretical return from spheres. The RADSCAT scatterometer measurements at 13.9 GHz should be corrected by -2.4 dB, and those at 9.3 GHz, by -4.3 dB. The techniques described should be generally applicable to calibration of scatterometers where measurement precision is of prime importance. Inferred from the magnitude of these RADSCAT corrections was the present state of technology in building precision scatterometers.

  18. Inter-printer color calibration using constrained printer gamut

    NASA Astrophysics Data System (ADS)

    Zeng, Huanzhao; Humet, Jacint

    2005-01-01

    Due to the drop size variation of the print heads in inkjet printers, consistent color reproduction becomes challenge for high quality color printing. To improve the color consistency, we developed a method and system to characterize a pair of printers using a colorimeter or a color scanner. Different from prior known approaches that simply try to match colors of one printer to the other without considering the gamut differences, we first constructed an overlapped gamut in which colors can be produced by both printers, and then characterized both printers using a pair of 3-D or 4-D lookup tables (LUT) to produce same colors limited to the overlapped gamut. Each LUT converts nominal device color values into engine-dependent device color values limited to the overlapped gamut. Compared to traditional approaches, the color calibration accuracy is significantly improved. This method can be simply extended to calibrate more than two engines. In a color imaging system that includes a scanner and more than one print engine, this method improves the color consistency very effectively without increasing hardware costs. A few examples for applying this method are: 1) one-pass bi-directional inkjet printing; 2) a printer with two or more sets of pens for printing; and 3) a system embedded with a pair of printers (the number of printers could be easily incremented).

  19. Inter-printer color calibration using constrained printer gamut

    NASA Astrophysics Data System (ADS)

    Zeng, Huanzhao; Humet, Jacint

    2004-12-01

    Due to the drop size variation of the print heads in inkjet printers, consistent color reproduction becomes challenge for high quality color printing. To improve the color consistency, we developed a method and system to characterize a pair of printers using a colorimeter or a color scanner. Different from prior known approaches that simply try to match colors of one printer to the other without considering the gamut differences, we first constructed an overlapped gamut in which colors can be produced by both printers, and then characterized both printers using a pair of 3-D or 4-D lookup tables (LUT) to produce same colors limited to the overlapped gamut. Each LUT converts nominal device color values into engine-dependent device color values limited to the overlapped gamut. Compared to traditional approaches, the color calibration accuracy is significantly improved. This method can be simply extended to calibrate more than two engines. In a color imaging system that includes a scanner and more than one print engine, this method improves the color consistency very effectively without increasing hardware costs. A few examples for applying this method are: 1) one-pass bi-directional inkjet printing; 2) a printer with two or more sets of pens for printing; and 3) a system embedded with a pair of printers (the number of printers could be easily incremented).

  20. High accuracy absolute laser powermeter calibrated over the whole range

    SciTech Connect

    Miron, N.; Korony, G.; Velculescu, V.G.

    1994-12-31

    The main contribution to this laser powermeter is the capability of its detector to be electrically calibrated over the whole measuring range (0 ... 100W), with an accuracy better than 1%. This allows an improved accuracy in determining the second-order polynomial coefficients describing thermocouple electric response.

  1. VIIRS On-Orbit Calibration for Ocean Color Data Processing

    NASA Technical Reports Server (NTRS)

    Eplee, Robert E., Jr.; Turpie, Kevin R.; Fireman, Gwyn F.; Meister, Gerhard; Stone, Thomas C.; Patt, Frederick S.; Franz, Bryan; Bailey, Sean W.; Robinson, Wayne D.; McClain, Charles R.

    2012-01-01

    The NASA VIIRS Ocean Science Team (VOST) has the task of evaluating Suomi NPP VIIRS ocean color data for the continuity of the NASA ocean color climate data records. The generation of science quality ocean color data products requires an instrument calibration that is stable over time. Since the VIIRS NIR Degradation Anomaly directly impacts the bands used for atmospheric correction of the ocean color data (Bands M6 and M7), the VOST has adapted the VIIRS on-orbit calibration approach to meet the ocean science requirements. The solar diffuser calibration time series and the solar diffuser stability monitor time series have been used to derive changes in the instrument response and diffuser reflectance over time for bands M1-M11.

  2. First Absolutely Calibrated Localized Measurements of Ion Velocity in the MST in Locked and Rotating Plasmas

    NASA Astrophysics Data System (ADS)

    Baltzer, M.; Craig, D.; den Hartog, D. J.; Nornberg, M. D.; Munaretto, S.

    2015-11-01

    An Ion Doppler Spectrometer (IDS) is used on MST for high time-resolution passive and active measurements of impurity ion emission. Absolutely calibrated measurements of flow are difficult because the spectrometer records data within 0.3 nm of the C+5 line of interest, and commercial calibration lamps do not produce lines in this narrow range . A novel optical system was designed to absolutely calibrate the IDS. The device uses an UV LED to produce a broad emission curve in the desired region. A Fabry-Perot etalon filters this light, cutting transmittance peaks into the pattern of the LED emission. An optical train of fused silica lenses focuses the light into the IDS with f/4. A holographic diffuser blurs the light cone to increase homogeneity. Using this light source, the absolute Doppler shift of ion emissions can be measured in MST plasmas. In combination with charge exchange recombination spectroscopy, localized ion velocities can now be measured. Previously, a time-averaged measurement along the chord bisecting the poloidal plane was used to calibrate the IDS; the quality of these central chord calibrations can be characterized with our absolute calibration. Calibration errors may also be quantified and minimized by optimizing the curve-fitting process. Preliminary measurements of toroidal velocity in locked and rotating plasmas will be shown. This work has been supported by the US DOE.

  3. Prelaunch absolute radiometric calibration of the reflective bands on the LANDSAT-4 protoflight Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Ball, D. L.; Leung, K. C.; Walker, J. A.

    1984-01-01

    The results of the absolute radiometric calibration of the LANDSAT 4 thematic mapper, as determined during pre-launch tests with a 122 cm integrating sphere, are presented. Detailed results for the best calibration of the protoflight TM are given, as well as summaries of other tests performed on the sensor. The dynamic range of the TM is within a few per cent of that required in all bands, except bands 1 and 3. Three detectors failed to pass the minimum SNR specified for their respective bands: band 5, channel 3 (dead), band 2, and channels 2 and 4 (noisy or slow response). Estimates of the absolute calibration accuracy for the TM show that the detectors are typically calibrated to 5% absolute error for the reflective bands; 10% full-scale accuracy was specified. Ten tests performed to transfer the detector absolute calibration to the internal calibrator show a 5% range at full scale in the transfer calibration; however, in two cases band 5 showed a 10% and a 7% difference.

  4. Strategies for absolute calibration of near infrared tomographic tissue imaging.

    PubMed

    McBride, Troy O; Pogue, Brian W; Osterberg, Ulf L; Paulsen, Keith D

    2003-01-01

    Quantitative near infrared (NIR) imaging of tissue requires the use of a diffusion model-based reconstruction algorithm, which solves for the absorption and scattering coefficients of a tissue volume by matching transmission measurements of light to the predictive diffusion equation solution. Calibration problems as well as other practical considerations arise for an imaging system when using a model-based method for a real system. For example, systematic noise in the data acquisition hardware and source/detector fibers must be removed to prevent spurious results in the reconstructed image. Practical considerations for a NIR diffuse tomographic imaging system include: (1) calibration with a homogeneous phantom, (2) use of a homogenous fitting algorithm to arrive at an initial optical property estimate for image reconstruction of a heterogeneous medium, and (3) correction for fluctuations in source strength and initial phase offset during data acquisition. These practical considerations, which rely on an accurate homogeneous fitting algorithm are described. They have allowed demonstration of a prototype imaging system that has the ability to quantitatively reconstruct heterogeneous images of hemoglobin concentrations within a highly scattering medium with no a priori information.

  5. Absolute V-R colors of trans-Neptunian objects

    NASA Astrophysics Data System (ADS)

    Alvarez-Candal, Alvaro; Ayala-Loera, Carmen; Ortiz, Jose-Luis; Duffard, Rene; Estela, Fernandez-Valenzuela; Santos-Sanz, Pablo

    2016-10-01

    The absolute magnitude of a minor body is the apparent magnitude that the body would have if observed from the Sun at a distance of 1AU. Absolute magnitudes are measured using phase curves, showing the change of the magnitude, normalized to unit helio and geo-centric distance, vs. phase angle. The absolute magnitude is then the Y-intercept of the curve. Absolute magnitudes are related to the total reflecting surface of the body and thus bring information of its size, coupled with the reflecting properties.Since 2011 our team has been collecting data from several telescopes spread in Europe and South America. We complemented our data with those available in the literature in order to construct phase curves of trans-Neptunian objects with at least three points. In a first release (Alvarez-Candal et al. 2016, A&A, 586, A155) we showed results for 110 trans-Neptunian objects using V magnitudes only, assuming an overall linear trend and taking into consideration rotational effects, for objects with known light-curves.In this contribution we show results for more than 130 objects, about 100 of them with phase curves in two filters: V and R. We compute absolute magnitudes and phase coefficients in both filters, when available. The average values are HV = 6.39 ± 2.37, βV = (0.09 ± 0.32) mag per degree, HR = 5.38 ± 2.30, and βR = (0.08 ± 0.42) mag per degree.

  6. Absolutely calibrated soft-x-ray streak camera for laser-fusion applications

    SciTech Connect

    Kauffman, R.L.; Medecki, H.; Stradling, G.

    1982-01-01

    The intensity output of a soft-x-ray streak camera was calibrated (SXRSC) in order to make absolute flux measurements of x rays emitted from laser-produced plasmas. The SXRSC developed at LLNL is used to time-resolve x-ray pulses to better than 20 ps. The SXRSC uses a Au photocathode on a thin carbon substrate which is sensitive to x rays from 100 eV to greater than 10 keV. Calibrations are done in the dynamic mode using a small laser-produced x-ray source. The SXRSC is calibrated by comparing its integrated signal to the output of calibrated x-ray diodes monitoring the source strength. The measured SXRSC response is linear over greater than two orders of magnitude. Using these calibrations, absolute intensities can be measured to an accuracy of +-30%.

  7. A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    NASA Astrophysics Data System (ADS)

    Doerr, H.-P.; Steinmetz, T.; Holzwarth, R.; Kentischer, T.; Schmidt, W.

    2012-10-01

    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut für Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut für Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.

  8. Improved Calibration Shows Images True Colors

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Innovative Imaging and Research, located at Stennis Space Center, used a single SBIR contract with the center to build a large-scale integrating sphere, capable of calibrating a whole array of cameras simultaneously, at a fraction of the usual cost for such a device. Through the use of LEDs, the company also made the sphere far more efficient than existing products and able to mimic sunlight.

  9. Calibration of the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; Barnes, Robert; Baize, Rosemary; O'Connell, Joseph; Hair, Jason

    2010-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) plans to observe climate change trends over decadal time scales to determine the accuracy of climate projections. The project relies on spaceborne earth observations of SI-traceable variables sensitive to key decadal change parameters. The mission includes a reflected solar instrument retrieving at-sensor reflectance over the 320 to 2300 nm spectral range with 500-m spatial resolution and 100-km swath. Reflectance is obtained from the ratio of measurements of the earth s surface to those while viewing the sun relying on a calibration approach that retrieves reflectance with uncertainties less than 0.3%. The calibration is predicated on heritage hardware, reduction of sensor complexity, adherence to detector-based calibration standards, and an ability to simulate in the laboratory on-orbit sources in both size and brightness to provide the basis of a transfer to orbit of the laboratory calibration including a link to absolute solar irradiance measurements.

  10. Artifact correction and absolute radiometric calibration techniques employed in the Landsat 7 image assessment system

    USGS Publications Warehouse

    Boncyk, Wayne C.; Markham, Brian L.; Barker, John L.; Helder, Dennis

    1996-01-01

    The Landsat-7 Image Assessment System (IAS), part of the Landsat-7 Ground System, will calibrate and evaluate the radiometric and geometric performance of the Enhanced Thematic Mapper Plus (ETM +) instrument. The IAS incorporates new instrument radiometric artifact correction and absolute radiometric calibration techniques which overcome some limitations to calibration accuracy inherent in historical calibration methods. Knowledge of ETM + instrument characteristics gleaned from analysis of archival Thematic Mapper in-flight data and from ETM + prelaunch tests allow the determination and quantification of the sources of instrument artifacts. This a priori knowledge will be utilized in IAS algorithms designed to minimize the effects of the noise sources before calibration, in both ETM + image and calibration data.

  11. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak

    SciTech Connect

    Liu, X.; Zhao, H. L.; Liu, Y. Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D.; Domier, C. W.; Luhmann, N. C.

    2014-09-15

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.

  12. Pre-Launch Absolute Calibration of CCD/CBERS-2B Sensor

    PubMed Central

    Ponzoni, Flávio Jorge; Albuquerque, Bráulio Fonseca Carneiro

    2008-01-01

    Pre-launch absolute calibration coefficients for the CCD/CBERS-2B sensor have been calculated from radiometric measurements performed in a satellite integration and test hall in the Chinese Academy of Space Technology (CAST) headquarters, located in Beijing, China. An illuminated integrating sphere was positioned in the test hall facilities to allow the CCD/CBERS-2B imagery of the entire sphere aperture. Calibration images were recorded and a relative calibration procedure adopted exclusively in Brazil was applied to equalize the detectors responses. Averages of digital numbers (DN) from these images were determined and correlated to their respective radiance levels in order to calculate the absolute calibration coefficients. It has been the first time these pre-launch absolute calibration coefficients have been calculated considering the Brazilian image processing criteria. Now it will be possible to compare them to those that will be calculated from vicarious calibration campaigns. This comparison will permit the CCD/CBERS-2B monitoring and the frequently data updating to the user community.

  13. Glassy carbon as an absolute intensity calibration standard for small-angle scattering.

    SciTech Connect

    Zhang, F.; Ilavsky, J.; Long, G.; Allen, A.; Quintana, J.; Jemian, P.; NIST

    2010-05-01

    Absolute calibration of small-angle scattering (SAS) intensity data (measured in terms of the differential scattering cross section per unit sample volume per unit solid angle) is essential for many important aspects of quantitative SAS analysis, such as obtaining the number density, volume fraction, and specific surface area of the scatterers. It also enables scattering data from different instruments (light, X-ray, or neutron scattering) to be combined, and it can even be useful to detect the existence of artifacts in the experimental data. Different primary or secondary calibration methods are available. In the latter case, absolute intensity calibration requires a stable artifact with the necessary scattering profile. Glassy carbon has sometimes been selected as this intensity calibration standard. Here we review the spatial homogeneity and temporal stability of one type of commercially available glassy carbon that is being used as an intensity calibration standard at a number of SAS facilities. We demonstrate that glassy carbon is sufficiently homogeneous and stable during routine use to be relied upon as a suitable standard for absolute intensity calibration of SAS data.

  14. Image plate characterization and absolute calibration to low kilo-electron-volt electrons

    SciTech Connect

    Busold, S.; Philipp, K.; Otten, A.; Roth, M.

    2014-11-15

    We report on the characterization of an image plate and its absolute calibration to electrons in the low keV energy range (1–30 keV). In our case, an Agfa MD4.0 without protection layer was used in combination with a Fuji FLA7000 scanner. The calibration data are compared to other published data and a consistent picture of the sensitivity of image plates to electrons is obtained, which suggests a validity of the obtained calibration up to 100 keV.

  15. Absolute flux calibration for the Mg II observations near 2800 angstroms

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Duval, J. E.; Modisette, J. L.; Morgan, T. H.

    1976-01-01

    Observations of the Mg II features near 2800 A, obtained with a balloon-borne ultraviolet stellar spectrometer for five stars, have been calibrated against the absolute flux measures from OAO-2 spectrometer results. Equivalent widths of the Mg II resonance doublet and their respective subordinate lines, as well as the emission intensities, were evaluated where applicable.

  16. [Research on absolute calibration of sun channel of sun photometer using laser raster scanning method].

    PubMed

    Xu, Wen-Bin; Li, Jian-Jun; Zheng, Xiao-Bing

    2013-01-01

    In the present paper, a new calibration method of absolute spectral irradiance responsivity of sun channel of sun photometer was developed. A tunable laser was used as source and a standard tranfer detector, calibrated against cryogenic absolute radiometer, was used to measure laser beam power. By raster scanning of a single collimated laser beam to generate the uniform irradiance field at the plane of effective aperture stop of sun photometer, the absolute irradiance responsivity of center wavelength of the 870 nm unpolarized sun channels of sun photometer was obtained accurately. The relative spectral irradiance responsivity of corresponding channel was obtained by using lamp-monochromator system and then used to acquire the absolute spectral irradiance responsivity in the laboratory. On the basis of the above results, the top-of-the-atmosphere responsive constant V0 was obtained by integration with extraterrestrial solar spectral irradiance data. Comparing the calibration result with that from GSFC, NASA in 2009, the difference is only 3.75%. In the last, the uncertainties of calibration were evaluated and reached to 2.06%. The principle feasibility of the new method was validated.

  17. Possibility of absolute calibration of analog detectors by using parametric downconversion: a systematic study

    SciTech Connect

    Brida, Giorgio; Genovese, Marco; Ruo-Berchera, Ivano; Chekhova, Maria; Penin, Alexander

    2006-10-15

    Prompted by the need for various studies ranging from quantum information to foundations of quantum mechanics, we systematically study the possibility of the absolute calibration of analog photodetectors based on the properties of parametric amplifiers. Our results show that such a method can be effectively developed with interesting possible applications in metrology.

  18. Color calibration of a CMOS digital camera for mobile imaging

    NASA Astrophysics Data System (ADS)

    Eliasson, Henrik

    2010-01-01

    As white balance algorithms employed in mobile phone cameras become increasingly sophisticated by using, e.g., elaborate white-point estimation methods, a proper color calibration is necessary. Without such a calibration, the estimation of the light source for a given situation may go wrong, giving rise to large color errors. At the same time, the demands for efficiency in the production environment require the calibration to be as simple as possible. Thus it is important to find the correct balance between image quality and production efficiency requirements. The purpose of this work is to investigate camera color variations using a simple model where the sensor and IR filter are specified in detail. As input to the model, spectral data of the 24-color Macbeth Colorchecker was used. This data was combined with the spectral irradiance of mainly three different light sources: CIE A, D65 and F11. The sensor variations were determined from a very large population from which 6 corner samples were picked out for further analysis. Furthermore, a set of 100 IR filters were picked out and measured. The resulting images generated by the model were then analyzed in the CIELAB space and color errors were calculated using the ΔE94 metric. The results of the analysis show that the maximum deviations from the typical values are small enough to suggest that a white balance calibration is sufficient. Furthermore, it is also demonstrated that the color temperature dependence is small enough to justify the use of only one light source in a production environment.

  19. Solving the color calibration problem of Martian lander images

    NASA Astrophysics Data System (ADS)

    Levin, Ron L.; Levin, Gilbert V.

    2004-02-01

    The color of published Viking and Pathfinder images varies greatly in hue, saturation and chromaticity. True color is important for interpretation of physical, chemical, geological and, possibly, biological information about Mars. The weak link in the imaging process for both missions was the reliance on imaging color charts reflecting Martian ambient light. While the reflectivity of the charts is well known, the spectrum of their illumination on Mars is not. "Calibrated" images are usually reddish, attributed to atmospheric dust, but hues range widely because of the great uncertainty in the illumination spectrum. Solar black body radiation, the same on Mars as on Earth, is minimally modified by the atmosphere of either planet. For red dust to change the spectrum significantly, reflected light must exceed the transmitted light. Were this the case, shadows would be virtually eliminated. Viking images show prominent shadows. Also, Pathfinder"s solar cells, activated by blue light, would have failed under the predominately red spectrum generally attributed to Mars. Accordingly, no consensus has emerged on the colors of the soil, rocks and sky of Mars. This paper proposes two techniques to eliminate color uncertainty from future images, and also to allow recalibration of past images: 1. Calibration of cameras at night through minimal atmospheric paths using light sources brought from Earth, which, used during the day, would permit calculation of red, green and blue intensities independent of scene illumination; 2. Use of hyperspectral imaging to measure the complete spectrum of each pixel. This paper includes a calibration of a NASA Viking lander image based on its color chart as it appears on Earth. The more realistic Martian colors become far more interesting, showing blue skies, brownish soil and rocks, both with yellow, olive, and greenish areas.

  20. How to measure color using spectrometers and calibrated photographs.

    PubMed

    Johnsen, Sönke

    2016-03-01

    The measurement of color in biology has become increasingly common. These measurements are not limited to color vision research, but are also found in studies of communication, signaling, camouflage, evolution and behavior, and in the examination of environmental, artificial and biogenic light. Although the recent availability of portable spectrometers has made it simpler to measure color, guidance on how to make these measurements has not kept pace. Because most biologists receive little training in optics, many measure the wrong thing, or measure the right thing in the wrong way. This Commentary attempts to give biologists a brief overview of how to measure light and color using spectrometers and calibrated photographs. It focuses in particular on the inherent ambiguities of many optical measurements, and how these can be addressed. PMID:26985049

  1. How to measure color using spectrometers and calibrated photographs.

    PubMed

    Johnsen, Sönke

    2016-03-01

    The measurement of color in biology has become increasingly common. These measurements are not limited to color vision research, but are also found in studies of communication, signaling, camouflage, evolution and behavior, and in the examination of environmental, artificial and biogenic light. Although the recent availability of portable spectrometers has made it simpler to measure color, guidance on how to make these measurements has not kept pace. Because most biologists receive little training in optics, many measure the wrong thing, or measure the right thing in the wrong way. This Commentary attempts to give biologists a brief overview of how to measure light and color using spectrometers and calibrated photographs. It focuses in particular on the inherent ambiguities of many optical measurements, and how these can be addressed.

  2. Absolute wavelength calibration of a Doppler spectrometer with a custom Fabry-Perot optical system

    NASA Astrophysics Data System (ADS)

    Baltzer, M. M.; Craig, D.; Den Hartog, D. J.; Nishizawa, T.; Nornberg, M. D.

    2016-11-01

    An Ion Doppler Spectrometer (IDS) is used for fast measurements of C VI line emission (343.4 nm) in the Madison Symmetric Torus. Absolutely calibrated flow measurements are difficult because the IDS records data within 0.25 nm of the line. Commercial calibration lamps do not produce lines in this narrow range. A light source using an ultraviolet LED and etalon was designed to provide a fiducial marker 0.08 nm wide. The light is coupled into the IDS at f/4, and a holographic diffuser increases homogeneity of the final image. Random and systematic errors in data analysis were assessed. The calibration is accurate to 0.003 nm, allowing for flow measurements accurate to 3 km/s. This calibration is superior to the previous method which used a time-averaged measurement along a chord believed to have zero net Doppler shift.

  3. Absolute calibration of neutron detectors on the C-2U advanced beam-driven FRC

    NASA Astrophysics Data System (ADS)

    Magee, R. M.; Clary, R.; Korepanov, S.; Jauregui, F.; Allfrey, I.; Garate, E.; Valentine, T.; Smirnov, A.

    2016-11-01

    In the C-2U fusion energy experiment, high power neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. The diagnosis of the fast ion pressure in these high-performance plasmas is therefore critical, and the measurement of the flux of neutrons from the deuterium-deuterium (D-D) fusion reaction is well suited to the task. Here we describe the absolute, in situ calibration of scintillation neutron detectors via two independent methods: firing deuterium beams into a high density gas target and calibration with a 2 × 107 n/s AmBe source. The practical issues of each method are discussed and the resulting calibration factors are shown to be in good agreement. Finally, the calibration factor is applied to C-2U experimental data where the measured neutron rate is found to exceed the classical expectation.

  4. Relative and absolute intensity calibrations of a modern broadband echelle spectrometer

    NASA Astrophysics Data System (ADS)

    Bibinov, N.; Halfmann, H.; Awakowicz, P.; Wiesemann, K.

    2007-05-01

    We report on relative and absolute intensity calibrations of a modern broadband echelle spectrometer (type ESA 3000® trademark of LLA Instruments GmbH, Berlin) for use in the diagnostics of low-temperature plasma. This type of device measures simultaneously complete emission spectra in the spectral range from 200 to 800 nm with a spectral resolution of several picometres by using more than 90 spectral orders, causing a strongly structured efficiency function. The assumptions and approximations entering the calibration procedure under these conditions are discussed in section 3. For coping with the strongly structured efficiency function a continuum light source is needed, which covers the entire spectral range. Furthermore, the variation of its intensity must be low enough to ensure that neither statistical errors perturb the calibration in regions with low photon flux and/or low efficiency, nor local memory overflow in regions with high photon flux or high efficiency. In our case this requires that during calibration over the whole spectral range of the spectrometer the counts per pixel in one measurement vary at highest by a factor 10 to 12. Usual broadband light sources do not meet this latter requirement. We, therefore, use an uncalibrated 'composite' source, an adjustable combination of a standard tungsten strip lamp and a deuterium lamp, and calibrate the spectrometer in a two-step process against the tungsten strip lamp and well-known rovibrational intensity distributions in the emission spectra of NO and N2. We adjust the composite source in a way to produce a perturbation-free first approximation of an (uncalibrated) efficiency function, which is then corrected and thus calibrated by comparison with the (secondary) standards mentioned above. For absolute calibration we use the tungsten strip lamp. The uncertainty attained in this way for the relative calibration depends on the wavelength and varies between 5% and 10%. For the absolute calibration we

  5. Rapid, absolute calibration of x-ray filters employed by laser-produced plasma diagnostics.

    PubMed

    Brown, G V; Beiersdorfer, P; Emig, J; Frankel, M; Gu, M F; Heeter, R F; Magee, E; Thorn, D B; Widmann, K; Kelley, R L; Kilbourne, C A; Porter, F S

    2008-10-01

    The Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory is being used to absolutely calibrate the transmission efficiency of x-ray filters employed by diodes and spectrometers used to diagnose laser-produced plasmas. EBIT emits strong, discrete monoenergetic lines at appropriately chosen x-ray energies. X rays are detected using the high resolution EBIT Calorimeter Spectrometer (ECS), developed for LLNL at the NASA/Goddard Space Flight Center. X-ray filter transmission efficiency is determined by dividing the x-ray counts detected when the filter is in the line of sight by those detected when out of the line of sight. Verification of filter thickness can be completed in only a few hours, and absolute efficiencies can be calibrated in a single day over a broad range from about 0.1 to 15 keV. The EBIT calibration lab has been used to field diagnostics (e.g., the OZSPEC instrument) with fully calibrated x-ray filters at the OMEGA laser. Extensions to use the capability for calibrating filter transmission for the DANTE instrument on the National Ignition Facility are discussed. PMID:19044471

  6. Rapid, absolute calibration of x-ray filters employed by laser-produced plasma diagnostics

    SciTech Connect

    Brown, G. V.; Beiersdorfer, P.; Emig, J.; Frankel, M.; Gu, M. F.; Heeter, R. F.; Magee, E.; Thorn, D. B.; Widmann, K.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.

    2008-10-15

    The Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory is being used to absolutely calibrate the transmission efficiency of x-ray filters employed by diodes and spectrometers used to diagnose laser-produced plasmas. EBIT emits strong, discrete monoenergetic lines at appropriately chosen x-ray energies. X rays are detected using the high resolution EBIT Calorimeter Spectrometer (ECS), developed for LLNL at the NASA/Goddard Space Flight Center. X-ray filter transmission efficiency is determined by dividing the x-ray counts detected when the filter is in the line of sight by those detected when out of the line of sight. Verification of filter thickness can be completed in only a few hours, and absolute efficiencies can be calibrated in a single day over a broad range from about 0.1 to 15 keV. The EBIT calibration lab has been used to field diagnostics (e.g., the OZSPEC instrument) with fully calibrated x-ray filters at the OMEGA laser. Extensions to use the capability for calibrating filter transmission for the DANTE instrument on the National Ignition Facility are discussed.

  7. Rapid, Absolute Calibration of X-ray Filters Employed By Laser-Produced Plasma Diagnostics

    SciTech Connect

    Brown, G V; Beiersdorfer, P; Emig, J; Frankel, M; Gu, M F; Heeter, R F; Magee, E; Thorn, D B; Widmann, K; . Kelley, R L; Kilbourne, C A; Porter, F S

    2008-05-11

    The electron beam ion trap (EBIT) facility at the Lawrence Livermore National Laboratory is being used to absolutely calibrate the transmission efficiency of X-ray filters employed by diodes and spectrometers used to diagnose laser-produced plasmas. EBIT emits strong, discrete monoenergetic lines at appropriately chosen X-ray energies. X-rays are detected using the high-resolution EBIT calorimeter spectrometer (ECS), developed for LLNL at the NASA/Goddard Space Flight Center. X-ray filter transmission efficiency is determined by dividing the X-ray counts detected when the filter is in the line of sight by those detected when out of the line of sight. Verification of filter thickness can be completed in only a few hours, and absolute efficiencies can be calibrated in a single day over a broad range from about 0.1 to 15 keV. The EBIT calibration lab has been used to field diagnostics (e.g., the OZSPEC instrument) with fully calibrated X-ray filters at the OMEGA laser. Extensions to use the capability for calibrating filter transmission for the DANTE instrument on the National Ignition Facility are discussed.

  8. Spectrophotometry of Wolf-Rayet stars - Intrinsic colors and absolute magnitudes

    NASA Technical Reports Server (NTRS)

    Torres-Dodgen, Ana V.; Massey, Philip

    1988-01-01

    Absolute spectrophotometry of about 10-A resolution in the range 3400-7300 A have been obtained for southern Wolf-Rayet stars, and line-free magnitudes and colors have been constructed. The emission-line contamination in the narrow-band ubvr systems of Westerlund (1966) and Smith (1968) is shown to be small for most WN stars, but to be quite significant for WC stars. It is suggested that the more severe differences in intrinsic color from star to star of the same spectral subtype noted at shorter wavelengths are due to differences in atmospheric extent. True continuum absolute visual magnitudes and intrinsic colors are obtained for the LMC WR stars. The most visually luminous WN6-WN7 stars are found to be located in the core of the 30 Doradus region.

  9. Calibration-free absolute frequency response measurement of directly modulated lasers based on additional modulation.

    PubMed

    Zhang, Shangjian; Zou, Xinhai; Wang, Heng; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-10-15

    A calibration-free electrical method is proposed for measuring the absolute frequency response of directly modulated semiconductor lasers based on additional modulation. The method achieves the electrical domain measurement of the modulation index of directly modulated lasers without the need for correcting the responsivity fluctuation in the photodetection. Moreover, it doubles measuring frequency range by setting a specific frequency relationship between the direct and additional modulation. Both the absolute and relative frequency response of semiconductor lasers are experimentally measured from the electrical spectrum of the twice-modulated optical signal, and the measured results are compared to those obtained with conventional methods to check the consistency. The proposed method provides calibration-free and accurate measurement for high-speed semiconductor lasers with high-resolution electrical spectrum analysis.

  10. A Liquid-Helium-Cooled Absolute Reference Cold Load forLong-Wavelength Radiometric Calibration

    SciTech Connect

    Bensadoun, M.; Witebsky, C.; Smoot, George F.; De Amici,Giovanni; Kogut, A.; Levin, S.

    1990-05-01

    We describe a large (78-cm) diameter liquid-helium-cooled black-body absolute reference cold load for the calibration of microwave radiometers. The load provides an absolute calibration near the liquid helium (LHe) boiling point, accurate to better than 30 mK for wavelengths from 2.5 to 25 cm (12-1.2 GHz). The emission (from non-LHe temperature parts of the cold load) and reflection are small and well determined. Total corrections to the LHe boiling point temperature are {le} 50 mK over the operating range. This cold load has been used at several wavelengths at the South Pole and at the White Mountain Research Station. In operation, the average LHe loss rate was {le} 4.4 l/hr. Design considerations, radiometric and thermal performance and operational aspects are discussed. A comparison with other LHe-cooled reference loads including the predecessor of this cold load is given.

  11. Absolute calibration of photon-number-resolving detectors with an analog output using twin beams

    SciTech Connect

    Peřina, Jan; Haderka, Ondřej; Allevi, Alessia; Bondani, Maria

    2014-01-27

    A method for absolute calibration of a photon-number resolving detector producing analog signals as the output is developed using a twin beam. The method gives both analog-to-digital conversion parameters and quantum detection efficiency for the photon fields. Characteristics of the used twin beam are also obtained. A simplified variant of the method applicable to fields with high signal to noise ratios and suitable for more intense twin beams is suggested.

  12. Absolute calibration of a charge-coupled device camera with twin beams

    SciTech Connect

    Meda, A.; Ruo-Berchera, I. Degiovanni, I. P.; Brida, G.; Rastello, M. L.; Genovese, M.

    2014-09-08

    We report on the absolute calibration of a Charge-Coupled Device (CCD) camera by exploiting quantum correlation. This method exploits a certain number of spatial pairwise quantum correlated modes produced by spontaneous parametric-down-conversion. We develop a measurement model accounting for all the uncertainty contributions, and we reach the relative uncertainty of 0.3% in low photon flux regime. This represents a significant step forward for the characterization of (scientific) CCDs used in mesoscopic light regime.

  13. Absolute calibration in the 1750 A-3350 A region. [revisions for air extinction

    NASA Technical Reports Server (NTRS)

    Strongylis, G. J.; Bohlin, R. C.

    1979-01-01

    The absolute flux measurements in the rocket ultraviolet made by Bohlin, Frimout, and Lillie (BFL) are revised using a more correct treatment of the air extinction that enters the air calibration of their instrument. The absorption by molecular oxygen and ozone, Rayleigh scattering, and extinction by aerosols is tabulated for general use in ultraviolet calibrations performed in air. The revised absolute flux of Eta UMa and final fluxes for Alpha Lyr and Zeta Oph are presented in the 1750 A-3350 A region. The absolute flux of the star Eta UMa (B3 V) is compared to four other independent determinations in the 1200 A-3400 A region and a maximum difference of 35% is found near 1500 A between the OAO-2 and Apollo 17 fluxes. Longward of 1700 A the typical scatter in the different determinations is only plus or minus 5%. The rocket measurements of BFL, the ANS and TD-1 satellite data, and the Apollo 17 data are compared to the ultraviolet fluxes from the OAO-2, demonstrating a photometric reproducibility of about plus or minus 3%. Therefore, all four sets of spectrophotometry can be reduced to a common absolute scale.

  14. Absolute calibration of a hydrogen discharge lamp in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Nealy, J. E.

    1975-01-01

    A low-pressure hydrogen discharge lamp was calibrated for radiant intensity in the vacuum ultraviolet spectral region on an absolute basis and was employed as a laboratory standard source in spectrograph calibrations. This calibration was accomplished through the use of a standard photodiode detector obtained from the National Bureau of Standards together with onsite measurements of spectral properties of optical components used. The stability of the light source for use in the calibration of vacuum ultraviolet spectrographs and optical systems was investigated and found to be amenable to laboratory applications. The lamp was studied for a range of operating parameters; the results indicate that with appropriate peripheral instrumentation, the light source can be used as a secondary laboratory standard source when operated under preset controlled conditions. Absolute intensity measurements were recorded for the wavelengths 127.7, 158.0, 177.5, and 195.0 nm for a time period of over 1 month, and the measurements were found to be repeatable to within 11 percent.

  15. Calibration of Fourier domain short coherence interferometer for absolute distance measurements.

    PubMed

    Montonen, R; Kassamakov, I; Hæggström, E; Österberg, K

    2015-05-20

    We calibrated and determined the measurement uncertainty of a custom-made Fourier domain short coherence interferometer operated in laboratory conditions. We compared the optical thickness of two thickness standards and three coverslips determined with our interferometer to the geometric thickness determined by SEM. Using this calibration data, we derived a calibration function with a 95% confidence level system uncertainty of (5.9×10(-3)r+2.3)  μm, where r is the optical distance in μm, across the 240 μm optical measurement range. The confidence limit includes contributions from uncertainties in the optical thickness, geometric thickness, and refractive index measurements as well as uncertainties arising from cosine errors and thermal expansion. The results show feasibility for noncontacting absolute distance characterization with micrometer-level accuracy. This instrument is intended for verifying the alignment of the discs of an accelerating structure in the possible future compact linear collider.

  16. A new method for the absolute radiance calibration for UV-vis measurements of scattered sunlight

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Beirle, S.; Dörner, S.; Penning de Vries, M.; Remmers, J.; Rozanov, A.; Shaiganfar, R.

    2015-10-01

    Absolute radiometric calibrations are important for measurements of the atmospheric spectral radiance. Such measurements can be used to determine actinic fluxes, the properties of aerosols and clouds, and the shortwave energy budget. Conventional calibration methods in the laboratory are based on calibrated light sources and reflectors and are expensive, time consuming and subject to relatively large uncertainties. Also, the calibrated instruments might change during transport from the laboratory to the measurement sites. Here we present a new calibration method for UV-vis instruments that measure the spectrally resolved sky radiance, for example zenith sky differential optical absorption spectroscopy (DOAS) instruments or multi-axis (MAX)-DOAS instruments. Our method is based on the comparison of the solar zenith angle dependence of the measured zenith sky radiance with radiative transfer simulations. For the application of our method, clear-sky measurements during periods with almost constant aerosol optical depth are needed. The radiative transfer simulations have to take polarisation into account. We show that the calibration results are almost independent from the knowledge of the aerosol optical properties and surface albedo, which causes a rather small uncertainty of about < 7 %. For wavelengths below about 330 nm it is essential that the ozone column density during the measurements be constant and known.

  17. Multispectral Photometry of the Moon and Absolute Calibration of the Clementine UV/Vis Camera

    NASA Astrophysics Data System (ADS)

    Hillier, John K.; Buratti, Bonnie J.; Hill, Kathryn

    1999-10-01

    We present a multispectral photometric study of the Moon between solar phase angles of 0 and 85°. Using Clementine images obtained between 0.4 and 1.0 μm, we produce a comprehensive study of the lunar surface containing the following results: (1) empirical photometric functions for the spectral range and viewing and illumination geometries mentioned, (2) photometric modeling that derives the physical properties of the upper regolith and includes a detailed study of the causes for the lunar opposition surge, (3) an absolute calibration of the Clementine UV/Vis camera. The calibration procedure given on the Clementine calibration web site produces reflectances relative to a halon standard and further appear significantly higher than those seen in groundbased observations. By comparing Clementine observations with prior groundbased observations of 15 sites on the Moon we have determined a good absolute calibration of the Clementine UV/Vis camera. A correction factor of 0.532 has been determined to convert the web site (www.planetary.brown.edu/clementine/calibration.html) reflectances to absolute values. From the calibrated data, we calculate empirical phase functions useful for performing photometric corrections to observations of the Moon between solar phase angles of 0 and 85° and in the spectral range 0.4 to 1.0μm. Finally, the calibrated data is used to fit a version of Hapke's photometric model modified to incorporate a new formulation, developed in this paper, of the lunar opposition surge which includes coherent backscatter. Recent studies of the lunar opposition effect have yielded contradictory results as to the mechanism responsible: shadow hiding, coherent backscatter, or both. We find that most of the surge can be explained by shadow hiding with a halfwidth of ˜8°. However, for the brightest regions (the highlands at 0.75-1.0μm) a small additional narrow component (halfwidth of <2°) of total amplitude ˜1/6 to 1/4 that of the shadow hiding surge is

  18. PREMOS Absolute Radiometer Calibration and Implications to on-orbit Measurements of the Total Solar Irradiance

    NASA Astrophysics Data System (ADS)

    Fehlmann, A.; Kopp, G.; Schmutz, W. K.; Winkler, R.; Finsterle, W.; Fox, N.

    2011-12-01

    On orbit measurements starting in the late 1970's, have revealed the 11 year cycle of the Total Solar Irradiance (TSI). However, the absolute results from individual experiments differ although all instrument teams claim to measure an absolute value. Especially the data from the TIM/SORCE experiment confused the community as it measures 0.3 % lower than the other instruments, e.g. VIRGO/SOHO by PMOD/WRC, which clearly exceeds the uncertainty stated for the absolute characterization of the experiments. The PREMOS package on the PICARD platform launched in June 2010 is the latest space experiment by PMOD/WRC measuring the TSI. We have put great effort in the calibration and characterization of this instrument in order to resolve the inter-instrument differences. We performed calibrations at the National Physical Laboratory (NPL) in London and the Laboratory for Atmospheric and Space Physics (LASP) in Boulder against national SI standards for radiant power using a laser beam with a diameter being smaller than the aperture of the instrument. These measurements together with the World Radiometric Reference (WRR) calibration in Davos allowed to compare the WRR and the SI radiant power scale. We found that the WRR lies 0.18 % above the SI radiant power scale which explains a part of the VIRGO-TIM difference. The Total solar irradiance Radiometer Facility (TRF) at the LASP allows to generate a beam that over fills the apertures of our instruments, giving the presently best available representation of solar irradiance in a laboratory. These irradiance calibrations revealed a stray light contribution between 0.09 and 0.3 % to the measurements which had been underestimated in the characterization of our instruments. Using the irradiance calibrations, we found that the WRR lies 0.32 % above the TRF scale which in turn explains the full VIRGO-TIM difference. The first light PREMOS measurements in space confirmed our findings. If we use the WRR calibration, PREMOS yields a TSI

  19. Absolute Calibration of Si iRMs used for Si Paleo-nutrient proxies

    NASA Astrophysics Data System (ADS)

    Vocke, Robert; Rabb, Savelas

    2016-04-01

    The Avogadro Project is an ongoing international effort, coordinated by the International Bureau of Weights and Measures (BIPM) and the International Avogadro Coordination (IAC) to redefine the SI unit mole in terms of the Avogadro constant and the SI unit kg in terms of the Planck constant. One of the outgrowths of this effort has been the development of a novel, precise and highly accurate method to measure calibrated (absolute) isotopic ratios that are traceable to the SI (Vocke et al., 2014 Metrologia 51, 361, Azuma et al., 2015 Metrologia 52 360). This approach has also been able to produce absolute Si isotope ratio data with lower levels of uncertainty when compared to the traditional "Atomic Weights" method of absolute isotope ratio measurement. Silicon isotope variations (reported as delta(Si30)and delta(Si29)) in silicic acid dissolved in ocean waters, in biogenic silica and in diatoms are extremely informative paleo-nutrient proxies. The utility and comparability of such measurements however depends on calibration with artifact isotopic Reference Materials (iRMs). We will be reporting new measurements on the iRMs NBS-28 (RM 8546 - Silica Sand), Diatomite, Big Batch and SRM 990 using the Avogadro measurement approach, comparing them with prior assessments of these iRMs.

  20. Precision evaluation of calibration factor of a superconducting gravimeter using an absolute gravimeter

    NASA Astrophysics Data System (ADS)

    Feng, Jin-yang; Wu, Shu-qing; Li, Chun-jian; Su, Duo-wu; Xu, Jin-yi; Yu, Mei

    2016-01-01

    The precision of the calibration factor of a superconducting gravimeter (SG) using an absolute gravimeter (AG) is analyzed based on linear least square fitting and error propagation theory and factors affecting the accuracy are discussed. It can improve the accuracy to choose the observation period of solid tide as a significant change or increase the calibration time. Simulation is carried out based on synthetic gravity tides calculated with T-soft at observed site from Aug. 14th to Sept. 2nd in 2014. The result indicates that the highest precision using half a day's observation data is below 0.28% and the precision exponentially increases with the increase of peak-to-peak gravity change. The comparison of results obtained from the same observation time indicated that using properly selected observation data has more beneficial on the improvement of precision. Finally, the calibration experiment of the SG iGrav-012 is introduced and the calibration factor is determined for the first time using AG FG5X-249. With 2.5 days' data properly selected from solid tide period with large tidal amplitude, the determined calibration factor of iGrav-012 is (-92.54423+/-0.13616) μGal/V (1μGal=10-8m/s2), with the relative accuracy of about 0.15%.

  1. Absolute intensity calibration of two-channel prototype ITER vacuum ultraviolet spectrometer with a collimating mirror.

    NASA Astrophysics Data System (ADS)

    Seon, Changrae; Hong, Joohwan; Cheon, Munseong; Pak, Sunil; Lee, Hyeongon; Biel, Wolfgang; Barnsley, Robin

    2012-10-01

    To optimize the design of ITER vacuum ultraviolet (VUV) spectrometer, a two-channel prototype spectrometer was implemented with No. 3 (14.4 nm -- 31.8 nm) and No. 4 (29.0 nm -- 60.0 nm) among the five channels. The prototype is composed of a toroidal mirror, and two toroidal diffraction gratings and two different detectors of the back-illuminated CCD and the micro-channel plate (MCP). To verify each optical component, the absolute intensity calibration was performed using the calibrated hollow cathode lamp. Inverse sensitivities of each spectrometer were derived by dividing the incident photon numbers with the measured detector counts. The measured sensitivity values were consistent with the sensitivities calculated from the grating and the detector efficiencies. Consequently the calibration curves of the two-channel VUV spectrometer were provided, and the mirror reflectivity and the detector efficiency could be confirmed experimentally. For the application of the calibrated spectrometer, measurements of impurity lines in KSTAR plasmas were performed, and the line integrated emissivity was derived from the calibration curve during impurity injection experiments.

  2. Color excesses, intrinsic colors, and absolute magnitudes of Galactic and Large Magellanic Cloud Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Vacca, William D.; Torres-Dodgen, Ana V.

    1990-01-01

    A new method of determining the color excesses of WR stars in the Galaxy and the LMC has been developed and is used to determine the excesses for 44 Galactic and 32 LMC WR stars. The excesses are combined with line-free, narrow-band spectrophotometry to derive intrinsic colors of the WR stars of nearly all spectral subtypes. No correlation of UV spectral index or intrinsic colors with spectral subtype is found for the samples of single WN or WC stars. There is evidence that early WN stars in the LMC have flatter UV continua and redder intrinsic colors than early WN stars in the Galaxy. No separation is found between the values derived for Galactic WC stars and those obtained for LMC WC stars. The intrinsic colors are compared with those calculated from model atmospheres of WR stars and generally good agreement is found. Absolute magnitudes are derived for WR stars in the LMC and for those Galactic WR stars located in clusters and associations for which there are reliable distance estimates.

  3. Absolute range calibration for JASON-1 and ENVISAT using a dedicated transponder

    NASA Astrophysics Data System (ADS)

    Cristea, E.; Pesec, P.

    2003-04-01

    Altimeter waveforms are used to study absolute range calibration for the altimeters on board of JASON-1 and ENVISAT. As a uniquely defined terrestrial reflection surface, a transponder is deployed within the footprint of the altimeter. The waveforms corresponding to the transponder distinguish themselves from the other waveforms resulting from natural targets in power and shape. When a satellite-borne altimeter passes over a ground-based active transponder, it makes within 3 to 4 seconds, 3000 - 4000 measurements of the satellite to transponder separation. That distance (range) varies in a parabolic fashion so that, when a parabolic curve is fitted to the measurements, the range at the point of the closest approach, that is the vertex of this parabola, can be determined with a resolution < 1mm. The accuracy of a single measurement of this sort is limited to about 2 - 3 cm by the ability to model the propagation delay in the atmosphere. The technique of using a dedicated transponder eliminates error sources such as tides and sea state bias and resolves the unknown altimeter calibration constant. Best results are obtained when the range window of the radar altimeter is preset to a fixed value during the transponder overpass, and this has been successfully used on RA-2 on board of ENVISAT. The poster presents the concept of absolute range calibration using a transponder and will show numerical results if relevant data are available.

  4. Absolute energy calibration of the Telescope Array fluorescence detector with an electron linear accelerator

    NASA Astrophysics Data System (ADS)

    Shibata, T.; Beitollahi, M.; Fukushima, M.; Ikeda, D.; Langely, K.; Matthews, J. N.; Sagawa, H.; Shin, B. K.; Thomas, S. B.; Thomson, G. B.

    2013-06-01

    The Electron Light Source(ELS) is a new light source for the absolute energy calibration of cosmic ray Fluorescence Detector(FD) telescopes. The ELS is a compact electron linear accelerator with a typical output of 109 electrons per pulse at 40 MeV. We fire the electron beam vertically into the air 100 m in front of the telescope. The electron beam excites the gases of the atmosphere in the same way as the charged particles of the cosmic ray induced extensive air shower. The gases give off the same light with the same wavelength dependence. The light passes through a small amount of atmosphere and is collected by the same mirror and camera with their wavelength dependence. In this way we can use the electron beam from ELS to make an end-to-end calibration of the telescope. In September 2010, we began operation of the ELS and the FD telescopes observed the fluorescence photons from the air shower which was generated by the electron beam. In this article, we will reort the status of analysis of the absolute energy calibration with data which was taken in September 2010, and beam monitor study in November 2011.

  5. In-Flight Absolute Radiometric Calibration of the Landsat Thematic Mapper

    NASA Astrophysics Data System (ADS)

    Kastner, Carol Jane

    The in-flight absolute radiometric calibration of the Thematic Mapper (TM) is being conducted using the results of field measurements at White Sands, New Mexico. These measurements are made to characterize the ground and atmosphere at the time the TM is acquiring an image of White Sands. The data are used as input to a radiative transfer code that computes the radiance at the entrance pupil of the TM. The calibration is obtained by comparing the digital counts associated with the TM image of the measured ground site with the radiative transfer code result. The calibrations discussed here are for the first four visible and near -infrared bands of the TM. In this dissertation the data reduction for the first calibration attempts on January 3, 1983, and July 8, 1984, is discussed. Included are a review of radiative transfer theory and a discussion of model atmospheric parameters as defined for the White Sands area. These model parameters are used to assess the errors associated with the calibration procedure. Each input parameter to the radiative transfer code is varied from its model value in proportion to the uncertainty with which it can be determined. The effects of these uncertainties on the predicted radiances are determined. It is thought that the optical depth components (tau)(,Ray), (tau)(,Mie), (tau)(,oz), and (tau)(,H(,2)O) can be measured to within 10%, 2%, 10%, and 30%, respectively. For the white gypsum sand, surface reflectance uniformity is on the order of 1.5%, and the overall uncertainty in measured reflectance is about 2%. This is due to an uncertainty in the reflectance factor of the calibration plates. The greatest uncertainty in calibration is attributed to our uncertainty in the aerosol parameters, in particular the imaginary component of refractive index. The cumulative effect of these uncertainties is thought to produce an uncertainty in computed radiance of about 5%.

