Science.gov

Sample records for absolute coordinate system

  1. Deployment dynamics of a simplified spinning IKAROS solar sail via absolute coordinate based method

    NASA Astrophysics Data System (ADS)

    Zhao, Jiang; Tian, Qiang; Hu, Hai-Yan

    2013-02-01

    The spinning solar sail of large scale has been well developed in recent years. Such a solar sail can be considered as a rigid-flexible multibody system mainly composed of a spinning central rigid hub, a number of flexible thin tethers, sail membranes, and tip masses. A simplified interplanetary kite-craft accelerated by radiation of the Sun (IKAROS) model is established in this study by using the absolute-coordinate-based (ACB) method that combines the natural coordinate formulation (NCF) describing the central rigid hub and the absolute nodal coordinate formulation (ANCF) describing flexible parts. The initial configuration of the system in the second-stage deployment is determined through both dynamic and static analyses. The huge set of stiff equations of system dynamics is solved by using the generalized-alpha method, and thus the deployment dynamics of the system can be well understood.

  2. An Approach to Absolute Position Control based on Object Coordinate

    NASA Astrophysics Data System (ADS)

    Nakano, Keisuke; Murakami, Toshiyuki

    This paper describes an accurate position control in object coordinate. In case the motion control of industrial robot placed in global coordinate is considered in object coordinate, it is preferable and convenient to decide its motion by the teaching of robot operator. However the teaching procedure requires much time and effort. Moreover, as often as relative position between robot and object is changed, the operator needs to do the teaching operation again. To improve the above issue, it is required to develop the strategy that decides the robot motion without the teaching operation. This paper proposes a control strategy that is not required the teaching operation and enables to realize the desired motion without affecting the relative position error between the robot and the target object in object coordinate defined by PSD (Position Sensitive Detector). In the proposed approach, the estimation algorithm of the kinetic transformation between global and object coordinates is introduced by using PSD output, and the error of coordinate transformation estimated by the proposed approach is compensated in global coordinate. The validity of the proposed method is shown by simulations and experiments.

  3. Monolithically integrated absolute frequency comb laser system

    DOEpatents

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  4. Absolute flatness testing of skip-flat interferometry by matrix analysis in polar coordinates.

    PubMed

    Han, Zhi-Gang; Yin, Lu; Chen, Lei; Zhu, Ri-Hong

    2016-03-20

    A new method utilizing matrix analysis in polar coordinates has been presented for absolute testing of skip-flat interferometry. The retrieval of the absolute profile mainly includes three steps: (1) transform the wavefront maps of the two cavity measurements into data in polar coordinates; (2) retrieve the profile of the reflective flat in polar coordinates by matrix analysis; and (3) transform the profile of the reflective flat back into data in Cartesian coordinates and retrieve the profile of the sample. Simulation of synthetic surface data has been provided, showing the capability of the approach to achieve an accuracy of the order of 0.01 nm RMS. The absolute profile can be retrieved by a set of closed mathematical formulas without polynomial fitting of wavefront maps or the iterative evaluation of an error function, making the new method more efficient for absolute testing. PMID:27140578

  5. Absolute calibration in vivo measurement systems

    SciTech Connect

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs.

  6. Magnetic Coordinate Systems

    NASA Astrophysics Data System (ADS)

    Laundal, K. M.; Richmond, A. D.

    2016-07-01

    Geospace phenomena such as the aurora, plasma motion, ionospheric currents and associated magnetic field disturbances are highly organized by Earth's main magnetic field. This is due to the fact that the charged particles that comprise space plasma can move almost freely along magnetic field lines, but not across them. For this reason it is sensible to present such phenomena relative to Earth's magnetic field. A large variety of magnetic coordinate systems exist, designed for different purposes and regions, ranging from the magnetopause to the ionosphere. In this paper we review the most common magnetic coordinate systems and describe how they are defined, where they are used, and how to convert between them. The definitions are presented based on the spherical harmonic expansion coefficients of the International Geomagnetic Reference Field (IGRF) and, in some of the coordinate systems, the position of the Sun which we show how to calculate from the time and date. The most detailed coordinate systems take the full IGRF into account and define magnetic latitude and longitude such that they are constant along field lines. These coordinate systems, which are useful at ionospheric altitudes, are non-orthogonal. We show how to handle vectors and vector calculus in such coordinates, and discuss how systematic errors may appear if this is not done correctly.

  7. Contact dynamics of elasto-plastic thin beams simulated via absolute nodal coordinate formulation

    NASA Astrophysics Data System (ADS)

    Wang, Qing-Tao; Tian, Qiang; Hu, Hai-Yan

    2015-12-01

    Under the frame of multibody dynamics, the contact dynamics of elasto-plastic spatial thin beams is numerically studied by using the spatial thin beam elements of absolute nodal coordinate formulation (ANCF). The internal force of the elasto-plastic spatial thin beam element is derived under the assumption that the plastic strain of the beam element depends only on its longitudinal deformation. A new body-fixed local coordinate system is introduced into the spatial thin beam element of ANCF for efficient contact detection in the contact dynamics simulation. The linear isotropic hardening constitutive law is used to describe the elasto-plastic deformation of beam material, and the classical return mapping algorithm is adopted to evaluate the plastic strains. A multi-zone contact approach of thin beams previously proposed by the authors is also introduced to detect the multiple contact zones of beams accurately, and the penalty method is used to compute the normal contact force of thin beams in contact. Four numerical examples are given to demonstrate the applicability and effectiveness of the proposed elasto-plastic spatial thin beam element of ANCF for flexible multibody system dynamics.

  8. Contact dynamics of elasto-plastic thin beams simulated via absolute nodal coordinate formulation

    NASA Astrophysics Data System (ADS)

    Wang, Qing-Tao; Tian, Qiang; Hu, Hai-Yan

    2016-06-01

    Under the frame of multibody dynamics, the contact dynamics of elasto-plastic spatial thin beams is numerically studied by using the spatial thin beam elements of absolute nodal coordinate formulation (ANCF). The internal force of the elasto-plastic spatial thin beam element is derived under the assumption that the plastic strain of the beam element depends only on its longitudinal deformation. A new body-fixed local coordinate system is introduced into the spatial thin beam element of ANCF for efficient contact detection in the contact dynamics simulation. The linear isotropic hardening constitutive law is used to describe the elasto-plastic deformation of beam material, and the classical return mapping algorithm is adopted to evaluate the plastic strains. A multi-zone contact approach of thin beams previously proposed by the authors is also introduced to detect the multiple contact zones of beams accurately, and the penalty method is used to compute the normal contact force of thin beams in contact. Four numerical examples are given to demonstrate the applicability and effectiveness of the proposed elasto-plastic spatial thin beam element of ANCF for flexible multibody system dynamics.

  9. Hipparchus' coordinate system

    NASA Astrophysics Data System (ADS)

    Duke, Dennis W.

    2002-07-01

    In his "Histoire de l'Astronomie Ancienne" Delambre concludes unequivocally that Hipparchus knew and used a definite system of celestial spherical coordinates, namely the right ascension and declination system that we use today. The basis of Delambre's conclusion was disarmingly simple: he pointed out that in the "Commentary to Aratus" Hipparchus actually quotes the positions of numerous stars directly in right ascension and declination (or more often its complement, polar distance). Nearly two centuries later, in his "A History of Ancient Mathematical Astronomy", Neugebauer not only completely ignores Delambre's conclusion on this issue, but goes further to propose his own, as we shall see quite fanciful, theory that begins "From the Commentary to Aratus, it is quite obvious that at Hipparchus' time a definite system of spherical coordinates for stellar positions did not yet exist." and concludes "...nowhere in Greek astronomy before the catalogue of stars in the Almagest is it attested that orthogonal spherical coordinates are used to determine stellar positions." Today it is clear that Neugebauer's theory is conventionally accepted. It is the purpose of this paper to offer fresh arguments that Delambre was correct.

  10. Multipole Structure and Coordinate Systems

    ERIC Educational Resources Information Center

    Burko, Lior M.

    2007-01-01

    Multipole expansions depend on the coordinate system, so that coefficients of multipole moments can be set equal to zero by an appropriate choice of coordinates. Therefore, it is meaningless to say that a physical system has a nonvanishing quadrupole moment, say, without specifying which coordinate system is used. (Except if this moment is the…

  11. SAR image registration in absolute coordinates using GPS carrier phase position and velocity information

    SciTech Connect

    Burgett, S.; Meindl, M.

    1994-09-01

    It is useful in a variety of military and commercial application to accurately register the position of synthetic aperture radar (SAR) imagery in absolute coordinates. The two basic SAR measurements, range and doppler, can be used to solve for the position of the SAR image. Imprecise knowledge of the SAR collection platform`s position and velocity vectors introduce errors in the range and doppler measurements and can cause the apparent location of the SAR image on the ground to be in error by tens of meters. Recent advances in carrier phase GPS techniques can provide an accurate description of the collection vehicle`s trajectory during the image formation process. In this paper, highly accurate carrier phase GPS trajectory information is used in conjunction with SAR imagery to demonstrate a technique for accurate registration of SAR images in WGS-84 coordinates. Flight test data will be presented that demonstrates SAR image registration errors of less than 4 meters.

  12. Compact-range coordinate system established using a laser tracker.

    SciTech Connect

    Gallegos, Floyd H.; Bryce, Edwin Anthony

    2006-12-01

    Establishing a Cartesian coordinate reference system for an existing Compact Antenna Range using the parabolic reflector is presented. A SMX (Spatial Metrix Corporation) M/N 4000 laser-based coordinate measuring system established absolute coordinates for the facility. Electric field characteristics with positional movement correction are evaluated. Feed Horn relocation for alignment with the reflector axis is also described. Reference points are established for follow-on non-laser alignments utilizing a theodolite.

  13. Karst Water System Investigated by Absolute Gravimetry

    NASA Astrophysics Data System (ADS)

    Quinif, Y.; Meus, P.; van Camp, M.; Kaufmann, O.; van Ruymbeke, M.; Vandiepenbeeck, M.; Camelbeeck, T.

    2006-12-01

    The highly anisotropic and heterogeneous hydrogeological characteristics of karst aquifers are difficult to characterize and present challenges for modeling of storage capacities. Little is known about the surface and groundwater interconnection, about the connection between the porous formations and the draining cave and conduits, and about the variability of groundwater volume within the system. Usually, an aquifer is considered as a black box, where water fluxes are monitored as input and output. However, water inflow and outflow are highly variable and cannot be measured directly. A recent project, begun in 2006 sought to constrain the water budget in a Belgian karst aquifer and to assess the porosity and water dynamics, combining absolute gravity (AG) measurements and piezometric levels around the Rochefort cave. The advantage of gravity measurements is that they integrate all the subsystems in the karst system. This is not the case with traditional geophysical tools like boring or monitoring wells, which are soundings affected by their near environment and its heterogeneity. The investigated cave results from the meander cutoff system of the Lomme River. The main inputs are swallow holes of the river crossing the limestone massif. The river is canalized and the karst system is partly disconnected from the hydraulic system. In February and March 2006, when the river spilled over its dyke and sank into the most important swallow hole, this resulted in dramatic and nearly instantaneous increases in the piezometric levels in the cave, reaching up to 13 meters. Meanwhile, gravity increased by 50 and 90 nms-2 in February and March, respectively. A first conclusion is that during these sudden floods, the pores and fine fissures were poorly connected with the enlarged fractures, cave, and conduits. With a rise of 13 meters in the water level and a 5% porosity, a gravity change of 250 nms-2 should have been expected. This moderate gravity variation suggests either a

  14. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  15. On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach

    NASA Astrophysics Data System (ADS)

    Gerstmayr, Johannes; Irschik, Hans

    2008-12-01

    In finite element methods that are based on position and slope coordinates, a representation of axial and bending deformation by means of an elastic line approach has become popular. Such beam and plate formulations based on the so-called absolute nodal coordinate formulation have not yet been verified sufficiently enough with respect to analytical results or classical nonlinear rod theories. Examining the existing planar absolute nodal coordinate element, which uses a curvature proportional bending strain expression, it turns out that the deformation does not fully agree with the solution of the geometrically exact theory and, even more serious, the normal force is incorrect. A correction based on the classical ideas of the extensible elastica and geometrically exact theories is applied and a consistent strain energy and bending moment relations are derived. The strain energy of the solid finite element formulation of the absolute nodal coordinate beam is based on the St. Venant-Kirchhoff material: therefore, the strain energy is derived for the latter case and compared to classical nonlinear rod theories. The error in the original absolute nodal coordinate formulation is documented by numerical examples. The numerical example of a large deformation cantilever beam shows that the normal force is incorrect when using the previous approach, while a perfect agreement between the absolute nodal coordinate formulation and the extensible elastica can be gained when applying the proposed modifications. The numerical examples show a very good agreement of reference analytical and numerical solutions with the solutions of the proposed beam formulation for the case of large deformation pre-curved static and dynamic problems, including buckling and eigenvalue analysis. The resulting beam formulation does not employ rotational degrees of freedom and therefore has advantages compared to classical beam elements regarding energy-momentum conservation.

  16. Terrestrial Coordinate Systems and Frames

    NASA Astrophysics Data System (ADS)

    Boucher, C.; Murdin, P.

    2000-11-01

    A terrestrial reference system (TRS) is a spatial reference system corotating with the Earth in its DIURNAL MOTION in space. In such a system, the positions of points anchored on the Earth's solid surface have coordinates which have only small variations with time, as a result of geophysical effects (tectonic or tidal deformations; see TECTONICS, EARTH'S INTERIOR, TIDES). A terrestrial reference ...

  17. Orion Absolute Navigation System Progress and Challenge

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; D'Souza, Christopher

    2012-01-01

    The absolute navigation design of NASA's Orion vehicle is described. It has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary onboard measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudo-range and delta-range, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, and cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.

  18. Simple and accurate empirical absolute volume calibration of a multi-sensor fringe projection system

    NASA Astrophysics Data System (ADS)

    Gdeisat, Munther; Qudeisat, Mohammad; AlSa`d, Mohammed; Burton, David; Lilley, Francis; Ammous, Marwan M. M.

    2016-05-01

    This paper suggests a novel absolute empirical calibration method for a multi-sensor fringe projection system. The optical setup of the projector-camera sensor can be arbitrary. The term absolute calibration here means that the centre of the three dimensional coordinates in the resultant calibrated volume coincides with a preset centre to the three-dimensional real-world coordinate system. The use of a zero-phase fringe marking spot is proposed to increase depth calibration accuracy, where the spot centre is determined with sub-pixel accuracy. Also, a new method is proposed for transversal calibration. Depth and transversal calibration methods have been tested using both single sensor and three-sensor fringe projection systems. The standard deviation of the error produced by this system is 0.25 mm. The calibrated volume produced by this method is 400 mm×400 mm×140 mm.

  19. Orion Absolute Navigation System Progress and Challenges

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; D'Souza, Christopher

    2011-01-01

    The Orion spacecraft is being designed as NASA's next-generation exploration vehicle for crewed missions beyond Low-Earth Orbit. The navigation system for the Orion spacecraft is being designed in a Multi-Organizational Design Environment (MODE) team including contractor and NASA personnel. The system uses an Extended Kalman Filter to process measurements and determine the state. The design of the navigation system has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudorange and deltarange, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, pad alignment, cold start are discussed as are

  20. Global absolut gravity reference system as replacement of IGSN 71

    NASA Astrophysics Data System (ADS)

    Wilmes, Herbert; Wziontek, Hartmut; Falk, Reinhard

    2015-04-01

    The determination of precise gravity field parameters is of great importance in a period in which earth sciences are achieving the necessary accuracy to monitor and document global change processes. This is the reason why experts from geodesy and metrology joined in a successful cooperation to make absolute gravity observations traceable to SI quantities, to improve the metrological kilogram definition and to monitor mass movements and smallest height changes for geodetic and geophysical applications. The international gravity datum is still defined by the International Gravity Standardization Net adopted in 1971 (IGSN 71). The network is based upon pendulum and spring gravimeter observations taken in the 1950s and 60s supported by the early free fall absolute gravimeters. Its gravity values agreed in every case to better than 0.1 mGal. Today, more than 100 absolute gravimeters are in use worldwide. The series of repeated international comparisons confirms the traceability of absolute gravity measurements to SI quantities and confirm the degree of equivalence of the gravimeters in the order of a few µGal. For applications in geosciences where e.g. gravity changes over time need to be analyzed, the temporal stability of an absolute gravimeter is most important. Therefore, the proposition is made to replace the IGSN 71 by an up-to-date gravity reference system which is based upon repeated absolute gravimeter comparisons and a global network of well controlled gravity reference stations.

  1. Computer aided coordinate measuring systems

    NASA Astrophysics Data System (ADS)

    Nastri, J. W.

    Sikorsky's computer-aided inspection system and equipment utilized to assure that manufactured parts meet drawing tolerance specifications are discussed. An overview of the system is given, and the software is described, including the monitor console routine and commands and the language commands. The system's three coordinate measuring machines are discussed, and the part inspection methods are described in stepwise fashion. System benefits and time savings items are detailed, including quick and accurate measurement of parts difficult to inspect by conventional methods, significant reduction in inspection time, a consistent baseline that highlights variances, and the use of personnel with lower skill levels to effectively inspect critical parts.

  2. System and method for calibrating a rotary absolute position sensor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  3. Estimation of the absolute position of mobile systems by an optoelectronic processor

    NASA Technical Reports Server (NTRS)

    Feng, Liqiang; Fainman, Yeshaiahu; Koren, Yoram

    1992-01-01

    A method that determine the absolute position of a mobile system with a hybrid optoelectronic processor has been developed. Position estimates are based on an analysis of circular landmarks that are detected by a TV camera attached to the mobile system. The difference between the known shape of the landmark and its image provides the information needed to determine the absolute position of the mobile system. For robust operation, the parameters of the landmark image are extracted at high speeds using an optical processor that performs an optical Hough transform. The coordinates of the mobile system are computed from these parameters in a digital co-processor using fast algorithms. Different sources of position estimation errors have also been analyzed, and consequent algorithms to improve the navigation performance of the mobile system have been developed and evaluated by both computer simulation and experiments.

  4. Mathematical Model for Absolute Magnetic Measuring Systems in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Fügenschuh, Armin; Fügenschuh, Marzena; Ludszuweit, Marina; Mojsic, Aleksandar; Sokół, Joanna

    2015-09-01

    Scales for measuring systems are either based on incremental or absolute measuring methods. Incremental scales need to initialize a measurement cycle at a reference point. From there, the position is computed by counting increments of a periodic graduation. Absolute methods do not need reference points, since the position can be read directly from the scale. The positions on the complete scales are encoded using two incremental tracks with different graduation. We present a new method for absolute measuring using only one track for position encoding up to micrometre range. Instead of the common perpendicular magnetic areas, we use a pattern of trapezoidal magnetic areas, to store more complex information. For positioning, we use the magnetic field where every position is characterized by a set of values measured by a hall sensor array. We implement a method for reconstruction of absolute positions from the set of unique measured values. We compare two patterns with respect to uniqueness, accuracy, stability and robustness of positioning. We discuss how stability and robustness are influenced by different errors during the measurement in real applications and how those errors can be compensated.

  5. Absolute phase-assisted three-dimensional data registration for a dual-camera structured light system

    SciTech Connect

    Zhang Song; Yau Shingtung

    2008-06-10

    For a three-dimensional shape measurement system with a single projector and multiple cameras, registering patches from different cameras is crucial. Registration usually involves a complicated and time-consuming procedure. We propose a new method that can robustly match different patches via absolute phase without significantly increasing its cost. For y and z coordinates, the transformations from one camera to the other are approximated as third-order polynomial functions of the absolute phase. The x coordinates involve only translations and scalings. These functions are calibrated and only need to be determined once. Experiments demonstrated that the alignment error is within RMS 0.7 mm.

  6. Absolute calibration of vacuum ultraviolet spectrograph system for plasma diagnostics

    SciTech Connect

    Yoshikawa, M.; Kubota, Y.; Kobayashi, T.; Saito, M.; Numada, N.; Nakashima, Y.; Cho, T.; Koguchi, H.; Yagi, Y.; Yamaguchi, N.

    2004-10-01

    A space- and time-resolving vacuum ultraviolet (VUV) spectrograph system has been applied to diagnose impurity ions behavior in plasmas produced in the tandem mirror GAMMA 10 and the reversed field pinch TPE-RX. We have carried out ray tracing calculations for obtaining the characteristics of the VUV spectrograph and calibration experiments to measure the absolute sensitivities of the VUV spectrograph system for the wavelength range from 100 to 1100 A. By changing the incident angle, 50.6 deg. -51.4 deg., to the spectrograph whose nominal incident angle is 51 deg., we can change the observing spectral range of the VUV spectrograph. In this article, we show the ray tracing calculation results and absolute sensitivities when the angle of incidence into the VUV spectrograph is changed, and the results of VUV spectroscopic measurement in both GAMMA 10 and TPE-RX plasmas.

  7. MSTAR: an absolute metrology system with submicrometer accuracy

    NASA Astrophysics Data System (ADS)

    Lay, Oliver P.; Dubovitsky, Serge; Peters, Robert D.; Burger, Johan; Steier, Willian H.; Ahn, Seh-Won; Fetterman, Harrold R.

    2004-10-01

    Laser metrology systems are a key component of stellar interferometers, used to monitor path lengths and dimensions internal to the instrument. Most interferometers use 'relative' metrology, in which the integer number of wavelengths along the path is unknown, and the measurement of length is ambiguous. Changes in the path length can be measured relative to an initial calibration point, but interruption of the metrology beam at any time requires a re-calibration of the system. The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. We describe the design of the system, show results for target distances up to 1 meter, and demonstrate how the system can be scaled to kilometer-scale distances. In recent experiments, we have used white light interferometry to augment the 'truth' measurements and validate the zero-point of the system. MSTAR is a general-purpose tool for conveniently measuring length with much greater accuracy than was previously possible, and has a wide range of possible applications.

  8. Reference coordinate systems: An update. Supplement 11

    NASA Technical Reports Server (NTRS)

    Mueller, Ivan I.

    1988-01-01

    A common requirement for all geodetic investigations is a well-defined coordinate system attached to the earth in some prescribed way, as well as a well-defined inertial coordinate system in which the motions of the terrestrial frame can be monitored. The paper deals with the problems encountered when establishing such coordinate systems and the transformations between them. In addition, problems related to the modeling of the deformable earth are discussed. This paper is an updated version of the earlier work, Reference Coordinate Systems for Earth Dynamics: A Preview, by the author.

  9. Sensitivity analysis approach to multibody systems described by natural coordinates

    NASA Astrophysics Data System (ADS)

    Li, Xiufeng; Wang, Yabin

    2014-03-01

    The classical natural coordinate modeling method which removes the Euler angles and Euler parameters from the governing equations is particularly suitable for the sensitivity analysis and optimization of multibody systems. However, the formulation has so many principles in choosing the generalized coordinates that it hinders the implementation of modeling automation. A first order direct sensitivity analysis approach to multibody systems formulated with novel natural coordinates is presented. Firstly, a new selection method for natural coordinate is developed. The method introduces 12 coordinates to describe the position and orientation of a spatial object. On the basis of the proposed natural coordinates, rigid constraint conditions, the basic constraint elements as well as the initial conditions for the governing equations are derived. Considering the characteristics of the governing equations, the newly proposed generalized-α integration method is used and the corresponding algorithm flowchart is discussed. The objective function, the detailed analysis process of first order direct sensitivity analysis and related solving strategy are provided based on the previous modeling system. Finally, in order to verify the validity and accuracy of the method presented, the sensitivity analysis of a planar spinner-slider mechanism and a spatial crank-slider mechanism are conducted. The test results agree well with that of the finite difference method, and the maximum absolute deviation of the results is less than 3%. The proposed approach is not only convenient for automatic modeling, but also helpful for the reduction of the complexity of sensitivity analysis, which provides a practical and effective way to obtain sensitivity for the optimization problems of multibody systems.

  10. On a new coordinate system with astrophysical application: Spiral coordinates

    NASA Astrophysics Data System (ADS)

    Campos, L. M. B. C.; Gil, P. J. S.

    In this presentation are introduced spiral coordinates, which are a particular case of conformal coordinates, i.e. orthogonal curvelinear coordinates with equal factors along all coordinate axis. The spiral coordinates in the plane have as coordinate curves two families of logarithmic spirals, making a constant angle, respectively phi and pi / 2-phi, with all radial lines, where phi is a parameter. They can be obtained from a complex function, representing a spiral potential flow, due to the superposition of a source/sink with a vortex; the parameter phi in this case specifies the ratio of the ass flux of source/sink to the circulation of the vortex. Regardless of hydrodynamical or other interpretations, spiral coordinates are particulary convenient in situation where physical quantities vary only along a logarithmicspiral. The example chosen is the propagation of Alfven waves along a logarithmic spiral, as an approximation to Parker's spiral. The equation of dissipative MHD are written in spiral coordinates, and eliminated to specify the Alfven wave equation in spiral coordinates; the latter is solved exactly in terms of Bessel functions, and the results analyzed for values of the parameters corresponding to the solar wind.

  11. Examination of Eulerian and Lagrangian Coordinate Systems.

    ERIC Educational Resources Information Center

    Remillard, Wilfred J.

    1978-01-01

    Studies the relationship between Eulerian and Lagrangian coordinate systems with the help of computer plots of variables such as density and particle displacement. Gives examples which illustrate the differences in the shape of a traveling wave as seen by observers in the two systems. (Author/GA)

  12. Information Systems Coordinate Emergency Management

    NASA Technical Reports Server (NTRS)

    2012-01-01

    -changing planet. This information can be captured, analyzed, and visualized by geographic information systems (GIS) to produce maps, charts, and other tools that can reveal information essential to a wide variety of applications including emergency management. Knowing precise, real-time information about the size, location, environmental conditions, and resulting damage of an event like a flood or wildfire as well as the location and numbers of emergency responders and other resources contributes directly to the effectiveness of disaster mitigation. The need for such information is also evident when responding to homeland security threats, such as a terrorist attack. Recognizing the value of its geospatial information resources for this and other purposes, in 1998 Stennis and the state of Mississippi partnered to form what became the Enterprise for Innovative Geospatial Solutions (EIGS) industry cluster, supporting the growth of remote sensing and GIS-based research and business. As part of EIGS, several companies partnered with NASA through dual use and Small Business Innovation Research (SBIR) contracts. Among those was NVision.

  13. Using Mean Absolute Relative Phase, Deviation Phase and Point-Estimation Relative Phase to Measure Postural Coordination in a Serial Reaching Task

    PubMed Central

    Galgon, Anne K.; Shewokis, Patricia A.

    2016-01-01

    The objectives of this communication are to present the methods used to calculate mean absolute relative phase (MARP), deviation phase (DP) and point estimate relative phase (PRP) and compare their utility in measuring postural coordination during the performance of a serial reaching task. MARP and DP are derived from continuous relative phase time series representing the relationship between two body segments or joints during movements. MARP is a single measure used to quantify the coordination pattern and DP measures the stability of the coordination pattern. PRP also quantifies coordination patterns by measuring the relationship between the timing of maximal or minimal angular displacements of two segments within cycles of movement. Seven young adults practiced a bilateral serial reaching task 300 times over 3 days. Relative phase measures were used to evaluate inter-joint relationships for shoulder-hip (proximal) and hip-ankle (distal) postural coordination at early and late learning. MARP, PRP and DP distinguished between proximal and distal postural coordination. There was no effect of practice on any of the relative phase measures for the group, but individual differences were seen over practice. Combined, MARP and DP estimated stability of in-phase and anti-phase postural coordination patterns, however additional qualitative movement analyses may be needed to interpret findings in a serial task. We discuss the strengths and limitations of using MARP and DP and compare MARP and DP to PRP measures in assessing coordination patterns in the context of various types of skillful tasks. Key points MARP, DP and PRP measures coordination between segments or joint angles Advantages and disadvantages of each measure should be considered in relationship to the performance task MARP and DP may capture coordination patterns and stability of the patterns during discrete tasks or phases of movements within a task PRP and SD or PRP may capture coordination patterns and

  14. A portable system for measuring the absolute geographic location of distant objects

    NASA Astrophysics Data System (ADS)

    Kuscer, Lovro; Diaci, Janez

    2010-10-01

    This contribution presents the development of a lightweight, man-portable system for measuring the absolute geographic location of distant objects. The system is built entirely from COTS (Commercial Of-The-Shelf) components that are controlled using custom software and hardware solutions. It consists of a laser rangefinder, an electronic compass and inclinometer, an optical incremental encoder, a GPS receiver, a CMOS camera, an LCOS viewfinder and an FPGA module that serves as a system controller. With the use of the FPGA, low power consumption and high processing power was achieved. The user interface comprises the viewfinder and a multidirectional button. While performing measurements, the live image of the target, sensor data and calculated coordinates are displayed in the viewfinder. The measuring system also features an SD card slot for data storage and WLAN connectivity to transfer the acquired data to a geographic information system. The contribution also presents the results of field tests used to verify the system operation and Monte Carlo simulations employed to evaluate its measuring characteristics.

  15. Distributed sensor coordination for advanced energy systems

    SciTech Connect

    Tumer, Kagan

    2015-03-12

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectives and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor

  16. Existence of frozen-in coordinate systems

    NASA Technical Reports Server (NTRS)

    Chertkov, A. D.

    1995-01-01

    The 'frozen-in' coordinate systems were first introduced in the works on 'reconnection' and 'magnetic barrier' theories (see review by M.l.Pudovkin and V.S.Semenov, Space Sci. Rev. 41,1 1985). The idea was to utilize the mathematical apparatus developed for 'general relativity' theory to simplify obtaining solutions to the ideal MHD equations set. Magnetic field (B), plasma velocity (v), and their vector product were used as coordinate vectors. But there exist no stationary solutions of ideal MHD set that satisfies the required boundary conditions at infinity (A.D.Chertkov, Solar Wind Seven Conf.,Pergamon Press,1992,165) having non-zero vector product of v and B where v and B originate from the same sphere. The existence of a solution is the hidden mine of the mentioned theories. The solution is constructed in the coordinate system, which is unknown and indeterminate before obtaining this solution. A substitution of the final solution must be done directly into the initial MHD set in order to check the method. One can demonstrate that 'solutions' of Petschek's problem, obtained by 'frozen-in' coordinate systems, does not satisfy just the 'frozen-in' equation, i.e. induction equation. It stems from the fact that Petschek's 're-connection' model, treated as a boundary problem, is over determined. This problem was incorrectly formulated.

  17. Model reduction in the physical coordinate system

    NASA Technical Reports Server (NTRS)

    Yae, K. Harold; Joeng, K. Y.

    1989-01-01

    In the dynamics modeling of a flexible structure, finite element analysis employs reduction techniques, such as Guyan's reduction, to remove some of the insignificant physical coordinates, thus producing a dynamics model that has smaller mass and stiffness matrices. But this reduction is limited in the sense that it removes certain degrees of freedom at a node points themselves in the model. From the standpoint of linear control design, the resultant model is still too large despite the reduction. Thus, some form of the model reduction is frequently used in control design by approximating a large dynamical system with a fewer number of state variables. However, a problem arises from the placement of sensors and actuators in the reduced model, because a model usually undergoes, before being reduced, some form of coordinate transformations that do not preserve the physical meanings of the states. To correct such a problem, a method is developed that expresses a reduced model in terms of a subset of the original states. The proposed method starts with a dynamic model that is originated and reduced in finite element analysis. Then the model is converted to the state space form, and reduced again by the internal balancing method. At this point, being in the balanced coordinate system, the states in the reduced model have no apparent resemblance to those of the original model. Through another coordinate transformation that is developed, however, this reduced model is expressed by a subset of the original states.

  18. Absolute Cavity Pyrgeometer to Measure the Absolute Outdoor Longwave Irradiance with Traceability to International System of Units, SI

    SciTech Connect

    Reda, I.; Zeng, J.; Scheuch, J.; Hanssen, L.; Wilthan, B.; Myers, D.; Stoffel, T.

    2012-03-01

    This article describes a method of measuring the absolute outdoor longwave irradiance using an absolute cavity pyrgeometer (ACP), U.S. Patent application no. 13/049, 275. The ACP consists of domeless thermopile pyrgeometer, gold-plated concentrator, temperature controller, and data acquisition. The dome was removed from the pyrgeometer to remove errors associated with dome transmittance and the dome correction factor. To avoid thermal convection and wind effect errors resulting from using a domeless thermopile, the gold-plated concentrator was placed above the thermopile. The concentrator is a dual compound parabolic concentrator (CPC) with 180{sup o} view angle to measure the outdoor incoming longwave irradiance from the atmosphere. The incoming irradiance is reflected from the specular gold surface of the CPC and concentrated on the 11 mm diameter of the pyrgeometer's blackened thermopile. The CPC's interior surface design and the resulting cavitation result in a throughput value that was characterized by the National Institute of Standards and Technology. The ACP was installed horizontally outdoor on an aluminum plate connected to the temperature controller to control the pyrgeometer's case temperature. The responsivity of the pyrgeometer's thermopile detector was determined by lowering the case temperature and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The responsivity is then used to calculate the absolute atmospheric longwave irradiance with an uncertainty estimate (U{sub 95}) of {+-}3.96 W m{sup 02} with traceability to the International System of Units, SI. The measured irradiance was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the Interim World Infrared Standard Group, WISG. A total of 408 readings were collected over three different nights. The calculated irradiance measured by the ACP was 1.5 W/m{sup 2} lower than that

  19. An absolute cavity pyrgeometer to measure the absolute outdoor longwave irradiance with traceability to international system of units, SI

    NASA Astrophysics Data System (ADS)

    Reda, Ibrahim; Zeng, Jinan; Scheuch, Jonathan; Hanssen, Leonard; Wilthan, Boris; Myers, Daryl; Stoffel, Tom

    2012-03-01

    This article describes a method of measuring the absolute outdoor longwave irradiance using an absolute cavity pyrgeometer (ACP), U.S. Patent application no. 13/049, 275. The ACP consists of domeless thermopile pyrgeometer, gold-plated concentrator, temperature controller, and data acquisition. The dome was removed from the pyrgeometer to remove errors associated with dome transmittance and the dome correction factor. To avoid thermal convection and wind effect errors resulting from using a domeless thermopile, the gold-plated concentrator was placed above the thermopile. The concentrator is a dual compound parabolic concentrator (CPC) with 180° view angle to measure the outdoor incoming longwave irradiance from the atmosphere. The incoming irradiance is reflected from the specular gold surface of the CPC and concentrated on the 11 mm diameter of the pyrgeometer's blackened thermopile. The CPC's interior surface design and the resulting cavitation result in a throughput value that was characterized by the National Institute of Standards and Technology. The ACP was installed horizontally outdoor on an aluminum plate connected to the temperature controller to control the pyrgeometer's case temperature. The responsivity of the pyrgeometer's thermopile detector was determined by lowering the case temperature and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The responsivity is then used to calculate the absolute atmospheric longwave irradiance with an uncertainty estimate (U95) of ±3.96 W m-2 with traceability to the International System of Units, SI. The measured irradiance was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the Interim World Infrared Standard Group, WISG. A total of 408 readings were collected over three different nights. The calculated irradiance measured by the ACP was 1.5 W/m2 lower than that measured by the two

  20. A coordinated approach to control system modifications

    SciTech Connect

    Lance, G.J.; Babuka, R.D.; Ricker, S.

    1995-10-01

    This paper describes the structured approach to a major control system retrofit. The project included replacing out-dated controls hardware with a distributed control system as part of a low NO{sub x} conversion project. The success of the coordinated approach used for this project depended on many key factors. The most important factor was strength of the EKPC/B and W relationship that united B and W design and installation expertise with EKPC operations. This relationship provided a comprehensive forum for information exchange between all parties involved. The design documents (P and IDs, SRSs, I/O Lists, and SITs) provided a conduit for technical information exchange. The integrated schedule was used as a dynamic road map to drive, guide and coordinate the project. The schedule provided direction to all contributing organizations through the engineering, installation, and start-up phases. The labor partnering approach to electrical and instrumentation installation infused valuable installation expertise into the project. The lessons learned sessions provided important performance feedback. These sessions measured the effectiveness of overall communication and led to process improvement. The success of this project is directly attributable to the dedication and coordinated approach of the EKPC/B and W project team.

  1. Which coordinate system for modelling path integration?

    PubMed

    Vickerstaff, Robert J; Cheung, Allen

    2010-03-21

    Path integration is a navigation strategy widely observed in nature where an animal maintains a running estimate, called the home vector, of its location during an excursion. Evidence suggests it is both ancient and ubiquitous in nature, and has been studied for over a century. In that time, canonical and neural network models have flourished, based on a wide range of assumptions, justifications and supporting data. Despite the importance of the phenomenon, consensus and unifying principles appear lacking. A fundamental issue is the neural representation of space needed for biological path integration. This paper presents a scheme to classify path integration systems on the basis of the way the home vector records and updates the spatial relationship between the animal and its home location. Four extended classes of coordinate systems are used to unify and review both canonical and neural network models of path integration, from the arthropod and mammalian literature. This scheme demonstrates analytical equivalence between models which may otherwise appear unrelated, and distinguishes between models which may superficially appear similar. A thorough analysis is carried out of the equational forms of important facets of path integration including updating, steering, searching and systematic errors, using each of the four coordinate systems. The type of available directional cue, namely allothetic or idiothetic, is also considered. It is shown that on balance, the class of home vectors which includes the geocentric Cartesian coordinate system, appears to be the most robust for biological systems. A key conclusion is that deducing computational structure from behavioural data alone will be difficult or impossible, at least in the absence of an analysis of random errors. Consequently it is likely that further theoretical insights into path integration will require an in-depth study of the effect of noise on the four classes of home vectors. PMID:19962387

  2. System-Level Planning, Coordination, and Communication

    PubMed Central

    Kanter, Robert K.; Dries, David; Luyckx, Valerie; Lim, Matthew L.; Wilgis, John; Anderson, Michael R.; Sarani, Babak; Hupert, Nathaniel; Mutter, Ryan; Devereaux, Asha V.; Christian, Michael D.; Kissoon, Niranjan; Christian, Michael D.; Devereaux, Asha V.; Dichter, Jeffrey R.; Kissoon, Niranjan; Rubinson, Lewis; Amundson, Dennis; Anderson, Michael R.; Balk, Robert; Barfield, Wanda D.; Bartz, Martha; Benditt, Josh; Beninati, William; Berkowitz, Kenneth A.; Daugherty Biddison, Lee; Braner, Dana; Branson, Richard D; Burkle, Frederick M.; Cairns, Bruce A.; Carr, Brendan G.; Courtney, Brooke; DeDecker, Lisa D.; De Jong, Marla J.; Dominguez-Cherit, Guillermo; Dries, David; Einav, Sharon; Erstad, Brian L.; Etienne, Mill; Fagbuyi, Daniel B.; Fang, Ray; Feldman, Henry; Garzon, Hernando; Geiling, James; Gomersall, Charles D.; Grissom, Colin K.; Hanfling, Dan; Hick, John L.; Hodge, James G.; Hupert, Nathaniel; Ingbar, David; Kanter, Robert K.; King, Mary A.; Kuhnley, Robert N.; Lawler, James; Leung, Sharon; Levy, Deborah A.; Lim, Matthew L.; Livinski, Alicia; Luyckx, Valerie; Marcozzi, David; Medina, Justine; Miramontes, David A.; Mutter, Ryan; Niven, Alexander S.; Penn, Matthew S.; Pepe, Paul E.; Powell, Tia; Prezant, David; Reed, Mary Jane; Rich, Preston; Rodriquez, Dario; Roxland, Beth E.; Sarani, Babak; Shah, Umair A.; Skippen, Peter; Sprung, Charles L.; Subbarao, Italo; Talmor, Daniel; Toner, Eric S.; Tosh, Pritish K.; Upperman, Jeffrey S.; Uyeki, Timothy M.; Weireter, Leonard J.; West, T. Eoin; Wilgis, John; Ornelas, Joe; McBride, Deborah; Reid, David; Baez, Amado; Baldisseri, Marie; Blumenstock, James S.; Cooper, Art; Ellender, Tim; Helminiak, Clare; Jimenez, Edgar; Krug, Steve; Lamana, Joe; Masur, Henry; Mathivha, L. Rudo; Osterholm, Michael T.; Reynolds, H. Neal; Sandrock, Christian; Sprecher, Armand; Tillyard, Andrew; White, Douglas; Wise, Robert; Yeskey, Kevin

    2014-01-01

    BACKGROUND: System-level planning involves uniting hospitals and health systems, local/regional government agencies, emergency medical services, and other health-care entities involved in coordinating and enabling care in a major disaster. We reviewed the literature and sought expert opinions concerning system-level planning and engagement for mass critical care due to disasters or pandemics and offer suggestions for system-planning, coordination, communication, and response. The suggestions in this chapter are important for all of those involved in a pandemic or disaster with multiple critically ill or injured patients, including front-line clinicians, hospital administrators, and public health or government officials. METHODS: The American College of Chest Physicians (CHEST) consensus statement development process was followed in developing suggestions. Task Force members met in person to develop nine key questions believed to be most relevant for system-planning, coordination, and communication. A systematic literature review was then performed for relevant articles and documents, reports, and other publications reported since 1993. No studies of sufficient quality were identified upon which to make evidence-based recommendations. Therefore, the panel developed expert opinion-based suggestions using a modified Delphi process. RESULTS: Suggestions were developed and grouped according to the following thematic elements: (1) national government support of health-care coalitions/regional health authorities (HC/RHAs), (2) teamwork within HC/RHAs, (3) system-level communication, (4) system-level surge capacity and capability, (5) pediatric patients and special populations, (6) HC/RHAs and networks, (7) models of advanced regional care systems, and (8) the use of simulation for preparedness and planning. CONCLUSIONS: System-level planning is essential to provide care for large numbers of critically ill patients because of disaster or pandemic. It also entails a

  3. AST: World Coordinate Systems in Astronomy

    NASA Astrophysics Data System (ADS)

    Berry, David S.; Warren-Smith, Rodney F.

    2014-04-01

    The AST library provides a comprehensive range of facilities for attaching world coordinate systems to astronomical data, for retrieving and interpreting that information in a variety of formats, including FITS-WCS, and for generating graphical output based on it. Core projection algorithms are provided by WCSLIB (ascl:1108.003) and astrometry is provided by the PAL and SOFA (ascl:1403.026) libraries. AST bindings are available in Python (pyast), Java (JNIAST) and Perl (Starlink::AST). AST is used as the plotting and astrometry library in DS9 and GAIA, and is distributed separately and as part of the Starlink software collection.

  4. Distributed Sensor Coordination for Advanced Energy Systems

    SciTech Connect

    Tumer, Kagan

    2013-07-31

    The ability to collect key system level information is critical to the safe, efficient and reli- able operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called “agents” from here on) to actively collect and process data, and provide key control deci- sions to significantly improve both the quality/relevance of the collected data and the as- sociating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as ad- vanced energy systems, where crucial decisions may need to be reached quickly and lo- cally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination rou- tines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shift- ing

  5. Tuning and Robustness Analysis for the Orion Absolute Navigation System

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; Zanetti, Renato; D'Souza, Christopher

    2013-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) is currently under development as NASA's next-generation spacecraft for exploration missions beyond Low Earth Orbit. The MPCV is set to perform an orbital test ight, termed Exploration Flight Test 1 (EFT-1), some time in late 2014. The navigation system for the Orion spacecraft is being designed in a Multi-Organizational Design Environment (MODE) team including contractor and NASA personnel. The system uses an Extended Kalman Filter to process measurements and determine the state. The design of the navigation system has undergone several iterations and modi cations since its inception, and continues as a work-in-progress. This paper seeks to show the e orts made to-date in tuning the lter for the EFT-1 mission and instilling appropriate robustness into the system to meet the requirements of manned space ight. The results generally show Monte Carlo error performance bounded by the lter uncertainty for all phases of ight. Some future items of investigation are presented related to suspected anomalies in the trajectory truth reference le.

  6. Cold spots in quantum systems far from equilibrium: Local entropies and temperatures near absolute zero

    NASA Astrophysics Data System (ADS)

    Shastry, Abhay; Stafford, Charles A.

    2015-12-01

    We consider a question motivated by the third law of thermodynamics: Can there be a local temperature arbitrarily close to absolute zero in a nonequilibrium quantum system? We consider nanoscale quantum conductors with the source reservoir held at finite temperature and the drain held at or near absolute zero, a problem outside the scope of linear response theory. We obtain local temperatures close to absolute zero when electrons originating from the finite temperature reservoir undergo destructive quantum interference. The local temperature is computed by numerically solving a nonlinear system of equations describing equilibration of a scanning thermoelectric probe with the system, and we obtain excellent agreement with analytic results derived using the Sommerfeld expansion. A local entropy for a nonequilibrium quantum system is introduced and used as a metric quantifying the departure from local equilibrium. It is shown that the local entropy of the system tends to zero when the probe temperature tends to zero, consistent with the third law of thermodynamics.

  7. Multi-channel data acquisition system with absolute time synchronization

    NASA Astrophysics Data System (ADS)

    Włodarczyk, Przemysław; Pustelny, Szymon; Budker, Dmitry; Lipiński, Marcin

    2014-11-01

    We present a low-cost, stand-alone global-time-synchronized data acquisition system. Our prototype allows recording up to four analog signals with a 16-bit resolution in variable ranges and a maximum sampling rate of 1000 S/s. The system simultaneously acquires readouts of external sensors e.g. magnetometer or thermometer. A complete data set, including a header containing timestamp, is stored on a Secure Digital (SD) card or transmitted to a computer using Universal Serial Bus (USB). The estimated time accuracy of the data acquisition is better than ±200 ns. The device is intended for use in a global network of optical magnetometers (the Global Network of Optical Magnetometers for Exotic physics - GNOME), which aims to search for signals heralding physics beyond the Standard Model, that can be generated by ordinary spin coupling to exotic particles or anomalous spin interactions.

  8. Tuning and Robustness Analysis for the Orion Absolute Navigation System

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; Zanetti, Renato; D'Souza, Christopher

    2013-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) is currently under development as NASA's next-generation spacecraft for exploration missions beyond Low Earth Orbit. The MPCV is set to perform an orbital test flight, termed Exploration Flight Test 1 (EFT-1), some time in late 2014. The navigation system for the Orion spacecraft is being designed in a Multi-Organizational Design Environment (MODE) team including contractor and NASA personnel. The system uses an Extended Kalman Filter to process measurements and determine the state. The design of the navigation system has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to show the efforts made to-date in tuning the filter for the EFT-1 mission and instilling appropriate robustness into the system to meet the requirements of manned space ight. Filter performance is affected by many factors: data rates, sensor measurement errors, tuning, and others. This paper focuses mainly on the error characterization and tuning portion. Traditional efforts at tuning a navigation filter have centered around the observation/measurement noise and Gaussian process noise of the Extended Kalman Filter. While the Orion MODE team must certainly address those factors, the team is also looking at residual edit thresholds and measurement underweighting as tuning tools. Tuning analysis is presented with open loop Monte-Carlo simulation results showing statistical errors bounded by the 3-sigma filter uncertainty covariance. The Orion filter design uses 24 Exponentially Correlated Random Variable (ECRV) parameters to estimate the accel/gyro misalignment and nonorthogonality. By design, the time constant and noise terms of these ECRV parameters were set to manufacturer specifications and not used as tuning parameters. They are included in the filter as a more analytically correct method of modeling uncertainties than ad-hoc tuning of the process noise. Tuning is explored for the

  9. Quipus and System of Coordinated Precession

    NASA Astrophysics Data System (ADS)

    Campos, T. C.

    2004-05-01

    The Incas of ancient Peru possessed no writing. Instead, they developed a unique system expressed on spatial arrays of colored knotted cords called Quipus to record and transmit information throughout their vast empire. In their thorough description of quipus, Ascher & Ascher observed that in two cases the numbers registered in their strings have a very special relationship to each other. For this to occur the numbers must have been obtained through the multiplication of whole numbers by fractions or decimals, operations apparently beyond the arithmetic knowledge of the Incas. The quipus AS120 and AS143, coming from Ica (Peru) and conserved in the Museum of Berlin has the suitable characteristics previously. In the AS143 there is a the relationship with the systems of coordinated precession (tilt of Earth's spin axis (40036); eccentricity of Earth's orbit (97357); and precession of equinoxes (between 18504 and 23098)). For the history of the Earth are necessary an chronometer natural to coordinate and to classify the observations and this chronometer comes to be the vernal point, defining the vernal point as" a sensitive axis of maximum conductivity" as itdemonstrates it the stability of the geomagnetic equator (inclination of the field is zero grades), in the year 1939 calculated with the IGRF from the year 1900 up to the 2004 and that it is confirmed with tabulated data of the Geophysical Institute of Huancayo (Peru),from that date until this year (2004) and this fluctuating between the 12-14 South.,on the other hand in the area of Brazil it has advanced very quickly toward the north, and above to 108 km. approximately it is located the equatorial electrojet that is but intense in the equinoxes in South America. And this stability from the point of view of the precession of the equinoxes this coinciding with the entrance of the apparent sun for the constellation of Aquarius, being this mechanism the base to establish a system of coordinated precession where it is

  10. System providing limit switch function with simultaneous absolute position output

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2006-01-01

    A limit and position sensing system includes a sensor assembly and an emitter. The sensor assembly includes first and second electrical conductors arranged in opposing parallel planes. The first electrical conductor is coiled outwardly from either end thereof in a clockwise fashion to form a first coil region and a second coil region. The second electrical conductor forms a single coil with portions of the single coil's rings lying between the first end and second end of the first electrical conductor being parallel to an axis of the first electrical conductor's plane. Ferromagnetic material is aligned with the first and second electrical conductors and spans beyond (a) the first and second ends of the first electrical conductor, and (b) the portions of the rings of the second electrical conductor's single coil that lie between the first end and second end of the first electrical conductor. The emitter is spaced apart from the sensor assembly and transmits a periodic electromagnetic wave towards the sensor assembly.

  11. The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements

    NASA Astrophysics Data System (ADS)

    Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu

    2015-10-01

    Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.

  12. A topological coordinate system for the diamond cubic grid.

    PubMed

    Čomić, Lidija; Nagy, Benedek

    2016-09-01

    Topological coordinate systems are used to address all cells of abstract cell complexes. In this paper, a topological coordinate system for cells in the diamond cubic grid is presented and some of its properties are detailed. Four dependent coordinates are used to address the voxels (triakis truncated tetrahedra), their faces (hexagons and triangles), their edges and the points at their corners. Boundary and co-boundary relations, as well as adjacency relations between the cells, can easily be captured by the coordinate values. Thus, this coordinate system is apt for implementation in various applications, such as visualizations, morphological and topological operations and shape analysis. PMID:27580205

  13. The Washington State System for Coordination of Staff Development. The Staff Development Coordination Study. Final Report.

    ERIC Educational Resources Information Center

    Washington Office of the State Superintendent of Public Instruction, Olympia.

    This report outlines the roles and responsibilities, pertaining to the improvement amd coordination of statewide teacher inservice, of the Superintendent of Public Instruction (SPI) in the state of Washington. After a field-based research study was conducted, a system was devised by which the SPI can improve coordination of staff development…

  14. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  15. Orbital elements and absolute dimensions of the eclipsing system LY Aurigae

    NASA Technical Reports Server (NTRS)

    Mccluskey, G. E., Jr.; Kondo, Y.

    1974-01-01

    Orbital solutions were obtained for the early-type eclipsing binary LY Aurigae from the light curves obtained with the OAO-2 by Heap and from the V light curve obtained from ground-based observations by Mayer and Horak. The solutions take into account the existence of a nearby companion not accounted for by previous investigators. The spectroscopic observations by Mayer and Batten were used to compute absolute dimensions for the binary orbit and for each component. This binary system presents an unique opportunity to determine accurately the absolute dimensions of an O9.5 III star.

  16. Absolute Definition of Phase Shift in the Elastic Scattering of a Particle from Compound Systems

    NASA Technical Reports Server (NTRS)

    Temkin, A.

    1961-01-01

    The projection of the target wave function on the total wave function of a scattered particle interacting with the target system is used to define an absolute phase shift including any multiples of pi. With this definition of the absolute phase shift, one can prove rigorously in the limit of zero energy for s-wave electrons scattered from atomic hydrogen that the triplet phase shift must approach a nonzero multiple of pi. One can further show that at least one pi of this phase shift is not connected with the existence of a bound state of the H- ion.

  17. Maple (Computer Algebra System) in Teaching Pre-Calculus: Example of Absolute Value Function

    ERIC Educational Resources Information Center

    Tuluk, Güler

    2014-01-01

    Modules in Computer Algebra Systems (CAS) make Mathematics interesting and easy to understand. The present study focused on the implementation of the algebraic, tabular (numerical), and graphical approaches used for the construction of the concept of absolute value function in teaching mathematical content knowledge along with Maple 9. The study…

  18. Mare Orientale Prime Meridian lunar coordinate system

    NASA Astrophysics Data System (ADS)

    Walden, B.; York, C.; McGown, R.; Billings, T.

    The Moon was the first extraterrestrial body to be mapped. From 1514 to 1840, navigators sailing the open seas needed accurate lunar maps to determine longitude by the "lunar-distance" method. For the convenience of early navigators, astronomers and selenographers, the lunar prime meridian was made to bisect the lunar disk as seen from Earth, formalized as the present Mean Earth / Polar Axis system. In 1961, the International Astronomical Union reversed lunar east and west to avoid confusion by astronauts and their controllers, so that now Mare Orientale -- the Eastern Sea -- lies on the Moon's western limb. By international agreement in 1974, lunar longitude was defined to increase eastward from zero to 360 degrees and prime meridians are generally defined by an observable feature. Examination of popular lunar maps indicates these newer standards are not widely accepted. Modern navigation no longer relies on the Moon. Lunar maps are now made by satellite imagery from lunar orbit. Today, humankind anticipates navigating the Moon itself. A relatively simple change to the lunar coordinate system could benefit upcoming lunar activities and promote acceptance of a 360 degree standard: move the lunar prime meridian. We propose the lunar prime meridian intersect some natural monument that most nearly represents the center longitude of Mare Orientale (perhaps crater Hohmann), and longitude increase eastward from zero to 360 degrees. Mare Orientale is a dramatic large "target," easily identifiable from space. Nearside traffic will use low longitude numbers from zero to r ughly 180 degrees,o and will not frequently cross this prime meridian. Earth's angle above the eastern horizon equals approximate longitude. Low and high longitude numbers will reflect the distinctive nearside and farside geological domains. The face of the Moon as seen from Earth will no longer be split in two. Calculations are simplified and sources of error eliminated. This system is more convenient and

  19. Coordinate System Issues in Binary Star Computations

    NASA Astrophysics Data System (ADS)

    Kaplan, George H.

    2015-08-01

    It has been estimated that half of all stars are components of binary or multiple systems. Yet the number of known orbits for astrometric and spectroscopic binary systems together is less than 7,000 (including redundancies), almost all of them for bright stars. A new generation of deep all-sky surveys such as Pan-STARRS, Gaia, and LSST are expected to lead to the discovery of millions of new systems. Although for many of these systems, the orbits may be undersampled initially, it is to be expected that combinations of new and old data sources will eventually lead to many more orbits being known. As a result, a revolution in the scientific understanding of these systems may be upon us.The current database of visual (astrometric) binary orbits represents them relative to the “plane of the sky”, that is, the plane orthogonal to the line of sight. Although the line of sight to stars constantly changes due to proper motion, aberration, and other effects, there is no agreed upon standard for what line of sight defines the orbital reference plane. Furthermore, the computation of differential coordinates (component B relative to A) for a given date must be based on the binary system’s direction at that date. Thus, a different “plane of the sky” is appropriate for each such date, i.e., each observation. However, projection effects between the reference planes, differential aberration, and the curvature of the sky are generally neglected in such computations. Usually the only correction applied is for the change in the north direction (position angle zero) due to precession (and sometimes also proper motion). This paper will present an algorithm for a more complete model of the geometry involved, and will show that such a model is necessary to avoid errors in the computed observables that are significant at modern astrometric accuracy. The paper will also suggest where conventions need to be established to avoid ambiguities in how quantities related to binary star

  20. Space telescope coordinate systems, symbols, and nomenclature definitions

    NASA Technical Reports Server (NTRS)

    Kennel, H. F.

    1976-01-01

    The major coordinate systems as well as the transformations and transformation angles between them, for the Space Telescope are defined. The coordinate systems were primarily developed for use in pointing and control system analysis and simulation. Additional useful information (on nomenclature, symbols, quaternion operations, etc.) is also contained.

  1. The Path to an Up-to-date Absolute Gravity Reference System

    NASA Astrophysics Data System (ADS)

    Wilmes, H.; Falk, R.; Wziontek, H.

    2014-12-01

    The determination of precise gravity field parameters is of great importance in a period in which earth sciences are achieving the necessary accuracy to monitor and document global change processes. This is the reason why experts from geodesy and metrology joined in a successful cooperation to make absolute gravity observations traceable to SI quantities, to improve the metrological kilogram definition and to monitor mass movements and smallest height changes for geodetic and geophysical applications. How can we determine such a gravity reference system and secure it over multiple decades? Precise knowledge of the gravity acceleration and definition of standards, models and corrections are an important prerequisite to the definition of the gravity system. Over more than three decades, the absolute gravity community cooperated successfully to obtain the gravity reference in comparisons at intervals of 4 years and to certify metrological equivalence between National Metrology Institutes. With increasing resolution of the absolute gravimeter sensors and new measurement principles it becomes obvious that such comparisons are not sufficient for all applications. Mainly for geodetic purposes it is necessary to sub-divide comparison intervals and maintain a connected network of gravity reference sites where compared absolute gravimeters operate together with superconducting gravimeters to derive a continuous gravity reference function. By means of this distributed monitoring of the gravity reference it will also be possible to relate observations of earlier absolute gravimeters to the present-day and to future instruments. It will be possible to include new sensors like atom interferometers and in future to relate the results of precise optical clocks. With co-located space geodetic sensors like GNSS, SLR and VLBI, these reference sites fulfill the conditions of a geodetic fundamental station as a component of IAG's Global Geodetic Observing System.

  2. Comment on 'Absolute negative mobility in a one-dimensional overdamped system'

    NASA Astrophysics Data System (ADS)

    Spiechowicz, J.; Kostur, M.; Łuczka, J.

    2016-04-01

    Recently Ru-Yin Chen et al. (Phys. Lett. A 379 (2015) 2169-2173) presented results on the absolute negative mobility (ANM) in a one-dimensional overdamped system and claimed that a new minimal model of ANM was proposed. We suggest that the authors introduced a mistake in their calculations. Then we perform a precise numerical simulation of the corresponding Langevin equation to show that the ANM phenomenon does not occur in the considered system.

  3. A Laser Frequency Comb System for Absolute Calibration of the VTT Echelle Spectrograph

    NASA Astrophysics Data System (ADS)

    Doerr, H.-P.; Steinmetz, T.; Holzwarth, R.; Kentischer, T.; Schmidt, W.

    2012-10-01

    A wavelength calibration system based on a laser frequency comb (LFC) was developed in a co-operation between the Kiepenheuer-Institut für Sonnenphysik, Freiburg, Germany and the Max-Planck-Institut für Quantenoptik, Garching, Germany for permanent installation at the German Vacuum Tower Telescope (VTT) on Tenerife, Canary Islands. The system was installed successfully in October 2011. By simultaneously recording the spectra from the Sun and the LFC, for each exposure a calibration curve can be derived from the known frequencies of the comb modes that is suitable for absolute calibration at the meters per second level. We briefly summarize some topics in solar physics that benefit from absolute spectroscopy and point out the advantages of LFC compared to traditional calibration techniques. We also sketch the basic setup of the VTT calibration system and its integration with the existing echelle spectrograph.

  4. Representation of Projection and Coordinate Systems in Engineering Graphics.

    ERIC Educational Resources Information Center

    Ross, William A.

    1990-01-01

    The existing methods for graphically illustrating projection and coordinate systems for manual and computer-aided drafting and design are examined. Inconsistencies in methods used to graphically depict first and third angle projection in texts and the lack of attention in the relationship of projection to coordinate systems are noted. (KR)

  5. Multi-view coordinate system transformation based on robot

    NASA Astrophysics Data System (ADS)

    Song, Li-mei; Wang, Peng-qiang; Xi, Jiang-tao; Guo, Qing-hua; Tang, Huan; Li, Jing; Li, Xiao-jie; Zhu, Teng-da

    2015-11-01

    The registration of point cloud is important for large object measurement. A measurement method for coordinate system transformation based on robot is proposed in this paper. Firstly, for obtaining extrinsic parameters, the robot moves to three different positions to capture the images of three targets. Then the transformation matrix X between camera and tool center point (TCP) coordinate systems can be calculated by using the known parameters of robot and the extrinsic parameters, and finally the multi-view coordinate system can be transformed into robot coordinate system by the transformation matrix X. With the help of robot, the multi-view point cloud can be easily transformed into a unified coordinate system. By using robot, the measurement doesn't need any mark. Experimental results show that the method is effective.

  6. Determination of Ship Approach Parameters in the Polar Coordinates System

    NASA Astrophysics Data System (ADS)

    Banachowicz, Andrzej; Wolski, Adam

    2014-06-01

    An essential aspect of the safety of navigation is avoiding collisions with other vessels and natural or man made navigational obstructions. To solve this kind of problem the navigator relies on automatic anti-collision ARPA systems, or uses a geometric method and makes radar plots. In both cases radar measurements are made: bearing (or relative bearing) on the target position and distance, both naturally expressed in the polar coordinates system originating at the radar antenna. We first convert original measurements to an ortho-Cartesian coordinate system. Then we solve collision avoiding problems in rectangular planar coordinates, and the results are transformed to the polar coordinate system. This article presents a method for an analysis of a collision situation at sea performed directly in the polar coordinate system. This approach enables a simpler geometric interpretation of a collision situation

  7. Reference coordinate systems for Earth dynamics: A preview

    NASA Technical Reports Server (NTRS)

    Mueller, I. I.

    1982-01-01

    Geodynamics is the subject of intensive international research during last decade. A common requirement for all investigations is the necessity of a well defined coordinate system attached to the Earth in some prescribed way. In addition, a well defined inertial coordinate system is also needed in which the motions of the terrestrial system can be monitored. The problems encountered when establishing such coordinate systems and the transformations between them are presented. In addition, problems related to the modeling of the deformable Earth are discussed. Finally, action items are listed which are necessary to assure that the reference system issue is resolved early and that uniformity is assured by means of international agreements.

  8. System for absolute measurement of electrolytic conductivity in aqueous solutions based on van der Pauw's theory

    NASA Astrophysics Data System (ADS)

    Zhang, Bing; Lin, Zhen; Zhang, Xiao; Yu, Xiang; Wei, Jiali; Wang, Xiaoping

    2014-05-01

    Based on an innovative application of van der Pauw's theory, a system was developed for the absolute measurement of electrolytic conductivity in aqueous solutions. An electrolytic conductivity meter was designed that uses a four-electrode system with an axial-radial two-dimensional adjustment structure coupled to an ac voltage excitation source and signal collecting circuit. The measurement accuracy, resolution and repeatability of the measurement system were examined through a series of experiments. Moreover, the measurement system and a high-precision electrolytic conductivity meter were compared using some actual water samples.

  9. [Enriching the diagnosis announcement system with the coordination passport].

    PubMed

    Bertrand, Nathalie

    2016-05-01

    The personalised care plan of a person with cancer requires proper coordination between the various professionals involved in their care at the different stages of their illness. In order to organise this coordination efficiently, for the patient as well as for the health professionals, an oncology hospital team has developed a practical and modular tool. The coordination passport enriches the diagnosis announcement system used in the hospital. PMID:27155278

  10. Design of laser system for absolute gravimeter based on 87Rb atom interferometer

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Wang, Shaokai; Zhuang, Wei; Fang, Fang; Li, Tianchu

    2015-08-01

    We present a laser system design for an absolute gravimeter based on 87Rb atom interferometer. By skillful design, lasers with 9 different frequencies are based on two diode lasers including tapered amplifier. Two electrical feedback systems are used for laser frequency stabilization and the Raman lasers generation respectively. All other lasers are based on two Raman lasers and realized with frequency shift by acoustic optical modulators. This laser system not only has the compact and simple construction, but meets all requirements for laser power and frequency controlling for the atom interferometer. It has the characteristic of reliability and integrity.

  11. Transformation formulas relating geodetic coordinates to a tangent to Earth, plane coordinate system

    NASA Technical Reports Server (NTRS)

    Credeur, L.

    1981-01-01

    Formulas and their approximation were developed to map geodetic position to an Earth tangent plane with an airport centered rectangular coordinate system. The transformations were developed for use in a terminal area air traffic model with deterministic aircraft traffic. The exact configured vehicle's approximation equations used in their precision microwave landing system navigation experiments.

  12. Plasticity of Intermediate Mechanics Students' Coordinate System Choice

    ERIC Educational Resources Information Center

    Sayre, Eleanor C.; Wittman, Michael C.

    2008-01-01

    We investigate the interplay between mathematics and physics resources in intermediate mechanics students. In the mechanics course, the selection and application of coordinate systems is a consistent thread. At the University of Maine, students often start the course with a strong preference to use Cartesian coordinates, in accordance with their…

  13. The Coordinate Additional Perturbations to Mars Orbiters and the Choice of Corresponding Coordinate System

    NASA Astrophysics Data System (ADS)

    Liu, L.; Zhao, Y. H.; Zhang, W.; Wang, Y. R.; Wang, J. S.

    2010-10-01

    Similar to the study of the related problems of Earth satellites, in the research of the motion of Mars orbiter especially for low orbit satellites, it is more appropriate to choose an epoch Mars-centered and Mars-equator reference system, which indeed is called the Mars-centered celestial coordinate system. In this system, the xy plane and the direction of the x axis correspond to the mean equator and mean equinox. Similar to the precession and nutation on the Earth, the wiggling of instantaneous Mars equator causes the coordinate additional perturbations in this Mars coordinate system. The paper quotes a method which is similar to the one used in dealing with the coordinate additional perturbations of Earth. According to this method, based on the IAU2000 Mars orientation model and under the precondition of a certain accuracy, we are able to figure out the precession part of the change of Mars gravitation. This lays the foundation for further study of its influence on the Mars orbiter's orbit of precession and the solution of the corresponding coordinate additional perturbations. The obtained analytical solution is easy to use. Compared with the numerical solution with higher accuracy, the result shows that the accuracy of this analytical solution could satisfy general requirements in use. Therefore, our result verifies that a unified coordinate system, the Mars-centered celestial system in which J2000.0 is chosen as its current initial epoch, could be applied to deal with the relative problems of Mars orbiters, especially for low orbit satellites. It is different from the method we previously used in dealing with the corresponding problems of Earth satellites, where we adopted the instantaneous equator and epoch (J1950.0) mean equinox as xy plane and the direction of x axis. In contrast, the coordinate transformation brings heavy workload and certain inconvenience in relative former works in which the prior system is used. If adopting the unified coordinate

  14. Coordinate Additional Perturbations to Mars Orbiters and Choice of Corresponding Coordinate System

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Zhao, Yu-hui; Zhang, Wei; Wang, Yan-rong; Wang, Jia-song

    2011-04-01

    Similar to the study of the related problems of Earth satellites, in the research of the motion of Mars orbiter especially for low-orbit satellites, it is more appropriate to choose an epoch Mars-centered and Mars-equator reference system, which indeed is called the Mars-centered celestial coordinate system. In this system, the xy-plane and the direction of the x-axis correspond to the mean equator and mean equinox. Similar to the precession and nutation of the Earth, the wiggling of instantaneous Mars equator causes the coordinate additional perturbations in this Mars coordinate system. The paper quotes a method which is similar to the one used in dealing with the coordinate additional perturbations of Earth. According to this method, based on the IAU2000 Mars orientation model and under the precondition of a certain accuracy, we are able to figure out the precession part of the change of Mars gravitation. This lays the foundation for further study of its influence on the Mars orbiter's orbit of precession and the solution of the corresponding coordinate additional perturbations. The obtained analytical solution is easy to use. Compared with the numerical solution with higher accuracy, the result shows that the accuracy of this analytical solution could satisfy the general requirements in use. Therefore, our result verifies that a unified coordinate system, the Mars-centered celestial system in which J2000.0 is chosen as its current initial epoch, could be applied to deal with the relative problems of Mars orbiters, especially for low-orbit satellites. It is different from the method we previously used in dealing with the corresponding problems of Earth satellites, where we adopted the instantaneous equator and epoch (J1950.0) mean equinox as xy-plane and the direction of x -axis. In contrast, the coordinate transformation brings heavy workload and certain inconvenience in relative former works in which the prior system is used. If adopting the unified coordinate

  15. Efficient system-wide coordination in noisy environments

    PubMed Central

    Moreira, André A.; Mathur, Abhishek; Diermeier, Daniel; Amaral, Luís A. N.

    2004-01-01

    Many natural and social systems display global organization and coordination without centralized control. The origin of this global coordination is a topic of great current interest. Here we investigate a density-classification task as a model system for coordination and information processing in decentralized systems. We show that sophisticated strategies, selected under idealized conditions, are not robust to environmental changes. We also demonstrate that a simple heuristic is able to successfully complete the classification task under a broad range of environmental conditions. Our findings hint at the possibility that complex networks and ecologically efficient rules coevolve over time. PMID:15297617

  16. Physical systems in a space with noncommutativity of coordinates

    NASA Astrophysics Data System (ADS)

    Gnatenko, Kh. P.

    2016-01-01

    We consider a space with canonical noncommutativity of coordinates. The problem of rotational symmetry breaking is studied in this space. To preserve the rotational symmetry we consider the generalization of constant matrix of noncommutativity to a tensor defined with the help of additional coordinates governed by a rotationally symmetric system. The properties of physical systems are examined in the rotationally invariant space with noncommutativity of coordinates. Namely, we consider an effect of coordinate noncommutativity on the energy levels of the hydrogen atom in the rotationally invariant noncommutative space. The motion of a particle in the uniform field is also studied in the noncommutative space with preserved rotational symmetry. On the basis of exact calculations we show that there is an effect of coordinate noncommutativity on the mass of a particle and conclude that noncommutativity causes the anisotropy of mass.

  17. [A theoretical analysis of coordination in the field of health care: application to coordinated care systems].

    PubMed

    Sebai, Jihane

    2016-01-01

    Various organizational, functional or structural issues have led to a review of the foundations of the former health care system based on a traditional market segmentation between general practice and hospital medicine, and between health and social sectors and marked by competition between private and public sectors. The current reconfiguration of the health care system has resulted in “new” levers explained by the development of a new organizational reconfiguration of the primary health care model. Coordinated care structures (SSC) have been developed in this context by making coordination the cornerstone of relations between professionals to ensure global, continuous and quality health care. This article highlights the contributions of various theoretical approaches to the understanding of the concept of coordination in the analysis of the current specificity of health care. PMID:27392057

  18. Unified Planetary Coordinates System: A Searchable Database of Geodetic Information

    NASA Technical Reports Server (NTRS)

    Becker, K. J.a; Gaddis, L. R.; Soderblom, L. A.; Kirk, R. L.; Archinal, B. A.; Johnson, J. R.; Anderson, J. A.; Bowman-Cisneros, E.; LaVoie, S.; McAuley, M.

    2005-01-01

    Over the past 40 years, an enormous quantity of orbital remote sensing data has been collected for Mars from many missions and instruments. Unfortunately these datasets currently exist in a wide range of disparate coordinate systems, making it extremely difficult for the scientific community to easily correlate, combine, and compare data from different Mars missions and instruments. As part of our work for the PDS Imaging Node and on behalf of the USGS Astrogeology Team, we are working to solve this problem and to provide the NASA scientific research community with easy access to Mars orbital data in a unified, consistent coordinate system along with a wide variety of other key geometric variables. The Unified Planetary Coordinates (UPC) system is comprised of two main elements: (1) a database containing Mars orbital remote sensing data computed using a uniform coordinate system, and (2) a process by which continual maintainance and updates to the contents of the database are performed.

  19. Compound Words: A Problem in Post-Coordinate Retrieval Systems

    ERIC Educational Resources Information Center

    Jones, Kevin P.

    1971-01-01

    Compound words cause some difficulty in post-coordinate indexing systems: if too many are fractured, or the wrong categories are selected for fracturing noise will be produced at unacceptable levels on retrieval. (Author/MM)

  20. Measurement system for 3-D foot coordinates and parameters

    NASA Astrophysics Data System (ADS)

    Liu, Guozhong; Li, Yunhui; Wang, Boxiong; Shi, Hui; Luo, Xiuzhi

    2008-12-01

    The 3-D foot-shape measurement system based on laser-line-scanning principle and the model of the measurement system were presented. Errors caused by nonlinearity of CCD cameras and caused by installation can be eliminated by using the global calibration method for CCD cameras, which based on nonlinear coordinate mapping function and the optimized method. A local foot coordinate system is defined with the Pternion and the Acropodion extracted from the boundaries of foot projections. The characteristic points can thus be located and foot parameters be extracted automatically by the local foot coordinate system and the related sections. Foot measurements for about 200 participants were conducted and the measurement results for male and female participants were presented. 3-D foot coordinates and parameters measurement makes it possible to realize custom-made shoe-making and shows great prosperity in shoe design, foot orthopaedic treatment, shoe size standardization, and establishment of a feet database for consumers.

  1. Local and global navigational coordinate systems in desert ants.

    PubMed

    Collett, Matthew; Collett, Thomas S

    2009-04-01

    While foraging, the desert ant Cataglyphis fortis keeps track of its position with respect to its nest through a process of path integration (PI). Once it finds food, it can then follow a direct home vector to its nest. Furthermore, it remembers the coordinates of a food site, and uses these coordinates to return to the site. Previous studies suggest, however, that it does not associate any coordinates remembered from previous trips with familiar views such that it can produce a home vector when displaced to a familiar site. We ask here whether a desert ant uses any association between PI coordinates and familiar views to ensure consistent PI coordinates as it travels along a habitual route. We describe an experiment in which we manipulated the PI coordinates an ant has when reaching a distinctive point along a habitual route on the way to a feeder. The subsequent home vectors of the manipulated ants, when displaced from the food-site to a test ground, show that also when a route memory is evoked at a significant point on the way to a food site, C. fortis does not reset its PI coordinates to those it normally has at that point. We use this result to argue that local vector memories, which encode the metric properties of a segment of a habitual route, must be encoded in a route-based coordinate system that is separate from the nest-based global coordinates. We propose a model for PI-based guidance that can account for several puzzling observations, and that naturally produces the route-based coordinate system required for learning and following local vectors. PMID:19282486

  2. Absolutely continuous spectrum and ballistic transport in a one-dimensional quasiperiodic system

    NASA Astrophysics Data System (ADS)

    Pal, Biplab; Chakrabarti, Arunava

    2013-02-01

    We analyse a quasiperiodic arrangement of four atomic sites sitting at the vertices of a diamond shaped plaquette and single isolated sites, occupying a one dimensional backbone following a Fibonacci quasicrystal pattern. We work within a tight binding formalism. It is shown that, even with this simple deviation from pure one dimension, a definite relation between the numerical values of the system parameters will render all the single particle states completely extended. The spectrum will be absolutely continuous with the transmission completely ballistic throughout the band, completely violating the Cantor set character of the usual Fibonacci quasiperiodic chains.

  3. High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number

    PubMed Central

    2011-01-01

    Digital PCR enables the absolute quantitation of nucleic acids in a sample. The lack of scalable and practical technologies for digital PCR implementation has hampered the widespread adoption of this inherently powerful technique. Here we describe a high-throughput droplet digital PCR (ddPCR) system that enables processing of ∼2 million PCR reactions using conventional TaqMan assays with a 96-well plate workflow. Three applications demonstrate that the massive partitioning afforded by our ddPCR system provides orders of magnitude more precision and sensitivity than real-time PCR. First, we show the accurate measurement of germline copy number variation. Second, for rare alleles, we show sensitive detection of mutant DNA in a 100 000-fold excess of wildtype background. Third, we demonstrate absolute quantitation of circulating fetal and maternal DNA from cell-free plasma. We anticipate this ddPCR system will allow researchers to explore complex genetic landscapes, discover and validate new disease associations, and define a new era of molecular diagnostics. PMID:22035192

  4. A reactive coordination scheme for a many-robot system.

    PubMed

    Evans, K S; Unsal, C; Bay, J S

    1997-01-01

    This paper presents a novel approach for coordinating a homogeneous system of mobile robots using implicit communication in the form of broadcasts. The broadcast-based coordination scheme was developed for the Army Ant swarm-a system of small, relatively inexpensive mobile robots that can accomplish complex tasks by cooperating as a team. The primary drawback, however, of the Army Ant system is that the absence of a central supervisor poses difficulty in the coordination and control of the agents. Our coordination scheme provides a global "group dynamic" that controls the actions of each robot using only local interactions. Coordination of the swarm is achieved with signals we call "heartbeats". Each agent broadcasts a unique heartbeat and responds to the collective behavior of all other heartbeats. We generate heartbeats with van der Pol oscillators. In this application, we use the known properties of coupled van der Pol oscillators to create predictable group behavior. Some of the properties and behaviors of coupled van der Pol oscillators are discussed in detail. We emphasize the use of this scheme to allow agents to simultaneously perform an action such as lifting, steering, or changing speed. The results of experiments performed on three actual heartbeat circuits are presented and the behavior of the realized system is compared to simulated results. We also demonstrate the application of the coordination scheme to global speed control. PMID:18255900

  5. Absolute stability and spatiotemporal long-range order in Floquet systems

    NASA Astrophysics Data System (ADS)

    von Keyserlingk, C. W.; Khemani, Vedika; Sondhi, S. L.

    2016-08-01

    Recent work has shown that a variety of novel phases of matter arise in periodically driven Floquet systems. Among these are many-body localized phases which spontaneously break global symmetries and exhibit novel multiplets of Floquet eigenstates separated by quantized quasienergies. Here we show that these properties are stable to all weak local deformations of the underlying Floquet drives—including those that explicitly break the defining symmetries—and that the models considered until now occupy submanifolds within these larger "absolutely stable" phases. While these absolutely stable phases have no explicit global symmetries, they spontaneously break Hamiltonian-dependent emergent symmetries, and thus continue to exhibit the novel multiplet structure. The multiplet structure in turn encodes characteristic oscillations of the emergent order parameter at multiples of the fundamental period. Altogether these phases exhibit a form of simultaneous long-range order in space and time which is new to quantum systems. We describe how this spatiotemporal order can be detected in experiments involving quenches from a broad class of initial states.

  6. The OSU 275 system of satellite tracking station coordinates

    NASA Technical Reports Server (NTRS)

    Mueller, I. I.; Kumar, M.

    1975-01-01

    A brief review of the methods and data used in the OSU 275 geodetic system is given along with the summary of the results. Survey information regarding the tracking stations in the system is given in tabular form along with the geodetic and geophysical parameters, origin and orientation, Cartisian coordinates, and systematic differences with global and nonglobal geodetic systems.

  7. AST: A library for modelling and manipulating coordinate systems

    NASA Astrophysics Data System (ADS)

    Berry, David S.; Warren-Smith, Rodney F.; Jenness, Tim

    2016-04-01

    In view of increased interest in object-oriented systems for describing coordinate information, we present a description of the data model used by the Starlink AST library. AST provides a comprehensive range of facilities for attaching world co-ordinate systems to astronomical data, and for retrieving and interpreting that information in a variety of formats, including FITS-WCS. AST is a mature system that has been in use for more than 17 years, and may consequently be useful as a means of informing development of similar systems in the future.

  8. Computer transformation of partial differential equations into any coordinate system

    NASA Technical Reports Server (NTRS)

    Sullivan, R. D.

    1977-01-01

    The use of tensors to provide a compact way of writing partial differential equations in a form valid in all coordinate systems is discussed. In order to find solutions to the equations with their boundary conditions they must be expressed in terms of the coordinate system under consideration. The process of arriving at these expressions from the tensor formulation was automated by a software system, TENSR. An allied system that analyzes the resulting expressions term by term and drops those that are negligible is also described.

  9. Precision Effects for Solar Image Coordinates Within the FITS World Coordinate System

    NASA Technical Reports Server (NTRS)

    Thompson, W. T.

    2010-01-01

    The FITS world coordinate system (WCS) provides a number of tools for precisely specifying the spatial coordinates of an image. Many of the finer details that the WCS addresses have not historically been taken into account in solar image processing. This paper examines various effects which can affect the expression of coordinates in FITS headers, to determine under what conditions such effects need to be taken into account in data analysis, and under what conditions they can be safely ignored. Effects which are examined include perspective, parallax, spherical projection, optical axis determination, speed-of-light effects, stellar aberration, gravitational deflection, and scattering and refraction at radio wavelengths. Purely instrumental effects, such as misalignment or untreated optical aberrations, are not considered. Since the value of the solar radius is an experimental quantity, the effect of adopting a specific radius value is also examined. These effects are examined in the context of a previous paper outlining a WCS standard for encoding solar coordinates in FITS files. Aspects of that previous paper are clarified and extended in the present work.

  10. Interference coordination of heterogeneous LTE systems using remote radio heads

    NASA Astrophysics Data System (ADS)

    Kim, Jaewon; Lee, Donghyun; Sung, Wonjin

    2013-12-01

    In this paper, we present an operational strategy to mitigate co-channel interference (CCI) by using geographically distributed remote radio heads (RRHs). The inter-node CCI becomes a dominant performance degradation factor for heterogeneous network (HetNet) systems. Recently, there are emerging attempts in Third Generation Partnership Project to adopt advanced techniques to Long Term Evolution Advanced systems to mitigate CCI problems for HetNet systems, namely, the coordinated multipoint transmission (CoMP). However, the CoMP scheme cannot control the CCI generated from outside coordination boundaries. To resolve this problem, we propose a partial activation strategy by using RRHs deployed near cell edge which results in moving coverage boundary effects. Based on Monte Carlo system level simulations, performance of the conventional strategies and the presented strategy is evaluated. Simulation results show that the proposed scheme outperforms the enhanced inter-cell interference coordination and CoMP schemes especially for users located near cell edge areas.