  6. In-flight absolute calibration of the CBERS-2 CCD sensor data.

    PubMed

    Ponzoni, Flávio J; Zullo Junior, Jurandir; Lamparelli, Rubens A C

    2008-06-01

    Since the first images of the sensors on board of CBERS-2 (China-Brazil Earth Resources Satellite) satellite were made available by the National Institute for Space Research (INPE), users have asked information about the conversion of image digital numbers to physical data (radiance or reflectance). This paper describes the main steps that were carried out to calculate the in-flight absolute calibration coefficients for CBERS-2 CCD level 2 (radiometric and geometric correction) images considering the reflectance-based method. Remarks about the preliminary evaluation of these coefficients application are also presented.

  7. In-progress absolute radiometric inflight calibration of the LANDSAT-4 sensors

    NASA Technical Reports Server (NTRS)

    Castle, K.; Dinguirard, M.; Ezra, C. E.; Holm, R. G.; Jackson, R. J.; Kastner, C. J.; Palmer, J. M.; Savage, R.; Slater, P. N.

    1983-01-01

    An approach is described for providing periodic inflight absolute radiometric calibrations of the LANDSAT-4 sensors by reference to selected, instrumented ground areas. Results of some early ground measurements and computer simulations are presented. Selection of a suitable ground reference site, accurate measurement of the spectral reflectance of the selected area, determination of atmospheric characteristics during the morning of the sensor overpass, reduction of the measured data and their use in an appropriate atmospheric radiative transfer program, and comparison of the radiance level data with the digital counts of for the images of the selected areas are discussed. Preliminary measurements of gypsum are being made as an aid in defining the characteristics of field equipment to be constructed and calibrated for use over the White Sands Missile Range.

  8. Landsat-7 ETM+ on-orbit reflective-band radiometric stability and absolute calibration

    USGS Publications Warehouse

    Markham, B.L.; Thome, K.J.; Barsi, J.A.; Kaita, E.; Helder, Dennis L.; Barker, J. L.; Scaramuzza, Pat

    2004-01-01

    Launched in April 1999, the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) instrument is in its sixth year of operation. The ETM+ instrument has been the most stable of any of the Landsat instruments. To date, the best onboard calibration source for the reflective bands has been the Full Aperture Solar Calibrator, a solar-diffuser-based system, which has indicated changes of between 1% to 2% per year in the ETM+ gain for bands 1-4 and 8 and less than 0.5%/year for bands 5 and 7. However, most of this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on vicarious calibrations and observations of "invariant sites", hyperarid sites of the Sahara and Arabia. Weighted average slopes determined from these datasets suggest changes of 0.0% to 0.4% per year for bands 1-4 and 8 and 0.4% to 0.5% per year for bands 5 and 7. Absolute calibration of the reflective bands of the ETM+ is consistent with vicarious observations and other sensors generally at the 5% level, though there appear to be some systematic differences.

  9. [In-flight absolute radiometric calibration of UAV hyperspectral camera and its validation analysis].

    PubMed

    Gou, Zhi-yang; Yan, Lei; Chen, Wei; Jing, Xin; Yin, Zhong-yi; Duan, Yi-ni

    2012-02-01

    With the data in Urad Front Banner, Inner Mongolia on November 14th, 2010, hyper-spectral camera on UAV was calibrated adopting reflectance-based method. During the in-flight absolute radiometric calibration, 6 hyper-spectral radiometric gray-scale targets were arranged in the validation field. These targets' reflectances are 4.5%, 20%, 30%, 40%, 50% and 60% separately. To validate the calibration result, four extra hyper-spectral targets with sharp-edge spectrum were arranged to simulate the reflection and absorption peaks in natural objectives. With these peaks, the apparent radiance calculated by radiation transfer model and that calculated through calibration coefficients are much different. The result shows that in the first 15 bands (blue bands), errors are somewhat huge due to the noises of equipment. In the rest bands with quite even spectrum, the errors are small, most of which are less than 10%. For those bands with sharp changes in spectral curves, the errors are quite considerable, varying from 10% to 25%.

  10. The absolute radiometric calibration of the advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Teillet, P. M.; Mao, Y.

    1987-01-01

    The early results of an absolute radiometric calibration of the NOAA-9 AVHRR sensor indicate significant degradations in the response of bands 1 and 2 compared to prelaunch values. The results are currently in the process of being verified and it may be that refinements of the methodology will be in order as additional data sets are analyzed. The LANDSAT TM calibration used in this approach is known to be very precise and the Herman radiative transfer code, supplemented by the 5-S code for gaseous transmission, is reliable as well. The extent to which other steps in the analysis procedure give rise to uncertainties in the results is currently under investigation. Particular attention is being given to the geometric matching of the AVHRR and TM imagery, as well as to the spectral redistribution procedure. By taking advantage of a reasonably precise calibration of TM imagery acquired on the same day as the AVHRR data at White Sands, a promising approach to the in-orbit calibration of AVHRR sensors is being developed. Current efforts involve primarily the examination of additional test cases and the investigation of possible simplifications in the procedure through judicious use of atmospheric models.

  11. The absolute radiometric calibration of the advanced very high resolution radiometer

    NASA Astrophysics Data System (ADS)

    Slater, P. N.; Teillet, P. M.; Mao, Y.

    1987-09-01

    The early results of an absolute radiometric calibration of the NOAA-9 AVHRR sensor indicate significant degradations in the response of bands 1 and 2 compared to prelaunch values. The results are currently in the process of being verified and it may be that refinements of the methodology will be in order as additional data sets are analyzed. The LANDSAT TM calibration used in this approach is known to be very precise and the Herman radiative transfer code, supplemented by the 5-S code for gaseous transmission, is reliable as well. The extent to which other steps in the analysis procedure give rise to uncertainties in the results is currently under investigation. Particular attention is being given to the geometric matching of the AVHRR and TM imagery, as well as to the spectral redistribution procedure. By taking advantage of a reasonably precise calibration of TM imagery acquired on the same day as the AVHRR data at White Sands, a promising approach to the in-orbit calibration of AVHRR sensors is being developed. Current efforts involve primarily the examination of additional test cases and the investigation of possible simplifications in the procedure through judicious use of atmospheric models.

  12. First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan University.

    PubMed

    Hu, Zhigang; Zhao, Qile; Chen, Guo; Wang, Guangxing; Dai, Zhiqiang; Li, Tao

    2015-11-13

    GNSS receiver antenna phase center variations (PCVs), which arise from the non-spherical phase response of GNSS signals have to be well corrected for high-precision GNSS applications. Without using a precise antenna phase center correction (PCC) model, the estimated position of a station monument will lead to a bias of up to several centimeters. The Chinese large-scale research project "Crustal Movement Observation Network of China" (CMONOC), which requires high-precision positions in a comprehensive GPS observational network motived establishment of a set of absolute field calibrations of the GPS receiver antenna located at Wuhan University. In this paper the calibration facilities are firstly introduced and then the multipath elimination and PCV estimation strategies currently used are elaborated. The validation of estimated PCV values of test antenna are finally conducted, compared with the International GNSS Service (IGS) type values. Examples of TRM57971.00 NONE antenna calibrations from our calibration facility demonstrate that the derived PCVs and IGS type mean values agree at the 1 mm level.

  13. First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan University

    PubMed Central

    Hu, Zhigang; Zhao, Qile; Chen, Guo; Wang, Guangxing; Dai, Zhiqiang; Li, Tao

    2015-01-01

    GNSS receiver antenna phase center variations (PCVs), which arise from the non-spherical phase response of GNSS signals have to be well corrected for high-precision GNSS applications. Without using a precise antenna phase center correction (PCC) model, the estimated position of a station monument will lead to a bias of up to several centimeters. The Chinese large-scale research project “Crustal Movement Observation Network of China” (CMONOC), which requires high-precision positions in a comprehensive GPS observational network motived establishment of a set of absolute field calibrations of the GPS receiver antenna located at Wuhan University. In this paper the calibration facilities are firstly introduced and then the multipath elimination and PCV estimation strategies currently used are elaborated. The validation of estimated PCV values of test antenna are finally conducted, compared with the International GNSS Service (IGS) type values. Examples of TRM57971.00 NONE antenna calibrations from our calibration facility demonstrate that the derived PCVs and IGS type mean values agree at the 1 mm level. PMID:26580616

  14. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems

    NASA Astrophysics Data System (ADS)

    Johnston, Mark D.; Oliver, Bryan V.; Droemer, Darryl W.; Frogget, Brent; Crain, Marlon D.; Maron, Yitzhak

    2012-08-01

    This paper describes a convenient and accurate method to calibrate fast (<1 ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such systems are inherently difficult to calibrate due to the lack of sufficiently intense, calibrated light sources. Such a system is used to collect spectral data on plasmas generated in electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA) at Sandia National Laboratories. On RITS, plasma light is collected through a small diameter (200 μm) optical fiber and recorded on a fast streak camera at the output of a 1 meter Czerny-Turner monochromator. For this paper, a 300 W xenon short arc lamp (Oriel Model 6258) was used as the calibration source. Since the radiance of the xenon arc varies from cathode to anode, just the area around the tip of the cathode ("hotspot") was imaged onto the fiber, to produce the highest intensity output. To compensate for chromatic aberrations, the signal was optimized at each wavelength measured. Output power was measured using 10 nm bandpass interference filters and a calibrated photodetector. These measurements give power at discrete wavelengths across the spectrum, and when linearly interpolated, provide a calibration curve for the lamp. The shape of the spectrum is determined by the collective response of the optics, monochromator, and streak tube across the spectral region of interest. The ratio of the spectral curve to the measured bandpass filter curve at each wavelength produces a correction factor (Q) curve. This curve is then applied to the experimental data and the resultant spectra are given in absolute intensity units (photons/sec/cm2/steradian/nm). Error analysis shows this method to be accurate to within +/- 20%, which represents a high level of accuracy for this type of measurement.

  15. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems.

    PubMed

    Johnston, Mark D; Oliver, Bryan V; Droemer, Darryl W; Frogget, Brent; Crain, Marlon D; Maron, Yitzhak

    2012-08-01

    This paper describes a convenient and accurate method to calibrate fast (<1 ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such systems are inherently difficult to calibrate due to the lack of sufficiently intense, calibrated light sources. Such a system is used to collect spectral data on plasmas generated in electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA) at Sandia National Laboratories. On RITS, plasma light is collected through a small diameter (200 μm) optical fiber and recorded on a fast streak camera at the output of a 1 meter Czerny-Turner monochromator. For this paper, a 300 W xenon short arc lamp (Oriel Model 6258) was used as the calibration source. Since the radiance of the xenon arc varies from cathode to anode, just the area around the tip of the cathode ("hotspot") was imaged onto the fiber, to produce the highest intensity output. To compensate for chromatic aberrations, the signal was optimized at each wavelength measured. Output power was measured using 10 nm bandpass interference filters and a calibrated photodetector. These measurements give power at discrete wavelengths across the spectrum, and when linearly interpolated, provide a calibration curve for the lamp. The shape of the spectrum is determined by the collective response of the optics, monochromator, and streak tube across the spectral region of interest. The ratio of the spectral curve to the measured bandpass filter curve at each wavelength produces a correction factor (Q) curve. This curve is then applied to the experimental data and the resultant spectra are given in absolute intensity units (photons/sec/cm(2)/steradian/nm). Error analysis shows this method to be accurate to within +∕- 20%, which represents a high level of accuracy for this type of measurement. PMID:22938275

  16. Absolute Calibration of the Radio Astronomy Flux Density Scale at 22 to 43 GHz Using Planck

    NASA Astrophysics Data System (ADS)

    Partridge, B.; López-Caniego, M.; Perley, R. A.; Stevens, J.; Butler, B. J.; Rocha, G.; Walter, B.; Zacchei, A.

    2016-04-01

    The Planck mission detected thousands of extragalactic radio sources at frequencies from 28 to 857 GHz. Planck's calibration is absolute (in the sense that it is based on the satellite’s annual motion around the Sun and the temperature of the cosmic microwave background), and its beams are well characterized at sub-percent levels. Thus, Planck's flux density measurements of compact sources are absolute in the same sense. We have made coordinated Very Large Array (VLA) and Australia Telescope Compact Array (ATCA) observations of 65 strong, unresolved Planck sources in order to transfer Planck's calibration to ground-based instruments at 22, 28, and 43 GHz. The results are compared to microwave flux density scales currently based on planetary observations. Despite the scatter introduced by the variability of many of the sources, the flux density scales are determined to 1%-2% accuracy. At 28 GHz, the flux density scale used by the VLA runs 2%-3% ± 1.0% below Planck values with an uncertainty of +/- 1.0%; at 43 GHz, the discrepancy increases to 5%-6% ± 1.4% for both ATCA and the VLA.

  17. Pantomime-Grasping: Advance Knowledge of Haptic Feedback Availability Supports an Absolute Visuo-Haptic Calibration.

    PubMed

    Davarpanah Jazi, Shirin; Heath, Matthew

    2016-01-01

    An emerging issue in movement neurosciences is whether haptic feedback influences the nature of the information supporting a simulated grasping response (i.e., pantomime-grasping). In particular, recent work by our group contrasted pantomime-grasping responses performed with (i.e., PH+ trials) and without (i.e., PH- trials) terminal haptic feedback in separate blocks of trials. Results showed that PH- trials were mediated via relative visual information. In contrast, PH+ trials showed evidence of an absolute visuo-haptic calibration-a finding attributed to an error signal derived from a comparison between expected and actual haptic feedback (i.e., an internal forward model). The present study examined whether advanced knowledge of haptic feedback availability influences the aforementioned calibration process. To that end, PH- and PH+ trials were completed in separate blocks (i.e., the feedback schedule used in our group's previous study) and a block wherein PH- and PH+ trials were randomly interleaved on a trial-by-trial basis (i.e., random feedback schedule). In other words, the random feedback schedule precluded participants from predicting whether haptic feedback would be available at the movement goal location. We computed just-noticeable-difference (JND) values to determine whether responses adhered to, or violated, the relative psychophysical principles of Weber's law. Results for the blocked feedback schedule replicated our group's previous work, whereas in the random feedback schedule PH- and PH+ trials were supported via relative visual information. Accordingly, we propose that a priori knowledge of haptic feedback is necessary to support an absolute visuo-haptic calibration. Moreover, our results demonstrate that the presence and expectancy of haptic feedback is an important consideration in contrasting the behavioral and neural properties of natural and simulated grasping. PMID:27199718

  18. Absolute calibration method for laser megajoule neutron yield measurement by activation diagnostics

    NASA Astrophysics Data System (ADS)

    Landoas, Olivier; Yu Glebov, Vladimir; Rossé, Bertrand; Briat, Michelle; Disdier, Laurent; Sangster, Thomas C.; Duffy, Tim; Marmouget, Jean Gabriel; Varignon, Cyril; Ledoux, Xavier; Caillaud, Tony; Thfoin, Isabelle; Bourgade, Jean-Luc

    2011-07-01

    The laser megajoule (LMJ) and the National Ignition Facility (NIF) plan to demonstrate thermonuclear ignition using inertial confinement fusion (ICF). The neutron yield is one of the most important parameters to characterize ICF experiment performance. For decades, the activation diagnostic was chosen as a reference at ICF facilities and is now planned to be the first nuclear diagnostic on LMJ, measuring both 2.45 MeV and 14.1 MeV neutron yields. Challenges for the activation diagnostic development are absolute calibration, accuracy, range requirement, and harsh environment. At this time, copper and zirconium material are identified for 14.1 MeV neutron yield measurement and indium material for 2.45 MeV neutrons. A series of calibrations were performed at Commissariat à l'Energie Atomique (CEA) on a Van de Graff facility to determine activation diagnostics efficiencies and to compare them with results from calculations. The CEA copper activation diagnostic was tested on the OMEGA facility during DT implosion. Experiments showed that CEA and Laboratory for Laser Energetics (LLE) diagnostics agree to better than 1% on the neutron yield measurement, with an independent calibration for each system. Also, experimental sensitivities are in good agreement with simulations and allow us to scale activation diagnostics for the LMJ measurement range.

  19. ScaRaB: first results of absolute and cross calibration

    NASA Astrophysics Data System (ADS)

    Trémas, Thierry L.; Aznay, Ouahid; Chomette, Olivier

    2015-10-01

    ScaRaB (SCAnner for RAdiation Budget) is the name of three radiometers whose two first flight models have been launched in 1994 and 1997. The instruments were mounted on-board Russian satellites, METEOR and RESURS. On October 12th 2011, a last model has been launched from the Indian site of Sriharikota. ScaRaB is a passenger of MEGHA-TROPIQUES, an Indo-French joint Satellite Mission for studying the water cycle and energy exchanges in the tropics. ScaRaB is composed of four parallel and independent channels. Channel-2 and channel-3 are considered as the main ones. Channel-1 is dedicated to measure solar radiance (0.5 to 0.7 μm) while channel-4 (10 to 13 μm) is an infrared window. The absolute calibration of ScaRab is assured by internal calibration sources (black bodies and a lamp for channel-1). However, during the commissioning phase, the lamp used for the absolute calibration of channel-1 revealed to be inaccurate. We propose here an alternative calibration method based on terrestrial targets. Due to the spectral range of channel-1, only calibration over desert sites (temporal monitoring) and clouds (cross band) is suitable. Desert sites have been widely used for sensor calibration since they have a stable spectral response over time. Because of their high reflectances, the atmospheric effect on the upward radiance is relatively minimal. In addition, they are spatially uniform. Their temporal instability without atmospheric correction has been determined to be less than 1-2% over a year. Very-high-altitude (10 km) bright clouds are good validation targets in the visible and near-infrared spectra because of their high spectrally consistent reflectance. If the clouds are very high, there is no need to correct aerosol scattering and water vapor absorption as both aerosol and water vapor are distributed near the surface. Only Rayleigh scattering and ozone absorption need to be considered. This method has been found to give a 4% uncertainty. Radiometric cross

  20. Absolute Density Calibration Cell for Laser Induced Fluorescence Erosion Rate Measurements

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Stevens, Richard E.

    2001-01-01

    Flight qualification of ion thrusters typically requires testing on the order of 10,000 hours. Extensive knowledge of wear mechanisms and rates is necessary to establish design confidence prior to long duration tests. Consequently, real-time erosion rate measurements offer the potential both to reduce development costs and to enhance knowledge of the dependency of component wear on operating conditions. Several previous studies have used laser-induced fluorescence (LIF) to measure real-time, in situ erosion rates of ion thruster accelerator grids. Those studies provided only relative measurements of the erosion rate. In the present investigation, a molybdenum tube was resistively heated such that the evaporation rate yielded densities within the tube on the order of those expected from accelerator grid erosion. This work examines the suitability of the density cell as an absolute calibration source for LIF measurements, and the intrinsic error was evaluated.

  1. An Investigation of Mars NIR Spectral Features using Absolutely Calibrated Images

    NASA Astrophysics Data System (ADS)

    Klassen, D. R.; Bell, J. F., III

    1998-09-01

    We used the NSFCAM 256x256 InSb array camera at the NASA Infrared Telescope Facility to gather near-infrared (NIR) spectral image sets of Mars through the 1995 opposition. In previous studies with these data [1-6] we noted several interesting spectral features, some of which are diagnostic volatile absorption bands that allow the discrimination between CO_2 or H_2O ices. Band depth maps of these regions show polar and morning and evening limb ices composed of water and some indication of polar CO_2 ices. Other features, near 3.33 and 3.4\\micron, appear to be confined to particular geographic regions; specifically Syrtis Major. However, the images used in these previous studies were calibrated to either the disk average or only to a rough scaled reflectance by simple division by solar-type star data gathered at the same time as the images. This only allowed determinations of spectral features either relative to some global average of the feature, or to some unit not directly comparable to other published data. For at least three of our observation nights the conditions and data are sufficient to absolutely calibrate the images to radiance factors. For this work we reinvestigate the spectra and band depth mapping results using these absolutely calibrated images. In general we find that bright regions have peak radiance factors of 0.5 to 0.6 at 2.25\\micron\\ and 0.3 to 0.4 at 3.5\\micron; dark regions have radiance factors of 0.2 to 0.25 at 2.25\\micron\\ and 0.1 to 0.15 at 3.5\\micron. Overall, precision errors are about 0.025 in radiance factor and absolute errors are at the 10-15% level. These results are consistent with previous studies that found radiance factors of 0.35 in Tharsis, 0.47 in Elysium, and 0.26 in dark regions at 2.25\\micron\\ [7,8] and 0.3 in bright regions and 0.1 in dark regions at 3.5\\micron\\ [8]. These absolute flux values will allow direct comparison of these results to radiative transfer models of the behavior of the surface and

  2. Comb-calibrated frequency-modulated continuous-wave ladar for absolute distance measurements.

    PubMed

    Baumann, Esther; Giorgetta, Fabrizio R; Coddington, Ian; Sinclair, Laura C; Knabe, Kevin; Swann, William C; Newbury, Nathan R

    2013-06-15

    We demonstrate a comb-calibrated frequency-modulated continuous-wave laser detection and ranging (FMCW ladar) system for absolute distance measurements. The FMCW ladar uses a compact external cavity laser that is swept quasi-sinusoidally over 1 THz at a 1 kHz rate. The system simultaneously records the heterodyne FMCW ladar signal and the instantaneous laser frequency at sweep rates up to 3400 THz/s, as measured against a free-running frequency comb (femtosecond fiber laser). Demodulation of the ladar signal against the instantaneous laser frequency yields the range to the target with 1 ms update rates, bandwidth-limited 130 μm resolution and a ~100 nm accuracy that is directly linked to the counted repetition rate of the comb. The precision is <100 nm at the 1 ms update rate and reaches ~6 nm for a 100 ms average. PMID:23938965

  3. Fine structure of the age-chromospheric activity relation in solar-type stars. I. The Ca II infrared triplet: Absolute flux calibration

    NASA Astrophysics Data System (ADS)

    Lorenzo-Oliveira, D.; Porto de Mello, G. F.; Dutra-Ferreira, L.; Ribas, I.

    2016-10-01

    Context. Strong spectral lines are useful indicators of stellar chromospheric activity. They are physically linked to the convection efficiency, differential rotation, and angular momentum evolution and are a potential indicator of age. However, for ages > 2 Gyr, the age-activity relationship remains poorly constrained thus hampering its full application. Aims: The Ca II infrared triplet (IRT lines, λλ 8498, 8542, and 8662) has been poorly studied compared to classical chromospheric indicators. We report in this paper absolute chromospheric fluxes in the three Ca II IRT lines, based on a new calibration tied to up-to-date model atmospheres. Methods: We obtain the Ca II IRT absolute fluxes for 113 FGK stars from high signal-to-noise ratio (S/N) and high-resolution spectra covering an extensive domain of chromospheric activity levels. We perform an absolute continuum flux calibration for the Ca II IRT lines anchored in atmospheric models calculated as an explicit function of effective temperatures (Teff), metallicity ([Fe/H]), and gravities (log g) avoiding the degeneracy usually present in photometric continuum calibrations based solely on color indices. Results: The internal uncertainties achieved for continuum absolute flux calculations are ≈2% of the solar chromospheric flux, one order of magnitude lower than for photometric calibrations. Using Monte Carlo simulations, we gauge the impact of observational errors on the final chromospheric fluxes due to the absolute continuum flux calibration and find that Teffuncertainties are properly mitigated by the photospheric correction leaving [Fe/H] as the dominating factor in the chromospheric flux uncertainty. Conclusions: Across the FGK spectral types, the Ca II IRT lines are sensitive to chromospheric activity. The reduced internal uncertainties reported here enable us to build a new chromospheric absolute flux scale and explore the age-activity relation from the active regime down to very low activity levels and

  4. Pantomime-Grasping: Advance Knowledge of Haptic Feedback Availability Supports an Absolute Visuo-Haptic Calibration

    PubMed Central

    Davarpanah Jazi, Shirin; Heath, Matthew

    2016-01-01

    An emerging issue in movement neurosciences is whether haptic feedback influences the nature of the information supporting a simulated grasping response (i.e., pantomime-grasping). In particular, recent work by our group contrasted pantomime-grasping responses performed with (i.e., PH+ trials) and without (i.e., PH− trials) terminal haptic feedback in separate blocks of trials. Results showed that PH− trials were mediated via relative visual information. In contrast, PH+ trials showed evidence of an absolute visuo-haptic calibration—a finding attributed to an error signal derived from a comparison between expected and actual haptic feedback (i.e., an internal forward model). The present study examined whether advanced knowledge of haptic feedback availability influences the aforementioned calibration process. To that end, PH− and PH+ trials were completed in separate blocks (i.e., the feedback schedule used in our group’s previous study) and a block wherein PH− and PH+ trials were randomly interleaved on a trial-by-trial basis (i.e., random feedback schedule). In other words, the random feedback schedule precluded participants from predicting whether haptic feedback would be available at the movement goal location. We computed just-noticeable-difference (JND) values to determine whether responses adhered to, or violated, the relative psychophysical principles of Weber’s law. Results for the blocked feedback schedule replicated our group’s previous work, whereas in the random feedback schedule PH− and PH+ trials were supported via relative visual information. Accordingly, we propose that a priori knowledge of haptic feedback is necessary to support an absolute visuo-haptic calibration. Moreover, our results demonstrate that the presence and expectancy of haptic feedback is an important consideration in contrasting the behavioral and neural properties of natural and simulated grasping. PMID:27199718

  5. Absolute calibration accuracy of L4 TM and L5 TM sensor image pairs

    USGS Publications Warehouse

    Chander, G.; Micijevic, E.

    2006-01-01

    The Landsat suite of satellites has collected the longest continuous archive of multispectral data of any land-observing space program. From the Landsat program's inception in 1972 to the present, the Earth science user community has benefited from a historical record of remotely sensed data. However, little attention has been paid to ensuring that the data are calibrated and comparable from mission to mission, Launched in 1982 and 1984 respectively, the Landsat 4 (L4) and Landsat 5 (L5) Thematic Mappers (TM) are the backbone of an extensive archive of moderate resolution Earth imagery. To evaluate the "current" absolute accuracy of these two sensors, image pairs from the L5 TM and L4 TM sensors were compared. The approach involves comparing image statistics derived from large common areas observed eight days apart by the two sensors. The average percent differences in reflectance estimates obtained from the L4 TM agree with those from the L5 TM to within 15 percent. Additional work to characterize the absolute differences between the two sensors over the entire mission is in progress.

  6. A dedicated pistonphone for absolute calibration of infrasound sensors at very low frequencies

    NASA Astrophysics Data System (ADS)

    He, Wen; He, Longbiao; Zhang, Fan; Rong, Zuochao; Jia, Shushi

    2016-02-01

    Aimed at the absolute calibration of infrasound sensors at very low frequencies, an upgraded and improved infrasonic pistonphone has been developed. The pistonphone was designed such that a very narrow clearance between the piston and its guide was realized based on an automatically-centered clearance-sealing structure, and a large volume rigid-walled chamber was also adopted, which improved the leakage time-constant of the chamber. A composite feedback control system was applied to the electromagnetic vibrator to control the precise motion of the piston. Performance tests and uncertainty analysis show that the leakage time-constant is so large, and the distortion of the sound pressure is so small, that the pistonphone can be used as a standard infrasound source in the frequency range from 0.001 Hz to 20 Hz. The low frequency property of the pistonphone has been verified through calibrating low frequency microphones. Comparison tests with the reciprocity method have shown that the pressure sensitivities from the pistonphone are not only reliable at common frequencies but also have smaller uncertainties at low frequencies.

  7. Absolute energy calibration for relativistic electron beams with pointing instability from a laser-plasma accelerator

    SciTech Connect

    Cha, H. J.; Choi, I. W.; Kim, H. T.; Kim, I J.; Nam, K. H.; Jeong, T. M.; Lee, J.

    2012-06-15

    The pointing instability of energetic electron beams generated from a laser-driven accelerator can cause a serious error in measuring the electron spectrum with a magnetic spectrometer. In order to determine a correct electron spectrum, the pointing angle of an electron beam incident on the spectrometer should be exactly defined. Here, we present a method for absolutely calibrating the electron spectrum by monitoring the pointing angle using a scintillating screen installed in front of a permanent dipole magnet. The ambiguous electron energy due to the pointing instability is corrected by the numerical and analytical calculations based on the relativistic equation of electron motion. It is also possible to estimate the energy spread of the electron beam and determine the energy resolution of the spectrometer using the beam divergence angle that is simultaneously measured on the screen. The calibration method with direct measurement of the spatial profile of an incident electron beam has a simple experimental layout and presents the full range of spatial and spectral information of the electron beams with energies of multi-hundred MeV level, despite the limited energy resolution of the simple electron spectrometer.

  8. ABSOLUTE RADIOMETRIC CALIBRATION OF THE EUNIS-06 170-205 A CHANNEL AND CALIBRATION UPDATE FOR CORONAL DIAGNOSTIC SPECTROMETER/NORMAL-INCIDENCE SPECTROMETER

    SciTech Connect

    Wang Tongjiang; Brosius, Jeffrey W.; Thomas, Roger J.; Rabin, Douglas M.; Davila, Joseph M.

    2010-02-01

    The Extreme-Ultraviolet Normal-Incidence Spectrograph sounding-rocket payload was flown on 2006 April 12 (EUNIS-06), carrying two independent imaging spectrographs covering wavebands of 300-370 A in first order and 170-205 A in second order, respectively. The absolute radiometric response of the EUNIS-06 long-wavelength (LW) channel was directly measured in the same facility used to calibrate Coronal Diagnostic Spectrometer (CDS) prior to the Solar and Heliospheric Observatory (SOHO) launch. Because the absolute calibration of the short-wavelength (SW) channel could not be obtained from the same lab configuration, we here present a technique to derive it using a combination of solar LW spectra and density- and temperature-insensitive line intensity ratios. The first step in this procedure is to use the coordinated, cospatial EUNIS and SOHO/CDS spectra to carry out an intensity calibration update for the CDS NIS-1 waveband, which shows that its efficiency has decreased by a factor about 1.7 compared to that of the previously implemented calibration. Then, theoretical insensitive line ratios obtained from CHIANTI allow us to determine absolute intensities of emission lines within the EUNIS SW bandpass from those of cospatial CDS/NIS-1 spectra after the EUNIS LW calibration correction. A total of 12 ratios derived from intensities of 5 CDS and 12 SW emission lines from Fe X to Fe XIII yield an instrumental response curve for the EUNIS-06 SW channel that matches well to a relative calibration which relied on combining measurements of individual optical components. Taking into account all potential sources of error, we estimate that the EUNIS-06 SW absolute calibration is accurate to {+-}20%.

  9. Color calibration of swine gastrointestinal tract images acquired by radial imaging capsule endoscope

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Mang; Jeng, Wei-De; Lai, Chien-Cheng; Wu, Hsien-Ming; Lin, Jyh-Hung

    2016-01-01

    The type of illumination systems and color filters used typically generate varying levels of color difference in capsule endoscopes, which influence medical diagnoses. In order to calibrate the color difference caused by the optical system, this study applied a radial imaging capsule endoscope (RICE) to photograph standard color charts, which were then employed to calculate the color gamut of RICE. Color gamut was also measured using a spectrometer in order to get a high-precision color information, and the results obtained using both methods were compared. Subsequently, color-correction methods, namely polynomial transform and conformal mapping, were used to improve the color difference. Before color calibration, the color difference value caused by the influences of optical systems in RICE was 21.45±1.09. Through the proposed polynomial transformation, the color difference could be reduced effectively to 1.53±0.07. Compared to another proposed conformal mapping, the color difference value was substantially reduced to 1.32±0.11, and the color difference is imperceptible for human eye because it is <1.5. Then, real-time color correction was achieved using this algorithm combined with a field-programmable gate array, and the results of the color correction can be viewed from real-time images.

  10. A BAYESIAN METHOD FOR CALCULATING REAL-TIME QUANTITATIVE PCR CALIBRATION CURVES USING ABSOLUTE PLASMID DNA STANDARDS

    EPA Science Inventory

    In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignore...

  11. Test Plan for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; Hair, Jason; McAndrew, Brendan; Daw, Adrian; Jennings, Donald; Rabin, Douglas

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe high-accuracy, long-term climate change trends and to use decadal change observations as the most critical method to determine the accuracy of climate change. One of the major objectives of CLARREO is to advance the accuracy of SI traceable absolute calibration at infrared and reflected solar wavelengths. This advance is required to reach the on-orbit absolute accuracy required to allow climate change observations to survive data gaps while remaining sufficiently accurate to observe climate change to within the uncertainty of the limit of natural variability. While these capabilities exist at NIST in the laboratory, there is a need to demonstrate that it can move successfully from NIST to NASA and/or instrument vendor capabilities for future spaceborne instruments. The current work describes the test plan for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches , alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The end result of efforts with the SOLARIS CDS will be an SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climate-quality data collections. The CLARREO mission addresses the need to observe high-accuracy, long-term climate change trends and advance the accuracy of SI traceable absolute calibration. The current work describes the test plan for the SOLARIS which is the calibration demonstration

  12. A comparison of absolute calibrations of a radiation thermometer based on a monochromator and a tunable source

    SciTech Connect

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Sperling, A.; Schuster, M.; Nevas, S.

    2013-09-11

    An LP3 radiation thermometer was absolutely calibrated at a newly developed monochromator-based set-up and the TUneable Lasers in Photometry (TULIP) facility of PTB in the wavelength range from 400 nm to 1100 nm. At both facilities, the spectral radiation of the respective sources irradiates an integrating sphere, thus generating uniform radiance across its precision aperture. The spectral irradiance of the integrating sphere is determined via an effective area of a precision aperture and a Si trap detector, traceable to the primary cryogenic radiometer of PTB. Due to the limited output power from the monochromator, the absolute calibration was performed with the measurement uncertainty of 0.17 % (k= 1), while the respective uncertainty at the TULIP facility is 0.14 %. Calibration results obtained by the two facilities were compared in terms of spectral radiance responsivity, effective wavelength and integral responsivity. It was found that the measurement results in integral responsivity at the both facilities are in agreement within the expanded uncertainty (k= 2). To verify the calibration accuracy, the absolutely calibrated radiation thermometer was used to measure the thermodynamic freezing temperatures of the PTB gold fixed-point blackbody.

  13. A comparison of absolute calibrations of a radiation thermometer based on a monochromator and a tunable source

    NASA Astrophysics Data System (ADS)

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Sperling, A.; Schuster, M.; Nevas, S.

    2013-09-01

    An LP3 radiation thermometer was absolutely calibrated at a newly developed monochromator-based set-up and the TUneable Lasers in Photometry (TULIP) facility of PTB in the wavelength range from 400 nm to 1100 nm. At both facilities, the spectral radiation of the respective sources irradiates an integrating sphere, thus generating uniform radiance across its precision aperture. The spectral irradiance of the integrating sphere is determined via an effective area of a precision aperture and a Si trap detector, traceable to the primary cryogenic radiometer of PTB. Due to the limited output power from the monochromator, the absolute calibration was performed with the measurement uncertainty of 0.17 % (k = 1), while the respective uncertainty at the TULIP facility is 0.14 %. Calibration results obtained by the two facilities were compared in terms of spectral radiance responsivity, effective wavelength and integral responsivity. It was found that the measurement results in integral responsivity at the both facilities are in agreement within the expanded uncertainty (k = 2). To verify the calibration accuracy, the absolutely calibrated radiation thermometer was used to measure the thermodynamic freezing temperatures of the PTB gold fixed-point blackbody.

  14. Error Budget for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2013-01-01

    A goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to observe highaccuracy, long-term climate change trends over decadal time scales. The key to such a goal is to improving the accuracy of SI traceable absolute calibration across infrared and reflected solar wavelengths allowing climate change to be separated from the limit of natural variability. The advances required to reach on-orbit absolute accuracy to allow climate change observations to survive data gaps exist at NIST in the laboratory, but still need demonstration that the advances can move successfully from to NASA and/or instrument vendor capabilities for spaceborne instruments. The current work describes the radiometric calibration error budget for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The resulting SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climatequality data collections is given. Key components in the error budget are geometry differences between the solar and earth views, knowledge of attenuator behavior when viewing the sun, and sensor behavior such as detector linearity and noise behavior. Methods for demonstrating this error budget are also presented.

  15. Corrections to the MODIS Aqua Calibration Derived From MODIS Aqua Ocean Color Products

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Franz, Bryan Alden

    2013-01-01

    Ocean color products such as, e.g., chlorophyll-a concentration, can be derived from the top-of-atmosphere radiances measured by imaging sensors on earth-orbiting satellites. There are currently three National Aeronautics and Space Administration sensors in orbit capable of providing ocean color products. One of these sensors is the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, whose ocean color products are currently the most widely used of the three. A recent improvement to the MODIS calibration methodology has used land targets to improve the calibration accuracy. This study evaluates the new calibration methodology and describes further calibration improvements that are built upon the new methodology by including ocean measurements in the form of global temporally averaged water-leaving reflectance measurements. The calibration improvements presented here mainly modify the calibration at the scan edges, taking advantage of the good performance of the land target trending in the center of the scan.

  16. Adjustment of ocean color sensor calibration through multi-band statistics.

    PubMed

    Stumpf, Richard P; Werdell, P Jeremy

    2010-01-18

    The band-by-band vicarious calibration of on-orbit satellite ocean color instruments, such as SeaWiFS and MODIS, using ground-based measurements has significant residual uncertainties. This paper applies spectral shape and population statistics to tune the calibration of the blue bands against each other to allow examination of the interband calibration and potentially provide an analysis of calibration trends. This adjustment does not require simultaneous matches of ground and satellite observations. The method demonstrates the spectral stability of the SeaWiFS calibration and identifies a drift in the MODIS instrument onboard Aqua that falls within its current calibration uncertainties.

  17. Improved Strategies and Optimization of Calibration Models for Real-time PCR Absolute Quantification

    EPA Science Inventory

    Real-time PCR absolute quantification applications rely on the use of standard curves to make estimates of DNA target concentrations in unknown samples. Traditional absolute quantification approaches dictate that a standard curve must accompany each experimental run. However, t...

  18. Absolute Dating of Desert Varnish Using Portable X-Ray Fluorescence: Calibration and Testing

    NASA Astrophysics Data System (ADS)

    Pingitore, N. E.; Lytle, F. W.; Rowley, P. D.; Ferris, D. E.

    2004-12-01

    Desert varnish, also called rock varnish, is a thin biogenic layer of Mn-oxides, Fe-oxides, and clays that coats rock surfaces in arid and semi-arid regions. The mass of these metals in the varnish registers cumulative biologic activity over time and presents a possible dating mechanism, subject to appropriate assumptions and restrictions. We have used a portable x-ray fluorescence (PXRF) unit to measure Mn and Fe in numerous desert varnishes, both in the field and laboratory; the anticipated relationship between age and mass emerges from these data. Our attempts to refine the PXRF technique for absolute dating of desert varnish are confounded by the limited number of "dated" varnishes available to calibrate and test the method. Although there is no current method to directly ascertain the age of desert varnish, our search for "dated" varnishes has yielded three suitable types of test materials: (1) The ages of young basalt flows dated by various K/Ar radiometric techniques represent the maximum age of varnish developed on those surfaces. Such rocks are useful in the time range of perhaps 250,000 to 10,000 years; surface spalling with loss of varnish presents an upper time limit and difficulty in dating Holocene basalts presents a lower limit. Basalt flows typically provide horizontal surfaces that are ideal for PXRF measurements because, as a biogenic process, varnish development even at a single site varies with solar orientation. (2) Petroglyphs are the rock art that native peoples produced by pecking away varnish to expose fresh rock. This process restarts varnish development and the pecked surface gradually repatinates over time. At some locales, certain figures, symbols, and stylistic elements can be associated with an archaeological culture of known antiquity and duration, thus providing an age range for such glyphs. In the desert Southwest and Great Basin of the United States, appropriate glyphs are known from the present to at least 7000 years BP. Many of

  19. Absolute radiometric calibration of Als intensity data: effects on accuracy and target classification.

    PubMed

    Kaasalainen, Sanna; Pyysalo, Ulla; Krooks, Anssi; Vain, Ants; Kukko, Antero; Hyyppä, Juha; Kaasalainen, Mikko

    2011-01-01

    Radiometric calibration of airborne laser scanning (ALS) intensity data aims at retrieving a value related to the target scattering properties, which is independent on the instrument or flight parameters. The aim of a calibration procedure is also to be able to compare results from different flights and instruments, but practical applications are sparsely available, and the performance of calibration methods for this purpose needs to be further assessed. We have studied the radiometric calibration with data from three separate flights and two different instruments using external calibration targets. We find that the intensity data from different flights and instruments can be compared to each other only after a radiometric calibration process using separate calibration targets carefully selected for each flight. The calibration is also necessary for target classification purposes, such as separating vegetation from sand using intensity data from different flights. The classification results are meaningful only for calibrated intensity data.

  20. Absolute radiometric calibration of Als intensity data: effects on accuracy and target classification.

    PubMed

    Kaasalainen, Sanna; Pyysalo, Ulla; Krooks, Anssi; Vain, Ants; Kukko, Antero; Hyyppä, Juha; Kaasalainen, Mikko

    2011-01-01

    Radiometric calibration of airborne laser scanning (ALS) intensity data aims at retrieving a value related to the target scattering properties, which is independent on the instrument or flight parameters. The aim of a calibration procedure is also to be able to compare results from different flights and instruments, but practical applications are sparsely available, and the performance of calibration methods for this purpose needs to be further assessed. We have studied the radiometric calibration with data from three separate flights and two different instruments using external calibration targets. We find that the intensity data from different flights and instruments can be compared to each other only after a radiometric calibration process using separate calibration targets carefully selected for each flight. The calibration is also necessary for target classification purposes, such as separating vegetation from sand using intensity data from different flights. The classification results are meaningful only for calibrated intensity data. PMID:22346660

  1. Exploring a Black Body Source as an Absolute Radiometric Calibration Standard and Comparison with a NIST Traced Lamp Standard

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Chrien, Thomas; Sarture, Chuck

    2001-01-01

    Radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is required for the scientific research and application objectives pursued with the spectroscopic measurements. Specifically calibration is required for: inter-comparison of AVIRIS data measured at different locations and at different times; analysis of AVIRIS data with data measured by other instruments; and analysis of AVIRIS data in conjunction with computer models. The primary effect of radiometric calibration is conversion of AVIRIS instrument response values (digitized numbers, or DN) to units of absolute radiance. For example, a figure shows the instrument response spectrum measured by AVIRIS over a portion of Rogers Dry Lake, California, and another figure shows the same spectrum calibrated to radiance. Only the calibrated spectrum may be quantitatively analyzed for science research and application objectives. Since the initial development of the AVIRIS instrument-radiometric calibration has been based upon a 1000-W irradiance lamp with a calibration traced to the National Institute of Standards and Technology (NIST). There are several advantages to this irradiance-lamp calibration approach. First, the considerable effort of NIST backs up the calibration. Second, by changing the distance to the lamp, the output can closely span the radiance levels measured by AVIRIS. Third, this type of standard is widely used. Fourth, these calibrated lamps are comparatively inexpensive. Conversely, there are several disadvantages to this approach as well. First, the lamp is not a primary standard. Second, the lamp output characteristics may change in an unknown manner through time. Third, it is difficult to assess, constrain, or improve the calibration uncertainty delivered with the lamp. In an attempt to explore the effect and potentially address some of these disadvantages a set of analyses and measurements comparing an irradiance lamp with a black-body source have been completed

  2. Absolute Calibration of Image Plate for electrons at energy between 100 keV and 4 MeV

    SciTech Connect

    Chen, H; Back, N L; Eder, D C; Ping, Y; Song, P M; Throop, A

    2007-12-10

    The authors measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV to 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on the solid density targets. This paper presents the calibration results of image plate Photon Stimulated Luminescence PSL per electrons at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energies depositions at these angles. These provide a complete set of tools that allows extraction of the absolute calibration to other spectrometer setting at this electron energy range.

  3. Absolute Radiometric Calibration of Narrow-Swath Imaging Sensors with Reference to Non-Coincident Wide-Swath Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Thome, Kurtis; Lockwood, Ronald

    2012-01-01

    An inter-calibration method is developed to provide absolute radiometric calibration of narrow-swath imaging sensors with reference to non-coincident wide-swath sensors. The method predicts at-sensor radiance using non-coincident imagery from the reference sensor and knowledge of spectral reflectance of the test site. The imagery of the reference sensor is restricted to acquisitions that provide similar view and solar illumination geometry to reduce uncertainties due to directional reflectance effects. Spectral reflectance of the test site is found with a simple iterative radiative transfer method using radiance values of a well-understood wide-swath sensor and spectral shape information based on historical ground-based measurements. At-sensor radiance is calculated for the narrow-swath sensor using this spectral reflectance and atmospheric parameters that are also based on historical in situ measurements. Results of the inter-calibration method show agreement on the 2 5 percent level in most spectral regions with the vicarious calibration technique relying on coincident ground-based measurements referred to as the reflectance-based approach. While the variability of the inter-calibration method based on non-coincident image pairs is significantly larger, results are consistent with techniques relying on in situ measurements. The method is also insensitive to spectral differences between the sensors by transferring to surface spectral reflectance prior to prediction of at-sensor radiance. The utility of this inter-calibration method is made clear by its flexibility to utilize image pairings with acquisition dates differing in excess of 30 days allowing frequent absolute calibration comparisons between wide- and narrow-swath sensors.

  4. Absolute calibration of optical power for PDT: report of AAPM TG140.

    PubMed

    Zhu, Timothy C; Bonnerup, Chris; Colussi, Valdir C; Dowell, Marla L; Finlay, Jarod C; Lilge, Lothar; Slowey, Thomas W; Sibata, Claudio

    2013-08-01

    This report is primarily concerned with methods for optical calibration of laser power for continuous wave (CW) light sources, predominantly used in photodynamic therapy (PDT). Light power calibration is very important for PDT, however, no clear standard has been established for the calibration procedure nor the requirements of power meters suitable for optical power calibration. The purposes of the report are to provide guidance for establishing calibration procedures for thermopile type power meters and establish calibration uncertainties for most commercially available detectors and readout assemblies. The authors have also provided a review of the use of various power meters for CW and pulsed optical sources, and provided recommended temporal frequencies for optical power meter calibrations and guidance for routine quality assurance procedure.

  5. Determining the importance of model calibration for forecasting absolute/relative changes in streamflow from LULC and climate changes

    USGS Publications Warehouse

    Niraula, Rewati; Meixner, Thomas; Norman, Laura M.

    2015-01-01

    Land use/land cover (LULC) and climate changes are important drivers of change in streamflow. Assessing the impact of LULC and climate changes on streamflow is typically done with a calibrated and validated watershed model. However, there is a debate on the degree of calibration required. The objective of this study was to quantify the variation in estimated relative and absolute changes in streamflow associated with LULC and climate changes with different calibration approaches. The Soil and Water Assessment Tool (SWAT) was applied in an uncalibrated (UC), single outlet calibrated (OC), and spatially-calibrated (SC) mode to compare the relative and absolute changes in streamflow at 14 gaging stations within the Santa Cruz River Watershed in southern Arizona, USA. For this purpose, the effect of 3 LULC, 3 precipitation (P), and 3 temperature (T) scenarios were tested individually. For the validation period, Percent Bias (PBIAS) values were >100% with the UC model for all gages, the values were between 0% and 100% with the OC model and within 20% with the SC model. Changes in streamflow predicted with the UC and OC models were compared with those of the SC model. This approach implicitly assumes that the SC model is “ideal”. Results indicated that the magnitude of both absolute and relative changes in streamflow due to LULC predicted with the UC and OC results were different than those of the SC model. The magnitude of absolute changes predicted with the UC and SC models due to climate change (both P and T) were also significantly different, but were not different for OC and SC models. Results clearly indicated that relative changes due to climate change predicted with the UC and OC were not significantly different than that predicted with the SC models. This result suggests that it is important to calibrate the model spatially to analyze the effect of LULC change but not as important for analyzing the relative change in streamflow due to climate change. This

  6. The absolute radiometric calibration of the Landsat 8 Operational Land Imager using the reflectance-based approach and the Radiometric Calibration Test Site (RadCaTS)

    NASA Astrophysics Data System (ADS)

    Czapla-Myers, Jeffrey; Anderson, Nikolaus; Thome, Kurtis; Biggar, Stuart

    2014-10-01

    Landsat 8 was launched on 11 February 2013 as the newest platform in the Landsat program. It contains two Earthobserving instruments, one of which is the Operational Land Imager (OLI). OLI includes an onboard radiometric calibration system that is used to monitor changes in its responsivity throughout the mission lifetime, and it consists of Spectralon solar diffuser panels as well as tungsten lamp assemblies. External techniques are used to monitor both OLI and its calibration system, and they include lunar views, side slither maneuvers of the satellite, and ground-based vicarious calibration. This work presents the absolute radiometric calibration results for Landsat 8 OLI that were obtained using two ground-based measurement techniques. The first is the reflectance-based approach, where measurements of atmospheric and surface properties are made during a Landsat 8 overpass, and it requires personnel to be on site during the time of measurement. The second uses the Radiometric Calibration Test Site (RadCaTS), which was developed by the Remote Sensing Group in the College of Optical Sciences at the University of Arizona so that radiometric calibration data can be collected without the requirement of on-site personnel. It allows more data to be collected annually, which increases the temporal sampling of trending results.

  7. Telescope Spectrophotometric and Absolute Flux Calibration, and National Security Applications, Using a Turntable Laser on a Satellite

    NASA Astrophysics Data System (ADS)

    Albert, J.; Burgett, W.; Rhodes, J.