  11. Artifact correction and absolute radiometric calibration techniques employed in the Landsat 7 image assessment system

    USGS Publications Warehouse

    Boncyk, Wayne C.; Markham, Brian L.; Barker, John L.; Helder, Dennis

    1996-01-01

    The Landsat-7 Image Assessment System (IAS), part of the Landsat-7 Ground System, will calibrate and evaluate the radiometric and geometric performance of the Enhanced Thematic Mapper Plus (ETM +) instrument. The IAS incorporates new instrument radiometric artifact correction and absolute radiometric calibration techniques which overcome some limitations to calibration accuracy inherent in historical calibration methods. Knowledge of ETM + instrument characteristics gleaned from analysis of archival Thematic Mapper in-flight data and from ETM + prelaunch tests allow the determination and quantification of the sources of instrument artifacts. This a priori knowledge will be utilized in IAS algorithms designed to minimize the effects of the noise sources before calibration, in both ETM + image and calibration data.

  12. Implementation of a Relay Coordination System for the Mars Network

    NASA Technical Reports Server (NTRS)

    Allard, Daniel A.

    2010-01-01

    Mars network relay operations involve the coordination of lander and orbiter teams through long-term and short-term planning, tactical changes and post-pass analysis. Much of this coordination is managed through email traffic and point-to-point file data exchanges. It is often difficult to construct a complete and accurate picture of the relay situation at any given moment, as there is no centralized store of correlated relay data. The Mars Relay Operations Service (MaROS) is being implemented to address the problem of relay coordination for current and next-generation relay missions. The service is provided for the purpose of coordinating communications sessions between landed spacecraft assets and orbiting spacecraft assets at Mars. The service centralizes a set of functions previously distributed across multiple spacecraft operations teams, and as such greatly improves visibility into the end-to-end strategic coordination process. Most of the process revolves around the scheduling of communications sessions between the spacecraft during periods of time when a landed asset on Mars is geometrically visible by an orbiting spacecraft. These "relay" sessions are used to transfer data both to and from the landed asset via the orbiting asset on behalf of Earth-based spacecraft operators. This paper will discuss the relay coordination problem space, overview the architecture and design selected to meet system requirements, and describe the first phase of system implementation

  13. Coordinated design of coding and modulation systems

    NASA Technical Reports Server (NTRS)

    Massey, J. L.

    1976-01-01

    Work on partial unit memory codes continued; it was shown that for a given virtual state complexity, the maximum free distance over the class of all convolutional codes is achieved within the class of unit memory codes. The effect of phase-lock loop (PLL) tracking error on coding system performance was studied by using the channel cut-off rate as the measure of quality of a modulation system. Optimum modulation signal sets for a non-white Gaussian channel considered an heuristic selection rule based on a water-filling argument. The use of error correcting codes to perform data compression by the technique of syndrome source coding was researched and a weight-and-error-locations scheme was developed that is closely related to LDSC coding.

  14. Laser measuring system accurately locates point coordinates on photograph

    NASA Technical Reports Server (NTRS)

    Doede, J. H.; Lindenmeyer, C. W.; Vonderohe, R. H.

    1966-01-01

    Laser activated ultraprecision ranging apparatus interfaced with a computer determines point coordinates on a photograph. A helium-neon gas CW laser provides collimated light for a null balancing optical system. This system has no mechanical connection between the ranging apparatus and the photograph.

  15. Influenza Virus Surveillance in Coordinated Swine Production Systems, United States.

    PubMed

    Kaplan, Bryan S; DeBeauchamp, Jennifer; Stigger-Rosser, Evelyn; Franks, John; Crumpton, Jeri Carol; Turner, Jasmine; Darnell, Daniel; Jeevan, Trushar; Kayali, Ghazi; Harding, Abbey; Webby, Richard J; Lowe, James F

    2015-10-01

    To clarify the epidemiology of influenza A viruses in coordinated swine production systems to which no animals from outside the system are introduced, we conducted virologic surveillance during September 2012-September 2013. Animal age, geographic location, and farm type were found to affect the prevalence of these viruses. PMID:26402228

  16. Coordinating Board, Texas College and University System, 1977 Annual Report.

    ERIC Educational Resources Information Center

    Ashworth, Kenneth H.

    The annual report of the Coordinating Board, Texas College and University System for the fiscal year ending August 31, 1977 is presented. An overview of Board activities provides information on institutional authorization, higher education budget requests, institutional units in the College and University System, supply-and-demand career…

  17. Coordinate systems for mapping low-altitude trapped particle fluxes

    SciTech Connect

    Heynderickx, D.; Lemaire, J.

    1996-07-01

    The widely used coordinate system ({ital B},{ital L}) has proved very suitable for most of the region covered by the Van Allen belts, but is not very well suited for the low-altitude regions where the Earth{close_quote}s atmosphere interacts with the trapped particle population. Several alternative coordinate systems have been proposed that aim to take into account the steep flux gradients in the region of the upper atmosphere. An overview of these coordinates is presented. The effectiveness of each system is assessed by mapping the proton flux distribution of NASA{close_quote}s AP-8 model. Special attention is given to Hassitt{close_quote}s weighted average of the atmospheric density over the drift shells of trapped particles, which appears very efficient in mapping fluxes for low {ital L} values. {copyright} {ital 1996 American Institute of Physics.}

  18. Using endmembers as a coordinate system in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Gillis, David; Bowles, Jeffrey H.; Winter, Michael E.

    2002-11-01

    The linear mixing model (LMM) is a well-known and useful method for decomposing spectra in a hyperspectral image into the sum of their constituents, or endmembers. Mathematically, if the spectra are represented as n-dimensional vectors, then the LMM implies that the set of endmembers defines a basis or coordinate system for the set of spectra. Because the endmembers themselves are generally not orthogonal, the geometry (distances, difference angles, etc.) is changed by moving from band space to endmember space. We explore some of the differences between the two coordinate systems, and show in particular that the difference in angle measurements leads to an improved method for subpixel target detection.

  19. Absolutely Exponential Stability and Temperature Control for Gas Chromatograph System Under Dwell Time Switching Techniques.

    PubMed

    Sun, Xi-Ming; Wang, Xue-Fang; Tan, Ying; Wang, Xiao-Liang; Wang, Wei

    2016-06-01

    This paper provides a design strategy for temperature control of the gas chromatograph. Usually gas chromatograph is modeled by a simple first order system with a time-delay, and a proportion integration (PI) controller is widely used to regulate the output of the gas chromatograph to the desired temperature. As the characteristics of the gas chromatograph varies at the different temperature range, the single-model based PI controller cannot work well when output temperature varies from one range to another. Moreover, the presence of various disturbance will further deteriorate the performance. In order to improve the accuracy of the temperature control, multiple models are used at the different temperature ranges. With a PI controller designed for each model accordingly, a delay-dependent switching control scheme using the dwell time technique is proposed to ensure the absolute exponential stability of the closed loop. Experiment results demonstrate the effectiveness of the proposed switching technique. PMID:26316283

  20. A LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR (LASSO) FOR NONLINEAR SYSTEM IDENTIFICATION

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Lofberg, Johan; Brenner, Martin J.

    2006-01-01

    Identification of parametric nonlinear models involves estimating unknown parameters and detecting its underlying structure. Structure computation is concerned with selecting a subset of parameters to give a parsimonious description of the system which may afford greater insight into the functionality of the system or a simpler controller design. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of nonlinear systems. The LASSO minimises the residual sum of squares by the addition of a 1 penalty term on the parameter vector of the traditional 2 minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudolinear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. The performance of this LASSO structure detection method was evaluated by using it to estimate the structure of a nonlinear polynomial model. Applicability of the method to more complex systems such as those encountered in aerospace applications was shown by identifying a parsimonious system description of the F/A-18 Active Aeroelastic Wing using flight test data.

  1. Precise Selenodetic Coordinate System on Artificial Light Refers

    NASA Astrophysics Data System (ADS)

    Bagrov, Alexander; Pichkhadze, Konstantin M.; Sysoev, Valentin

    Historically a coordinate system for the Moon was established on the base of telescopic observations from the Earth. As the angular resolution of Earth-to-Space telescopic observations is limited by Earth atmosphere, and is ordinary worse then 1 ang. second, the mean accuracy of selenodetic coordinates is some angular minutes, which corresponds to errors about 900 meters for positions of lunar objects near center of visible lunar disk, and at least twice more when objects are near lunar poles. As there are no Global Positioning System nor any astronomical observation instruments on the Moon, we proposed to use an autonomous light beacon on the Luna-Globe landing module to fix its position on the surface of the moon ant to use it as refer point for fixation of spherical coordinates system for the Moon. The light beacon is designed to be surely visible by orbiting probe TV-camera. As any space probe has its own stars-orientation system, there is not a problem to calculate a set of directions to the beacon and to the referent stars in probe-centered coordinate system during flight over the beacon. Large number of measured angular positions and time of each observation will be enough to calculate both orbital parameters of the probe and selenodetic coordinates of the beacon by methods of geodesy. All this will allow fixing angular coordinates of any feature of lunar surface in one global coordinate system, referred to the beacon. The satellite’s orbit plane contains ever the center mass of main body, so if the beacon will be placed closely to a lunar pole, we shall determine pole point position of the Moon with accuracy tens times better then it is known now. When angular accuracy of self-orientation by stars of the orbital module of Luna-Glob mission will be 6 angular seconds, then being in circular orbit with height of 200 km the on-board TV-camera will allow calculation of the beacon position as well as 6" corresponding to spatial resolution of the camera. It mean

  2. Study on portable optical 3D coordinate measuring system

    NASA Astrophysics Data System (ADS)

    Ren, Tongqun; Zhu, Jigui; Guo, Yinbiao

    2009-05-01

    A portable optical 3D coordinate measuring system based on digital Close Range Photogrammetry (CRP) technology and binocular stereo vision theory is researched. Three ultra-red LED with high stability is set on a hand-hold target to provide measuring feature and establish target coordinate system. Ray intersection based field directional calibrating is done for the intersectant binocular measurement system composed of two cameras by a reference ruler. The hand-hold target controlled by Bluetooth wireless communication is free moved to implement contact measurement. The position of ceramic contact ball is pre-calibrated accurately. The coordinates of target feature points are obtained by binocular stereo vision model from the stereo images pair taken by cameras. Combining radius compensation for contact ball and residual error correction, object point can be resolved by transfer of axes using target coordinate system as intermediary. This system is suitable for on-field large-scale measurement because of its excellent portability, high precision, wide measuring volume, great adaptability and satisfying automatization. It is tested that the measuring precision is near to +/-0.1mm/m.

  3. The modeling of portable 3D vision coordinate measuring system

    NASA Astrophysics Data System (ADS)

    Liu, Shugui; Huang, Fengshan; Peng, Kai

    2005-02-01

    The portable three-dimensional vision coordinate measuring system, which consists of a light pen, a CCD camera and a laptop computer, can be widely applied in most coordinate measuring fields especially on the industrial spots. On the light pen there are at least three point-shaped light sources (LEDs) acting as the measured control characteristic points and a touch trigger probe with a spherical stylus which is used to contact the point to be measured. The most important character of this system is that three light sources and the probe stylus are aligned in one line with known positions. In building and studying this measuring system, how to construct the system"s mathematical model is the most key problem called perspective of three-collinear-points problem, which is a particular case of perspective of three-points problem (P3P). On the basis of P3P and spatial analytical geometry theory, the system"s mathematical model is established in this paper. What"s more, it is verified that perspective of three-collinear-points problem has a unique solution. And the analytical equations of the measured point"s coordinates are derived by using the system"s mathematical model and the restrict condition that three light sources and the probe stylus are aligned in one line. Finally, the effectiveness of the mathematical model is confirmed by experiments.

  4. Coordination polymer particles as potential drug delivery systems.

    PubMed

    Imaz, Inhar; Rubio-Martínez, Marta; García-Fernández, Lorena; García, Francisca; Ruiz-Molina, Daniel; Hernando, Jordi; Puntes, Victor; Maspoch, Daniel

    2010-07-14

    Micro- and nanoscale coordination polymer particles can be used for encapsulating and delivering drugs. In vitro cancer cell cytotoxicity assays showed that these capsules readily release doxorubicin, which shows anticancer efficacy. The results from this work open up new avenues for metal-organic capsules to be used as potential drug delivery systems. PMID:20485835

  5. MASDynamics: Toward Systemic Modeling of Decentralized Agent Coordination

    NASA Astrophysics Data System (ADS)

    Sudeikat, Jan; Renz, Wolfgang

    Enabling distributed software systems to purposefully self-organize, i.e. to adapt to dynamically changing execution contexts by the collective adjustment of individual components, challenges current development practices. Since the dynamics of self-organizing systems arise from agent coaction, developers cannot directly infer the macroscopic system behavior from established agent design models. This paper plays a part in an ongoing research effort that addresses the provision of self-organizing processes as design elements, i.e. reusable patterns of agent interrelations. We propose a systemic modeling approach and support the application independent description of (inter-) agent coordination patterns by a domain specific language that allows to map interrelations of agent activity to detailed agent design models. This facilitates the separation of decentralized coordination strategies from domain specific agent implementations and enables development teams to treat nature-inspired coordination strategies, which steer self-organizing dynamics, as design concepts. In addition, we show how this modeling conception provides a declarative programming approach by the automated supplementation of conventional developed agent models with non-linear, inter-agent coordination mechanisms.

  6. On representations for joint moments using a joint coordinate system.

    PubMed

    O'Reilly, Oliver M; Sena, Mark P; Feeley, Brian T; Lotz, Jeffrey C

    2013-11-01

    In studies of the biomechanics of joints, the representation of moments using the joint coordinate system has been discussed by several authors. The primary purpose of this technical brief is to emphasize that there are two distinct, albeit related, representations for moment vectors using the joint coordinate system. These distinct representations are illuminated by exploring connections between the Euler and dual Euler bases, the "nonorthogonal projections" presented in a recent paper by Desroches et al. (2010, "Expression of Joint Moment in the Joint Coordinate System," ASME J. Biomech. Eng., 132(11), p. 11450) and seminal works by Grood and Suntay (Grood and Suntay, 1983, "A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee," ASME J. Biomech. Eng., 105(2), pp. 136-144) and Fujie et al. (1996, "Forces and Moment in Six-DOF at the Human Knee Joint: Mathematical Description for Control," Journal of Biomechanics, 29(12), pp. 1577-1585) on the knee joint. It is also shown how the representation using the dual Euler basis leads to straightforward definition of joint stiffnesses. PMID:24008987

  7. Coordinating Board, Texas College and University System, 1978 Annual Report.

    ERIC Educational Resources Information Center

    Ashworth, Kenneth H.

    The 1978 annual report of the Coordinating Board of the Texas College and University System is presented. The Board's major accomplishments in 1978 included the development of enrollment projections for the next decade, adoption of faculty workload guidelines, and implementation of a family practice residency program. The contents of the report…

  8. Installation Manual for the Uniterm System of Coordinate Indexing.

    ERIC Educational Resources Information Center

    Documentation Inc., Washington, DC.

    The Uniterm system of coordinate indexing, developed by the Armed Services Technical Information Agency, provides a method for the organization, storage, and retrieval of information. The contents of reports are analyzed, and terms are assigned to the documents. For each term there is a card upon which the accession number of documents assigned…

  9. Designing Coordinated Assessment Systems for IASA Title I.

    ERIC Educational Resources Information Center

    Roeber, Edward D.

    This paper describes an approach that states and local districts might use to develop a coordinated assessment system so that information collected at state and local levels about programs under Title I of the Improving America's Schools Act (IASA) would be complementary and not redundant. The reauthorization of Title I provides a unique…

  10. Coordinated joint motion control system with position error correction

    DOEpatents

    Danko, George L.

    2016-04-05

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  11. Coordinated joint motion control system with position error correction

    DOEpatents

    Danko, George

    2011-11-22

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two-joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  12. Coordinate Reference System Metadata in Interdisciplinary Environmental Modeling

    NASA Astrophysics Data System (ADS)

    Blodgett, D. L.; Arctur, D. K.; Hnilo, J.; Danko, D. M.; Rutledge, G. K.

    2011-12-01

    For global climate modeling based on a unit sphere, the positional accuracy of transformations between "real earth" coordinates and the spherical earth coordinates is practically irrelevant due to the coarse grid and precision of global models. Consequently, many climate models are driven by data using real-earth coordinates without transforming them to the shape of the model grid. Additionally, metadata to describe the earth shape and its relationship to latitude longitude demarcations, or datum, used for model output is often left unspecified or ambiguous. Studies of weather and climate effects on coastal zones, water resources, agriculture, biodiversity, and other critical domains typically require positional accuracy on the order of several meters or less. This precision requires that a precise datum be used and accounted for in metadata. While it may be understood that climate model results using spherical earth coordinates could not possibly approach this level of accuracy, precise coordinate reference system metadata is nevertheless required by users and applications integrating climate and geographic information. For this reason, data publishers should provide guidance regarding the appropriate datum to assume for their data. Without some guidance, analysts must make assumptions they are uncomfortable or unwilling to make and may spend inordinate amounts of time researching the correct assumption to make. A consequence of the (practically justified for global climate modeling) disregard for datums is that datums are also neglected when publishing regional or local scale climate and weather data where datum information may be important. For example, observed data, like precipitation and temperature measurements, used in downscaling climate model results are georeferenced precisely. If coordinate reference system metadata are disregarded in cases like this, systematic biases in geolocation can result. Additionally, if no datum transformation was applied to

  13. Micro practices of coordination based on complex adaptive systems: user needs and strategies for coordinating public health in Denmark

    PubMed Central

    Wittrup, Inge; Burau, Viola

    2015-01-01

    Introduction Many highly formalised approaches to coordination poorly fit public health and recent studies call for coordination based on complex adaptive systems. Our contribution is two-fold. Empirically, we focus on public health, and theoretically we build on the patient perspective and treat coordination as a process of contingent, two-level negotiations of user needs. Theory and Methods The paper draws on the concept of user needs-based coordination and sees coordination as a process, whereby needs emerging from the life world of the user are made amenable to the health system through negotiations. The analysis is based on an explorative case study of a health promotion initiative in Denmark. It adopts an anthropological qualitative approach and uses a range of qualitative data. Results The analysis identifies four strategies of coordination: the coordinator focusing on the individual user or on relations with other professionals; and the manager coaching the coordinator or providing structural support. Crucially, the coordination strategies by management remain weak as they do not directly relate to specific user needs. Discussion In process of bottom-up negotiations user needs become blurred and this is especially a challenge for management. The study therefore calls for an increased focus on the level nature of negotiations to bridge the gap that currently weakens coordination strategies by management. PMID:26528097

  14. Documentation of program AFTBDY to generate coordinate system for 3D after body using body fitted curvilinear coordinates, part 1

    NASA Technical Reports Server (NTRS)

    Kumar, D.

    1980-01-01

    The computer program AFTBDY generates a body fitted curvilinear coordinate system for a wedge curved after body. This wedge curved after body is being used in an experimental program. The coordinate system generated by AFTBDY is used to solve 3D compressible N.S. equations. The coordinate system in the physical plane is a cartesian x,y,z system, whereas, in the transformed plane a rectangular xi, eta, zeta system is used. The coordinate system generated is such that in the transformed plane coordinate spacing in the xi, eta, zeta direction is constant and equal to unity. The physical plane coordinate lines in the different regions are clustered heavily or sparsely depending on the regions where physical quantities to be solved for by the N.S. equations have high or low gradients. The coordinate distribution in the physical plane is such that x stays constant in eta and zeta direction, whereas, z stays constant in xi and eta direction. The desired distribution in x and z is input to the program. Consequently, only the y-coordinate is solved for by the program AFTBDY.

  15. Investigations of high-speed optical transmission systems employing Absolute Added Correlative Coding (AACC)

    NASA Astrophysics Data System (ADS)

    Dong-Nhat, Nguyen; Elsherif, Mohamed A.; Malekmohammadi, Amin

    2016-07-01

    A novel multilevel modulation format based on partial-response signaling called Absolute Added Correlative Coding (AACC) is proposed and numerically demonstrated for high-speed fiber-optic communication systems. A bit error rate (BER) estimation model for the proposed multilevel format has also been developed. The performance of AACC is examined and compared against other prevailing On-Off-Keying and multilevel modulation formats e.g. non-return-to-zero (NRZ), 50% return-to-zero (RZ), 67% carrier-suppressed return-to-zero (CS-RZ), duobinary and four-level pulse-amplitude modulation (4-PAM) in terms of receiver sensitivity, spectral efficiency and dispersion tolerance. Calculated receiver sensitivity at a BER of 10-9 and chromatic dispersion tolerance of the proposed system are ∼-28.3 dBm and ∼336 ps/nm, respectively. The performance of AACC is delineated to be improved by 7.8 dB in terms of receiver sensitivity compared to 4-PAM in back-to-back scenario. The comparison results also show a clear advantage of AACC in achieving longer fiber transmission distance due to the higher dispersion tolerance in optical access networks.

  16. Investigations of high-speed optical transmission systems employing Absolute Added Correlative Coding (AACC)

    NASA Astrophysics Data System (ADS)

    Dong-Nhat, Nguyen; Elsherif, Mohamed A.; Malekmohammadi, Amin

    2016-07-01

    A novel multilevel modulation format based on partial-response signaling called Absolute Added Correlative Coding (AACC) is proposed and numerically demonstrated for high-speed fiber-optic communication systems. A bit error rate (BER) estimation model for the proposed multilevel format has also been developed. The performance of AACC is examined and compared against other prevailing On-Off-Keying and multilevel modulation formats e.g. non-return-to-zero (NRZ), 50% return-to-zero (RZ), 67% carrier-suppressed return-to-zero (CS-RZ), duobinary and four-level pulse-amplitude modulation (4-PAM) in terms of receiver sensitivity, spectral efficiency and dispersion tolerance. Calculated receiver sensitivity at a BER of 10-9 and chromatic dispersion tolerance of the proposed system are ˜-28.3 dBm and ˜336 ps/nm, respectively. The performance of AACC is delineated to be improved by 7.8 dB in terms of receiver sensitivity compared to 4-PAM in back-to-back scenario. The comparison results also show a clear advantage of AACC in achieving longer fiber transmission distance due to the higher dispersion tolerance in optical access networks.

  17. Reference coordinate systems and frames: Concepts and realization

    NASA Astrophysics Data System (ADS)

    Mueller, Ivan I.

    1985-06-01

    Geodynamics has become the subject of intensive international research during the last decade, involving plate tectonics, both on the intra-plate and inter-plate scale, i.e., the study of crustal movements, and the study of earth rotation and of other dynamic phenomena such as the tides. Interrelated are efforts improving our knowledge of the gravity and magnetic fields of the earth. A common requirement for all these investigations is the necessity for a well-defined reference coordinate system (or systems) to which all relevant observations can be referred and in which theories or models for the dynamic behavior of the earth can be formulated. In view of the unprecedented progress in the ability of geodetic observational systems to measure crustal movements and the rotation of the earth, as well as in theory and model development, there is a great need for the theoretical definition, practical realization, and international acceptance of suitable coordinate system(s) to facilitate such work. This article deals with certain aspects of the establishment and maintenance of such a coordinate system.

  18. Dynamic coordination of a self-reconfigurable manipulator system

    NASA Technical Reports Server (NTRS)

    Kim, Sungbok; Lee, Sukhan

    1991-01-01

    The authors present the dynamic coordination of a self-reconfigurable manipulator system capable of changing its mechanical structure according to given task requirements. The self-reconfiguration is achieved by reconfiguring the topology of a dual-arm system through serial, parallel, and bracing structures. Particular emphasis is placed on the dynamic coordination of two arms having three different dual-arm topologies. The authors develop the Cartesian space dynamic models of a dual-arm system of three dual-arm topologies and derive the kinematic and dynamic constraints imposed on two arms in cooperation. Dual-arm dynamic manipulabilities are defined to quantify the dynamic performance of three dual-arm topologies in terms of the efficiency of generating Cartesian accelerations. A methodology of selecting serial, parallel, and bracing structures based on dual-arm dynamic manipulabilities is provided.

  19. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering

    PubMed Central

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-01-01

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level. PMID:27223293

  20. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering.

    PubMed

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-01-01

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level. PMID:27223293

  1. Galactic coordinate system based on multi-wavelength catalogues

    NASA Astrophysics Data System (ADS)

    Ding, P.-J.; Liu, J.-C.; Zhu, Z.

    2015-08-01

    The currently used Galactic Coordinate System (GalCS) is based on the FK5 system at J2000.0, which was transformed from the FK4 system at B1950.0. The limitations and misunderstandings for this transformed GalCS is necessarily be avoided by defining a new GalCS connecting directly to the International Celestial Reference System (ICRS). We try to find the best orientation of the GalCS using data from two all-sky surveys: AKARI and WISE at six wavelengths between 3.4~μm to 90~μm, and synthesize results obtained at various wavelengths to define an improved GalCS in the framework of the ICRS. The revised GalCS parameters for defining the new GalCS in the ICRS are summarized as: α^p = 192°.777, δ^p= 26°.9298, for the equatorial coordinates of the north Galactic pole and θ = 122°.95017 for the position angle of the Galactic center. As one of the Galactic sub-structures, the Galactic warp presents different forms in different GalCS that are constructed with various data and methods, which shows the importance of re-defining a Galactic coordinate system by the IAU for better study of the Galactic structure and kinematics.

  2. Absolute masses and radii determination in multiplanetary systems without stellar models

    NASA Astrophysics Data System (ADS)

    Almenara, J. M.; Díaz, R. F.; Mardling, R.; Barros, S. C. C.; Damiani, C.; Bruno, G.; Bonfils, X.; Deleuil, M.

    2015-11-01

    The masses and radii of extrasolar planets are key observables for understanding their interior, formation and evolution. While transit photometry and Doppler spectroscopy are used to measure the radii and masses respectively of planets relative to those of their host star, estimates for the true values of these quantities rely on theoretical models of the host star which are known to suffer from systematic differences with observations. When a system is composed of more than two bodies, extra information is contained in the transit photometry and radial velocity data. Velocity information (finite speed-of-light, Doppler) is needed to break the Newtonian MR-3 degeneracy. We performed a photodynamical modelling of the two-planet transiting system Kepler-117 using all photometric and spectroscopic data available. We demonstrate how absolute masses and radii of single-star planetary systems can be obtained without resorting to stellar models. Limited by the precision of available radial velocities (38 m s-1), we achieve accuracies of 20 per cent in the radii and 70 per cent in the masses, while simulated 1 m s-1 precision radial velocities lower these to 1 per cent for the radii and 2 per cent for the masses. Since transiting multiplanet systems are common, this technique can be used to measure precisely the mass and radius of a large sample of stars and planets. We anticipate these measurements will become common when the TESS and PLATO mission provide high-precision light curves of a large sample of bright stars. These determinations will improve our knowledge about stars and planets, and provide strong constraints on theoretical models.

  3. Absolute reactivity calibration of accelerator-driven systems after RACE-T experiments

    SciTech Connect

    Jammes, C. C.; Geslot, B.

    2006-07-01

    The RACE-T experiments that were held in november 2005 in the ENEA-Casaccia research center near Rome allowed us to improve our knowledge of the experimental techniques for absolute reactivity calibration at either startup or shutdown phases of accelerator-driven systems. Various experimental techniques for assessing a subcritical level were inter-compared through three different subcritical configurations SC0, SC2 and SC3, about -0.5, -3 and -6 dollars, respectively. The area-ratio method based of the use of a pulsed neutron source appears as the most performing. When the reactivity estimate is expressed in dollar unit, the uncertainties obtained with the area-ratio method were less than 1% for any subcritical configuration. The sensitivity to measurement location was about slightly more than 1% and always less than 4%. Finally, it is noteworthy that the source jerk technique using a transient caused by the pulsed neutron source shutdown provides results in good agreement with those obtained from the area-ratio technique. (authors)

  4. Unique sensor fusion system for coordinate-measuring machine tasks

    NASA Astrophysics Data System (ADS)

    Nashman, Marilyn; Yoshimi, Billibon; Hong, Tsai Hong; Rippey, William G.; Herman, Martin

    1997-09-01

    This paper describes a real-time hierarchical system that fuses data from vision and touch sensors to improve the performance of a coordinate measuring machine (CMM) used for dimensional inspection tasks. The system consists of sensory processing, world modeling, and task decomposition modules. It uses the strengths of each sensor -- the precision of the CMM scales and the analog touch probe and the global information provided by the low resolution camera -- to improve the speed and flexibility of the inspection task. In the experiment described, the vision module performs all computations in image coordinate space. The part's boundaries are extracted during an initialization process and then the probe's position is continuously updated as it scans and measures the part surface. The system fuses the estimated probe velocity and distance to the part boundary in image coordinates with the estimated velocity and probe position provided by the CMM controller. The fused information provides feedback to the monitor controller as it guides the touch probe to scan the part. We also discuss integrating information from the vision system and the probe to autonomously collect data for 2-D to 3-D calibration, and work to register computer aided design (CAD) models with images of parts in the workplace.

  5. Combined non-contact coordinate measurement system and calibration method

    NASA Astrophysics Data System (ADS)

    Fan, Yiyan; Zhao, Bin

    2015-07-01

    A combined non-contact measurement system comprising attitude angle sensor, angle encoder, laser rangefinder, and total station is adopted to measure the spatial coordinate of the hidden zones in large-scale space. The laser from the total station is aimed at the optical system of the attitude angle sensor to obtain the spatial coordinate and the spatial attitude angles. Then, the angle encoder driven by a stepping motor is rotated to drive the laser rangefinder to direct at the measured point. This approach is used to obtain the distance from the rangefinder to the measured point and the angle of the angle encoder. Finally, the spatial coordinates of the measured point can be calculated by using these measured parameters. For the measurement system, we propose a weighted least squares (WLS) calibration method, in which weights are determined for the angular distribution density. Experimental results show that the measurement system could expand the scale and achieve reliable precision during combined measurement and the measurement error of the weighted least squares method is less than that of the ordinary least square (OLS) method.

  6. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems

    SciTech Connect

    Johnston, Mark D.; Oliver, Bryan V.; Droemer, Darryl W.; Frogget, Brent; Crain, Marlon D.; Maron, Yitzhak

    2012-08-15

    This paper describes a convenient and accurate method to calibrate fast (<1 ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such systems are inherently difficult to calibrate due to the lack of sufficiently intense, calibrated light sources. Such a system is used to collect spectral data on plasmas generated in electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA) at Sandia National Laboratories. On RITS, plasma light is collected through a small diameter (200 {mu}m) optical fiber and recorded on a fast streak camera at the output of a 1 meter Czerny-Turner monochromator. For this paper, a 300 W xenon short arc lamp (Oriel Model 6258) was used as the calibration source. Since the radiance of the xenon arc varies from cathode to anode, just the area around the tip of the cathode ('hotspot') was imaged onto the fiber, to produce the highest intensity output. To compensate for chromatic aberrations, the signal was optimized at each wavelength measured. Output power was measured using 10 nm bandpass interference filters and a calibrated photodetector. These measurements give power at discrete wavelengths across the spectrum, and when linearly interpolated, provide a calibration curve for the lamp. The shape of the spectrum is determined by the collective response of the optics, monochromator, and streak tube across the spectral region of interest. The ratio of the spectral curve to the measured bandpass filter curve at each wavelength produces a correction factor (Q) curve. This curve is then applied to the experimental data and the resultant spectra are given in absolute intensity units (photons/sec/cm{sup 2}/steradian/nm). Error analysis shows this method to be accurate to within +/- 20%, which represents a high level of accuracy for this type of measurement.

  7. Absolute calibration method for nanosecond-resolved, time-streaked, fiber optic light collection, spectroscopy systems

    NASA Astrophysics Data System (ADS)

    Johnston, Mark D.; Oliver, Bryan V.; Droemer, Darryl W.; Frogget, Brent; Crain, Marlon D.; Maron, Yitzhak

    2012-08-01

    This paper describes a convenient and accurate method to calibrate fast (<1 ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such systems are inherently difficult to calibrate due to the lack of sufficiently intense, calibrated light sources. Such a system is used to collect spectral data on plasmas generated in electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA) at Sandia National Laboratories. On RITS, plasma light is collected through a small diameter (200 μm) optical fiber and recorded on a fast streak camera at the output of a 1 meter Czerny-Turner monochromator. For this paper, a 300 W xenon short arc lamp (Oriel Model 6258) was used as the calibration source. Since the radiance of the xenon arc varies from cathode to anode, just the area around the tip of the cathode ("hotspot") was imaged onto the fiber, to produce the highest intensity output. To compensate for chromatic aberrations, the signal was optimized at each wavelength measured. Output power was measured using 10 nm bandpass interference filters and a calibrated photodetector. These measurements give power at discrete wavelengths across the spectrum, and when linearly interpolated, provide a calibration curve for the lamp. The shape of the spectrum is determined by the collective response of the optics, monochromator, and streak tube across the spectral region of interest. The ratio of the spectral curve to the measured bandpass filter curve at each wavelength produces a correction factor (Q) curve. This curve is then applied to the experimental data and the resultant spectra are given in absolute intensity units (photons/sec/cm2/steradian/nm). Error analysis shows this method to be accurate to within +/- 20%, which represents a high level of accuracy for this type of measurement.

  8. A hierarchical distributed control model for coordinating intelligent systems

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.

    1991-01-01

    A hierarchical distributed control (HDC) model for coordinating cooperative problem-solving among intelligent systems is described. The model was implemented using SOCIAL, an innovative object-oriented tool for integrating heterogeneous, distributed software systems. SOCIAL embeds applications in 'wrapper' objects called Agents, which supply predefined capabilities for distributed communication, control, data specification, and translation. The HDC model is realized in SOCIAL as a 'Manager'Agent that coordinates interactions among application Agents. The HDC Manager: indexes the capabilities of application Agents; routes request messages to suitable server Agents; and stores results in a commonly accessible 'Bulletin-Board'. This centralized control model is illustrated in a fault diagnosis application for launch operations support of the Space Shuttle fleet at NASA, Kennedy Space Center.

  9. Control systems and coordination protocols of the secretory pathway.

    PubMed

    Luini, Alberto; Mavelli, Gabriella; Jung, Juan; Cancino, Jorge

    2014-01-01

    Like other cellular modules, the secretory pathway and the Golgi complex are likely to be supervised by control systems that support homeostasis and optimal functionality under all conditions, including external and internal perturbations. Moreover, the secretory apparatus must be functionally connected with other cellular modules, such as energy metabolism and protein degradation, via specific rules of interaction, or "coordination protocols". These regulatory devices are of fundamental importance for optimal function; however, they are generally "hidden" at steady state. The molecular components and the architecture of the control systems and coordination protocols of the secretory pathway are beginning to emerge through studies based on the use of controlled transport-specific perturbations aimed specifically at the detection and analysis of these internal regulatory devices. PMID:25374666

  10. A Triphasic Sorting System: Coordination Cages in Ionic Liquids.

    PubMed

    Grommet, Angela B; Bolliger, Jeanne L; Browne, Colm; Nitschke, Jonathan R

    2015-12-01

    Host-guest chemistry is usually carried out in either water or organic solvents. To investigate the utility of alternative solvents, three different coordination cages were dissolved in neat ionic liquids. By using (19) F NMR spectroscopy to monitor the presence of free and bound guest molecules, all three cages were demonstrated to be stable and capable of encapsulating guests in ionic solution. Different cages were found to preferentially dissolve in different phases, allowing for the design of a triphasic sorting system. Within this system, three coordination cages, namely Fe4 L6 2, Fe8 L12 3, and Fe4 L4 4, each segregated into a distinct layer. Upon the addition of a mixture of three different guests, each cage (in each separate layer) selectively bound its preferred guest. PMID:26494225

  11. The oblate spheroidal harmonics under coordinate system rotation and translation

    NASA Astrophysics Data System (ADS)

    Panou, Georgios

    2014-05-01

    Several recent studies in geodesy and related sciences make use of oblate spheroidal harmonics. For instance, the Earth's external gravitational potential can be mathematically expanded in an oblate spheroidal harmonic series which converges outside any spheroid enclosing all the masses. In this presentation, we develop the exact relations between the solid oblate spheroidal harmonics in two coordinate systems, related to each other by an arbitrary rotation or translation. We start with the relations which exist between the spherical harmonics in the two coordinate systems. This problem has received considerable attention in the past and equivalent results have been independently derived by several investigators. Then, combining the previous results with the expressions which relate the solid spherical harmonics and the solid spheroidal harmonics, we obtain the relations under consideration. For simplicity, complex notation has been adopted throughout the work. This approach is also suitable and easy to use in the zonal harmonic expansions. The spherical harmonics under coordinate system rotation and translation are obtained as a degenerate case. The above theory can be used in any spheroidal harmonic model. Finally, some simple examples are given, in order to illuminate the mathematical derivations.

  12. Numerical solution of flow problems using body-fitted coordinate systems

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.

    1980-01-01

    The paper deals with numerically generated boundary-fitted coordinate systems. This procedure eliminates the shape of the boundaries as a complicating factor and allows the flow about arbitrary boundaries to be treated essentially as easily as that about simple boundaries. The technique of boundary-fitted coordinate systems is based on a method of automatic numerical generation of a general curvilinear coordinate system having a coordinate line coincident with each boundary of a general multiconnected region involving any number of arbitrarily shaped boundaries. Once the curvilinear coordinate system is generated, any partial differential system of interest may be solved on the coordinate system by transforming the equations and solving the resulting system in finite-difference approximation on the rectangular transformed plane. Attention is given to the types of boundary-fitted coordinate systems, coordinate system control, operation of the coordinate codes, solution of partial differential equations, application to free-surface flow, and other applications of interest.

  13. Observational constraints on atmospheric radiaitve feedbacks: absolute accuracy and next-generation observing systems

    NASA Astrophysics Data System (ADS)

    Dykema, J. A.; Hanssen, L. M.; Mekhontsev, S.; Anderson, J.

    2012-12-01

    The central role of atmospheric radiative feedbacks to understanding and projecting climate change calls for a robust observational system. Recent studies have shown the value of space-based measurements for putting quantitative constraints on a range of radiative feedback processes through a fingerprinting method applied to long-term observational records. More recent work has suggested the value of demonstrably accurate measurements to disentangle model error from observational uncertainties within reanalysis systems, potentially yielding improved representations of feedback processes within just a few years. Both of these methods rely on space-based measurements that can be objectively tested for accuracy on-orbit. A new class of mission has been proposed that incorporates the same type of empirical tests for accuracy as used in the laboratory into a space-based sensor. One example of such a mission is the Climate Absolute Radiance and Refractivity Observatory (CLARREO), a new mission suggested by the 2006 National Research Council Decadal Survey. CLARREO includes three sensor types: thermal infrared, microwave, and reflected shortwave. This paper presents a laboratory demonstration of prototype systems for testing the on-orbit accuracy of a thermal infrared sensor for CLARREO. These systems utilize infrared lasers to provide monochromatic light sources to quantitatively determine the optical properties of materials. These infrared optical properties are major determinants of the on-orbit radiometric performance of a thermal infrared sensor. For this reason, reliable quantitative information (including uncertainty) that tracks any changes in relevant infrared materials over the mission lifetime is essential to objective assessment of instrument accuracy. The practicality of mid-infrared lasers for these applications is due to the availability and continued evolution of compact, high-efficiency Quantum Cascade Lasers (QCLs). These lasers can provide over 100 m

  14. Flexible coordinate measurement system based on robot for industries

    NASA Astrophysics Data System (ADS)

    Guo, Yin; Yang, Xue-you; Liu, Chang-jie; Ye, Sheng-hua

    2010-10-01

    The flexible coordinate measurement system based on robot which is applicable to multi-model vehicle is designed to meet the needs of online measurement for current mainstream mixed body-in-white(BIW) production line. The moderate precision, good flexibility and no blind angle are the benefits of this measurement system. According to the measurement system, a monocular structured light vision sensor has been designed, which can measure not only edges, but also planes, apertures and other features. And a effective way to fast on-site calibration of the whole system using the laser tracker has also been proposed, which achieves the unity of various coordinate systems in industrial fields. The experimental results show satisfactory precision of +/-0.30mm of this measurement system, which is sufficient for the needs of online measurement for body-in-white(BIW) in the auto production line. The system achieves real-time detection and monitoring of the whole process of the car body's manufacture, and provides a complete data support in purpose of overcoming the manufacturing error immediately and accurately and improving the manufacturing precision.

  15. Design of a quasi-zero-stiffness based sensor system for the measurement of absolute vibration displacement of moving platforms

    NASA Astrophysics Data System (ADS)

    Jing, Xingjian; Wang, Yu; Li, Quankun; Sun, Xiuting

    2016-09-01

    This study presents the analysis and design of a novel sensor system for measuring the absolute vibration displacement of moving platforms based on the concept of quasi-zero-stiffness (QZS). The sensor system is constructed using positive- and negative-stiffness springs, which make it possible to achieve an equivalent QZS and consequently to create a broadband vibration-free point for absolute vibration displacement measurement in moving platforms. Theoretical analysis is conducted for the analysis and design of the influence of structure parameters on system measurement performance. A prototype is designed which can avoid the drawback of instability in existing QZS systems with negative stiffness, and corresponding data-processing software is developed to fulfill time domain measurements. Both the simulation and experimental results verify the effectiveness of this novel sensor system.

  16. Absolute phase recovery in structured light illumination systems: Sinusoidal vs. intensity discrete patterns

    NASA Astrophysics Data System (ADS)

    Porras-Aguilar, Rosario; Falaggis, Konstantinos

    2016-09-01

    Structured light illumination is a well-established technology for noncontact 3D surface measurements. A common challenge in those systems is to obtain the absolute surface information using few measurement frames. This work discusses techniques based on the projection of multiple sinusoidal fringe patterns with different fringe period, as well as the projection of intensity discrete Gray Code and grey-level coded patterns. The use of sinusoidal multi-frequency techniques has been since years an on-going area of research, where various algorithms have been developed based on beats, look-up tables, or number-theoretical approaches. This work shows that a related technique, the so-called algebraic reconstruction technique that is borrowed from the area of multi-wavelength interferometry can be used for this purpose. This approach provides a robust analytical solution to the phase-unwrapping problem. However, this work argues that despite these advances, the acquisition of additional phase maps obtained with different fringe periods requires too many measurement frames, and hence is inefficient. Motivated by that, this work proposes a new grey level coding scheme that uses only few measurement frames, overcomes typical defocus errors, and has an error detecting feature. The latter feature makes the need of separate error detecting algorithms obsolete. This so-called closed-loop space filling curve can be implemented with an arbitrary number of N grey-levels enabling to code up to (2N) code-words. The performance of this so-called closed-loop space filling curve is demonstrated using experimental data.

  17. Unified Selenocentric Reference Coordinates Net in the Dynamic System

    NASA Astrophysics Data System (ADS)

    Nefedyev, Yuri; Petrova, Natalia; Varaksina, Natalia

    In this report the task of the making selenocentric inertial reference net is solved. The purpose is making summary reference net by expansion KSC-1162 selenodetic system using 12 cosmic and ground selenodesic catalogues. The prospective analysis of this net was performed. These selenocentric reference catalogue covers full visible and a part of far lunar sides. Modern cosmic technologies need the accurate coordinate - temporal support including reference frame realization, inertial and dynamic system orientation and studying dynamic and geometry celestial bodies. That refers to dynamic and geometric selenocentric lunar parameters. The catalogue based on mission “Apollo” and reference nets of the west lunar hemisphere made by missions “Zond 5”, ”Zond 8” cover small part of the Moon surface. Three ALSEP stations were used to transform “Apollo” topographic coordinates. Transformation mean-square errors are less than 80 meters and measurement’s errors are about 60 meters. On this account positions inaccuracy near and between ALSEP stations are less 150 meters. The offset from place of the location ALSEP enlarges the supposed mistake is more than 300 m and this is a major part of the lunar surface. In solving the problem of high-precision condensation and expansion of fundamental selenocentric net KSC-1162 on the visible side of the Moon and lunar far side were obtained following new results: a) the analysis and investigation of the accuracy of basic net contained in ULCN were carried out; b) the decryption of common objects for coordinate systems which are being explored was executed; c) the extension of the mathematical content package TSC was carried out; d) the development of TSC as an expert system of universal transformation planet's coordinates was carried out; e) the possibility of applying the ARM-approach to the problem TC on common objects, which allows to find optimal parameter estimation and model structure of TC was confirmed; f) the

  18. Characterizing absolute piezoelectric microelectromechanical system displacement using an atomic force microscope

    SciTech Connect

    Evans, J. Chapman, S.

    2014-08-14

    Piezoresponse Force Microscopy (PFM) is a popular tool for the study of ferroelectric and piezoelectric materials at the nanometer level. Progress in the development of piezoelectric MEMS fabrication is highlighting the need to characterize absolute displacement at the nanometer and Ångstrom scales, something Atomic Force Microscopy (AFM) might do but PFM cannot. Absolute displacement is measured by executing a polarization measurement of the ferroelectric or piezoelectric capacitor in question while monitoring the absolute vertical position of the sample surface with a stationary AFM cantilever. Two issues dominate the execution and precision of such a measurement: (1) the small amplitude of the electrical signal from the AFM at the Ångstrom level and (2) calibration of the AFM. The authors have developed a calibration routine and test technique for mitigating the two issues, making it possible to use an atomic force microscope to measure both the movement of a capacitor surface as well as the motion of a micro-machine structure actuated by that capacitor. The theory, procedures, pitfalls, and results of using an AFM for absolute piezoelectric measurement are provided.

  19. Absolute Zero

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.

    2006-12-01

    Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.

  20. Microgrids and distributed generation systems: Control, operation, coordination and planning

    NASA Astrophysics Data System (ADS)

    Che, Liang

    Distributed Energy Resources (DERs) which include distributed generations (DGs), distributed energy storage systems, and adjustable loads are key components in microgrid operations. A microgrid is a small electric power system integrated with on-site DERs to serve all or some portion of the local load and connected to the utility grid through the point of common coupling (PCC). Microgrids can operate in both grid-connected mode and island mode. The structure and components of hierarchical control for a microgrid at Illinois Institute of Technology (IIT) are discussed and analyzed. Case studies would address the reliable and economic operation of IIT microgrid. The simulation results of IIT microgrid operation demonstrate that the hierarchical control and the coordination strategy of distributed energy resources (DERs) is an effective way of optimizing the economic operation and the reliability of microgrids. The benefits and challenges of DC microgrids are addressed with a DC model for the IIT microgrid. We presented the hierarchical control strategy including the primary, secondary, and tertiary controls for economic operation and the resilience of a DC microgrid. The simulation results verify that the proposed coordinated strategy is an effective way of ensuring the resilient response of DC microgrids to emergencies and optimizing their economic operation at steady state. The concept and prototype of a community microgrid that interconnecting multiple microgrids in a community are proposed. Two works are conducted. For the coordination, novel three-level hierarchical coordination strategy to coordinate the optimal power exchanges among neighboring microgrids is proposed. For the planning, a multi-microgrid interconnection planning framework using probabilistic minimal cut-set (MCS) based iterative methodology is proposed for enhancing the economic, resilience, and reliability signals in multi-microgrid operations. The implementation of high-reliability microgrids

  1. Surface-based determination of the pelvic coordinate system

    NASA Astrophysics Data System (ADS)

    Fieten, Lorenz; Eschweiler, Jörg; Heger, Stefan; Kabir, Koroush; Gravius, Sascha; de la Fuente, Matías; Radermacher, Klaus

    2009-02-01

    In total hip replacement (THR) one technical factor influencing the risk of dislocation is cup orientation. Computer-assisted surgery systems allow for cup navigation in anatomy-based reference frames. The pelvic coordinate system most used for cup navigation in THR is based on the mid-sagittal plane (MSP) and the anterior pelvic plane (APP). From a geometrical point of view, the MSP can be considered as a mirror plane, whereas the APP can be considered as a tangent plane comprising the anterior superior iliac spines (ASIS) and the pubic tubercles. In most systems relying on the pelvic coordinate system, the most anterior points of the ASIS and the pubic tubercles are selected manually. As manual selection of landmark points is a tedious, time-consuming and error-prone task, a surface-based approach for combined MSP and APP computation is presented in this paper: Homologous points defining the MSP and the landmark points defining the APP are selected automatically from surface patches. It is investigated how MSP computation can benefit from APP computation and vice versa, and clinical perspectives of combined MSP and APP computation are discussed. Experimental results on computed tomography data show that the surface-based approach can improve accuracy.

  2. Human Balance System: A Complex Coordination of Central and Peripheral Systems

    MedlinePlus

    ... 8428 · INFO @ VESTIBULAR . ORG · WWW . VESTIBULAR . ORG The Human Balance System — A Complex Coordination of Central and ... support. 1 A properly functioning balance system allows humans to see clearly while moving, identify orientation with ...

  3. Control systems improvements in a precision coordinate measuring machine

    NASA Astrophysics Data System (ADS)

    Douglass, S. S.; Babelay, E. F., Jr.; Igou, R. E.; Woodard, L. M.; Green, W. L.

    1981-09-01

    A conventional, manually driven Moore No. 3 coordinate measuring machine at the Oak Ridge Y-12 Plant is being upgraded to provide a continuous-path numerical control capability and simultaneously serve as a vehicle for testing new machine slide-control concepts. Besides new lead screw drive motors, an NC machine control unit, and a closed-loop servo system, the machine has also been equipped with vibration isolation, air-bearing slideways, and laser interferometric position feedback. The present conventional slide servo system will be replaced with a digital servo system wherein various feedback and compensation techniques can be realized through the use of a high speed, dedicated digital processor. The improvements to data are described with emphasis on identification and compensation of the slide control systems.

  4. Metabolomic insights into system-wide coordination of vertebrate metamorphosis

    PubMed Central

    2014-01-01

    Background After completion of embryogenesis, many organisms experience an additional obligatory developmental transition to attain a substantially different juvenile or adult form. During anuran metamorphosis, the aquatic tadpole undergoes drastic morphological changes and remodelling of tissues and organs to become a froglet. Thyroid hormones are required to initiate the process, but the mechanism whereby the many requisite changes are coordinated between organs and tissues is poorly understood. Metabolites are often highly conserved biomolecules between species and are the closest reflection of phenotype. Due to the extensive distribution of blood throughout the organism, examination of the metabolites contained therein provides a system-wide overview of the coordinated changes experienced during metamorphosis. We performed an untargeted metabolomic analysis on serum samples from naturally-metamorphosing Rana catesbeiana from tadpoles to froglets using ultraperformance liquid chromatography coupled to a mass spectrometer. Total and aqueous metabolite extracts were obtained from each serum sample to select for nonpolar and polar metabolites, respectively, and selected metabolites were validated by running authentic compounds. Results The majority of the detected metabolites (74%) showed statistically significant abundance changes (padj < 0.001) between metamorphic stages. We observed extensive remodelling of five core metabolic pathways: arginine and purine/pyrimidine, cysteine/methionine, sphingolipid, and eicosanoid metabolism and the urea cycle, and found evidence for a major role for lipids during this postembryonic process. Metabolites traditionally linked to human disease states were found to have biological linkages to the system-wide changes occuring during the events leading up to overt morphological change. Conclusions To our knowledge, this is the first wide-scale metabolomic study of vertebrate metamorphosis identifying fundamental pathways

  5. Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars

    USGS Publications Warehouse

    Werner, S.C.; Tanaka, K.L.

    2011-01-01

    For the boundaries of each chronostratigraphic epoch on Mars, we present systematically derived crater-size frequencies based on crater counts of geologic referent surfaces and three proposed " standard" crater size-frequency production distributions as defined by (a) a simple -2 power law, (b) Neukum and Ivanov, (c) Hartmann. In turn, these crater count values are converted to model-absolute ages based on the inferred cratering rate histories. We present a new boundary definition for the Late Hesperian-Early Amazonian transition. Our fitting of crater size-frequency distributions to the chronostratigraphic record of Mars permits the assignment of cumulative counts of craters down to 100. m, 1. km, 2. km, 5. km, and 16. km diameters to martian epochs. Due to differences in the " standard" crater size-frequency production distributions, a generalized crater-density-based definition to the chronostratigraphic system cannot be provided. For the diameter range used for the boundary definitions, the resulting model absolute age fits vary within 1.5% for a given set of production function and chronology model ages. Crater distributions translated to absolute ages utilizing different curve descriptions can result in absolute age differences exceeding 10%. ?? 2011 Elsevier Inc.

  6. Test Plan for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; Hair, Jason; McAndrew, Brendan; Daw, Adrian; Jennings, Donald; Rabin, Douglas

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe high-accuracy, long-term climate change trends and to use decadal change observations as the most critical method to determine the accuracy of climate change. One of the major objectives of CLARREO is to advance the accuracy of SI traceable absolute calibration at infrared and reflected solar wavelengths. This advance is required to reach the on-orbit absolute accuracy required to allow climate change observations to survive data gaps while remaining sufficiently accurate to observe climate change to within the uncertainty of the limit of natural variability. While these capabilities exist at NIST in the laboratory, there is a need to demonstrate that it can move successfully from NIST to NASA and/or instrument vendor capabilities for future spaceborne instruments. The current work describes the test plan for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches , alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The end result of efforts with the SOLARIS CDS will be an SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climate-quality data collections. The CLARREO mission addresses the need to observe high-accuracy, long-term climate change trends and advance the accuracy of SI traceable absolute calibration. The current work describes the test plan for the SOLARIS which is the calibration demonstration

  7. Coordinated scheduling for dynamic real-time systems

    NASA Technical Reports Server (NTRS)

    Natarajan, Swaminathan; Zhao, Wei

    1994-01-01

    In this project, we addressed issues in coordinated scheduling for dynamic real-time systems. In particular, we concentrated on design and implementation of a new distributed real-time system called R-Shell. The design objective of R-Shell is to provide computing support for space programs that have large, complex, fault-tolerant distributed real-time applications. In R-shell, the approach is based on the concept of scheduling agents, which reside in the application run-time environment, and are customized to provide just those resource management functions which are needed by the specific application. With this approach, we avoid the need for a sophisticated OS which provides a variety of generalized functionality, while still not burdening application programmers with heavy responsibility for resource management. In this report, we discuss the R-Shell approach, summarize the achievement of the project, and describe a preliminary prototype of R-Shell system.

  8. Error budget for a calibration demonstration system for the reflected solar instrument for the climate absolute radiance and refractivity observatory

    NASA Astrophysics Data System (ADS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2013-09-01

    A goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to observe highaccuracy, long-term climate change trends over decadal time scales. The key to such a goal is to improving the accuracy of SI traceable absolute calibration across infrared and reflected solar wavelengths allowing climate change to be separated from the limit of natural variability. The advances required to reach on-orbit absolute accuracy to allow climate change observations to survive data gaps exist at NIST in the laboratory, but still need demonstration that the advances can move successfully from to NASA and/or instrument vendor capabilities for spaceborne instruments. The current work describes the radiometric calibration error budget for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The resulting SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climatequality data collections is given. Key components in the error budget are geometry differences between the solar and earth views, knowledge of attenuator behavior when viewing the sun, and sensor behavior such as detector linearity and noise behavior. Methods for demonstrating this error budget are also presented.

  9. Error Budget for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2013-01-01

    A goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to observe highaccuracy, long-term climate change trends over decadal time scales. The key to such a goal is to improving the accuracy of SI traceable absolute calibration across infrared and reflected solar wavelengths allowing climate change to be separated from the limit of natural variability. The advances required to reach on-orbit absolute accuracy to allow climate change observations to survive data gaps exist at NIST in the laboratory, but still need demonstration that the advances can move successfully from to NASA and/or instrument vendor capabilities for spaceborne instruments. The current work describes the radiometric calibration error budget for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The resulting SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climatequality data collections is given. Key components in the error budget are geometry differences between the solar and earth views, knowledge of attenuator behavior when viewing the sun, and sensor behavior such as detector linearity and noise behavior. Methods for demonstrating this error budget are also presented.

  10. A system for measuring absolute frequencies of up to 4.25 THz using a Josephson point contact

    NASA Astrophysics Data System (ADS)

    Mild, Yukinobu; Onae, Atsushi; Kurosawa, Tomizo; Sakuma, Eiichi

    1993-11-01

    A system for measuring the absolute frequency of a far-infrared (FIR) laser is described. Josephson point contacts have been utilized in the system as a frequency harmonic mixer connecting microwaves and optically pumped CH3OH laser lines. The Josephson point contacts are capable of generating beat signals of 90 GHz microwaves and FIR waves of up to 4.25 THz. To measure the frequency of the beat signals from the Josephson junction with a frequency counter, tracking oscillators have been developed, which tracks the beat signals by phase locking and regenerate clean signals for frequency counting. It is shown that the absolute frequency can be measured to an accuracy of about 100 Hz by using the tracking oscillators.

  11. Spherical Coordinate Systems for Streamlining Suited Mobility Analysis

    NASA Technical Reports Server (NTRS)

    Benson, Elizabeth; Cowley, Matthew; Harvill, Lauren; Rajulu. Sudhakar

    2015-01-01

    Introduction: When describing human motion, biomechanists generally report joint angles in terms of Euler angle rotation sequences. However, there are known limitations in using this method to describe complex motions such as the shoulder joint during a baseball pitch. Euler angle notation uses a series of three rotations about an axis where each rotation is dependent upon the preceding rotation. As such, the Euler angles need to be regarded as a set to get accurate angle information. Unfortunately, it is often difficult to visualize and understand these complex motion representations. It has been shown that using a spherical coordinate system allows Anthropometry and Biomechanics Facility (ABF) personnel to increase their ability to transmit important human mobility data to engineers, in a format that is readily understandable and directly translatable to their design efforts. Objectives: The goal of this project was to use innovative analysis and visualization techniques to aid in the examination and comprehension of complex motions. Methods: This project consisted of a series of small sub-projects, meant to validate and verify a new method before it was implemented in the ABF's data analysis practices. A mechanical test rig was built and tracked in 3D using an optical motion capture system. Its position and orientation were reported in both Euler and spherical reference systems. In the second phase of the project, the ABF estimated the error inherent in a spherical coordinate system, and evaluated how this error would vary within the reference frame. This stage also involved expanding a kinematic model of the shoulder to include the rest of the joints of the body. The third stage of the project involved creating visualization methods to assist in interpreting motion in a spherical frame. These visualization methods will be incorporated in a tool to evaluate a database of suited mobility data, which is currently in development. Results: Initial results

  12. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  13. Let's move to spheres! Why a spherical coordinate system is rewarding when analyzing particle increment statistics

    NASA Astrophysics Data System (ADS)

    Most, Sebastian; Nowak, Wolfgang; Bijeljic, Branko

    2016-04-01

    For understanding non-Fickian transport in porous media, thorough understanding of pore-scale processes is required. When using particle methods as research instruments, we need a detailed understanding of the dependence and memory between subsequent increments in particle motion. We are especially interested in the dependence and memory of the spatial increments (size and direction) at consecutive time steps. Understanding the increment statistics is crucial for the upscaling that always becomes essential for transport simulations at larger scales. Upscaling means averaging over a (representative elementary) volume to save limited computational resources. However, this averaging means a loss of detail and therefore dispersion models should compensate for this loss. Formulating an appropriate dispersion model requires a detailed understanding of the dependencies and memory effects in the transport process. Particle-based simulations for transport in porous media are usually conducted and analyzed in a Cartesian coordinate system. We will show that, for understanding the process physically and representing the process statistically, it is more appropriate to switch to a spherical coordinate system that moves with each particle. Increment statistics in a Cartesian coordinate system usually reveal that a large displacement in longitudinal direction triggers a large displacement in transverse direction as fast flow channels are not perfectly aligned with the Cartesian axis along the main flow direction. We can overcome this inherent link, typical for the Cartesian description by using the absolute displacements together with the direction of the particle movement, where the direction is determined by the angles azimuth and elevation. This can be understood as a Lagrangian spherical process description. The root of the dependence of the transport process is in the complex pore geometry. For some time past, high-resolution micro-CT scans of pore space geometry became the

  14. A new absolute extreme ultraviolet image system designed for studying the radiated power of the Joint Texas Experimental Tokamak discharges.

    PubMed

    Zhang, J; Zhuang, G; Wang, Z J; Ding, Y H; Zhang, X Q; Tang, Y J

    2010-07-01

    A bolometer imaging system mounted on different toroidal and poloidal locations used for radiation observation has been developed in the Joint Texas Experimental Tokamak (J-TEXT tokamak). Three miniature pinhole AXUV16ELG (16 elements absolute extreme ultraviolet silicon photodiodes) array cameras, which are settled down in the same toroidal position but in three different poloidal places, can provide a broad viewing angle that covers the whole plasma cross-section, and hence can measure the total radiated power and provide the radiated emissive profile, while nine AXUV10EL (10 elements absolute extreme ultraviolet silicon photodiodes) array cameras are divided into three groups and will be mounted on different toroidal locations to observe the toroidal radiated power distribution. Among these detectors, one element of the AXUV16ELG array is absolutely calibrated by the synchrotron radiation source to verify the system reliability. Although there are some discrepancies between the typical responsivity given by IRD Co. and the calibrated results, it is confirmed that the discrepancies have no major effect on the final result after the simulation. The details of the system as well as observations are presented in the paper. PMID:20687724

  15. Conservation equations of gasdynamics in curvilinear coordinate systems

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1974-01-01

    Description of a new method of writing the conservation equations of gasdynamics in curvilinear coordinates which eliminates undifferentiated terms. It is thus possible to readily apply difference schemes derived for Cartesian coordinates which conserve mass, momentum, and energy in the total flow field. The method is derived for orthogonal coordinates, and then extended to cover the most general class of coordinate transformations, using general tensor analysis. Several special features of the equations are discussed.

  16. COSPAR, IAU, LSI Colloquium on Lunar Dynamics and Observational Coordinate Systems: Revised abstracts

    NASA Technical Reports Server (NTRS)

    Moutsoulas, M. (Editor)

    1973-01-01

    The proceedings of a colloquium on lunar dynamics and observational coordinate systems are presented. Discussions were held on the establishment of a fundamental reference system and on the lunar ephemerides. Abstracts of the subjects discussed at the meeting are submitted. Some of the topics discussed are: (1) coordinates of the Apollo retroreflectors, (2) determination of lunar baselines, (3) numerical series for the variations of lunar coordinates, (4) fundamental craters for establishing a lunar coordinate system, and (5) composite lunar gravity fields.

  17. System safety based on a coordinated principle-based theme

    SciTech Connect

    Cooper, J.A.

    1998-08-01

    In this paper, the authors demonstrate a logical progression for the identification of assets, threats, vulnerabilities, and protective measures, based on a structured approach that incorporates the results of the previous paper. The authors utilize a logical structure for identifying the constituents of the problem, derive appropriate applicable principles, and demonstrate a technique for incorporating the principles into a coordinated safety theme. They also show how to qualitatively assess such generally non-quantifiable items such as safety-component and safety-system response to severe abnormal environments. An illustrative example is followed step-by-step through to a safety system design approach and a safety assessment approach. The general approach is illustrated here through an example, generally representing a test rocket launch scenario, where the concern is the potential for loss of life.

  18. Systems and Methods of Coordination Control for Robot Manipulation

    NASA Technical Reports Server (NTRS)

    Chang, Chu-Yin (Inventor); English, James (Inventor); Tardella, Neil (Inventor); Bacon, James (Inventor)

    2013-01-01

    Disclosed herein are systems and methods for controlling robotic apparatus having several movable elements or segments coupled by joints. At least one of the movable elements can include one or more mobile bases, while the others can form one or more manipulators. One of the movable elements can be treated as an end effector for which a certain motion is desired. The end effector may include a tool, for example, or represent a robotic hand (or a point thereon), or one or more of the one or more mobile bases. In accordance with the systems and methods disclosed herein, movement of the manipulator and the mobile base can be controlled and coordinated to effect a desired motion for the end effector. In many cases, the motion can include simultaneously moving the manipulator and the mobile base.

  19. Galactic coordinate system based on multi-wavelength catalogs

    NASA Astrophysics Data System (ADS)

    Ding, Ping-Jie; Zhu, Zi; Liu, Jia-Cheng

    2015-07-01

    The currently used Galactic coordinate system (GalCS) is based on the FK5 system at J2000.0, which was transformed from the FK4 system at B1950.0. The limitations and misunderstandings related to this transformed GalCS can be avoided by defining a new GalCS that is directly connected to the International Celestial Reference System (ICRS). With more data at various wavelengths released by large survey programs, a more appropriate GalCS consistent with features associated with the Milky Way can be established. We try to find the best orientation of the GalCS using data from two all-sky surveys, AKARI and WISE, at six wavelengths between 3.4 μm and 90 μm, and synthesize results obtained at various wavelengths to define an improved GalCS in the framework of the ICRS. The revised GalCS parameters for defining the new GalCS in the ICRS are summarized as: αp = 192.777°, δp = 26.9298°, for the equatorial coordinates of the north Galactic pole and θ = 122.95017° for the position angle of the Galactic center. As one of the Galactic substructures, the Galactic warp exhibits different forms in different GalCSs that are constructed with various data and methods, which shows the importance of re-defining the GalCS by the relative commission of the International Astronomical Union that can lead to a better understanding of Galactic structure and kinematics. Supported by the National Natural Science Foundation of China.

  20. Absolute Position of Targets Measured Through a Chamber Window Using Lidar Metrology Systems

    NASA Technical Reports Server (NTRS)

    Kubalak, David; Hadjimichael, Theodore; Ohl, Raymond; Slotwinski, Anthony; Telfer, Randal; Hayden, Joseph

    2012-01-01

    Lidar is a useful tool for taking metrology measurements without the need for physical contact with the parts under test. Lidar instruments are aimed at a target using azimuth and elevation stages, then focus a beam of coherent, frequency modulated laser energy onto the target, such as the surface of a mechanical structure. Energy from the reflected beam is mixed with an optical reference signal that travels in a fiber path internal to the instrument, and the range to the target is calculated based on the difference in the frequency of the returned and reference signals. In cases when the parts are in extreme environments, additional steps need to be taken to separate the operator and lidar from that environment. A model has been developed that accurately reduces the lidar data to an absolute position and accounts for the three media in the testbed air, fused silica, and vacuum but the approach can be adapted for any environment or material. The accuracy of laser metrology measurements depends upon knowing the parameters of the media through which the measurement beam travels. Under normal conditions, this means knowledge of the temperature, pressure, and humidity of the air in the measurement volume. In the past, chamber windows have been used to separate the measuring device from the extreme environment within the chamber and still permit optical measurement, but, so far, only relative changes have been diagnosed. The ability to make accurate measurements through a window presents a challenge as there are a number of factors to consider. In the case of the lidar, the window will increase the time-of-flight of the laser beam causing a ranging error, and refract the direction of the beam causing angular positioning errors. In addition, differences in pressure, temperature, and humidity on each side of the window will cause slight atmospheric index changes and induce deformation and a refractive index gradient within the window. Also, since the window is a

  1. Instrumentation and First Results of the Reflected Solar Demonstration System for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Thome, Kurtis; Hair, Jason; McAndrew, Brendan; Jennings, Don; Rabin, Douglas; Daw, Adrian; Lundsford, Allen

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission key goals include enabling observation of high accuracy long-term climate change trends, use of these observations to test and improve climate forecasts, and calibration of operational and research sensors. The spaceborne instrument suites include a reflected solar spectroradiometer, emitted infrared spectroradiometer, and radio occultation receivers. The requirement for the RS instrument is that derived reflectance must be traceable to Sl standards with an absolute uncertainty of <0.3% and the error budget that achieves this requirement is described in previo1L5 work. This work describes the Solar/Lunar Absolute Reflectance Imaging Spectroradiometer (SOLARIS), a calibration demonstration system for RS instrument, and presents initial calibration and characterization methods and results. SOLARIS is an Offner spectrometer with two separate focal planes each with its own entrance aperture and grating covering spectral ranges of 320-640, 600-2300 nm over a full field-of-view of 10 degrees with 0.27 milliradian sampling. Results from laboratory measurements including use of integrating spheres, transfer radiometers and spectral standards combined with field-based solar and lunar acquisitions are presented. These results will be used to assess the accuracy and repeatability of the radiometric and spectral characteristics of SOLARIS, which will be presented against the sensor-level requirements addressed in the CLARREO RS instrument error budget.

  2. Efficient transformations from geodetic to UTM coordinate systems

    SciTech Connect

    Toms, R.M.

    1996-08-07

    The problem of efficiently performing transformations from geocentric to geodetic coordinates has been addressed at previous DIS (Distributed Interactive Simulation) workshops. This paper extends the work presented at the 14th DIS Workshop. As a consequence of the new algorithm for geocentric to geodetic coordinate conversion, a subsequent conversion to Universal Transverse Mercator coordinates is made considerably more efficient. No additional trigonometric or square root evaluations are required and accuracy is not degraded.

  3. Spherical Coordinate Systems for Streamlining Suited Mobility Analysis

    NASA Technical Reports Server (NTRS)

    Benson, Elizabeth; Cowley, Matthew S.; Harvill. Lauren; Rajulu, Sudhakar

    2014-01-01

    When describing human motion, biomechanists generally report joint angles in terms of Euler angle rotation sequences. However, there are known limitations in using this method to describe complex motions such as the shoulder joint during a baseball pitch. Euler angle notation uses a series of three rotations about an axis where each rotation is dependent upon the preceding rotation. As such, the Euler angles need to be regarded as a set to get accurate angle information. Unfortunately, it is often difficult to visualize and understand these complex motion representations. One of our key functions is to help design engineers understand how a human will perform with new designs and all too often traditional use of Euler rotations becomes as much of a hindrance as a help. It is believed that using a spherical coordinate system will allow ABF personnel to more quickly and easily transmit important mobility data to engineers, in a format that is readily understandable and directly translatable to their design efforts. Objectives: The goal of this project is to establish new analysis and visualization techniques to aid in the examination and comprehension of complex motions. Methods: This project consisted of a series of small sub-projects, meant to validate and verify the method before it was implemented in the ABF's data analysis practices. The first stage was a proof of concept, where a mechanical test rig was built and instrumented with an inclinometer, so that its angle from horizontal was known. The test rig was tracked in 3D using an optical motion capture system, and its position and orientation were reported in both Euler and spherical reference systems. The rig was meant to simulate flexion/extension, transverse rotation and abduction/adduction of the human shoulder, but without the variability inherent in human motion. In the second phase of the project, the ABF estimated the error inherent in a spherical coordinate system, and evaluated how this error would

  4. A multi-agent system for coordinating international shipping

    SciTech Connect

    Goldsmith, S.Y.; Phillips, L.R.; Spires, S.V.

    1998-05-01

    Moving commercial cargo across the US-Mexico border is currently a complex, paper-based, error-prone process that incurs expensive inspections and delays at several ports of entry in the Southwestern US. Improved information handling will dramatically reduce border dwell time, variation in delivery time, and inventories, and will give better control of the shipment process. The Border Trade Facilitation System (BTFS) is an agent-based collaborative work environment that assists geographically distributed commercial and government users with transshipment of goods across the US-Mexico border. Software agents mediate the creation, validation and secure sharing of shipment information and regulatory documentation over the Internet, using the World Wide Web to interface with human actors. Agents are organized into Agencies. Each agency represents a commercial or government agency. Agents perform four specific functions on behalf of their user organizations: (1) agents with domain knowledge elicit commercial and regulatory information from human specialists through forms presented via web browsers; (2) agents mediate information from forms with diverse otologies, copying invariant data from one form to another thereby eliminating the need for duplicate data entry; (3) cohorts of distributed agents coordinate the work flow among the various information providers and they monitor overall progress of the documentation and the location of the shipment to ensure that all regulatory requirements are met prior to arrival at the border; (4) agents provide status information to human actors and attempt to influence them when problems are predicted.

  5. Some notions of decentralization and coordination in large-scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Chong, C. Y.

    1975-01-01

    Some notions of decentralization and coordination in the control of large-scale dynamic systems are discussed. Decentralization and coordination have always been important concepts in the study of large systems. Roughly speaking decentralization is the process of dividing a large problem into subproblems so that it can be handled more easily. Coordination is the manipulation of the subproblem so that the original problem is solved. The various types of decentralization and coordination that have been used to control dynamic systems are discussed. The emphasis was to distinguish between on-line and off-line operations to understand the results available by indicating the aspects of the problem which are decentralized.

  6. A second-order method for interface reconstruction in orthogonal coordinate systems

    SciTech Connect

    Colella, P.; Graves, D.T.; Greenough, J.A.

    2002-01-02

    The authors present a second-order algorithm for reconstructing an interface from a distribution of volume fractions in a general orthogonal coordinate system with derivatives approximated using finite differences. The method approximates the interface curve by a piecewise-linear profile. An integral formulation is used that accounts for the orthogonal coordinate system in a natural way. The authors present results obtained using this method for tracking a material interface between two compressible media in spherical coordinates.

  7. A vision-aided alignment datum system for coordinate measuring machines

    NASA Astrophysics Data System (ADS)

    Wang, L.; Lin, G. C. I.

    1997-07-01

    This paper presents the development of a CAD-based and vision-aided precision measurement system. A new coordinate system alignment technique for coordinate measuring machines (CMMs) is described. This alignment technique involves a machine vision system with CAD-based planning and execution of inspection. The determination method for measuring datums for the coordinate measuring technique, using the AutoCAD development system, is described in more detail. To improve image quality in the machine vision system, a contrast enhancement technique is used on the image background to reduce image noise, and an on-line calibration technique is applied. Some systematic errors may be caused by imperfect geometric features in components during coordinate system alignment. This measurement system approach, with its new measuring coordinate alignment method, can be used for high-precision measurement to overcome such errors.

  8. A general relativistic model for free-fall absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Tan, Yu-Jie; Shao, Cheng-Gang; Li, Jia; Hu, Zhong-Kun

    2016-04-01

    Although the relativistic manifestations of gravitational fields in gravimetry were first studied 40 years ago, the relativistic effects combined with free-fall absolute gravimeters have rarely been considered. In light of this, we present a general relativistic model for free-fall absolute gravimeters in a local-Fermi coordinates system, where we focus on effects related to the measuring devices: relativistic transverse Doppler effects, gravitational redshift effects and Earth’s rotation effects. Based on this model, a general relativistic expression of the measured gravity acceleration is obtained.

  9. Radiometric absolute noise-temperature measurement system features improved accuracy and calibration ease

    NASA Technical Reports Server (NTRS)

    Brown, W.; Ewen, H.; Haroules, G.

    1970-01-01

    Radiometric receiver system, which measures noise temperatures in degrees Kelvin, does not require cryogenic noise sources for routine operation. It eliminates radiometer calibration errors associated with RF attenuation measurements. Calibrated noise source is required only for laboratory adjustment and calibration.

  10. 36 CFR 9.83 - Coordination of AMRAP activities in National Park System units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Coordination of AMRAP activities in National Park System units. 9.83 Section 9.83 Parks, Forests, and Public Property NATIONAL PARK... Coordination of AMRAP activities in National Park System units. (a) To facilitate compliance with this...

  11. 36 CFR 9.83 - Coordination of AMRAP activities in National Park System units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Coordination of AMRAP activities in National Park System units. 9.83 Section 9.83 Parks, Forests, and Public Property NATIONAL PARK... Coordination of AMRAP activities in National Park System units. (a) To facilitate compliance with this...

  12. 36 CFR 9.83 - Coordination of AMRAP activities in National Park System units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Coordination of AMRAP activities in National Park System units. 9.83 Section 9.83 Parks, Forests, and Public Property NATIONAL PARK... Coordination of AMRAP activities in National Park System units. (a) To facilitate compliance with this...

  13. 36 CFR 9.83 - Coordination of AMRAP activities in National Park System units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Coordination of AMRAP activities in National Park System units. 9.83 Section 9.83 Parks, Forests, and Public Property NATIONAL PARK... Coordination of AMRAP activities in National Park System units. (a) To facilitate compliance with this...

  14. 36 CFR 9.83 - Coordination of AMRAP activities in National Park System units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Coordination of AMRAP activities in National Park System units. 9.83 Section 9.83 Parks, Forests, and Public Property NATIONAL PARK... Coordination of AMRAP activities in National Park System units. (a) To facilitate compliance with this...

  15. Building Management Information Systems to Coordinate Citywide Afterschool Programs: A Toolkit for Cities. Executive Summary

    ERIC Educational Resources Information Center

    Kingsley, Chris

    2012-01-01

    This executive summary describes highlights from the report, "Building Management Information Systems to Coordinate Citywide Afterschool Programs: A Toolkit for Cities." City-led efforts to build coordinated systems of afterschool programming are an important strategy for improving the health, safety and academic preparedness of children and…

  16. Natural Systems: MINNEMAST Coordinated Mathematics - Science Series, Unit 29.

    ERIC Educational Resources Information Center

    Bakke, Jeannette; And Others

    This volume is the last in a series of 29 coordinated MINNEMAST units in mathematics and science for kindergarten and the primary grades. Intended for use by third-grade teachers, this unit guide provides a summary and overview of the unit, a list of materials needed, and descriptions of three groups of lessons. The purposes and procedures for…

  17. Calculation of the absolute thermodynamic properties of association of host-guest systems from the intermolecular potential of mean force.

    PubMed

    Ghoufi, Aziz; Malfreyt, Patrice

    2006-12-14

    The authors report calculations of the intermolecular potential of mean force (PMF) in the case of the host-guest interaction. The host-guest system is defined by a water soluble calixarene and a cation. With an organic cation such as the tetramethylammonium cation, the calixarene forms an insertion complex, whereas with the Lanthane cation, the supramolecular assembly is an outer-sphere complex. The authors apply a modified free energy perturbation method and the force constraint technique to establish the PMF profiles as a function of the separation distance between the host and guest. They use the PMF profile for the calculation of the absolute thermodynamic properties of association that they compare to the experimental values previously determined. They finish by giving some structural features of the insertion and outer-sphere complexes at the Gibbs free energy minimum. PMID:17176145

  18. Absolute calibration method for fast-streaked, fiber optic light collection, spectroscopy systems.

    SciTech Connect

    Johnston, Mark D.; Frogget, Brent; Oliver, Bryan Velten; Maron, Yitzhak; Droemer, Darryl W.; Crain, Marlon D.

    2010-04-01

    This report outlines a convenient method to calibrate fast (<1ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such a system is used to collect spectral data on plasmas generated in the A-K gap of electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA). On RITS, light is collected through a small diameter (200 micron) optical fiber and recorded on a fast streak camera at the output of 1 meter Czerny-Turner monochromator (F/7 optics). To calibrate such a system, it is necessary to efficiently couple light from a spectral lamp into a 200 micron diameter fiber, split it into its spectral components, with 10 Angstroms or less resolution, and record it on a streak camera with 1ns or less temporal resolution.

  19. Revised Age Constraints on Absolute Age Limits for Mercury's Kuiperian and Mansurian Systems

    NASA Astrophysics Data System (ADS)

    Banks, Maria E.; Zhiyong, Xiao; Braden, Sarah E.; Marchi, Simone S.; Barlow, Nadine G.; Chapman, Clark R.; Fassett, Caleb I.

    2015-11-01

    On the basis of morphologically distinct basin and crater deposits, Mercury’s surface units have been subdivided into five time-stratigraphic systems (youngest to oldest): Kuiperian, Mansurian, Calorian, Tolstojan, and pre-Tolstojan. Approximate age limits were initially suggested for these systems on the basis of the lunar-derived impact-flux history. High-resolution and multi-band image data obtained by the MErcury Surface, Space ENviroment, GEochemistry, and Ranging (MESSENGER) spacecraft were used to catalogue fresh impact craters interpreted to have formed during the Mansurian and Kuiperian systems. Mansurian and Kuiperian craters are characterized as morphologically fresh with crisp morphologies, well-preserved rims, few or no superposed craters, continuous ejecta with radial lineaments, and well-defined secondary craters; Kuiperian craters have bright ray systems while Mansurian craters maintain fresh morphologies but no longer have discernable ray systems.The density of fresh craters in these datasets, along with the recent production and chronology function of Marchi et al. [2009], are used to estimate new limits for the boundaries of the two most recent of Mercury’s systems. Given the effects of strength and other parameters (such as density), we estimate a model age for the population of craters that have formed since the onset of the Mansurian of ~1.9 ±0.3 Gyr. Likewise we estimate a model age for the population of craters that have formed since the onset of the Kuiperian of ~300 ±40 Myr. A particularly good fit for the Mansurian crater size frequency distribution (SFD) was found for the NEO-derived crater distribution. The same is true for the Kuiperian SFD, although the fit is not as robust as for the Mansurian SFD.

  20. Peptide Biosynthesis with Stable Isotope Labeling from a Cell-free Expression System for Targeted Proteomics with Absolute Quantification.

    PubMed

    Xian, Feng; Zi, Jin; Wang, Quanhui; Lou, Xiaomin; Sun, Haidan; Lin, Liang; Hou, Guixue; Rao, Weiqiao; Yin, Changcheng; Wu, Lin; Li, Shuwei; Liu, Siqi

    2016-08-01

    Because of its specificity and sensitivity, targeted proteomics using mass spectrometry for multiple reaction monitoring is a powerful tool to detect and quantify pre-selected peptides from a complex background and facilitates the absolute quantification of peptides using isotope-labeled forms as internal standards. How to generate isotope-labeled peptides remains an urgent challenge for accurately quantitative targeted proteomics on a large scale. Herein, we propose that isotope-labeled peptides fused with a quantitative tag could be synthesized through an expression system in vitro, and the homemade peptides could be enriched by magnetic beads with tag-affinity and globally quantified based on the corresponding multiple reaction monitoring signals provided by the fused tag. An Escherichia coli cell-free protein expression system, protein synthesis using recombinant elements, was adopted for the synthesis of isotope-labeled peptides fused with Strep-tag. Through a series of optimizations, we enabled efficient expression of the labeled peptides such that, after Strep-Tactin affinity enrichment, the peptide yield was acceptable in scale for quantification, and the peptides could be completely digested by trypsin to release the Strep-tag for quantification. Moreover, these recombinant peptides could be employed in the same way as synthetic peptides for multiple reaction monitoring applications and are likely more economical and useful in a laboratory for the scale of targeted proteomics. As an application, we synthesized four isotope-labeled glutathione S-transferase (GST) peptides and added them to mouse sera pre-treated with GST affinity resin as internal standards. A quantitative assay of the synthesized GST peptides confirmed the absolute GST quantification in mouse sera to be measurable and reproducible. PMID:27234506

  1. The Frog-Boiling Attack: Limitations of Anomaly Detection for Secure Network Coordinate Systems

    NASA Astrophysics Data System (ADS)

    Chan-Tin, Eric; Feldman, Daniel; Hopper, Nicholas; Kim, Yongdae

    A network coordinate system assigns Euclidean “virtual” coordinates to every node in a network to allow easy estimation of network latency between pairs of nodes that have never contacted each other. These systems have been implemented in a variety of applications, most notably the popular Azureus/Vuze BitTorrent client. Zage and Nita-Rotaru (CCS 2007) and independently, Kaafar et al. (SIGCOMM 2007), demonstrated that several widely-cited network coordinate systems are prone to simple attacks, and proposed mechanisms to defeat these attacks using outlier detection to filter out adversarial inputs. We propose a new attack, Frog-Boiling, that defeats anomaly-detection based defenses in the context of network coordinate systems, and demonstrate empirically that Frog-Boiling is more disruptive than the previously known attacks. Our results suggest that a new approach is needed to solve this problem: outlier detection alone cannot be used to secure network coordinate systems.