    We propose a tunable laser-based satellite-mounted spectrophotometric and absolute flux calibration system, to be utilized by ground- and space-based telescopes. As uncertainties on the photometry, due to imperfect knowledge of both telescope optics and the atmosphere, will in the near future begin to dominate the uncertainties on fundamental cosmological parameters such as WL (Omega_Lambda) and w in measurements from SNIa, weak gravitational lensing, and baryon oscillations, a method for reducing such uncertainties is needed. We propose to improve spectrophotometric calibration, currently obtained using standard stars, by placing a tunable laser and a wide-angle light source on a satellite by early next decade (perhaps included in the upgrade to the GPS satellite network) to improve absolute flux calibration to 0.1% and relative spectrophotometric calibration to better than 0.001% across the visible and near-infrared spectrum. As well as fundamental astrophysical applications, the system proposed here potentially has broad utility for defense and national security applications such as ground target illumination and space communication. For further details please see http://www.arxiv.org/abs/astro-ph/0604339.

  8. Calibration Image of Earth by Mars Color Imager

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Three days after the Mars Reconnaissance Orbiter's Aug. 12, 2005, launch, the NASA spacecraft was pointed toward Earth and the Mars Color Imager camera was powered up to acquire a suite of color and ultraviolet images of Earth and the Moon. When it gets to Mars, the Mars Color Imager's main objective will be to obtain daily global color and ultraviolet images of the planet to observe martian meteorology by documenting the occurrence of dust storms, clouds, and ozone. This camera will also observe how the martian surface changes over time, including changes in frost patterns and surface brightness caused by dust storms and dust devils.

    The purpose of acquiring an image of Earth and the Moon just three days after launch was to help the Mars Color Imager science team obtain a measure, in space, of the instrument's sensitivity, as well as to check that no contamination occurred on the camera during launch. Prior to launch, the team determined that, three days out from Earth, the planet would only be about 4.77 pixels across, and the Moon would be less than one pixel in size, as seen from the Mars Color Imager's wide-angle perspective. If the team waited any longer than three days to test the camera's performance in space, Earth would be too small to obtain meaningful results.

    The images were acquired by turning Mars Reconnaissance Orbiter toward Earth, then slewing the spacecraft so that the Earth and Moon would pass before each of the five color and two ultraviolet filters of the Mars Color Imager. The distance to Earth was about 1,170,000 kilometers (about 727,000 miles).

    This image shows a color composite view of Mars Color Imager's image of Earth. As expected, it covers only five pixels. This color view has been enlarged five times. The Sun was illuminating our planet from the left, thus only one quarter of Earth is seen from this perspective. North America was in daylight and facing toward the camera at the time the picture was taken; the data

  9. The absolute amplitude calibration of the SEASAT synthetic aperture radar - An intercomparison with other L-band radar systems

    NASA Technical Reports Server (NTRS)

    Held, D.; Werner, C.; Wall, S.

    1983-01-01

    The absolute amplitude calibration of the spaceborne Seasat SAR data set is presented based on previous relative calibration studies. A scale factor making it possible to express the perceived radar brightness of a scene in units of sigma-zero is established. The system components are analyzed for error contribution, and the calibration techniques are introduced for each stage. These include: A/D converter saturation tests; prevention of clipping in the processing step; and converting the digital image into the units of received power. Experimental verification was performed by screening and processing the data of the lava flow surrounding the Pisgah Crater in Southern California, for which previous C-130 airborne scatterometer data were available. The average backscatter difference between the two data sets is estimated to be 2 dB in the brighter, and 4 dB in the dimmer regions. For the SAR a calculated uncertainty of 3 dB is expected.

  10. A new method for the absolute radiance calibration for UV/vis measurements of scattered sun light

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Beirle, S.; Dörner, S.; Penning de Vries, M.; Remmers, J.; Rozanov, A.; Shaiganfar, R.

    2015-05-01

    Absolute radiometric calibrations are important for measurements of the atmospheric spectral radiance. Such measurements can be used to determine actinic fluxes, the properties of aerosols and clouds and the short wave energy budget. Conventional calibration methods in the laboratory are based on calibrated light sources and reflectors and are expensive, time consuming and subject to relatively large uncertainties. Also, the calibrated instruments might change during transport from the laboratory to the measurement sites. Here we present a new calibration method for UV/vis instruments that measure the spectrally resolved sky radiance, like for example zenith sky Differential Optical Absorption Spectroscopy (DOAS-) instruments or Multi-AXis (MAX-) DOAS instruments. Our method is based on the comparison of the solar zenith angle dependence of the measured zenith sky radiance with radiative transfer simulations. For the application of our method clear sky measurements during periods with almost constant aerosol optical depth are needed. The radiative transfer simulations have to take polarisation into account. We show that the calibration results are almost independent from the knowledge of the aerosol optical properties and surface albedo, which causes a rather small uncertainty of about <7%. For wavelengths below about 330 nm it is essential that the ozone column density during the measurements is constant and known.

  11. Calibration between color camera and 3D LIDAR instruments with a polygonal planar board.

    PubMed

    Park, Yoonsu; Yun, Seokmin; Won, Chee Sun; Cho, Kyungeun; Um, Kyhyun; Sim, Sungdae

    2014-03-17

    Calibration between color camera and 3D Light Detection And Ranging (LIDAR) equipment is an essential process for data fusion. The goal of this paper is to improve the calibration accuracy between a camera and a 3D LIDAR. In particular, we are interested in calibrating a low resolution 3D LIDAR with a relatively small number of vertical sensors. Our goal is achieved by employing a new methodology for the calibration board, which exploits 2D-3D correspondences. The 3D corresponding points are estimated from the scanned laser points on the polygonal planar board with adjacent sides. Since the lengths of adjacent sides are known, we can estimate the vertices of the board as a meeting point of two projected sides of the polygonal board. The estimated vertices from the range data and those detected from the color image serve as the corresponding points for the calibration. Experiments using a low-resolution LIDAR with 32 sensors show robust results.

  12. ISS nocturnal images as a scientic tool against Light Pollution: Flux calibration and colors

    NASA Astrophysics Data System (ADS)

    Sánchez de Miguel, A.; Zamorano, J.; Pascual, S.; López Cayuela, M.; Ocaña, F.; Challupner, P.; Gómez Castaño, J.; Fernández-Renau, A.; Gómez, J. A.; de Miguel, E.

    2013-05-01

    The potential of the pictures of the Earth taken at night from the International Space Station (ISS) with a Nikon D3s digital camera to fight against light pollution is shown. We show that RAW pictures should be used to obtain fluxes. We have developed a method to perform absolute photometric calibration measuring fluxes of the stars recorded in the pictures and also calibrated sources at earth.

  13. Absolute calibration of photostimulable image plate detectors used as (0.5-20 MeV) high-energy proton detectors.

    PubMed

    Mancić, A; Fuchs, J; Antici, P; Gaillard, S A; Audebert, P

    2008-07-01

    In this paper, the absolute calibration of photostimulable image plates (IPs) used as proton detectors is presented. The calibration is performed in a wide range of proton energies (0.5-20 MeV) by exposing simultaneously the IP and calibrated detectors (radiochromic films and solid state detector CR39) to a source of broadband laser-accelerated protons, which are spectrally resolved. The final result is a calibration curve that enables retrieving the proton number from the IP signal. PMID:18681694

  14. Novel calibration and color adaptation schemes in three-fringe RGB photoelasticity

    NASA Astrophysics Data System (ADS)

    Swain, Digendranath; Thomas, Binu P.; Philip, Jeby; Pillai, S. Annamala

    2015-03-01

    Isochromatic demodulation in digital photoelasticity using RGB calibration is a two step process. The first step involves the construction of a look-up table (LUT) from a calibration experiment. In the second step, isochromatic data is demodulated by matching the colors of an analysis image with the colors existing in the LUT. As actual test and calibration experiment tint conditions vary due to different sources, color adaptation techniques for modifying an existing primary LUT are employed. However, the primary LUT is still generated from bending experiments. In this paper, RGB demodulation based on a theoretically constructed LUT has been attempted to exploit the advantages of color adaptation schemes. Thereby, the experimental mode of LUT generation and some uncertainties therein can be minimized. Additionally, a new color adaptation algorithm is proposed using quadratic Lagrangian interpolation polynomials, which is numerically better than the two-point linear interpolations available in the literature. The new calibration and color adaptation schemes are validated and applied to demodulate fringe orders in live models and stress frozen slices.

  15. Absolutely calibrated, time-resolved measurements of soft x rays using transmission grating spectrometers at the Nike Laser Facility

    NASA Astrophysics Data System (ADS)

    Weaver, J. L.; Feldman, U.; Seely, J. F.; Holland, G.; Serlin, V.; Klapisch, M.; Columbant, D.; Mostovych, A.

    2001-12-01

    Accurate simulation of pellet implosions for direct drive inertial confinement fusion requires benchmarking the codes with experimental data. The Naval Research Laboratory (NRL) has begun to measure the absolute intensity of radiation from laser irradiated targets to provide critical information for the radiatively preheated pellet designs developed by the Nike laser group. Two main diagnostics for this effort are two spectrometers incorporating three detection systems. While both spectrometers use 2500 lines/mm transmission gratings, one instrument is coupled to a soft x-ray streak camera and the other is coupled to both an absolutely calibrated Si photodiode array and a charge coupled device (CCD) camera. Absolute calibration of spectrometer components has been undertaken at the National Synchrotron Light Source at Brookhaven National Laboratories. Currently, the system has been used to measure the spatially integrated soft x-ray flux as a function of target material, laser power, and laser spot size. A comparison between measured and calculated flux for Au and CH targets shows reasonable agreement to one-dimensional modeling for two laser power densities.

  16. Comparison of absolute gain photometric calibration between Planck/HFI and Herschel/SPIRE at 545 and 857 GHz

    NASA Astrophysics Data System (ADS)

    Bertincourt, B.; Lagache, G.; Martin, P. G.; Schulz, B.; Conversi, L.; Dassas, K.; Maurin, L.; Abergel, A.; Beelen, A.; Bernard, J.-P.; Crill, B. P.; Dole, H.; Eales, S.; Gudmundsson, J. E.; Lellouch, E.; Moreno, R.; Perdereau, O.

    2016-04-01

    We compare the absolute gain photometric calibration of the Planck/HFI and Herschel/SPIRE instruments on diffuse emission. The absolute calibration of HFI and SPIRE each relies on planet flux measurements and comparison with theoretical far-infrared emission models of planetary atmospheres. We measure the photometric cross calibration between the instruments at two overlapping bands, 545 GHz/500 μm and 857 GHz/350 μm. The SPIRE maps used have been processed in the Herschel Interactive Processing Environment (Version 12) and the HFI data are from the 2015 Public Data Release 2. For our study we used 15 large fields observed with SPIRE, which cover a total of about 120 deg2. We have selected these fields carefully to provide high signal-to-noise ratio, avoid residual systematics in the SPIRE maps, and span a wide range of surface brightness. The HFI maps are bandpass-corrected to match the emission observed by the SPIRE bandpasses. The SPIRE maps are convolved to match the HFI beam and put on a common pixel grid. We measure the cross-calibration relative gain between the instruments using two methods in each field, pixel-to-pixel correlation and angular power spectrum measurements. The SPIRE/HFI relative gains are 1.047 (±0.0069) and 1.003 (±0.0080) at 545 and 857 GHz, respectively, indicating very good agreement between the instruments. These relative gains deviate from unity by much less than the uncertainty of the absolute extended emission calibration, which is about 6.4% and 9.5% for HFI and SPIRE, respectively, but the deviations are comparable to the values 1.4% and 5.5% for HFI and SPIRE if the uncertainty from models of the common calibrator can be discounted. Of the 5.5% uncertainty for SPIRE, 4% arises from the uncertainty of the effective beam solid angle, which impacts the adopted SPIRE point source to extended source unit conversion factor, highlighting that as a focus for refinement.

  17. Landsat-7 ETM+ On-Orbit Reflective-Band Radiometric Stability and Absolute Calibration

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Thome, Kurtis J.; Barsi, Julia A.; Kaita, Ed; Helder, Dennis L.; Barker, John L.

    2003-01-01

    The Landsat-7 spacecraft carries the Enhanced Thematic Mapper Plus (ETM+) instrument. This instrument images the Earth land surface in eight parts of the electromagnetic spectrum, termed spectral bands. These spectral images are used to monitor changes in the land surface, so a consistent relationship, i.e., calibration, between the image data and the Earth surface brightness, is required. The ETM+ has several on- board calibration devices that are used to monitor this calibration. The best on-board calibration source employs a flat white painted reference panel and has indicated changes of between 0.5% to 2% per year in the ETM+ response, depending on the spectral band. However, most of these changes are believed to be caused by changes in the reference panel, as opposed to changes in the instrument's sensitivity. This belief is based partially on on-orbit calibrations using instrumented ground sites and observations of "invariant sites", hyper-arid sites of the Sahara and Arabia. Changes determined from these data sets indicate are 0.1% - 0.6% per year. Tests and comparisons to other sensors also indicate that the uncertainty of the calibration is at the 5% level.

  18. Absolute calibration of OH density in a nanosecond pulsed plasma filament in atmospheric pressure He-H2O: comparison of independent calibration methods

    NASA Astrophysics Data System (ADS)

    Verreycken, T.; van der Horst, R. M.; Sadeghi, N.; Bruggeman, P. J.

    2013-11-01

    The absolute density of OH radicals generated in a nanosecond pulsed filamentary discharge in atmospheric pressure He +0.84% H2O is measured independently by UV absorption and laser induced fluorescence (LIF) calibrated with Rayleigh scattering. For the calibration of LIF with Rayleigh scattering, two LIF models, with six levels and four levels, are studied to investigate the influence of the rotational and vibrational energy transfers. In addition, a chemical model is used to deduce the OH density in the afterglow from the relative LIF intensity as function of time. The different models show good correspondence and by comparing these different methods, the accuracy and the effect of assumptions on the obtained OH density are discussed in detail. This analysis includes an analysis of the sensitivity to parameters used in the LIF models.

  19. Cross calibration of ocean-color bands from moderate resolution imaging spectroradiometer on Terra platform.

    PubMed

    Kwiatkowska, Ewa J; Franz, Bryan A; Meister, Gerhard; McClain, Charles R; Xiong, Xiaoxiong

    2008-12-20

    Ocean-color applications require maximum uncertainties in blue-wavelength water-leaving radiances in oligotrophic ocean of approximately 5%. Water-leaving radiances from Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite, however, exhibit temporal drift of the order of 15% as well as sensor changes in response versus scan and polarization sensitivity, which cannot be tracked by onboard calibrators. This paper introduces an instrument characterization approach that uses Earth-view data as a calibration source. The approach models the top of the atmosphere signal over ocean that the instrument is expected to measure, including its polarization, with water-leaving radiances coming from another well-calibrated global sensor. The cross calibration allows for significant improvement in derived MODIS-Terra ocean-color products, with largest changes in the blue wavelengths.

  20. Uncertainty Analysis of in situ Ocean Color Radiometry for the Vicarious Calibration of Ocean Color Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Johnson, B.; Clark, D.; Feinholz, M.; Flora, S.; Franz, B.; Houlihan, T.; Mueller, J. A.; Parr, A. C.; Voss, K. J.; Yarbrough, M.

    2011-12-01

    Substantial effort has been invested by NASA to create and maintain a long-term, consistent, and calibrated time series of ocean color radiometry over multiple missions and satellite sensors. This is a very difficult measurement problem because the water-leaving radiance is a small fraction of the total radiance measured by the satellite sensor. As a result, the SI traceability of ocean color radiometric values relies completely on a vicarious calibration approach utilizing reference oceanic sites. A robust and rigorous uncertainty analysis of this data set is outstanding. Broadly speaking, there are three aspects to the uncertainty budget for the long-term time series of the global ocean color radiometric data set: the in situ radiometric time series, the in situ to satellite match-up time series for determination of the vicarious calibration gain coefficients, and the global, satellite derived values for water-leaving radiances (or remote sensing reflectances). The uncertainty budget has elements attributed to sensor characterization functions (which change in time), natural variability, and the veracity and efficacy of the measurement equations (including models and algorithms) that describe the complete methodology. We have recently undertaken a rigorous analysis of uncertainty of the global ocean color radiometric time series data set, emphasizing the in situ uncertainties and their impact on the ocean color time series. Our technical approach is to formulate and analyze measurement equations that model the relationships between the values of the measured quantities and the resulting uncertainties, thus establishing traceability of the values of the MOBY results to stated reference values. Uncertainty estimates are quantitative data products in and of themselves - documentation of discrepancies between results and associating these values with uncertainties is not a valid or sufficient approach. We will review the MOBY data set, explain our uncertainty model

  1. The absolute radiometric calibration of the advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1989-01-01

    The measurement conditions are described for an intensive field campaign at White Sands Missile Range for the calibration of the AVHRRs on NOAA-9, NOAA-10 and NOAA-11, LANDSAT-4 TM and SPOT. Three different methods for calibration of AVHRRs by reference to a ground surface site are reported, and results from these methods are compared. Significant degradations in NOAA-9 and NOAA-10 AVHRR responsivities occurred since prelaunch calibrations were completed. As of February 1988, degradations in NOAA-9 AVHRR responsivities were on the order of 37 percent in channel and 41 percent in channel 2, and for the NOAA-10 AVHRR these degradations were 42 and 59 percent in channels 1 and 2, respectively.

  2. Absolute calibration of the Gamma Knife{sup ®} Perfexion™ and delivered dose verification using EPR/alanine dosimetry

    SciTech Connect

    Hornbeck, Amaury E-mail: tristan.garcia@cea.fr; Garcia, Tristan E-mail: tristan.garcia@cea.fr; Cuttat, Marguerite; Jenny, Catherine

    2014-06-15

    Purpose: Elekta Leksell Gamma Knife{sup ®} (LGK) is a radiotherapy beam machine whose features are not compliant with the international calibration protocols for radiotherapy. In this scope, the Laboratoire National Henri Becquerel and the Pitié-Salpêtrière Hospital decided to conceive a new LKG dose calibration method and to compare it with the currently used one. Furthermore, the accuracy of the dose delivered by the LGK machine was checked using an “end-to-end” test. This study also aims to compare doses delivered by the two latest software versions of the Gammaplan treatment planning system (TPS). Methods: The dosimetric method chosen is the electron paramagnetic resonance (EPR) of alanine. Dose rate (calibration) verification was done without TPS using a spherical phantom. Absolute calibration was done with factors calculated by Monte Carlo simulation (MCNP-X). For “end-to-end” test, irradiations in an anthropomorphic head phantom, close to real treatment conditions, are done using the TPS in order to verify the delivered dose. Results: The comparison of the currently used calibration method with the new one revealed a deviation of +0.8% between the dose rates measured by ion chamber and EPR/alanine. For simple fields configuration (less than 16 mm diameter), the “end-to-end” tests showed out average deviations of −1.7% and −0.9% between the measured dose and the calculated dose by Gammaplan v9 and v10, respectively. Conclusions: This paper shows there is a good agreement between the new calibration method and the currently used one. There is also a good agreement between the calculated and delivered doses especially for Gammaplan v10.

  3. Calibration of a Solar Absolute Cavity Radiometer with Traceability to the World Radiometric Reference

    SciTech Connect

    Reda, I.

    1996-01-01

    This report describes the present method of establishing traceability of absolute cavity radiometers to the World Radiometric Reference (WRR) through the process employed in the International Pyrheliometer Comparisons (IPC). This method derives the WRR reduction factor for each of the participating cavity radiometers. An alternative method is proposed, described, and evaluated as a way to reduce the uncertainty in the comparison process. The two methods are compared using a sample of data from the recent IPC-VIII conducted from September 25th to October 13th, 1995 at the World Radiation Center in Davos, Switzerland. A description of absolute cavity radiometers is also included, using a PMO-6 as an example of active cavity radiometers, and a HF as an example of passive cavity radiometers.

  4. Human wound photogrammetry with low-cost hardware based on automatic calibration of geometry and color

    NASA Astrophysics Data System (ADS)

    Jose, Abin; Haak, Daniel; Jonas, Stephan; Brandenburg, Vincent; Deserno, Thomas M.

    2015-03-01

    Photographic documentation and image-based wound assessment is frequently performed in medical diagnostics, patient care, and clinical research. To support quantitative assessment, photographic imaging is based on expensive and high-quality hardware and still needs appropriate registration and calibration. Using inexpensive consumer hardware such as smartphone-integrated cameras, calibration of geometry, color, and contrast is challenging. Some methods involve color calibration using a reference pattern such as a standard color card, which is located manually in the photographs. In this paper, we adopt the lattice detection algorithm by Park et al. from real world to medicine. At first, the algorithm extracts and clusters feature points according to their local intensity patterns. Groups of similar points are fed into a selection process, which tests for suitability as a lattice grid. The group which describes the largest probability of the meshes of a lattice is selected and from it a template for an initial lattice cell is extracted. Then, a Markov random field is modeled. Using the mean-shift belief propagation, the detection of the 2D lattice is solved iteratively as a spatial tracking problem. Least-squares geometric calibration of projective distortions and non-linear color calibration in RGB space is supported by 35 corner points of 24 color patches, respectively. The method is tested on 37 photographs taken from the German Calciphylaxis registry, where non-standardized photographic documentation is collected nationwide from all contributing trial sites. In all images, the reference card location is correctly identified. At least, 28 out of 35 lattice points were detected, outperforming the SIFT-based approach previously applied. Based on these coordinates, robust geometry and color registration is performed making the photographs comparable for quantitative analysis.

  5. Absolute gauge block calibration using ultra-precise optical frequency synthesizer locked to a femtosecond comb.

    PubMed

    Hussein, Hatem; Farid, Niveen; Terra, Osama

    2015-02-01

    In this paper, we report a gauge block (GB) calibration that is traceable to the SI unit of time, the second. Four ultra-stable optical telecommunication wavelengths near 1556 nm are obtained by locking a narrow-tuning-range fiber laser to a fiber-based femtosecond frequency comb. Since the GB calibration system does not operate at this region of spectrum, the superior frequency stability of the laser is transferred to the 778 nm region by using a waveguide periodically poled lithium niobate crystal. After applying the locking scheme, the stability and accuracy of the laser become better than 8×10(-12). The frequency-doubled light is sent through 30 m optical fiber to a GB interferometer, which is installed at a different laboratory in the same building. Using this calibration scheme, a GB with a nominal length of 100 mm is calibrated with an uncertainty of ±52  nm. This uncertainty value is still comparable to or even better than other metrology laboratories for a similar block length.

  6. The Importance of Post-Launch, On-Orbit Absolute Radiometric Calibration for Remote Sensing Applications

    NASA Astrophysics Data System (ADS)

    Kuester, M. A.

    2015-12-01

    Remote sensing is a powerful tool for monitoring changes on the surface of the Earth at a local or global scale. The use of data sets from different sensors across many platforms, or even a single sensor over time, can bring a wealth of information when exploring anthropogenic changes to the environment. For example, variations in crop yield and health for a specific region can be detected by observing changes in the spectral signature of the particular species under study. However, changes in the atmosphere, sun illumination and viewing geometries during image capture can result in inconsistent image data, hindering automated information extraction. Additionally, an incorrect spectral radiometric calibration will lead to false or misleading results. It is therefore critical that the data being used are normalized and calibrated on a regular basis to ensure that physically derived variables are as close to truth as is possible. Although most earth observing sensors are well-calibrated in a laboratory prior to launch, a change in the radiometric response of the system is inevitable due to thermal, mechanical or electrical effects caused during the rigors of launch or by the space environment itself. Outgassing and exposure to ultra-violet radiation will also have an effect on the sensor's filter responses. Pre-launch lamps and other laboratory calibration systems can also fall short in representing the actual output of the Sun. A presentation of the differences in the results of some example cases (e.g. geology, agriculture) derived for science variables using pre- and post-launch calibration will be presented using DigitalGlobe's WorldView-3 super spectral sensor, with bands in the visible and near infrared, as well as in the shortwave infrared. Important defects caused by an incomplete (i.e. pre-launch only) calibration will be discussed using validation data where available. In addition, the benefits of using a well-validated surface reflectance product will be

  7. Absolute calibration method for fast-streaked, fiber optic light collection, spectroscopy systems.

    SciTech Connect

    Johnston, Mark D.; Frogget, Brent; Oliver, Bryan Velten; Maron, Yitzhak; Droemer, Darryl W.; Crain, Marlon D.

    2010-04-01

    This report outlines a convenient method to calibrate fast (<1ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such a system is used to collect spectral data on plasmas generated in the A-K gap of electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA). On RITS, light is collected through a small diameter (200 micron) optical fiber and recorded on a fast streak camera at the output of 1 meter Czerny-Turner monochromator (F/7 optics). To calibrate such a system, it is necessary to efficiently couple light from a spectral lamp into a 200 micron diameter fiber, split it into its spectral components, with 10 Angstroms or less resolution, and record it on a streak camera with 1ns or less temporal resolution.

  8. Absolute energy calibration of FD by an electron linear accelerator for Telescope Array

    SciTech Connect

    Shibata, T.; Fukushima, M.; Ikeda, D.; Enomoto, A.; Fukuda, S.; Furukawa, K.; Ikeda, M.; Iwase, H.; Kakihara, K.; Kamitani, T.; Kondo, Y.; Ohsawa, S.; Sagawa, H.; Sanami, T.; Satoh, M.; Shidara, T.; Sugimura, T.; Yoshida, M.; Matthews, J. N.; Ogio, S.

    2011-09-22

    The primary energy of the ultra-high energy cosmic rays(UHECR) are measured with the number of fluorescence photons which are detected with fluorescence detectors(FD) in the Telescope Array experiment(TA). Howevery since there is large uncertinty as 19% in the measurement of the energy scale, the most important theme is improvement of the energy calibration. The electron light source(ELS) is a small electron linear accelerator for new energy calibration. The ELS is located 100 m far from the FD station, and injects electron beam which is accelerated to 40 MeV energy into the sky. We can calibrate the FD energy scale by detection the air shower directly which is generated by the electron beam. The ELS was developed in KEK Japan, and moved to the TA site in March 2009. We started the beam operation in September 2010, in consequence we detected the air shower which was generated by electron beam in the air. The output kinetic energy of the electron beam was 41.1 MeV, we adjusted the output charge from 40 to 140 pC/pulse. We expect that we can improve the uncertinty of the energy scale to about 10% with the ELS, futhermore ELS will be a very useful apparatus for R and D of future UHECR observation.

  9. First preliminary results for the absolute calibration of the Chinese HY-2 altimetric mission using the CRS1 calibration facilities in West Crete, Greece

    NASA Astrophysics Data System (ADS)

    Mertikas, Stelios P.; Zhou, Xinghua; Qiao, Fangli; Daskalakis, Antonis; Lin, Mingsen; Peng, Hailong; Tziavos, Ilias N.; Vergos, George; Tripolitsiotis, Achilleas; Frantzis, Xenophon

    2016-01-01

    In this work, absolute calibration of the Chinese HY-2 satellite altimetry mission is carried out, employing Pass No. 280 and the calibration facility, CRS1, located in the Southwest end of the island of Crete, Greece. Satellite Pass No. 280 is descending and follows a ground track almost parallel to the west coast of Crete. It comes close to the coast, at a distance of about 9 km from the CRS1 calibration site, and finally goes away south of Crete. The HY-2 sensor geophysical data records (S-GDR) have been incorporated into the calibration procedures and processing has taken place for cycles No. 54-62, at 20 Hz data rate. Some peculiarities in the HY-2 satellite altimeter data, as delivered and depicted in the I-GDR and S-GDR data, have also been noticed. All calibration results have been determined using a regional, precise and detailed geoid, along with a good knowledge of local ocean circulation and site characteristics and a well-defined sea-surface calibration methodology. The first preliminary results for the HY-2 altimeter calibration have shown that the initial cycles, up to No. 51, display an erratic behavior. After those cycles, the altimeter range bias values seem to be stable and reach a value of B = -45.6 cm ± 4.4 cm, when applying the net instrument corrections as provided in the GDR. If the relativistic effects of the satellite clocks are properly applied for the net instrument corrections, then the altimeter range bias goes down to B = -27 cm ± 3 cm. Also, preliminary cross-over analysis with the SARAL/AliKa and Jason-2 satellites show a bias of B = -23 cm, and B = -28.5 cm, respectively. The performance of the HY-2 on-board radiometer has also been examined in terms of the wet troposphere corrections and shows a mean difference of -1 cm ± 0.1 cm with respect to in-situ GNSS-derived corrections. Finally, the ionosphere path corrections of the HY-2 satellite show a difference of +1 cm ± 1.1 cm, when compared against the GNSS-derived ionosphere

  10. Calibration Uncertainty in Ocean Color Satellite Sensors and Trends in Long-term Environmental Records

    NASA Technical Reports Server (NTRS)

    Turpie, Kevin R.; Eplee, Robert E., Jr.; Franz, Bryan A.; Del Castillo, Carlos

    2014-01-01

    Launched in late 2011, the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) spacecraft is being evaluated by NASA to determine whether this sensor can continue the ocean color data record established through the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and the MODerate resolution Imaging Spectroradiometer (MODIS). To this end, Goddard Space Flight Center generated evaluation ocean color data products using calibration techniques and algorithms established by NASA during the SeaWiFS and MODIS missions. The calibration trending was subjected to some initial sensitivity and uncertainty analyses. Here we present an introductory assessment of how the NASA-produced time series of ocean color is influenced by uncertainty in trending instrument response over time. The results help quantify the uncertainty in measuring regional and global biospheric trends in the ocean using satellite remote sensing, which better define the roles of such records in climate research.

  11. Mapping the Galaxy Color-Redshift Relation: Optimal Photo-z Calibration Strategies for Cosmology Surveys

    NASA Astrophysics Data System (ADS)

    Masters, Daniel C.; Capak, Peter L.; Stern, Daniel; Rhodes, Jason; Mobasher, Bahram; Schmidt, Samuel; Steinhardt, Charles L.; Faisst, Andreas; Speagle, Josh S.

    2016-01-01

    A primary objective of the upcoming dark energy surveys LSST, Euclid, and WFIRST is to map the 3D distribution of matter over a significant fraction of the universe via the weak lensing cosmic shear field. Doing so will require accurate distance estimates to billions of faint galaxies, meaning that photo-z's will be essential for the ultimate scientific success of these missions. Because galaxy colors drive photo-z estimates, spectroscopic calibration samples must at least be representative in color. Here we present a technique, based on the self-organizing map (Kohonen 1990), to map the empirical distribution of galaxies in the high-dimensional color space of a given survey. We apply the technique to Euclid-like data for ~131k galaxies from the COSMOS survey, allowing us to determine where - in galaxy color space - spectroscopic coverage exists and where it is systematically missing. We show that the mapping technique lets us develop efficient spectroscopic sampling strategies to measure the color-redshift relation by focusing effort on poorly constrained regions of multicolor space. We discuss the nature of the galaxies in un-sampled regions of galaxy color space, and show that a fiducial survey with Keck (making use of LRIS, DEIMOS, and MOSFIRE) could meet the Euclid calibration requirements in ~40 nights of observing.

  12. Absolutely calibrated CCD images of Saturn at methane band and continuum wavelengths during its 1991 opposition

    NASA Astrophysics Data System (ADS)

    Ortiz, J. L.; Moreno, F.; Molina, A.

    1993-02-01

    Ground-based charge-coupled device images of Saturn were obtained at the Cassegrain focus of the 1.52-m telescope at the Calar Alto Observatory (Andalucia, Spain) during the 1991 opposition. The images were obtained in and out of the absorption methane bands at 6190, 7250, and 8900A under very good seeing conditions. A Bayesian deconvolution technique was employed in the restoration procedure. The derived absolute reflectivities and band depths at some locations of the disk are provided in tables appropriate for analysis in terms of scattering models. Possible temporal variations between the reflectivities found here and those reported by West et al. (1982) are discussed. No longitudinal variations in reflectivity larger than a 4 percent level were found. Some images showed bright spot activity at the equatorial region.

  13. Validation of short-pulse-laser-based measurement setup for absolute spectral irradiance responsivity calibration.

    PubMed

    Schuster, Michaela; Nevas, Saulius; Sperling, Armin

    2014-05-01

    This paper describes the validation process of mode-locked lasers in the "tunable lasers in photometry" (TULIP) setup at Physikalisch-Technische Bundesanstalt (PTB) regarding spectral irradiance responsivity calibrations. Validation has been carried out in the visible spectral range, 400-700 nm, with two different photometer heads and in the long wavelength range, 690-780 nm, with a filtered radiometer. A comparison of the results against those from two different validated measurement setups has been carried out for validation. For the visible spectral range, the comparison is conducted against the data obtained from a lamp-based monochromator setup for spectral irradiance responsivity calibrations and against the photometric values (integral quantity) measured at the photometric bench setup of PTB. For the long wavelength range, comparisons against results from two different lamp-based monochromator measurement setups were made. Additionally, the effect of different radiation bandwidths on interference oscillations has been determined for a filter radiometer without a diffuser. A procedure for the determination of the optimum bandwidth of the setup for the respective measurement device is presented. PMID:24921865

  14. Improvement in absolute calibration accuracy of Landsat-5 TM with Landsat-7 ETM+ data

    NASA Astrophysics Data System (ADS)

    Chander, Gyanesh; Markham, Brian L.; Micijevic, Esad; Teillet, Philippe M.; Helder, Dennis L.

    2005-08-01

    The ability to detect and quantify changes in the Earth's environment depends on satellites sensors that can provide calibrated, consistent measurements of Earth's surface features through time. A critical step in this process is to put image data from subsequent generations of sensors onto a common radiometric scale. To evaluate Landsat-5 (L5) Thematic Mapper's (TM) utility in this role, image pairs from the L5 TM and Landsat-7 (L7) Enhanced Thematic Mapper Plus (ETM+) sensors were compared. This approach involves comparison of surface observations based on image statistics from large common areas observed eight days apart by the two sensors. The results indicate a significant improvement in the consistency of L5 TM data with respect to L7 ETM+ data, achieved using a revised Look-Up-Table (LUT) procedure as opposed to the historical Internal Calibrator (IC) procedure previously used in the L5 TM product generation system. The average percent difference in reflectance estimates obtained from the L5 TM agree with those from the L7 ETM+ in the Visible and Near Infrared (VNIR) bands to within four percent and in the Short Wave Infrared (SWIR) bands to within six percent.

  15. Improvement in absolute calibration accuracy of Landsat-5 TM with Landsat-7 ETM+ data

    USGS Publications Warehouse

    Chander, G.; Markham, B.L.; Micijevic, E.; Teillet, P.M.; Helder, D.L.; ,

    2005-01-01

    The ability to detect and quantify changes in the Earth's environment depends on satellites sensors that can provide calibrated, consistent measurements of Earth's surface features through time. A critical step in this process is to put image data from subsequent generations of sensors onto a common radiometric scale. To evaluate Landsat-5 (L5) Thematic Mapper's (TM) utility in this role, image pairs from the L5 TM and Landsat-7 (L7) Enhanced Thematic Mapper Plus (ETM+) sensors were compared. This approach involves comparison of surface observations based on image statistics from large common areas observed eight days apart by the two sensors. The results indicate a significant improvement in the consistency of L5 TM data with respect to L7 ETM+ data, achieved using a revised Look-Up-Table (LUT) procedure as opposed to the historical Internal Calibrator (IC) procedure previously used in the L5 TM product generation system. The average percent difference in reflectance estimates obtained from the L5 TM agree with those from the L7 ETM+ in the Visible and Near Infrared (VNIR) bands to within four percent and in the Short Wave Infrared (SWIR) bands to within six percent.

  16. SU-E-J-85: Leave-One-Out Perturbation (LOOP) Fitting Algorithm for Absolute Dose Film Calibration

    SciTech Connect

    Chu, A; Ahmad, M; Chen, Z; Nath, R

    2014-06-01

    Purpose: To introduce an outliers-recognition fitting routine for film dosimetry. It cannot only be flexible with any linear and non-linear regression but also can provide information for the minimal number of sampling points, critical sampling distributions and evaluating analytical functions for absolute film-dose calibration. Methods: The technique, leave-one-out (LOO) cross validation, is often used for statistical analyses on model performance. We used LOO analyses with perturbed bootstrap fitting called leave-one-out perturbation (LOOP) for film-dose calibration . Given a threshold, the LOO process detects unfit points (“outliers”) compared to other cohorts, and a bootstrap fitting process follows to seek any possibilities of using perturbations for further improvement. After that outliers were reconfirmed by a traditional t-test statistics and eliminated, then another LOOP feedback resulted in the final. An over-sampled film-dose- calibration dataset was collected as a reference (dose range: 0-800cGy), and various simulated conditions for outliers and sampling distributions were derived from the reference. Comparisons over the various conditions were made, and the performance of fitting functions, polynomial and rational functions, were evaluated. Results: (1) LOOP can prove its sensitive outlier-recognition by its statistical correlation to an exceptional better goodness-of-fit as outliers being left-out. (2) With sufficient statistical information, the LOOP can correct outliers under some low-sampling conditions that other “robust fits”, e.g. Least Absolute Residuals, cannot. (3) Complete cross-validated analyses of LOOP indicate that the function of rational type demonstrates a much superior performance compared to the polynomial. Even with 5 data points including one outlier, using LOOP with rational function can restore more than a 95% value back to its reference values, while the polynomial fitting completely failed under the same conditions

  17. BOUSSOLE: A Joint CNRS-INSU, ESA, CNES, and NASA Ocean Color Calibration and Validation Activity

    NASA Technical Reports Server (NTRS)

    Antoine, David; Chami, Malik; Claustre, Herve; d'Ortenzio, Fabrizio; Morel, Andre; Becu, Guislain; Gentili, Bernard; Louis, Francis; Ras, Josephine; Roussier, Emmanuel; Scott, Alec J.; Tailliez, Dominique; Hooker, Stanford B.; Guevel, Pierre; Deste, Jean-Francois; Dempsey, Cyril; Adams, Darrell

    2006-01-01

    This report presents the Bouee pour l'acquisition de Series Optiques a Long Terme (BOUSSOLE) project, the primary objectives of which are to provide a long-term time series of optical properties in support of a) calibration and validation activities associated with satellite ocean color missions, and b) bio-optical research in oceanic waters. The following are included in the report: 1) an introduction to the rationale for establishing the project; 2) a definition of vicarious calibration and the specific requirements attached to it; 3) the organization of the project and the characteristics of the measurement site--in the northwestern Mediterranean Sea; 4) a qualitative overview of the collected data; 5) details about the buoy that was specifically designed and built for this project; 6) data collection protocols and data processing techniques; 7) a quantitative summary of the collected data, and a discussion of some sample results, including match-up analyses for the currently operational ocean color sensors, namely MERIS, SeaWiFS, and MODIS; and 8) preliminary results of the vicarious radiometric calibration of MERIS, including a tentative uncertainty budget. The results of this match-up analysis allow performance comparisons of various ocean color sensors to be performed, demonstrating the ability of the BOUSSOLE activity, i.e., combining a dedicated platform and commercial-off-the-shelf instrumentation, to provide data qualified to monitor the quality of ocean color products on the long term.

  18. Improved entrance optics design for ground-based solar spectral ultraviolet irradiance measurements and system absolute calibration

    NASA Astrophysics Data System (ADS)

    Dai, Caihong; Yu, Jialin; Huang, Bo; Tian, Yan

    2009-07-01

    The angular response of entrance optics is an important parameter for solar spectral UV measurements, and ideal cosine entrance optics is required to measure ground-based global solar spectral UV irradiance including direct and diffuse radiation over a solid angle of 2π sr. Early international comparisons have shown that deviations from the ideal cosine response lead to uncertainties in solar measurements of more than 10%. A special spectroradiometer used for solar spectral UV measurements was developed at National Institute of Metrology (NIM). Based on Polytetrafluoroethylene (PTFE) integrating sphere, seven kinds of cosine-entrance system were designed and compared. A special cosine measurement apparatus was developed to measure the angular response of the entrance optics. Experimental results show that, the integral cosine error is 1.41% for a novel combination entrance optics, which is composed by a PTFE integrating sphere, a spherical ground quartz diffuser and a special correction ring, and the cosine error is 0.08% for an incidence angle of θ=+/-30°, 0.84% at θ=+/-45°, -0.47% at θ=+/-60°, -0.74% at θ=+/-70°, and 5.47% at θ=+/-80°. With the new non-plane entrance optics, the angular response of the solar UV spectroradiometer is improved evidently, but on the other side, the system's absolute calibration becomes more difficult owing to the curved geometry of the new diffuser. The calibration source is a 1000W tungsten halogen lamp, but the measurement object is the global radiation of the solar, so a small error of the calibration distance will lead to an enormous measurement error of solar spectral UV irradiance. When the calibration distance is 500mm, for an actual diffuser with spherical radius 32.5mm and spherical height 20mm, the calibration error will be up to 3%~10% on the assumption that the starting point was calculated just from the acme or the bottom of the half-spherical diffuser. It was investigated that which point inside the

  19. Calibration and absolute normalization procedure of a new Deep Inelastic Neutron Scattering spectrometer

    NASA Astrophysics Data System (ADS)

    Rodríguez Palomino, L. A.; Blostein, J. J.; Dawidowski, J.

    2011-08-01

    We describe the calibration process of a new Deep Inelastic Neutron Scattering (DINS) spectrometer, recently implemented at the Bariloche Electron LINAC (Argentina), consisting in the determination of the incident neutron spectrum, dead-time and electronic delay of the data acquisition line, and detector bank efficiency. For this purpose, samples of lead, polyethylene and graphite of different sizes were employed. Their measured spectra were corrected by multiple scattering, attenuation and detector efficiency effects, by means of an ad hoc Monte Carlo code. We show that the corrected spectra are correctly scaled with respect to the scattering power of the tested materials within a 2% of experimental error, thus allowing us to define an experimental constant that links the arbitrary experimental scale (number of recorded counts per monitor counts) with the involved cross-sections. The present work also serves to analyze the existence of possible sources of systematic errors.

  20. New method to remove the electronic noise for absolutely calibrating low gain photomultiplier tubes with a higher precision

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Hayward, Jason P.; Laubach, Mitchell A.

    2014-08-01

    A new method to remove the electronic noise in order to absolutely calibrate low gain photomultiplier tubes with a higher precision is proposed and validated with experiments using a digitizer-based data acquisition system. This method utilizes the fall time difference between the electronic noise (about 0.5 ns) and the real PMT signal (about 2.4 ns for Hamamatsu H10570 PMT assembly). Using this technique along with a convolution algorithm, the electronic noise and the real signals are separated very well, even including the very small signals heavily influenced by the electronic noise. One application that this method allows is for us to explore the energy relationship for gamma sensing in Cherenkov radiators while maintaining the fastest possible timing performance and high dynamic range.

  1. SkyProbe: Real-Time Precision Monitoring in the Optical of the Absolute Atmospheric Absorption on the Telescope Science and Calibration Fields

    NASA Astrophysics Data System (ADS)

    Cuillandre, J.-C.; Magnier, E.; Sabin, D.; Mahoney, B.

    2016-05-01

    Mauna Kea is known for its pristine seeing conditions but sky transparency can be an issue for science operations since at least 25% of the observable (i.e. open dome) nights are not photometric, an effect mostly due to high-altitude cirrus. Since 2001, the original single channel SkyProbe mounted in parallel on the Canada-France-Hawaii Telescope (CFHT) has gathered one V-band exposure every minute during each observing night using a small CCD camera offering a very wide field of view (35 sq. deg.) encompassing the region pointed by the telescope for science operations, and exposures long enough (40 seconds) to capture at least 100 stars of Hipparcos' Tycho catalog at high galactic latitudes (and up to 600 stars at low galactic latitudes). The measurement of the true atmospheric absorption is achieved within 2%, a key advantage over all-sky direct thermal infrared imaging detection of clouds. The absolute measurement of the true atmospheric absorption by clouds and particulates affecting the data being gathered by the telescope's main science instrument has proven crucial for decision making in the CFHT queued service observing (QSO) representing today all of the telescope time. Also, science exposures taken in non-photometric conditions are automatically registered for a new observation at a later date at 1/10th of the original exposure time in photometric conditions to ensure a proper final absolute photometric calibration. Photometric standards are observed only when conditions are reported as being perfectly stable by SkyProbe. The more recent dual color system (simultaneous B & V bands) will offer a better characterization of the sky properties above Mauna Kea and should enable a better detection of the thinnest cirrus (absorption down to 0.01 mag., or 1%).

  2. Ocean color instrument intercomparisons and cross-calibrations by the SIMBIOS project

    NASA Astrophysics Data System (ADS)

    Fargion, Giulietta S.; McClain, Charles R.; Fukushima, Hajime; Nicolas, Jean M.; Barnes, Robert A.

    1999-12-01

    The Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project has a worldwide, ongoing ocean color data collection program, plus an operational data processing and analysis capability, SIMBIOS data collection takes place via the SIMBIOS Science Team and the Aerosol Robotic Network (AERONET). In addition, SIMBIOS has a calibration and product validation component. The primary purpose of these calibration and product validation activities are to (1) reduce measurement error by identifying and characterizing true error sources such as real changes in the satellite sensor or problems in the atmospheric correction algorithm, in order to differentiate these errors from natural variability in the marine light field; and (2) evaluate the various bio-optical algorithms being used by different ocean color missions. For each sensor, the SIMBIOS Project reviews the sensor design and processing algorithms being used by the particular ocean color project, compares the algorithms with alternative methods when possible, and provides the results to the appropriate project office, e.g., Centre National D'Etudes Spatialle (CNES) and National Space Development Agency of Japan (NASDA) for Polarization and Directionality of the Earth's Reflectance (POLDER) and Ocean Color and Temperature Sensor (OCTS), respectively. In the near future the Project is looking forward to collaborate with Global Imager (GLI), Ocean Color Imager (OCI) and international entities such as the International Ocean-Colour Coordinating Group (IOCCG) and Space Application Institute (Joint Research Center).

  3. Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry.

    PubMed

    Franz, Bryan A; Bailey, Sean W; Werdell, P Jeremy; McClain, Charles R

    2007-08-01

    The retrieval of ocean color radiometry from space-based sensors requires on-orbit vicarious calibration to achieve the level of accuracy desired for quantitative oceanographic applications. The approach developed by the NASA Ocean Biology Processing Group (OBPG) adjusts the integrated instrument and atmospheric correction system to retrieve normalized water-leaving radiances that are in agreement with ground truth measurements. The method is independent of the satellite sensor or the source of the ground truth data, but it is specific to the atmospheric correction algorithm. The OBPG vicarious calibration approach is described in detail, and results are presented for the operational calibration of SeaWiFS using data from the Marine Optical Buoy (MOBY) and observations of clear-water sites in the South Pacific and southern Indian Ocean. It is shown that the vicarious calibration allows SeaWiFS to reproduce the MOBY radiances and achieve good agreement with radiometric and chlorophyll a measurements from independent in situ sources. We also find that the derived vicarious gains show no significant temporal or geometric dependencies, and that the mission-average calibration reaches stability after approximately 20-40 high-quality calibration samples. Finally, we demonstrate that the performance of the vicariously calibrated retrieval system is relatively insensitive to the assumptions inherent in our approach.

  4. In-flight calibration of the experimental Absolute Scalar Magnetometer vector mode on board the Swarm satellites

    NASA Astrophysics Data System (ADS)

    Leger, J. M.; Jager, T.; Bertrand, F.; Cattin, V.; Fratter, I.; Brocco, L.; Vigneron, P.; Lalanne, X.; Hulot, G.

    2014-12-01

    While the role of the ASM is to provide absolute measurements of the magnetic field's strength for the in-flight calibration of the Vector Fluxgate Magnetometer, it can also deliver simultaneously vector measurements with no impact on its scalar performance. Since these scalar and vector measurements are both perfectly synchronous and spatially coherent, their comparison can be directly used to assess the ASM performances at instrument level with no need to correct for the various magnetic perturbations generated by the satellites. This presentation will detail the ASM vector calibration process, with an emphasis on its susceptibility to the ASM operational conditions (primarily the sensor temperature and attitude, but also sun exposition parameters). The evolution of the instrument's performances during the first year of the Swarm mission will then be discussed, with a particular interest in the long term scalar residuals behaviour. These results will be analyzed to demonstrate both the noise performances of the ASM scalar and vector measurements and their excellent long term stability.

  5. Determining the Absolute Concentration of Nanoparticles without Calibration Factor by Visualizing the Dynamic Processes of Interfacial Adsorption.

    PubMed

    Wo, Xiang; Li, Zhimin; Jiang, Yingyan; Li, Minghe; Su, Yu-Wen; Wang, Wei; Tao, Nongjian

    2016-02-16

    Previous approaches of determining the molar concentration of nanoparticles often relied on the calibration factors extracted from standard samples or required prior knowledge regarding the geometry, optical, or chemical properties. In the present work, we proposed an absolute quantification method that determined the molar concentration of nano-objects without any calibration factor or prior knowledge. It was realized by monitoring the dynamic adsorption processes of individual nanoparticles with a high-speed surface plasmon resonance microscopy. In this case, diffusing nano-objects stochastically collided onto an adsorption interface and stayed there ("hit-n-stay" scenario), resulting in a semi-infinite diffusion system. The dynamic processes were analyzed with a theoretical model consisting of Fick's laws of diffusion and random-walk assumption. The quantification of molar concentration was achieved on the basis of an analytical expression, which involved only physical constants and experimental parameters. By using spherical polystyrene nanoparticles as a model, the present approach provided a molar concentration with excellent accuracy. PMID:26781326

  6. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors.