  2. An intelligent hybrid behavior coordination system for an autonomous mobile robot

    NASA Astrophysics Data System (ADS)

    Luo, Chaomin; Krishnan, Mohan; Paulik, Mark; Fallouh, Samer

    2013-12-01

    In this paper, development of a low-cost PID controller with an intelligent behavior coordination system for an autonomous mobile robot is described that is equipped with IR sensors, ultrasonic sensors, regulator, and RC filters on the robot platform based on HCS12 microcontroller and embedded systems. A novel hybrid PID controller and behavior coordination system is developed for wall-following navigation and obstacle avoidance of an autonomous mobile robot. Adaptive control used in this robot is a hybrid PID algorithm associated with template and behavior coordination models. Software development contains motor control, behavior coordination intelligent system and sensor fusion. In addition, the module-based programming technique is adopted to improve the efficiency of integrating the hybrid PID and template as well as behavior coordination model algorithms. The hybrid model is developed to synthesize PID control algorithms, template and behavior coordination technique for wall-following navigation with obstacle avoidance systems. The motor control, obstacle avoidance, and wall-following navigation algorithms are developed to propel and steer the autonomous mobile robot. Experiments validate how this PID controller and behavior coordination system directs an autonomous mobile robot to perform wall-following navigation with obstacle avoidance. Hardware configuration and module-based technique are described in this paper. Experimental results demonstrate that the robot is successfully capable of being guided by the hybrid PID controller and behavior coordination system for wall-following navigation with obstacle avoidance.

  3. A Framework for the Relative and Absolute Performance Evaluation of Automated Spectroscopy Systems

    NASA Astrophysics Data System (ADS)

    Portnoy, David; Heimberg, Peter; Heimberg, Jennifer; Feuerbach, Robert; McQuarrie, Allan; Noonan, William; Mattson, John

    2009-12-01

    The development of high-speed, high-performance gamma-ray spectroscopy algorithms is critical to the success of many automated threat detection systems. In response to this need a proliferation of such algorithms has taken place. With this proliferation comes the necessary and non-trivial task of validation. There is (and always will be) insufficient experimental data to determine performance of spectroscopy algorithms over the relevant factor space at any reasonable precision. In the case of gamma-ray spectroscopy, there are hundreds of radioisotopes of interest, which may come in arbitrary admixtures, there are many materials of unknown quantity, which may be found in the intervening space between the source and the detection system, and there are also irregular variations in the detector systems themselves. All of these factors and more should be explored to determine algorithm/system performance. This paper describes a statistical framework for the performance estimation and comparison of gamma-ray spectroscopy algorithms. The framework relies heavily on data of increasing levels of artificiality to sufficiently cover the factor space. At each level rigorous statistical methods are employed to validate performance estimates.

  4. A Framework for the Relative and Absolute Performance Evaluation of Automated Spectroscopy Systems

    SciTech Connect

    Portnoy, David; Heimberg, Peter; Heimberg, Jennifer; Feuerbach, Robert; McQuarrie, Allan; Noonan, William; Mattson, John

    2009-12-02

    The development of high-speed, high-performance gamma-ray spectroscopy algorithms is critical to the success of many automated threat detection systems. In response to this need a proliferation of such algorithms has taken place. With this proliferation comes the necessary and non-trivial task of validation. There is (and always will be) insufficient experimental data to determine performance of spectroscopy algorithms over the relevant factor space at any reasonable precision. In the case of gamma-ray spectroscopy, there are hundreds of radioisotopes of interest, which may come in arbitrary admixtures, there are many materials of unknown quantity, which may be found in the intervening space between the source and the detection system, and there are also irregular variations in the detector systems themselves. All of these factors and more should be explored to determine algorithm/system performance. This paper describes a statistical framework for the performance estimation and comparison of gamma-ray spectroscopy algorithms. The framework relies heavily on data of increasing levels of artificiality to sufficiently cover the factor space. At each level rigorous statistical methods are employed to validate performance estimates.

  5. Approximate Linearization Control of 2-DOF Underactuated-by-1 Systems Using Higher Order Linearization Coordinate

    NASA Astrophysics Data System (ADS)

    Hoshino, Tasuku

    This paper deals with an approximate linearization control of 2-DOF underactuated-by-1 nonlinear systems, proposing a novel linearization coordinate which reduces the approximation error over the state space around the operating point. The coordinate is analytically constructed in a systematic way by solving two first order linear partial differential equations and the solution is given in an infinite series of configuration variables. The resulting linearization feedback is highly nonlinear and the basin of attraction of the stabilized system using proposed coordinate is large, comparing with those of a conventional first order or other lower order linearization coordinates. The approximate linearization control based on the proposed coordinate is applied to the stabilization of a rotational inverted pendulum; the advantage is verified in simulations and experiments. Some perspectives on availability of the linearization coordinate are discussed and they are computed also for a mobile inverted pendulum, Acrobot, and for Pendubot as examples.

  6. Lunar investigations at the Kazan University: the physical libration - analytical and numerical approach, the lunar coordinate systems

    NASA Astrophysics Data System (ADS)

    Petrova, N.; Nefediev, Yu.; Zagidullin, A.; Kosoulin, V.

    2015-10-01

    The theory of physical librations is one of traditional field of investigation at the Kazan University. At the present time it is necessary to develop the model of lunar rotation in order to achieve in the theory the accuracy of 0.1 milliseconds of arc, which is the requirement of modern laser ranging observations and other experiments to determine the parameters of the physical libration. Both numerical and analytical approaches are very important, since the first provides greater accuracy, and the second -allows a qualitative analysis of the observed data, revealing features that are sensitive to the different physical phenomena that affect the rotation of the Moon.In particular, the analytical theory has found effective application in computer simulating a new type of observation, such as the ILOM [1], with the purpose to estimate possibilities of the experiment. One of the important application of the libration theory is the developing the selenocentric coordinate system useful for navigation tasks in the near-moon space. Such kind of the system the Union Selenocentric Reference System was constructed at the university on the basis of absolute coordinates of lunar craters, obtained with simultaneous photographing craters and stars.

  7. A Novel Pretreatment-Free Duplex Chamber Digital PCR Detection System for the Absolute Quantitation of GMO Samples.

    PubMed

    Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-01-01

    Digital polymerase chain reaction (PCR) has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ), sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP) sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO) genome samples using commercial digital PCR detection systems. PMID:26999129

  8. A Novel Pretreatment-Free Duplex Chamber Digital PCR Detection System for the Absolute Quantitation of GMO Samples

    PubMed Central

    Zhu, Pengyu; Wang, Chenguang; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2016-01-01

    Digital polymerase chain reaction (PCR) has developed rapidly since it was first reported in the 1990s. However, pretreatments are often required during preparation for digital PCR, which can increase operation error. The single-plex amplification of both the target and reference genes may cause uncertainties due to the different reaction volumes and the matrix effect. In the current study, a quantitative detection system based on the pretreatment-free duplex chamber digital PCR was developed. The dynamic range, limit of quantitation (LOQ), sensitivity and specificity were evaluated taking the GA21 event as the experimental object. Moreover, to determine the factors that may influence the stability of the duplex system, we evaluated whether the pretreatments, the primary and secondary structures of the probes and the SNP effect influence the detection. The results showed that the LOQ was 0.5% and the sensitivity was 0.1%. We also found that genome digestion and single nucleotide polymorphism (SNP) sites affect the detection results, whereas the unspecific hybridization within different probes had little side effect. This indicated that the detection system was suited for both chamber-based and droplet-based digital PCR. In conclusion, we have provided a simple and flexible way of achieving absolute quantitation for genetically modified organism (GMO) genome samples using commercial digital PCR detection systems. PMID:26999129

  9. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  10. Absolute intensity calibration of the Wendelstein 7-X high efficiency extreme ultraviolet overview spectrometer system

    NASA Astrophysics Data System (ADS)

    Greiche, Albert; Biel, Wolfgang; Marchuk, Oleksandr; Burhenn, Rainer

    2008-09-01

    The new high effiency extreme ultraviolet overview spectrometer (HEXOS) system for the stellarator Wendelstein 7-X is now mounted for testing and adjustment at the tokamak experiment for technology oriented research (TEXTOR). One part of the testing phase was the intensity calibration of the two double spectrometers which in total cover a spectral range from 2.5 to 160.0 nm with overlap. This work presents the current intensity calibration curves for HEXOS and describes the method of calibration. The calibration was implemented with calibrated lines of a hollow cathode light source and the branching ratio technique. The hollow cathode light source provides calibrated lines from 16 up to 147 nm. We could extend the calibrated region in the spectrometers down to 2.8 nm by using the branching line pairs emitted by an uncalibrated pinch extreme ultraviolet light source as well as emission lines from boron and carbon in TEXTOR plasmas. In total HEXOS is calibrated from 2.8 up to 147 nm, which covers most of the observable wavelength region. The approximate density of carbon in the range of the minor radius from 18 to 35 cm in a TEXTOR plasma determined by simulating calibrated vacuum ultraviolet emission lines with a transport code was 5.5×1017 m-3 which corresponds to a local carbon concentration of 2%.

  11. Coordinate-dependent diffusion coefficients: Decay rate in open quantum systems

    SciTech Connect

    Sargsyan, V. V.; Palchikov, Yu. V.; Antonenko, N. V.; Kanokov, Z.; Adamian, G. G.

    2007-06-15

    Based on a master equation for the reduced density matrix of an open quantum collective system, the influence of coordinate-dependent microscopical diffusion coefficients on the decay rate from a metastable state is treated. For various frictions and temperatures larger than a crossover temperature, the quasistationary decay rates obtained with the coordinate-dependent microscopical set of diffusion coefficients are compared with those obtained with the coordinate-independent microscopical set of diffusion coefficients and coordinate-independent and -dependent phenomenological sets of diffusion coefficients. Neglecting the coordinate dependence of diffusion coefficients, one can strongly overestimate or underestimate the decay rate at low temperature. The coordinate-dependent phenomenological diffusion coefficient in momentum are shown to be suitable for applications.

  12. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  13. An adaptive control scheme for coordinated multimanipulator systems

    SciTech Connect

    Jonghann Jean; Lichen Fu . Dept. of Electrical Engineering)

    1993-04-01

    The problem of adaptive coordinated control of multiple robot arms transporting an object is addressed. A stable adaptive control scheme for both trajectory tracking and internal force control is presented. Detailed analyses on tracking properties of the object position, velocity and the internal forces exerted on the object are given. It is shown that this control scheme can achieve satisfactory tracking performance without using the measurement of contact forces and their derivatives. It can be shown that this scheme can be realized by decentralized implementation to reduce the computational burden. Moreover, some efficient adaptive control strategies can be incorporated to reduce the computational complexity.

  14. A generalized orthogonal coordinate system for describing families of axisymmetric and two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Gnoffo, P. A.

    1977-01-01

    A generalized curvilinear orthogonal coordinate system is presented which can be used for approximating various axisymmetric and two-dimensional body shapes of interest to aerodynamicists. Such body shapes include spheres, ellipses, spherically capped cones, flat-faced cylinders with rounded corners, circular disks, and planetary probe vehicles. A set of transformation equations is also developed whereby a uniform velocity field approaching a body at any angle of attack can be resolved in the transformed coordinate system. The Navier-Stokes equations are written in terms of a generalized orthogonal coordinate system to show the resultant complexity of the governing equations.

  15. Absolute Antenna Calibration at the US National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.

    2012-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. Determination of antenna phase center behavior is known as "antenna calibration". Since 1994, NGS has computed relative antenna calibrations for more than 350 antennas. In recent years, the geodetic community has moved to absolute calibrations - the IGS adopted absolute antenna phase center calibrations in 2006 for use in their orbit and clock products, and NGS's CORS group began using absolute antenna calibration upon the release of the new CORS coordinates in IGS08 epoch 2005.00 and NAD 83(2011,MA11,PA11) epoch 2010.00. Although NGS relative calibrations can be and have been converted to absolute, it is considered best practice to independently measure phase center characteristics in an absolute sense. Consequently, NGS has developed and operates an absolute calibration system. These absolute antenna calibrations accommodate the demand for greater accuracy and for 2-dimensional (elevation and azimuth) parameterization. NGS will continue to provide calibration values via the NGS web site www.ngs.noaa.gov/ANTCAL, and will publish calibrations in the ANTEX format as well as the legacy ANTINFO

  16. Absolute measurements of the electronic transition moments of seven band systems of the C2 molecule. Ph.D. Thesis - York Univ., Toronto

    NASA Technical Reports Server (NTRS)

    Cooper, D. M.

    1979-01-01

    Electronic transition moments of seven C2 singlet and triplet band systems in the 0.2-1.2 micron spectral region were measured. The measurements were made in emission behind incident shock waves in C2H2-argon mixtures. Narrow bandpass radiometers were used to obtain absolute measurements of shock-excited C2 radiation from which absolute electronic transition moments are derived by a synthetic spectrum analysis. New results are reported for the Ballik-Ramsay, Phillips, Swan, Deslandres-d'Azambuja, Fox-Herzberg, Mulliken, and Freymark systems.

  17. Absolute sensitivity calibration of vacuum and extreme ultraviolet spectrometer systems and Z(eff) measurement based on bremsstrahlung continuum in HL-2A tokamak.

    PubMed

    Zhou, Hangyu; Cui, Zhengying; Morita, Shigeru; Fu, Bingzhong; Goto, Motoshi; Sun, Ping; Dong, Chunfeng; Gao, Yadong; Xu, Yuan; Lu, Ping; Yang, Qingwei; Duan, Xuru

    2012-10-01

    A grazing-incidence flat-field extreme ultraviolet (EUV) spectrometer has been newly developed in HL-2A tokamak. Typical spectral lines are observed from intrinsic impurities of carbon, oxygen, iron, and extrinsic impurity of helium in the wavelength range of 20 Å-500 Å. Bremsstrahlung continuum is measured at different electron densities of HL-2A discharges to calibrate absolute sensitivity of the EUV spectrometer system and to measure effective ionic charge, Z(eff). The sensitivity of a vacuum ultraviolet (VUV) spectrometer system is also absolutely calibrated in overlapped wavelength range of 300 Å-500 Å by comparing the intensity between VUV and EUV line emissions. PMID:23126850

  18. Absolute sensitivity calibration of vacuum and extreme ultraviolet spectrometer systems and Z{sub eff} measurement based on bremsstrahlung continuum in HL-2A tokamak

    SciTech Connect

    Zhou Hangyu; Cui Zhengying; Fu Bingzhong; Sun Ping; Gao Yadong; Xu Yuan; Lu Ping; Yang Qingwei; Duan Xuru; Morita, Shigeru; Goto, Motoshi; Dong Chunfeng

    2012-10-15

    A grazing-incidence flat-field extreme ultraviolet (EUV) spectrometer has been newly developed in HL-2A tokamak. Typical spectral lines are observed from intrinsic impurities of carbon, oxygen, iron, and extrinsic impurity of helium in the wavelength range of 20 A-500 A. Bremsstrahlung continuum is measured at different electron densities of HL-2A discharges to calibrate absolute sensitivity of the EUV spectrometer system and to measure effective ionic charge, Z{sub eff}. The sensitivity of a vacuum ultraviolet (VUV) spectrometer system is also absolutely calibrated in overlapped wavelength range of 300 A-500 A by comparing the intensity between VUV and EUV line emissions.

  19. Methods for Calculating the Absolute Entropy and free energy of biological systems based on ideas from Polymer Physics

    PubMed Central

    Meirovitch, Hagai

    2009-01-01

    The commonly used simulation techniques, Metropolis Monte Carlo (MC) and molecular dynamics (MD) are of a dynamical type which enables one to sample system configurations i correctly with the Boltzmann probability, PiB while the value of PiB is not provided directly; therefore, it is difficult to obtain the absolute entropy, S ~ -ln PiB, and the Helmholtz free energy, F. With a different simulation approach developed in polymer physics, a chain is grown step-by-step with transition probabilities (TPs), and thus their product is the value of the construction probability; therefore, the entropy is known. Because all exact simulation methods are equivalent, i.e. they lead to the same averages and fluctuations of physical properties, one can treat an MC or MD sample as if its members have rather been generated step-by-step. Thus, each configuration i of the sample can be reconstructed (from nothing) by calculating the TPs with which it could have been constructed. This idea applies also to bulk systems such as fluids or magnets. This approach has led earlier to the “local states” (LS) and the “hypothetical scanning” (HS) methods, which are approximate in nature. A recent development is the hypothetical scanning Monte Carlo (HSMC) (or molecular dynamics, HSMD) method which is based on stochastic TPs where all interactions are taken into account. In this respect HSMC(D) can be viewed as exact and the only approximation involved is due to insufficient MC(MD) sampling for calculating the TPs. The validity of HSMC has been established by applying it first to liquid argon, TIP3P water, self-avoiding walks, and polyglycine models, where the results for F were found to agree with those obtained by other methods. Subsequently, HSMD was applied to mobile loops of the enzymes porcine pancreatic α-amylase and acetylcholineesterase in explicit water, where the difference of F between the bound and free states of the loop was calculated. Currently HSMD is being extended for

  20. Methods for calculating the absolute entropy and free energy of biological systems based on ideas from polymer physics.

    PubMed

    Meirovitch, Hagai

    2010-01-01

    The commonly used simulation techniques, Metropolis Monte Carlo (MC) and molecular dynamics (MD) are of a dynamical type which enables one to sample system configurations i correctly with the Boltzmann probability, P(i)(B), while the value of P(i)(B) is not provided directly; therefore, it is difficult to obtain the absolute entropy, S approximately -ln P(i)(B), and the Helmholtz free energy, F. With a different simulation approach developed in polymer physics, a chain is grown step-by-step with transition probabilities (TPs), and thus their product is the value of the construction probability; therefore, the entropy is known. Because all exact simulation methods are equivalent, i.e. they lead to the same averages and fluctuations of physical properties, one can treat an MC or MD sample as if its members have rather been generated step-by-step. Thus, each configuration i of the sample can be reconstructed (from nothing) by calculating the TPs with which it could have been constructed. This idea applies also to bulk systems such as fluids or magnets. This approach has led earlier to the "local states" (LS) and the "hypothetical scanning" (HS) methods, which are approximate in nature. A recent development is the hypothetical scanning Monte Carlo (HSMC) (or molecular dynamics, HSMD) method which is based on stochastic TPs where all interactions are taken into account. In this respect, HSMC(D) can be viewed as exact and the only approximation involved is due to insufficient MC(MD) sampling for calculating the TPs. The validity of HSMC has been established by applying it first to liquid argon, TIP3P water, self-avoiding walks (SAW), and polyglycine models, where the results for F were found to agree with those obtained by other methods. Subsequently, HSMD was applied to mobile loops of the enzymes porcine pancreatic alpha-amylase and acetylcholinesterase in explicit water, where the difference in F between the bound and free states of the loop was calculated. Currently

  1. The registration system of the coordinate-tracking setup on the drift chambers

    NASA Astrophysics Data System (ADS)

    Zadeba, E. A.; Borisov, A. A.; Fakhrutdinov, R. M.; Kokoulin, R. P.; Kompaniets, K. G.; Kozhin, A. S.; Ovechkin, A. S.; Petrukhin, A. A.; Shutenko, V. V.; Yashin, I. I.

    2016-02-01

    The large-scale coordinate-tracking detector for registration of near-horizontal muon flux generated by ultra-high energy cosmic rays is being developed in MEPhI. Detector is based on the multiwire drift chambers from the neutrino experiment at the IHEP U-70 accelerator. Their key advantages are a large effective area (1.85 m2), good coordinate and angular resolution with a small number of measuring channels. Detector will be operated as a part of the experimental complex NEVOD, in particular, its registration system allows joint operation with Cherenkov water detector (CWD) and coordinate detector DECOR. Coordinate tracking unit on the drift chambers (CTUDC) is mounted on the opposite sides of CWD. It consists of two coordinate planes containing 8 drift chambers and represents a prototype of a full-size setup. Registration system of the CTUDC is based on the E-MISS electronics developed in IHEP, its principle of operation is presented.

  2. Method and apparatus for two-dimensional absolute optical encoding

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2004-01-01

    This invention presents a two-dimensional absolute optical encoder and a method for determining position of an object in accordance with information from the encoder. The encoder of the present invention comprises a scale having a pattern being predetermined to indicate an absolute location on the scale, means for illuminating the scale, means for forming an image of the pattern; and detector means for outputting signals derived from the portion of the image of the pattern which lies within a field of view of the detector means, the field of view defining an image reference coordinate system, and analyzing means, receiving the signals from the detector means, for determining the absolute location of the object. There are two types of scale patterns presented in this invention: grid type and starfield type.

  3. Geographic asymmetries of the Viking auroral distribution: Implications for ionospheric coordinate systems

    SciTech Connect

    Hearn, D.J.; Elphinstone, R.D.; Murphree, J.S.; Cogger, L.L. )

    1993-02-01

    Viking images of the auroral distribution have been used to investigate the relevance of various ionospheric coordinate systems. An important aspect of the large-scale auroral shape is its dependence on the asymmetries of the Earth's internal field. Model predictions of where the aurora occurs, using the equatorial plane's volume current density, agree with observations and imply that the internal field plays a more important role that generally believed. Historically, the belief that the internal field has only small effects seems to stem from the widespread use of the corrected geomagnetic and invariant coordinate systems. These systems involve the mapping of field lines and have advantages in statistical studies and comparisons; less sophisticated systems such as the eccentric dipole coordinate system should be used in individual studies and in studies involving differentiation or integration of some observational parameters. Observations of the auraoral distribution are give to illustrate the universal time, tilt angle, and Kp variability in different coordinate systems and demonstrate that the dominant variability of the aurora is due to internal field asymmetries. A new set of coordinate systems are briefly developed as examples of how to incorporate external field models into studies of auraoral images. It is proposed that the one of these coordinate systems can be used as a test of how well an external field model can match observed auroral distributions. 19 refs., 1 tab.

  4. MAGSAT: Vector magnetometer absolute sensor alignment determination

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1981-01-01

    A procedure is described for accurately determining the absolute alignment of the magnetic axes of a triaxial magnetometer sensor with respect to an external, fixed, reference coordinate system. The method does not require that the magnetic field vector orientation, as generated by a triaxial calibration coil system, be known to better than a few degrees from its true position, and minimizes the number of positions through which a sensor assembly must be rotated to obtain a solution. Computer simulations show that accuracies of better than 0.4 seconds of arc can be achieved under typical test conditions associated with existing magnetic test facilities. The basic approach is similar in nature to that presented by McPherron and Snare (1978) except that only three sensor positions are required and the system of equations to be solved is considerably simplified. Applications of the method to the case of the MAGSAT Vector Magnetometer are presented and the problems encountered discussed.

  5. Modeling and Simulation of Complex Network Attributes on Coordinating Large Multiagent System

    PubMed Central

    Li, Xiang; Liu, Ming

    2014-01-01

    With the expansion of distributed multiagent systems, traditional coordination strategy becomes a severe bottleneck when the system scales up to hundreds of agents. The key challenge is that in typical large multiagent systems, sparsely distributed agents can only communicate directly with very few others and the network is typically modeled as an adaptive complex network. In this paper, we present simulation testbed CoordSim built to model the coordination of network centric multiagent systems. Based on the token-based strategy, the coordination can be built as a communication decision problem that agents make decisions to target communications and pass them over to the capable agents who will potentially benefit the team most. We have theoretically analyzed that the characters of complex network make a significant difference with both random and intelligent coordination strategies, which may contribute to future multiagent algorithm design. PMID:24955399

  6. Resolution enhancement of passive microwave images from geostationary Earth orbit via a projective sphere coordinate system

    NASA Astrophysics Data System (ADS)

    Liu, Dawei; Liu, Kai; Lv, Changchun; Miao, Jungang

    2014-01-01

    A projective sphere coordinate system in a Wiener filter method to improve the performance of resolution enhancement for microwave radiometer data of a geostationary Earth orbit (GEO) satellite is proposed. Because of the impact of Earth's curvature on remote sensing measurement, the footprint of microwave radiometer is varied while scanning, especially in positions far from subsatellite point. The deconvolution technique used in the microwave radiometer measurements from Earth directly is therefore inaccurate because microwave measurement under this situation cannot be considered as a convolution process. To ameliorate the deconvolution method, a projective spherical coordinate system that enforces the footprint of a microwave radiometer invariant on the surface of a spherical coordinate system in measurements is presented in this article. The performance of the projective coordinate system is evaluated by GEO satellite simulated observations. The simulation results show that the proposed method produces better resolution enhancement, especially in the position where the footprint of the microwave radiometer is seriously influenced by Earth curvature.

  7. The quantization of the radii of coordination spheres cubic crystals and cluster systems

    NASA Astrophysics Data System (ADS)

    Melnikov, G.; Emelyanov, S.; Ignatenko, N.; Ignatenko, G.

    2016-02-01

    The article deals with the creation of an algorithm for calculating the radii of coordination spheres and coordination numbers cubic crystal structure and cluster systems in liquids. Solution has important theoretical value since it allows us to calculate the amount of coordination in the interparticle interaction potentials, to predict the processes of growth of the crystal structures and processes of self-organization of particles in the cluster system. One option accounting geometrical and quantum factors is the use of the Fibonacci series to construct a consistent number of focal areas for cubic crystals and cluster formation in the liquid.

  8. Advancing Coordinated Care in Four Provincial Healthcare Systems: Evaluating a Knowledge-Exchange Intervention

    PubMed Central

    Lyons, Renee; Parker, Victoria; Phillips, Stephen

    2011-01-01

    Objectives: This research project created and evaluated a knowledge-exchange intervention designed to facilitate an increase in organizational readiness for implementing coordinated stroke care in four primarily rural provincial healthcare systems. Intervention: Knowledge brokers were linked to networks within, across and outside the provinces to support, inform and disseminate best practice recommendations for coordinated stroke care within the provincial healthcare systems. Findings: The intervention increased awareness and dissemination of recommendations, which stimulated the implementation of coordinated stroke care. Similar knowledge-exchange interventions might work in other healthcare jurisdictions with similar demographics, to promote evidence-informed improvements in healthcare. PMID:22851988

  9. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  10. An analysis of natural convection film boiling from spheres using the spherical coordinate system

    SciTech Connect

    Tso, C.P.; Leong, K.C.; Tan, H.S.

    1995-11-01

    The problem of natural convection film boiling on a sphere was analyzed by solving the momentum and energy equations in spherical coordinates. These solutions were compared to the analytical model of Frederking and Clark based on the Cartesian coordinate system, empirical correlation of Frederking and Clark and recent experimental data of Tso et al. for boiling in various refrigerants and liquid nitrogen. For the average Nusselt number, good agreement with Frederking and Clark`s model was obtained. Results using spherical coordinates yield a limiting value of 2 for the average Nusselt number near a modified Rayleigh number of 1 which could not be extracted from Frederking and Clark`s model.

  11. Intelligent vehicle electrical power supply system with central coordinated protection

    NASA Astrophysics Data System (ADS)

    Yang, Diange; Kong, Weiwei; Li, Bing; Lian, Xiaomin

    2016-05-01

    The current research of vehicle electrical power supply system mainly focuses on electric vehicles (EV) and hybrid electric vehicles (HEV). The vehicle electrical power supply system used in traditional fuel vehicles is rather simple and imperfect; electrical/electronic devices (EEDs) applied in vehicles are usually directly connected with the vehicle's battery. With increasing numbers of EEDs being applied in traditional fuel vehicles, vehicle electrical power supply systems should be optimized and improved so that they can work more safely and more effectively. In this paper, a new vehicle electrical power supply system for traditional fuel vehicles, which accounts for all electrical/electronic devices and complex work conditions, is proposed based on a smart electrical/electronic device (SEED) system. Working as an independent intelligent electrical power supply network, the proposed system is isolated from the electrical control module and communication network, and access to the vehicle system is made through a bus interface. This results in a clean controller power supply with no electromagnetic interference. A new practical battery state of charge (SoC) estimation method is also proposed to achieve more accurate SoC estimation for lead-acid batteries in traditional fuel vehicles so that the intelligent power system can monitor the status of the battery for an over-current state in each power channel. Optimized protection methods are also used to ensure power supply safety. Experiments and tests on a traditional fuel vehicle are performed, and the results reveal that the battery SoC is calculated quickly and sufficiently accurately for battery over-discharge protection. Over-current protection is achieved, and the entire vehicle's power utilization is optimized. For traditional fuel vehicles, the proposed vehicle electrical power supply system is comprehensive and has a unified system architecture, enhancing system reliability and security.

  12. The insulation coordination and surge arrester design for HTS cable system in Icheon substation

    NASA Astrophysics Data System (ADS)

    Lee, Hansang; Yoon, Dong-Hee; Lee, Seung-Ryul; Yang, Byeong-Mo; Jang, Gilsoo

    2013-01-01

    This paper proposes an insulation coordination and surge arrester design for HTS (High-Temperature Superconducting) cable system in Icheon substation in Korea. In the aspect of the economic analysis, since the HTS cable is very expensive, the insulation coordination to prevent the dielectric breakdown caused by the lightning surge should be considered carefully. Also, in the aspect of the power system reliability, since the HTS cable has much more capacity compared than conventional power cables and the ripple effect from the HTS cable failure may lead to the wide area blackout, an intensive study for insulation coordination from lightning surge is one of the most important considerations. In this paper, the insulation coordination for lightning surge is verified using HTS cable and power equipment models and the design of the proper surge arrester is proposed.

  13. Intelligent multi-agent coordination system for advanced manufacturing

    NASA Astrophysics Data System (ADS)

    Maturana, Francisco P.; Balasubramanian, Sivaram; Norrie, Douglas H.

    1997-12-01

    Global competition and rapidly changing customer requirements are forcing major changes in the production styles and configuration of manufacturing organizations. Agent-based systems are showing considerable potential as a new paradigm for agile manufacturing systems. With this approach, centralized and sequential manufacturing planning, scheduling, and control systems may be replaced by distributed intelligent systems to facilitate flexible and rapid response to changing production styles and variations in product requirements. In this paper, the characteristics and components of such a multi-agent architecture for advanced manufacturing are described. This architecture addresses agility in terms of the ability of the manufacturing system to solve manufacturing tasks using virtual enterprise mechanisms while maintaining concurrent information processing and control.

  14. Static analysis of large-scale multibody system using joint coordinates and spatial algebra operator.

    PubMed

    Omar, Mohamed A

    2014-01-01

    Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations. PMID:25045732

  15. Static Analysis of Large-Scale Multibody System Using Joint Coordinates and Spatial Algebra Operator

    PubMed Central

    Omar, Mohamed A.

    2014-01-01

    Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations. PMID:25045732

  16. Coordinator's Training Guide. Research & Development Series No. 119-A. Career Planning Support System.

    ERIC Educational Resources Information Center

    Shaltry, Paul; Kester, Ralph J.

    One of a set of twelve documents describing the Career Planning Support System (CPSS) and its use, this guide is designed to help the CPSS coordinator become familiar with CPSS and his or her role. (The Career Planning Support System is a comprehensive guidance program management system which (1) provides techniques to improve a high school's…

  17. Pursit-evasion game analysis in a line of sight coordinate system

    NASA Technical Reports Server (NTRS)

    Shinar, J.; Davidovitz, A.

    1985-01-01

    The paper proposes to use line of sight coordinates for the analysis of pursuit-evasion games. The advantage of this method for two-target games is shown to be evident. As a demonstrative example the game of two identical cars is formulated and solved in such coordinate systems. A new type of singular surface, overlooked in a previous study of the same problem, is discovered as a consequence of the simplicity of the solution.

  18. ABSOLUTE POLARIMETRY AT RHIC.

    SciTech Connect

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  19. Documentation of program COORDC to generate and coordinate system for 3D corners with or without fillet using body fitted curvilinear coordinates, part 2

    NASA Technical Reports Server (NTRS)

    Kumar, D.

    1980-01-01

    The computer program COORDC generates a body fitted curvilinear coordinate system for corner geometry with or without corner fillets. It is assumed that at any given xi, x remains constant; consequently the only variation is in y and z. It is also assumed that for all xi's in the physical plane the coordinate system in y-z plane is similar. This enables solution of coordinate system for one particular xi = 1 (x for xi = 1 is arbitrarily chosen to be 0.0) and the solution for all other xi plane can be easily specified once the coordinates in the physical plane on the line 1 or = to xi or = to IMAX, eta = 1, zeta = 1 are specified.

  20. Measuring emission coordinates in a pulsar-based relativistic positioning system

    NASA Astrophysics Data System (ADS)

    Bunandar, Darius; Caveny, Scott A.; Matzner, Richard A.

    2011-11-01

    A relativistic deep space positioning system has been proposed using four or more pulsars with stable repetition rates. (Each pulsar emits pulses at a fixed repetition period in its rest frame.) The positioning system uses the fact that an event in spacetime can be fully described by emission coordinates: the proper emission time of each pulse measured at the event. The proper emission time of each pulse from four different pulsars—interpolated as necessary—provides the four spacetime coordinates of the reception event in the emission coordinate system. If more than four pulsars are available, the redundancy can improve the accuracy of the determination and/or resolve degeneracies resulting from special geometrical arrangements of the sources and the event. We introduce a robust numerical approach to measure the emission coordinates of an event in any arbitrary spacetime geometry. Our approach uses a continuous solution of the eikonal equation describing the backward null cone from the event. The pulsar proper time at the instant the null cone intersects the pulsar world line is one of the four required coordinates. The process is complete (modulo degeneracies) when four pulsar world lines have been crossed by the light cone. The numerical method is applied in two different examples: measuring emission coordinates of an event in Minkowski spacetime, using pulses from four pulsars stationary in the spacetime; and measuring emission coordinates of an event in Schwarzschild spacetime, using pulses from four pulsars freely falling toward a static black hole. These numerical simulations are merely exploratory, but with improved resolution and computational resources the method can be applied to more pertinent problems. For instance one could measure the emission coordinates, and therefore the trajectory, of the Earth.

  1. Object-Coordinate-Based Bilateral Control System Using Visual Information

    NASA Astrophysics Data System (ADS)

    Nakajima, Yu; Nozaki, Takahiro; Oyamada, Yuji; Ohnishi, Kouhei

    In the field of teleoperation, visual or tactile information obtained by the operators is restricted (e. g., limited or delayed sight) because of communication constraints. Therefore, it is difficult for the operators to operate the system. In this paper, a bilateral control system using the environmental information about the position and posture of a target as obtained by a camera is proposed. The proposed method reduces the workload of the operators by taking some of their tasks. An experiment is conducted to prove the benefit of the proposed method by using a 1-DOF master robot and a 2-DOF slave robot.

  2. Absolute optical instruments without spherical symmetry

    NASA Astrophysics Data System (ADS)

    Tyc, Tomáš; Dao, H. L.; Danner, Aaron J.

    2015-11-01

    Until now, the known set of absolute optical instruments has been limited to those containing high levels of symmetry. Here, we demonstrate a method of mathematically constructing refractive index profiles that result in asymmetric absolute optical instruments. The method is based on the analogy between geometrical optics and classical mechanics and employs Lagrangians that separate in Cartesian coordinates. In addition, our method can be used to construct the index profiles of most previously known absolute optical instruments, as well as infinitely many different ones.

  3. System for Inter-Agency Coordination in Adult Education.

    ERIC Educational Resources Information Center

    King, Gordon A.; Regan, Timothy F.

    An innovative system to facilitate inter-agency cooperation in 16 federal agencies concerned with adult basic education is provided. The 16 programs chosen for the study were: (1) Work Incentive Program; (2) Concentrated Employment Program; (3) New Careers; (4) The Cuban Refugee Program; (5) Grants for Community Planning, Services and Training for…

  4. Retinal waves coordinate patterned activity throughout the developing visual system

    PubMed Central

    Ackman, James B.; Burbridge, Timothy J.; Crair, Michael C.

    2014-01-01

    Summary The morphologic and functional development of the vertebrate nervous system is initially governed by genetic factors and subsequently refined by neuronal activity. However, fundamental features of the nervous system emerge before sensory experience is possible. Thus, activity-dependent development occurring before the onset of experience must be driven by spontaneous activity, but the origin and nature of activity in vivo remains largely untested. Here we use optical methods to demonstrate in live neonatal mice that waves of spontaneous retinal activity are present and propagate throughout the entire visual system before eye opening. This patterned activity encompassed the visual field, relied on cholinergic neurotransmission, preferentially initiated in the binocular retina, and exhibited spatiotemporal correlations between the two hemispheres. Retinal waves were the primary source of activity in the midbrain and primary visual cortex, but only modulated ongoing activity in secondary visual areas. Thus, spontaneous retinal activity is transmitted through the entire visual system and carries patterned information capable of guiding the activity-dependent development of complex intra- and inter- hemispheric circuits before the onset of vision. PMID:23060192

  5. Voluntary coordination as a strategy of plan implementation for health systems agencies.

    PubMed

    Berry, D E; Candia, G R

    1979-10-01

    Health planning agencies are faced with the difficult mission of guiding change within a large complex social system whose power is dispersed. Initial short- and long-range plans have been established as frameworks, and now the major focus is implementation. Regulation (non-voluntary coordination) and voluntary coordination are the major means of implementation. Voluntary coordination is a significant strategy for consideration by Health Systems Agencies (HSAs). It may interact with regulation as a competitor, substitute, or complement. Because of limited regulatory powers, HSAs are dependent upon voluntary coordination as a major means of influencing behavior. Conflict, a major feature of voluntary coordination, has the potential of being used as a constructive means for dialogue; negotiation and bargaining may become positive approaches to arriving at decisions. Legitimized community authority is the primary source of authority in a strategy dominated by voluntary coordination as contrasted to state or federal mandates in a regulatory strategy. Knowledge of the environment within which the HSA operates will assist HSA staff and board to arrive at rational and realistic decisions. PMID:484757

  6. The Lagrangian coordinate system and what it means for two-dimensional crowd flow models

    NASA Astrophysics Data System (ADS)

    van Wageningen-Kessels, Femke; Leclercq, Ludovic; Daamen, Winnie; Hoogendoorn, Serge P.

    2016-02-01

    A continuum crowd flow model is solved using the Lagrangian coordinate system. The system has proven to give computational advantages over the traditional Eulerian coordinate system for (one-dimensional) road traffic flow. Our extension of the model and simulation method to (two-dimensional) crowd flow paves the way to explore the advantages for crowd flow simulation. Detailed analysis of the advantages is left for future research. However, this paper provides a first exploration and shows that a model and simulation method for two-dimensional crowd flow can be developed using Lagrangian numerical techniques and that it leads to accurate simulation results.

  7. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  8. Motor learning of novel dynamics is not represented in a single global coordinate system: evaluation of mixed coordinate representations and local learning

    PubMed Central

    Franklin, David W.; Flanagan, J. Randall; Wolpert, Daniel M.; Kording, Konrad

    2013-01-01

    Successful motor performance requires the ability to adapt motor commands to task dynamics. A central question in movement neuroscience is how these dynamics are represented. Although it is widely assumed that dynamics (e.g., force fields) are represented in intrinsic, joint-based coordinates (Shadmehr R, Mussa-Ivaldi FA. J Neurosci 14: 3208–3224, 1994), recent evidence has questioned this proposal. Here we reexamine the representation of dynamics in two experiments. By testing generalization following changes in shoulder, elbow, or wrist configurations, the first experiment tested for extrinsic, intrinsic, or object-centered representations. No single coordinate frame accounted for the pattern of generalization. Rather, generalization patterns were better accounted for by a mixture of representations or by models that assumed local learning and graded, decaying generalization. A second experiment, in which we replicated the design of an influential study that had suggested encoding in intrinsic coordinates (Shadmehr and Mussa-Ivaldi 1994), yielded similar results. That is, we could not find evidence that dynamics are represented in a single coordinate system. Taken together, our experiments suggest that internal models do not employ a single coordinate system when generalizing and may well be represented as a mixture of coordinate systems, as a single system with local learning, or both. PMID:24353296

  9. Research on the multi-angle monocular coordinates measuring system for spatial points

    NASA Astrophysics Data System (ADS)

    Zhang, Yihui; Sun, Changku; Wang, Peng; Sun, Pengfei

    2015-08-01

    To improve the accuracy of coordinate measurement, the precise 3D coordinates of spatial points on the surface of the target object are needed. Based on the stereo vision measurement model, an all-around coordinates measuring system with single camera and a two-dimensional turntable is proposed. By controlling the rotation of objects in two different orientations and by the principle of relative motion, the single-CCD sensor model was imaged as a visual multi-CCD sensor model. In other words, the visual CCD sensors at different but relative positions are used to acquire coordinates information of the measured points. Considering the calibration accuracy of those two shafts affecting the accuracy of the entire system, the mathematical calibration model is built, consisting of virtual multi-CCD sensor measuring system based on the non-orthogonal shafting. The shaft and its calibration method are described in detail. The experimental result shows that the system based on the virtual multi-CCD sensor model can achieve the standard deviation of 0.44mm, and thus proves the feasibility of its multi-angle coordinates measurement for spatial points.

  10. A Study of the Coordination of the Higher Adult Education Function Within State Systems.

    ERIC Educational Resources Information Center

    Parker, Robert

    The paper reports the findings of a two-tier data survey involving the chief executive officers of State systems of higher education in determining the extent of their coordination-control of higher adult education. The first general phase of the study indicated that 42 of the 50 systems surveyed had responsibility for higher adult education. In…

  11. 47 CFR 25.272 - General inter-system coordination procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... network control center which will have the responsibility to monitor space-to-Earth transmissions in its system. This would indirectly monitor uplink earth station transmissions in its system and to coordinate.... (c) The transmitting earth station licensee shall provide the operator(s) of the satellites, on...

  12. 47 CFR 25.272 - General inter-system coordination procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... network control center which will have the responsibility to monitor space-to-Earth transmissions in its system. This would indirectly monitor uplink earth station transmissions in its system and to coordinate.... (c) The transmitting earth station licensee shall provide the operator(s) of the satellites, on...

  13. 47 CFR 25.272 - General inter-system coordination procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... network control center which will have the responsibility to monitor space-to-Earth transmissions in its system. This would indirectly monitor uplink earth station transmissions in its system and to coordinate.... (c) The transmitting earth station licensee shall provide the operator(s) of the satellites, on...

  14. AN EVALUATION OF A METHOD FOR IMPROVING SEARCH STRATEGIES IN A COORDINATE SEARCHING SYSTEM.

    ERIC Educational Resources Information Center

    HEWER, DAVID J.

    SEARCH STRATEGIES WHICH CAN BE CONTINUOUSLY MODIFIED WERE DEVELOPED FOR COORDINATE SEARCHING SYSTEMS. USING THE FILES OF THE NASA TECHNOLOGY UTILIZATION PROGRAM AT THE KNOWLEDGE AVAILABILITY SYSTEMS CENTER, UNIVERSITY OF PITTSBURGH, A STUDY WAS CONDUCTED OF THE RETRIEVAL OF RELEVANT DOCUMENTS BY BOTH MANUAL AND MACHINE METHODS FOR FIVE QUESTIONS…

  15. Epigenetic coordination of acute systemic inflammation: potential therapeutic targets

    PubMed Central

    Vachharajani, Vidula; Liu, Tiefu; McCall, Charles E.

    2015-01-01

    Epigenetic reprogramming of thousands of genes directs the course of acute systemic inflammation, which is highly lethal when dysregulated during sepsis. No molecular-based treatments for sepsis are available. A new concept supports that sepsis is an immunometabolic disease and that loss of control of nuclear epigenetic regulator Sirtuin 1 (SIRT-1), a NAD+ sensor directs immune and metabolic pathways during sepsis. SIRT-1, acting as homeostasis checkpoint, controls hyper and hypo inflammatory responses of sepsis at the microvascular interface, which disseminates inflammatory injury to cause multiple organ failure. Modifying SIRT-1 activity, which can prevent or treat established sepsis in mice, may provide a new way treat sepsis by epigenetically restoring immunometabolic homeostasis. PMID:25088223

  16. A practical coordinate unification method for integrated tactile-optical measuring system

    NASA Astrophysics Data System (ADS)

    Li, Feng; Peter Longstaff, Andrew; Fletcher, Simon; Myers, Alan

    2014-04-01

    To meet the requirement of both high speed and high accuracy 3D measurements for dimensional metrology, multi-sensor measuring systems have been developed to measure, analyse and reverse engineer the geometry of objects. This paper presents a new development in coordinate unification called the "centroid of spherical centres" method, which can be used instead of the traditional method which uses three datum-points to perform the geometric transformation and unification of tactile and optical sensors. The benefits of the proposed method are improved accuracy in coordinate unification and the method is used to integrate a coordinate measuring machine (CMM) and optical sensors (structured light scanning system and FaroArm laser line probe). A sphere-plate artefact is developed for data fusion of the multi-sensor system and experimental results validate the accuracy and effectiveness of this method.

  17. Multiple vehicle coordination and cooperative estimation for target tracking with applications to autonomous underwater vehicle systems

    NASA Astrophysics Data System (ADS)

    Triplett, Benjamin

    2008-07-01

    The subjects of Multi-vehicle coordinated control and fin-actuated underwater vehicles are receiving significant attention. Coordinated control is becoming more practical as advances in technology increase the areas of application in which systems of multiple vehicles could accomplish challenging tasks that are difficult or infeasible for a single vehicle to complete. Advances in sensor technology, improvements in wireless communication systems, and increases in microprocessor computation speed, all contribute to the creation of successful coordinated control systems. Coordinated target tracking, in which several pursuit autonomous pursuit vehicles follow and maintain state knowledge of a target vehicle, is the coordinated multiple-vehicle problem that is studied in this dissertation. Results show that multiple vehicles can be used to advantage in the target tracking problem, and that the sharing of target state information, whether data from measurements or estimates, improves the target tracking results. A fin-actuated underwater vehicle (FUV) was created as a hardware test platform for the application and study of both geometric methods in control and multiple-vehicle coordination. Combined with simulation based on geometric control methods, the FUV demonstrates remarkably good agreement between theory and experiment. Simple maneuvers such as forward swimming and turning, as well as more complicated agile maneuvers such as snap-turns are demonstrated by the robot and in simulation. Further, the robot is used with feedback control and radio communication in order to accomplish a number of individual and multi-vehicle tasks, such as radio-control, autonomous trajectory tracking, and coordinated heading control.

  18. Atmospheric pressure loading effects on Global Positioning System coordinate determinations

    NASA Technical Reports Server (NTRS)

    Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.

    1994-01-01

    Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.

  19. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  20. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  1. Conversion of Hanford site well locations to Washington coordinate system of 1983, South Zone 1991 (WCS83S)

    SciTech Connect

    Burnett, R.A.; Tzemos, S.; Dietz, L.A.

    1993-12-01

    Past construction and survey practices have resulted in the use of multiple local coordinate systems for measuring and reporting the horizontal position of wells and other facilities and locations on the Hanford Site. This report describes the development of a coordinate transformation process and algorithm and its application to the conversion of the horizontal coordinates of Hanford site wells from the various local coordinate systems and datums to a single standard coordinate system, the Washington Coordinate system of 1983, South Zone 1991 (WCS83S). The coordinate transformation algorithm, implemented as a computer program called CTRANS, uses standard two-dimensional translation, rotation, and scaling transformation equations and can be applied to any set of horizontal point locations. For each point to be transformed, the coefficients of the transformation equations are calculated locally, using the coordinates of the three nearest registration points (points with known locations in both coordinate systems). The report contains a discussion of efforts to verify and validate both the software and the well location data, a description of the methods used to estimate transformation and registration point accuracy, instructions for using the computer program, and a summary of the Hanford well conversion results for each local coordinate system and datum. Also included are the results of using recent U.S. Army Corps of Engineers survey data to obtain estimated measures of location errors in wells for which the local coordinate data source is undocumented, unverified, and therefore of unknown accuracy.

  2. A worldwide unification of GPS (Global Positioning System) antenna coordinates for high accuracy time transfer.

    NASA Astrophysics Data System (ADS)

    Lewandowski, W.

    In the present state of the art of atomic clocks it is desirable that comparisons of these clocks, located in the time metrology laboratories spread around the world, be at the level of a few nanoseconds of accuracy. At present the sole operational way to provide such performance is through the system of GPS satellites. As GPS is a one-way system this implies that special attention must be given to geometrical errors. In order to achieve nanosecond accuracy, the error due to the ground-antenna coordinates should not exceed 1 ns in the global budget of errors of GPS time transfer. To attain this goal the ground-antenna coordinates must be accurately determined in a common worldwide homogeneous geodetic reference frame with uncertainties of order 30 cm. This paper considers the choice of a global reference frame for accurate GPS time transfer and then reports on a worldwide homogenization of GPS antenna coordinates in the principal timing centres.

  3. Using star tracks to determine the absolute pointing of the Fluorescence Detector telescopes of the Pierre Auger Observatory

    SciTech Connect

    De Donato, Cinzia; Sanchez, Federico; Santander, Marcos; Natl.Tech.U., San Rafael; Camin, Daniel; Garcia, Beatriz; Grassi, Valerio; /Milan U. /INFN, Milan

    2005-05-01

    To accurately reconstruct a shower axis from the Fluorescence Detector data it is essential to establish with high precision the absolute pointing of the telescopes. To d that they calculate the absolute pointing of a telescope using sky background data acquired during regular data taking periods. The method is based on the knowledge of bright star's coordinates that provide a reliable and stable coordinate system. it can be used to check the absolute telescope's pointing and its long-term stability during the whole life of the project, estimated in 20 years. They have analyzed background data taken from January to October 2004 to determine the absolute pointing of the 12 telescopes installed both in Los Leones and Coihueco. The method is based on the determination of the mean-time of the variance signal left by a star traversing a PMT's photocathode which is compared with the mean-time obtained by simulating the track of that star on the same pixel.

  4. Precision absolute positional measurement of laser beams.

    PubMed

    Fitzsimons, Ewan D; Bogenstahl, Johanna; Hough, James; Killow, Christian J; Perreur-Lloyd, Michael; Robertson, David I; Ward, Henry

    2013-04-20

    We describe an instrument which, coupled with a suitable coordinate measuring machine, facilitates the absolute measurement within the machine frame of the propagation direction of a millimeter-scale laser beam to an accuracy of around ±4 μm in position and ±20 μrad in angle. PMID:23669658

  5. Columbia River Coordinated Information System (CIS), 1992-1993 Annual Report.

    SciTech Connect

    Rowe, Mike; Roger, Phillip B.; O'Connor, Dick

    1993-11-01

    The purposes of this report are to: (1) describe the project to date; (2) to document the work and accomplishments of the (CIS) project for Fiscal Year 1993; and (3) to provide a glimpse of future project direction. The concept of a Coordinated Information System (CIS) as an approach to meeting the growing needs for regionally standardized anadromous fish information.

  6. 24 CFR 576.400 - Area-wide systems coordination requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 3 2012-04-01 2012-04-01 false Area-wide systems coordination requirements. 576.400 Section 576.400 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR COMMUNITY PLANNING AND DEVELOPMENT, DEPARTMENT OF HOUSING AND URBAN...

  7. Coordinated Fuel Cell System Programs for Government and Commercial Applications: Are We in a New Era?

    NASA Technical Reports Server (NTRS)

    Warshay, Marvin; Prokopius, Paul

    1996-01-01

    Though the fuel cell was invented in 1839, it was not until the early 1960's that the fuel cell power system was developed and used for a real application, for the NASA Space Mission Gemini. Unfortunately, fuel cell power systems did not, as a result, become in widespread use. Nevertheless, a great deal of progress has been made by both government and industry, culminating in many successful fuel cell power system demonstrations. Initially, each government agency and each private organization went its own way. Later, it became evident that coordination among programs was essential. An overview is presented of the current coordinated efforts by government and industry in fuel cells, with a sufficient historical background. The primary barriers to coordination of programs were institutional and differing application requirements. Initially, in the institutional area, it was the energy crisis and the formation of DOE which fostered close working relationships among government, manufacturers, and users. The authors discuss the fuel cell power system programs (of NASA, DOE, DOT, DOC, EPRI, GRI, industry, and universities), including missions and applications, technology advances, and demonstrations. The discussion covers the new Solar Regenerative Fuel Cell (RFC) program which has space, defense, and commercial terrestrial applications, and which is an excellent example of both program coordination and the Clinton Administration's dual-use application policy.

  8. Coordinating Board, Texas College and University System, 1981 Annual Report [and] Statistical Supplement.

    ERIC Educational Resources Information Center

    Texas Coll. and Univ. System, Austin. Coordinating Board.

    The Coordinating Board of the Texas College and University System's annual report and statistical supplement provide data on a variety of issues. The annual report addresses the following areas: 1982-1983 legislative appropriations; average budgeted faculty salaries for Texas public senior colleges and universities and community junior colleges;…

  9. Coordinated Fuel Cell System Programs for Government and Commercial Applications: Are We in a New Era?

    SciTech Connect

    Warshay, M.; Prokopius, P.

    1996-01-01

    Though the fuel cell was invented in 1839, it was not until the early 1960`s that the fuel cell power system was developed and used for a real application, for the NASA Space Mission Gemini. Unfortunately, fuel cell power systems did not, as a result, become in widespread use. Nevertheless, a great deal of progress has been made by both government and industry, culminating in many successful fuel cell power system demonstrations. Initially, each government agency and each private organization went its own way. Later, it became evident that coordination among programs was essential. An overview is presented of the current coordinated efforts by government and industry in fuel cells, with a sufficient historical background. The primary barriers to coordination of programs were institutional and differing application requirements. Initially, in the institutional area, it was the energy crisis and the formation of DOE which fostered close working relationships among government, manufacturers, and users. The authors discuss the fuel cell power system programs (of NASA, DOE, DOT, DOC, EPRI, GRI, industry, and universities), including missions and applications, technology advances, and demonstrations. The discussion covers the new Solar Regenerative Fuel Cell (RFC) program which has space, defense, and commercial terrestrial applications, and which is an excellent example of both program coordination and the Clinton Administration`s dual-use application policy.

  10. Infant Vocal-Motor Coordination: Precursor to the Gesture-Speech System?

    ERIC Educational Resources Information Center

    Iverson, Jana M.; Fagan, Mary K.

    2004-01-01

    This study was designed to provide a general picture of infant vocal-motor coordination and test predictions generated by Iverson and Thelen's (1999) model of the development of the gesture-speech system. Forty-seven 6- to 9-month-old infants were videotaped with a primary caregiver during rattle and toy play. Results indicated an age-related…

  11. Development of Support System for Setting and Coordination between Protection Relays

    NASA Astrophysics Data System (ADS)

    Kameda, Hideyuki; Uemura, Satoshi; Uchikawa, Yuuki; Nakajima, Takayuki

    The opportunity for distributed generators to be connected to the power system has been increasing since the introduction of electricity deregulation. Moreover, a power system which has a new concept such as a micro-grid or a smart-grid is going to appear. The increase in the uncertainty of power flow and the power system operation under an irregular system configuration is supposed in such new power systems. And the sensitivity of a protection relay may decrease or a protection relay may miscoordinate with other protection relays. Under the above conditions, to prevent the fault expansion is required of the electric power utilities. From the background, the development of a program that can check the relay setting and the coordination between protection relay systems is desired. The development of “Support System for Setting and Coordination between protection relays” called SSSC was initiated in 2006, and it will be completed in 2011. SSSC has the following features ·It enables us to check whether the protection relay is set as operate correctly against all of assumed system faults. ·It enables us to check automatically whether the coordination between the protection relays is proper as prevent the fault extension even if an unexpected condition occurs. ·It enables us to analyze the response of the protection relays in the power system where some apparatus with nonlinear characteristic is installed. This paper describes the prototype of the SSSC based on the dynamic analysis like Y-method. Furthermore, in this paper, the checking method of coordination between protection relays for short circuit fault, and the verification results of the prototype in the 6.6kV model distribution system are described.

  12. A semi-implicit ocean circulation model using a generalized topography-following coordinate system

    SciTech Connect

    Song, Yuhe; Haidvogel, D.

    1994-11-01

    We introduce a new ocean circulation model featuring an improved vertical coordinate representation. This new coordinate is a generalized {sigma}coordinate; however, it is capable of simultaneously maintaining high resolution in the surface layer as well as dealing with steep and/or tall topography. The model equations are the tree-dimensional, free surface, primitive equations with orthogonal curvilinear coordinates in the horizontal and the new general coordinate in the vertical. Vertical mixing is treated implicitly by the generalized Crank-Nicolson method based on a Galerkin finite element formulation. Two alternate parameterizations of surface mixing are incorporated, based respectively on the approaches of Price, Weller, and Pinkel and Mellor and Yamada. Finally, a quadrature formula of Lagrange interpolation is employed to produce a more accurate calculation of pressure and vertical velocity. Three tests are used to demonstrate the accuracy, stability, and applicability of the model: the diurnal cycling of the surface mixed layer, flow around a tall seamount, and a regional simulation of the California current system.

  13. Forward Modeling Method of Gravity and Magnetic Fields and Their Gradient Tensors Based on 3-D Delaunay Discretization in Cartesian and Spherical Coordinate Systems

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Chen, C.; Du, J.; Sun, S.; Liang, Q.

    2015-12-01

    In the study of the inversion of gravity and magnetic data, the discretization of underground space is usually achieved by the use of structured grids. For instance, using the regular block as the module unit to divide model space in Cartesian coordinate system and the tesseroid in spherical coordinate system. Structured grids show clear spatial structures and mathematical properties. However, the block can only provide a rough approximation to the given terrain and using the tesseroid to approximate the terrain even seems impracticable. These shape determining errors cause the reduction of forward modeling precision. Moreover, the precision decreases again while using the tesseroid as no analytical algorithm has been acquired. On the other hand, since most terrain data has a limited resolution, unstructured grids, based on the polyhedron or tetrahedron, could fill the space completely, which allows us to reduce errors in shape determination to the minima. In addition, the analytical algorithms for polyhedron have been proposed. In our study, we use the tetrahedron as the module unit to divide the underground space. Moreover, based on the former researches, we supplement new analytical algorithms for tetrahedron to forward modeling gravity and magnetic fields and their gradient tensors in both Cartesian and spherical coordinate systems. The algorithm is testified by comparing the forward gravity and magnetic data of a block with the data obtained using the existed algorithms. The absolute difference between these two data is under 10e-9 mGal. Our approach is suitable for the inversion of gravity and magnetic data in both Cartesian and spherical coordinate systems.This study is supported by Natural Science Fund of Hubei Province (Grant No.: 2015CFB361) and International Cooperation Project in Science and Technology of China (Grant No.: 2010DFA24580).

  14. Coordinates calibration method in a robotic remanufacturing measurement system based on linear laser scanner

    NASA Astrophysics Data System (ADS)

    Shen, C. D.; Zhu, S.; Li, C.; Liang, Y. Y.

    2009-07-01

    In robotic remanufacturing measurement system, the 3D laser scanner is arranged by the robot and the object scanned is mounted on a turntable. This paper deals with the method of calibrating the relationship between the scanner coordinate and the robot Tool0 and furthermore locating the center axis of the turntable. The data of Tool0 can be directly obtained denoting its relationship with the robot base coordinate. So, the new methods of coordinate's transformation are effectively developed. Moreover some motivated experiments and optimized programs are designed for realizing process stabilization and reliability. This paper detailed explains the basic algorithm theory, practical operation instructions, the experiment data analysis, and etc. Theory deduction and experiments show the new methods are reasonable and efficient.

  15. A space-time tensor formulation for continuum mechanics in general curvilinear, moving, and deforming coordinate systems

    NASA Technical Reports Server (NTRS)

    Avis, L. M.

    1976-01-01

    Tensor methods are used to express the continuum equations of motion in general curvilinear, moving, and deforming coordinate systems. The space-time tensor formulation is applicable to situations in which, for example, the boundaries move and deform. Placing a coordinate surface on such a boundary simplifies the boundary condition treatment. The space-time tensor formulation is also applicable to coordinate systems with coordinate surfaces defined as surfaces of constant pressure, density, temperature, or any other scalar continuum field function. The vanishing of the function gradient components along the coordinate surfaces may simplify the set of governing equations. In numerical integration of the equations of motion, the freedom of motion of the coordinate surfaces provides a potential for enhanced resolution of the continuum field function. An example problem of an incompressible, inviscid fluid with a top free surface is considered, where the surfaces of constant pressure (including the top free surface) are coordinate surfaces.

  16. Experimental study on performance verification tests for coordinate measuring systems with optical distance sensors

    NASA Astrophysics Data System (ADS)

    Carmignato, Simone

    2009-01-01

    Optical sensors are increasingly used for dimensional and geometrical metrology. However, the lack of international standards for testing optical coordinate measuring systems is currently limiting the traceability of measurements and the easy comparison of different optical systems. This paper presents an experimental investigation on artefacts and procedures for testing coordinate measuring systems equipped with optical distance sensors. The work is aimed at contributing to the standardization of testing methods. The VDI/VDE 2617-6.2:2005 guideline, which is probably the most complete document available at the state of the art for testing systems with optical distance sensors, is examined with specific experiments. Results from the experiments are discussed, with particular reference to the tests used for determining the following characteristics: error of indication for size measurement, probing error and structural resolution. Particular attention is given to the use of artefacts alternative to gauge blocks for determining the error of indication for size measurement.

  17. Construction of a tunable multi-enzyme-coordinate expression system for biosynthesis of chiral drug intermediates

    PubMed Central

    Jiang, Wei; Fang, Baishan

    2016-01-01

    Systems that can regulate and coordinate the expression of multiple enzymes for metabolic regulation and synthesis of important drug intermediates are poorly explored. In this work, a strategy for constructing a tunable multi-enzyme-coordinate expression system for biosynthesis of chiral drug intermediates was developed and evaluated by connecting protein-protein expressions, regulating the strength of ribosome binding sites (RBS) and detecting the system capacity for producing chiral amino acid. Results demonstrated that the dual-enzyme system had good enantioselectivity, low cost, high stability, high conversion rate and approximately 100% substrate conversion. This study has paved a new way of exploring metabolic mechanism of functional genes and engineering whole cell-catalysts for synthesis of chiral α-hydroxy acids or chiral amino acids. PMID:27456301

  18. Coordinate Systems, Numerical Objects and Algorithmic Operations of Computational Experiment in Fluid Mechanics

    NASA Astrophysics Data System (ADS)

    Degtyarev, Alexander; Khramushin, Vasily

    2016-02-01

    The paper deals with the computer implementation of direct computational experiments in fluid mechanics, constructed on the basis of the approach developed by the authors. The proposed approach allows the use of explicit numerical scheme, which is an important condition for increasing the effciency of the algorithms developed by numerical procedures with natural parallelism. The paper examines the main objects and operations that let you manage computational experiments and monitor the status of the computation process. Special attention is given to a) realization of tensor representations of numerical schemes for direct simulation; b) realization of representation of large particles of a continuous medium motion in two coordinate systems (global and mobile); c) computing operations in the projections of coordinate systems, direct and inverse transformation in these systems. Particular attention is paid to the use of hardware and software of modern computer systems.

  19. The model and its solution's uniqueness of a portable 3D vision coordinate measuring system

    NASA Astrophysics Data System (ADS)

    Huang, Fengshan; Qian, Huifen

    2009-11-01

    The portable three-dimensional vision coordinate measuring system, which consists of a light pen, a CCD camera and a laptop computer, can be widely applied in most coordinate measuring fields especially on the industrial spots. On the light pen there are at least three point-shaped light sources (LEDs) acting as the measured control characteristic points and a touch trigger probe with a spherical stylus which is used to contact the point to be measured. The most important character of this system is that three light sources and the probe stylus are aligned in one line with known positions. In building and studying this measuring system, how to construct the system's mathematical model is the most key problem called Perspective of Three-Collinear-points Problem, which is a particular case of Perspective of Three-points Problem (P3P). On the basis of P3P and spatial analytical geometry theory, the system's mathematical model is established. What's more, it is verified that Perspective of Three-Collinear-points Problem has a unique solution. And the analytical equations of the measured point's coordinates are derived by using the system's mathematical model and the restrict condition that three light sources and the probe stylus are aligned in one line. Finally, the effectiveness of the mathematical model is confirmed by experiments.

  20. Ambulatory estimation of knee-joint kinematics in anatomical coordinate system using accelerometers and magnetometers.

    PubMed

    Kun, Liu; Inoue, Yoshio; Shibata, Kyoko; Enguo, Cao

    2011-02-01

    Knee-joint kinematics analysis using an optimal sensor set and a reliable algorithm would be useful in the gait analysis. An original approach for ambulatory estimation of knee-joint angles in anatomical coordinate system is presented, which is composed of a physical-sensor-difference-based algorithm and virtual-sensor-difference-based algorithm. To test the approach, a wearable monitoring system composed of accelerometers and magnetometers was developed and evaluated on lower limb. The flexion/extension (f/e), abduction/adduction (a/a), and inversion/extension (i/e) rotation angles of the knee joint in the anatomical joint coordinate system were estimated. In this method, since there is no integration of angular acceleration or angular velocity, the result is not distorted by offset and drift. The three knee-joint angles within the anatomical coordinate system are independent of the orders, which must be considered when Euler angles are used. Besides, since there are no physical sensors implanted in the knee joint based on the virtual-sensor-difference-based algorithm, it is feasible to analyze knee-joint kinematics with less numbers and types of sensors than those mentioned in some others methods. Compared with results from the reference system, the developed wearable sensor system is available to do gait analysis with fewer sensors and high degree of accuracy. PMID:21257363

  1. Identification of Communication and Coordination Issues in the US Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Davison, Hayley J.; Hansman, R. John

    2001-01-01

    Today's air traffic control system is approaching the point of saturation, as evidenced by increasing delays across the National Airspace System (NAS). There exists an opportunity to enhance NAS efficiency and reduce delays by improving strategic communication throughout the ATC system. Although several measures have been taken to improve communication (e.g., Collaborative Decision Making tools), communication issues between ATC facilities remain. It is hypothesized that by identifying the key issues plaguing inter-facility strategic communication, steps can be taken to enhance these communications, and therefore ATC system efficiency. In this report, a series of site visits were performed at Boston and New York ATC facilities as well as at the Air Traffic Control System Command Center. The results from these site visits were used to determine the current communication and coordination structure of Traffic Management Coordinators, who hold a pivotal role in inter-facility communications. Several themes emerged from the study, including: ambiguity of organizational structure in the current ATC system, awkward coordination between ATC facilities, information flow issues, organizational culture issues, and negotiation behaviors used to cope with organizational culture issues.

  2. Heliophysics/Geospace System Observatory: System level science by large-scale space-ground coordination

    NASA Astrophysics Data System (ADS)

    Nishimura, T.; Angelopoulos, V.; Moore, T. E.; Samara, M.

    2015-12-01

    Recent multi-satellite and ground-based network measurements have revealed importance of cross-scale and cross-regional coupling processes for understanding key issues in geospace such as magnetic reconnection, substorms and particle acceleration. In particular, localized and fast plasma transport in a global scale has been recognized to play a fundamental role in regulating evolution of the magnetosphere-ionosphere-thermosphere coupling. Those results call for coordinated measurements multi-missions and facilities in a global scale for understanding global coupling processes in a system level. In fact, the National Research Council recommends to use NASA's existing heliophysics flight missions and NSF's ground-based facilities by forming a network of observing platforms that operate simultaneously to investigate the solar system. This array can be thought of as a single observatory, the Heliophysics/Geospace System Observatory (H/GSO). Motivated by the successful launch of MMS and the healthy status of THEMIS, Van Allen Probes and other missions, we plan a strategic use of existing and upcoming assets in space and ground in the next two years. In the 2015-2016 and 2016-2017 northern winter seasons, MMS will be in the dayside over northern Europe, and THEMIS will be in the nightside over North America. In the 2016 and 2017 southern winter seasons, THEMIS will be in the dayside over the South Pole, and MMS will be in the nightside in the Australian sector. These are favorable configurations for simultaneous day-night coupling measurements of magnetic reconnection and related plasma transport both in space and on the ground, and also provide excellent opportunities for cross-scale coupling, global effects of dayside transients, tail-inner magnetosphere coupling, and other global processes. This presentation will give the current status and plan of the H/GSO and these science targets.

  3. Comparison of Flux-Surface Aligned Curvilinear Coordinate Systems and Neoclassical Magnetic Field Predictions

    NASA Astrophysics Data System (ADS)

    Collart, T. G.; Stacey, W. M.

    2015-11-01

    Several methods are presented for extending the traditional analytic ``circular'' representation of flux-surface aligned curvilinear coordinate systems to more accurately describe equilibrium plasma geometry and magnetic fields in DIII-D. The formalism originally presented by Miller is extended to include different poloidal variations in the upper and lower hemispheres. A coordinate system based on separate Fourier expansions of major radius and vertical position greatly improves accuracy in edge plasma structure representation. Scale factors and basis vectors for a system formed by expanding the circular model minor radius can be represented using linear combinations of Fourier basis functions. A general method for coordinate system orthogonalization is presented and applied to all curvilinear models. A formalism for the magnetic field structure in these curvilinear models is presented, and the resulting magnetic field predictions are compared against calculations performed in a Cartesian system using an experimentally based EFIT prediction for the Grad-Shafranov equilibrium. Supported by: US DOE under DE-FG02-00ER54538.

  4. The School Health Portfolio System: a new tool for planning and evaluating coordinated school health programs.

    PubMed

    Weiler, Robert M; Pigg, R Morgan

    2004-11-01

    The School Health Portfolio System (SHPS), developed originally to evaluate the Florida Coordinated School Health Program Pilot Schools Project, offers a new and innovative system for planning and evaluating a coordinated school health program at the individual school level. The SHPS provides practitioners a detailed but easy-to-use system that enables schools to create new programs or modify existing programs across all eight components of the CSHP model, as well as administrative support critical to sustainability. The System comes packaged as a self-contained, notebook-style manual divided into 15 sections. It includes electronic templates of key documents to guide school teams in creating a customized portfolio, and a list of sample goals and artifacts that confirm achievement of a goal related to the school's coordinated school health program. An evaluation rubric provides a structured method to assess a program portfolio's contents, and the extent to which the contents document achievement of program goals. The rubric produces both a qualitative assessment, such as a narrative summary of program strengths and areas for improvement, and a quantitative assessment, such as a numerical score (0-100), letter grade (A-F), or 5-star system (*-*****). The physical structure, function, and scoring of the rubric depend on the method of assessment. The SHPS enables schools to set goals based on individual school needs, and incorporate CSHP goals into school improvement plans--a critical factor in sustainability and accountability. The System also offers teams the option of coordinating their efforts with CDC's School Health Index as a companion assessment measure. This article outlines the process a team would follow in developing a portfolio, and includes a sample assessment for the area of School Health Education. PMID:15656262

  5. Dynamic modeling and optimal joint torque coordination of advanced robotic systems

    NASA Astrophysics Data System (ADS)

    Kang, Hee-Jun

    The development is documented of an efficient dynamic modeling algorithm and the subsequent optimal joint input load coordination of advanced robotic systems for industrial application. A closed-form dynamic modeling algorithm for the general closed-chain robotic linkage systems is presented. The algorithm is based on the transfer of system dependence from a set of open chain Lagrangian coordinates to any desired system generalized coordinate set of the closed-chain. Three different techniques for evaluation of the kinematic closed chain constraints allow the representation of the dynamic modeling parameters in terms of system generalized coordinates and have no restriction with regard to kinematic redundancy. The total computational requirement of the closed-chain system model is largely dependent on the computation required for the dynamic model of an open kinematic chain. In order to improve computational efficiency, modification of an existing open-chain KIC based dynamic formulation is made by the introduction of the generalized augmented body concept. This algorithm allows a 44 pct. computational saving over the current optimized one (O(N4), 5995 when N = 6). As means of resolving redundancies in advanced robotic systems, local joint torque optimization is applied for effectively using actuator power while avoiding joint torque limits. The stability problem in local joint torque optimization schemes is eliminated by using fictitious dissipating forces which act in the necessary null space. The performance index representing the global torque norm is shown to be satisfactory. In addition, the resulting joint motion trajectory becomes conservative, after a transient stage, for repetitive cyclic end-effector trajectories. The effectiveness of the null space damping method is shown. The modular robot, which is built of well defined structural modules from a finite-size inventory and is controlled by one general computer system, is another class of evolving

  6. The study of dual camera 3D coordinate vision measurement system using a special probe

    NASA Astrophysics Data System (ADS)

    Liu, Shugui; Peng, Kai; Zhang, Xuefei; Zhang, Haifeng; Huang, Fengshan

    2006-11-01

    Due to high precision and convenient operation, the vision coordinate measurement machine with one probe has become the research focus in visual industry. In general such a visual system can be setup conveniently with just one CCD camera and probe. However, the price of the system will surge up too high to accept while the top performance hardware, such as CCD camera, image captured card and etc, have to be applied in the system to obtain the high axis-oriented measurement precision. In this paper, a new dual CCD camera vision coordinate measurement system based on redundancy principle is proposed to achieve high precision by moderate price. Since two CCD cameras are placed with the angle of camera axis like about 90 degrees to build the system, two sub-systems can be built by each CCD camera and the probe. With the help of the probe the inner and outer parameters of camera are first calibrated, the system by use of redundancy technique is set up now. When axis-oriented error is eliminated within the two sub-systems, which is so large and always exits in the single camera system, the high precision measurement is obtained by the system. The result of experiment compared to that from CMM shows that the system proposed is more excellent in stableness and precision with the uncertainty beyond +/-0.1 mm in xyz orient within the distance of 2m using two common CCD cameras.

  7. Static state estimation of multiterminal DC/AC power system in rectangular co-ordinates

    SciTech Connect

    Roy, L.; Sinha, A.K. ); Srivastava, H.N.P. )

    1991-01-01

    This paper describes a simple, efficient and reliable method for estimating the state of an integrated multiterminal HVDC/AC power system in the rectangular coordinate form. A six variable model is used to represent the converter system. The proposed algorithm performs successfully in obtaining the state of an AC system with a DC link or a multiterminal DC network. It is possible to implement it for an on-line state estimation. Simulation results of a 30-busbar system are presented for illustration.

  8. Coordinated fuzzy logic control for series capacitor modules and PSS to enhance stability of power system

    SciTech Connect

    Hiyama, T.; Mishiro, M.; Kihara, H.; Ortmeyer, T.H.

    1995-04-01

    This paper presents an application of a fuzzy logic control scheme for switched of electric power systems. Through the signal conditioning of the measured real power flow at the location of the series capacitor modules, the phase/speed state of the electric power system is obtained to determine the number of capacitors energized at the state. The switching rules are quite simple so as not to give heavy computation to the micro-computer utilized for the real time switching control of the series capacitor modules. A multimachine system is used to demonstrate the efficiency of the proposed switching control scheme, and coordination with power system stabilizers is considered.

  9. Network Performance and Coordination in the Health, Education, Telecommunications System. Satellite Technology Demonstration, Technical Report No. 0422.

    ERIC Educational Resources Information Center

    Braunstein, Jean; Janky, James M.

    This paper describes the network coordination for the Health, Education, Telecommunications (HET) system. Specifically, it discusses HET network performance as a function of a specially-developed coordination system which was designed to link terrestrial equipment to satellite operations centers. Because all procedures and equipment developed for…

  10. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876

  11. Regularization of the circular restricted three-body problem using `similar' coordinate systems

    NASA Astrophysics Data System (ADS)

    Roman, R.; Szücs-Csillik, I.

    2012-04-01

    The regularization of a new problem, namely the three-body problem, using `similar' coordinate system is proposed. For this purpose we use the relation of `similarity', which has been introduced as an equivalence relation in a previous paper (see Roman in Astrophys. Space Sci. doi:10.1007/s10509-011-0747-1, 2011). First we write the Hamiltonian function, the equations of motion in canonical form, and then using a generating function, we obtain the transformed equations of motion. After the coordinates transformations, we introduce the fictitious time, to regularize the equations of motion. Explicit formulas are given for the regularization in the coordinate systems centered in the more massive and the less massive star of the binary system. The `similar' polar angle's definition is introduced, in order to analyze the regularization's geometrical transformation. The effect of Levi-Civita's transformation is described in a geometrical manner. Using the resulted regularized equations, we analyze and compare these canonical equations numerically, for the Earth-Moon binary system.

  12. Patterns of Horse-Rider Coordination during Endurance Race: A Dynamical System Approach

    PubMed Central

    Viry, Sylvain; Sleimen-Malkoun, Rita; Temprado, Jean-Jacques; Frances, Jean-Philippe; Berton, Eric; Laurent, Michel; Nicol, Caroline

    2013-01-01

    In riding, most biomechanical studies have focused on the description of the horse locomotion in unridden condition. In this study, we draw the prospect of how the basic principles established in inter-personal coordination by the theory of Coordination Dynamics may provide a conceptual and methodological framework for understanding the horse-rider coupling. The recent development of mobile technologies allows combined horse and rider recordings during long lasting natural events such as endurance races. Six international horse-rider dyads were thus recorded during a 120 km race by using two tri-axial accelerometers placed on the horses and riders, respectively. The analysis concentrated on their combined vertical displacements. The obtained shapes and angles of Lissajous plots together with values of relative phase between horse and rider displacements at lower reversal point allowed us to characterize four coordination patterns, reflecting the use of two riding techniques per horse's gait (trot and canter). The present study shows that the concepts, methods and tools of self-organizing dynamic system approach offer new directions for understanding horse-rider coordination. The identification of the horse-rider coupling patterns constitutes a firm basis to further study the coalition of multiple constraints that determine their emergence and their dynamics in endurance race. PMID:23940788

  13. Freeform lenses for illumination of specific shapes in ( u, v) coordinate system

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohui; Liu, Dianhong

    2016-02-01

    Lens for rectangular illumination has been designed in ( u, v) coordinate system already. Because of light source in ( u, v) coordinate system can be divided into two identical parts, we have found that it is possible to design lenses for illumination of specific shapes. Specific shapes include triangles, as well as quadrangles which can be divided into two equal-area parts by one of the diagonals. We partition two equal-area parts into grids separately with equivalent luminous flux as well as light source, after that we construct freeform lenses by ray mapping method. Simulation results show that lenses for illumination of specific shapes are obtained with a Lambertian point source and favorable efficiency is over 0.86.

  14. A computer code for three-dimensional incompressible flows using nonorthogonal body-fitted coordinate systems

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.

    1986-01-01

    In this report, a numerical method for solving the equations of motion of three-dimensional incompressible flows in nonorthogonal body-fitted coordinate (BFC) systems has been developed. The equations of motion are transformed to a generalized curvilinear coordinate system from which the transformed equations are discretized using finite difference approximations in the transformed domain. The hybrid scheme is used to approximate the convection terms in the governing equations. Solutions of the finite difference equations are obtained iteratively by using a pressure-velocity correction algorithm (SIMPLE-C). Numerical examples of two- and three-dimensional, laminar and turbulent flow problems are employed to evaluate the accuracy and efficiency of the present computer code. The user's guide and computer program listing of the present code are also included.

  15. A Mobile Care Coordination System for the Management of Complex Chronic Disease.

    PubMed

    Haynes, Sarah; Kim, Katherine K

    2016-01-01

    There is global concern about healthcare cost, quality, and access as the prevalence of complex and chronic diseases, such as heart disease, continues to grow. Care for patients with complex chronic disease involves diverse practitioners and multiple transitions between medical centers, physician practices, clinics, community resources, and patient homes. There are few systems that provide the flexibility to manage these varied and complex interactions. Participatory and user-centered design methodology was applied to the first stage of building a mobile platform for care coordination for complex, chronic heart disease. Key informant interviews with patients, caregivers, clinicians, and care coordinators were conducted. Thematic analysis led to identification of priority user functions including shared care plan, medication management, symptom management, nutrition, physical activity, appointments, personal monitoring devices, and integration of data and workflow. Meaningful stakeholder engagement contributes to a person-centered system that enhances health and efficiency. PMID:27332252

  16. On the periodic coordination of linear stochastic systems. [open-loop and closed-loop feedback optimal control

    NASA Technical Reports Server (NTRS)

    Chong, C.-Y.; Athans, M.

    1975-01-01

    The decentralized stochastic control of a linear dynamic system consisting of several subsystems is considered. A two-level approach is used by the introduction of a coordinator who collects measurements from the local controllers periodically and in return transmits coordinating parameters. Two types of coordination are considered: open-loop feedback and closed loop. The resulting control laws are found to be intuitively attractive.

  17. Use of Exotic Coordinate Systems in the Design of RF Resonators for High-Field MRI

    NASA Astrophysics Data System (ADS)

    Butterworth, Edward

    2008-10-01

    High field human MRI (11.7 Tesla is FDC approved for human research) renders standard RF coil design inadequate because the resonant wavelength in human soft tissue (about 8 cm at 500 MHz) is significantly smaller than the physical size of the human body. I propose optimizing the design of such RF coils using coordinate systems appropriate to human body parts, as has been done with ellipticalootnotetextCrozier et al, Concepts Magn Reson 1997; 9:195-210. and Cassinian ovalootnotetextDe Zanche et al, Magn Reson Med 2005; 53:201-211. cross sections. I have computed analytically the magnetic fields produced by a device of toroidal cross section using a cascade of conformal transformations.ootnotetextButterworth & Gore, J Magn Reson 2005; 175:114-123. Building upon these efforts, I will use the eleven coordinate systems of Moon & Spencer,ootnotetextMoon & Spencer, Field Theory Handbook, Berlin: Springer-Verlag; 1971. along with other possible coordinate systems and conformal transformations, to identify a small number of configurations that have the highest probability of being useful as RF coil designs for ultrahigh-field MRI.