    PubMed

    Waugh, C J; Rosenberg, M J; Zylstra, A B; Frenje, J A; Séguin, F H; Petrasso, R D; Glebov, V Yu; Sangster, T C; Stoeckl, C

    2015-05-01

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule. PMID:26026524

  7. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    SciTech Connect

    Waugh, C. J. Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Petrasso, R. D.; Rosenberg, M. J.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2015-05-15

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  8. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE PAGES

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Petrasso, R. D.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2015-05-27

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less

  9. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    SciTech Connect

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Petrasso, R. D.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2015-05-27

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  10. Absolute sensitivity calibration of vacuum and extreme ultraviolet spectrometer systems and Z{sub eff} measurement based on bremsstrahlung continuum in HL-2A tokamak

    SciTech Connect

    Zhou Hangyu; Cui Zhengying; Fu Bingzhong; Sun Ping; Gao Yadong; Xu Yuan; Lu Ping; Yang Qingwei; Duan Xuru; Morita, Shigeru; Goto, Motoshi; Dong Chunfeng

    2012-10-15

    A grazing-incidence flat-field extreme ultraviolet (EUV) spectrometer has been newly developed in HL-2A tokamak. Typical spectral lines are observed from intrinsic impurities of carbon, oxygen, iron, and extrinsic impurity of helium in the wavelength range of 20 A-500 A. Bremsstrahlung continuum is measured at different electron densities of HL-2A discharges to calibrate absolute sensitivity of the EUV spectrometer system and to measure effective ionic charge, Z{sub eff}. The sensitivity of a vacuum ultraviolet (VUV) spectrometer system is also absolutely calibrated in overlapped wavelength range of 300 A-500 A by comparing the intensity between VUV and EUV line emissions.

  11. AN EMPIRICAL UBV RI JHK COLOR-TEMPERATURE CALIBRATION FOR STARS

    SciTech Connect

    Worthey, Guy; Lee, Hyun-chul

    2011-03-15

    A collection of Johnson/Cousins photometry for stars with known [Fe/H] is used to generate color-color relations that include the abundance dependence. Literature temperature and bolometric correction (BC) dependences are attached to the color relations. The JHK colors are transformed to the Bessell and Brett homogenized system. The main result of this work is the tabulation of seven colors and the V-band BC as a function of T {sub eff}, log g, and [Fe/H] for -1.06 < V - K < 10.2 and an accompanying interpolation program. Improvements to the present calibration would involve filling photometry gaps, obtaining more accurate and on-system photometry, knowing better log g and [Fe/H] values, improving the statistics for data-impoverished groups of stars such as metal-poor K dwarfs, applying small tweaks in the processing pipeline, and obtaining better empirical temperature and BC relations, especially for supergiants and M stars. A way to estimate dust extinction from M dwarf colors is pointed out.

  12. Absolute Rb one-color two-photon ionization cross-section measurement near a quantum interference

    SciTech Connect

    Takekoshi, T.; Brooke, G.M.; Patterson, B.M.; Knize, R.J.

    2004-05-01

    We observe destructive interference in the ground-state Rb two-photon ionization cross section when the single photon energy is tuned between the 5S{yields}5P and 5S{yields}6P transition energies. The minimum cross section is 5.9(1.5)x10{sup -52} cm{sup 4} s and it occurs at a wavelength of 441.0(3) nm (in vacuo). Relative measurements of these cross sections are made at various wavelengths by counting ions produced when magneto-optically trapped Rb atoms are exposed to light from a tunable pulsed laser. This relative curve is calibrated to an absolute cross-section measurement at 532 nm using the trap loss method. A simple calculation agrees reasonably with our results.

  13. High-resolution imaging spectrometer for recording absolutely calibrated far ultraviolet spectra from laser-produced plasmas

    SciTech Connect

    Brown, Charles M.; Seely, John F.; Feldman, Uri; Holland, Glenn E.; Weaver, James L.; Obenschain, Steven P.; Kjornrattanawanich, Benjawan; Fielding, Drew

    2008-10-15

    An imaging spectrometer was designed and fabricated for recording far ultraviolet spectra from laser-produced plasmas with wavelengths as short as 155 nm. The spectrometer implements a Cassegrain telescope and two gratings in a tandem Wadsworth optical configuration that provides diffraction limited resolution. Spectral images were recorded from plasmas produced by the irradiation of various target materials by intense KrF laser radiation with 248 nm wavelength. Two pairs of high-resolution gratings can be selected for the coverage of two wavebands, one grating pair with 1800 grooves/mm and covering approximately 155-175 nm and another grating pair with 1200 grooves/mm covering 230-260 nm. The latter waveband includes the 248 nm KrF laser wavelength, and the former waveband includes the wavelength of the two-plasmon decay instability at (2/3) the KrF laser wavelength (165 nm). The detection media consist of a complementary metal oxide semiconductor imager, photostimulable phosphor image plates, and a linear array of 1 mm{sup 2} square silicon photodiodes with 0.4 ns rise time. The telescope mirrors, spectrometer gratings, and 1 mm{sup 2} photodiode were calibrated using synchrotron radiation, and this enables the measurement of the absolute emission from the laser-produced plasmas with temporal, spatial, and spectral resolutions. The spectrometer is capable of measuring absolute spectral emissions at 165 nm wavelength as small as 5x10{sup -7} J/nm from a plasma source area of 0.37 mm{sup 2} and with 0.4 ns time resolution.

  14. High-resolution imaging spectrometer for recording absolutely calibrated far ultraviolet spectra from laser-produced plasmas.

    PubMed

    Brown, Charles M; Seely, John F; Feldman, Uri; Holland, Glenn E; Weaver, James L; Obenschain, Steven P; Kjornrattanawanich, Benjawan; Fielding, Drew

    2008-10-01

    An imaging spectrometer was designed and fabricated for recording far ultraviolet spectra from laser-produced plasmas with wavelengths as short as 155 nm. The spectrometer implements a Cassegrain telescope and two gratings in a tandem Wadsworth optical configuration that provides diffraction limited resolution. Spectral images were recorded from plasmas produced by the irradiation of various target materials by intense KrF laser radiation with 248 nm wavelength. Two pairs of high-resolution gratings can be selected for the coverage of two wavebands, one grating pair with 1800 grooves/mm and covering approximately 155-175 nm and another grating pair with 1200 grooves/mm covering 230-260 nm. The latter waveband includes the 248 nm KrF laser wavelength, and the former waveband includes the wavelength of the two-plasmon decay instability at 23 the KrF laser wavelength (165 nm). The detection media consist of a complementary metal oxide semiconductor imager, photostimulable phosphor image plates, and a linear array of 1 mm(2) square silicon photodiodes with 0.4 ns rise time. The telescope mirrors, spectrometer gratings, and 1 mm(2) photodiode were calibrated using synchrotron radiation, and this enables the measurement of the absolute emission from the laser-produced plasmas with temporal, spatial, and spectral resolutions. The spectrometer is capable of measuring absolute spectral emissions at 165 nm wavelength as small as 5x10(-7) J/nm from a plasma source area of 0.37 mm(2) and with 0.4 ns time resolution.

  15. (18)F primary standard at ENEA-INMRI by three absolute techniques and calibration of a well-type IG11 ionization chamber.

    PubMed

    Capogni, Marco; Carconi, Pierluigi; De Felice, Pierino; Fazio, Aldo

    2016-03-01

    A new (18)F primary standardization carried out at ENEA-INMRI by three different absolute techniques, i.e. 4πγNaI(Tl)γ high-efficiency counting, TDCR and 4πβ(LS)-γ[NaI(Tl)] coincidence counting method, allowed the calibration of a fixed well-reentrant IG11 ionization chamber (IC), with an uncertainty lower than 1%, and to check the calibration factor of a portable well-type IC NPL-CRC model, previously calibrated. By the new standard the ENEA-INMRI was linked to the BIPM International Reference System (SIR) through the BIPM SIR Transfer Instrument (SIRTI).

  16. (18)F primary standard at ENEA-INMRI by three absolute techniques and calibration of a well-type IG11 ionization chamber.

    PubMed

    Capogni, Marco; Carconi, Pierluigi; De Felice, Pierino; Fazio, Aldo

    2016-03-01

    A new (18)F primary standardization carried out at ENEA-INMRI by three different absolute techniques, i.e. 4πγNaI(Tl)γ high-efficiency counting, TDCR and 4πβ(LS)-γ[NaI(Tl)] coincidence counting method, allowed the calibration of a fixed well-reentrant IG11 ionization chamber (IC), with an uncertainty lower than 1%, and to check the calibration factor of a portable well-type IC NPL-CRC model, previously calibrated. By the new standard the ENEA-INMRI was linked to the BIPM International Reference System (SIR) through the BIPM SIR Transfer Instrument (SIRTI). PMID:26774395

  17. Continuous absolute g monitoring of the mobile LNE-SYRTE Cold Atom Gravimeter - a new tool to calibrate superconducting gravimeters -

    NASA Astrophysics Data System (ADS)

    Merlet, Sébastien; Gillot, Pierre; Cheng, Bing; Pereira Dos Santos, Franck

    2016-04-01

    Atom interferometry allows for the realization of a new generation of instruments for inertial sensing based on laser cooled atoms. We have developed an absolute gravimeter (CAG) based on this technic, which can perform continuous gravity measurements at a high cycling rate. This instrument, operating since summer 2009, is the new metrological french standard for gravimetry. The CAG has been designed to be movable, so as to participate to international comparisons and on field measurements. It took part to several comparisons since ICAG'09 and operated in both urban environments and low noise underground facilities. The atom gravimeter operates with a high cycling rate of 3 Hz. Its sensitivity is predominantly limited by ground vibration noise which is rejected thanks to isolation platforms and correlation with other sensors, such as broadband accelerometers or sismometers. These developments allow us to perform continuous gravity measurements, no matter what the sismic conditions are and even in the worst cases such as during earthquakes. At best, a sensitivity of 5.6 μGal at 1 s measurement time has been demonstrated. The long term stability averages down to 0.1 μGal for long term measurements. Presently, the measurement accuracy is 4 μGal, which we plan to reduce to 1 μGal or below. I will present the instrument, the principle of the gravity acceleration measurement and its performances. I will focus on continuous gravity measurements performed over several years and compared with our superconducting gravimeter iGrav signal. This comparison allows us to calibrate the iGrav scale factor and follow its evolution. Especially, we demonstrate that, thanks to the CAG very high cycling rate, a single day gravity measurement allows to calibrate the iGrav scaling factor with a relative uncertainty as good as 4.10-4.

  18. Sources and assumptions for the vicarious calibration of ocean color satellite observations

    SciTech Connect

    Bailey, Sean W.; Hooker, Stanford B.; Antoine, David; Franz, Bryan A.; Werdell, P. Jeremy

    2008-04-20

    Spaceborne ocean color sensors require vicarious calibration to sea-truth data to achieve accurate water-leaving radiance retrievals. The assumed requirements of an in situ data set necessary to achieve accurate vicarious calibration were set forth in a series of papers and reports developed nearly a decade ago, which were embodied in the development and site location of the Marine Optical BuoY (MOBY). Since that time, NASA has successfully used data collected by MOBY as the sole source of sea-truth data for vicarious calibration of the Sea-viewing Wide field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer instruments. In this paper, we make use of the 10-year, global time series of SeaWiFS measurements to test the sensitivity of vicarious calibration to the assumptions inherent in the in situ requirements (e.g., very low chlorophyll waters, hyperspectral measurements). Our study utilized field measurements from a variety of sources with sufficient diversity in data collection methods and geophysical variability to challenge those in situ restrictions. We found that some requirements could be relaxed without compromising the ability to vicariously calibrate to the level required for accurate water-leaving radiance retrievals from satellite-based sensors.

  19. NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors.

    PubMed

    Wang, Menghua; Shi, Wei; Jiang, Lide; Voss, Kenneth

    2016-09-01

    The near-infrared (NIR) and shortwave infrared (SWIR)-based atmospheric correction algorithms are used in satellite ocean color data processing, with the SWIR-based algorithm particularly useful for turbid coastal and inland waters. In this study, we describe the NIR- and two SWIR-based on-orbit vicarious calibration approaches for satellite ocean color sensors, and compare results from these three on-orbit vicarious calibrations using satellite measurements from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). Vicarious calibration gains for VIIRS spectral bands are derived using the in situ normalized water-leaving radiance nLw(λ) spectra from the Marine Optical Buoy (MOBY) in waters off Hawaii. The SWIR vicarious gains are determined using VIIRS measurements from the South Pacific Gyre region, where waters are the clearest and generally stable. Specifically, vicarious gain sets for VIIRS spectral bands of 410, 443, 486, 551, and 671 nm derived from the NIR method using the NIR 745 and 862 nm bands, the SWIR method using the SWIR 1238 and 1601 nm bands, and the SWIR method using the SWIR 1238 and 2257 nm bands are (0.979954, 0.974892, 0.974685, 0.965832, 0.979042), (0.980344, 0.975344, 0.975357, 0.965531, 0.979518), and (0.980820, 0.975609, 0.975761, 0.965888, 0.978576), respectively. Thus, the NIR-based vicarious calibration gains are consistent with those from the two SWIR-based approaches with discrepancies mostly within ~0.05% from three data processing methods. In addition, the NIR vicarious gains (745 and 862 nm) derived from the two SWIR methods are (0.982065, 1.00001) and (0.981811, 1.00000), respectively, with the difference ~0.03% at the NIR 745 nm band. This is the fundamental basis for the NIR-SWIR combined atmospheric correction algorithm, which has been used to derive improved satellite ocean color products over open oceans and turbid coastal/inland waters. Therefore, a unified

  20. NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors.

    PubMed

    Wang, Menghua; Shi, Wei; Jiang, Lide; Voss, Kenneth

    2016-09-01

    The near-infrared (NIR) and shortwave infrared (SWIR)-based atmospheric correction algorithms are used in satellite ocean color data processing, with the SWIR-based algorithm particularly useful for turbid coastal and inland waters. In this study, we describe the NIR- and two SWIR-based on-orbit vicarious calibration approaches for satellite ocean color sensors, and compare results from these three on-orbit vicarious calibrations using satellite measurements from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). Vicarious calibration gains for VIIRS spectral bands are derived using the in situ normalized water-leaving radiance nLw(λ) spectra from the Marine Optical Buoy (MOBY) in waters off Hawaii. The SWIR vicarious gains are determined using VIIRS measurements from the South Pacific Gyre region, where waters are the clearest and generally stable. Specifically, vicarious gain sets for VIIRS spectral bands of 410, 443, 486, 551, and 671 nm derived from the NIR method using the NIR 745 and 862 nm bands, the SWIR method using the SWIR 1238 and 1601 nm bands, and the SWIR method using the SWIR 1238 and 2257 nm bands are (0.979954, 0.974892, 0.974685, 0.965832, 0.979042), (0.980344, 0.975344, 0.975357, 0.965531, 0.979518), and (0.980820, 0.975609, 0.975761, 0.965888, 0.978576), respectively. Thus, the NIR-based vicarious calibration gains are consistent with those from the two SWIR-based approaches with discrepancies mostly within ~0.05% from three data processing methods. In addition, the NIR vicarious gains (745 and 862 nm) derived from the two SWIR methods are (0.982065, 1.00001) and (0.981811, 1.00000), respectively, with the difference ~0.03% at the NIR 745 nm band. This is the fundamental basis for the NIR-SWIR combined atmospheric correction algorithm, which has been used to derive improved satellite ocean color products over open oceans and turbid coastal/inland waters. Therefore, a unified

  1. Progress in obtaining an absolute calibration of a total deuterium-tritium neutron yield diagnostic based on copper activationa)

    NASA Astrophysics Data System (ADS)

    Ruiz, C. L.; Chandler, G. A.; Cooper, G. W.; Fehl, D. L.; Hahn, K. D.; Leeper, R. J.; McWatters, B. R.; Nelson, A. J.; Smelser, R. M.; Snow, C. S.; Torres, J. A.

    2012-10-01

    The 350-keV Cockroft-Walton accelerator at Sandia National laboratory's Ion Beam facility is being used to calibrate absolutely a total DT neutron yield diagnostic based on the 63Cu(n,2n)62Cu(β+) reaction. These investigations have led to first-order uncertainties approaching 5% or better. The experiments employ the associated-particle technique. Deuterons at 175 keV impinge a 2.6 μm thick erbium tritide target producing 14.1 MeV neutrons from the T(d,n)4He reaction. The alpha particles emitted are measured at two angles relative to the beam direction and used to infer the neutron flux on a copper sample. The induced 62Cu activity is then measured and related to the neutron flux. This method is known as the F-factor technique. Description of the associated-particle method, copper sample geometries employed, and the present estimates of the uncertainties to the F-factor obtained are given.

  2. DAQ Software Contributions, Absolute Scale Energy Calibration and Background Evaluation for the NOvA Experiment at Fermilab

    SciTech Connect

    Flumerfelt, Eric Lewis

    2015-08-01

    The NOvA (NuMI Off-axis ve [nu_e] Appearance) Experiment is a long-baseline accelerator neutrino experiment currently in its second year of operations. NOvA uses the Neutrinos from the Main Injector (NuMI) beam at Fermilab, and there are two main off-axis detectors: a Near Detector at Fermilab and a Far Detector 810 km away at Ash River, MN. The work reported herein is in support of the NOvA Experiment, through contributions to the development of data acquisition software, providing an accurate, absolute-scale energy calibration for electromagnetic showers in NOvA detector elements, crucial to the primary electron neutrino search, and through an initial evaluation of the cosmic background rate in the NOvA Far Detector, which is situated on the surface without significant overburden. Additional support work for the NOvA Experiment is also detailed, including DAQ Server Administration duties and a study of NOvA’s sensitivity to neutrino oscillations into a “sterile” state.

  3. Absolutely calibrated radio polarimetry of the inner Galaxy at 2.3 and 4.8 GHz

    NASA Astrophysics Data System (ADS)

    Sun, X. H.; Gaensler, B. M.; Carretti, E.; Purcell, C. R.; Staveley-Smith, L.; Bernardi, G.; Haverkorn, M.

    2014-01-01

    We present high-sensitivity and absolutely calibrated images of diffuse radio polarization at a resolution of about 10 arcmin covering the range 10° < l < 34° and |b| < 5° at 2.3 GHz from the S-band Polarization All Sky Survey and at 4.8 GHz from the Sino-German λ6 cm polarization survey of the Galactic plane. Strong depolarization near the Galactic plane is seen at 2.3 GHz, which correlates with strong Hα emission. We ascribe the depolarization to spatial Faraday rotation measure fluctuations of about 65 rad m-2 on scales smaller than 6-9 pc. We argue that most (about 90 per cent) of the polarized emission seen at 4.8 GHz originates from a distance of 3-4 kpc in the Scutum arm and that the random magnetic field dominates the regular field there. A branch extending from the North Polar Spur towards lower latitudes can be identified from the polarization image at 4.8 GHz but only partly from the polarization image at 2.3 GHz, implying that the branch is at a distance larger than 2-3 kpc. We show that comparison of structure functions of complex polarized intensity with those of polarized intensity can indicate whether the observed polarized structures are intrinsic or caused by Faraday screens. The probability distribution function of gradients from the polarization images at 2.3 GHz indicates that the turbulence in the warm ionized medium is transonic.

  4. Registration and color calibration for dermoscopy images in time-course analysis

    NASA Astrophysics Data System (ADS)

    Furusho, Daiji; Iyatomi, Hitoshi

    2014-03-01

    Since melanomas grow and metastasize rapidly, the mutation in their appearance is much larger than that of nevi. If the variation of skin tumor can be evaluated quantitatively, it is of substantial help not only for clinical diagnosis, but also for development of computer-based diagnostic systems. However, photographic conditions of skin tumor are in most cases not uniform during the follow-up. In this study, we proposed a fully automated image registration and color calibration method between dermoscopy images in the time-course analysis. Our proposed algorithm aligned the time-course images with a precision of 91.6 ± 5.1% and a recall of 95.7 ± 5.9%, respectively whereas the fully manual registrations with Exif data as a performance reference did 95.4 ± 3.2% and 92.4 ± 6.5%, respectively. Our color calibration method largely reduced the color difference between timecourse images ΔE from 10.9 ± 5.6 to 3.9 1.7. These results showed that the proposed method was effective to compensate both geometrical and chronological changes between dermoscopy images in the time-course analysis.

  5. Calibration of a two-color soft x-ray diagnostic for electron temperature measurement

    NASA Astrophysics Data System (ADS)

    Reusch, L. M.; Den Hartog, D. J.; Franz, P.; Goetz, J.; McGarry, M. B.; Stephens, H. D.

    2016-11-01

    The two-color soft x-ray (SXR) tomography diagnostic on the Madison Symmetric Torus is capable of making electron temperature measurements via the double-filter technique; however, there has been a 15% systematic discrepancy between the SXR double-filter (SXRDF) temperature and Thomson scattering (TS) temperature. Here we discuss calibration of the Be filters used in the SXRDF measurement using empirical measurements of the transmission function versus energy at the BESSY II electron storage ring, electron microprobe analysis of filter contaminants, and measurement of the effective density. The calibration does not account for the TS and SXRDF discrepancy, and evidence from experiments indicates that this discrepancy is due to physics missing from the SXRDF analysis rather than instrumentation effects.

  6. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction

    PubMed Central

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2016-01-01

    Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed “digital color fusion microscopy” (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available. PMID:27283459

  7. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction.

    PubMed

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2016-01-01

    Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed "digital color fusion microscopy" (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available. PMID:27283459

  8. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction.

    PubMed

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2016-01-01

    Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed "digital color fusion microscopy" (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available.

  9. Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction

    NASA Astrophysics Data System (ADS)

    Zhang, Yibo; Wu, Yichen; Zhang, Yun; Ozcan, Aydogan

    2016-06-01

    Lens-free holographic microscopy can achieve wide-field imaging in a cost-effective and field-portable setup, making it a promising technique for point-of-care and telepathology applications. However, due to relatively narrow-band sources used in holographic microscopy, conventional colorization methods that use images reconstructed at discrete wavelengths, corresponding to e.g., red (R), green (G) and blue (B) channels, are subject to color artifacts. Furthermore, these existing RGB colorization methods do not match the chromatic perception of human vision. Here we present a high-color-fidelity and high-resolution imaging method, termed “digital color fusion microscopy” (DCFM), which fuses a holographic image acquired at a single wavelength with a color-calibrated image taken by a low-magnification lens-based microscope using a wavelet transform-based colorization method. We demonstrate accurate color reproduction of DCFM by imaging stained tissue sections. In particular we show that a lens-free holographic microscope in combination with a cost-effective mobile-phone-based microscope can generate color images of specimens, performing very close to a high numerical-aperture (NA) benchtop microscope that is corrected for color distortions and chromatic aberrations, also matching the chromatic response of human vision. This method can be useful for wide-field imaging needs in telepathology applications and in resource-limited settings, where whole-slide scanning microscopy systems are not available.

  10. Consistency of L4 TM absolute calibration with respect to the L5 TM sensor based on near-simultaneous image acquisition

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Malla, R.; Micijevic, E.; Mettler, C.J.

    2007-01-01

    The Landsat archive provides more than 35 years of uninterrupted multispectral remotely sensed data of Earth observations. Since 1972, Landsat missions have carried different types of sensors, from the Return Beam Vidicon (RBV) camera to the Enhanced Thematic Mapper Plus (ETM+). However, the Thematic Mapper (TM) sensors on Landsat 4 (L4) and Landsat 5 (L5), launched in 1982 and 1984 respectively, are the backbone of an extensive archive. Effective April 2, 2007, the radiometric calibration of L5 TM data processed and distributed by the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) was updated to use an improved lifetime gain model, based on the instrument's detector response to pseudo-invariant desert site data and cross-calibration with the L7 ETM+. However, no modifications were ever made to the radiometric calibration procedure of the Landsat 4 (L4) TM data. The L4 TM radiometric calibration procedure has continued to use the Internal Calibrator (IC) based calibration algorithms and the post calibration dynamic ranges, as previously defined. To evaluate the "current" absolute accuracy of these two sensors, image pairs from the L5 TM and L4 TM sensors were compared. The number of coincident image pairs in the USGS EROS archive is limited, so the scene selection for the cross-calibration studies proved to be a challenge. Additionally, because of the lack of near-simultaneous images available over well-characterized and traditionally used calibration sites, alternate sites that have high reflectance, large dynamic range, high spatial uniformity, high sun elevation, and minimal cloud cover were investigated. The alternate sites were identified in Yuma, Iraq, Egypt, Libya, and Algeria. The cross-calibration approach involved comparing image statistics derived from large common areas observed eight days apart by the two sensors. This paper summarizes the average percent differences in reflectance estimates obtained between the

  11. Consistency of L4 TM absolute calibration with respect to the L5 TM sensor based on near-simultaneous image acquisition

    NASA Astrophysics Data System (ADS)

    Chander, Gyanesh; Helder, Dennis L.; Malla, Rimy; Micijevic, Esad; Mettler, Cory J.

    2007-09-01

    The Landsat archive provides more than 35 years of uninterrupted multispectral remotely sensed data of Earth observations. Since 1972, Landsat missions have carried different types of sensors, from the Return Beam Vidicon (RBV) camera to the Enhanced Thematic Mapper Plus (ETM+). However, the Thematic Mapper (TM) sensors on Landsat 4 (L4) and Landsat 5 (L5), launched in 1982 and 1984 respectively, are the backbone of an extensive archive. Effective April 2, 2007, the radiometric calibration of L5 TM data processed and distributed by the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) was updated to use an improved lifetime gain model, based on the instrument's detector response to pseudo-invariant desert site data and cross-calibration with the L7 ETM+. However, no modifications were ever made to the radiometric calibration procedure of the Landsat 4 (L4) TM data. The L4 TM radiometric calibration procedure has continued to use the Internal Calibrator (IC) based calibration algorithms and the post calibration dynamic ranges, as previously defined. To evaluate the "current" absolute accuracy of these two sensors, image pairs from the L5 TM and L4 TM sensors were compared. The number of coincident image pairs in the USGS EROS archive is limited, so the scene selection for the cross-calibration studies proved to be a challenge. Additionally, because of the lack of near-simultaneous images available over well-characterized and traditionally used calibration sites, alternate sites that have high reflectance, large dynamic range, high spatial uniformity, high sun elevation, and minimal cloud cover were investigated. The alternate sites were identified in Yuma, Iraq, Egypt, Libya, and Algeria. The cross-calibration approach involved comparing image statistics derived from large common areas observed eight days apart by the two sensors. This paper summarizes the average percent differences in reflectance estimates obtained between the

  12. Radiometric calibration of ocean color satellite sensors using AERONET-OC data.

    PubMed

    Hlaing, Soe; Gilerson, Alexander; Foster, Robert; Wang, Menghua; Arnone, Robert; Ahmed, Sam

    2014-09-22

    Radiometric vicarious calibration of ocean color (OC) satellite sensors is carried out through the full sunlight path radiative transfer (RT) simulations of the coupled ocean-atmosphere system based on the aerosol and water-leaving radiance data from AERONET-OC sites for the visible and near-infrared (NIR) bands. Quantitative evaluation of the potential of such approach for achieving the radiometric accuracies of OC satellite sensors is made by means of direct comparisons between simulated and satellite measured top of atmosphere (TOA) radiances. Very high correlations (R ≥ 0.96 for all visible channels) are achieved for the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor when this approach is applied with the data from the LISCO and WaveCIS AERONET-OC sites. Vicarious calibration gain factors derived with this approach are highly consistent, with comparisons between the two sites exhibiting around 0.5% discrepancy in the blue and green parts of the spectrum, while their average temporal variability is also within 0.28% - 1.23% permitting the approach to be used, at this stage, for verification of sensor calibration performance.

  13. The RCT 1.3 m robotic telescope: broadband color transformation and extinction calibration

    SciTech Connect

    Strolger, L.-G.; Gott, A. M.; Carini, M.; Gelderman, R.; Laney, C. D.; McGruder, C.; Engle, S.; Guinan, E.; Treffers, R. R.; Walter, D. K.

    2014-03-01

    The Robotically Controlled Telescope (RCT) 1.3 m telescope, formerly known as the Kitt Peak National Observatory (KPNO) 50 inch telescope, has been refurbished as a fully robotic telescope, with an autonomous scheduler to take full advantage of the observing site without the requirement of a human presence. Here we detail the current configuration of the RCT and present, as a demonstration of its high-priority science goals, the broadband UBVRI photometric calibration of the optical facility. In summary, we find the linear color transformation and extinction corrections to be consistent with similar optical KPNO facilities, to within a photometric precision of 10% (at 1σ). While there were identified instrumental errors that likely added to the overall uncertainty, associated with since-resolved issues in engineering and maintenance of the robotic facility, a preliminary verification of this calibration gave a good indication that the solution is robust, perhaps to a higher precision than this initial calibration implies. The RCT has been executing regular science operations since 2009 and is largely meeting the science requirements set during its acquisition and redesign.

  14. STELLAR COLOR REGRESSION: A SPECTROSCOPY-BASED METHOD FOR COLOR CALIBRATION TO A FEW MILLIMAGNITUDE ACCURACY AND THE RECALIBRATION OF STRIPE 82

    SciTech Connect

    Yuan, Haibo; Liu, Xiaowei; Xiang, Maosheng; Huang, Yang; Zhang, Huihua; Chen, Bingqiu E-mail: x.liu@pku.edu.cn

    2015-02-01

    In this paper we propose a spectroscopy-based stellar color regression (SCR) method to perform accurate color calibration for modern imaging surveys, taking advantage of millions of stellar spectra now available. The method is straightforward, insensitive to systematic errors in the spectroscopically determined stellar atmospheric parameters, applicable to regions that are effectively covered by spectroscopic surveys, and capable of delivering an accuracy of a few millimagnitudes for color calibration. As an illustration, we have applied the method to the Sloan Digital Sky Survey (SDSS) Stripe 82 data. With a total number of 23,759 spectroscopically targeted stars, we have mapped out the small but strongly correlated color zero-point errors present in the photometric catalog of Stripe 82, and we improve the color calibration by a factor of two to three. Our study also reveals some small but significant magnitude dependence errors in the z band for some charge-coupled devices (CCDs). Such errors are likely to be present in all the SDSS photometric data. Our results are compared with those from a completely independent test based on the intrinsic colors of red galaxies presented by Ivezić et al. The comparison, as well as other tests, shows that the SCR method has achieved a color calibration internally consistent at a level of about 5 mmag in u – g, 3 mmag in g – r, and 2 mmag in r – i and i – z. Given the power of the SCR method, we discuss briefly the potential benefits by applying the method to existing, ongoing, and upcoming imaging surveys.

  15. Absolute Radiometric Calibration of the GÖKTÜRK-2 Satellite Sensor Using Tuz GÖLÜ (landnet Site) from Ndvi Perspective

    NASA Astrophysics Data System (ADS)

    Sakarya, Ufuk; Hakkı Demirhan, İsmail; Seda Deveci, Hüsne; Teke, Mustafa; Demirkesen, Can; Küpçü, Ramazan; Feray Öztoprak, A.; Efendioğlu, Mehmet; Fehmi Şimşek, F.; Berke, Erdinç; Zübeyde Gürbüz, Sevgi

    2016-06-01

    TÜBİTAK UZAY has conducted a research study on the use of space-based satellite resources for several aspects of agriculture. Especially, there are two precision agriculture related projects: HASSAS (Widespread application of sustainable precision agriculture practices in Southeastern Anatolia Project Region (GAP) Project) and AKTAR (Smart Agriculture Feasibility Project). The HASSAS project aims to study development of precision agriculture practice in GAP region. Multi-spectral satellite imagery and aerial hyperspectral data along with ground measurements was collected to analyze data in an information system. AKTAR aims to develop models for irrigation, fertilization and spectral signatures of crops in Inner Anatolia. By the end of the project precision agriculture practices to control irrigation, fertilization, pesticide and estimation of crop yield will be developed. Analyzing the phenology of crops using NDVI is critical for the projects. For this reason, absolute radiometric calibration of the Red and NIR bands in space-based satellite sensors is an important issue. The Göktürk-2 satellite is an earth observation satellite which was designed and built in Turkey and was launched in 2012. The Göktürk-2 satellite sensor has a resolution 2.5 meters in panchromatic and 5 meters in R/G/B/NIR bands. The absolute radiometric calibration of the Göktürk-2 satellite sensor was performed via the ground-based measurements - spectra-radiometer, sun photometer, and meteorological station- in Tuz Gölü cal/val site in 2015. In this paper, the first ground-based absolute radiometric calibration results of the Göktürk-2 satellite sensor using Tuz Gölü is demonstrated. The absolute radiometric calibration results of this paper are compared with the published cross-calibration results of the Göktürk-2 satellite sensor utilizing Landsat 8 imagery. According to the experimental comparison results, the Göktürk-2 satellite sensor coefficients for red and NIR bands

  16. Improving Ocean Color Data Products using a Purely Empirical Approach: Reducing the Requirement for Radiometric Calibration Accuracy

    NASA Technical Reports Server (NTRS)

    Gregg, Watson

    2008-01-01

    Radiometric calibration is the foundation upon which ocean color remote sensing is built. Quality derived geophysical products, such as chlorophyll, are assumed to be critically dependent upon the quality of the radiometric calibration. Unfortunately, the goals of radiometric calibration are not typically met in global and large-scale regional analyses, and are especially deficient in coastal regions. The consequences of the uncertainty in calibration are very large in terms of global and regional ocean chlorophyll estimates. In fact, stability in global chlorophyll requires calibration uncertainty much greater than the goals, and outside of modern capabilities. Using a purely empirical approach, we show that stable and consistent global chlorophyll values can be achieved over very wide ranges of uncertainty. Furthermore, the approach yields statistically improved comparisons with in situ data, suggesting improved quality. The results suggest that accuracy requirements for radiometric calibration cab be reduced if alternative empirical approaches are used.

  17. NASA In Situ Data Needs to Support the Operational Calibration and Validation of Ocean Color Satellite Data Products

    NASA Technical Reports Server (NTRS)

    Werdel, P. Jeremy

    2012-01-01

    Calibrating ocean color satellite instruments and validating their data products requires temporal and spatial abundances of high quality in situ oceanographic data. The Consortium for Ocean Leadership Ocean Observing Initiative (OOl) is currently implementing a distributed array of in-water sensors that could provide a significant contribution to future ocean color activities. This workshop will scope the optimal way to use and possibly supplement the planned OOl infrastructure to maximize its utility and relevance for calibration and validation activities that support existing and planned NASA ocean color missions. Here, I present the current state of the art of NASA validation of ocean color data products, with attention to autonomous time-series (e.g., the AERONET -OC network of above-water radiometers), and outline NASA needs for data quality assurance metrics and adherence to community-vetted data collection protocols

  18. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp.

    PubMed

    Fat'yanov, O V; Asimow, P D

    2015-10-01

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30,000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  19. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    SciTech Connect

    Fat’yanov, O. V. Asimow, P. D.

    2015-10-15

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  20. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp.

    PubMed

    Fat'yanov, O V; Asimow, P D

    2015-10-01

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30,000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  1. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    NASA Astrophysics Data System (ADS)

    Fat'yanov, O. V.; Asimow, P. D.

    2015-10-01

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  2. The tongue of the ocean as a remote sensing ocean color calibration range

    NASA Technical Reports Server (NTRS)

    Strees, L. V.

    1972-01-01

    In general, terrestrial scenes remain stable in content from both temporal and spacial considerations. Ocean scenes, on the other hand, are constantly changing in content and position. The solar energy that enters the ocean waters undergoes a process of scattering and selective spectral absorption. Ocean scenes are thus characterized as low level radiance with the major portion of the energy in the blue region of the spectrum. Terrestrial scenes are typically of high level radiance with their spectral energies concentrated in the green-red regions of the visible spectrum. It appears that for the evaluation and calibration of ocean color remote sensing instrumentation, an ocean area whose optical ocean and atmospheric properties are known and remain seasonably stable over extended time periods is needed. The Tongue of the Ocean, a major submarine channel in the Bahama Banks, is one ocean are for which a large data base of oceanographic information and a limited amount of ocean optical data are available.

  3. An Example Crossover Experiment for Testing New Vicarious Calibration Techniques for Satellite Ocean Color Radiometry

    NASA Technical Reports Server (NTRS)

    Voss, Kenneth J.; McLean, Scott; Lewis, Marlon; Johnson, Carol; Flora, Stephanie; Feinholz, Michael; Yarbrough, Mark; Trees, Charles; Twardowski, Mike; Clark, Dennis

    2010-01-01

    Vicarious calibration of ocean color satellites involves the use of accurate surface measurements of water-leaving radiance to update and improve the system calibration of ocean color satellite sensors. An experiment was performed to compare a free-fall technique with the established MOBY measurement. We found in the laboratory that the radiance and irradiance instruments compared well within their estimated uncertainties for various spectral sources. The spectrally averaged differences between the NIST values for the sources and the instruments were less than 2.5% for the radiance sensors and less than 1.5% for the irradiance sensors. In the field, the sensors measuring the above-surface downwelling irradiance performed nearly as well as they had in the laboratory, with an average difference of less than 2%. While the water-leaving radiance, L(sub w) calculated from each instrument agreed in almost all cases within the combined instrument uncertainties (approximately 7%), there was a relative bias between the two instrument classes/techniques that varied spectrally. The spectrally averaged (400 nm to 600 nm) difference between the two instrument classes/techniques was 3.1 %. However the spectral variation resulted in the free fall instruments being 0.2% lower at 450 nm and 5.9% higher at 550 nm. Based on the analysis of one matchup, the bias in the L(sub w), was similar to that observed for L(sub u)(1 m) with both systems, indicating the difference did not come from propagating L(sub u)(1 m) to L(sub w).

  4. High concentration (2500 suns), high throughput, automated flash tester with calibrated color balance and intensity control

    NASA Astrophysics Data System (ADS)

    Ludowise, Michael; Taylor, Sean; Lucow, Ewelina; Chan, Hing

    2008-08-01

    SolFocus has designed and built a flexible and adaptable solar flash tester capable of reaching in excess of 2500x suns flux using a commercially available Xenon flash and power supply. Using calibrated isotype cells and photodetectors, the intensity and color balance of the flash are controlled through software algorithms that compensate for tube aging and thermal drift. The data acquisition system dynamically normalizes each of the 1600 I-V data pairs to the lamp intensity during each flash. Up to 32 cells can be measured simultaneously, with a flash re-cycle time of 3 seconds. The dynamic current range is 100μA to 10A over 0 to 5V. Test ranges are limited by user input through a modern GUI screen. The system is mated to a commercially available probe station tester which allows automated testing of up to 150mm diameter wafers, and is capable of testing a 4000 cell wafer in less than 8 minutes. The core software and optical components are easily adaptable to receiver and full panel testing as well. Data on the calibration and performance of the flash tester, the dynamic range achieved in test, and throughputs obtained during operation are presented.

  5. Piston manometer as an absolute standard for vacuum-gage calibration in the range 2 to 500 millitorr

    NASA Technical Reports Server (NTRS)

    Warshawsky, I.

    1972-01-01

    A thin disk is suspended, with very small annular clearance, in a cylindrical opening in the base plate of a calibration chamber. A continuous flow of calibration gas passes through the chamber and annular opening to a downstream high vacuum pump. The ratio of pressures on the two faces of the disk is very large, so that the upstream pressure is substantially equal to net force on the disk divided by disk area. This force is measured with a dynamometer that is calibrated in place with dead weights. A probable error of + or - (0.2 millitorr plus 0.2 percent) is attainable when downstream pressure is known to 10 percent.

  6. Systematic Uncertainties in the Spectroscopic Measurements of Neutron-star Masses and Radii from Thermonuclear X-Ray Bursts. III. Absolute Flux Calibration

    NASA Astrophysics Data System (ADS)

    Güver, Tolga; Özel, Feryal; Marshall, Herman; Psaltis, Dimitrios; Guainazzi, Matteo; Díaz-Trigo, Maria

    2016-09-01

    Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826-238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE/PCA as well as by XMM-Newton EPIC-pn and RXTE/PCA, we quantify the degree of uncertainty in the flux calibration by assessing the differences between the measured fluxes during bursts. We find that the RXTE/PCA and the Chandra gratings measurements agree with each other within their formal uncertainties, increasing our confidence in these flux measurements. In contrast, XMM-Newton EPIC-pn measures 14.0 ± 0.3% less flux than the RXTE/PCA. This is consistent with the previously reported discrepancy with the flux measurements of EPIC-pn, compared with EPIC MOS1, MOS2, and ACIS-S detectors. We also show that any intrinsic time-dependent systematic uncertainty that may exist in the calibration of the satellites has already been implicity taken into account in the neutron star radius measurements.

  7. An Empirical Approach to Ocean Color Data: Reducing Bias and the Need for Post-Launch Radiometric Re-Calibration

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Casey, Nancy W.; O'Reilly, John E.; Esaias, Wayne E.

    2009-01-01

    A new empirical approach is developed for ocean color remote sensing. Called the Empirical Satellite Radiance-In situ Data (ESRID) algorithm, the approach uses relationships between satellite water-leaving radiances and in situ data after full processing, i.e., at Level-3, to improve estimates of surface variables while relaxing requirements on post-launch radiometric re-calibration. The approach is evaluated using SeaWiFS chlorophyll, which is the longest time series of the most widely used ocean color geophysical product. The results suggest that ESRID 1) drastically reduces the bias of ocean chlorophyll, most impressively in coastal regions, 2) modestly improves the uncertainty, and 3) reduces the sensitivity of global annual median chlorophyll to changes in radiometric re-calibration. Simulated calibration errors of 1% or less produce small changes in global median chlorophyll (less than 2.7%). In contrast, the standard NASA algorithm set is highly sensitive to radiometric calibration: similar 1% calibration errors produce changes in global median chlorophyll up to nearly 25%. We show that 0.1% radiometric calibration error (about 1% in water-leaving radiance) is needed to prevent radiometric calibration errors from changing global annual median chlorophyll more than the maximum interannual variability observed in the SeaWiFS 9-year record (+/- 3%), using the standard method. This is much more stringent than the goal for SeaWiFS of 5% uncertainty for water leaving radiance. The results suggest ocean color programs might consider less emphasis of expensive efforts to improve post-launch radiometric re-calibration in favor of increased efforts to characterize in situ observations of ocean surface geophysical products. Although the results here are focused on chlorophyll, in principle the approach described by ESRID can be applied to any surface variable potentially observable by visible remote sensing.

  8. Performance Demonstration of Miniature Phase Transition Cells in Microgravity as a Validation for their use in the Absolute Calibration of Temperature Sensors On-Orbit

    NASA Astrophysics Data System (ADS)

    Pettersen, C.; Best, F. A.; Adler, D. P.; Aguilar, D. M.; Perepezko, J. H.

    2012-12-01

    The next generation of infrared remote sensing missions, including the climate benchmark missions, will require better absolute measurement accuracy than now available, and will most certainly rely on the emerging capability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances with an absolute brightness temperature error of better than 0.1 K will require high-emissivity (>0.999) calibration blackbodies requiring absolute temperature uncertainties of better than 0.045K (k=3). Key elements of an On-Orbit Absolute Radiance Standard (OARS) meeting these stringent requirements have been demonstrated in the laboratory at the University of Wisconsin and were further refined under the NASA Instrument Incubator Program (IIP). In particular, the OARS has imbedded thermistors that can be periodically calibrated on-orbit using the melt signatures of small quantities (<0.5g) of three reference materials - mercury, water, and gallium, providing calibration from 233K to 303K. One of the many tests to determine the readiness of this technology for on-orbit application is a demonstration of performance in microgravity to be conducted on the International Space Station (ISS). This demonstration will make use of an Experiment Support Package developed by Utah State Space Dynamics Laboratory to continuously run melt cycles on miniature phase change cells containing gallium, a gallium-tin eutectic, and water. The phase change cells will be mounted in a small aluminum block along with a thermistor temperature sensor. A thermoelectric cooler will be used to change the temperature of the block. The demonstration will use the configuration of the phase transition cells developed under our NASA IIP that has been tested extensively in the laboratory under simulated mission life cycle scenarios - these included vibration, thermal soaks, and deep cycling. Melt signatures

  9. Update to the Cosmic Origins Spectrograph FUV Calibration: Improved Characterization Below 1150 Angstroms and Improved Absolute Flux Calibration at all Wavelengths

    NASA Astrophysics Data System (ADS)

    Sonnentrucker, Paule; Bostroem, K. A.; Ely, J.; Debes, J. H.; DiFelice, A.; Hernandez, S.; Hodge, P. E.; Lindsay, K.; Lockwood, S. A.; Massa, D.; Oliveira, C. M.; Roman-Duval, J.; Penton, S. V.; Proffitt, C. R.; Taylor, J. M.

    2014-01-01

    As of Cycle 20, the three COS/FUV "Blue Mode" wavelength settings at G130M/1055, 1096 and 1222, have become available as regular observing modes. We provide updates on the wavelength and flux calibration of these new Blue Mode settings, which allow medium-resolution spectroscopy down to 900A with effective areas comparable to those of FUSE. We discuss also recent improvements to the COS/FUV flux and flat-field calibrations and present the most recent time-dependent sensitivity trends of the FUV and NUV channels.

  10. RGB Color Calibration for Quantitative Image Analysis: The “3D Thin-Plate Spline” Warping Approach

    PubMed Central

    Menesatti, Paolo; Angelini, Claudio; Pallottino, Federico; Antonucci, Francesca; Aguzzi, Jacopo; Costa, Corrado

    2012-01-01

    In the last years the need to numerically define color by its coordinates in n-dimensional space has increased strongly. Colorimetric calibration is fundamental in food processing and other biological disciplines to quantitatively compare samples' color during workflow with many devices. Several software programmes are available to perform standardized colorimetric procedures, but they are often too imprecise for scientific purposes. In this study, we applied the Thin-Plate Spline interpolation algorithm to calibrate colours in sRGB space (the corresponding Matlab code is reported in the Appendix). This was compared with other two approaches. The first is based on a commercial calibration system (ProfileMaker) and the second on a Partial Least Square analysis. Moreover, to explore device variability and resolution two different cameras were adopted and for each sensor, three consecutive pictures were acquired under four different light conditions. According to our results, the Thin-Plate Spline approach reported a very high efficiency of calibration allowing the possibility to create a revolution in the in-field applicative context of colour quantification not only in food sciences, but also in other biological disciplines. These results are of great importance for scientific color evaluation when lighting conditions are not controlled. Moreover, it allows the use of low cost instruments while still returning scientifically sound quantitative data. PMID:22969337

  11. Absolute elastic differential electron scattering cross sections for He - A proposed calibration standard from 5 to 200 eV

    NASA Technical Reports Server (NTRS)

    Register, D. F.; Trajmar, S.; Srivastava, S. K.

    1980-01-01

    Absolute differential, integral, and momentum-transfer cross sections for electrons elastically scattered from helium are reported for the impact energy range of 5 to 200 eV. Angular distributions for elastically scattered electrons are measured in a crossed-beam geometry using a collimated, differentially pumped atomic-beam source which requires no effective-path-length correction. Below the first inelastic threshold the angular distributions were placed on an absolute scale by use of a phase-shift analysis. Above this threshold, the angular distributions from 10 to 140 deg were fitted using the phase-shift technique, and the resulting integral cross sections were normalized to a semiempirically derived integral elastic cross section. Depending on the impact energy, the data are estimated to be accurate to within 5 to 9%.

  12. Assessment and application of quantitative schlieren methods: Calibrated color schlieren and background oriented schlieren

    NASA Astrophysics Data System (ADS)

    Elsinga, G. E.; van Oudheusden, B. W.; Scarano, F.; Watt, D. W.

    Two quantitative schlieren methods are assessed and compared: calibrated color schlieren (CCS) and background oriented schlieren (BOS). Both methods are capable of measuring the light deflection angle in two spatial directions, and hence the projected density gradient vector field. Spatial integration using the conjugate gradient method returns the projected density field. To assess the performance of CCS and BOS, density measurements of a two-dimensional benchmark flow (a Prandtl-Meyer expansion fan) are compared with the theoretical density field and with the density inferred from PIV velocity measurements. The method's performance is also evaluated a priori from an experiment ray-tracing simulation. The density measurements show good agreement with theory. Moreover, CCS and BOS return comparable results with respect to each other and with respect to the PIV measurements. BOS proves to be very sensitive to displacements of the wind tunnel during the experiment and requires a correction for it, making it necessary to apply extra boundary conditions in the integration procedure. Furthermore, spatial resolution can be a limiting factor for accurate measurements using BOS. CCS suffers from relatively high noise in the density gradient measurement due to camera noise and has a smaller dynamic range when compared to BOS. Finally the application of the two schlieren methods to a separated wake flow is demonstrated. Flow features such as shear layers and expansion and recompression waves are measured with both methods.

  13. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    NASA Astrophysics Data System (ADS)

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L.

    2006-10-01

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si (Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3keV but has reduced sensitivity above 3keV (˜50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  14. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry.

    PubMed

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  15. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry.

    PubMed

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-01

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving. PMID:26628164

  16. An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry

    SciTech Connect

    Liu, Yi Jun; Mandelis, Andreas; Guo, Xinxin

    2015-11-15

    In this work, laser-based wavelength-modulated differential photothermal radiometry (WM-DPTR) is applied to develop a non-invasive in-vehicle alcohol biosensor. WM-DPTR features unprecedented ethanol-specificity and sensitivity by suppressing baseline variations through a differential measurement near the peak and baseline of the mid-infrared ethanol absorption spectrum. Biosensor signal calibration curves are obtained from WM-DPTR theory and from measurements in human blood serum and ethanol solutions diffused from skin. The results demonstrate that the WM-DPTR-based calibrated alcohol biosensor can achieve high precision and accuracy for the ethanol concentration range of 0-100 mg/dl. The high-performance alcohol biosensor can be incorporated into ignition interlocks that could be fitted as a universal accessory in vehicles in an effort to reduce incidents of drinking and driving.

  17. A new solar irradiance calibration from 3295 A to 8500 A derived from absolute spectrophotometry of Vega

    NASA Technical Reports Server (NTRS)

    Lockwood, G. W.; Tueg, H.; White, N. M.