  18. The LES of the channel flow in a non aligned system of coordinates

    NASA Astrophysics Data System (ADS)

    Germano, Massimo; Abbà, Antonella

    2010-11-01

    The plane channel flow continues to be a very important test case for the verification and the validation of LES. In the channel flow test there is a privileged direction, usually one reference axis is oriented along the stream and the size of the computational box is increased in the streamwise direction in order to capture correctly the dominant turbulent structures and to produce a fully developed flow. All that is peculiar of this particular test, and in this paper we will investigate the sensitivity of the channel test to the particular alignment of the coordinate system with the mean flow. In a non aligned system of coordinates there is no privileged direction, there are two components of the forcing term, the mean pressure gradient, and the homogeneities of the Reynolds stresses are destroyed. In our paper we simulate the channel flow in a rotated system of coordinates, and we compare the results with the stream aligned data. We think that this test could evidence the flexibility of different LES codes and LES subgrid models to simulate the turbulent flow and to capture the correct statistical values in non aligned conditions. The first preliminary results are slightly contradictory: the resolved Reynolds stresses seem degraded while the mean flow is better predicted. The dynamic anisotropic subgrid model of Abbà, Cercignani and Valdettaro seems well fitted to represent correctly the large scales in non aligned conditions.

  19. Proprioceptive feedback modulates coordinating information in a system of segmentally distributed microcircuits

    PubMed Central

    Smarandache-Wellmann, Carmen; Weller, Cynthia; Hall, Wendy M.; DiCaprio, Ralph A.

    2014-01-01

    The system of modular neural circuits that controls crustacean swimmerets drives a metachronal sequence of power-stroke (PS, retraction) and return-stroke (RS, protraction) movements that propels the animal forward efficiently. These neural modules are synchronized by an intersegmental coordinating circuit that imposes characteristic phase differences between these modules. Using a semi-intact preparation that left one swimmeret attached to an otherwise isolated central nervous system (CNS) of the crayfish, Pacifastacus leniusculus, we investigated how the rhythmic activity of this system responded to imposed movements. We recorded extracellularly from the PS and RS nerves that innervated the attached limb and from coordinating axons that encode efference copies of the periodic bursts in PS and RS axons. Simultaneously, we recorded from homologous nerves in more anterior and posterior segments. Maintained retractions did not affect cycle period but promptly weakened PS bursts, strengthened RS bursts, and caused corresponding changes in the strength and timing of efference copies in the module's coordinating axons. Changes in these efference copies then caused changes in the phase and duration, but not the strength, of PS bursts in modules controlling neighboring swimmerets. These changes were promptly reversed when the limb was released. Each swimmeret is innervated by two nonspiking stretch receptors (NSSRs) that depolarize when the limb is retracted. Voltage clamp of an NSSR changed the durations and strengths of bursts in PS and RS axons innervating the same limb and caused corresponding changes in the efference copies of this motor output. PMID:25185816

  20. Research on large spatial coordinate automatic measuring system based on multilateral method

    NASA Astrophysics Data System (ADS)

    Miao, Dongjing; Li, Jianshuan; Li, Lianfu; Jiang, Yuanlin; Kang, Yao; He, Mingzhao; Deng, Xiangrui

    2015-10-01

    To measure the spatial coordinate accurately and efficiently in large size range, a manipulator automatic measurement system which based on multilateral method is developed. This system is divided into two parts: The coordinate measurement subsystem is consists of four laser tracers, and the trajectory generation subsystem is composed by a manipulator and a rail. To ensure that there is no laser beam break during the measurement process, an optimization function is constructed by using the vectors between the laser tracers measuring center and the cat's eye reflector measuring center, then an orientation automatically adjust algorithm for the reflector is proposed, with this algorithm, the laser tracers are always been able to track the reflector during the entire measurement process. Finally, the proposed algorithm is validated by taking the calibration of laser tracker for instance: the actual experiment is conducted in 5m × 3m × 3.2m range, the algorithm is used to plan the orientations of the reflector corresponding to the given 24 points automatically. After improving orientations of some minority points with adverse angles, the final results are used to control the manipulator's motion. During the actual movement, there are no beam break occurs. The result shows that the proposed algorithm help the developed system to measure the spatial coordinates over a large range with efficiency.

  1. Proprioceptive feedback modulates coordinating information in a system of segmentally distributed microcircuits.

    PubMed

    Mulloney, Brian; Smarandache-Wellmann, Carmen; Weller, Cynthia; Hall, Wendy M; DiCaprio, Ralph A

    2014-12-01

    The system of modular neural circuits that controls crustacean swimmerets drives a metachronal sequence of power-stroke (PS, retraction) and return-stroke (RS, protraction) movements that propels the animal forward efficiently. These neural modules are synchronized by an intersegmental coordinating circuit that imposes characteristic phase differences between these modules. Using a semi-intact preparation that left one swimmeret attached to an otherwise isolated central nervous system (CNS) of the crayfish, Pacifastacus leniusculus, we investigated how the rhythmic activity of this system responded to imposed movements. We recorded extracellularly from the PS and RS nerves that innervated the attached limb and from coordinating axons that encode efference copies of the periodic bursts in PS and RS axons. Simultaneously, we recorded from homologous nerves in more anterior and posterior segments. Maintained retractions did not affect cycle period but promptly weakened PS bursts, strengthened RS bursts, and caused corresponding changes in the strength and timing of efference copies in the module's coordinating axons. Changes in these efference copies then caused changes in the phase and duration, but not the strength, of PS bursts in modules controlling neighboring swimmerets. These changes were promptly reversed when the limb was released. Each swimmeret is innervated by two nonspiking stretch receptors (NSSRs) that depolarize when the limb is retracted. Voltage clamp of an NSSR changed the durations and strengths of bursts in PS and RS axons innervating the same limb and caused corresponding changes in the efference copies of this motor output. PMID:25185816

  2. Nonlinear joint transmit-receive processing for coordinated multi-cell systems: centralized and decentralized

    NASA Astrophysics Data System (ADS)

    Hu, Zhirui; Feng, Chunyan; Zhang, Tiankui; Niu, Qin; Chen, Yue

    2015-12-01

    This paper proposes a nonlinear joint transmit-receive (tx-rx) processing scheme for downlink-coordinated multi-cell systems with multi-stream multi-antenna users. The nonlinear joint tx-rx processing is formulated as an optimization problem to maximize the minimum signal-to-interference noise ratio (SINR) of streams to guarantee the fairness among streams of each user. Nonlinear Tomlinson-Harashima precoding (THP) is applied at transmitters, and linear receive processing is applied at receivers, to eliminate the inter-user interference and inter-stream interference. We consider multi-cell systems under two coordinated modes: centralized and decentralized, corresponding to systems with high- and low-capacity backhaul links, respectively. For the centralized coordinated mode, transmit and receive processing matrices are jointly determined by the central processing unit based on the global channel state information (CSI) shared by base stations (BSs). For the decentralized coordinated mode, transmit and receive processing matrices are computed independently based on the local CSI at each BS. In correspondence, we propose both a centralized and a decentralized algorithm to solve the optimization problem under the two modes, respectively. Feasibility and computational complexity of the proposed algorithms are also analyzed. Simulation results prove that the proposed nonlinear joint tx-rx processing scheme can achieve user fairness by equalizing the bit error rate (BER) among streams of each user and the proposed scheme outperforms the existing linear joint tx-rx processing. Moreover, consistent with previous research results, performance of the proposed centralized nonlinear joint tx-rx processing scheme is proved to be better than that of the decentralized nonlinear joint tx-rx processing.

  3. Coordinated management of combined sewer overflows by means of environmental decision support systems.

    PubMed

    Murla, Damian; Gutierrez, Oriol; Martinez, Montse; Suñer, David; Malgrat, Pere; Poch, Manel

    2016-04-15

    During heavy rainfall, the capacity of sewer systems and wastewater treatment plants may be surcharged producing uncontrolled wastewater discharges and a depletion of the environmental quality. Therefore there is a need of advanced management tools to tackle with these complex problems. In this paper an environmental decision support system (EDSS), based on the integration of mathematical modeling and knowledge-based systems, has been developed for the coordinated management of urban wastewater systems (UWS) to control and minimize uncontrolled wastewater spills. Effectiveness of the EDSS has been tested in a specially designed virtual UWS, including two sewers systems, two WWTP and one river subjected to typical Mediterranean rain conditions. Results show that sewer systems, retention tanks and wastewater treatment plants improve their performance under wet weather conditions and that EDSS can be very effective tools to improve the management and prevent the system from possible uncontrolled wastewater discharges. PMID:26820929

  4. Molecular mechanisms of multiple toxin–antitoxin systems are coordinated to govern the persister phenotype

    PubMed Central

    Fasani, Rick A.; Savageau, Michael A.

    2013-01-01

    Toxin–antitoxin systems are ubiquitous and have been implicated in persistence, the multidrug tolerance of bacteria, biofilms, and, by extension, most chronic infections. However, their purpose, apparent redundancy, and coordination remain topics of debate. Our model relates molecular mechanisms to population dynamics for a large class of toxin–antitoxin systems and suggests answers to several of the open questions. The generic architecture of toxin–antitoxin systems provides the potential for bistability, and even when the systems do not exhibit bistability alone, they can be coupled to create a strongly bistable, hysteretic switch between normal and toxic states. Stochastic fluctuations can spontaneously switch the system to the toxic state, creating a heterogeneous population of growing and nongrowing cells, or persisters, that exist under normal conditions, rather than as an induced response. Multiple toxin–antitoxin systems can be cooperatively marshaled for greater effect, with the dilution determined by growth rate serving as the coordinating signal. The model predicts and elucidates experimental results that show a characteristic correlation between persister frequency and the number of toxin–antitoxin systems. PMID:23781105

  5. A biologically based neural system coordinates the joints and legs of a tetrapod.

    PubMed

    Hunt, Alexander; Schmidt, Manuela; Fischer, Martin; Quinn, Roger

    2015-10-01

    A biologically inspired neural control system has been developed that coordinates a tetrapod trotting gait in the sagittal plane. The developed neuromechanical system is used to explore properties of connections in inter-leg and intra-leg coordination. The neural controller is built with biologically based neurons and synapses, and connections are based on data from literature where available. It is applied to a planar biomechanical model of a rat with 14 joints, each actuated by a pair of antagonistic Hill muscle models. The controller generates tension in the muscles through activation of simulated motoneurons. The hind leg and inter-leg control networks are based on pathways discovered in cat research tuned to the kinematic motions of a rat. The foreleg network was developed by extrapolating analogous pathways from the hind legs. The formulated intra-leg and inter-leg networks properly coordinate the joints and produce motions similar to those of a walking rat. Changing the strength of a single inter-leg connection is sufficient to account for differences in phase timing in different trotting rats. PMID:26351756

  6. Traffic Management Coordinator Evaluation of the Dynamic Weather Routes Concept and System

    NASA Technical Reports Server (NTRS)

    Gong, Chester

    2014-01-01

    Dynamic Weather Routes (DWR) is a weather-avoidance system for airline dispatchers and FAA traffic managers that continually searches for and advises the user of more efficient routes around convective weather. NASA and American Airlines (AA) have been conducting an operational trial of DWR since July 17, 2012. The objective of this evaluation is to assess DWR from a traffic management coordinator (TMC) perspective, using recently retired TMCs and actual DWR reroutes advisories that were rated acceptable by AA during the operational trial. Results from the evaluation showed that the primary reasons for a TMC to modify or reject airline reroute requests were related to airspace configuration. Approximately 80 percent of the reroutes evaluated required some coordination before implementation. Analysis showed TMCs approved 62 percent of the requested DWR reroutes, resulting in 57 percent of the total requested DWR time savings.

  7. The absolute path command

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  8. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  9. GNSS RTK-networks: The significance and issues to realize a recent reference coordinate system

    NASA Astrophysics Data System (ADS)

    Umnig, Elke; Möller, Gregor; Weber, Robert

    2014-05-01

    The upcoming release of the new global reference frame ITRF2013 will provide high accurate reference station positions and station velocities at the mm- and mm/year level, respectively. ITRF users benefit from this development in various ways. For example, this new frame allows for embedding high accurate GNSS baseline observations to an underlying reference of at least the same accuracy. Another advantage is that the IGS products are fully consistent with this frame and therefore all GNSS based zero-difference positioning results (Precise Point Positioning (PPP)) will be aligned to the ITRF2013. Unfortunately the transistion to a new frame (or just to a new epoch) implies also issues in particular for providers and users of real time positioning services. Thus providers have to perform arrangements, such as the readjustment of the reference station coordinates and the update of the transformation parameters from the homogenous GNSS coordinate frame into the national datum. Finally providers have to inform their clients appropriately about these changes and significant adjustments. Furthermore the aspect of the continental reference frame has to be considered: In Europe the use of the continental reference system/reference frame ETRS89/ETRF2000 is, due to cross-national guidelines, recommend by most national mapping authorities. Subsequently GNSS post-processing applications are degraded by the concurrent use of the reference systems and reference frames, to which terrestrial site coordinates and satellite coordinates are aligned. In this presentation we highlight all significant steps and hurdles which have to be jumped over when introducing a new reference frame from point of view of a typical regional RTK-reference station network provider. This network is located in Austria and parts of the neighbouring countries and consists of about 40 reference stations. Moreover, we discuss the significance of permanently monitoring the stability of the reference network

  10. Phase diagram of the Pr-Mn-O system in composition-temperature-oxygen pressure coordinates

    NASA Astrophysics Data System (ADS)

    Vedmid', L. B.; Yankin, A. M.; Fedorova, O. M.; Kozin, V. M.

    2016-05-01

    The phase relations in the Pr-Mn-O system were studied by the static method at lowered oxygen pressure in combination with thermal analysis and high-temperature X-ray diffraction. The equilibrium oxygen pressure in dissociation of PrMn2O5 and PrMnO3 was measured, and the thermodynamic characteristics of formation of these compounds from elements were calculated. The P- T- x phase diagram of the Pr-Mn-O system was constructed in the "composition-oxygen pressure-temperature" coordinates.

  11. Enhanced Consequence Management, Planning and Support System (ENCOMPASS). Enabling an effective, coordinated response.

    PubMed

    Henry, Kurt; Silva, John

    2002-04-01

    In an incident involving a chemical or biological terrorist attack, a staggering number of situations must be managed--casualties must be triaged and treated; nearby residents must be isolated from the impending hazard; a culprit may be on the loose. No single entity can provide adequate response; experts are needed from many organizations , including fire and police departments, hazardous materials units and medical facilities. How can organizations communicate and coordinate to yield an effective response? This article introduces the Enhanced Consequence Management, Planning and Support System (ENCOMPASS), a software system designed to address this issue. PMID:11963609

  12. Co-Ordinate Transformations for Second Order Systems. Part II: Elementary Structure-Preserving Transformations

    NASA Astrophysics Data System (ADS)

    Garvey, S. D.; Friswell, M. I.; Prells, U.

    2002-12-01

    It has been shown in a previous paper that there is a real-valued transformation from the general N -degree-of-freedom second order system to a second order system characterized by diagonal matrices. An immediate extension of this fact is that for any second order system, there is a set of real-valued transformations (the structure-preserving transformations) which transform this system to a different second order system having identical characteristic behaviour. There are several possible reasons why it may be very useful to achieve a particular structure in the transformed system. It is obvious that a diagonal structure is extremely useful and a method has been devised for determining the diagonalizing transformation from the solution of the usual (complex) eigenvalue-eigenvector problem. This paper begins by outlining the usefulness of some other structures. Then it defines a class of elementary structure-preserving co-ordinate transformations that transform from one N -degree-of-freedom second order system to another. The term elementary is applied because any one of these transformations is the minimum-rank modification of the identity transformation. The changes occurring in the system matrices as a result of the application of one such elementary transformation transpire to be very simple in form, they are low rank, and they can be computed very efficiently. This paper provides the fundamental tools to enable the design of structure-preserving co-ordinate transformations which transform a second order system originally characterized by three general matrices in stages into a mathematically similar second order system characterized by three diagonal matrices. The procedure by which the individual elementary transformations are obtained is still under development and it is not discussed in this paper. However, an illustration is given of a five-degree-of-freedom self-adjoint system being transformed into tridiagonal form.

  13. Development of a vector-tensor system to measure the absolute magnetic flux density and its gradient in magnetically shielded rooms

    SciTech Connect

    Voigt, J.; Knappe-Grüneberg, S.; Gutkelch, D.; Neuber, S.; Schnabel, A.; Burghoff, M.; Haueisen, J.

    2015-05-15

    Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23 pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.

  14. The clinical absolute and relative scoring system-a quantitative scale measuring myasthenia gravis severity and outcome used in the traditional Chinese medicine.

    PubMed

    Liu, Guo-Chao; Gao, Bu-Lang; Yang, Hong-Qi; Qi, Guo-Yan; Liu, Peng

    2014-10-01

    Myasthenia gravis (MG) is a chronic autoimmune disease caused by autoantigen against the nicotine acetylcholine receptor at the neuromuscular junction. With modern treatment facilities, the treatment effect and outcome for MG has been greatly improved with MG and non-MG patients enjoying the same life expectancy. Many classifications of disease distribution and severity have been set up and tested all over the world, mainly in the western world. However, the absolute and relative scoring system for evaluating the severity and treatment effect of MG in China where traditional Chinese medicine (TCM) has been practiced for thousands of years has not been introduced worldwide. The TCM has achieved a great success in the treatment of MG in the country with a huge population. This article serves to introduce this scoring system to the world. PMID:25440379

  15. Station coordinates in the Standard Earth III system derived by using camera data from ISAGEX. [International Satellite Geodesy Experiment

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.; Latimer, J.; Mendes, G.

    1975-01-01

    Simultaneous and individual camera observations of Geos 1, Geos 2, Pageos, and Midas 4 obtained during the International Satellite Geodesy Experiment are used to determine station coordinates. The Smithsonian Astrophysical Observatory Standard Earth III system of coordinates is utilized to tie the geometrical network to a geocentric system and as a reference for calculating satellite orbits. The normal systems for geometrical and dynamical solutions are combined.

  16. The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes

    PubMed Central

    Okkotsu, Yuta; Little, Alexander S.; Schurr, Michael J.

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that causes a multitude of infections. These infections can occur at almost any site in the body and are usually associated with a breach of the innate immune system. One of the prominent sites where P. aeruginosa causes chronic infections is within the lungs of cystic fibrosis patients. P. aeruginosa uses two-component systems that sense environmental changes to differentially express virulence factors that cause both acute and chronic infections. The P. aeruginosa AlgZR two component system is one of its global regulatory systems that affects the organism's fitness in a broad manner. This two-component system is absolutely required for two P. aeruginosa phenotypes: twitching motility and alginate production, indicating its importance in both chronic and acute infections. Additionally, global transcriptome analyses indicate that it regulates the expression of many different genes, including those associated with quorum sensing, type IV pili, type III secretion system, anaerobic metabolism, cyanide and rhamnolipid production. This review examines the complex AlgZR regulatory network, what is known about the structure and function of each protein, and how it relates to the organism's ability to cause infections. PMID:24999454

  17. Use of global positioning system measurements to determine geocentric coordinates and variations in Earth orientation

    NASA Technical Reports Server (NTRS)

    Malla, R. P.; Wu, S.-C.; Lichten, S. M.

    1993-01-01

    Geocentric tracking station coordinates and short-period Earth-orientation variations can be measured with Global Positioning System (GPS) measurements. Unless calibrated, geocentric coordinate errors and changes in Earth orientation can lead to significant deep-space tracking errors. Ground-based GPS estimates of daily and subdaily changes in Earth orientation presently show centimeter-level precision. Comparison between GPS-estimated Earth-rotation variations, which are the differences between Universal Time 1 and Universal Coordinated Time (UT1-UTC), and those calculated from ocean tide models suggests that observed subdaily variations in Earth rotation are dominated by oceanic tidal effects. Preliminary GPS estimates for the geocenter location (from a 3-week experiment) agree with independent satellite laser-ranging estimates to better than 10 cm. Covariance analysis predicts that temporal resolution of GPS estimates for Earth orientation and geocenter improves significantly when data collected from low Earth-orbiting satellites as well as from ground sites are combined. The low Earth GPS tracking data enhance the accuracy and resolution for measuring high-frequency global geodynamical signals over time scales of less than 1 day.

  18. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  19. Magnetosheath Coordinates

    NASA Astrophysics Data System (ADS)

    Schulz, M.; Chen, M. W.

    2010-12-01

    The eventual goal of this work is to develop an approximate analytical representation of solar-wind streamlines in the magnetosheath surrounding a magnetosphere of rather general shape. Previous analytical representations of magnetosheath streamlines and magnetic fields have invoked magnetopause shapes that conform to standard coordinate systems (e.g., spherical, cylindrical, paraboloidal, ellipsoidal), but it seems now that such a restriction on magnetopause shape is unnecessary. In the present work it is assumed only that the magnetopause is a continuously differentiable convex surface axisymmetric about the Sun-Earth line. This geometry permits the construction of an orthogonal coordinate system (mu, eta, chi) such that eta is the cosine of the cone angle between the Sun-Earth line and any conical surafce extending normally outward from the magnetopause, mu is a measure of the perpendicular distance of any magnetosheath point from the magnetopause, and chi is an azimuthal coordinate measured around the Sun-Earth line. It is convenient here to assign a label mu = mu* to the magnetopause itself, so that mu - mu* denotes perpendicular distance from the magnetopause and mu* is an adjustable parameter roughly comparable to the radius of the magnetotail. This choice provides for a rough correspondence between the (mu, eta, chi) coordinates introduced here and the ellipsoidal coordinates used in our previous efforts at magnetosheath modeling.

  20. A new coordinated control strategy for boiler-turbine system of coal-fired power plant

    SciTech Connect

    Li, S.Y.; Liu, H.B.; Cai, W.J.; Soh, Y.C.; Xie, L.H.

    2005-11-01

    This paper presents the new development of the boiler-turbine coordinated control strategy using fuzzy reasoning and autotuning techniques. The boiler-turbine system is a very complex process that is a multivariable, nonlinear, slowly time-varying plant with large settling time and a lot of uncertainties. As there exist strong couplings between the main steam pressure control loop and the power output control loop in the boiler-turbine unit with large time-delay and uncertainties, automatic coordinated control of the two loops is a very challenging problem. This paper presents a new coordinated control strategy (CCS) which is organized into two levels: a basic control level and a high supervision level. Proportional-integral derivative (PID) type controllers are used in the basic level to perform basic control functions while the decoupling between two control loops can be realized in the high level. A special subclass of fuzzy inference systems, called the Gaussian partition with evenly (GPE) spaced midpoints systems, is used to self-tune the main steam pressure PID controller's parameters online based on the error signal and its first difference, aimed at overcoming the uncertainties due to changing fuel calorific value, machine wear, contamination of the boiler heating surfaces and plant modeling errors. For the large variation of operating condition, a supervisory control level has been developed by autotuning technique. The developed CCS has been implemented in a power plant in China, and satisfactory industrial operation results demonstrate that the proposed control strategy has enhanced the adaptability and robustness of the process. Indeed, better control performance and economic benefit have been achieved.

  1. Award ER25750: Coordinated Infrastructure for Fault Tolerance Systems Indiana University Final Report

    SciTech Connect

    Lumsdaine, Andrew

    2013-03-08

    The main purpose of the Coordinated Infrastructure for Fault Tolerance in Systems initiative has been to conduct research with a goal of providing end-to-end fault tolerance on a systemwide basis for applications and other system software. While fault tolerance has been an integral part of most high-performance computing (HPC) system software developed over the past decade, it has been treated mostly as a collection of isolated stovepipes. Visibility and response to faults has typically been limited to the particular hardware and software subsystems in which they are initially observed. Little fault information is shared across subsystems, allowing little flexibility or control on a system-wide basis, making it practically impossible to provide cohesive end-to-end fault tolerance in support of scientific applications. As an example, consider faults such as communication link failures that can be seen by a network library but are not directly visible to the job scheduler, or consider faults related to node failures that can be detected by system monitoring software but are not inherently visible to the resource manager. If information about such faults could be shared by the network libraries or monitoring software, then other system software, such as a resource manager or job scheduler, could ensure that failed nodes or failed network links were excluded from further job allocations and that further diagnosis could be performed. As a founding member and one of the lead developers of the Open MPI project, our efforts over the course of this project have been focused on making Open MPI more robust to failures by supporting various fault tolerance techniques, and using fault information exchange and coordination between MPI and the HPC system software stack from the application, numeric libraries, and programming language runtime to other common system components such as jobs schedulers, resource managers, and monitoring tools.

  2. THE MC AND A COUNCIL AT SSC RF - IPPE AS A COORDINATING BODY FOR SYSTEM SUSTAINABILITY.

    SciTech Connect

    FISHBONE,L.VALENTE,J.HANLEY,T.HIRSCHI,E.J.RUSS,P.SCHERER-KATZ,C.

    2004-07-18

    The State Scientific Center of the Russian Federation--Institute of Physics and Power Engineering's (SSC RF-IPPE) practice of nuclear material control and accounting (MC&A) has undergone significant changes during the period of cooperation with U.S. national laboratories from 1995 to the present. These changes corresponded with general changes of the Russian system of state control and accounting of nuclear materials resulting from the new Concept of the System for State Regulating and Control of Nuclear Materials (1996) and further regulatory documents, which were developed and implemented to take into account international experience in the MC&A [1]. During the upgrades phase of Russian-U.S. cooperation, an MC&A laboratory was specially created within the SSC RF IPPE for the purpose of guiding the creation of the upgraded MC&A system, coordinating the activities of all units involved in the creation of this system, and implementing a unified technical policy during the transition period. After five years of operation of the MC&A laboratory and the implementation of new components for the upgraded MC&A system, it was decided that a greater degree of attention must be paid to the MC&A system's operation in addition to the coordination activities carried out by the MC&A laboratory. To meet this need, an organization for operation of the nuclear material (NM) control and accounting system was created as part of the Division of NM Transportation and Storage. It was also recognized that a new mechanism was required for effective coordination of MC&A activities in IPPE, including the implementation of a unified MC&A policy in methodological, technical and practical areas. This mechanism should allow the IPPE management to gain an objective evaluation of the MC&A system status and provide leading specialists with objective recommendations on maintenance of MC&A system and on basic directions for further improvements. Preliminary discussions indicated that such a

  3. The Evaluation of SEPAS National Project Based on Electronic Health Record System (EHRS) Coordinates in Iran

    PubMed Central

    Asadi, Farkhondeh; Moghaddasi, Hamid; Rabiei, Reza; Rahimi, Forough; Mirshekarlou, Soheila Jahangiri

    2015-01-01

    Background: Electronic Health Records (EHRs) are secure private lifetime records that can be shared by using interoperability standards between different organizations and units. These records are created by the productive system that is called EHR system. Implementing EHR systems has a number of advantages such as facilitating access to medical records, supporting patient care, and improving the quality of care and health care decisions. The project of electronic health record system in Iran, which is the goal of this study, is called SEPAS. With respect to the importance of EHR and EHR systems the researchers investigated the project from two perspectives: determining the coordinates of the project and how it evolved, and incorporating the coordinates of EHR system in this project. Methods: In this study two evaluation tools, a checklist and a questionnaire, were developed based on texts and reliable documentation. The questionnaire and the checklist were validated using content validity by receiving the experts’ comments and the questionnaire’s reliability was estimated through Test-retest(r =87%). Data were collected through study, observation, and interviews with experts and specialists of SEPAS project. Results: This research showed that SEPAS project, like any other project, could be evaluated. It has some aims; steps, operational phases and certain start and end time, but all the resources and required facilities for the project have not been considered. Therefore it could not satisfy its specified objective and the useful and unique changes which are the other characteristics of any project have not been achieved. In addition, the findings of EHR system coordinates can be determined in 4 categories as Standards and rules, Telecommunication-Communication facilities, Computer equipment and facilities and Stakeholders. Conclusions: The findings indicated that SEPAS has the ability to use all standards of medical terminology and health classification

  4. Absolute surface reconstruction by slope metrology and photogrammetry

    NASA Astrophysics Data System (ADS)

    Dong, Yue

    Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.

  5. Orientation of orthogonal coordinate systems used for registration of cephalometric landmarks.

    PubMed

    McWilliam, J S

    1982-04-01

    Accurate orientation of orthogonal coordinate systems facilitates repeated registration of cephalometric landmarks, addition of new data at a later date and the evaluation of superimposional methods in longitudinal analysis. The precision of a template designed to mark radiographs with four fiducial points was examined. It was found that the envelopes of error surrounding each point were circular, of similar magnitude and closely approached the previously established standard error of the measuring instrument employed. It was concluded that for most practical purposes the precision offered by the template was well matched to that of the coordinatograph used for registering cephalometric data and to the ability of the operator to align the instrument. PMID:6951256

  6. Review and Evaluation of Hand-Arm Coordinate Systems for Measuring Vibration Exposure, Biodynamic Responses, and Hand Forces.

    PubMed

    Dong, Ren G; Sinsel, Erik W; Welcome, Daniel E; Warren, Christopher; Xu, Xueyan S; McDowell, Thomas W; Wu, John Z

    2015-09-01

    The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC) system and an anatomically based biodynamic (BD) system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study. PMID:26929824

  7. Review and Evaluation of Hand–Arm Coordinate Systems for Measuring Vibration Exposure, Biodynamic Responses, and Hand Forces

    PubMed Central

    Dong, Ren G.; Sinsel, Erik W.; Welcome, Daniel E.; Warren, Christopher; Xu, Xueyan S.; McDowell, Thomas W.; Wu, John Z.

    2015-01-01

    The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC) system and an anatomically based biodynamic (BD) system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study. PMID:26929824

  8. Improving Ground Penetrating Radar Imaging in High Loss Environments by Coordinated System Development, Data Processing, Numerical Modeling, & Visualization

    SciTech Connect

    Wright, David L.

    2004-12-01

    Improving Ground Penetrating Radar Imaging in High Loss Environments by Coordinated System Development, Data Processing, Numerical Modeling, and Visualization Methods with Applications to Site Characterization EMSP Project 86992 Progress Report as of 9/2004.

  9. The olfactory sensory system develops from coordinated movements within the neural plate

    PubMed Central

    Torres-Paz, Jorge

    2014-01-01

    Background The peripheral olfactory sensory system arises from morphologically identifiable structures called placodes. Placodes are relatively late developing structures, evident only well after the initiation of somitogenesis. Placodes are generally described as being induced from the ectoderm suggesting that their development is separate from the coordinated cell movements generating the central nervous system. Results With the advent of modern techniques it is possible to follow the development of the neurectoderm giving rise to the anterior neural tube, including the olfactory placodes. The cell movements giving rise to the optic cup are coordinated with those generating the olfactory placodes and adjacent telencephalon. The formation of the basal lamina separating the placode from the neural tube is coincident with the anterior migration of cranial neural crest. Conclusions Olfactory placodes are transient morphological structures arising from a continuous sheet of neurectoderm that gives rise to the peripheral and central nervous system. This field of cells is specified at the end of gastrulation and not secondarily induced from ectoderm. The separation of olfactory placodes and telencephalon occurs through complex cell movements within the developing neural plate similar to that observed for the developing optic cup. PMID:25255735

  10. Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in Bacillus subtilis

    PubMed Central

    Murray, Heath; Koh, Alan

    2014-01-01

    In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes. PMID:25340815

  11. Standard conforming involute gear metrology using an articulated arm coordinate measuring system

    NASA Astrophysics Data System (ADS)

    Härtig, Frank; Lin, Hu; Kniel, Karin; Shi, Zhaoyao

    2012-10-01

    Standard conforming involute gear measurements were taken by a manually operating articulated arm system and the respective task-specific measurement uncertainties were estimated. User-friendly templates were developed to provide almost unambiguous and repeatable measurement results. They allow the metrologist to easily detect and gather the single measurement points according to existing guidelines and standards commonly used in gear metrology. The research activities were carried out at the Physikalisch-Technische Bundesanstalt (PTB), Germany in the Department of Coordinate Metrology. Measurements were taken on a robust and highly accurate large gear measurement standard of PTB, in the following called the gear standard. This gear standard materializes a left-hand and a right-hand gear as well as a spur gear. The 1 m outside diameter of the gear standard is similar to the gears used in wind power plants. A commercial articulated arm coordinate measuring system was used for the measurements. A high temperature stability of ±0.2 °C was provided to minimize thermal influences. The results of profile and helix measurements will be presented. This worldwide first investigation, on the basis of a calibrated involute gear standard, gives users of the articulating arm system quantitative information on a task-specific performance of a representative gear measurement.

  12. Columbia River Coordinated Information System (CIS); Information Needs, 1992 Technical Report.

    SciTech Connect

    Petrosky, Charlie; Kinney, William J.; Rowe, Mike

    1993-05-01

    Successful application of adaptive management to rebuilding the Columbia Basin`s anadromous fish resources requires that available information and experience be organized and shared between numerous organizations and individuals. Much of this knowledge exists only in unpublished form in agency and individual files. Even that information which is published in the form of technical and contract reports receives only limited distribution and is often out of print and unavailable after a few years. Only a small fraction of the basin`s collective knowledge is captured in permanent and readily available databases and recognized journals. State, tribal, and federal fishery managers have recognize these information management problems and have committed to a program, the Coordinated Information System Project, to capture and share more easily the core data and other information upon which management decisions are based. That project is now completing the process of scoping and identification of information needs. Construction of prototype systems will begin in 1992. This report is one in a series of seven describing the results of the Coordinated Information on System scoping and needs identification phase.

  13. The AFGL absolute gravity program

    NASA Technical Reports Server (NTRS)

    Hammond, J. A.; Iliff, R. L.

    1978-01-01

    A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.

  14. A comparison of finite difference methods for solving Laplace's equation on curvilinear coordinate systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mccoy, M. J.

    1980-01-01

    Various finite difference techniques used to solve Laplace's equation are compared. Curvilinear coordinate systems are used on two dimensional regions with irregular boundaries, specifically, regions around circles and airfoils. Truncation errors are analyzed for three different finite difference methods. The false boundary method and two point and three point extrapolation schemes, used when having the Neumann boundary condition are considered and the effects of spacing and nonorthogonality in the coordinate systems are studied.

  15. Relative and Absolute Calibration of a Multihead Camera System with Oblique and Nadir Looking Cameras for a Uas

    NASA Astrophysics Data System (ADS)

    Niemeyer, F.; Schima, R.; Grenzdörffer, G.

    2013-08-01

    Numerous unmanned aerial systems (UAS) are currently flooding the market. For the most diverse applications UAVs are special designed and used. Micro and mini UAS (maximum take-off weight up to 5 kg) are of particular interest, because legal restrictions are still manageable but also the payload capacities are sufficient for many imaging sensors. Currently a camera system with four oblique and one nadir looking cameras is under development at the Chair for Geodesy and Geoinformatics. The so-called "Four Vision" camera system was successfully built and tested in the air. A MD4-1000 UAS from microdrones is used as a carrier system. Light weight industrial cameras are used and controlled by a central computer. For further photogrammetric image processing, each individual camera, as well as all the cameras together have to be calibrated. This paper focuses on the determination of the relative orientation between the cameras with the „Australis" software and will give an overview of the results and experiences of test flights.

  16. Stable reduced-order models of generalized dynamical systems using coordinate-transformed Arnoldi algorithms

    SciTech Connect

    Silveira, L.M.; Kamon, M.; Elfadel, I.; White, J.

    1996-12-31

    Model order reduction based on Krylov subspace iterative methods has recently emerged as a major tool for compressing the number of states in linear models used for simulating very large physical systems (VLSI circuits, electromagnetic interactions). There are currently two main methods for accomplishing such a compression: one is based on the nonsymmetric look-ahead Lanczos algorithm that gives a numerically stable procedure for finding Pade approximations, while the other is based on a less well characterized Arnoldi algorithm. In this paper, we show that for certain classes of generalized state-space systems, the reduced-order models produced by a coordinate-transformed Arnoldi algorithm inherit the stability of the original system. Complete Proofs of our results will be given in the final paper.

  17. Hybrid equations of motion for flexible multibody systems using quasi-coordinates

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.; Stemple, T.

    1993-01-01

    A variety of engineering systems, such as automobiles, aircraft, rotorcraft, robots, spacecraft, etc., can be modeled as flexible multibody systems. The individual flexible bodies are in general characterized by distributed parameters. In most earlier investigations they were approximated by some spatial discretization procedure, such as the classical Rayleigh-Ritz method or the finite element method. This paper presents a mathematical formulation for distributed-parameter multibody systems consisting of a set of hybrid (ordinary and partial) differential equations of motion in terms of quasi-coordinates. Moreover, the equations for the elastic motions include rotatory inertia and shear deformation effects. The hybrid set is cast in state form, thus making it suitable for control design.

  18. Distributed adaptive fuzzy iterative learning control of coordination problems for higher order multi-agent systems

    NASA Astrophysics Data System (ADS)

    Li, Jinsha; Li, Junmin

    2016-07-01

    In this paper, the adaptive fuzzy iterative learning control scheme is proposed for coordination problems of Mth order (M ≥ 2) distributed multi-agent systems. Every follower agent has a higher order integrator with unknown nonlinear dynamics and input disturbance. The dynamics of the leader are a higher order nonlinear systems and only available to a portion of the follower agents. With distributed initial state learning, the unified distributed protocols combined time-domain and iteration-domain adaptive laws guarantee that the follower agents track the leader uniformly on [0, T]. Then, the proposed algorithm extends to achieve the formation control. A numerical example and a multiple robotic system are provided to demonstrate the performance of the proposed approach.

  19. Absolute spectrophotometry of northern compact planetary nebulae

    NASA Astrophysics Data System (ADS)

    Wright, S. A.; Corradi, R. L. M.; Perinotto, M.

    2005-06-01

    We present medium-dispersion spectra and narrowband images of six northern compact planetary nebulae (PNe): BoBn 1, DdDm 1, IC 5117, M 1-5, M 1-71, and NGC 6833. From broad-slit spectra, total absolute fluxes and equivalent widths were measured for all observable emission lines. High signal-to-noise emission line fluxes of Hα, Hβ, [Oiii], [Nii], and HeI may serve as emission line flux standards for northern hemisphere observers. From narrow-slit spectra, we derive systemic radial velocities. For four PNe, available emission line fluxes were measured with sufficient signal-to-noise to probe the physical properties of their electron densities, temperatures, and chemical abundances. BoBn 1 and DdDm 1, both type IV PNe, have an Hβ flux over three sigma away from previous measurements. We report the first abundance measurements of M 1-71. NGC 6833 measured radial velocity and galactic coordinates suggest that it is associated with the outer arm or possibly the galactic halo, and its low abundance ([O/H]=1.3× 10-4) may be indicative of low metallicity within that region.

  20. Multimodal Perception and Multicriterion Control of Nested Systems. 1; Coordination of Postural Control and Vehicular Control

    NASA Technical Reports Server (NTRS)

    Riccio, Gary E.; McDonald, P. Vernon

    1998-01-01

    The purpose of this report is to identify the essential characteristics of goal-directed whole-body motion. The report is organized into three major sections (Sections 2, 3, and 4). Section 2 reviews general themes from ecological psychology and control-systems engineering that are relevant to the perception and control of whole-body motion. These themes provide an organizational framework for analyzing the complex and interrelated phenomena that are the defining characteristics of whole-body motion. Section 3 of this report applies the organization framework from the first section to the problem of perception and control of aircraft motion. This is a familiar problem in control-systems engineering and ecological psychology. Section 4 examines an essential but generally neglected aspect of vehicular control: coordination of postural control and vehicular control. To facilitate presentation of this new idea, postural control and its coordination with vehicular control are analyzed in terms of conceptual categories that are familiar in the analysis of vehicular control.

  1. Columbia River Coordinated Information System (CIS); Data Catalog, 1992 Technical Report.

    SciTech Connect

    O'Connor, Dick; Allen, Stan; Reece, Doug

    1993-05-01

    The Columbia River Coordinated Information system (CIS) Project started in 1989 to address regional data sharing. Coordinated exchange and dissemination of any data must begin with dissemination of information about those data, such as: what is available; where the data are stored; what form they exist in; who to contact for further information or access to these data. In Phase II of this Project (1991), a Data Catalog describing the contents of regional datasets and less formal data collections useful for system monitoring and evaluation projects was built to improve awareness of their existence. Formal datasets are described in a `Dataset Directory,` while collections of data are Used to those that collect such information in the `Data Item Directory.` The Data Catalog will serve regional workers as a useful reference which centralizes the institutional knowledge of many data contacts into a single source. Recommendations for improvement of the Catalog during Phase III of this Project include addressing gaps in coverage, establishing an annual maintenance schedule, and loading the contents into a PC-based electronic database for easier searching and cross-referencing.