    1992-01-01

    By imaging sunlight diffracted by 20- and 30-micron diameter pinholes onto the entrance aperture of a photoelectric grating scanner, the solar spectral irradiance was determined relative to the spectrophotometric standard star Vega, observed at night with the same instrument. Solar irradiances are tabulated at 4 A increments from 3295 A to 8500 A. Over most of the visible spectrum, the internal error of measurement is less than 2 percent. This calibration is compared with earlier irradiance measurements by Neckel and Labs (1984) and by Arvesen et al. (1969) and with the high-resolution solar atlas by Kurucz et al. The three calibrations agree well in visible light but differ by as much as 10 percent in the ultraviolet.

  18. Extension of Empirical Color Calibration and Test using Cool and Metal-Rich Stars in NGC 6791

    NASA Astrophysics Data System (ADS)

    An, Deokkeun; Terndrup, Donald M.; Pinsonneault, Marc H.; Lee, Jae-woo

    2015-08-01

    We extend our effort to calibrate stellar isochrones in the Johnson-Cousins (BVIC) and the Two Micron All Sky Survey (JHKs) filter systems based on observations of well-studied open clusters. Using cool main-sequence (MS) stars in Praesepe, we define empirical corrections to the Lejeune et al. color-effective temperature (Teff) relations down to Teff ~ 3600 K, complementing our previous work based on the Hyades and the Pleiades. We apply empirically corrected isochrones to existing optical and near-infrared photometry of cool (Teff ~ 5500 K) and metal-rich ([Fe/H]=+0.37) MS stars in NGC 6791, and find that color-excess and distance estimates from color-magnitude diagrams with different color indices converge on each other at the precisely known metallicity of the cluster. Along with a satisfactory agreement with eclipsing binary data in the cluster, we view the improved internal consistency as a validation of our calibrated isochrones at super-solar metallicities. For very cool stars (Teff < 4800 K), however, we find that BV colors of our models are systematically redder than the cluster photometry by ~0.02 mag. We use color-Teff transformations from the infrared flux method (IRFM) and alternative photometry to examine a potential color-scale error in the input cluster photometry. After excluding BV photometry of these cool MS stars, we derive E(B-V)=0.105±0.014, [M/H]=+0.42±0.07, (m-M)0 = 13.04±0.09, and the age of 9.5±0.3 Gyr for NGC 6791.

  19. Absorption by ground-state lead atoms of the 283. 3-nm resonant line from a lead hollow cathode lamp. An absolute number density calibration

    SciTech Connect

    Simons, J.W. ); Oldenborg, R.C.; Baughcum, S.L. )

    1989-10-19

    An accurate absolute number density calibration curve for absorption by gaseous lead atoms of the 283.3-nm resonant line from a typical lead hollow cathode lamp is reported. This calibration shows the usual curvature in the Beer-Lambert plot for atomic absorption at moderate to high absorbances that is commonly attributed to self-absorption leading to line reversal in the source and/or preferential absorption at the line center when the absorber temperature is not much greater than the source Doppler temperature. A theoretical calculation utilizing a Doppler-limited Fourier transform spectrum of the 283.3-nm emission from the lamp and a tabulated value of the absorption cross section and accounting for the isotopic and nuclear hyperfine components in both the emission and absorption due to naturally occurring lead quantitatively reproduces the experimental calibration curve without any parameter adjustments. It is found that the curvature in the Beer-Lambert plot has more to do with the fact that the absorbing and emitting atoms are a mixture of isotopes giving several isotopic and nuclear hyperfine transitions at slightly different frequencies than it does with preferential absorption at line centers.

  20. Sensor-centric calibration and characterization of the VIIRS Ocean Color bands using Suomi NPP operational data

    NASA Astrophysics Data System (ADS)

    Pratt, P.

    2012-12-01

    Ocean color bands on VIIRS span the visible spectrum and include two NIR bands. There are sixteen detectors per band and two HAM (Half-angle mirror) sides giving a total of thirty two independent systems. For each scan, thirty two hundred pixels are collected and each has a fixed specific optical path and a dynamic position relative to the earth geoid. For a given calibration target where scene variation is minimized, sensor characteristics can be observed. This gives insight into the performance and calibration of the instrument from a sensor-centric perspective. Calibration of the blue bands is especially challenging since there are few blue targets on land. An ocean region called the South Pacific Gyre (SPG) was chosen for its known stability and large area to serve as a calibration target for this investigation. Thousands of pixels from every granule that views the SPG are collected daily through an automated system and tabulated along with the detector, HAM and scan position. These are then collated and organized in a sensor-centric set of tables. The data are then analyzed by slicing by each variable and then plotted in a number of ways over time. Trends in the data show that the VIIRS sensor is largely behaving as expected according to heritage data and also reveals weaknesses where additional characterization of the sensor is possible. This work by Northrop Grumman NPP CalVal Team is supporting the VIIRS on-orbit calibration and validation teams for the sensor and ocean color as well as providing scientists interested in performing ground truth with results that show which detectors and scan angles are the most reliable over time. This novel approach offers a comprehensive sensor-centric on-orbit characterization of the VIIRS instrument on the NASA Suomi NPP mission.

  1. CO{sub 2} laser light scattering by bare soils for emissivity measurements: Absolute calibration and correlation with backscattering and composition

    SciTech Connect

    Kologo, N.; Stoll, M.P.

    1996-07-01

    Measurements of the scattering cross section of a number of bare soils have been made with CO{sub 2} laser illumination at 10.59 {micro}m. The primary focus was on absolute calibration of the measurements. First, comparison of emissivity values resulting from the application of Kirchhoff`s relation after angular integration of the bidirectional measurements, with emissivity values obtained from the analysis of the emitted radiation show excellent agreement to within less than 0.3%. Second, it was found that a simple formula holds for a relationship between the emissivity and co- and cross-polarized backscattering cross section at an angle of 30{degree}. Third, a clear correlation was observed between emissivity and composition (in this case % Al + Fe oxides; % SiO{sub 2}) for a homogeneous series of samples from the same area in Niger. These results emphasize the importance of calibrated experimental data. The implications of the research give evidence of the advantage of obtaining emissivity from remote reflectivity measurements and possibly only backscattering measurements, and remotely estimating mineral composition.

  2. Color

    ERIC Educational Resources Information Center

    Bowman, Bruce

    1975-01-01

    The color wheel, because it is an excellent way to teach color theory has become somewhat of a traditional assignment in most basic design courses. Article described a way to change this situation by re-designing and improving upon the basic color wheel. (Author/RK)

  3. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  4. Absolute intensity calibration of flat-field space-resolved extreme ultraviolet spectrometer using radial profiles of visible and extreme ultraviolet bremsstrahlung continuum emitted from high-density plasmas in Large Helical Device

    SciTech Connect

    Dong Chunfeng; Wang Erhui; Morita, Shigeru; Goto, Motoshi

    2011-11-15

    A precise absolute intensity calibration of a flat-field space-resolved extreme ultraviolet (EUV) spectrometer working in wavelength range of 60-400 A is carried out using a new calibration technique based on radial profile measurement of the bremsstrahlung continuum in Large Helical Device. A peaked vertical profile of the EUV bremsstrahlung continuum has been successfully observed in high-density plasmas (n{sub e}{>=} 10{sup 14} cm{sup -3}) with hydrogen ice pellet injection. The absolute calibration can be done by comparing the EUV bremsstrahlung profile with the visible bremsstrahlung profile of which the absolute value has been already calibrated using a standard lamp. The line-integrated profile of measured visible bremsstrahlung continuum is firstly converted into the local emissivity profile by considering a magnetic surface distortion due to the plasma pressure, and the local emissivity profile of EUV bremsstrahlung is secondly calculated by taking into account the electron temperature profile and free-free gaunt factor. The line-integrated profile of the EUV bremsstrahlung continuum is finally calculated from the local emissivity profile in order to compare with measured EUV bremsstrahlung profile. The absolute intensity calibration can be done by comparing measured and calculated EUV bremsstrahlung profiles. The calibration factor is thus obtained as a function of wavelength with excellent accuracy. It is also found in the profile analysis that the grating reflectivity of EUV emissions is constant along the direction perpendicular to the wavelength dispersion. Uncertainties on the calibration factor determined with the present method are discussed including charge-coupled device operation modes.

  5. Absolute number density calibration of the absorption by ground-state lead atoms of the 283. 3-nm resonance line from a high-intensity lead hollow cathode lamp and the calculated effect of argon pressures

    SciTech Connect

    Simons, J.W.; McClean, R.E. ); Oldenborg, R.C. )

    1991-03-21

    The absolute number density calibration for the absorption by ground-state lead atoms of the 283.3-nm resonance line from a high-intensity lead hollow cathode lamp (Photron superlamp) is determined and found to be the same as that of a standard hollow cathode lamp. Comparisons of the calibrations to theoretical calculations are found to be quite satisfactory. The effects of argon pressures in the absorption cell on the calibration are examined theoretically by using a simple Lorentzian broadening and shifting model. These calculations show the expected reduction in sensitivity and increasing linearity of Beer-Lambert plots with increasing argon pressure.

  6. Calibration View of Earth and the Moon by Mars Color Imager

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Three days after the Mars Reconnaissance Orbiter's Aug. 12, 2005, launch, the spacecraft was pointed toward Earth and the Mars Color Imager camera was powered up to acquire a suite of images of Earth and the Moon. When it gets to Mars, the Mars Color Imager's main objective will be to obtain daily global color and ultraviolet images of the planet to observe martian meteorology by documenting the occurrence of dust storms, clouds, and ozone. This camera will also observe how the martian surface changes over time, including changes in frost patterns and surface brightness caused by dust storms and dust devils.

    The purpose of acquiring an image of Earth and the Moon just three days after launch was to help the Mars Color Imager science team obtain a measure, in space, of the instrument's sensitivity, as well as to check that no contamination occurred on the camera during launch. Prior to launch, the team determined that, three days out from Earth, the planet would only be about 4.77 pixels across, and the Moon would be less than one pixel in size, as seen from the Mars Color Imager's wide-angle perspective. If the team waited any longer than three days to test the camera's performance in space, Earth would be too small to obtain meaningful results.

    The Earth and Moon images were acquired by turning Mars Reconnaissance Orbiter toward Earth, then slewing the spacecraft so that the Earth and Moon would pass before each of the five color and two ultraviolet filters of the Mars Color Imager. The distance to the Moon was about 1,440,000 kilometers (about 895,000 miles); the range to Earth was about 1,170,000 kilometers (about 727,000 miles).

    This view combines a sequence of frames showing the passage of Earth and the Moon across the field of view of a single color band of the Mars Color Imager. As the spacecraft slewed to view the two objects, they passed through the camera's field of view. Earth has been saturated white in this image so that both Earth

  7. Simultaneous determination of the colorants sunset yellow FCF and quinoline yellow by solid-phase spectrophotometry using partial least squares multivariate calibration.

    PubMed

    Capitán-Vallvey, L F; Fernández, M D; de Orbe, I; Vilchez, J L; Avidad, R

    1997-04-01

    A method for the simultaneous determination of the colorants Sunset Yellow FCF and Quinoline Yellow using solid-phase spectrophotometry is proposed. The colorants were isolated in Sephadex DEAE A-25 gel at pH 5.0, the gel-colorants system was packed in a 1 mm silica cell and spectra were recorded between 400 and 600 nm against a blank. Statistical results were obtained by partial least squares (PLS) multivariate calibration. The optimized matrix by using the PLS-2 method enables the determination of the colorants in artificial mixtures and commercial soft drinks.

  8. Absolute calibration and atmospheric versus mineralogic origin of absorption features in 2.0 to 2.5 micron Mars spectra obtained during 1993

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Pollack, James B.; Geballe, Thomas R.; Cruikshank, Dale P.; Freedman, Richard

    1994-01-01

    We obtained new high resolution reflectance spectra of Mars during the 1993 opposition from Mauna Kea Observatory using the UKIRT CGS4 spectrometer. Fifty spectra of 1600-2000 km surface regions and a number of standard star spectra were obtained in the 2.04 to 2.44 micron wavelength region on 4 February 1993 UT. Near-simultaneous observations of bright standard stars were used to perform terrestrial atmospheric corrections and an absolute flux calibration. Using the known magnitude of the stars and assuming blackbody continuum behavior, the flux from Mars could be derived. A radiative transfer model and the HITRAN spectral line data base were used to compute atmospheric transmission spectra for Mars and the Earth in order to simulate the contributions of these atmospheres to our observed data. Also, we examined the ATMOS solar spectrum in the near-IR to try to identify absorption features in the spectrum of the Sun that could be misinterpreted as Mars features. Eleven absorption features were detected in our Mars spectra. Our data provide no conclusive identification of the mineralogy responsible for the absorption features we detected. However, examination of terrestrial spectral libraries and previous high spectral resolution mineral studies indicates that the most likely origin of these features is either CO3(sup 2-), HCO3(-), or HSO4(-) anions in framework silicates or possibly (Fe, Mg)-OH bonds in sheet silicates.

  9. Determination of Delta m(d) and absolute calibration of flavor taggers for the Delta m(s) analysis, in fully reconstructed decays at the CDF experiment

    SciTech Connect

    Gomez, Jonatan Piedra

    2005-04-21

    The new trigger processor, the Silicon Vertex Tracking (SVT), has dramatically improved the B physics capabilities of the upgraded CDF II Detector; for the first time in a hadron collider, the SVT has enabled the access to non-lepton-triggered B meson decays. Within the new available range of decay modes, the B$0\\atop{s}$ → D$-\\atop{s}$π+ signature is of paramount importance in the measurement of the Δms mixing frequency. The analysis reported here is a step towards the measurement of this frequency; two where our goals: carrying out the absolute calibration of the opposite side flavor taggers, used in the Δms measurement; and measuring the B$0\\atop{d}$ mixing frequency in a B → Dπ sample, establishing the feasibility of the mixing measurement in this sample whose decay-length is strongly biased by the selective SVT trigger. We analyze a total integrated luminosity of 355 pb-1 collected with the CDF II Detector. By triggering on muons, using the conventional di-muon trigger; or displaced tracks, using the SVT trigger, we gather a sample rich in bottom and charm mesons.

  10. Corrections to MODIS Terra Calibration and Polarization Trending Derived from Ocean Color Products

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard; Eplee, Robert E.; Franz, Bryan A.

    2014-01-01

    Remotely sensed ocean color products require highly accurate top-of-atmosphere (TOA) radiances, on the order of 0.5% or better. Due to incidents both prelaunch and on-orbit, meeting this requirement has been a consistent problem for the MODIS instrument on the Terra satellite, especially in the later part of the mission. The NASA Ocean Biology Processing Group (OBPG) has developed an approach to correct the TOA radiances of MODIS Terra using spatially and temporally averaged ocean color products from other ocean color sensors (such as the SeaWiFS instrument on Orbview-2 or the MODIS instrument on the Aqua satellite). The latest results suggest that for MODIS Terra, both linear polarization parameters of the Mueller matrix are temporally evolving. A change to the functional form of the scan angle dependence improved the quality of the derived coefficients. Additionally, this paper demonstrates that simultaneously retrieving polarization and gain parameters improves the gain retrieval (versus retrieving the gain parameter only).

  11. Uncalibrated color

    NASA Astrophysics Data System (ADS)

    Moroney, Nathan

    2006-01-01

    Color calibration or the use of color measurement processes to characterize the color properties of a device or workflow is often expected or assumed for many color reproduction applications. However it is interesting to consider applications or situations in which color calibration is not as critical. In the first case it is possible to imagine an implicit color calibration resulting from a standardization or convergence of the colorant and substrate spectrum. In the second case it is possible to imagine cases where the device color variability is significantly less than the user color thresholds or expectations for color consistency. There are still general requirements for this form of pragmatic color but they are generally lower than for the higher end of digital color reproduction. Finally it is possible to imagine an implicit calibration that leverages in some way the highly accurate memory color for the hue of common objects. This scenario culminates with a challenge to create a natural capture calibration standard that does not require individual calibration, is spectrally diverse, is inexpensive and is environmentally friendly.

  12. Theoretical impact of fast rotation on calibrating the surface brightness-color relation for early-type stars

    NASA Astrophysics Data System (ADS)

    Challouf, M.; Nardetto, N.; Domiciano de Souza, A.; Mourard, D.; Aroui, H.; Stee, P.; Delaa, O.; Graczyk, D.; Pietrzyński, G.; Gieren, W.

    2015-07-01

    Context. The eclipsing binary method for determining distance in the local group is based on the surface brightness-color relation (SBCR), and early-type stars are preferred targets because of their intrinsic brightness. However, this type of star exhibits wind, mass-loss, pulsation, and rotation, which may generate bias on the angular diameter determination. An accurate calibration of the SBCR relation thus requires careful analysis. Aims: In this paper we aim to quantify the impact of stellar rotation on the SBCR when the calibration of the relation is based on interferometric measurements of angular diameters. Methods: Six stars with V - K color indices ranging between -1 and 0.5 were modeled using the code for high angular resolution of rotating objects in nature (CHARRON) with various rotational velocities (0, 25, 50, 75, and 95% of the critical rotational velocity) and inclination (0, 25, 50, 75, and 90 degrees). All these models have their equatorial axis aligned in an east-west orientation in the sky. We then simulated interferometric observations of these theoretical stars using three representative sets of the CHARA baseline configurations. The simulated data were then interpreted as if the stars were non-rotating to determine an angular diameter and estimate the surface-brightness relation. The V - K color of the rotating star was calculated directly from the CHARRON code. This provides an estimate of the intrinsic dispersion of the SBCR relation when the rotation effects of flattening and gravity darkening are not considered in the analysis of interferometric data. Results: We find a clear relation between the rotational velocity and (1) the shift in zero point (Δa0) of the SBCR (compared to the static relation) and (2) its dispersion (σ). When considering stars rotating at less than 50% of their critical velocity, Δa0 and σ have about 0.01 mag, while these quantities can reach 0.08 and 0.04 mag, respectively, when the rotation is larger than 75% of

  13. Electron cyclotron emission spectra in X- and O-mode polarisation at JET: Martin-Puplett interferometer, absolute calibration, revised uncertainties, inboard/outboard temperature profile, and wall properties

    NASA Astrophysics Data System (ADS)

    Schmuck, S.; Fessey, J.; Boom, J. E.; Meneses, L.; Abreu, P.; Belonohy, E.; Lupelli, I.

    2016-09-01

    At the tokamak Joint European Torus (JET), the electron cyclotron emission spectra in O-mode and X-mode polarisations are diagnosed simultaneous in absolute terms for several harmonics with two Martin-Puplett interferometers. From the second harmonic range in X-mode polarisation, the electron temperature profile can be deduced for the outboard side (low magnetic field strength) of JET but only for some parts of the inboard side (high magnetic field strength). This spatial restriction can be bypassed, if a cutoff is not present inside the plasma for O-mode waves in the first harmonic range. Then, from this spectral domain, the profile on the entire inboard side is accessible. The profile determination relies on the new absolute and independent calibration for both interferometers. During the calibration procedure, the antenna pattern was investigated as well, and, potentially, an increase in the diagnostic responsivity of about 5% was found for the domain 100-300 GHz. This increase and other uncertainty sources are taken into account in the thorough revision of the uncertainty for the diagnostic absolute calibration. The uncertainty deduced and the convolution inherent for Fourier spectroscopy diagnostics have implications for the temperature profile inferred. Having probed the electron cyclotron emission spectra in orthogonal polarisation directions for the first harmonic range, a condition is derived for the reflection and polarisation-scrambling coefficients of the first wall on the outboard side of JET.

  14. Color accuracy and reproducibility in whole slide imaging scanners

    PubMed Central

    Shrestha, Prarthana; Hulsken, Bas

    2014-01-01

    Abstract We propose a workflow for color reproduction in whole slide imaging (WSI) scanners, such that the colors in the scanned images match to the actual slide color and the inter-scanner variation is minimum. We describe a new method of preparation and verification of the color phantom slide, consisting of a standard IT8-target transmissive film, which is used in color calibrating and profiling the WSI scanner. We explore several International Color Consortium (ICC) compliant techniques in color calibration/profiling and rendering intents for translating the scanner specific colors to the standard display (sRGB) color space. Based on the quality of the color reproduction in histopathology slides, we propose the matrix-based calibration/profiling and absolute colorimetric rendering approach. The main advantage of the proposed workflow is that it is compliant to the ICC standard, applicable to color management systems in different platforms, and involves no external color measurement devices. We quantify color difference using the CIE-DeltaE2000 metric, where DeltaE values below 1 are considered imperceptible. Our evaluation on 14 phantom slides, manufactured according to the proposed method, shows an average inter-slide color difference below 1 DeltaE. The proposed workflow is implemented and evaluated in 35 WSI scanners developed at Philips, called the Ultra Fast Scanners (UFS). The color accuracy, measured as DeltaE between the scanner reproduced colors and the reference colorimetric values of the phantom patches, is improved on average to 3.5 DeltaE in calibrated scanners from 10 DeltaE in uncalibrated scanners. The average inter-scanner color difference is found to be 1.2 DeltaE. The improvement in color performance upon using the proposed method is apparent with the visual color quality of the tissue scans. PMID:26158041

  15. The Distances to Open Clusters from Main-sequence Fitting. V. Extension of Color Calibration and Test Using Cool and Metal-rich Stars in NGC 6791

    NASA Astrophysics Data System (ADS)

    An, Deokkeun; Terndrup, Donald M.; Pinsonneault, Marc H.; Lee, Jae-Woo

    2015-09-01

    We extend our effort to calibrate stellar isochrones in the Johnson-Cousins ({{BVI}}C) and the 2MASS ({{JHK}}s) filter systems based on observations of well-studied open clusters. Using cool main-sequence (MS) stars in Praesepe, we define empirical corrections to the Lejeune et al. color-effective temperature ({T}{eff}) relations down to {T}{eff}˜ 3600 {{K}}, complementing our previous work based on the Hyades and the Pleiades. We apply empirically corrected isochrones to existing optical and near-infrared photometry of cool ({T}{eff}≲ 5500 {{K}}) and metal-rich ([{Fe}/{{H}}]= +0.37) MS stars in NGC 6791. The current methodology relies on an assumption that color-{T}{eff} corrections are independent of metallicity, but we find that estimates of color excess and distance from color-magnitude diagrams with different color indices converge on each other at the precisely known metallicity of the cluster. Along with a satisfactory agreement with eclipsing binary data in the cluster, we view the improved internal consistency as a validation of our calibrated isochrones at super-solar metallicities. For very cool stars ({T}{eff}≲ 4800 {{K}}), however, we find that B - V colors of our models are systematically redder than the cluster photometry by ˜0.02 mag. We use color-{T}{eff} transformations from the infrared flux method and alternative photometry to examine a potential color-scale error in the input cluster photometry. After excluding B - V photometry of these cool MS stars, we derive E(B\\-\\V)=0.105+/- 0.014, [M/H]\\=\\+0.42+/- 0.07, {(m\\-\\M)}0=13.04+/- 0.08, and the age of 9.5 ± 0.3 Gyr for NGC 6791.

  16. Calibration Monitor for Dark Energy Experiments

    SciTech Connect

    Kaiser, M. E.

    2009-11-23

    The goal of this program was to design, build, test, and characterize a flight qualified calibration source and monitor for a Dark Energy related experiment: ACCESS - 'Absolute Color Calibration Experiment for Standard Stars'. This calibration source, the On-board Calibration Monitor (OCM), is a key component of our ACCESS spectrophotometric calibration program. The OCM will be flown as part of the ACCESS sub-orbital rocket payload in addition to monitoring instrument sensitivity on the ground. The objective of the OCM is to minimize systematic errors associated with any potential changes in the ACCESS instrument sensitivity. Importantly, the OCM will be used to monitor instrument sensitivity immediately after astronomical observations while the instrument payload is parachuting to the ground. Through monitoring, we can detect, track, characterize, and thus correct for any changes in instrument senstivity over the proposed 5-year duration of the assembled and calibrated instrument.

  17. Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency.

    PubMed

    Vahlbruch, Henning; Mehmet, Moritz; Danzmann, Karsten; Schnabel, Roman

    2016-09-01

    Squeezed states of light belong to the most prominent nonclassical resources. They have compelling applications in metrology, which has been demonstrated by their routine exploitation for improving the sensitivity of a gravitational-wave detector since 2010. Here, we report on the direct measurement of 15 dB squeezed vacuum states of light and their application to calibrate the quantum efficiency of photoelectric detection. The object of calibration is a customized InGaAs positive intrinsic negative (p-i-n) photodiode optimized for high external quantum efficiency. The calibration yields a value of 99.5% with a 0.5% (k=2) uncertainty for a photon flux of the order 10^{17}  s^{-1} at a wavelength of 1064 nm. The calibration neither requires any standard nor knowledge of the incident light power and thus represents a valuable application of squeezed states of light in quantum metrology. PMID:27661673

  18. Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency

    NASA Astrophysics Data System (ADS)

    Vahlbruch, Henning; Mehmet, Moritz; Danzmann, Karsten; Schnabel, Roman

    2016-09-01

    Squeezed states of light belong to the most prominent nonclassical resources. They have compelling applications in metrology, which has been demonstrated by their routine exploitation for improving the sensitivity of a gravitational-wave detector since 2010. Here, we report on the direct measurement of 15 dB squeezed vacuum states of light and their application to calibrate the quantum efficiency of photoelectric detection. The object of calibration is a customized InGaAs positive intrinsic negative (p-i-n) photodiode optimized for high external quantum efficiency. The calibration yields a value of 99.5% with a 0.5% (k =2 ) uncertainty for a photon flux of the order 1 017 s-1 at a wavelength of 1064 nm. The calibration neither requires any standard nor knowledge of the incident light power and thus represents a valuable application of squeezed states of light in quantum metrology.

  19. Calibration of a high spatial resolution laser two-color heterodyne interferometer for density profile measurements in the TJ-II stellarator

    SciTech Connect

    Acedo, Pablo; Pedreira, P.; Criado, A. R.; Lamela, Horacio; Sanchez, Miguel; Sanchez, Joaquin

    2008-10-15

    A high spatial resolution two-color (CO{sub 2}, {lambda}=10.6 {mu}m, He-Ne, {lambda}=633 nm) interferometer for density profile measurements in the TJ-II stellarator is under development and installation, based in the currently operational single channel two-color heterodyne interferometer. To achieve the objectives of 32 channels, with 4-5 mm lateral separation between plasma chords, careful design and calibration of the interferometric waveforms for both the measurement and vibration compensation wavelengths are undertaken. The first step has been to set up in our laboratories an expanded-beam heterodyne/homodyne interferometer to evaluate the quality of both interferometric wavefronts, a reported source of poor vibration compensation and thus low resolution in the density profile measurements. This novel interferometric setup has allowed us to calibrate the spatial resolution in the profile measurements resulting in {approx}2 mm lateral resolution in the reconstruction of the interferometric wavefront.

  20. MOBY, A Radiometric Buoy for Performance Monitoring and Vicarious Calibration of Satellite Ocean Color Sensors: Measurement and Data Analysis Protocols. Chapter 2

    NASA Technical Reports Server (NTRS)

    Clark, Dennis K.; Yarbrough, Mark A.; Feinholz, Mike; Flora, Stephanie; Broenkow, William; Kim, Yong Sung; Johnson, B. Carol; Brown, Steven W.; Yuen, Marilyn; Mueller, James L.

    2003-01-01

    The Marine Optical Buoy (MOBY) is the centerpiece of the primary ocean measurement site for calibration of satellite ocean color sensors based on independent in situ measurements. Since late 1996, the time series of normalized water-leaving radiances L(sub WN)(lambda) determined from the array of radiometric sensors attached to MOBY are the primary basis for the on-orbit calibrations of the USA Sea-viewing Wide Field-of-view Sensor (SeaWiFS), the Japanese Ocean Color and Temperature Sensor (OCTS), the French Polarization Detection Environmental Radiometer (POLDER), the German Modular Optoelectronic Scanner on the Indian Research Satellite (IRS1-MOS), and the USA Moderate Resolution Imaging Spectrometer (MODIS). The MOBY vicarious calibration L(sub WN)(lambda) reference is an essential element in the international effort to develop a global, multi-year time series of consistently calibrated ocean color products using data from a wide variety of independent satellite sensors. A longstanding goal of the SeaWiFS and MODIS (Ocean) Science Teams is to determine satellite-derived L(sub WN)(labda) with a relative combined standard uncertainty of 5 %. Other satellite ocean color projects and the Sensor Intercomparison for Marine Biology and Interdisciplinary Oceanic Studies (SIMBIOS) project have also adopted this goal, at least implicitly. Because water-leaving radiance contributes at most 10 % of the total radiance measured by a satellite sensor above the atmosphere, a 5 % uncertainty in L(sub WN)(lambda) implies a 0.5 % uncertainty in the above-atmosphere radiance measurements. This level of uncertainty can only be approached using vicarious-calibration approaches as described below. In practice, this means that the satellite radiance responsivity is adjusted to achieve the best agreement, in a least-squares sense, for the L(sub WN)(lambda) results determined using the satellite and the independent optical sensors (e.g. MOBY). The end result of this approach is to

  1. Absolute calibration of the colour index and O4 absorption derived from Multi AXis (MAX-)DOAS measurements and their application to a standardised cloud classification algorithm

    NASA Astrophysics Data System (ADS)

    Wagner, Thomas; Beirle, Steffen; Remmers, Julia; Shaiganfar, Reza; Wang, Yang

    2016-09-01

    A method is developed for the calibration of the colour index (CI) and the O4 absorption derived from differential optical absorption spectroscopy (DOAS) measurements of scattered sunlight. The method is based on the comparison of measurements and radiative transfer simulations for well-defined atmospheric conditions and viewing geometries. Calibrated measurements of the CI and the O4 absorption are important for the detection and classification of clouds from MAX-DOAS observations. Such information is needed for the identification and correction of the cloud influence on Multi AXis (MAX-)DOAS profile inversion results, but might be also be of interest on their own, e.g. for meteorological applications. The calibration algorithm was successfully applied to measurements at two locations: Cabauw in the Netherlands and Wuxi in China. We used CI and O4 observations calibrated by the new method as input for our recently developed cloud classification scheme and also adapted the corresponding threshold values accordingly. For the observations at Cabauw, good agreement is found with the results of the original algorithm. Together with the calibration procedure of the CI and O4 absorption, the cloud classification scheme, which has been tuned to specific locations/conditions so far, can now be applied consistently to MAX-DOAS measurements at different locations. In addition to the new threshold values, further improvements were introduced to the cloud classification algorithm, namely a better description of the SZA (solar zenith angle) dependence of the threshold values and a new set of wavelengths for the determination of the CI. We also indicate specific areas for future research to further improve the cloud classification scheme.

  2. Absolute and relative quantification and calibration for sectioning fluorescence microscopy using standardized uniform fluorescent layers and SIPchart-based correction procedures

    NASA Astrophysics Data System (ADS)

    Zwier, J. M.; Oomen, L.; Brocks, L.; Jalink, K.; Brakenhoff, G. J.

    2007-02-01

    The total or integrated fluorescence intensity of a through-focus series of a thin standardized uniform fluorescent or calibration layer is shown to be suitable for image intensity correction and calibration in sectioning microscopy. This integrated intensity can be derived from the earlier introduced SectionedImagingProperty or SIPcharts, derived from the 3D layer datasets. By correcting the 3D image of an object with the 3D image of the standardized uniform fluorescent layer obtained under identical conditions one is able to express the object fluorescence in units fluorescence of the calibration layer. With object fluorescence intensities in fluorescence layer unit's or FLU's the object image intensities becomes independent of microscope system and imaging conditions. A direct result is that the often-appreciable lateral intensity variations present in confocal microscopy are eliminated (shading correction). Of more general value is that images obtained with different objectives, magnifications or from different microscope systems can be quantitatively related to each other. The effectiveness of shading correction and relating images obtained under various microscope conditions is demonstrated on images of standard fluorocent beads. Expressing the object fluorescence in FLU units seems to be a promising approach for general quantification of sectioning imaging enabling cross-correlation of imaging results over time and between imaging systems.

  3. Absolute Energy Calibration with the Neutron-Activated Liquid-Source System at BaBar's CsI(Tl) Calorimeter

    SciTech Connect

    Bauer, J

    2004-01-05

    The electro-magnetic calorimeter at the BABAR detector, part of the asymmetric B Factory at SLAC, measures photons in the energy range from 20 MeV to 8 GeV with good resolution. The calorimeter is calibrated at the low energy end with 6.13 MeV photons obtained from a liquid source system. During the calibration, a fluorine-rich liquid is activated via a neutron generator and pumped past the front of the calorimeter's crystals. Decays that occur in front of the crystals emit photons of well-defined energy, which are detected in the crystals with the regular data acquisition system. The liquid source system adds only very little material in front of the calorimeter, needs nearly no maintenance, and allows operation at the switch of a key with minimal safety hazards. The report describes the system, presents calibration results obtained from its operation since 1999, shows the crystals' loss of light yield due to radiation damage, and shares experiences gained over the years.

  4. Behavior of Mira Variables in Bandstrength-Color Diagrams. Comparison of Dynamic Models with Calibrated Spectral Scans

    NASA Astrophysics Data System (ADS)

    Wing, R. F.; Alvarez, R.; Plez, B.; Yuan, Y.

    We compare 26-color scanner observations of Mira variables (Wing 1967, recently rereduced and recalibrated) with model calculations. The measurements were made through a 30 AA exit slot at 26 selected wavelengths between 7800 and 11000 AA. They include the best available continuum points, and points sensitive to the presence of bands of TiO, VO, CN, ZrO, and H_2O. We present molecular bandstrength-color diagrams in which the variables execute loops. This behavior was first shown in a review article (Spinrad & Wing 1969) and discussed further by Wing (1980). Here we present comparisons with model calculations, following the work of Alvarez & Plez (1998). Detailed synthetic spectra from hydrostatic models reproduce the observed colors. The loops followed by the Mira variables in color-color diagrams are reasonably well reproduced by hydrodynamic model atmospheres. We show the effects of pulsation on the behavior of the different molecular bands seen in this spectral region.

  5. Absolute vicarious calibration of Landsat-8 OLI and Resourcesat-2 AWiFS sensors over Rann of Kutch site in Gujarat

    NASA Astrophysics Data System (ADS)

    Sharma, Shweta; Sridhar, V. N.; Prajapati, R. P.; Rao, K. M.; Mathur, A. K.

    2016-05-01

    In this work, vicarious calibration coefficients for all the four bands (green, red, NIR and SWIR) of Resourcesat-2 AWiFS sensor for four dates during Dec 2013-Nov 2014 and for seven bands (blue, green, red, NIR, SWIR1, SWIR2 and PAN) of OLI sensor onboard Landsat-8 for six dates during Dec 2013-Feb 2015 were estimated using field measured reflectance and measured atmospheric parameters during sensor image acquisition over Rann of Kutch site in Gujarat. The top of atmosphere (TOA) at-satellite radiances for all the bands were simulated using 6S radiative transfer code with field measured reflectance, synchronous atmospheric measurements and respective sensor's spectral response functions as an input. These predicted spectral radiances were compared with the radiances from the respective sensor's image in the respective band over the calibration site. Cross-calibration between the sensors AWiFS and OLI was also attempted using near-simultaneous same day image acquisition. Effect of spectral band adjustment factor was also studied with OLI sensor taken as reference sensor. Results show that the variation in average estimated radiance ratio for the AWiFS sensor was found to be within 10% for all the bands, whereas, for OLI sensor, the variation was found to be within 6% for all the bands except green and SWIR2 for which the variation was 8% and 11% respectively higher than the 5% uncertainty of the OLI sensor specification for TOA spectral radiance. At the 1σ level, red, NIR, SWIR1 and Panchromatic bands of OLI sensor showed close agreement between sensor-measured and vicarious TOA radiance resulting no change in calibration coefficient and hence indicating no sensor degradation. Two sets of near-simultaneous SBAFs were derived from respective ground measured target reflectance profiles and applied to the AWiFS and it was observed that overall, SBAF compensation provides a significant improvement in sensor agreement. The reduction in the difference between AWiFS and

  6. The Y Band at 1.035 Microns: Photometric Calibration and the DwarfStellar/Substellar Color Sequence

    NASA Astrophysics Data System (ADS)

    Hillenbrand, Lynne A.; Foster, Jonathan B.; Persson, S. E.; Matthews, K.

    2002-07-01

    We define and characterize a photometric bandpass (called ``Y'') that is centered near 1.035 μm, in between the traditionally classified ``optical'' and ``infrared'' spectral regimes. We present Y magnitudes and Y-H and Y-K colors for a sample consisting mostly of photometric and spectral standards, spanning the spectral type range sdO to T5 V. Deep molecular absorption features in the near-infrared spectra of extremely cool objects are such that the Y-H and Y-K colors grow rapidly with advancing spectral type especially from late M through mid-L, substantially more rapidly than J-H or H-K, which span a smaller total dynamic range. Consistent with other near-infrared colors, however, Y-H and Y-K colors turn blueward in the L6-L8 temperature range, with later T-type objects having colors similar to those of warmer M and L stars. Y-J colors remain constant at 1.0+/-0.15 mag from early-L through late-T dwarfs. The slope of the interstellar reddening vector within this filter is AY=0.38AV. Reddening moves stars nearly along the YHK dwarf color sequence, making it more difficult to distinguish unambiguously very low mass candidate brown dwarf objects from higher mass stars seen, e.g., through the Galactic plane or toward star-forming regions. Other diagrams involving the Y band may be somewhat more discriminating.

  7. Color accuracy and reproducibility in whole slide imaging scanners

    NASA Astrophysics Data System (ADS)

    Shrestha, Prarthana; Hulsken, Bas

    2014-03-01

    In this paper, we propose a work-flow for color reproduction in whole slide imaging (WSI) scanners such that the colors in the scanned images match to the actual slide color and the inter scanner variation is minimum. We describe a novel method of preparation and verification of the color phantom slide, consisting of a standard IT8- target transmissive film, which is used in color calibrating and profiling the WSI scanner. We explore several ICC compliant techniques in color calibration/profiling and rendering intents for translating the scanner specific colors to the standard display (sRGB) color-space. Based on the quality of color reproduction in histopathology tissue slides, we propose the matrix-based calibration/profiling and absolute colorimetric rendering approach. The main advantage of the proposed work-ow is that it is compliant to the ICC standard, applicable to color management systems in different platforms, and involves no external color measurement devices. We measure objective color performance using CIE-DeltaE2000 metric, where DeltaE values below 1 is considered imperceptible. Our evaluation 14 phantom slides, manufactured according to the proposed method, show an average inter-slide color difference below 1 DeltaE. The proposed work-flow is implemented and evaluated in 35 Philips Ultra Fast Scanners (UFS). The results show that the average color difference between a scanner and the reference is 3.5 DeltaE, and among the scanners is 3.1 DeltaE. The improvement on color performance upon using the proposed method is apparent on the visual color quality of the tissues scans.

  8. Absolute Energy Calibration of X-ray TESs with 0.04 eV Uncertainty at 6.4 keV in a Hadron-Beam Environment

    NASA Astrophysics Data System (ADS)

    Tatsuno, H.; Doriese, W. B.; Bennett, D. A.; Curceanu, C.; Fowler, J. W.; Gard, J.; Gustafsson, F. P.; Hashimoto, T.; Hayano, R. S.; Hays-Wehle, J. P.; Hilton, G. C.; Iliescu, M.; Ishimoto, S.; Itahashi, K.; Iwasaki, M.; Kuwabara, K.; Ma, Y.; Marton, J.; Noda, H.; O'Neil, G. C.; Okada, S.; Outa, H.; Reintsema, C. D.; Sato, M.; Schmidt, D. R.; Shi, H.; Suzuki, K.; Suzuki, T.; Uhlig, J.; Ullom, J. N.; Widmann, E.; Yamada, S.; Zmeskal, J.; Swetz, D. S.

    2016-08-01

    A performance evaluation of superconducting transition-edge sensors (TESs) in the environment of a pion beam line at a particle accelerator is presented. Averaged across the 209 functioning sensors in the array, the achieved energy resolution is 5.2 eV FWHM at Co K_{α } (6.9 keV) when the pion beam is off and 7.3 eV at a beam rate of 1.45 MHz. Absolute energy uncertainty of ± 0.04 eV is demonstrated for Fe K_{α } (6.4 keV) with in-situ energy calibration obtained from other nearby known X-ray lines. To achieve this small uncertainty, it is essential to consider the non-Gaussian energy response of the TESs and thermal cross-talk pile-up effects due to charged particle hits in the silicon substrate of the TES array.

  9. Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements

    PubMed Central

    Diop, Mamadou; Verdecchia, Kyle; Lee, Ting-Yim; St Lawrence, Keith

    2011-01-01

    A primary focus of neurointensive care is the prevention of secondary brain injury, mainly caused by ischemia. A noninvasive bedside technique for continuous monitoring of cerebral blood flow (CBF) could improve patient management by detecting ischemia before brain injury occurs. A promising technique for this purpose is diffuse correlation spectroscopy (DCS) since it can continuously monitor relative perfusion changes in deep tissue. In this study, DCS was combined with a time-resolved near-infrared technique (TR-NIR) that can directly measure CBF using indocyanine green as a flow tracer. With this combination, the TR-NIR technique can be used to convert DCS data into absolute CBF measurements. The agreement between the two techniques was assessed by concurrent measurements of CBF changes in piglets. A strong correlation between CBF changes measured by TR-NIR and changes in the scaled diffusion coefficient measured by DCS was observed (R2 = 0.93) with a slope of 1.05 ± 0.06 and an intercept of 6.4 ± 4.3% (mean ± standard error). PMID:21750781

  10. On-orbit calibration of the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite for ocean color applications.

    PubMed

    Eplee, Robert E; Turpie, Kevin R; Meister, Gerhard; Patt, Frederick S; Franz, Bryan A; Bailey, Sean W

    2015-03-10

    The NASA Ocean Biology Processing Group (OBPG) developed two independent calibrations of the Suomi National Polar-Orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) moderate resolution reflective solar bands using solar diffuser measurements and lunar observations, and implemented a combined solar- and lunar-based calibration to track temporal changes in radiometric response of the instrument. Differences between the solar and lunar data sets have been used to identify issues and verify improvements in each. Linearization of the counts-to-radiance conversion yields a more consistent calibration at low radiance levels. Correction of a recently identified error in the VIIRS solar unit vector coordinate frame has been incorporated into the solar data and diffuser screen transmission functions. Temporal trends in the solar diffuser stability monitor data have been evaluated and addressed. Fits to the solar calibration time series show mean residuals per band of 0.067%-0.17%. Periodic residuals in the VIIRS lunar data are confirmed to arise from a wavelength-dependent libration effect for the sub-spacecraft point in the output of the U.S. Geological Survey Robotic Lunar Observatory photometric model of the Moon. Temporal variations in the relative spectral responses for each band have been assessed, and significant impact on band M1 (412 nm) lunar data has been identified and rectified. Fits to the lunar calibration time series, incorporating sub-spacecraft point libration corrections, show mean residuals per band of 0.069%-0.20%. Lunar calibrations have been used to adjust the solar-derived radiometric corrections for bands M1, M3, and M4. After all corrections, the relative differences in the solar and lunar calibrations for bands M1-M7 are 0.093%-0.22%. The OBPG has achieved a radiometric stability for the VIIRS on-orbit calibration that is commensurate with those achieved for SeaWiFS and Aqua MODIS, supporting the incorporation of VIIRS

  11. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  12. A New Method for Calibrating Perceptual Salience across Dimensions in Infants: The Case of Color vs. Luminance

    ERIC Educational Resources Information Center

    Kaldy, Zsuzsa; Blaser, Erik A.; Leslie, Alan M.

    2006-01-01

    We report a new method for calibrating differences in perceptual salience across feature dimensions, in infants. The problem of inter-dimensional salience arises in many areas of infant studies, but a general method for addressing the problem has not previously been described. Our method is based on a preferential looking paradigm, adapted to…

  13. ACCESS: Design, Calibration Strategy, and Status

    NASA Astrophysics Data System (ADS)

    Kaiser, M. E.; Access Team

    2016-05-01

    ACCESS, Absolute Color Calibration Experiment for Standard Stars, is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35–1.7μm bandpass. Establishing improved spectrophotometric standards is important for a broad range of missions and is relevant to many astrophysical problems. Systematic errors associated with problems such as dark energy now compete with the statistical errors and thus limit our ability to answer fundamental questions in astrophysics.

  14. ACCESS: Design, Calibration Strategy, and Status

    NASA Astrophysics Data System (ADS)

    Kaiser, M. E.; Access Team

    2016-05-01

    ACCESS, Absolute Color Calibration Experiment for Standard Stars, is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35-1.7μm bandpass. Establishing improved spectrophotometric standards is important for a broad range of missions and is relevant to many astrophysical problems. Systematic errors associated with problems such as dark energy now compete with the statistical errors and thus limit our ability to answer fundamental questions in astrophysics.

  15. Cognitive aspects of color

    NASA Astrophysics Data System (ADS)

    Derefeldt, Gunilla A. M.; Menu, Jean-Pierre; Swartling, Tiina

    1995-04-01

    This report surveys cognitive aspects of color in terms of behavioral, neuropsychological, and neurophysiological data. Color is usually defined as psychophysical color or as perceived color. Behavioral data on categorical color perception, absolute judgement of colors, color coding, visual search, and visual awareness refer to the more cognitive aspects of color. These are of major importance in visual synthesis and spatial organization, as already shown by the Gestalt psychologists. Neuropsychological and neurophysiological findings provide evidence for an interrelation between cognitive color and spatial organization. Color also enhances planning strategies, as has been shown by studies on color and eye movements. Memory colors and the color- language connections in the brain also belong among the cognitive aspects of color.

  16. M Dwarf Flare Continuum Variations on One-second Timescales: Calibrating and Modeling of ULTRACAM Flare Color Indices

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.; Wisniewski, John P.; Dhillon, Vik S.; Marsh, Tom R.; Hilton, Eric J.; Brown, Benjamin P.

    2016-04-01

    We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color-color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 104 K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100. Based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium, based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias, and observations, and based on observations made with the ESO Telescopes

  17. Calibration and performance of a new in situ multi-channel fluorometer for measurement of colored dissolved organic matter in the ocean

    NASA Astrophysics Data System (ADS)

    Conmy, Robyn N.; Coble, Paula G.; Castillo, Carlos E. Del

    2004-02-01

    The development of multispectral in situ fluorescence instruments greatly enhances the study of the optical properties of Colored Organic Matter (COM). Here, we tested the inter-instrument variability of three WetLabs, Inc. SAFIres using quinine sulfate standards. As with any fluorometer, intensity and spectral biases in fluorescence output due to properties of the SAFIre's optical components necessitate corrections. Low response of the instrument to quinine sulfate and lack of an excitation/emission channel at the fluorescence maximum of this standard precluded direct spectral calibration. Calibrations conducted using seawater as a secondary standard provided an acceptable alternative. The field performance of the SAFIre from two experiments is presented here. Time series contour plots show that the instrument has the ability to detect small differences in COM optical properties, and observed fluorescence emission ratios are indicative of changes in sources of the material over the course of the study. The SAFIre was found to extend multispectral measurements to include high spatial and high temporal resolution.

  18. THE ABSOLUTE MAGNITUDES OF RED HORIZONTAL BRANCH STARS IN THE ugriz SYSTEM

    SciTech Connect

    Chen, Y. Q.; Zhao, G.; Zhao, J. K.

    2009-09-10

    Based on photometric data of the central parts of eight globular clusters and one open cluster presented by An and his collaborators, we select red horizontal branch (RHB) stars in the (g - r){sub 0}-g {sub 0} diagram and make a statistical study of the distributions of their colors and absolute magnitudes in the SDSS ugriz system. Meanwhile, absolute magnitudes in the Johnson VRI system are calculated through the translation formulae between gri and VRI in the literature. The calibrations of absolute magnitude as functions of metallicity and age are established by linear regressions of the data. It is found that metallicity coefficients in these calibrations decrease, while age coefficients increase, from the blue u filter to the red z filter. The calibration of M{sub i} = 0.06[Fe/H] + 0.040t + 0.03 has the smallest scatter of 0.04 mag, and thus i is the best filter in the ugriz system when RHB stars are used for distance indicators. The comparison of the M{sub I} calibration from our data with that from red clump stars indicates that the previous suggestion that the I filter is better than the V filter in distance determination may not be true because of its significant dependence on age.

  19. Polar Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 3 May 2004 This nighttime visible color image was collected on January 1, 2003 during the Northern Summer season near the North Polar Troughs.

    This daytime visible color image was collected on September 4, 2002 during the Northern Spring season in Vastitas Borealis. The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude 79, Longitude 346 East (14 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with

  20. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  1. Improved dewpoint-probe calibration

    NASA Technical Reports Server (NTRS)

    Stephenson, J. G.; Theodore, E. A.

    1978-01-01

    Relatively-simple pressure-control apparatus calibrates dewpoint probes considerably faster than conventional methods, with no loss of accuracy. Technique requires only pressure measurement at each calibration point and single absolute-humidity measurement at beginning of run. Several probes can be calibrated simultaneously and points can be checked above room temperature.

  2. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  3. The Science of Calibration

    NASA Astrophysics Data System (ADS)

    Kent, S. M.

    2016-05-01

    This paper presents a broad overview of the many issues involved in calibrating astronomical data, covering the full electromagnetic spectrum from radio waves to gamma rays, and considering both ground-based and space-based missions. These issues include the science drivers for absolute and relative calibration, the physics behind calibration and the mechanisms used to transfer it from the laboratory to an astronomical source, the need for networks of calibrated astronomical standards, and some of the challenges faced by large surveys and missions.

  4. True Colors Shining Through

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image mosaic illustrates how scientists use the color calibration targets (upper left) located on both Mars Exploration Rovers to fine-tune the rovers' sense of color. In the center, spectra, or light signatures, acquired in the laboratory of the colored chips on the targets are shown as lines. Actual data from Mars Exploration Rover Spirit's panoramic camera is mapped on top of these lines as dots. The plot demonstrates that the observed colors of Mars match the colors of the chips, and thus approximate the red planet's true colors. This finding is further corroborated by the picture taken on Mars of the calibration target, which shows the colored chips as they would appear on Earth.

  5. On-orbit calibration of SeaWiFS.

    PubMed

    Eplee, Robert E; Meister, Gerhard; Patt, Frederick S; Barnes, Robert A; Bailey, Sean W; Franz, Bryan A; McClain, Charles R

    2012-12-20

    Ocean color climate data records (CDRs) require water-leaving radiances with 5% absolute and 1% relative accuracies as input. Because of the amplification of any sensor calibration errors by the atmospheric correction, the 1% relative accuracy requirement translates into a 0.1% long-term radiometric stability requirement for top-of-the-atmosphere (TOA) radiances. The rigorous prelaunch and on-orbit calibration program developed and implemented for Sea-viewing Wide Field-of-view Sensor (SeaWiFS) by the NASA Ocean Biology Processing Group (OBPG) has led to the incorporation of significant changes into the on-orbit calibration methodology over the 13-year lifetime of the instrument. Evolving instrument performance and ongoing algorithm refinement have resulted in updates to approaches for the lunar, solar, and vicarious calibration of SeaWiFS. The uncertainties in the calibrated TOA radiances are addressed in terms of accuracy (biases in the measurements), precision (scatter in the measurements), and stability (repeatability of the measurements). The biases are 2%-3% from lunar calibration and 1%-2% from vicarious calibration. The precision is 0.16% from solar signal-to-noise ratios, 0.13% from lunar residuals, and 0.10% from vicarious gains. The long-term stability of the TOA radiances, derived from the lunar time series, is 0.13%. The stability of the vicariously calibrated TOA radiances, incorporating the uncertainties of the in situ measurements and the atmospheric correction, is 0.30%. This stability of the radiometric calibration of SeaWiFS over its 13-year on-orbit lifetime has allowed the OBPG to produce CDRs from the ocean color data set. PMID:23262612

  6. On-orbit calibration of SeaWiFS.

    PubMed

    Eplee, Robert E; Meister, Gerhard; Patt, Frederick S; Barnes, Robert A; Bailey, Sean W; Franz, Bryan A; McClain, Charles R

    2012-12-20

    Ocean color climate data records (CDRs) require water-leaving radiances with 5% absolute and 1% relative accuracies as input. Because of the amplification of any sensor calibration errors by the atmospheric correction, the 1% relative accuracy requirement translates into a 0.1% long-term radiometric stability requirement for top-of-the-atmosphere (TOA) radiances. The rigorous prelaunch and on-orbit calibration program developed and implemented for Sea-viewing Wide Field-of-view Sensor (SeaWiFS) by the NASA Ocean Biology Processing Group (OBPG) has led to the incorporation of significant changes into the on-orbit calibration methodology over the 13-year lifetime of the instrument. Evolving instrument performance and ongoing algorithm refinement have resulted in updates to approaches for the lunar, solar, and vicarious calibration of SeaWiFS. The uncertainties in the calibrated TOA radiances are addressed in terms of accuracy (biases in the measurements), precision (scatter in the measurements), and stability (repeatability of the measurements). The biases are 2%-3% from lunar calibration and 1%-2% from vicarious calibration. The precision is 0.16% from solar signal-to-noise ratios, 0.13% from lunar residuals, and 0.10% from vicarious gains. The long-term stability of the TOA radiances, derived from the lunar time series, is 0.13%. The stability of the vicariously calibrated TOA radiances, incorporating the uncertainties of the in situ measurements and the atmospheric correction, is 0.30%. This stability of the radiometric calibration of SeaWiFS over its 13-year on-orbit lifetime has allowed the OBPG to produce CDRs from the ocean color data set.

  7. Improving Photometric Calibration of Meteor Video Camera Systems

    NASA Technical Reports Server (NTRS)

    Ehlert, Steven; Kingery, Aaron; Cooke, William

    2016-01-01

    Current optical observations of meteors are commonly limited by systematic uncertainties in photometric calibration at the level of approximately 0.5 mag or higher. Future improvements to meteor ablation models, luminous efficiency models, or emission spectra will hinge on new camera systems and techniques that significantly reduce calibration uncertainties and can reliably perform absolute photometric measurements of meteors. In this talk we discuss the algorithms and tests that NASA's Meteoroid Environment Office (MEO) has developed to better calibrate photometric measurements for the existing All-Sky and Wide-Field video camera networks as well as for a newly deployed four-camera system for measuring meteor colors in Johnson-Cousins BV RI filters. In particular we will emphasize how the MEO has been able to address two long-standing concerns with the traditional procedure, discussed in more detail below.

  8. THE INFRARED COLORS OF THE SUN

    SciTech Connect

    Casagrande, L.; Asplund, M.; Ramirez, I.; Melendez, J.

    2012-12-10

    Solar infrared colors provide powerful constraints on the stellar effective temperature scale, but they must be measured with both accuracy and precision in order to do so. We fulfill this requirement by using line-depth ratios to derive in a model-independent way the infrared colors of the Sun, and we use the latter to test the zero point of the Casagrande et al. effective temperature scale, confirming its accuracy. Solar colors in the widely used Two Micron All Sky Survey (2MASS) JHK{sub s} and WISE W1-4 systems are provided: (V - J){sub Sun} = 1.198, (V - H){sub Sun} = 1.484, (V - K{sub s} ){sub Sun} = 1.560, (J - H){sub Sun} = 0.286, (J - K{sub s} ){sub Sun} = 0.362, (H - K{sub s} ){sub Sun} = 0.076, (V - W1){sub Sun} = 1.608, (V - W2){sub Sun} = 1.563, (V - W3){sub Sun} = 1.552, and (V - W4){sub Sun} = 1.604. A cross-check of the effective temperatures derived implementing 2MASS or WISE magnitudes in the infrared flux method confirms that the absolute calibration of the two systems agrees within the errors, possibly suggesting a 1% offset between the two, thus validating extant near- and mid-infrared absolute calibrations. While 2MASS magnitudes are usually well suited to derive T{sub eff}, we find that a number of bright, solar-like stars exhibit anomalous WISE colors. In most cases, this effect is spurious and can be attributed to lower-quality measurements, although for a couple of objects (3% {+-} 2% of the total sample) it might be real, and may hint at the presence of warm/hot debris disks.

  9. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  10. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  11. The Photometric Calibration of the Dark Energy Survey (DES): Results from the Summer 2013 Re-processing of the DES Science Verification Data

    NASA Astrophysics Data System (ADS)

    Tucker, Douglas L.; Allam, S. S.; Annis, J. T.; Armstrong, R.; Bauer, A.; Bernstein, G.; Burke, D.; Fix, M.; Foust, W.; Gruendl, R. A.; Head, H.; Kuehn, K.; Kuhlmann, S.; Li, T.; Lin, H.; Rykoff, E. S.; Smith, J.; Wester, W.; Wyatt, S.; Yanny, B.; Energy Survey, Dark

    2014-01-01

    The Dark Energy Survey (DES) -- a five-year 5000 sq deg grizY survey of the Southern sky to probe the parameters of dark energy -- recently began operations using the new 3 sq deg DECam imager on the Blanco 4m telescope at the Cerro Tololo Interamerican Observatory. In order to achieve its science goals, the DES has tight requirements on both its relative and absolute photometric calibrations. The 5-year requirements are (1) an internal (relative) photometric calibration of 2% rms (2) an absolute color calibration of 0.5%, and (3) an absolute flux calibration of 0.5% (in i-band relative to BD+17 4708). In preparation for DES operations, the instrument+telescope underwent a period of Science Verification between November 2012 and February 2013. These Science Verification (SV) data were quickly processed to determine whether the image data were being produced with sufficient quality and efficiency to meet DES science goals. These data were also useful for initial science, and they were re-processed and re-calibrated during Summer 2013. The photometric goals for Summer 2013 re-processing of the DES SV were intentionally more relaxed than the requirements for the final 5-year survey: (1) an all-sky internal (relative) calibration goal of 3%, (2) an absolute color goal of 3%, and (3) an absolute flux goal of 3%. Here, we describe the results from the photometric calibration of the Summer 2013 re-processing of the DES SV data, the lessons learned, and plans for the future.

  12. Software For Calibration Of Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Van Zyl, Jakob; Zebker, Howard; Freeman, Anthony; Holt, John; Dubois, Pascale; Chapman, Bruce

    1994-01-01

    POLCAL (Polarimetric Radar Calibration) software tool intended to assist in calibration of synthetic-aperture radar (SAR) systems. In particular, calibrates Stokes-matrix-format data produced as standard product by NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). Version 4.0 of POLCAL is upgrade of version 2.0. New options include automatic absolute calibration of 89/90 data, distributed-target analysis, calibration of nearby scenes with corner reflectors, altitude or roll-angle corrections, and calibration of errors introduced by known topography. Reduces crosstalk and corrects phase calibration without use of ground calibration equipment. Written in FORTRAN 77.

  13. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876

  14. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses.

  15. Mars Exploration Rover Navigation Camera in-flight calibration

    USGS Publications Warehouse

    Soderblom, J.M.; Bell, J.F.; Johnson, J. R.; Joseph, J.; Wolff, M.J.

    2008-01-01

    The Navigation Camera (Navcam) instruments on the Mars Exploration Rover (MER) spacecraft provide support for both tactical operations as well as scientific observations where color information is not necessary: large-scale morphology, atmospheric monitoring including cloud observations and dust devil movies, and context imaging for both the thermal emission spectrometer and the in situ instruments on the Instrument Deployment Device. The Navcams are a panchromatic stereoscopic imaging system built using identical charge-coupled device (CCD) detectors and nearly identical electronics boards as the other cameras on the MER spacecraft. Previous calibration efforts were primarily focused on providing a detailed geometric calibration in line with the principal function of the Navcams, to provide data for the MER navigation team. This paper provides a detailed description of a new Navcam calibration pipeline developed to provide an absolute radiometric calibration that we estimate to have an absolute accuracy of 10% and a relative precision of 2.5%. Our calibration pipeline includes steps to model and remove the bias offset, the dark current charge that accumulates in both the active and readout regions of the CCD, and the shutter smear. It also corrects pixel-to-pixel responsivity variations using flat-field images, and converts from raw instrument-corrected digital number values per second to units of radiance (W m-2 nm-1 sr-1), or to radiance factor (I/F). We also describe here the initial results of two applications where radiance-calibrated Navcam data provide unique information for surface photometric and atmospheric aerosol studies. Copyright 2008 by the American Geophysical Union.

  16. Color reproduction system based on color appearance model and gamut mapping

    NASA Astrophysics Data System (ADS)

    Cheng, Fang-Hsuan; Yang, Chih-Yuan

    2000-06-01

    By the progress of computer, computer peripherals such as color monitor and printer are often used to generate color image. However, cross media color reproduction by human perception is usually different. Basically, the influence factors are device calibration and characterization, viewing condition, device gamut and human psychology. In this thesis, a color reproduction system based on color appearance model and gamut mapping is proposed. It consists of four parts; device characterization, color management technique, color appearance model and gamut mapping.

  17. Photometric calibration of the International Ultraviolet Explorer /IUE/ - Low dispersion

    NASA Technical Reports Server (NTRS)

    Bohlin, R. C.; Sparks, W. M.; Holm, A. V.; Savage, B. D.; Snijders, M. A. J.

    1980-01-01

    Absolute sensitivity curves for IUE low-resolution spectra are obtained by comparing IUE measurements of hot stars with the absolute energy distributions established for these objects by previous satellite and rocket experiments. The differences between these earlier experiments are discussed quantitatively, and a common absolute flux scale is proposed as the basis for the absolute calibration of IUE.

  18. Near-infrared photoluminescence of orange color standards - then and now

    NASA Astrophysics Data System (ADS)

    Zwinkels, Joanne C.; Noël, Mario; Hillman, Sean

    2013-08-01

    The presence of near-infrared (NIR) photoluminescence has been recently reported in some of the second series of Ceramic Color Standards (CCSII) that are widely used in the calibration and performance evaluation of color measuring instruments. The impact of this photoluminescence effect can cause significant colorimetric errors particularly for broadband measurements using a detector with high spectral responsivity in the NIR region. The magnitude of this effect has been demonstrated for specific color standards and specific instrument systems but has not been unambiguously quantified to allow general predictions or absolute comparisons of different instrument designs or different ceramic tiles. Here we present absolute NIR photoluminescence measurements on three different formulations of the CCSII orange ceramic color standard using the National Research Council of Canada (NRC) Reference Spectrofluorimeter whose spectral range has been recently extended to 1000 nm. The validation for this extended spectral range is shown by comparison of an independent method of instrument calibration using a different combination of physical standards. It is convincingly shown that the two different leaded formulations of this ceramic orange standard issued in 2000 and 2011 have no significant photoluminescence and thus can be used for calibration with any type of spectrophotometer design whereas the unleaded formulation issued in 2011 has significant NIR photoluminescence and should not be used for instrument calibration and validation over an extended range into the NIR for certain spectrophotometers with relatively high throughput in the NIR region, such as a spectrophotometer with polychromatic illumination mode using a xenon source or with monochromatic illumination mode using a Si detector. It is shown that for colorimetric applications, the impact of this NIR fluorescence is only significant for the latter spectrophotometer design with broadband detection with a Si or

  19. Mid-infrared absolute spectral responsivity scale based on an absolute cryogenic radiometer and an optical parametric oscillator laser

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Shi, Xueshun; Chen, Haidong; Liu, Yulong; Liu, Changming; Chen, Kunfeng; Li, Ligong; Gan, Haiyong; Ma, Chong

    2016-06-01

    We are reporting on a laser-based absolute spectral responsivity scale in the mid-infrared spectral range. By using a mid-infrared tunable optical parametric oscillator as the laser source, the absolute responsivity scale has been established by calibrating thin-film thermopile detectors against an absolute cryogenic radiometer. The thin-film thermopile detectors can be then used as transfer standard detectors. The extended uncertainty of the absolute spectral responsivity measurement has been analyzed to be 0.58%–0.68% (k  =  2).

  20. Mid-infrared absolute spectral responsivity scale based on an absolute cryogenic radiometer and an optical parametric oscillator laser

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Shi, Xueshun; Chen, Haidong; Liu, Yulong; Liu, Changming; Chen, Kunfeng; Li, Ligong; Gan, Haiyong; Ma, Chong

    2016-06-01

    We are reporting on a laser-based absolute spectral responsivity scale in the mid-infrared spectral range. By using a mid-infrared tunable optical parametric oscillator as the laser source, the absolute responsivity scale has been established by calibrating thin-film thermopile detectors against an absolute cryogenic radiometer. The thin-film thermopile detectors can be then used as transfer standard detectors. The extended uncertainty of the absolute spectral responsivity measurement has been analyzed to be 0.58%-0.68% (k  =  2).

  1. A color management system for multi-colored LED lighting

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Maumita; Thorseth, Anders; Jepsen, Jørgen; Corell, Dennis D.; Dam-Hansen, Carsten

    2015-09-01

    A new color control system is described and implemented for a five-color LED light engine, covering a wide white gamut. The system combines a new way of using pre-calibrated lookup tables and a rule-based optimization of chromaticity distance from the Planckian locus with a calibrated color sensor. The color sensor monitors the chromaticity of the mixed light providing the correction factor for the current driver by using the generated lookup table. The long term stability and accuracy of the system will be experimentally investigated with target tolerance within a circle radius of 0.0013 in the uniform chromaticity diagram (CIE1976).

  2. Information through color imagery

    USGS Publications Warehouse

    Colvocoresses, Alden P.

    1975-01-01

    The color-sensing capability of the human eye is a powerful tool. In remote sensing we should use color to display data more meaningfully, not to re-create the scene. Color disappears with distance, and features change color with viewing angle. Color infrared film lets us apply color with additional meaning even though we introduce a false color response. Although the marginal gray scale on an ERTS (Earth Resources Technology Satellite) image may indicate balance between the green, red, and infrared bands, and although each band may be printed in a primary color, tests show that we are not fully applying the three primary colors. Therefore, contrast in the green band should be raised. For true three-color remote sensing of the Earth, we must find two generally meaningful signatures in the visible spectrum, or perhaps extend our spectral range. Before turning to costly digital processing we should explore analog processing. Most ERTS users deal with relative spectral radiance; the few concerned with absolute radiance could use the computer-compatible tapes or special annotations. NASA (National Aeronautics and Space Administration), which assigns the range and contrast to the ERTS image, controls processing and could adjust the density range for maximum contrast in any ERTS scene. NASA cannot alter processing for local changes in reflective characteristics of the Earth but could adjust for Sun elevation and optimize the contrast in a given band.

  3. The absolute path command

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  4. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  5. Overview of the radiometric calibration of MOBY

    NASA Astrophysics Data System (ADS)

    Clark, Dennis K.; Feinholz, Michael; Yarbrough, Mark; Johnson, B. Carol; Brown, Steven W.; Kim, Yong S.; Barnes, Robert A.

    2002-01-01

    The Marine Optical Buoy (MOBY) provides values of water- leaving radiance for the calibration and validation of satellite ocean color instruments. Located in clear, deep ocean waters near the Hawaiian Island of Lanai, MOBY measures the upwelling radiance and downwelling irradiance at three levels below the ocean surface plus the incident solar irradiance just above the surface. The radiance standards for MOBY are two integrating spheres with calibrations based on standards traceable to the National Institute of Standards and Technology (NIST). For irradiance, the MOBY project uses standard lamps that are routinely calibrated at NIST. Wavelength calibrations are conducted with a series of emission lines observed from a set of low pressure lamps. Each MOBY instrument views these standards before and after its deployment to provide system responses (calibration coefficients). During each deployment, the stability of the MOBY spectrographs and internal optics are monitored using three internal reference sources. In addition, the collection optics for the instrument are cleaned and checked on a monthly basis while the buoy is deployed. Divers place lamps over the optics before and after each cleaning to monitor changes at the system level. As a hyperspectral instrument, MOBY uses absorption lines in the solar spectrum to monitor its wavelength stability. When logistically feasible during each deployment, coincident measurements are made with the predecessor buoy before that buoy's recovery. Measurements of the underwater light fields from the deployment vessel are compared with those from the buoy. Based on this set of absolute calibrations and the suite of stability reference measurements, a calibration history is created for each buoy. These calibration histories link the measurement time series from the set of MOBY buoys. In general, the differences between the pre- and post-deployment radiance calibrations of the buoys range from +1% to -6% with a definitive bias to

  6. Extension of the absolute flux density scale to 22.285 GHz. [radio astronomy

    NASA Technical Reports Server (NTRS)

    Janssen, M. A.; Golden, L. M.; Welch, W. J.

    1974-01-01

    Extending the absolute flux density scale at microwave wavelengths, the absolute flux densities at 22.285 GHz of several standard sources were determined using the absolute calibrations of the 6.1 meter antenna of the Hat Creek Observatory. Interpolation formulas for each nonthermal standard source have been derived by combining these data with those determined at lower frequencies. The suitability of employing the standard sources for calibrating other antennas is discussed.

  7. Summary of OARE flight calibration measurements

    NASA Astrophysics Data System (ADS)

    Blanchard, Robert C.; Nicholson, John Y.

    1995-01-01

    To date, the Orbital Acceleration Research Experiment (OARE) has flown on the shuttle orbiter for five missions; namely, STS-40, STS-50, STS-58, STS-62, and STS-65. The OARE instrument system contains a three-axis accelerometer which can resolve accelerations to the nano-g (10(exp -9) g) level and a full calibration station to permit in situ bias and scale factor calibration measurements. This calibration capability eliminates the large uncertainty encountered with accelerometers flown in the past on the orbiter which use ground-based calibrations to provide absolute acceleration measurements. A detailed flight data report presentation is given for the OARE calibration measurements from all missions, along with an estimate of the calibration errors. The main aim is to collect, process, and present the calibration data in one archival report. These calibration data are the necessary key ingredient to produce the absolute acceleration levels from the OARE acceleration flight data.

  8. Strategy for the absolute neutron emission measurement on ITER.

    PubMed

    Sasao, M; Bertalot, L; Ishikawa, M; Popovichev, S

    2010-10-01

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10(10) n/s (neutron/second) for DT and 10(8) n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  9. Strategy for the absolute neutron emission measurement on ITER

    SciTech Connect

    Sasao, M.; Bertalot, L.; Ishikawa, M.; Popovichev, S.

    2010-10-15

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10{sup 10} n/s (neutron/second) for DT and 10{sup 8} n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  10. Uncertainty Assessment of the SeaWiFS On-Orbit Calibration

    NASA Technical Reports Server (NTRS)

    Eplee, Robert E., Jr.; Meister, Gerhard; Patt, Frederick S.; Franz, Bryan A.; McClain, Charles R.

    2011-01-01

    Ocean color climate data records require water-leaving radiances with 5% absolute and 1% relative accuracies as input. Because of the amplification of any sensor calibration errors by the atmospheric correction, the 1% relative accuracy requirement translates into a 0.1% long-term radiometric stability requirement for top-of-the atmosphere radiances. The rigorous on-orbit calibration program developed and implemented for SeaWiFS by the NASA Ocean Biology Processing Group (OBPG) Calibration and Validation Team (CVT) has allowed the CVT to maintain the stability of the radiometric calibration of SeaWiFS at 0.13% or better over the mission. The uncertainties in the resulting calibrated top-of-the-atmosphere (TOA) radiances can be addressed in terms of accuracy (biases in the measurements), precision (scatter in the measurements), and stability (repeatability of the measurements). The calibration biases of lunar observations relative to the USGS RObotic Lunar Observatory (ROLO) photometric model of the Moon are 2-3%. The biases from the vicarious calibration against the Marine Optical Buoy (MOBY) are 1-2%. The precision of the calibration derived from the solar calibration signal-tonoise ratios are 0.16%, from the lunar residuals are 0.13%, and from the vicarious gains are 0.10%. The long-term stability of the TOA radiances, derived from the lunar time series, is 0.13%. The stability of the vicariouslycalibrated TOA radiances, incorporating the uncertainties in the MOBY measurements and the atmospheric correction, is 0.30%. These results allow the OBPG to produce climate data records from the SeaWiFS ocean color data.

  11. Another Technique For Calibration Of Polarimetric Radar

    NASA Technical Reports Server (NTRS)

    Van Zyl, Jakob J.

    1992-01-01

    Inexpensive technique involves four-stage procedure where different aspects of radar system calibrated at each stage. Provides calibration of relative phase, crosstalk, relative amplitude, and absolute amplitude. Only artificial target(s) required is at least one trihedral corner reflector. Advantage of four-step calibration procedure is that one does not have to perform entire procedure if one does not need full calibration.

  12. Color Blindness

    MedlinePlus

    ... three color cone cells to determine our color perception. Color blindness can occur when one or more ... Anyone who experiences a significant change in color perception should see an ophthalmologist (Eye M.D.). Next ...

  13. Color blindness

    MedlinePlus

    Color deficiency; Blindness - color ... Color blindness occurs when there is a problem with the pigments in certain nerve cells of the eye that sense color. These cells are called cones. They are found ...

  14. Color Blindness

    MedlinePlus

    ... rose in full bloom. If you have a color vision defect, you may see these colors differently than most people. There are three main kinds of color vision defects. Red-green color vision defects are the ...

  15. Crater Floor in Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 5 May 2004 This daytime visible color image was collected on November 18, 2003 during the Southern Summer season in Terra Cimmeria.

    This daytime visible color image was collected on September 4, 2002 during the Northern Spring season in Vastitas Borealis. The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -23.7, Longitude 135.6 East (224.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with

  16. Polar Cap Colors

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 12 May 2004 This daytime visible color image was collected on June 6, 2003 during the Southern Spring season near the South Polar Cap Edge.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -77.8, Longitude 195 East (165 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA

  17. Task-dependent color discrimination

    NASA Technical Reports Server (NTRS)

    Poirson, Allen B.; Wandell, Brian A.

    1990-01-01

    When color video displays are used in time-critical applications (e.g., head-up displays, video control panels), the observer must discriminate among briefly presented targets seen within a complex spatial scene. Color-discrimination threshold are compared by using two tasks. In one task the observer makes color matches between two halves of a continuously displayed bipartite field. In a second task the observer detects a color target in a set of briefly presented objects. The data from both tasks are well summarized by ellipsoidal isosensitivity contours. The fitted ellipsoids differ both in their size, which indicates an absolute sensitivity difference, and orientation, which indicates a relative sensitivity difference.

  18. Characterization of the DARA solar absolute radiometer

    NASA Astrophysics Data System (ADS)

    Finsterle, W.; Suter, M.; Fehlmann, A.; Kopp, G.

    2011-12-01

    The Davos Absolute Radiometer (DARA) prototype is an Electrical Substitution Radiometer (ESR) which has been developed as a successor of the PMO6 type on future space missions and ground based TSI measurements. The DARA implements an improved thermal design of the cavity detector and heat sink assembly to minimize air-vacuum differences and to maximize thermal symmetry of measuring and compensating cavity. The DARA also employs an inverted viewing geometry to reduce internal stray light. We will report on the characterization and calibration experiments which were carried out at PMOD/WRC and LASP (TRF).

  19. ABSOLUTE POLARIMETRY AT RHIC.

    SciTech Connect

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  20. Fluorescence of ceramic color standards.

    PubMed

    Koo, Annette; Clare, John F; Nield, Kathryn M; Deadman, Andrew; Usadi, Eric

    2010-04-20

    Fluorescence has been found in color standards available for use in calibration and verification of color measuring instruments. The fluorescence is excited at wavelengths below about 600?nm and emitted above 700?nm, within the response range of silicon photodiodes, but at the edge of the response of most photomultipliers and outside the range commonly scanned in commercial colorimeters. The degree of fluorescence on two of a set of 12 glossy ceramic tiles is enough to introduce significant error when those tiles have been calibrated in one mode of measurement and are used in another. We report the nature of the fluorescence and the implications for color measurement.

  1. Fluorescence of ceramic color standards

    SciTech Connect

    Koo, Annette; Clare, John F.; Nield, Kathryn M.; Deadman, Andrew; Usadi, Eric

    2010-04-20

    Fluorescence has been found in color standards available for use in calibration and verification of color measuring instruments. The fluorescence is excited at wavelengths below about 600 nm and emitted above 700 nm, within the response range of silicon photodiodes, but at the edge of the response of most photomultipliers and outside the range commonly scanned in commercial colorimeters. The degree of fluorescence on two of a set of 12 glossy ceramic tiles is enough to introduce significant error when those tiles have been calibrated in one mode of measurement and are used in another. We report the nature of the fluorescence and the implications for color measurement.

  2. Swarm's Absolute Scalar Magnetometer metrological performances

    NASA Astrophysics Data System (ADS)

    Leger, J.; Fratter, I.; Bertrand, F.; Jager, T.; Morales, S.

    2012-12-01

    The Absolute Scalar Magnetometer (ASM) has been developed for the ESA Earth Observation Swarm mission, planned for launch in November 2012. As its Overhauser magnetometers forerunners flown on Oersted and Champ satellites, it will deliver high resolution scalar measurements for the in-flight calibration of the Vector Field Magnetometer manufactured by the Danish Technical University. Latest results of the ground tests carried out to fully characterize all parameters that may affect its accuracy, both at instrument and satellite level, will be presented. In addition to its baseline function, the ASM can be operated either at a much higher sampling rate (burst mode at 250 Hz) or in a dual mode where it also delivers vector field measurements as a by-product. The calibration procedure and the relevant vector performances will be discussed.

  3. Gafchromic EBT2 film dosimetry in reflection mode with a novel plan-based calibration method

    SciTech Connect

    Mendez, I.; Hartman, V.; Hudej, R.; Strojnik, A.; Casar, B.

    2013-01-15

    Purpose:A dosimetric system formed by Gafchromic EBT2 radiochromic film and Epson Expression 10000XL flatbed scanner was commissioned for dosimetry. In this paper, several open questions concerning the commissioning of radiochromic films for dosimetry were addressed: (a) is it possible to employ this dosimetric system in reflection mode; (b) if so, can the methods used in transmission mode also be used in reflection mode; (c) is it possible to obtain accurate absolute dose measurements with Gafchromic EBT2 films; (d) which calibration method should be followed; (e) which calibration models should be used; and (f) does three-color channel dosimetry offer a significant improvement over single channel dosimetry. The purpose of this paper is to help clarify these questions. Methods: In this study, films were scanned in reflection mode, the effect of surrounding film was evaluated and the feasibility of EBT2 film dosimetry in reflection mode was studied. EBT2's response homogeneity has been reported to lead to excessive dose uncertainties. To overcome this problem, a new plan-based calibration method was implemented. Plan-based calibration can use every pixel and each of the three color channels of the scanned film to obtain the parameters of the calibration model. A model selection analysis was conducted to select lateral correction and sensitometric curve models. The commonly used calibration with fragments was compared with red-channel plan-based calibration and with three-channel plan-based calibration. Results: No effect of surrounding film was found in this study. The film response inhomogeneity in EBT2 films was found to be important not only due to differences in the fog but also due to differences in sensitivity. The best results for lateral corrections were obtained using absolute corrections independent of the dose. With respect to the sensitometric curves, an empirical polynomial fit of order 4 was found to obtain results equivalent to a gamma

  4. Radiation calibration targets

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Several prominent features of Mars Pathfinder and surrounding terrain are seen in this image, taken by the Imager for Mars Pathfinder on July 4 (Sol 1), the spacecraft's first day on the Red Planet. Portions of a lander petal are at the lower part of the image. At the left, the mechanism for the high-gain antenna can be seen. The dark area along the right side of the image represents a portion of the low-gain antenna. The radiation calibration target is at the right. The calibration target is made up of a number of materials with well-characterized colors. The known colors of the calibration targets allow scientists to determine the true colors of the rocks and soils of Mars. Three bull's-eye rings provide a wide range of brightness for the camera, similar to a photographer's grayscale chart. In the middle of the bull's-eye is a 5-inch tall post that casts a shadow, which is distorted in this image due to its location with respect to the lander camera.

    A large rock is located at the near center of the image. Smaller rocks and areas of soil are strewn across the Martian terrain up to the horizon line.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C.

  5. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  6. Method for calibration of plutonium NDA

    SciTech Connect

    Lemming, J.F.; Campbell, A.R.; Rodenburg, W.W.

    1980-01-01

    Calibration materials characterized by calorimetric assay can be a practical alternative to synthetic standards for the calibration of plutonium nondestructive assay. Calorimetric assay is an effective measurement system for the characterization because: it can give an absolute assay from first principles when the isotopic composition is known, it is insensitive to most matrix effects, and its traceability to international measurement systems has been demonstrated.

  7. Phoenix Color Targets

    NASA Technical Reports Server (NTRS)

    2008-01-01

    These images of three Phoenix color targets were taken on sols 1 and 2 by the Surface Stereo Imager (SSI) on board the Phoenix lander. The bottom target was imaged in approximate color (SSI's red, green, and blue filters: 600, 530, and 480 nanometers), while the others were imaged with an infrared filter (750 nanometers). All of them will be imaged many times over the mission to monitor the color calibration of the camera. The two at the top show grains 2 to 3 millimeters in size that were likely lifted to the Phoenix deck during landing. Each of the large color chips on each target contains a strong magnet to protect the interior material from Mars' magnetic dust.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Calibrating X-ray Imaging Devices for Accurate Intensity Measurement

    SciTech Connect

    Haugh, M. J.

    2011-07-28

    The purpose of the project presented is to develop methods to accurately calibrate X-ray imaging devices. The approach was to develop X-ray source systems suitable for this endeavor and to develop methods to calibrate solid state detectors to measure source intensity. NSTec X-ray sources used for the absolute calibration of cameras are described, as well as the method of calibrating the source by calibrating the detectors. The work resulted in calibration measurements for several types of X-ray cameras. X-ray camera calibration measured efficiency and efficiency variation over the CCD. Camera types calibrated include: CCD, CID, back thinned (back illuminated), front illuminated.

  9. Absolute cavity pyrgeometer

    DOEpatents

    Reda, Ibrahim

    2013-10-29

    Implementations of the present disclosure involve an apparatus and method to measure the long-wave irradiance of the atmosphere or long-wave source. The apparatus may involve a thermopile, a concentrator and temperature controller. The incoming long-wave irradiance may be reflected from the concentrator to a thermopile receiver located at the bottom of the concentrator to receive the reflected long-wave irradiance. In addition, the thermopile may be thermally connected to a temperature controller to control the device temperature. Through use of the apparatus, the long-wave irradiance of the atmosphere may be calculated from several measurements provided by the apparatus. In addition, the apparatus may provide an international standard of pyrgeometers' calibration that is traceable back to the International System of Units (SI) rather than to a blackbody atmospheric simulator.

  10. Calibrations of the LHD Thomson scattering system

    NASA Astrophysics Data System (ADS)

    Yamada, I.; Funaba, H.; Yasuhara, R.; Hayashi, H.; Kenmochi, N.; Minami, T.; Yoshikawa, M.; Ohta, K.; Lee, J. H.; Lee, S. H.

    2016-11-01

    The Thomson scattering diagnostic systems are widely used for the measurements of absolute local electron temperatures and densities of fusion plasmas. In order to obtain accurate and reliable temperature and density data, careful calibrations of the system are required. We have tried several calibration methods since the second LHD experiment campaign in 1998. We summarize the current status of the calibration methods for the electron temperature and density measurements by the LHD Thomson scattering diagnostic system. Future plans are briefly discussed.

  11. 1987 calibration of the TFTR neutron spectrometers

    SciTech Connect

    Barnes, C.W.; Strachan, J.D.; Princeton Univ., NJ . Plasma Physics Lab.)

    1989-12-01

    The {sup 3}He neutron spectrometer used for measuring ion temperatures and the NE213 proton recoil spectrometer used for triton burnup measurements were absolutely calibrated with DT and DD neutron generators placed inside the TFTR vacuum vessel. The details of the detector response and calibration are presented. Comparisons are made to the neutron source strengths measured from other calibrated systems. 23 refs., 19 figs., 6 tabs.

  12. Color and the worldwide web

    NASA Astrophysics Data System (ADS)

    Kinlock, Raymond S.

    2002-06-01

    Guidelines to publishing and transmitting color via the Internet. An introduction to how individuals can cope with color issues using off the shelf package solutions and a glimpse to what there is on the development frontier. Topics to be discussed include: (1) Optimizing your files for transfer via the net with an off the shelf software package. (2) Embedded color management packages in some off the shelf packages. (3) Mac and Window differences. (4) A look at compression pros and cons. (5) An introduction to some of the high end color calibration systems and equipment.

  13. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  14. Colorful Chemistry.

    ERIC Educational Resources Information Center

    Williams, Suzanne

    1991-01-01

    Described is an color-making activity where students use food coloring, eyedroppers, and water to make various colored solutions. Included are the needed materials and procedures. Students are asked to write up the formulas for making their favorite color. (KR)

  15. POLCAL - POLARIMETRIC RADAR CALIBRATION

    NASA Technical Reports Server (NTRS)

    Vanzyl, J.

    1994-01-01

    Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the

  16. Psychophysical contrast calibration

    PubMed Central

    To, Long; Woods, Russell L; Goldstein, Robert B; Peli, Eli

    2013-01-01

    Electronic displays and computer systems offer numerous advantages for clinical vision testing. Laboratory and clinical measurements of various functions and in particular of (letter) contrast sensitivity require accurately calibrated display contrast. In the laboratory this is achieved using expensive light meters. We developed and evaluated a novel method that uses only psychophysical responses of a person with normal vision to calibrate the luminance contrast of displays for experimental and clinical applications. Our method combines psychophysical techniques (1) for detection (and thus elimination or reduction) of display saturating nonlinearities; (2) for luminance (gamma function) estimation and linearization without use of a photometer; and (3) to measure without a photometer the luminance ratios of the display’s three color channels that are used in a bit-stealing procedure to expand the luminance resolution of the display. Using a photometer we verified that the calibration achieved with this procedure is accurate for both LCD and CRT displays enabling testing of letter contrast sensitivity to 0.5%. Our visual calibration procedure enables clinical, internet and home implementation and calibration verification of electronic contrast testing. PMID:23643843

  17. Calibration of X-Ray Observatories

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; L'Dell, Stephen L.

    2011-01-01

    Accurate calibration of x-ray observatories has proved an elusive goal. Inaccuracies and inconsistencies amongst on-ground measurements, differences between on-ground and in-space performance, in-space performance changes, and the absence of cosmic calibration standards whose physics we truly understand have precluded absolute calibration better than several percent and relative spectral calibration better than a few percent. The philosophy "the model is the calibration" relies upon a complete high-fidelity model of performance and an accurate verification and calibration of this model. As high-resolution x-ray spectroscopy begins to play a more important role in astrophysics, additional issues in accurately calibrating at high spectral resolution become more evident. Here we review the challenges of accurately calibrating the absolute and relative response of x-ray observatories. On-ground x-ray testing by itself is unlikely to achieve a high-accuracy calibration of in-space performance, especially when the performance changes with time. Nonetheless, it remains an essential tool in verifying functionality and in characterizing and verifying the performance model. In the absence of verified cosmic calibration sources, we also discuss the notion of an artificial, in-space x-ray calibration standard. 6th

  18. Radiometric calibration by rank minimization.

    PubMed

    Lee, Joon-Young; Matsushita, Yasuyuki; Shi, Boxin; Kweon, In So; Ikeuchi, Katsushi

    2013-01-01

    We present a robust radiometric calibration framework that capitalizes on the transform invariant low-rank structure in the various types of observations, such as sensor irradiances recorded from a static scene with different exposure times, or linear structure of irradiance color mixtures around edges. We show that various radiometric calibration problems can be treated in a principled framework that uses a rank minimization approach. This framework provides a principled way of solving radiometric calibration problems in various settings. The proposed approach is evaluated using both simulation and real-world datasets and shows superior performance to previous approaches.

  19. Redetermining CEBAF's Absolute Energy

    NASA Astrophysics Data System (ADS)

    Su, Tong; Jlab Marathon Collaboration

    2015-04-01

    With the upgrade of the Jefferson Lab accelerator (CEBAF) from 6 GeV max energy to 12 GeV, all the dipole magnets in the machine were refurbished. Most of them were switched from open c-shaped to closed h-shaped by adding extra iron. With these upgraded magnets, the energy calibration of the accelerator needed to be redetermined. We will show how an extra external dipole, which is run in series with those in the machine, helps us cross check the current in the magnets as well as precisely map out the integral field for any machine setting. Using knowledge of the relative performance of the dipoles as well as the bend angle into the Hall, has allowed us to already determine a 4th pass 7 GeV beam to better than 7 MeV. In the future, we will use g-2 spin precession as a second independent energy determination. This work is supported by Kent State University, NSF Grant PHY-1405814, and DOE Contract DE-AC05-06OR23177 (JLab).

  20. Method to obtain absolute impurity density profiles combining charge exchange and beam emission spectroscopy without absolute intensity calibrationa)

    NASA Astrophysics Data System (ADS)

    Kappatou, A.; Jaspers, R. J. E.; Delabie, E.; Marchuk, O.; Biel, W.; Jakobs, M. A.

    2012-10-01

    Investigation of impurity transport properties in tokamak plasmas is essential and a diagnostic that can provide information on the impurity content is required. Combining charge exchange recombination spectroscopy (CXRS) and beam emission spectroscopy (BES), absolute radial profiles of impurity densities can be obtained from the CXRS and BES intensities, electron density and CXRS and BES emission rates, without requiring any absolute calibration of the spectra. The technique is demonstrated here with absolute impurity density radial profiles obtained in TEXTOR plasmas, using a high efficiency charge exchange spectrometer with high etendue, that measures the CXRS and BES spectra along the same lines-of-sight, offering an additional advantage for the determination of absolute impurity densities.

  1. Absolute Identification by Relative Judgment

    ERIC Educational Resources Information Center

    Stewart, Neil; Brown, Gordon D. A.; Chater, Nick

    2005-01-01

    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…

  2. Be Resolute about Absolute Value

    ERIC Educational Resources Information Center

    Kidd, Margaret L.

    2007-01-01

    This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

  3. An Easy Way to Show Memory Color Effects

    PubMed Central

    2016-01-01

    This study proposes and evaluates a simple stimulus display that allows one to measure memory color effects (the effect of object knowledge and memory on color perception). The proposed approach is fast and easy and does not require running an extensive experiment. It shows that memory color effects are robust to minor variations due to a lack of color calibration. PMID:27698988

  4. An Easy Way to Show Memory Color Effects

    PubMed Central

    2016-01-01

    This study proposes and evaluates a simple stimulus display that allows one to measure memory color effects (the effect of object knowledge and memory on color perception). The proposed approach is fast and easy and does not require running an extensive experiment. It shows that memory color effects are robust to minor variations due to a lack of color calibration.

  5. Predicted magnitudes and colors from cool-star model atmospheres

    NASA Astrophysics Data System (ADS)

    Johnson, H. R.; Steiman-Cameron, T. Y.

    1982-02-01

    An intercomparison of model stellar atmospheres and observations of real stars can lead to a better understanding of the relationship between the physical properties of stars and their observed radiative flux. In this spirit we have determined wide-band and narrow-band magnitudes and colors for a subset of models of K and M giant and supergiant stars selected from the grid of 40 models by Johnson, Bernat and Krupp (1980) (hereafter referred to as JBK). The 24 models selected have effective temperatures of 4000, 3800, 3600, 3400, 3200, 3000, 2750 and 2500 K and log g = 0, 1 or 2. Emergent energy fluxes (erg/ sq cm s A) were calculated at 9140 wavelengths for each model. These computed flux curves were folded through the transmission functions of Wing's 8-color system (Wing, 1971; White and Wing, 1978) and through Johnson's (1965) wide-band (BVRIJKLM) system. The calibration of the resultant magnitudes was made by using the absolute calibration of the flux curve of Vega by Schild, et al. (1971).

  6. Predicted magnitudes and colors from cool-star model atmospheres

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Steiman-Cameron, T. Y.

    1981-01-01

    An intercomparison of model stellar atmospheres and observations of real stars can lead to a better understanding of the relationship between the physical properties of stars and their observed radiative flux. In this spirit we have determined wide-band and narrow-band magnitudes and colors for a subset of models of K and M giant and supergiant stars selected from the grid of 40 models by Johnson, Bernat and Krupp (1980) (hereafter referred to as JBK). The 24 models selected have effective temperatures of 4000, 3800, 3600, 3400, 3200, 3000, 2750 and 2500 K and log g = 0, 1 or 2. Emergent energy fluxes (erg/ sq cm s A) were calculated at 9140 wavelengths for each model. These computed flux curves were folded through the transmission functions of Wing's 8-color system (Wing, 1971; White and Wing, 1978) and through Johnson's (1965) wide-band (BVRIJKLM) system. The calibration of the resultant magnitudes was made by using the absolute calibration of the flux curve of Vega by Schild, et al. (1971).

  7. Thermochromism in color measurement

    NASA Astrophysics Data System (ADS)

    Hiltunen, Jouni; Mutanen, J.; Jaeaeskelaeinen, Timo; Parkkinen, Jussi P. S.

    2002-06-01

    Accurate color measurements have become more and more important during the past few decades. This is valid not only in physical research but also in industrial production, where the importance of accurate measurements is mainly due to increased quality requirements set by the customers of various goods. The development of technology enables more and more accurate measuring systems. While the accuracy has improved one has noticed, that many unexpected factors affect the color of an object. One of these factors is the temperature of the sample. It is known that for example the reflectance of the ceramic reference tiles used for calibration of colorimeters and spectrophotometers is temperature dependent. This phenomenon is called thermochromism, which is a reversible change of color of the sample as a function of temperature. It may be noticed already at room temperature if the temperature varies few centigrades. Red and orange samples are especially sensitive to temperature variation and may cause difficulties in precise color measurements. We show, how the phenomenon is based on physical processes and not only reflects the instability of red color pigments. We derive simple formulas, which are shown to explain the experimental data. We also discuss the meaning of thermochromism for color measurements, measure the magnitude of it and propose the experimental conditions to avoid this effect.

  8. Color realism and color science.

    PubMed

    Byrne, Alex; Hilbert, David R

    2003-02-01

    The target article is an attempt to make some progress on the problem of color realism. Are objects colored? And what is the nature of the color properties? We defend the view that physical objects (for instance, tomatoes, radishes, and rubies) are colored, and that colors are physical properties, specifically, types of reflectance. This is probably a minority opinion, at least among color scientists. Textbooks frequently claim that physical objects are not colored, and that the colors are "subjective" or "in the mind." The article has two other purposes: First, to introduce an interdisciplinary audience to some distinctively philosophical tools that are useful in tackling the problem of color realism and, second, to clarify the various positions and central arguments in the debate. The first part explains the problem of color realism and makes some useful distinctions. These distinctions are then used to expose various confusions that often prevent people from seeing that the issues are genuine and difficult, and that the problem of color realism ought to be of interest to anyone working in the field of color science. The second part explains the various leading answers to the problem of color realism, and (briefly) argues that all views other than our own have serious difficulties or are unmotivated. The third part explains and motivates our own view, that colors are types of reflectances and defends it against objections made in the recent literature that are often taken as fatal.

  9. Color realism and color science.

    PubMed

    Byrne, Alex; Hilbert, David R

    2003-02-01

    The target article is an attempt to make some progress on the problem of color realism. Are objects colored? And what is the nature of the color properties? We defend the view that physical objects (for instance, tomatoes, radishes, and rubies) are colored, and that colors are physical properties, specifically, types of reflectance. This is probably a minority opinion, at least among color scientists. Textbooks frequently claim that physical objects are not colored, and that the colors are "subjective" or "in the mind." The article has two other purposes: First, to introduce an interdisciplinary audience to some distinctively philosophical tools that are useful in tackling the problem of color realism and, second, to clarify the various positions and central arguments in the debate. The first part explains the problem of color realism and makes some useful distinctions. These distinctions are then used to expose various confusions that often prevent people from seeing that the issues are genuine and difficult, and that the problem of color realism ought to be of interest to anyone working in the field of color science. The second part explains the various leading answers to the problem of color realism, and (briefly) argues that all views other than our own have serious difficulties or are unmotivated. The third part explains and motivates our own view, that colors are types of reflectances and defends it against objections made in the recent literature that are often taken as fatal. PMID:14598439

  10. Entropy, color, and color rendering.

    PubMed

    Price, Luke L A

    2012-12-01

    The Shannon entropy [Bell Syst. Tech J.27, 379 (1948)] of spectral distributions is applied to the problem of color rendering. With this novel approach, calculations for visual white entropy, spectral entropy, and color rendering are proposed, indices that are unreliant on the subjectivity inherent in reference spectra and color samples. The indices are tested against real lamp spectra, showing a simple and robust system for color rendering assessment. The discussion considers potential roles for white entropy in several areas of color theory and psychophysics and nonextensive entropy generalizations of the entropy indices in mathematical color spaces.

  11. Disentangling Effective Temperatures of Individual Eclipsing Binary Components by Means of Color-Index Constraining

    NASA Astrophysics Data System (ADS)

    Prša, A.; Zwitter, T.

    2006-08-01

    Eclipsing binary stars are gratifying objects because of their unique geometrical properties upon which all important physical parameters such as masses, radii, temperatures, luminosities and distance may be obtained in absolute scale. This poses strict demand on the model to be free of systematic effects that would influence the results later used for calibrations, catalogs and evolution theory. We present an objective scheme of obtaining individual temperatures of both binary system components by means of color-index constraining, with the only requirement that the observational data-set is acquired in a standard photometric system. We show that for a modest case of two similar main-sequence components the erroneous approach of assuming the temperature of the primary star from the color index yields temperatures which are systematically wrong by ˜ 100K.

  12. A color sensor wavelength meter

    NASA Astrophysics Data System (ADS)

    Durfee, Dallin; Jackson, Jarom; Otterstrom, Nils; Jones, Tyler; Archibald, James

    2016-05-01

    We will discuss a laser wavelength meter based on a commercial color sensor chip consisting of an array of photodiodes with different absorptive color filters. By comparing the relative amplitudes of light on the photodiodes, the wavelength of light can be determined with picometer-level precision and with picometer-scale calibration drift over a period longer than a month. This work was supported by NSF Grant Number PHY-1205736.

  13. Seeing Color

    ERIC Educational Resources Information Center

    Texley, Juliana

    2005-01-01

    Colors are powerful tools for engaging children, from the youngest years onward. We hang brightly patterned mobiles above their cribs and help them learn the names of colors as they begin to record their own ideas in pictures and words. Colors can also open the door to an invisible world of electromagnetism, even when children can barely imagine…

  14. Absolute measurements of fast neutrons using yttrium

    SciTech Connect

    Roshan, M. V.; Springham, S. V.; Rawat, R. S.; Lee, P.; Krishnan, M.

    2010-08-15

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be f{sub n}{approx}4.1x10{sup -4} with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 10{sup 8} neutrons per discharge.

  15. MAGSAT: Vector magnetometer absolute sensor alignment determination

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1981-01-01

    A procedure is described for accurately determining the absolute alignment of the magnetic axes of a triaxial magnetometer sensor with respect to an external, fixed, reference coordinate system. The method does not require that the magnetic field vector orientation, as generated by a triaxial calibration coil system, be known to better than a few degrees from its true position, and minimizes the number of positions through which a sensor assembly must be rotated to obtain a solution. Computer simulations show that accuracies of better than 0.4 seconds of arc can be achieved under typical test conditions associated with existing magnetic test facilities. The basic approach is similar in nature to that presented by McPherron and Snare (1978) except that only three sensor positions are required and the system of equations to be solved is considerably simplified. Applications of the method to the case of the MAGSAT Vector Magnetometer are presented and the problems encountered discussed.

  16. Anemometer calibrator

    NASA Technical Reports Server (NTRS)

    Bate, T.; Calkins, D. E.; Price, P.; Veikins, O.

    1971-01-01

    Calibrator generates accurate flow velocities over wide range of gas pressure, temperature, and composition. Both pressure and flow velocity can be maintained within 0.25 percent. Instrument is essentially closed loop hydraulic system containing positive displacement drive.

  17. Singular perturbation of absolute stability.

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.

    1972-01-01

    It was previously shown (author, 1969) that the regions of absolute stability in the parameter space can be determined when the parameters appear on the right-hand side of the system equations, i.e., the regular case. Here, the effect on absolute stability of a small parameter attached to higher derivatives in the equations (the singular case) is studied. The Lur'e-Postnikov class of nonlinear systems is considered.

  18. Evaluating calibrations of normal incident pyrheliometers

    NASA Astrophysics Data System (ADS)

    Vignola, Frank; Lin, Fuding

    2010-08-01

    When an Eppley Normal Incident Pyrheliometer is calibrated against an Eppley Hickey Frieden Absolute Cavity Radiometer, the instrument systematically deviates from the absolute cavity readings. The reason for this deviation is not understood. Comparisons are made between one pyrheliometer and an absolute cavity radiometer on selected clear days over a period of 8 months in Eugene, Oregon. The ratios of the readings from the two instruments are correlated against wind speed, pressure, temperature, relative humidity, beam intensity, and zenith angle to determine if any of these parameters statistically influence the calibration process. Wind speed, pressure, beam intensity, and air mass are shown to be statistically significant factors in determining the responsivity of the normal incident pyrheliometer. The results of these tests are evaluated and discussed. Use of air mass instead of zenith angle is proposed for calibration reports.

  19. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXI - Absolute energy distribution of stars in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Code, A. D.; Fairchild, E. T.

    1976-01-01

    The absolute energy distribution in the ultraviolet is given for the stars alpha Vir, eta UMa, and alpha Leo. The calibration is based on absolute heterochromatic photometry between 2920 and 1370 A carried out with an Aerobee sounding rocket. The fundamental radiation standard is the synchrotron radiation from 240-MeV electrons in a certain synchrotron storage ring. On the basis of the sounding-rocket calibration, the preliminary OAO-2 spectrometer calibration has been revised; the fluxes for the three program stars are tabulated in energy per second per square centimeter per unit wavelength interval.

  20. Color Terms and Color Concepts

    ERIC Educational Resources Information Center

    Davidoff, Jules

    2006-01-01

    In their lead articles, both Kowalski and Zimiles (2006) and O'Hanlon and Roberson (2006) declare a general relation between color term knowledge and the ability to conceptually represent color. Kowalski and Zimiles, in particular, argue for a priority for the conceptual representation in color term acquisition. The complexities of the interaction…

  1. Color Categories and Color Appearance

    ERIC Educational Resources Information Center

    Webster, Michael A.; Kay, Paul

    2012-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue-green boundary, to test whether chromatic differences across the boundary…

  2. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  3. An atlas of selected calibrated stellar spectra

    NASA Technical Reports Server (NTRS)

    Walker, Russell G.; Cohen, Martin

    1992-01-01

    Five hundred and fifty six stars in the IRAS PSC-2 that are suitable for stellar radiometric standards and are brighter than 1 Jy at 25 microns were identified. In addition, 123 stars that meet all of our criteria for calibration standards, but which lack a luminosity class were identified. An approach to absolute stellar calibration of broadband infrared filters based upon new models of Vega and Sirius due to Kurucz (1992) is presented. A general technique used to assemble continuous wide-band calibrated infrared spectra is described and an absolutely calibrated 1-35 micron spectrum of alpha(Tau) is constructed and the method using new and carefully designed observations is independently validated. The absolute calibration of the IRAS Low Resolution Spectrometer (LRS) database is investigated by comparing the observed spectrum of alpha(Tau) with that assumed in the original LRS calibration scheme. Neglect of the SiO fundamental band in alpha(Tau) has led to the presence of a specious 'emission' feature in all LRS spectra near 8.5 microns, and to an incorrect spectral slope between 8 and 12 microns. Finally, some of the properties of asteroids that effect their utility as calibration objects for the middle and far infrared region are examined. A technique to determine, from IRAS multiwaveband observations, the basic physical parameters needed by various asteroid thermal models that minimize the number of assumptions required is developed.

  4. SU-E-I-87: Calibrating Cherenkov Emission to Match Superficial Dose in Tissue

    SciTech Connect

    Zhang, R; Pogue, B; Glaser, A; Gladstone, D

    2015-06-15

    Purpose: Through Monte Carlo simulations and phantom studies, the dominant factors affecting the calibration of superficial Cherenkov intensity to absolute surface dose was investigated, including tissue optical properties, curvatures, beam properties and imaging angle. Methods: The phasespace files for the TrueBeam system from Varian were used in GAMOS (a GEANT4 based Monte Carlo simulation toolkit) to simulate surface emission Cherenkov signals and the correlated deposited dose. The parameters examined were: i) different tissue optical properties (skin color from light to dark), ii) beam types (X-ray and electron beam), iii) beam energies, iv) thickness of tissues (2.5 cm to 20 cm), v) SSD (80 cm to 120 cm), vi) field sizes (0.5×0.5 cm2 to 20×20 cm2), vii) entrance/exit sides, viii) curvatures (cylinders with diameters from 2.5 cm to 20cm) and ix) imaging angles (0 to 90 degrees). In a specific case, for any Cherenkov photon emitted from the surface, the original position and direction, final position and direction and energy were recorded. Similar experimental measurements were taken in a range of the most pertinent parameters using tissue phantoms. Results: Combining the dose distribution and sampling sensitivity of Cherenkov emission, quantitatively accurate calibration factors (the amount of radiation dose represented by a single Cherenkov photon) were calculated. The data showed relatively large dependence upon different optical properties, curvature, entrance/exit and beam types. For a diffusive surface, the calibration factor was insensitive to imaging angles smaller than 60 degrees. Normalization with the reflectance image was experimentally validated as a simple and accurate method for calibrations of different optical properties. Conclusion: This study sheds light on how and to what extent different conditions affect the calibration from Cherenkov intensity to absolute superficial dose and provides practical solutions to allow quantitative Cherenkov

  5. Precision goniometer equipped with a 22-bit absolute rotary encoder.

    PubMed

    Xiaowei, Z; Ando, M; Jidong, W

    1998-05-01

    The calibration of a compact precision goniometer equipped with a 22-bit absolute rotary encoder is presented. The goniometer is a modified Huber 410 goniometer: the diffraction angles can be coarsely generated by a stepping-motor-driven worm gear and precisely interpolated by a piezoactuator-driven tangent arm. The angular accuracy of the precision rotary stage was evaluated with an autocollimator. It was shown that the deviation from circularity of the rolling bearing utilized in the precision rotary stage restricts the angular positioning accuracy of the goniometer, and results in an angular accuracy ten times larger than the angular resolution of 0.01 arcsec. The 22-bit encoder was calibrated by an incremental rotary encoder. It became evident that the accuracy of the absolute encoder is approximately 18 bit due to systematic errors.

  6. Color Analysis

    NASA Astrophysics Data System (ADS)

    Wrolstad, Ronald E.; Smith, Daniel E.

    Color, flavor, and texture are the three principal quality attributes that determine food acceptance, and color has a far greater influence on our judgment than most of us appreciate. We use color to determine if a banana is at our preferred ripeness level, and a discolored meat product can warn us that the product may be spoiled. The marketing departments of our food corporations know that, for their customers, the color must be "right." The University of California Davis scorecard for wine quality designates four points out of 20, or 20% of the total score, for color and appearance (1). Food scientists who establish quality control specifications for their product are very aware of the importance of color and appearance. While subjective visual assessment and use of visual color standards are still used in the food industry, instrumental color measurements are extensively employed. Objective measurement of color is desirable for both research and industrial applications, and the ruggedness, stability, and ease of use of today's color measurement instruments have resulted in their widespread adoption.

  7. Color categories and color appearance

    PubMed Central

    Webster, Michael A.; Kay, Paul

    2011-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue–green boundary, to test whether chromatic differences across the boundary were perceptually exaggerated. This task did not require overt judgments of the perceived colors, and the tendency to group showed only a weak and inconsistent categorical bias. In a second case, we analyzed results from two prior studies of hue scaling of chromatic stimuli (De Valois, De Valois, Switkes, & Mahon, 1997; Malkoc, Kay, & Webster, 2005), to test whether color appearance changed more rapidly around the blue–green boundary. In this task observers directly judge the perceived color of the stimuli and these judgments tended to show much stronger categorical effects. The differences between these tasks could arise either because different signals mediate color grouping and color appearance, or because linguistic categories might differentially intrude on the response to color and/or on the perception of color. Our results suggest that the interaction between language and color processing may be highly dependent on the specific task and cognitive demands and strategies of the observer, and also highlight pronounced individual differences in the tendency to exhibit categorical responses. PMID:22176751

  8. Processing of Color Words Activates Color Representations

    ERIC Educational Resources Information Center

    Richter, Tobias; Zwaan, Rolf A.

    2009-01-01

    Two experiments were conducted to investigate whether color representations are routinely activated when color words are processed. Congruency effects of colors and color words were observed in both directions. Lexical decisions on color words were faster when preceding colors matched the color named by the word. Color-discrimination responses…

  9. On-Orbit Calibration of ADEOS OCTS with an AVIRIS Underflight

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Pavri, Betina; Boardman, Joseph W.; Shimada, Masanobu; Oaku, Hiromi

    2000-01-01

    The Ocean Color Temperature Scanner (OCTS) onboard the Advanced Earth Observation Satellite (ADEOS) was launched on August 17, 1996. Calibration of OCTS is required for use of the on-orbit measured data for retrieval of physical properties of the ocean. In the solar reflected portion of the electromagnetic spectrum, OCTS measures images with nominally 700-m spatial resolution through eight multispectral bands. The objective of this research was to establish the absolute radiometric calibration of OCTS on orbit through an underflight by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS is a NASA earth-observing imaging spectrometer designed, built and operated by the Jet Propulsion Laboratory (JPL). AVIRIS acquires data from 20-km altitude on a NASA ER-2 aircraft, above most of the Earth's atmosphere. AVIRIS measures the solar reflected spectrum from 370 nm to 2500 nm through 224 contiguous spectral channels. The full width at half maximum (FWHM) of the spectral channels is nominally 10-nm. AVIRIS spectra are acquired as images of 11 km by up to 800 km extent with 20-m spatial resolution. The high spectral resolution of AVIRIS data allows direct convolution to the spectral response functions of the eight multispectral bands of OCTS. The high spatial resolution of AVIRIS data allows for spatial re-sampling of the data to match the ADEOS sensors spatial resolution. In addition, the AVIRIS high spatial resolution allows assessment of the scaling effects due to environmental factors of thin cirrus clouds, sub-pixel cloud cover, white caps, ocean foam, sun-glint, and bright-target adjacency. The platform navigation information recorded by AVIRIS allows calculation of the position and observation geometry of each spectrum for matching to the OCTS measurement. AVIRIS is rigorously characterized and calibrated in the laboratory prior to and following the flight season. The stability and repeatability of AVIRIS calibration have been validated through an

  10. Radiochromic film calibration for low-energy seed brachytherapy dose measurement

    SciTech Connect

    Morrison, Hali Menon, Geetha; Sloboda, Ron S.

    2014-07-15

    Purpose: Radiochromic film dosimetry is typically performed for high energy photons and moderate doses characterizing external beam radiotherapy (XRT). The purpose of this study was to investigate the accuracy of previously established film calibration procedures used in XRT when applied to low-energy, seed-based brachytherapy at higher doses, and to determine necessary modifications to achieve similar accuracy in absolute dose measurements. Methods: Gafchromic EBT3 film was used to measure radiation doses upwards of 35 Gy from 75 kVp, 200 kVp, 6 MV, and (∼28 keV) I-125 photon sources. For the latter irradiations a custom phantom was built to hold a single I-125 seed. Film pieces were scanned with an Epson 10000XL flatbed scanner and the resulting 48-bit RGB TIFF images were analyzed using both FilmQA Pro software andMATLAB. Calibration curves relating dose and optical density via a rational functional form for all three color channels at each irradiation energy were determined with and without the inclusion of uncertainties in the measured optical densities and dose values. The accuracy of calibration curve variations obtained using piecewise fitting, a reduced film measurement area for I-125 irradiation, and a reduced number of dose levels was also investigated. The energy dependence of the film lot used was also analyzed by calculating normalized optical density values. Results: Slight differences were found in the resulting calibration curves for the various fitting methods used. The accuracy of the calibration curves was found to improve at low doses and worsen at high doses when including uncertainties in optical densities and doses, which may better represent the variability that could be seen in film optical density measurements. When exposing the films to doses > 8 Gy, two-segment piecewise fitting was found to be necessary to achieve similar accuracies in absolute dose measurements as when using smaller dose ranges. When reducing the film measurement

  11. [Hair colorants].

    PubMed

    Urbanek-Karłowska, B; Luks, E; Jedra, M; Kiss, E; Malanowska, M

    1997-01-01

    The properties, mode of action and its duration of the preparations used for hair dyeing are described, together with their chemical components, and also preparations of herbal origin. The chemical reactions are described in detail which lead the development of a color polymer occurring during hair dyeing. The studies are presented which are used for toxicological assessment of the raw materials which are the components of the colorants, and the list is included of hair colorants permitted for use in Poland. PMID:9562811

  12. Image Calibration

    NASA Technical Reports Server (NTRS)

    Peay, Christopher S.; Palacios, David M.

    2011-01-01

    Calibrate_Image calibrates images obtained from focal plane arrays so that the output image more accurately represents the observed scene. The function takes as input a degraded image along with a flat field image and a dark frame image produced by the focal plane array and outputs a corrected image. The three most prominent sources of image degradation are corrected for: dark current accumulation, gain non-uniformity across the focal plane array, and hot and/or dead pixels in the array. In the corrected output image the dark current is subtracted, the gain variation is equalized, and values for hot and dead pixels are estimated, using bicubic interpolation techniques.

  13. Flow Calibration

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Flow Technology Inc. worked with Lewis Research Center to develop a system for monitoring two different propellants being supplied to a spacecraft rocket thruster. They then commercialized the technology in the Microtrack, an extremely precise low-flow calibration system. Moog Inc., one of the device's primary users, measures the flow rate or the speed at which hydraulic oil flows through pin sized holes in disc shaped sapphires with the Microtrack. Using this data, two orifices with exactly the same flow rate can be matched as a pair and used as masters in servovalve production. The microtrack can also be used to calibrate other equipment.

  14. Quantum Color

    ScienceCinema

    Lincoln, Don

    2016-07-20

    The idea of electric charges and electricity in general is a familiar one to the science savvy viewer. However, electromagnetism is but one of the four fundamental forces and not the strongest one. The strongest of the fundamental forces is called the strong nuclear force and it has its own associated charge. Physicists call this charge “color” in analogy with the primary colors, although there is no real connection with actual color. In this video, Fermilab’s Dr. Don Lincoln explains why it is that we live in a colorful world.

  15. Biogeographic calibrations for the molecular clock

    PubMed Central

    Ho, Simon Y. W.; Tong, K. Jun; Foster, Charles S. P.; Ritchie, Andrew M.; Lo, Nathan; Crisp, Michael D.

    2015-01-01

    Molecular estimates of evolutionary timescales have an important role in a range of biological studies. Such estimates can be made using methods based on molecular clocks, including models that are able to account for rate variation across lineages. All clock models share a dependence on calibrations, which enable estimates to be given in absolute time units. There are many available methods for incorporating fossil calibrations, but geological and climatic data can also provide useful calibrations for molecular clocks. However, a number of strong assumptions need to be made when using these biogeographic calibrations, leading to wide variation in their reliability and precision. In this review, we describe the nature of biogeographic calibrations and the assumptions that they involve. We present an overview of the different geological and climatic events that can provide informative calibrations, and explain how such temporal information can be incorporated into dating analyses. PMID:26333662

  16. Biogeographic calibrations for the molecular clock.

    PubMed

    Ho, Simon Y W; Tong, K Jun; Foster, Charles S P; Ritchie, Andrew M; Lo, Nathan; Crisp, Michael D

    2015-09-01

    Molecular estimates of evolutionary timescales have an important role in a range of biological studies. Such estimates can be made using methods based on molecular clocks, including models that are able to account for rate variation across lineages. All clock models share a dependence on calibrations, which enable estimates to be given in absolute time units. There are many available methods for incorporating fossil calibrations, but geological and climatic data can also provide useful calibrations for molecular clocks. However, a number of strong assumptions need to be made when using these biogeographic calibrations, leading to wide variation in their reliability and precision. In this review, we describe the nature of biogeographic calibrations and the assumptions that they involve. We present an overview of the different geological and climatic events that can provide informative calibrations, and explain how such temporal information can be incorporated into dating analyses.

  17. VERITAS Distant Laser Calibration and Atmospheric Monitoring

    SciTech Connect

    Hui, C. M.

    2008-12-24

    As a calibrated laser pulse propagates through the atmosphere, the intensity of the Rayleigh scattered light arriving at the VERITAS telescopes can be calculated precisely. This allows for absolute calibration of imaging atmospheric Cherenkov telescopes (IACT) to be simple and straightforward. In these proceedings, we present the comparison between laser data and simulation to estimate the light collection efficiencies of the VERITAS telescopes, and the analysis of multiple laser data sets taken in different months for atmospheric monitoring purpose.

  18. White Rock in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image shows the wind eroded deposit in Pollack Crater called 'White Rock'. This image was collected during the Southern Fall Season.

    Image information: VIS instrument. Latitude -8, Longitude 25.2 East (334.8 West). 0 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of

  19. Iani Chaos in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image of a portion of the Iani Chaos region was collected during the Southern Fall season.

    Image information: VIS instrument. Latitude -2.6 Longitude 342.4 East (17.6 West). 36 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The

  20. False-color Dalmatian Terrain

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 10 May 2004 This daytime visible color image was collected on May 18, 2003 during the Southern Spring season in Noachis Terra.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -74, Longitude 351.9 East (8.1 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space

  1. Absolute flux scale for radioastronomy

    SciTech Connect

    Ivanov, V.P.; Stankevich, K.S.

    1986-07-01

    The authors propose and provide support for a new absolute flux scale for radio astronomy, which is not encumbered with the inadequacies of the previous scales. In constructing it the method of relative spectra was used (a powerful tool for choosing reference spectra). A review is given of previous flux scales. The authors compare the AIS scale with the scale they propose. Both scales are based on absolute measurements by the ''artificial moon'' method, and they are practically coincident in the range from 0.96 to 6 GHz. At frequencies above 6 GHz, 0.96 GHz, the AIS scale is overestimated because of incorrect extrapolation of the spectra of the primary and secondary standards. The major results which have emerged from this review of absolute scales in radio astronomy are summarized.

  2. Flight calibration assessment of HiRAP accelerometer data

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Larman, Kevin T.; Moast, Christina D.

    1993-01-01

    A flight derived method of calibrating the High Resolution Accelerometer Package (HiRAP) flight data has been developed and is discussed for Shuttle Orbiter missions STS-35 and STS-40. These two mission data sets have been analyzed using ground calibration factors and flight derived calibration factors. This flight technique evolved early in the flight program when it was recognized that ground calibration factors are insufficient to determine absolute low-acceleration levels. The application of flight calibration factors to the data sets from these missions produced calibrated acceleration levels within an accuracy of less than +/- 1.5 microgravity of zero during a time in the flight when the acceleration level was known to be less than 1.0 microgravity. This analysis further confirms the theory that flight calibrations are required in order to obtain the absolute measurement of low-frequency, low-acceleration flight signals.

  3. Eleven Colors That Are Almost Never Confused

    NASA Astrophysics Data System (ADS)

    Boynton, Robert M.

    1989-08-01

    1.1. Three functions of color vision. Setting aside the complex psychological effects of color, related to esthetics, fashion, and mood, three relatively basic functions of color vision, which can be examined scientifically, are discernable. (1) With the eye in a given state of adaptation, color vision allows the perception of signals that otherwise would be below threshold, and therefore lost to perception. Evidence for this comes from a variety of two-color threshold experiments. (2) Visible contours can be maintained by color differences alone, regardless of the relative radiances of the two parts of the field whose junction defines the border. For achromatic vision, contour disappears at the isoluminant point. (3) Color specifies what seems to be an absolute property of a surface, one that enhances its recognizability and allows a clearer separation and classification of non-contiguous elements in the visual field.

  4. Calibration strategies for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Gaug, Markus; Berge, David; Daniel, Michael; Doro, Michele; Förster, Andreas; Hofmann, Werner; Maccarone, Maria C.; Parsons, Dan; de los Reyes Lopez, Raquel; van Eldik, Christopher

    2014-08-01

    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration efforts of the different telescopes. The latter include LED-based light pulsers, and various methods and instruments to achieve a calibration of the overall optical throughput. On the array level, methods for the inter-telescope calibration and the absolute calibration of the entire observatory are being developed. Additionally, the atmosphere above the telescopes, used as a calorimeter, will be monitored constantly with state-of-the-art instruments to obtain a full molecular and aerosol profile up to the stratosphere. The aim is to provide a maximal uncertainty of 10% on the reconstructed energy-scale, obtained through various independent methods. Different types of LIDAR in combination with all-sky-cameras will provide the observatory with an online, intelligent scheduling system, which, if the sky is partially covered by clouds, gives preference to sources observable under good atmospheric conditions. Wide-field optical telescopes and Raman Lidars will provide online information about the height-resolved atmospheric extinction, throughout the field-of-view of the cameras, allowing for the correction of the reconstructed energy of each gamma-ray event. The aim is to maximize the duty cycle of the observatory, in terms of usable data, while reducing the dead time introduced by calibration activities to an absolute minimum.

  5. Influence of color word availability on the Stroop color-naming effect.

    PubMed

    Kim, Hyosun; Cho, Yang Seok; Yamaguchi, Motonori; Proctor, Robert W

    2008-11-01

    Three experiments tested whether the Stroop color-naming effect is a consequence of word recognition's being automatic or of the color word's capturing visual attention. In Experiment 1, a color bar was presented at fixation as the color carrier, with color and neutral words presented in locations above or below the color bar; Experiment 2 was similar, except that the color carrier could occur in one of the peripheral locations and the color word at fixation. The Stroop effect increased as display duration increased, and the Stroop dilution effect (a reduced Stroop effect when a neutral word is also present) was an approximately constant proportion of the Stroop effect at all display durations, regardless of whether the color bar or color word was at fixation. In Experiment 3, the interval between the onsets of the to-be-named color and the color word was manipulated. The Stroop effect decreased with increasing delay of the color word onset, but the absolute amount of Stroop dilution produced by the neutral word increased. This study's results imply that an attention shift from the color carrier to the color word is an important factor modulating the size of the Stroop effect.

  6. Spectral radiance source based on supercontinuum laser and wavelength tunable bandpass filter: the spectrally tunable absolute irradiance and radiance source.

    PubMed

    Levick, Andrew P; Greenwell, Claire L; Ireland, Jane; Woolliams, Emma R; Goodman, Teresa M; Bialek, Agnieszka; Fox, Nigel P

    2014-06-01

    A new spectrally tunable source for calibration of radiometric detectors in radiance, irradiance, or power mode has been developed and characterized. It is termed the spectrally tunable absolute irradiance and radiance source (STAIRS). It consists of a supercontinuum laser, wavelength tunable bandpass filter, power stabilization feedback control scheme, and output coupling optics. It has the advantages of relative portability and a collimated beam (low étendue), and is an alternative to conventional sources such as tungsten lamps, blackbodies, or tunable lasers. The supercontinuum laser is a commercial Fianium SC400-6-02, which has a wavelength range between 400 and 2500 nm and a total power of 6 W. The wavelength tunable bandpass filter, a PhotonEtc laser line tunable filter (LLTF), is tunable between 400 and 1000 nm and has a bandwidth of 1 or 2 nm depending on the wavelength selected. The collimated laser beam from the LLTF filter is converted to an appropriate spatial and angular distribution for the application considered (i.e., for radiance, irradiance, or power mode calibration of a radiometric sensor) with the output coupling optics, for example, an integrating sphere, and the spectral radiance/irradiance/power of the source is measured using a calibration optical sensor. A power stabilization feedback control scheme has been incorporated that stabilizes the source to better than 0.01% for averaging times longer than 100 s. The out-of-band transmission of the LLTF filter is estimated to be < -65 dB (0.00003%), and is sufficiently low for many end-user applications, for example the spectral radiance calibration of earth observation imaging radiometers and the stray light characterization of array spectrometers (the end-user optical sensor). We have made initial measurements of two end-user instruments with the STAIRS source, an array spectrometer and ocean color radiometer.

  7. Infrared stereo calibration for unmanned ground vehicle navigation

    NASA Astrophysics Data System (ADS)

    Harguess, Josh; Strange, Shawn

    2014-06-01

    The problem of calibrating two color cameras as a stereo pair has been heavily researched and many off-the-shelf software packages, such as Robot Operating System and OpenCV, include calibration routines that work in most cases. However, the problem of calibrating two infrared (IR) cameras for the purposes of sensor fusion and point could generation is relatively new and many challenges exist. We present a comparison of color camera and IR camera stereo calibration using data from an unmanned ground vehicle. There are two main challenges in IR stereo calibration; the calibration board (material, design, etc.) and the accuracy of calibration pattern detection. We present our analysis of these challenges along with our IR stereo calibration methodology. Finally, we present our results both visually and analytically with computed reprojection errors.

  8. Pathfinder Landing Site in Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 14 May 2004 This image of the Mars Pathfinder Landing site was acquired July 17, 2002, during northern spring.

    The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude 19.4, Longitude 326.8 East (33.2 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science

  9. Relativistic Absolutism in Moral Education.

    ERIC Educational Resources Information Center

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  10. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  11. [The field radiometric calibration and validation of ZY-3 multispectral sensor].

    PubMed

    Zhang, Xue-Wen; Fu, Qiao-Yan; Han, Qi-Jin; Pan, Zhi-Qiang; Yang, Lei

    2014-09-01

    A field calibration campaign of ZY-3 multispectral sensor (MUS) was performed by the China Center for Resources Satellite Data and Application at the Dunhuang site. The reflectance-based method with two-point sites was used to obtain MUS absolute calibration coefficients in 2013. Compared to the calibration results in 2012, the calibration coefficients in 2013 changed by about 1%-8.5% in different bands. The results were also validated by intercalibration method using the Landsat 8 Operational Land Imager (OLI) data. It shows largely good consistency between field calibration and intercalibration. It was concluded that the absolute calibration coefficients were highly reliable.

  12. Cepheid Calibration of the Peak Brightness of Type IA Supernovae. VI. SN 1960F in NGC 4496A

    NASA Astrophysics Data System (ADS)

    Saha, A.; Sandage, Allan; Labhardt, Lukas; Tammann, G. A.; Macchetto, F. D.; Panagia, N.

    1996-12-01

    Cepheid variables have been found in the SBcII galaxy NGC 4496A, parent to the Type Ia supernova 1960F. Of the 130 variables discovered with the Hubble Space Telescope (HST) over a 70 day observing internal from 1994 June to August, comprising 17 epochs in the F555W band and four epochs in the F814W band, 95 are bona fide Cepheids. The periods range from 7 days to greater than 70 days, with the mean magnitudes ranging from = 24.4 to 26.8. The distance modulus of NGC 4496A, based on the Cepheids, is (rn-Al)0 = 31.03±0.14, where a formal reddening of E(V-I) = 0.04±0.06 derived from the colors of the Cepheids has been used to account for possible extinction. There is no measurable differential reddening over the field. The absolute magnitudes of SN 1960F at maximum are M(B)max = -19.43±0.17 and M(V)max =-19.52±0.21. Combining these absolute magnitudes with the Hubble diagrams of "Branch normal" Type Ia supernovae (SNe Ia), determined earlier, gives Hubble constants, based on SN 1960F alone, of HO(B)=56±9 km s-1, (1) and H0(V) = 55±9 km s-1. (2) Combining the calibration of SN 1960F here with six other extant calibrations set out in Paper VII gives interim mean absolute magnitude calibrations of M(B) = -19.45±0.07 and 4M(V) max = -19.47±0.07, with no evidence for appreciable dependence on the light-curve decay rate. These mean interim calibrations require H0(B) = 57±4 km s-1 and H0(V) = 58±4 km s-1 Mpc-1.

  13. Color Blind or Color Conscious?

    ERIC Educational Resources Information Center

    Tatum, Beverly Daniel

    1999-01-01

    A color-blind approach often signifies that an educator has not considered what racial/ethnic identity means to youngsters. Students want to find themselves reflected in the faces of teachers and other students. Color-conscious teachers seek out materials that positively reflect students' identities and initiate discussions about race and racism.…

  14. Cross-calibration of the Landsat-4 and Landsat-5 thematic mappers

    NASA Astrophysics Data System (ADS)

    Mettler, Cory; Helder, Dennis

    2005-08-01

    The Landsat Thematic Mappers have obtained imagery of the Earth's surface since 1982 with the launch of Landsat 4. However, the absolute calibration of this first instrument, as well as it's cross-calibration to the other two thematic mappers on Landsat 5 and 7, remains in question. The objective for this work was to provide an absolute radiometric calibration of the Landsat 4 instrument. Landsat 4's internal calibrator, while still useful, does not provide an absolute calibration; it does provide a relative calibration of the instrument's responsivity over the lifetime of the mission. The same is true for the Landsat 5 internal calibrator; however, Landsat 5 has been cross-calibrated to Landsat 7's Enhanced Thematic Mapper Plus, which is believed to be absolutely calibrated to within 5%. Therefore, by cross-calibrating Landsat 4 to Landsat 7 through Landsat 5, an absolute calibration for Landsat 4 can be determined. This study provides only the Landsat 4 and 5 cross-calibration models. To determine these models, Landsat 4/Landsat 5 scene pairs were studied. Within each pair, 8 400x400-pixel sub-regions were selected from the image. The exact geo-located sub-region was located from both instruments and an assumption was made that the ground and the atmosphere did not change between image dates. Therefore, any difference between the images may be attributed to the difference in the instruments. Results of this cross-calibration using multiple dates were consistent to within 2%. Once the cross-calibration points were determined, they were used to correct the relative lifetime-calibration model from the internal calibrator, hence producing an absolute lifetime-calibration model.

  15. The MISR Calibration Program

    NASA Technical Reports Server (NTRS)

    Bruegge, Carol J.; Diner, David J.; Duval, Valerie G.

    1996-01-01

    The Multiangle Imaging SpectroRadiometer (MISR) is currently under development for NASA's Earth Observing System. The instrument consists of nine pushbroom cameras, each with four spectral bands in the visible and near-infrared. The cameras point in different view directions to provide measurements from nadir to highly oblique view angles in the along-track plane. Multiple view-angle observations provide a unique resource for studies of clouds, aerosols, and the surface. MISR is built to challenging radiometric and geometric performance specifications. Radiometric accuracy, for example, must be within +/- 3%/ 1 sigma, and polarization insensitivity must be better than +/- 1 %. An onboard calibrator (OBC) provides monthly updates to the instrument gain coefficients. Spectralon diffuse panels are used within the OBC to provide a uniform target for the cameras to view. The absolute radiometric scale is established both preflight and in orbit through the use of detector standards. During the mission, ground data processing to accomplish radiometric calibration, geometric rectification and registration of the nine view-angle imagery, and geophysical retrievals will proceed in an automated fashion. A global dataset is produced every 9 days. This paper details the preflight characterization of the MISR instrument, the design of the OBC, and the radiance product processing.

  16. Orbital Acceleration Research Experiment: Calibration Measurements

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.; Larman, Kevin T.

    1995-01-01

    The Orbital Acceleration Research Experiment (OARE), which has flown on STS-40, STS-50, and STS-58, contains a three-axis accelerometer with a single, nonpendulous, electrostatically suspended proofmass, which can resolve accelerations to the 10(sub -9) g level. The experiment also contains a full calibration station to permit in situ bias and scale-factor calibration. This on-orbit calibration capability eliminates the large uncertainty of ground-based calibrations encountered with accelerometers flown in the past on the Orbiter, and thus provides absolute acceleration measurement accuracy heretofore unachievable. This is the first time accelerometer scale-factor measurements have been performed on orbit. A detailed analysis of the calibration process is given, along with results of the calibration factors from the on-orbit OARE flight measurements on STS-58. In addition, the analysis of OARE flight-maneuver data used to validate the scale-factor measurements in the sensor's most sensitive range are also presented. Estimates on calibration uncertainties are discussed. These uncertainty estimates provides bounds on the STS-58 absolute acceleration measurements for future applications.

  17. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  18. Moral absolutism and ectopic pregnancy.

    PubMed

    Kaczor, C

    2001-02-01

    If one accepts a version of absolutism that excludes the intentional killing of any innocent human person from conception to natural death, ectopic pregnancy poses vexing difficulties. Given that the embryonic life almost certainly will die anyway, how can one retain one's moral principle and yet adequately respond to a situation that gravely threatens the life of the mother and her future fertility? The four options of treatment most often discussed in the literature are non-intervention, salpingectomy (removal of tube with embryo), salpingostomy (removal of embryo alone), and use of methotrexate (MXT). In this essay, I review these four options and introduce a fifth (the milking technique). In order to assess these options in terms of the absolutism mentioned, it will also be necessary to discuss various accounts of the intention/foresight distinction. I conclude that salpingectomy, salpingostomy, and the milking technique are compatible with absolutist presuppositions, but not the use of methotrexate.

  19. Moral absolutism and ectopic pregnancy.

    PubMed

    Kaczor, C

    2001-02-01

    If one accepts a version of absolutism that excludes the intentional killing of any innocent human person from conception to natural death, ectopic pregnancy poses vexing difficulties. Given that the embryonic life almost certainly will die anyway, how can one retain one's moral principle and yet adequately respond to a situation that gravely threatens the life of the mother and her future fertility? The four options of treatment most often discussed in the literature are non-intervention, salpingectomy (removal of tube with embryo), salpingostomy (removal of embryo alone), and use of methotrexate (MXT). In this essay, I review these four options and introduce a fifth (the milking technique). In order to assess these options in terms of the absolutism mentioned, it will also be necessary to discuss various accounts of the intention/foresight distinction. I conclude that salpingectomy, salpingostomy, and the milking technique are compatible with absolutist presuppositions, but not the use of methotrexate. PMID:11262641

  20. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  1. Classification images predict absolute efficiency.

    PubMed

    Murray, Richard F; Bennett, Patrick J; Sekuler, Allison B

    2005-02-24

    How well do classification images characterize human observers' strategies in perceptual tasks? We show mathematically that from the classification image of a noisy linear observer, it is possible to recover the observer's absolute efficiency. If we could similarly predict human observers' performance from their classification images, this would suggest that the linear model that underlies use of the classification image method is adequate over the small range of stimuli typically encountered in a classification image experiment, and that a classification image captures most important aspects of human observers' performance over this range. In a contrast discrimination task and in a shape discrimination task, we found that observers' absolute efficiencies were generally well predicted by their classification images, although consistently slightly (approximately 13%) higher than predicted. We consider whether a number of plausible nonlinearities can account for the slight under prediction, and of these we find that only a form of phase uncertainty can account for the discrepancy.

  2. Input calibration for negative originals

    NASA Astrophysics Data System (ADS)

    Tuijn, Chris

    1995-04-01

    One of the major challenges in the prepress environment consists of controlling the electronic color reproduction process such that a perfect match of any original can be realized. Whether this goal can be reached depends on many factors such as the dynamic range of the input device (scanner, camera), the color gamut of the output device (dye sublimation printer, ink-jet printer, offset), the color management software etc. The characterization of the color behavior of the peripheral devices is therefore very important. Photographs and positive transparents reflect the original scene pretty well; for negative originals, however, there is no obvious link to either the original scene or a particular print of the negative under consideration. In this paper, we establish a method to scan negatives and to convert the scanned data to a calibrated RGB space, which is known colorimetrically. This method is based on the reconstruction of the original exposure conditions (i.e., original scene) which generated the negative. Since the characteristics of negative film are quite diverse, a special calibration is required for each combination of scanner and film type.

  3. Preferred color spaces for white balancing

    NASA Astrophysics Data System (ADS)

    Xiao, Feng; Farrell, Joyce E.; DiCarlo, Jeffrey M.; Wandell, Brian A.

    2003-05-01

    When rendering photographs, it is important to preserve the gray tones despite variations in the ambient illumination. When the illuminant is known, white balancing that preserves gray tones can be performed in many different color spaces; the choice of color space influences the renderings of other colors. In this behavioral study, we ask whether users have a preference for the color space where white balancing is performed. Subjects compared images using a white balancing transformation that preserved gray tones, but the transformation was applied in one of the four different color spaces: XYZ, Bradford, a camera sensor RGB and the sharpened RGB color space. We used six scenes types (four portraits, fruit, and toys) acquired under three calibrated illumination environments (fluorescent, tungsten, and flash). For all subjects, transformations applied in XYZ and sharpened RGB were preferred to those applied in Bradford and device color space.

  4. Color vision.

    PubMed

    Gegenfurtner, Karl R; Kiper, Daniel C

    2003-01-01

    Color vision starts with the absorption of light in the retinal cone photoreceptors, which transduce electromagnetic energy into electrical voltages. These voltages are transformed into action potentials by a complicated network of cells in the retina. The information is sent to the visual cortex via the lateral geniculate nucleus (LGN) in three separate color-opponent channels that have been characterized psychophysically, physiologically, and computationally. The properties of cells in the retina and LGN account for a surprisingly large body of psychophysical literature. This suggests that several fundamental computations involved in color perception occur at early levels of processing. In the cortex, information from the three retino-geniculate channels is combined to enable perception of a large variety of different hues. Furthermore, recent evidence suggests that color analysis and coding cannot be separated from the analysis and coding of other visual attributes such as form and motion. Though there are some brain areas that are more sensitive to color than others, color vision emerges through the combined activity of neurons in many different areas.

  5. A derivative standard for polarimeter calibration

    SciTech Connect

    Mulhollan, G.; Clendenin, J.; Saez, P.

    1996-10-01

    A long-standing problem in polarized electron physics is the lack of a traceable standard for calibrating electron spin polarimeters. While several polarimeters are absolutely calibrated to better than 2%, the typical instrument has an inherent accuracy no better than 10%. This variability among polarimeters makes it difficult to compare advances in polarized electron sources between laboratories. The authors have undertaken an effort to establish 100 nm thick molecular beam epitaxy grown GaAs(110) as a material which may be used as a derivative standard for calibrating systems possessing a solid state polarized electron source. The near-bandgap spin polarization of photoelectrons emitted from this material has been characterized for a variety of conditions and several laboratories which possess well calibrated polarimeters have measured the photoelectron polarization of cathodes cut from a common wafer. Despite instrumentation differences, the spread in the measurements is sufficiently small that this material may be used as a derivative calibration standard.

  6. Color priming in pop-out search depends on the relative color of the target.

    PubMed

    Becker, Stefanie I; Valuch, Christian; Ansorge, Ulrich

    2014-01-01

    In visual search for pop-out targets, search times are shorter when the target and non-target colors from the previous trial are repeated than when they change. This priming effect was originally attributed to a feature weighting mechanism that biases attention toward the target features, and away from the non-target features. However, more recent studies have shown that visual selection is strongly context-dependent: according to a relational account of feature priming, the target color is always encoded relative to the non-target color (e.g., as redder or greener). The present study provides a critical test of this hypothesis, by varying the colors of the search items such that either the relative color or the absolute color of the target always remained constant (or both). The results clearly show that color priming depends on the relative color of a target with respect to the non-targets but not on its absolute color value. Moreover, the observed priming effects did not change over the course of the experiment, suggesting that the visual system encodes colors in a relative manner from the start of the experiment. Taken together, these results strongly support a relational account of feature priming in visual search, and are inconsistent with the dominant feature-based views.

  7. ALTEA calibration

    NASA Astrophysics Data System (ADS)

    Zaconte, V.; Altea Team

    The ALTEA project is aimed at studying the possible functional damages to the Central Nervous System (CNS) due to particle radiation in space environment. The project is an international and multi-disciplinary collaboration. The ALTEA facility is an helmet-shaped device that will study concurrently the passage of cosmic radiation through the brain, the functional status of the visual system and the electrophysiological dynamics of the cortical activity. The basic instrumentation is composed by six active particle telescopes, one ElectroEncephaloGraph (EEG), a visual stimulator and a pushbutton. The telescopes are able to detect the passage of each particle measuring its energy, trajectory and released energy into the brain and identifying nuclear species. The EEG and the Visual Stimulator are able to measure the functional status of the visual system, the cortical electrophysiological activity, and to look for a correlation between incident particles, brain activity and Light Flash perceptions. These basic instruments can be used separately or in any combination, permitting several different experiments. ALTEA is scheduled to fly in the International Space Station (ISS) in November, 15th 2004. In this paper the calibration of the Flight Model of the silicon telescopes (Silicon Detector Units - SDUs) will be shown. These measures have been taken at the GSI heavy ion accelerator in Darmstadt. First calibration has been taken out in November 2003 on the SDU-FM1 using C nuclei at different energies: 100, 150, 400 and 600 Mev/n. We performed a complete beam scan of the SDU-FM1 to check functionality and homogeneity of all strips of silicon detector planes, for each beam energy we collected data to achieve good statistics and finally we put two different thickness of Aluminium and Plexiglas in front of the detector in order to study fragmentations. This test has been carried out with a Test Equipment to simulate the Digital Acquisition Unit (DAU). We are scheduled to

  8. Another look at volume self-calibration: calibration and self-calibration within a pinhole model of Scheimpflug cameras

    NASA Astrophysics Data System (ADS)

    Cornic, Philippe; Illoul, Cédric; Cheminet, Adam; Le Besnerais, Guy; Champagnat, Frédéric; Le Sant, Yves; Leclaire, Benjamin

    2016-09-01

    We address calibration and self-calibration of tomographic PIV experiments within a pinhole model of cameras. A complete and explicit pinhole model of a camera equipped with a 2-tilt angles Scheimpflug adapter is presented. It is then used in a calibration procedure based on a freely moving calibration plate. While the resulting calibrations are accurate enough for Tomo-PIV, we confirm, through a simple experiment, that they are not stable in time, and illustrate how the pinhole framework can be used to provide a quantitative evaluation of geometrical drifts in the setup. We propose an original self-calibration method based on global optimization of the extrinsic parameters of the pinhole model. These methods are successfully applied to the tomographic PIV of an air jet experiment. An unexpected by-product of our work is to show that volume self-calibration induces a change in the world frame coordinates. Provided the calibration drift is small, as generally observed in PIV, the bias on the estimated velocity field is negligible but the absolute location cannot be accurately recovered using standard calibration data.

  9. Conditioning procedure and color discrimination in the honeybee Apis mellifera

    NASA Astrophysics Data System (ADS)

    Giurfa, Martin

    We studied the influence of the conditioning procedure on color discrimination by free-flying honeybees. We asked whether absolute and differential conditioning result in different discrimination capabilities for the same pairs of colored targets. In absolute conditioning, bees were rewarded on a single color; in differential conditioning, bees were rewarded on the same color but an alternative, non-rewarding, similar color was also visible. In both conditioning procedures, bees learned their respective task and could also discriminate the training stimulus from a novel stimulus that was perceptually different from the trained one. Discrimination between perceptually closer stimuli was possible after differential conditioning but not after absolute conditioning. Differences in attention inculcated by these training procedures may underlie the different discrimination performances of the bees.

  10. Selection of stars to calibrate Gaia

    NASA Astrophysics Data System (ADS)

    Carrasco, J. M.; Voss, H.; Jordi, C.; Fabricius, C.; Pancino, E.; Altavilla, G.

    2015-05-01

    Gaia is an all-sky survey satellite, launched by ESA on 19th December 2013, to obtain parallaxes and proper motions to microarcsecond level precision, radial velocities and astrophysical parameters for about one billion objects down to a limiting magnitude of 20. The chosen strategy to perform the photometric calibration is to split the process into two steps, internal and external calibration. The internal calibration will combine all different transits of a given source to a common reference internal system producing a 'mean' Gaia observation. This internal calibration accounts for the differential instrumental effects (in sensitivity, aperture, PSF, etc.). They depend on the colour and type of the source. For this reason, a selection of calibration sources ensuring a good representation of all kind of observed sources is needed. The entire magnitude and colour range of the sources have to be covered by these calibration stars and for all calibration intervals. It is a challenge to obtain a suitable colour distribution for the standards, especially for bright sources and the daily large scale calibration intervals. Once the mean Gaia observations are produced, a final step, the external calibration, transforms them to absolute fluxes and wavelengths. In principle, few calibration sources are needed (about 200 spectrophotometric standard stars, SPSS, are currently being considered). They need to have accurate determinations of their absolute fluxes and their non-variability need to be ensured below 1% precision. For this purpose, a big international observational effort is being done (using telescopes as 2.2m@CAHA, TNG@LaPalma, NTT@LaSilla, LaRuca@SPM, and others). During this observational effort some cases of non-expected variability of the SPSS candidates have been discovered.

  11. Prospects for the Moon as an SI-Traceable Absolute Spectroradiometric Standard for Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Cramer, C. E.; Stone, T. C.; Lykke, K.; Woodward, J. T.

    2015-12-01

    The Earth's Moon has many physical properties that make it suitable for use as a reference light source for radiometric calibration of remote sensing satellite instruments. Lunar calibration has been successfully applied to many imagers in orbit, including both MODIS instruments and NPP-VIIRS, using the USGS ROLO model to predict the reference exoatmospheric lunar irradiance. Sensor response trending was developed for SeaWIFS with a relative accuracy better than 0.1 % per year with lunar calibration techniques. However, the Moon rarely is used as an absolute reference for on-orbit calibration, primarily due to uncertainties in the ROLO model absolute scale of 5%-10%. But this limitation lies only with the models - the Moon itself is radiometrically stable, and development of a high-accuracy absolute lunar reference is inherently feasible. A program has been undertaken by NIST to collect absolute measurements of the lunar spectral irradiance with absolute accuracy <1 % (k=2), traceable to SI radiometric units. Initial Moon observations were acquired from the Whipple Observatory on Mt. Hopkins, Arizona, elevation 2367 meters, with continuous spectral coverage from 380 nm to 1040 nm at ~3 nm resolution. The lunar spectrometer acquired calibration measurements several times each observing night by pointing to a calibrated integrating sphere source. The lunar spectral irradiance at the top of the atmosphere was derived from a time series of ground-based measurements by a Langley analysis that incorporated measured atmospheric conditions and ROLO model predictions for the change in irradiance resulting from the changing Sun-Moon-Observer geometry throughout each night. Two nights were selected for further study. An extensive error analysis, which includes instrument calibration and atmospheric correction terms, shows a combined standard uncertainty under 1 % over most of the spectral range. Comparison of these two nights' spectral irradiance measurements with predictions

  12. Metrological activity determination of 133Ba by sum-peak absolute method

    NASA Astrophysics Data System (ADS)

    da Silva, R. L.; de Almeida, M. C. M.; Delgado, J. U.; Poledna, R.; Santos, A.; de Veras, E. V.; Rangel, J.; Trindade, O. L.

    2016-07-01

    The National Laboratory for Metrology of Ionizing Radiation provides gamma sources of radionuclide and standardized in activity with reduced uncertainties. Relative methods require standards to determine the sample activity while the absolute methods, as sum-peak, not. The activity is obtained directly with good accuracy and low uncertainties. 133Ba is used in research laboratories and on calibration of detectors for analysis in different work areas. Classical absolute methods don't calibrate 133Ba due to its complex decay scheme. The sum-peak method using gamma spectrometry with germanium detector standardizes 133Ba samples. Uncertainties lower than 1% to activity results were obtained.

  13. Cryogenic absolute radiometers as laboratory irradiance standards, remote sensing detectors, and pyroheliometers

    NASA Technical Reports Server (NTRS)

    Foukal, Peter V.; Hoyt, C.; Kochling, H.; Miller, P.

    1990-01-01

    The dramatic improvement in heat diffusivity of pure Cu at liquid-He temperatures makes possible very important advances in the absolute accuracy, reproducibility, sensitivity, and time constant of cryogenic electrical substitution radiometers (ESRs), relative to conventional ESRs. The design and characterization of a table-top cryogenic ESR now available for detector calibration work to the 0.01-percent level of absolute accuracy under laser illumination is discussed. A sensitive cryogenic ESR recently delivered to the NIST for radiometric calibrations of black bodies is also described, along with the design and testing of a very fast cryogenic ESR developed for NASA remote-sensing studies of the earth's radiation budget.

  14. Principles and procedures for determining absolute differential electron-molecule (atom) scattering cross sections

    NASA Technical Reports Server (NTRS)

    Nickel, J. C.; Zetner, P. W.; Shen, G.; Trajmar, S.

    1989-01-01

    Procedures and calibration techniques for measuring the absolute elastic and inelastic differential cross sections (DCS) for electron impact on molecular (atomic) species are described and illustrated by examples. The elastic DCS for the molecule under study is first determined by calibration against helium using the relative flow technique. The second step involves the production of energy-loss spectra for the instrument response function, the unfolding of overlapping inelastic structures and the normalization of inelastic intensities to the elastic cross sections. It is concluded that this method of determining absolute differential electron-molecule (atom) scattering cross sections is generally applicable and provides reliable results.

  15. Spectralon diffuser calibration for MERIS

    NASA Astrophysics Data System (ADS)

    Olij, Carina; Schaarsberg, Jos G.; Werij, Henri G.; Zoutman, Erik; Baudin, Gilles; Chommeloux, Beatrice; Bezy, Jean-Loup; Gourmelon, Georges

    1997-12-01

    One of the key payload instruments of ESA's ENVISAT polar platform is the medium resolution imaging spectrometer (MERIS), aiming at improved knowledge of our planet in the fields of bio-optical oceanography, and atmospheric and land surface processes. MERIS, which is built under responsibility of Aerospatiale, will monitor the solar irradiation scattered by the Earth by employing five cameras which simultaneously record data in 15 visible and near-infrared programmable spectral bands with very low degree of polarization sensitivity. The combined field-of-view of the five cameras spans a range of 68.5 degrees. Crucial for obtaining the desired high accuracy during a four-years lifetime, is the on- board calibration unit. This calibration unit contains a set of Spectralon diffusers, which were manufactured having in mind excellent in-flight stability as well as spectral and spatial uniformity. Preflight calibration of the Spectralon diffusers was carried out at TNO-TPD. This calibration includes the measurement of the bidirectional reflectance distribution function (BRDF) for applicable angles and wavelengths, i.e., while varying angle of incidence, angle of observation, observation area on the elongated diffusers, wavelength and polarization. The diffuser calibration was performed in a class 100 cleanroom. For these measurements the TPD calibration facility, which is described in detail, has been adapted, so that it now has five geometrical degrees of freedom. Detectors have been optimized to minimize stray light. Due to extensive commissioning of the calibration setup the absolute error (1 sigma) of these measurements amounts to less than 0.5%; relative errors are in the 0.3 - 0.4% range.

  16. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  17. Demonstrating the Error Budget for the Climate Absolute Radiance and Refractivity Observatory Through Solar Irradiance Measurements

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2016-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe highaccuracy, long-term climate change trends and to use decadal change observations as a method to determine the accuracy of climate change. A CLARREO objective is to improve the accuracy of SI-traceable, absolute calibration at infrared and reflected solar wavelengths to reach on-orbit accuracies required to allow climate change observations to survive data gaps and observe climate change at the limit of natural variability. Such an effort will also demonstrate National Institute of Standards and Technology (NIST) approaches for use in future spaceborne instruments. The current work describes the results of laboratory and field measurements with the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. SOLARIS allows testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. Results of laboratory calibration measurements are provided to demonstrate key assumptions about instrument behavior that are needed to achieve CLARREO's climate measurement requirements. Absolute radiometric response is determined using laser-based calibration sources and applied to direct solar views for comparison with accepted solar irradiance models to demonstrate accuracy values giving confidence in the error budget for the CLARREO reflectance retrieval.

  18. Demonstrating the error budget for the Climate Absolute Radiance and Refractivity Observatory through solar irradiance measurements

    NASA Astrophysics Data System (ADS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2015-09-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe highaccuracy, long-term climate change trends and to use decadal change observations as a method to determine the accuracy of climate change. A CLARREO objective is to improve the accuracy of SI-traceable, absolute calibration at infrared and reflected solar wavelengths to reach on-orbit accuracies required to allow climate change observations to survive data gaps and observe climate change at the limit of natural variability. Such an effort will also demonstrate National Institute of Standards and Technology (NIST) approaches for use in future spaceborne instruments. The current work describes the results of laboratory and field measurements with the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. SOLARIS allows testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a testbed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. Results of laboratory calibration measurements are provided to demonstrate key assumptions about instrument behavior that are needed to achieve CLARREO's climate measurement requirements. Absolute radiometric response is determined using laser-based calibration sources and applied to direct solar views for comparison with accepted solar irradiance models to demonstrate accuracy values giving confidence in the error budget for the CLARREO reflectance retrieval.

  19. Pixel-wise absolute phase unwrapping using geometric constraints of structured light system.

    PubMed

    An, Yatong; Hyun, Jae-Sang; Zhang, Song

    2016-08-01

    This paper presents a method to unwrap phase pixel by pixel by solely using geometric constraints of the structured light system without requiring additional image acquisition or another camera. Specifically, an artificial absolute phase map, Φmin, at a given virtual depth plane z = zmin, is created from geometric constraints of the calibrated structured light system; the wrapped phase is pixel-by-pixel unwrapped by referring to Φmin. Since Φmin is defined in the projector space, the unwrapped phase obtained from this method is absolute for each pixel. Experimental results demonstrate the success of this proposed novel absolute phase unwrapping method. PMID:27505808

  20. Accurate determination of absolute carrier-envelope phase dependence using photo-ionization.

    PubMed

    Sayler, A M; Arbeiter, M; Fasold, S; Adolph, D; Möller, M; Hoff, D; Rathje, T; Fetić, B; Milošević, D B; Fennel, T; Paulus, G G

    2015-07-01

    The carrier-envelope phase (CEP) dependence of few-cycle above-threshold ionization (ATI) of Xe is calibrated for use as a reference measurement for determining and controlling the absolute CEP in other interactions. This is achieved by referencing the CEP-dependent ATI measurements of Xe to measurements of atomic H, which are in turn referenced to ab initio calculations for atomic H. This allows for the accurate determination of the absolute CEP dependence of Xe ATI, which enables relatively easy determination of the offset between the relative CEP measured and/or controlled by typical devices and the absolute CEP in the interaction. PMID:26125386

  1. Absolute concentration measurements inside a jet plume using video digitization

    NASA Astrophysics Data System (ADS)

    Vauquelin, O.

    An experimental system based on digitized video image analysis is used to measure the local value of the concentration inside a plume. Experiments are carried out in a wind-tunnel for a smoke-seeded turbulent jet plume illuminated with a laser beam. Each test is filmed, subsequently video images are digitized and analysed in order to determine the smoke absolute concentration corresponding to each pixel gray level. This non-intrusive measurement technique is first calibrated and different laws connecting gray level to concentration are established. As a first application, concentration measurements are made inside a turbulent jet plume and compared with measurements conducted using a classic gas analysis method. We finally present and discuss the possibilities offered for the measurements of absolute concentration fluctuations.

  2. Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases

    SciTech Connect

    Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; Di Giulio, C.; Luis, P.Facal San; Gonzales, D.; Hojvat, C.; Horandel, J.R.; Hrabovsky, M.; Iarlori, M.; /INFN, Aquila /Karlsruhe, Inst. Technol.

    2011-01-01

    We have performed a measurement of the absolute yield of fluorescence photons at the Fermilab Test Beam. A systematic uncertainty at 5% level was achieved by the use of Cherenkov radiation as a reference calibration light source. A cross-check was performed by an independent calibration using a laser light source. A significant improvement on the energy scale uncertainty of Ultra-High Energy Cosmic Rays is expected.

  3. Approaches on calibration of bolometer and establishment of bolometer calibration device

    NASA Astrophysics Data System (ADS)

    Xia, Ming; Gao, Jianqiang; Ye, Jun'an; Xia, Junwen; Yin, Dejin; Li, Tiecheng; Zhang, Dong

    2015-10-01

    Bolometer is mainly used for measuring thermal radiation in the field of public places, labor hygiene, heating and ventilation and building energy conservation. The working principle of bolometer is under the exposure of thermal radiation, temperature of black absorbing layer of detector rise after absorption of thermal radiation, which makes the electromotive force produced by thermoelectric. The white light reflective layer of detector does not absorb thermal radiation, so the electromotive force produced by thermoelectric is almost zero. A comparison of electromotive force produced by thermoelectric of black absorbing layer and white reflective layer can eliminate the influence of electric potential produced by the basal background temperature change. After the electromotive force which produced by thermal radiation is processed by the signal processing unit, the indication displays through the indication display unit. The measurement unit of thermal radiation intensity is usually W/m2 or kW/m2. Its accurate and reliable value has important significance for high temperature operation, labor safety and hygiene grading management. Bolometer calibration device is mainly composed of absolute radiometer, the reference light source, electric measuring instrument. Absolute radiometer is a self-calibration type radiometer. Its working principle is using the electric power which can be accurately measured replaces radiation power to absolutely measure the radiation power. Absolute radiometer is the standard apparatus of laser low power standard device, the measurement traceability is guaranteed. Using the calibration method of comparison, the absolute radiometer and bolometer measure the reference light source in the same position alternately which can get correction factor of irradiance indication. This paper is mainly about the design and calibration method of the bolometer calibration device. The uncertainty of the calibration result is also evaluated.

  4. The AFGL absolute gravity program

    NASA Technical Reports Server (NTRS)

    Hammond, J. A.; Iliff, R. L.

    1978-01-01

    A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.

  5. Familial Aggregation of Absolute Pitch

    PubMed Central

    Baharloo, Siamak; Service, Susan K.; Risch, Neil; Gitschier, Jane; Freimer, Nelson B.

    2000-01-01

    Absolute pitch (AP) is a behavioral trait that is defined as the ability to identify the pitch of tones in the absence of a reference pitch. AP is an ideal phenotype for investigation of gene and environment interactions in the development of complex human behaviors. Individuals who score exceptionally well on formalized auditory tests of pitch perception are designated as “AP-1.” As described in this report, auditory testing of siblings of AP-1 probands and of a control sample indicates that AP-1 aggregates in families. The implications of this finding for the mapping of loci for AP-1 predisposition are discussed. PMID:10924408

  6. Color superconductivity

    SciTech Connect

    Wilczek, F.

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  7. [True color accuracy in digital forensic photography].

    PubMed

    Ramsthaler, Frank; Birngruber, Christoph G; Kröll, Ann-Katrin; Kettner, Mattias; Verhoff, Marcel A

    2016-01-01

    Forensic photographs not only need to be unaltered and authentic and capture context-relevant images, along with certain minimum requirements for image sharpness and information density, but color accuracy also plays an important role, for instance, in the assessment of injuries or taphonomic stages, or in the identification and evaluation of traces from photos. The perception of color not only varies subjectively from person to person, but as a discrete property of an image, color in digital photos is also to a considerable extent influenced by technical factors such as lighting, acquisition settings, camera, and output medium (print, monitor). For these reasons, consistent color accuracy has so far been limited in digital photography. Because images usually contain a wealth of color information, especially for complex or composite colors or shades of color, and the wavelength-dependent sensitivity to factors such as light and shadow may vary between cameras, the usefulness of issuing general recommendations for camera capture settings is limited. Our results indicate that true image colors can best and most realistically be captured with the SpyderCheckr technical calibration tool for digital cameras tested in this study. Apart from aspects such as the simplicity and quickness of the calibration procedure, a further advantage of the tool is that the results are independent of the camera used and can also be used for the color management of output devices such as monitors and printers. The SpyderCheckr color-code patches allow true colors to be captured more realistically than with a manual white balance tool or an automatic flash. We therefore recommend that the use of a color management tool should be considered for the acquisition of all images that demand high true color accuracy (in particular in the setting of injury documentation). PMID:27386623

  8. [True color accuracy in digital forensic photography].

    PubMed

    Ramsthaler, Frank; Birngruber, Christoph G; Kröll, Ann-Katrin; Kettner, Mattias; Verhoff, Marcel A

    2016-01-01

    Forensic photographs not only need to be unaltered and authentic and capture context-relevant images, along with certain minimum requirements for image sharpness and information density, but color accuracy also plays an important role, for instance, in the assessment of injuries or taphonomic stages, or in the identification and evaluation of traces from photos. The perception of color not only varies subjectively from person to person, but as a discrete property of an image, color in digital photos is also to a considerable extent influenced by technical factors such as lighting, acquisition settings, camera, and output medium (print, monitor). For these reasons, consistent color accuracy has so far been limited in digital photography. Because images usually contain a wealth of color information, especially for complex or composite colors or shades of color, and the wavelength-dependent sensitivity to factors such as light and shadow may vary between cameras, the usefulness of issuing general recommendations for camera capture settings is limited. Our results indicate that true image colors can best and most realistically be captured with the SpyderCheckr technical calibration tool for digital cameras tested in this study. Apart from aspects such as the simplicity and quickness of the calibration procedure, a further advantage of the tool is that the results are independent of the camera used and can also be used for the color management of output devices such as monitors and printers. The SpyderCheckr color-code patches allow true colors to be captured more realistically than with a manual white balance tool or an automatic flash. We therefore recommend that the use of a color management tool should be considered for the acquisition of all images that demand high true color accuracy (in particular in the setting of injury documentation).

  9. Morphology and Absolute Magnitudes of the SDSS DR7 QSOs

    NASA Astrophysics Data System (ADS)

    Coelho, B.; Andrei, A. H.; Antón, S.

    2014-10-01

    The ESA mission Gaia will furnish a complete census of the Milky Way, delivering astrometrics, dynamics, and astrophysics information for 1 billion stars. Operating in all-sky repeated survey mode, Gaia will also provide measurements of extra-galactic objects. Among the later there will be at least 500,000 QSOs that will be used to build the reference frame upon which the several independent observations will be combined and interpreted. Not all the QSOs are equally suited to fulfill this role of fundamental, fiducial grid-points. Brightness, morphology, and variability define the astrometric error budget for each object. We made use of 3 morphological parameters based on the PSF sharpness, circularity and gaussianity, which enable us to distinguish the "real point-like" QSOs. These parameters are being explored on the spectroscopically certified QSOs of the SDSS DR7, to compare the performance against other morphology classification schemes, as well as to derive properties of the host galaxy. We present a new method, based on the Gaia quasar database, to derive absolute magnitudes, on the SDSS filters domain. The method can be extrapolated all over the optical window, including the Gaia filters. We discuss colors derived from SDSS apparent magnitudes and colors based on absolute magnitudes that we obtained tanking into account corrections for dust extinction, either intergalactic or from the QSO host, and for the Lyman α forest. In the future we want to further discuss properties of the host galaxies, comparing for e.g. the obtained morphological classification with the color, the apparent and absolute magnitudes, and the redshift distributions.

  10. Behavior of skin color under varying illumination seen by different cameras at different color spaces

    NASA Astrophysics Data System (ADS)

    Martinkauppi, J. Birgitta; Soriano, Maricor N.; Laaksonen, Mika V.

    2001-04-01

    The appearance of skin colors in the images depends among other things, on the camera, the calibration of the camera, and the illumination under which the image was taken. In this study, we investigate how the skin colors appear in the chromaticity coordinates of different color spaces like HSV/HSL, normalized rgb, YES and TSL. For this purpose, we have taken images of faces under 16 different illumination/camera calibration conditions using simulated illuminants (Horizon, A, fluorescent TL84 and daylight) with different RGB cameras (1CCD web cameras and a 3CCD camera). In the making of this series of 16 images, first the selected camera was calibrated to one of the four light sources and an image was taken. After that the light source was changed to the other light sources and at each time the person was imaged. The process was repeated to the other two light sources. The same procedure was done for all four light sources and for each camera. The skin regions were extracted from these images and this skin data was then converted to different color spaces. We inspected how the chromaticities of different skin color groups in these color spaces overlap in images taken in all 16 different cases and only in those cases in which the selected camera was calibrated to the current illuminant. These investigations were also made between different cameras. In addition to this, we examined the overlapping of all skin chromaticities from the different skin color groups between cameras.

  11. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  12. Specialized Color Function for Display of Signed Data

    NASA Technical Reports Server (NTRS)

    Kalb, Virginia

    2008-01-01

    This Mathematica script defines a color function to be used with Mathematica's plotting modules for differentiating data attaining both positive and negative values. Positive values are shown as shades of blue, and negative values are shown in red. The intensity of the color reflects the absolute value of the data value.

  13. Asteroid magnitudes, UBV colors, and IRAS albedos and diameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1989-01-01

    This paper lists absolute magnitudes and slope parameters for known asteroids numbered through 3318. The values presented are those used in reducing asteroid IR flux data obtained with the IRAS. U-B colors are given for 938 asteroids, and B-V colors are given for 945 asteroids. The IRAS albedos and diameters are tabulated for 1790 asteroids.

  14. Lunar eclipse photometry: absolute luminance measurements and modeling.

    PubMed

    Hernitschek, Nina; Schmidt, Elmar; Vollmer, Michael

    2008-12-01

    The Moon's time-dependent luminance was determined during the 9 February 1990 and 3 March 2007 total lunar eclipses by using calibrated, industry standard photometers. After the results were corrected to unit air mass and to standard distances for both Moon and Sun, an absolute calibration was accomplished by using the Sun's known luminance and a pre-eclipse lunar albedo of approximately 13.5%. The measured minimum level of brightness in the total phase of both eclipses was relatively high, namely -3.32 m(vis) and -1.7 m(vis), which hints at the absence of pronounced stratospheric aerosol. The light curves were modeled in such a way as to let the Moon move through an artificial Earth shadow composed of a multitude of disk and ring zones, containing a relative luminance data set from an atmospheric radiative transfer calculation. PMID:19037352

  15. Lunar eclipse photometry: absolute luminance measurements and modeling.

    PubMed

    Hernitschek, Nina; Schmidt, Elmar; Vollmer, Michael

    2008-12-01

    The Moon's time-dependent luminance was determined during the 9 February 1990 and 3 March 2007 total lunar eclipses by using calibrated, industry standard photometers. After the results were corrected to unit air mass and to standard distances for both Moon and Sun, an absolute calibration was accomplished by using the Sun's known luminance and a pre-eclipse lunar albedo of approximately 13.5%. The measured minimum level of brightness in the total phase of both eclipses was relatively high, namely -3.32 m(vis) and -1.7 m(vis), which hints at the absence of pronounced stratospheric aerosol. The light curves were modeled in such a way as to let the Moon move through an artificial Earth shadow composed of a multitude of disk and ring zones, containing a relative luminance data set from an atmospheric radiative transfer calculation.

  16. Absolute stellar photometry on moderate-resolution FPA images

    USGS Publications Warehouse

    Stone, T.C.

    2009-01-01

    An extensive database of star (and Moon) images has been collected by the ground-based RObotic Lunar Observatory (ROLO) as part of the US Geological Survey program for lunar calibration. The stellar data are used to derive nightly atmospheric corrections for the observations from extinction measurements, and absolute calibration of the ROLO sensors is based on observations of Vega and published reference flux and spectrum data. The ROLO telescopes were designed for imaging the Moon at moderate resolution, thus imposing some limitations for the stellar photometry. Attaining accurate stellar photometry with the ROLO image data has required development of specialized processing techniques. A key consideration is consistency in discriminating the star core signal from the off-axis point spread function. The analysis and processing methods applied to the ROLO stellar image database are described. ?? 2009 BIPM and IOP Publishing Ltd.

  17. Technique for calibrating angular measurement devices when calibration standards are unavailable

    NASA Technical Reports Server (NTRS)

    Finley, Tom D.

    1991-01-01

    A calibration technique is proposed that will allow the calibration of certain angular measurement devices without requiring the use of absolute standard. The technique assumes that the device to be calibrated has deterministic bias errors. A comparison device must be available that meets the same requirements. The two devices are compared; one device is then rotated with respect to the other, and a second comparison is performed. If the data are reduced using the described technique, the individual errors of the two devices can be determined.

  18. Revised Landsat-5 TM Radiometrie Calibration Procedures and Postcalibration Dynamic Ranges

    USGS Publications Warehouse

    Chander, G.; Markham, B.

    2003-01-01

    Effective May 5, 2003, Landsat-5 (L5) Thematic Mapper (TM) data processed and distributed by the U.S. Geological Survey (USGS) Earth Resources Observation System (EROS) Data Center (EDC) will be radiometrically calibrated using a new procedure and revised calibration parameters. This change will improve absolute calibration accuracy, consistency over time, and consistency with Landsat-7 (L7) Enhanced Thematic Mapper Plus (ETM+) data. Users will need to use new parameters to convert the calibrated data products to radiance. The new procedure for the reflective bands (1-5,7) is based on a lifetime radiometric calibration curve for the instrument derived from the instrument's internal calibrator, cross-calibration with the ETM+, and vicarious measurements. The thermal band will continue to be calibrated using the internal calibrator. Further updates to improve the relative detector-to-detector calibration and thermal band calibration are being investigated, as is the calibration of the Landsat-4 (L4) TM.

  19. Color Sense

    ERIC Educational Resources Information Center

    Johnson, Heidi S. S.; Maki, Jennifer A.

    2009-01-01

    This article reports a study conducted by members of the WellU Academic Integration Subcommittee of The College of St. Scholastica's College's Healthy Campus Initiative plan whose purpose was to determine whether changing color in the classroom could have a measurable effect on students. One simple improvement a school can make in a classroom is…

  20. Cross-calibration between airborne SAR sensors

    NASA Technical Reports Server (NTRS)

    Zink, Manfred; Olivier, Philippe; Freeman, Anthony

    1993-01-01

    As Synthetic Aperture Radar (SAR) system performance and experience in SAR signature evaluation increase, quantitative analysis becomes more and more important. Such analyses require an absolute radiometric calibration of the complete SAR system. To keep the expenditure on calibration of future multichannel and multisensor remote sensing systems (e.g., X-SAR/SIR-C) within a tolerable level, data from different tracks and different sensors (channels) must be cross calibrated. The 1989 joint E-SAR/DC-8 SAR calibration campaign gave a first opportunity for such an experiment, including cross sensor and cross track calibration. A basic requirement for successful cross calibration is the stability of the SAR systems. The calibration parameters derived from different tracks and the polarimetric properties of the uncalibrated data are used to describe this stability. Quality criteria for a successful cross calibration are the agreement of alpha degree values and the consistency of radar cross sections of equally sized corner reflectors. Channel imbalance and cross talk provide additional quality in case of the polarimetric DC-8 SAR.

  1. COBE differential microwave radiometers - Calibration techniques

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Smoot, G. F.; Janssen, M.; Gulkis, S.; Kogut, A.; Hinshaw, G.; Backus, C.; Hauser, M. G.; Mather, J. C.; Rokke, L.

    1992-01-01

    The COBE spacecraft was launched November 18, 1989 UT carrying three scientific instruments into earth orbit for studies of cosmology. One of these instruments, the Differential Microwave Radiometer (DMR), is designed to measure the large-angular-scale temperature anisotropy of the cosmic microwave background radiation at three frequencies (31.5, 53, and 90 GHz). This paper presents three methods used to calibrate the DMR. First, the signal difference between beam-filling hot and cold targets observed on the ground provides a primary calibration that is transferred to space by noise sources internal to the instrument. Second, the moon is used in flight as an external calibration source. Third, the signal arising from the Doppler effect due to the earth's motion around the barycenter of the solar system is used as an external calibration source. Preliminary analysis of the external source calibration techniques confirms the accuracy of the currently more precise ground-based calibration. Assuming the noise source behavior did not change from the ground-based calibration to flight, a 0.1-0.4 percent relative and 0.7-2.5 percent absolute calibration uncertainty is derived, depending on radiometer channel.

  2. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  3. Apparatus for absolute pressure measurement

    NASA Technical Reports Server (NTRS)

    Hecht, R. (Inventor)

    1969-01-01

    An absolute pressure sensor (e.g., the diaphragm of a capacitance manometer) was subjected to a superimposed potential to effectively reduce the mechanical stiffness of the sensor. This substantially increases the sensitivity of the sensor and is particularly useful in vacuum gauges. An oscillating component of the superimposed potential induced vibrations of the sensor. The phase of these vibrations with respect to that of the oscillating component was monitored, and served to initiate an automatic adjustment of the static component of the superimposed potential, so as to bring the sensor into resonance at the frequency of the oscillating component. This establishes a selected sensitivity for the sensor, since a definite relationship exists between resonant frequency and sensitivity.

  4. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < -1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  5. Musical key perception in relation to color.

    PubMed

    Firth, Ian C

    2014-12-01

    A link between musical keys and colors is common among musicians, although there has never been any agreement about which color matches which key. This study tested two alternative key-color associations: E is red and Eb is green, or vice versa. 21 participants (10 men, 11 women; M age = 20 yr., SD = 3.3) with absolute pitch listened to melodies beginning with an anacrusis and a perfect cadence which were played through in C major. Then the melodies began in another key, while four or two colored squares were displayed (in Experiments 1 and 2, respectively). Participants were asked to chose the color which best matched the quality of the new key. The results showed strong support for the E red / Eb green linkage. PMID:25539177

  6. Cepheid Calibration of the Peak Brightness of SNe Ia.. 9; SN 1989B in NGC 3627

    NASA Technical Reports Server (NTRS)

    Saha, A.; Sandage, Allan; Tammann, G. A.; Labhardt, Lukas; Macchetto, F. D.; Panagia, N.

    1999-01-01

    Repeated imaging observations have been made of NGC 3627 with the Hubble Space Telescope in 1997/98, over an interval of 58 days. Images were obtained on 12 epochs in the F555W band and on five epochs in the F8141,V band. The galaxy hosted the prototypical, "Branch normal", type la supernova SN 1989B. A total of 83 variables have been found, of which 68 are definite Cepheid variables with periods ranging from 75 days to 3.85 days. The de-reddened distance modulus is determined to be (m - M)(sub 0) = 30.22 +/- 0.12 (internal uncertainty) using a subset of the Cepheid data whose reddening and error parameters are secure. The photometric data of Wells et al. (1994), combined with the Cepheid data for NGC 3627 give MB(max) = -19.36 +/- 0.18 and M(sub V)(max) = -19.34 +/- 0.16 for SN 1989B. Combined with the previous six calibrations in this program, plus two additional calibrations determined by others gives the mean absolute magnitudes at maximum of (M(sub B)) = -19.48 +/- 0.07 for "Brunch normal" SNe Ia at this interim stage in the calibration program. Using the argument by Wells et al. (1994) that SN 1989B here is virtually identical in decay rate and colors at maximum with SN 198ON in NGC 1316 in the Fornax cluster, and that such identity means nearly identical absolute magnitude, it follows that the difference in the distance modulus of NGC 3627 and NGC 1316 is 1.62 +/- 0.03 mag. Thus the NGC 3627 modulus implies that (m - M)(sub 0) = 31.84 for NGC 1316. The second parameter correlations of M(max) of blue SNe la with decay rate, color at maximum, and Hubble type are re-investigated. The dependence of (M(max)) on decay rate is non-linear, showing a minimum for decay rates between 1.0 less than ADelta(sub m)15 less than 1.6. Magnitudes corrected for decay rate show no dependence on Hubble type, but a dependence on color remains. Correcting both the fiducial sample of 34 SNe la with decay-rate data and the current eight calibrating SNe la for the correlation with

  7. A novel method for color correction in epiluminescence microscopy.

    PubMed

    Quintana, Josep; Garcia, Rafael; Neumann, László

    2011-01-01

    This paper proposes a new color correction pipeline to improve the dermoscopy image quality. Images acquired with different cameras or different dermoscopes often present problems of faithful color reproduction. The colors of these images are often far different the ones observed with the naked eye, and usually vary from one camera to another. Nowadays digital cameras perform "black-box" color corrections taking into account the color temperature of the imaged scene, which may result in some cases in unrealistic color rendering. For this reason, it is necessary to calibrate the imaging system (the camera and a specific dermoscope). The calibration process requires finding a relationship between a device-dependent color space and a standard color space depending only on the human eye. This relation is obtained acquiring known color patches of a color checker and relating them with the pixel values obtained by the camera. In our approach we model the color calibration problem using a new formulation that takes into account the spectral distribution of the dermoscope lighting system and conveys a solution for both RAW and JPEG images. When comparing images captured with different cameras, this new method improves the results between 0.1 and 0.9 ΔE with respect to previous approaches.

  8. A novel method for color correction in epiluminescence microscopy.

    PubMed

    Quintana, Josep; Garcia, Rafael; Neumann, László

    2011-01-01

    This paper proposes a new color correction pipeline to improve the dermoscopy image quality. Images acquired with different cameras or different dermoscopes often present problems of faithful color reproduction. The colors of these images are often far different the ones observed with the naked eye, and usually vary from one camera to another. Nowadays digital cameras perform "black-box" color corrections taking into account the color temperature of the imaged scene, which may result in some cases in unrealistic color rendering. For this reason, it is necessary to calibrate the imaging system (the camera and a specific dermoscope). The calibration process requires finding a relationship between a device-dependent color space and a standard color space depending only on the human eye. This relation is obtained acquiring known color patches of a color checker and relating them with the pixel values obtained by the camera. In our approach we model the color calibration problem using a new formulation that takes into account the spectral distribution of the dermoscope lighting system and conveys a solution for both RAW and JPEG images. When comparing images captured with different cameras, this new method improves the results between 0.1 and 0.9 ΔE with respect to previous approaches. PMID:21531539

  9. Evaluation of VIIRS ocean color products

    NASA Astrophysics Data System (ADS)

    Wang, Menghua; Liu, Xiaoming; Jiang, Lide; Son, SeungHyun; Sun, Junqiang; Shi, Wei; Tan, Liqin; Naik, Puneeta; Mikelsons, Karlis; Wang, Xiaolong; Lance, Veronica

    2014-11-01

    The Suomi National Polar-orbiting Partnership (SNPP) was successfully launched on October 28, 2011. The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi NPP, which has 22 spectral bands (from visible to infrared) similar to the NASA's Moderate Resolution Imaging Spectroradiometer (MODIS), is a multi-disciplinary sensor providing observations for the Earth's atmosphere, land, and ocean properties. In this paper, we provide some evaluations and assessments of VIIRS ocean color data products, or ocean color Environmental Data Records (EDR), including normalized water-leaving radiance spectra nLw(λ) at VIIRS five spectral bands, chlorophyll-a (Chl-a) concentration, and water diffuse attenuation coefficient at the wavelength of 490 nm Kd(490). Specifically, VIIRS ocean color products derived from the NOAA Multi-Sensor Level-1 to Level-2 (NOAA-MSL12) ocean color data processing system are evaluated and compared with MODIS ocean color products and in situ measurements. MSL12 is now NOAA's official ocean color data processing system for VIIRS. In addition, VIIRS Sensor Data Records (SDR or Level- 1B data) have been evaluated. In particular, VIIRS SDR and ocean color EDR have been compared with a series of in situ data from the Marine Optical Buoy (MOBY) in the waters off Hawaii. A notable discrepancy of global deep water Chl-a derived from MODIS and VIIRS between 2012 and 2013 is observed. This discrepancy is attributed to the SDR (or Level-1B data) calibration issue and particularly related to VIIRS green band at 551 nm. To resolve this calibration issue, we have worked on our own sensor calibration by combining the lunar calibration effect into the current calibration method. The ocean color products derived from our new calibrated SDR in the South Pacific Gyre show that the Chl-a differences between 2012 and 2013 are significantly reduced. Although there are still some issues, our results show that VIIRS is capable of providing high-quality global

  10. Calibration of sound calibrators: an overview

    NASA Astrophysics Data System (ADS)

    Milhomem, T. A. B.; Soares, Z. M. D.

    2016-07-01

    This paper presents an overview of calibration of sound calibrators. Initially, traditional calibration methods are presented. Following, the international standard IEC 60942 is discussed emphasizing parameters, target measurement uncertainty and criteria for conformance to the requirements of the standard. Last, Regional Metrology Organizations comparisons are summarized.

  11. Toward Millimagnitude Photometric Calibration (Abstract)

    NASA Astrophysics Data System (ADS)

    Dose, E.

    2014-12-01

    (Abstract only) Asteroid roation, exoplanet transits, and similar measurements will increasingly call for photometric precisions better than about 10 millimagnitudes, often between nights and ideally between distant observers. The present work applies detailed spectral simulations to test popular photometric calibration practices, and to test new extensions of these practices. Using 107 synthetic spectra of stars of diverse colors, detailed atmospheric transmission spectra computed by solar-energy software, realistic spectra of popular astronomy gear, and the option of three sources of noise added at realistic millimagnitude levels, we find that certain adjustments to current calibration practices can help remove small systematic errors, especially for imperfect filters, high airmasses, and possibly passing thin cirrus clouds.

  12. Introduction To Color Vision

    NASA Astrophysics Data System (ADS)

    Thorell, Lisa G.

    1983-08-01

    Several human cognitive studies have reported that color facilitates certain learning, memory and search tasks. Consideration of the color-opponent organization of human color vision and the spatial modulation transfer function for color suggests several simple sensory explanations.

  13. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    NASA Technical Reports Server (NTRS)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  14. SI-Traceable Calibrations of Celestial Objects

    NASA Astrophysics Data System (ADS)

    Cramer, C. E.; Lykke, K. R.; Woodward, J. T.

    2016-05-01

    Photometric calibration is currently the leading source of systematic uncertainty in supernova surveys that aim to determine the nature of dark energy. The bulk of this uncertainty is due to imperfect knowledge of the spectral energy distribution of stars used as primary standards. We review the challenges associated with establishing an absolute calibration of stellar spectra and describe how it is possible to do better by using recent advances in optical metrology, paying particular attention to the measurement chain establishing SI-traceability and reporting of measurement uncertainties.

  15. Continued Monitoring of Landsat Reflective Band Calibration Using Pseudo-Invariant Calibration Sites

    NASA Technical Reports Server (NTRS)

    Barsi, Julia A.; Markham, Brian L.; Helder, Dennis L.

    2012-01-01

    Though both of the current Landsat instruments, Landsat-7 Enhanced Thematic Mapper+ (ETM+) and Landsat-5 Thematic Mapper (TM), include on-board calibration systems, since 2001, pseudo-invariant calibration sites (PICS) have been added to the suite of metrics to assess the instruments calibration. These sites do not provide absolute calibration data since there are no ground measurements of the sites, but in monitoring these PICS over time, the relative calibration can be tracked. The sites used by the Landsat instruments are primarily in the Saharan Desert. To date, the trending from the PICS sites has confirmed that most of the degradation seen in the ETM+ on-board calibration systems is likely not degradation of the instrument, but rather degradation of the calibration systems themselves. However, the PICS data show statistically significant degradation (at 2-sigma) in all the reflective spectral bands of up to -0.22%/year since July 2003. For the TM, the PICS were instrumental in updating the calibration in 2007 and now suggest two bands may require another update. The data show a statistically significant degradation (at 2-sigma) in Bands 1 and 3 of -0.27 and -0.15%/year, respectively, since March 1999. The data filtering and processing methods are currently being reviewed but these PICS results may lead to an update in the reflective band calibration of both Landsat-7 and Landsat-5.

  16. Improving the Generic Camera Calibration Technique by an Extended Model of Calibration Display

    NASA Astrophysics Data System (ADS)

    Reh, T.; Li, W.; Burke, J.; Bergmann, R. B.

    2014-10-01

    Generic camera calibration is a method to characterize vision sensors by describing a line of sight for every single pixel. This procedure frees the calibration process from the restriction to pinhole-like optics that arises in the common photogrammetric camera models. Generic camera calibration also enables the calibration of high-frequency distortions, which is beneficial for high-precision measurement systems. The calibration process is as follows: To collect sufficient data for calculating a line of sight for each pixel, active grids are used as calibration reference rather than static markers such as corners of chessboard patterns. A common implementation of active grids are sinusoidal fringes presented on a flat TFT display. So far, the displays have always been treated as ideally flat. In this work we propose new and more sophisticated models to account for additional properties of the active grid display: The refraction of light in the glass cover is taken into account as well as a possible deviation of the top surface from absolute flatness. To examine the effectiveness of the new models, an example fringe projection measurement system is characterized with the resulting calibration methods and with the original generic camera calibration. Evaluating measurements using the different calibration methods shows that the extended display model substantially improves the uncertainty of the measurement system.

  17. The Nature of Infant Color Categorization: Evidence from Eye Movements on a Target Detection Task

    ERIC Educational Resources Information Center

    Franklin, A.; Pilling, M.; Davies, I.

    2005-01-01

    Infants respond categorically to color. However, the nature of infants' categorical responding to color is unclear. The current study investigated two issues. First, is infants' categorical responding more absolute than adults' categorical responding? That is, can infants discriminate two stimuli from the same color category? Second, is color…

  18. Absolute surface reconstruction by slope metrology and photogrammetry

    NASA Astrophysics Data System (ADS)

    Dong, Yue

    Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.

  19. An Absolute Measurement of Resonance-Resolved Electron Impact Excitation

    NASA Astrophysics Data System (ADS)

    Reisenfeld, Daniel Brett

    1998-11-01

    An experiment to measure electron-impact excitation (EIE) of multiply-charged ions is described. An absolute measurement has been carried out of the cross section for EIE of Si2+(3s2/ 1S/to3s3p/ 1P) from energies below threshold to 11 eV above. A beams modulation technique with inclined electron and ion beams was used. Radiation at 120.7 nm from the excited ions was detected using an absolutely calibrated optical system. The analysis of the experimental data requires a determination of the population fraction of the Si2+ (3s3p/ 3Po) metastable state in the incident ion beam, which was measured to be 0.210 ± 0.018. The data have been corrected for contributions to the signal from radiative decay following excitation from the metastable state to 3s3p1P and 3p2/ 3P, and excitation of the ground state to levels above 3s3p/ 1P. The experimental 0.56 ± 0.08 eV energy spread has allowed us to resolve complex resonance structure throughout the studied energy range. At the reported ±14% uncertainty level (90% confidence limit), the measured structure and absolute scale of the cross section are in good agreement with 12-state close-coupling R-matrix calculations.

  20. Absolute brightness temperature measurements at 3.5-mm wavelength. [of sun, Venus, Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Ulich, B. L.; Rhodes, P. J.; Davis, J. H.; Hollis, J. M.

    1980-01-01

    Careful observations have been made at 86.1 GHz to derive the absolute brightness temperatures of the sun (7914 + or - 192 K), Venus (357.5 + or - 13.1 K), Jupiter (179.4 + or - 4.7 K), and Saturn (153.4 + or - 4.8 K) with a standard error of about three percent. This is a significant improvement in accuracy over previous results at millimeter wavelengths. A stable transmitter and novel superheterodyne receiver were constructed and used to determine the effective collecting area of the Millimeter Wave Observatory (MWO) 4.9-m antenna relative to a previously calibrated standard gain horn. The thermal scale was set by calibrating the radiometer with carefully constructed and tested hot and cold loads. The brightness temperatures may be used to establish an absolute calibration scale and to determine the antenna aperture and beam efficiencies of other radio telescopes at 3.5-mm wavelength.

  1. Absolute configuration of isovouacapenol C

    PubMed Central

    Fun, Hoong-Kun; Yodsaoue, Orapun; Karalai, Chatchanok; Chantrapromma, Suchada

    2010-01-01

    The title compound, C27H34O5 {systematic name: (4aR,5R,6R,6aS,7R,11aS,11bR)-4a,6-dihy­droxy-4,4,7,11b-tetra­methyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodeca­hydro­phenanthro[3,2-b]furan-5-yl benzoate}, is a cassane furan­oditerpene, which was isolated from the roots of Caesalpinia pulcherrima. The three cyclo­hexane rings are trans fused: two of these are in chair conformations with the third in a twisted half-chair conformation, whereas the furan ring is almost planar (r.m.s. deviation = 0.003 Å). An intra­molecular C—H⋯O inter­action generates an S(6) ring. The absolute configurations of the stereogenic centres at positions 4a, 5, 6, 6a, 7, 11a and 11b are R, R, R, S, R, S and R, respectively. In the crystal, mol­ecules are linked into infinite chains along [010] by O—H⋯O hydrogen bonds. C⋯O [3.306 (2)–3.347 (2) Å] short contacts and C—H⋯π inter­actions also occur. PMID:21588364

  2. Frequency-domain analysis of absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Svitlov, S.

    2012-12-01

    An absolute gravimeter is analysed as a linear time-invariant system in the frequency domain. Frequency responses of absolute gravimeters are derived analytically based on the propagation of the complex exponential signal through their linear measurement functions. Depending on the model of motion and the number of time-distance coordinates, an absolute gravimeter is considered as a second-order (three-level scheme) or third-order (multiple-level scheme) low-pass filter. It is shown that the behaviour of an atom absolute gravimeter in the frequency domain corresponds to that of the three-level corner-cube absolute gravimeter. Theoretical results are applied for evaluation of random and systematic measurement errors and optimization of an experiment. The developed theory agrees with known results of an absolute gravimeter analysis in the time and frequency domains and can be used for measurement uncertainty analyses, building of vibration-isolation systems and synthesis of digital filtering algorithms.

  3. Correction to Method of Establishing the Absolute Radiometric Accuracy of Remote Sensing Systems While On-orbit Using Characterized Stellar Sources

    NASA Technical Reports Server (NTRS)

    Bowen, Howard S.; Cunningham, Douglas M.

    2007-01-01

    The contents include: 1) Brief history of related events; 2) Overview of original method used to establish absolute radiometric accuracy of remote sensing instruments using stellar sources; and 3) Considerations to improve the stellar calibration approach.

  4. Color spaces for discrimination and categorization in natural scenes

    NASA Astrophysics Data System (ADS)

    Paltridge, Richard J.; Thomson, Mitchell G. A.; Yates, Tim; Westland, Stephen

    2002-06-01

    Physical measurements of surfaces' color-causing properties are typically spectroradiometric, whereas color-differencing comparisons are typically colormetric ones performed in some 3-D color space. In general, this downprojection of high-dimensional spectral data into some 3-dimensional color space incurs a loss of information, a loss that could be more critical in one color space than in another. One ecologically valid way of assessing the extent of this information loss is to determine how likely it is that a pair of surfaces which have distinctly different spectral properties would be colorimetrically indistinguishable. We describe a virtual ideal color-difference detector which uses standard color-difference metrics but has access to the absolute spectral difference in the color signals of the surface pair. Only when this ideal detector classes a surface pair as "different" yet a standard color-difference detector classes them as "same" is the pair said to be metameric. This paradigm is applied to a dataset of hyperspectral natural images using a wide variety of 3-D color spaces. The results show that, around thresholds which approximate human performance, the overal metamerism rate is very low, yet most pixels in an image will be metameric with at least one other image pixel. Thus, downprojecting spectral data onto a 3-D color space may compromise color discriminability, but is unlikely to affect color categorization performance, a finding which is in accord with evolutionary theories regarding the function of human color vision.

  5. Interlaboratory calibration of atmospheric nitrous oxide measurements

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. A.; Pierotti, D.

    1978-01-01

    Samples representative of Northern Hemispheric conditions in mid-1976 were analyzed by 11 laboratories to resolve the question of the absolute tropospheric concentration of nitrous oxide. The laboratories all employed electron capture-gas chromatography for the analysis. After exclusion of one anomalously low determination, the calibration results showed a mean concentration of 323.5 + or - 8.7 ppb v/v nitrous oxide.

  6. Hidden Color

    NASA Astrophysics Data System (ADS)

    Ji, C.-R.

    2014-10-01

    With the acceptance of QCD as the fundamental theory of strong interactions, one of the basic problems in the analysis of nuclear phenomena became how to consistently account for the effects of the underlying quark/gluon structure of nucleons and nuclei. Besides providing more detailed understanding of conventional nuclear physics, QCD may also point to novel phenomena accessible by new or upgraded nuclear experimental facilities. We discuss a few interesting applications of QCD to nuclear physics with an emphasis on the hidden color degrees of freedom.

  7. Landsat Data Continuity Mission Calibration and Validation

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Dabney, Philip W.; Storey, James C.; Morfitt, Ron; Knight, Ed; Kvaran, Geir; Lee, Kenton

    2008-01-01

    The primary payload for the Landsat Data Continuity Mission (LDCM) is the Operational Land Imager (OLI), being built by Ball Aerospace and Technologies, under contract to NASA. The OLI has spectral bands similar to the Landsat-7 ETM+, minus the thermal band and with two new bands, a 443 nm band and 1375 nm cirrus detection band. On-board calibration systems include two solar diffusers (routine and pristine), a shutter and three sets of internal lamps (routine, backup and pristine). Being a pushbroom opposed to a whiskbroom design of ETM+, the system poses new challenges for characterization and calibration, chief among them being the large focal plane with 75000+ detectors. A comprehensive characterization and calibration plan is in place for the instrument and the data throughout the mission including Ball, NASA and the United States Geological Survey, which will take over operations of LDCM after on-orbit commissioning. Driving radiometric calibration requirements for OLI data include radiance calibration to 5% uncertainty (1 q); reflectance calibration to 3% uncertainty (1 q) and relative (detector-to-detector) calibration to 0.5% (J (r). Driving geometric calibration requirements for OLI include bandto- band registration of 4.5 meters (90% confidence), absolute geodetic accuracy of 65 meters (90% CE) and relative geodetic accuracy of 25 meters (90% CE). Key spectral, spatial and radiometric characterization of the OLI will occur in thermal vacuum at Ball Aerospace. During commissioning the OLI will be characterized and calibrated using celestial (sun, moon, stars) sources and terrestrial sources. The USGS EROS ground processing system will incorporate an image assessment system similar to Landsat-7 for characterization and calibration. This system will have the added benefit that characterization data will be extracted as part of the normal image data processing, so that the characterization data available will be significantly larger than for Landsat-7 ETM+.

  8. Dune-filled Crater in Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 4 May 2004 This daytime visible color image was collected on October 16, 2003 during the Southern Summer season of a crater within Molesworth Crater.

    This daytime visible color image was collected on September 4, 2002 during the Northern Spring season in Vastitas Borealis. The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude -27.4, Longitude 149.6 East (210.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in

  9. PACS photometer calibration block analysis

    NASA Astrophysics Data System (ADS)

    Moór, A.; Müller, T. G.; Kiss, C.; Balog, Z.; Billot, N.; Marton, G.

    2014-07-01

    The absolute stability of the PACS bolometer response over the entire mission lifetime without applying any corrections is about 0.5 % (standard deviation) or about 8 % peak-to-peak. This fantastic stability allows us to calibrate all scientific measurements by a fixed and time-independent response file, without using any information from the PACS internal calibration sources. However, the analysis of calibration block observations revealed clear correlations of the internal source signals with the evaporator temperature and a signal drift during the first half hour after the cooler recycling. These effects are small, but can be seen in repeated measurements of standard stars. From our analysis we established corrections for both effects which push the stability of the PACS bolometer response to about 0.2 % (stdev) or 2 % in the blue, 3 % in the green and 5 % in the red channel (peak-to-peak). After both corrections we still see a correlation of the signals with PACS FPU temperatures, possibly caused by parasitic heat influences via the Kevlar wires which connect the bolometers with the PACS Focal Plane Unit. No aging effect or degradation of the photometric system during the mission lifetime has been found.

  10. Mobile image based color correction using deblurring

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Xu, Chang; Boushey, Carol; Zhu, Fengqing; Delp, Edward J.

    2015-03-01

    Dietary intake, the process of determining what someone eats during the course of a day, provides valuable insights for mounting intervention programs for prevention of many chronic diseases such as obesity and cancer. The goals of the Technology Assisted Dietary Assessment (TADA) System, developed at Purdue University, is to automatically identify and quantify foods and beverages consumed by utilizing food images acquired with a mobile device. Color correction serves as a critical step to ensure accurate food identification and volume estimation. We make use of a specifically designed color checkerboard (i.e. a fiducial marker) to calibrate the imaging system so that the variations of food appearance under different lighting conditions can be determined. In this paper, we propose an image quality enhancement technique by combining image de-blurring and color correction. The contribution consists of introducing an automatic camera shake removal method using a saliency map and improving the polynomial color correction model using the LMS color space.

  11. Do focal colors look particularly "colorful"?

    PubMed

    Witzel, Christoph; Franklin, Anna

    2014-04-01

    If the most typical red, yellow, green, and blue were particularly colorful (i.e., saturated), they would "jump out to the eye." This would explain why even fundamentally different languages have distinct color terms for these focal colors, and why unique hues play a prominent role in subjective color appearance. In this study, the subjective saturation of 10 colors around each of these focal colors was measured through a pairwise matching task. Results show that subjective saturation changes systematically across hues in a way that is strongly correlated to the visual gamut, and exponentially related to sensitivity but not to focal colors.

  12. Radiance calibration of the High Altitude Observatory white-light coronagraph on Skylab

    NASA Technical Reports Server (NTRS)

    Poland, A. I.; Macqueen, R. M.; Munro, R. H.; Gosling, J. T.

    1977-01-01

    The processing of over 35,000 photographs of the solar corona obtained by the white-light coronograph on Skylab is described. Calibration of the vast amount of data was complicated by temporal effects of radiation fog and latent image loss. These effects were compensated by imaging a calibration step wedge on each data frame. Absolute calibration of the wedge was accomplished through comparison with a set of previously calibrated glass opal filters. Analysis employed average characteristic curves derived from measurements of step wedges from many frames within a given camera half-load. The net absolute accuracy of a given radiance measurement is estimated to be 20%.

  13. Advances in radiometry for ocean color

    USGS Publications Warehouse

    Brown, S.W.; Clark, D.K.; Johnson, B.C.; Yoon, H.; Lykke, K.R.; Flora, S.J.; Feinholz, M.E.; Souaidia, N.; Pietras, C.; Stone, T.C.; Yarbrough, M.A.; Kim, Y.S.; Barnes, R.A.; Mueller, J.L.

    2004-01-01

    We have presented a number of recent developments in radiometry that directly impact the uncertainties achievable in ocean-color research. Specifically, a new (2000) U. S. national irradiance scale, a new LASER-based facility for irradiance and radiance responsivity calibrations, and applications of the LASER facility for the calibration of sun photometers and characterization of spectrographs were discussed. For meaningful long-time-series global chlorophyll-a measurements, all instruments involved in radiometric measurements, including satellite sensors, vicarious calibration sensors, sensors used in the development of bio-optical algorithms and atmospheric characterization need to be fully characterized and corrected for systematic errors, including, but not limited to, stray light. A unique, solid-state calibration source is under development to reduce the radiometric uncertainties in ocean color instruments, in particular below 400 nm. Lunar measurements for trending of on-orbit sensor channel degradation were described. Unprecedented assessments, within 0.1 %, of temporal stability and drift in a satellite sensor's radiance responsivity are achievable with this approach. These developments advance the field of ocean color closer to the desired goal of reducing the uncertainty in the fundamental radiometry to a small component of the overall uncertainty in the derivation of remotely sensed ocean-color data products such as chlorophyll a.

  14. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  15. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  16. Preschoolers' Success at Coding Absolute Size Values.

    ERIC Educational Resources Information Center

    Russell, James

    1980-01-01

    Forty-five 2-year-old and forty-five 3-year-old children coded relative and absolute sizes using 1.5-inch, 6-inch, and 18-inch cardboard squares. Results indicate that absolute coding is possible for children of this age. (Author/RH)

  17. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  18. Monolithically integrated absolute frequency comb laser system

    DOEpatents

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  19. Estimating the absolute wealth of households

    PubMed Central

    Gerkey, Drew; Hadley, Craig

    2015-01-01

    Abstract Objective To estimate the absolute wealth of households using data from demographic and health surveys. Methods We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. Findings The median absolute wealth estimates of 1 403 186 households were 2056 international dollars per capita (interquartile range: 723–6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R2 = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Conclusion Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality. PMID:26170506

  20. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.