  2. Real-time multicamera system for measurement of 3D coordinates by pattern projection

    NASA Astrophysics Data System (ADS)

    Sainov, Ventseslav; Stoykova, Elena; Harizanova, Jana

    2007-06-01

    The report describes a real-time pattern-projection system for measurement of 3D coordinates with simultaneous illumination and recording of four phase-shifted fringe patterns which are projected at four different wavelengths and captured by four synchronized CCD cameras. This technical solution overcomes the main drawback of the temporal phase-shifting profilometry in which the pattern acquisition is made successively in time. The work considers the use of a sinusoidal phase grating as a projection element which is made by analysis of the frequency content of the projected fringes in the Fresnel diffraction zone and by test measurements of relative 3D coordinates that are performed with interferometrically recorded sinusoidal phase gratings on holographic plates. Finally, operation of a four-wavelength profilometric system with four spatially phase-shifted at π/2 sinusoidal phase gratings illuminated with four diode lasers at wavelengths 790 nm, 810 nm, 850 nm and 910 nm is simulated and the systematical error of the profilometric measurement is evaluated.

  3. Dynamics of the Earth's fluid core: implementation of a Clairaut coordinate system

    NASA Astrophysics Data System (ADS)

    Seyed-Mahmoud, B.; Moradi, A.

    2013-12-01

    If the reference state of a rotating and self gravitating fluid body is one of hydrostatic equilibrium then the figure of the body is a spheroid such that a cross sectional area parallel to the equatorial plane of the body is a circle while that parallel to a meridional plane is an ellipse. The effect of the fluid body's flattened (spheroidal) figure is small on the frequencies of the body's short-period (shorter than a few hours in the case of the Earth) normal modes. For the log-period normal modes, however, these effects must be considered. Furthermore, the body's wobble and nutation modes owe their existence to its ellipsoidal figure. In the conventional approach to computing these frequencies, an orthogonal coordinate system is usually considered. It is then necessary to have the knowledge of the derivatives of the material properties of the body, such as the density and Lamé parameters, in order to include the effects of the ellipticity in the dynamical equations. In the available Earth models, however, these derivatives are not well defined. In order to minimize the effects of these derivatives in the treatment of the dynamical problems we use a non-orthogonal (Clairaut) coordinate system. Using this approach, we compute the frequencies and displacement eigenfunctions for some of the inertial modes of a realistic spheroidal model of the Earth's fluid core and compare them to the known results for an Earth model with a homogeneous and incompressible fluid core.

  4. A joint coordinate system proposal for the study of the trapeziometacarpal joint kinematics.

    PubMed

    Cheze, L; Dumas, R; Comtet, J J; Rumelhart, C; Fayet, M

    2009-06-01

    The International Society of Biomechanics (ISB) has recommended a standardisation for the motion reporting of almost all human joints. This study proposes an adaptation for the trapeziometacarpal joint. The definition of the segment coordinate system of both trapezium and first metacarpal is based on functional anatomy. The definition of the joint coordinate system (JCS) is guided by the two degrees of freedom of the joint, i.e. flexion-extension about a trapezium axis and abduction-adduction about a first metacarpal axis. The rotations obtained using three methods are compared on the same data: the fixed axes sequence proposed by Cooney et al., the mobile axes sequence proposed by the ISB and our alternative mobile axes sequence. The rotation amplitudes show a difference of 9 degrees in flexion-extension, 2 degrees in abduction-adduction and 13 degrees in internal-external rotation. This study emphasizes the importance of adapting the JCS to the functional anatomy of each particular joint. PMID:18853290

  5. An alternative definition of the scapular coordinate system for use with RSA.

    PubMed

    Kedgley, Angela E; Dunning, Cynthia E

    2010-05-28

    When performing radiostereometric analysis (RSA), computed tomography scans are often taken to obtain the landmarks used to create anatomical coordinate systems (CSs) for quantifying joint kinematics. Different conventions for defining CSs lead to an inability to compare results among studies. The International Society of Biomechanics (ISB) has proposed a set of CSs; however, the landmarks needed to create the recommended scapular CS require the entire scapula to be scanned, thereby also exposing breast and other tissues to radiation. The main purpose of this work was to investigate an alternate definition of the CS that has repeatably attainable landmarks and axes as close as possible to those recommended by the ISB, while limiting the portion of the scapula requiring scanning. Intra- and inter-investigator variabilities of landmark digitization were quantified in one model of a scapula and one cadaveric specimen. Based on the variability of the digitizations, an alternative CS was defined. The differences between the ISB and alternative CSs were evaluated on 11 cadaveric specimens. Beaded biplanar RSA was performed on the glenohumeral joint model in 15 different configurations and the resulting kinematics were calculated for each set of landmark digitizations using both sets of coordinate systems. While the kinematic angles obtained using the alternative CS were statistically different from those obtained using the ISB standard, these differences were small (on the order of 5 degrees) and therefore considered to be of little clinical significance. In all likelihood, the benefits of decreasing radiation exposure outweigh these differences in angles. PMID:20181341

  6. Designing Agent Utilities for Coordinated, Scalable and Robust Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan

    2005-01-01

    Coordinating the behavior of a large number of agents to achieve a system level goal poses unique design challenges. In particular, problems of scaling (number of agents in the thousands to tens of thousands), observability (agents have limited sensing capabilities), and robustness (the agents are unreliable) make it impossible to simply apply methods developed for small multi-agent systems composed of reliable agents. To address these problems, we present an approach based on deriving agent goals that are aligned with the overall system goal, and can be computed using information readily available to the agents. Then, each agent uses a simple reinforcement learning algorithm to pursue its own goals. Because of the way in which those goals are derived, there is no need to use difficult to scale external mechanisms to force collaboration or coordination among the agents, or to ensure that agents actively attempt to appropriate the tasks of agents that suffered failures. To present these results in a concrete setting, we focus on the problem of finding the sub-set of a set of imperfect devices that results in the best aggregate device. This is a large distributed agent coordination problem where each agent (e.g., device) needs to determine whether to be part of the aggregate device. Our results show that the approach proposed in this work provides improvements of over an order of magnitude over both traditional search methods and traditional multi-agent methods. Furthermore, the results show that even in extreme cases of agent failures (i.e., half the agents failed midway through the simulation) the system's performance degrades gracefully and still outperforms a failure-free and centralized search algorithm. The results also show that the gains increase as the size of the system (e.g., number of agents) increases. This latter result is particularly encouraging and suggests that this method is ideally suited for domains where the number of agents is currently in the

  7. Three-parameter error analysis method based on rotating coordinates in rotating birefringent polarizer system

    SciTech Connect

    Cao, Junjie; Jia, Hongzhi

    2015-11-15

    We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light—incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes—and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental results are consistent and demonstrate the rationality and validity of this method.

  8. Three-parameter error analysis method based on rotating coordinates in rotating birefringent polarizer system.

    PubMed

    Cao, Junjie; Jia, Hongzhi

    2015-11-01

    We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light--incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes--and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental results are consistent and demonstrate the rationality and validity of this method. PMID:26628116

  9. Spectral Theory for Interacting Particle Systems Solvable by Coordinate Bethe Ansatz

    NASA Astrophysics Data System (ADS)

    Borodin, Alexei; Corwin, Ivan; Petrov, Leonid; Sasamoto, Tomohiro

    2015-11-01

    We develop spectral theory for the q-Hahn stochastic particle system introduced recently by Povolotsky. That is, we establish a Plancherel type isomorphism result that implies completeness and biorthogonality statements for the Bethe ansatz eigenfunctions of the system. Owing to a Markov duality with the q-Hahn TASEP (a discrete-time generalization of TASEP with particles' jump distribution being the orthogonality weight for the classical q-Hahn orthogonal polynomials), we write down moment formulas that characterize the fixed time distribution of the q-Hahn TASEP with general initial data. The Bethe ansatz eigenfunctions of the q-Hahn system degenerate into eigenfunctions of other (not necessarily stochastic) interacting particle systems solvable by the coordinate Bethe ansatz. This includes the ASEP, the (asymmetric) six-vertex model, and the Heisenberg XXZ spin chain (all models are on the infinite lattice). In this way, each of the latter systems possesses a spectral theory, too. In particular, biorthogonality of the ASEP eigenfunctions, which follows from the corresponding q-Hahn statement, implies symmetrization identities of Tracy and Widom (for ASEP with either step or step Bernoulli initial configuration) as corollaries. Another degeneration takes the q-Hahn system to the q-Boson particle system (dual to q-TASEP) studied in detail in our previous paper (2013). Thus, at the spectral theory level we unify two discrete-space regularizations of the Kardar-Parisi-Zhang equation/stochastic heat equation, namely, q-TASEP and ASEP.

  10. Coordinating Career Counseling and Occupational Information Systems in the United States.

    ERIC Educational Resources Information Center

    Lester, Juliette N.

    The United States Congress established the National Occupational Information Coordinating Committee (NOICC) and the network of State Occupational Information Coordinating Committees (SOICCs) in the Education Amendments of 1976. NOICC and SOICCs were mandated to foster coordination and communication among producers and users of occupational…

  11. The Planck Constant, the International System of Units, and the 2012 North American Watt Balance Absolute Gravity Comparison

    NASA Astrophysics Data System (ADS)

    Newell, D. B.

    2012-12-01

    As outlined in Resolution 1 of the 24th Meeting of the General Conference on Weights and Measures (CGPM) on the future revision of the International System of Units (SI) [1], the current four SI base units the kilogram, the ampere, the kelvin and the mole, will be redefined in terms of invariants of nature. The new definitions will be based on fixed numerical values of the Planck constant (h), the elementary charge (e), the Boltzmann constant (k), and the Avogadro constant (NA), respectively. While significant progress has been made towards providing the necessary experimental results for the redefinition, some disagreement among the relevant data remain. Among the set of discrepant data towards the redefinition of the SI are the determinations of the Planck constant from the National Institute of Standards and Technology (NIST) watt balance [2] and the recent result from the National Research Council Canada (NRC) watt balance [3], with the discrepancy of roughly 2.5 parts in 107 being significantly outside the reported uncertainties. Of major concern is that the watt balance experiment is seen as a key component of a mise en pratique for the new kilogram definition, once such a redefinition takes place. The basic operational principle of a watt balance relates the Planck constant to mass, length, and time through h = mgvC, where m is the mass of an artifact mass standard, g is the local acceleration of gravity, v is a velocity, and C is a combination of frequencies and scalar constants. With the total uncertainty goal for the watt balance on the order of a few parts in 108, g needs to be determined at the location of the mass standard to parts in 109 such that its uncertainty is negligible in the final watt balance result. NIST and NRC have formed a collaborative effort to reconcile the relevant discrepant data and provide further progress towards preparing and testing a mise en pratique for the new kilogram definition. As an initial step, direct comparisons of

  12. Robust patterning of gene expression based on internal coordinate system of cells.

    PubMed

    Ogawa, Ken-ichiro; Miyake, Yoshihiro

    2015-06-01

    Cell-to-cell communication in multicellular organisms is established through the transmission of various kinds of chemical substances such as proteins. It is well known that gene expression triggered by a chemical substance in individuals has stable spatial patterns despite the individual differences in concentration patterns of the chemical substance. This fact reveals an important property of multicellular organisms called "robustness", which allows the organisms to generate their forms while maintaining proportion. Robustness has been conventionally accounted for by the stability of solutions of dynamical equations that represent a specific interaction network of chemical substances. However, any biological system is composed of autonomous elements. In general, an autonomous element does not merely accept information on the chemical substance from the environment; instead, it accepts the information based on its own criteria for reaction. Therefore, this phenomenon needs to be considered from the viewpoint of cells. Such a viewpoint is expected to allow the consideration of the autonomy of cells in multicellular organisms. This study aims to explain theoretically the robust patterning of gene expression from the viewpoint of cells. For this purpose, we introduced a new operator for transforming a state variable of a chemical substance from an external coordinate system to an internal coordinate system of each cell, which describes the observation of the chemical substance by cells. We then applied this operator to the simplest reaction-diffusion model of the chemical substance to investigate observation effects by cells. Our mathematical analysis of this extended model indicates that the robust patterning of gene expression against individual differences in concentration pattern of the chemical substance can be explained from the viewpoint of cells if there is a regulation field that compensates for the difference between cells seen in the observation results

  13. Analysis of the Throughput of the Cellular Radio-Communication Systems Using Coordinated Data Transmission to Suppress Mutual Unintended Interference

    NASA Astrophysics Data System (ADS)

    Morozov, G. V.; Davydov, A. V.; Mal'tsev, A. A.

    2014-08-01

    We present the results of the comparative analysis of two data-transmission schemes of the fourth-generation cellular communication standard LTE-A, which use the "quasistatic" and "dynamic" coordination at the neighbor base stations. Both schemes are used to suppress mutual unintended co-channel interference resulting from the repeated use of one frequency channel by the neighbor base stations. The general case of the heterogeneous cellular radio-communication system with different station types (macro- and picostations) is considered. In this work, the efficiency of the coordinated-transmission schemes is studied along with the adaptive algorithms for the dataflow planning and control. The use of both coordination schemes is comparatively analyzed. An original algorithm for redistribution of the user connections is proposed for the dynamic scheme and the dependence of the communication-system throughput on the radio-network configuration and the number of base stations, that participate in the coordination is studied.

  14. 3-D solution of flow in an infinite square array of circular tubes by using boundary-fitted coordinate system

    SciTech Connect

    Chen, B.C.J.; Chien, T.H.; Sha, W.T.; Kim, J.H.

    1982-01-01

    Heat transfer and fluid flow over circular tubes have wide applications in the design of heat exchangers and nuclear reactors. However, it is often difficult to accurately calculate the detailed velocity and temperature distributions of the flow because of the complex geometry involved in the analysis, and a lack of an appropriate coordinate system for the analysis. Boundary conditions on the surfaces of the tubes are often interpolated. This interpolation process introduces inaccuracy. To overcome this difficulty, the present study used the technique of the boundary-fitted coordinate system. In this technique, all the physical boundaries are transformed into constant coordinate lines in the transformed coordinates. Therefore, the boundary conditions can be specified on the grid points without interpolation.

  15. A Player and Coordinator: The Versatile Roles of Eosinophils in the Immune System

    PubMed Central

    Long, Hai; Liao, Wei; Wang, Ling; Lu, Qianjin

    2016-01-01

    Summary Eosinophils have traditionally been associated with allergic diseases and parasite infection. Research advances in the recent decades have brought evolutionary changes in our understanding of eosinophil biology and its roles in immunity. It is currently recognized that eosinophils play multiple roles in both innate and adaptive immunity. As effector cells in innate immunity, eosinophils exert a pro-inflammatory and destructive role in the Th2 immune response associated with allergic inflammation or parasite infection. Eosinophils can also be recruited by danger signals released by pathogen infections or tissue injury, inducing host defense against parasitic, fungal, bacterial or viral infection or promoting tissue repair and remodeling. Eosinophils also serve as nonprofessional antigen-presenting cells in response to allergen challenge or helminth infection, and, meanwhile, are known to function as a versatile coordinator that actively regulates or interacts with various immune cells including T lymphocytes and dendritic cells. More roles of eosinophils implicated in immunity have been proposed including in immune homeostasis, allograft rejection, and anti-tumor immunity. Eosinophil interactions with structural cells are also implicated in the mechanisms in allergic inflammation and in Helicobacter pylori gastritis. These multifaceted roles of eosinophils as both players and coordinators in immune system are discussed in this review. PMID:27226792

  16. Pilot/Controller Coordinated Decision Making in the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Bearman, Chris; Miller, Ronald c.; Orasanu, Judith M.

    2011-01-01

    Introduction: NextGen technologies promise to provide considerable benefits in terms of enhancing operations and improving safety. However, there needs to be a thorough human factors evaluation of the way these systems will change the way in which pilot and controllers share information. The likely impact of these new technologies on pilot/controller coordinated decision making is considered in this paper using the "operational, informational and evaluative disconnect" framework. Method: Five participant focus groups were held. Participants were four experts in human factors, between x and x research students and a technical expert. The participant focus group evaluated five key NextGen technologies to identify issues that made different disconnects more or less likely. Results: Issues that were identified were: Decision Making will not necessarily improve because pilots and controllers possess the same information; Having a common information source does not mean pilots and controllers are looking at the same information; High levels of automation may lead to disconnects between the technology and pilots/controllers; Common information sources may become the definitive source for information; Overconfidence in the automation may lead to situations where appropriate breakdowns are not initiated. Discussion: The issues that were identified lead to recommendations that need to be considered in the development of NextGen technologies. The current state of development of these technologies provides a good opportunity to utilize recommendations at an early stage so that NextGen technologies do not lead to difficulties in resolving breakdowns in coordinated decision making.

  17. Absolute dimensions of eclipsing binaries. XXIX. The Am-type systems SW Canis Majoris and HW Canis Majoris

    NASA Astrophysics Data System (ADS)

    Torres, G.; Clausen, J. V.; Bruntt, H.; Claret, A.; Andersen, J.; Nordström, B.; Stefanik, R. P.; Latham, D. W.

    2012-01-01

    Context. Accurate physical properties of eclipsing stars provide important constraints on models of stellar structure and evolution, especially when combined with spectroscopic information on their chemical composition. Empirical calibrations of the data also lead to accurate mass and radius estimates for exoplanet host stars. Finally, accurate data for unusual stellar subtypes, such as Am stars, also help to unravel the cause(s) of their peculiarities. Aims: We aim to determine the masses, radii, effective temperatures, detailed chemical composition and rotational speeds for the Am-type eclipsing binaries SW CMa (A4-5m) and HW CMa (A6m) and compare them with similar normal stars. Methods: Accurate radial velocities from the Digital Speedometers of the Harvard-Smithsonian Center for Astrophysics were combined with previously published uvby photometry to determine precise physical parameters for the four stars. A detailed abundance analysis was performed from high-resolution spectra obtained with the Nordic Optical Telescope (La Palma). Results: We find the masses of the (relatively evolved) stars in SW CMa to be 2.10 and 2.24 M⊙, with radii of 2.50 and 3.01 R⊙, while the (essentially zero-age) stars in HW CMa have masses of 1.72 and 1.78 M⊙, radii of 1.64 and 1.66 R⊙ - all with errors well below 2%. Detailed atmospheric abundances for one or both components were determined for 14 elements in SW CMa ([Fe/H] = +0.49/+0.61 dex) and 16 in HW CMa ([Fe/H] = +0.33/+0.32 dex); both abundance patterns are characteristic of metallic-line stars. Both systems are well fit by current stellar evolution models for assumed bulk abundances of [Fe/H] = +0.05 and +0.23, respectively ([α/Fe] = 0.0), and ages of ~700 Myr and 160 Myr. Based on observations carried out with the Nordic Optical Telescope (NOT) at La Palma, the 50 cm Strömgren Automatic Telescope (SAT) at ESO, La Silla, the 1.5 m Wyeth reflector at the Oak Ridge Observatory, Harvard, Massachusetts, USA, and the 1

  18. 75 FR 42376 - Proposed Information Collection; Comment Request; NTIA/FCC Web-based Frequency Coordination System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ...; NTIA/FCC Web- based Frequency Coordination System AGENCY: National Telecommunications and Information... Telecommunications and Information Administration (NTIA) hosts a Web-based system that collects specific...-primary basis by federal and non-federal users. The Web-based system provides a means for...

  19. GEO objects spatial density and collision probability in the Earth-centered Earth-fixed (ECEF) coordinate system

    NASA Astrophysics Data System (ADS)

    Dongfang, Wang; Baojun, Pang; Weike, Xiao; Keke, Peng

    2016-01-01

    The geostationary (GEO) ring is a valuable orbital region contaminated with an alarming number of space debris. Due to its particular orbital characters, the GEO objects spatial distribution is very susceptible to local longitude regions. Therefore the local longitude distribution of these objects in the Earth-centered Earth-fixed (ECEF) coordinate system is much more stable and useful in practical applications than it is in the J2000 inertial coordinate system. In previous studies of space debris environment models, the spatial density is calculated in the J2000 coordinate system, which makes it impossible to identify the spatial distribution in different local longitude regions. For GEO objects, this may bring potent inaccuracy. In order to describe the GEO objects spatial distribution in different local longitude regions, this paper introduced a new method which can provide the spatial density distribution in the ECEF coordinate system. Based on 2014/12/10 two line element (TLE) data provided by the US Space Surveillance Network, the spatial density of cataloged GEO objects are given in the ECEF coordinate system. Combined with the previous studies of "Cube" collision probability evaluation, the GEO region collision probability in the ECEF coordinate system is also given here. The examination reveals that GEO space debris distribution is not uniform by longitude; it is relatively centered about the geopotential wells. The method given in this paper is also suitable for smaller debris in the GEO region. Currently the longitudinal-dependent analysis is not represented in GEO debris models such as ORDEM or MASTER. Based our method the further version of space debris environment engineering model (SDEEM) developed by China will present a longitudinal independent GEO space debris environment description in the ECEF coordinate system.

  20. Improving HST Pointing & Absolute Astrometry

    NASA Astrophysics Data System (ADS)

    Lallo, Matthew; Nelan, E.; Kimmer, E.; Cox, C.; Casertano, S.

    2007-05-01

    Accurate absolute astrometry is becoming increasingly important in an era of multi-mission archives and virtual observatories. Hubble Space Telescope's (HST's) Guidestar Catalog II (GSC2) has reduced coordinate error to around 0.25 arcsecond, a factor 2 or more compared with GSC1. With this reduced catalog error, special attention must be given to calibrate and maintain the Fine Guidance Sensors (FGSs) and Science Instruments (SIs) alignments in HST to a level well below this in order to ensure that the accuracy of science product's astrometry keywords and target positioning are limited only by the catalog errors. After HST Servicing Mission 4, such calibrations' improvement in "blind" pointing accuracy will allow for more efficient COS acquisitions. Multiple SIs and FGSs each have their own footprints in the spatially shared HST focal plane. It is the small changes over time in primarily the whole-body positions & orientations of these instruments & guiders relative to one another that is addressed by this work. We describe the HST Cycle 15 program CAL/OTA 11021 which, along with future variants of it, determines and maintains positions and orientations of the SIs and FGSs to better than 50 milli- arcseconds and 0.04 to 0.004 degrees of roll, putting errors associated with the alignment sufficiently below GSC2 errors. We present recent alignment results and assess their errors, illustrate trends, and describe where and how the observer sees benefit from these calibrations when using HST.

  1. Regulatory coordination between two major intracellular homeostatic systems: heat shock response and autophagy.

    PubMed

    Dokladny, Karol; Zuhl, Micah Nathaniel; Mandell, Michael; Bhattacharya, Dhruva; Schneider, Suzanne; Deretic, Vojo; Moseley, Pope Lloyd

    2013-05-24

    The eukaryotic cell depends on multitiered homeostatic systems ensuring maintenance of proteostasis, organellar integrity, function and turnover, and overall cellular viability. At the two opposite ends of the homeostatic system spectrum are heat shock response and autophagy. Here, we tested whether there are interactions between these homeostatic systems, one universally operational in all prokaryotic and eukaryotic cells, and the other one (autophagy) is limited to eukaryotes. We found that heat shock response regulates autophagy. The interaction between the two systems was demonstrated by testing the role of HSF-1, the central regulator of heat shock gene expression. Knockdown of HSF-1 increased the LC3 lipidation associated with formation of autophagosomal organelles, whereas depletion of HSF-1 potentiated both starvation- and rapamycin-induced autophagy. HSP70 expression but not expression of its ATPase mutant inhibited starvation or rapamycin-induced autophagy. We also show that exercise induces autophagy in humans. As predicted by our in vitro studies, glutamine supplementation as a conditioning stimulus prior to exercise significantly increased HSP70 protein expression and prevented the expected exercise induction of autophagy. Our data demonstrate for the first time that heat shock response, from the top of its regulatory cascade (HSF-1) down to the execution stages delivered by HSP70, controls autophagy thus connecting and coordinating the two extreme ends of the homeostatic systems in the eukaryotic cell. PMID:23576438

  2. Coordinated ground system for joint science operations for the ExoMars2016 TGO mission.

    NASA Astrophysics Data System (ADS)

    Nazarov, Vladimir; Heather, David; Frew, David; Eismont, Natan; Manaud, Nicolas; Ledkov, Anton; Nazirov, Ravil; Metcalfe, Leo; Cardesin, Alejandro; Konoplev, Veniamin; Korotkov, Fedor; Batanov, Oleg; Brumfitt, Jon; Alvarez, Rub; Martin, Patrick; Melnik, Anton; Tretiakov, Alexey; Villacorta, Antonio

    International collaboration is increasingly important for space science missions, often requiring joint operations activity. Such an approach is extremely important for studies of planets and other bodies of the Solar system that usually require high budget for their realization. In addition, as the development of international payloads for such missions is a well-established practice, the establishment of common ground systems for joint science operations is an important feature. Benefits of such an approach are evident: • More science return • Reduced the cost • More redundancy • Technology exchange But on the other hand, common systems for joint operations pose some specific difficulties, such as: • Different review procedures in the developing organisations • Incompatible documentation structures (“document tree”) • A risk of producing a “multiheaded dragon” (inefficient/duplicated task distributions) • Different base technologies • Language problems This article describes approaches for resolving these problems on the basis of the coordinated system for joint science operations for the ExoMars2016 mission, which is at the design stage now. The architecture of the system, the scenario of distributed but joint data management, as well as some methodological and technological aspects, will be discussed

  3. A virtual ophthalmotrope illustrating oculomotor coordinate systems and retinal projection geometry.

    PubMed

    Schreiber, Kai M; Schor, Clifton M

    2007-01-01

    Eye movements are kinematically complex. Even when only the rotational component is considered, the noncommutativity of 3D rotations makes it hard to develop good intuitive understanding of the geometric properties of eye movements and their influence on monocular and binocular vision. The use of at least three major mathematical systems for describing eye positions adds to these difficulties. Traditionally, ophthalmotropes have been used to visualize oculomotor kinematics. Here, we present a virtual ophthalmotrope that is designed to illustrate Helmholtz, Fick, and rotation vector coordinates, as well as Listing's extended law (L2), which is generalized to account for torsion with free changing vergence. The virtual ophthalmotrope shows the influence of these oculomotor patterns on retinal projection geometry. PMID:17997673

  4. Rossby vortex simulation on a paraboloidal coordinate system using the lattice Boltzmann method.

    PubMed

    Yu, H; Zhao, K

    2001-11-01

    In this paper, we apply our compressible lattice Boltzmann model to a rotating parabolic coordinate system to simulate Rossby vortices emerging in a layer of shallow water flowing zonally in a rotating paraboloidal vessel. By introducing a scaling factor, nonuniform curvilinear mesh can be mapped to a flat uniform mesh and then normal lattice Boltzmann method works. Since the mass per unit area on the two-dimensional (2D) surface varies with the thickness of the water layer, the 2D flow seems to be "compressible" and our compressible model is applied. Simulation solutions meet with the experimental observations qualitatively. Based on this research, quantitative solutions and many natural phenomena simulations in planetary atmospheres, oceans, and magnetized plasma, such as the famous Jovian Giant Red Spot, the Galactic Spiral-vortex, the Gulf Stream, and the Kuroshio Current, etc., can be expected. PMID:11736137

  5. Realization of high capacity transmission in fiber optic communication systems using Absolute Polar Duty Cycle Division Multiplexing (AP-DCDM) technique

    NASA Astrophysics Data System (ADS)

    Malekmohammadi, Amin; Mahdiraji, Ghafour Amouzad; Abas, Ahmad Fauzi; Abdullah, Mohamad Khazani; Mokhtar, Makhfudzah; Rasid, Mohd Fadlee A.

    2009-08-01

    An electrical multiplexing technique, namely Absolute Polar Duty Cycle Division Multiplexing (AP-DCDM) is reported for high-speed optical fiber communication systems. It is demonstrated that 40 Gb/s (4 × 10 Gb/s) AP-DCDM system shows a clear advantage over conventional 40 Gb/s RZ-OOK with 50% duty cycle in terms of dispersion tolerance and spectral efficiency. At 40 Gb/s its tolerance to chromatic dispersion (CD) is 124 ps/nm and 194 ps/nm for the worst and the best user, respectively. These values are higher than that of 40 Gb/s RZ-OOK, which is around 100 ps/nm. The spectral efficiency, receiver sensitivity and OSNR for different number of channels are discussed. Comparison against other modulation formats namely duobinary, Non-Return-to-Zero (NRZ)-OOK and RZ-Differential Quadrature Phase-Shift Keying (RZ-DQPSK) at 40 Gb/s are made. It is shown that AP-DCDM has the best receiver sensitivity (-32 dBm) and better CD tolerance (±200 ps/nm) than NRZ-OOK and RZ-DQPSK. In reference to duobinary, AP-DCDM has better receiver sensitivity but worse dispersion tolerance.

  6. The EcoKI type I restriction-modification system in Escherichia coli affects but is not an absolute barrier for conjugation.

    PubMed

    Roer, Louise; Aarestrup, Frank M; Hasman, Henrik

    2015-01-01

    The rapid evolution of bacteria is crucial to their survival and is caused by exchange, transfer, and uptake of DNA, among other things. Conjugation is one of the main mechanisms by which bacteria share their DNA, and it is thought to be controlled by varied bacterial immune systems. Contradictory results about restriction-modification systems based on phenotypic studies have been presented as reasons for a barrier to conjugation with and other means of uptake of exogenous DNA. In this study, we show that inactivation of the R.EcoKI restriction enzyme in strain Escherichia coli K-12 strain MG1655 increases the conjugational transfer of plasmid pOLA52, which carriers two EcoKI recognition sites. Interestingly, the results were not absolute, and uptake of unmethylated pOLA52 was still observed in the wild-type strain (with an intact hsdR gene) but at a reduction of 85% compared to the uptake of the mutant recipient with a disrupted hsdR gene. This leads to the conclusion that EcoKI restriction-modification affects the uptake of DNA by conjugation but is not a major barrier to plasmid transfer. PMID:25384481

  7. Absolute biphoton meter of the quantum efficiency of photomultipliers

    NASA Astrophysics Data System (ADS)

    Ginzburg, V. M.; Keratishvili, N. G.; Korzhenevich, E. L.; Lunev, G. V.; Sapritskii, V. I.

    1992-07-01

    An biphoton absolute meter of photomultiplier quantum efficiency is presented which is based on spontaneous parametric down-conversion. Calculation and experiment results were obtained which made it possible to choose the parameters of the setup that guarantee a linear dependence of wavelength on the Z coordinate (along the axicon axis). Results of a series of absolute measurements of the quantum efficiency of a specific photomultiplier (FEU-136) are presented.

  8. GIT2 Acts as a Systems-Level Coordinator of Neurometabolic Activity and Pathophysiological Aging.

    PubMed

    Martin, Bronwen; Chadwick, Wayne; Janssens, Jonathan; Premont, Richard T; Schmalzigaug, Robert; Becker, Kevin G; Lehrmann, Elin; Wood, William H; Zhang, Yongqing; Siddiqui, Sana; Park, Sung-Soo; Cong, Wei-Na; Daimon, Caitlin M; Maudsley, Stuart

    2015-01-01

    Aging represents one of the most complicated and highly integrated somatic processes. Healthy aging is suggested to rely upon the coherent regulation of hormonal and neuronal communication between the central nervous system and peripheral tissues. The hypothalamus is one of the main structures in the body responsible for sustaining an efficient interaction between energy balance and neurological activity and therefore likely coordinates multiple systems in the aging process. We previously identified, in hypothalamic and peripheral tissues, the G protein-coupled receptor kinase interacting protein 2 (GIT2) as a stress response and aging regulator. As metabolic status profoundly affects aging trajectories, we investigated the role of GIT2 in regulating metabolic activity. We found that genomic deletion of GIT2 alters hypothalamic transcriptomic signatures related to diabetes and metabolic pathways. Deletion of GIT2 reduced whole animal respiratory exchange ratios away from those related to primary glucose usage for energy homeostasis. GIT2 knockout (GIT2KO) mice demonstrated lower insulin secretion levels, disruption of pancreatic islet beta cell mass, elevated plasma glucose, and insulin resistance. High-dimensionality transcriptomic signatures from islets isolated from GIT2KO mice indicated a disruption of beta cell development. Additionally, GIT2 expression was prematurely elevated in pancreatic and hypothalamic tissues from diabetic-state mice (db/db), compared to age-matched wild type (WT) controls, further supporting the role of GIT2 in metabolic regulation and aging. We also found that the physical interaction of pancreatic GIT2 with the insulin receptor and insulin receptor substrate 2 was diminished in db/db mice compared to WT mice. Therefore, GIT2 appears to exert a multidimensional "keystone" role in regulating the aging process by coordinating somatic responses to energy deficits. PMID:26834700

  9. GIT2 Acts as a Systems-Level Coordinator of Neurometabolic Activity and Pathophysiological Aging

    PubMed Central

    Martin, Bronwen; Chadwick, Wayne; Janssens, Jonathan; Premont, Richard T.; Schmalzigaug, Robert; Becker, Kevin G.; Lehrmann, Elin; Wood, William H.; Zhang, Yongqing; Siddiqui, Sana; Park, Sung-Soo; Cong, Wei-na; Daimon, Caitlin M.; Maudsley, Stuart

    2016-01-01

    Aging represents one of the most complicated and highly integrated somatic processes. Healthy aging is suggested to rely upon the coherent regulation of hormonal and neuronal communication between the central nervous system and peripheral tissues. The hypothalamus is one of the main structures in the body responsible for sustaining an efficient interaction between energy balance and neurological activity and therefore likely coordinates multiple systems in the aging process. We previously identified, in hypothalamic and peripheral tissues, the G protein-coupled receptor kinase interacting protein 2 (GIT2) as a stress response and aging regulator. As metabolic status profoundly affects aging trajectories, we investigated the role of GIT2 in regulating metabolic activity. We found that genomic deletion of GIT2 alters hypothalamic transcriptomic signatures related to diabetes and metabolic pathways. Deletion of GIT2 reduced whole animal respiratory exchange ratios away from those related to primary glucose usage for energy homeostasis. GIT2 knockout (GIT2KO) mice demonstrated lower insulin secretion levels, disruption of pancreatic islet beta cell mass, elevated plasma glucose, and insulin resistance. High-dimensionality transcriptomic signatures from islets isolated from GIT2KO mice indicated a disruption of beta cell development. Additionally, GIT2 expression was prematurely elevated in pancreatic and hypothalamic tissues from diabetic-state mice (db/db), compared to age-matched wild type (WT) controls, further supporting the role of GIT2 in metabolic regulation and aging. We also found that the physical interaction of pancreatic GIT2 with the insulin receptor and insulin receptor substrate 2 was diminished in db/db mice compared to WT mice. Therefore, GIT2 appears to exert a multidimensional “keystone” role in regulating the aging process by coordinating somatic responses to energy deficits. PMID:26834700

  10. Behavior coordination of mobile robotics using supervisory control of fuzzy discrete event systems.

    PubMed

    Jayasiri, Awantha; Mann, George K I; Gosine, Raymond G

    2011-10-01

    In order to incorporate the uncertainty and impreciseness present in real-world event-driven asynchronous systems, fuzzy discrete event systems (DESs) (FDESs) have been proposed as an extension to crisp DESs. In this paper, first, we propose an extension to the supervisory control theory of FDES by redefining fuzzy controllable and uncontrollable events. The proposed supervisor is capable of enabling feasible uncontrollable and controllable events with different possibilities. Then, the extended supervisory control framework of FDES is employed to model and control several navigational tasks of a mobile robot using the behavior-based approach. The robot has limited sensory capabilities, and the navigations have been performed in several unmodeled environments. The reactive and deliberative behaviors of the mobile robotic system are weighted through fuzzy uncontrollable and controllable events, respectively. By employing the proposed supervisory controller, a command-fusion-type behavior coordination is achieved. The observability of fuzzy events is incorporated to represent the sensory imprecision. As a systematic analysis of the system, a fuzzy-state-based controllability measure is introduced. The approach is implemented in both simulation and real time. A performance evaluation is performed to quantitatively estimate the validity of the proposed approach over its counterparts. PMID:21421445

  11. Use of numerically generated body-fitted coordinate systems for solution of the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Mastin, C. W.; Thames, F. C.; Shanks, S. P.

    1975-01-01

    A procedure for numerical solution of the time-dependent, two-dimensional incompressible Navier-Stokes equations that can treat the unsteady laminar flow about bodies of arbitrary shape, such as two-dimensional airfoils, multiple airfoils, and submerged hydrofoils, as naturally as it can deal with the flow about simple bodies. The solution is based on a method of automatic numerical generation of a general curvilinear coordinate system with coordinate lines coincident with all boundaries of a general multiconnected region containing any number of arbitrarily shaped bodies. The curvilinear coordinates are generated as the solution of two elliptical partial differential equations with Dirichlet boundary conditions, one coordinate being specified to be constant on each of the boundaries, and a distribution of the other being specified along the boundaries. The solution compares excellently with the Blasius boundary layer solution for the flow past a semiinfinite flat plate.

  12. Homogenisation in project management for large German research projects in the Earth system sciences: overcoming the institutional coordination bias

    NASA Astrophysics Data System (ADS)

    Rauser, Florian; Vamborg, Freja

    2016-04-01

    The interdisciplinary project on High Definition Clouds and Precipitation for advancing climate prediction HD(CP)2 (hdcp2.eu) is an example for the trend in fundamental research in Europe to increasingly focus on large national and international research programs that require strong scientific coordination. The current system has traditionally been host-based: project coordination activities and funding is placed at the host institute of the central lead PI of the project. This approach is simple and has the advantage of strong collaboration between project coordinator and lead PI, while exhibiting a list of strong, inherent disadvantages that are also mentioned in this session's description: no community best practice development, lack of integration between similar projects, inefficient methodology development and usage, and finally poor career development opportunities for the coordinators. Project coordinators often leave the project before it is finalized, leaving some of the fundamentally important closing processes to the PIs. This systematically prevents the creation of professional science management expertise within academia, which leads to an automatic imbalance that hinders the outcome of large research programs to help future funding decisions. Project coordinators in academia often do not work in a professional project office environment that could distribute activities and use professional tools and methods between different projects. Instead, every new project manager has to focus on methodological work anew (communication infrastructure, meetings, reporting), even though the technological needs of large research projects are similar. This decreases the efficiency of the coordination and leads to funding that is effectively misallocated. We propose to challenge this system by creating a permanent, virtual "Centre for Earth System Science Management CESSMA" (cessma.com), and changing the approach from host- based to centre-based. This should

  13. Correction to Method of Establishing the Absolute Radiometric Accuracy of Remote Sensing Systems While On-orbit Using Characterized Stellar Sources

    NASA Technical Reports Server (NTRS)

    Bowen, Howard S.; Cunningham, Douglas M.

    2007-01-01

    The contents include: 1) Brief history of related events; 2) Overview of original method used to establish absolute radiometric accuracy of remote sensing instruments using stellar sources; and 3) Considerations to improve the stellar calibration approach.

  14. An Extensible Space-Based Coordination Approach for Modeling Complex Patterns in Large Systems

    NASA Astrophysics Data System (ADS)

    Kühn, Eva; Mordinyi, Richard; Schreiber, Christian

    Coordination is frequently associated with shared data spaces employing Linda coordination. But in practice, communication between parallel and distributed processes is carried out with message exchange patterns. What, actually, do shared data spaces contribute beyond these? In this paper we present a formal representation for a definition of shared spaces by introducing an "extensible tuple model", based on existing research on Linda coordination, some Linda extensions, and virtual shared memory. The main enhancements of the extensible tuple model comprise: means for structuring of spaces, Internet- compatible addressing of resources, more powerful coordination capabilities, a clear separation of user data and coordination information, support of symmetric peer application architectures, and extensibility through programmable aspects. The advantages of the extensible tuple model (XTM) are that it allows for a specification of complex coordination patterns.

  15. The Research and Education Collaborative Occultation Network: A System for Coordinated TNO Occultation Observations

    NASA Astrophysics Data System (ADS)

    Buie, Marc W.; Keller, John M.

    2016-03-01

    We describe a new system and method for collecting coordinated occultation observations of trans-Neptunian objects (TNOs). Occultations by objects in the outer solar system are more difficult to predict due to their large distance and limited span of the astrometric data used to determine their orbits and positions. This project brings together the research and educational community into a unique citizen-science partnership to overcome the difficulties of observing these distant objects. The goal of the project is to get sizes and shapes for TNOs with diameters larger than 100 km. As a result of the system design it will also serve as a probe for binary systems with spatial separations as small as contact systems. Traditional occultation efforts strive to get a prediction sufficiently good to place mobile ground stations in the shadow track. Our system takes a new approach of setting up a large number of fixed observing stations and letting the shadows come to the network. The nominal spacing of the stations is 50 km so that we ensure two chords at our limiting size. The spread of the network is roughly 2000 km along a roughly north-south line in the western United States. The network contains 56 stations that are committed to the project and we get additional ad hoc support from International Occultation Timing Association members. At our minimum size, two stations will record an event while the other stations will be probing the inner regions for secondary events. Larger objects will get more chords and will allow determination of shape profiles. The stations are almost exclusively sited and associated with schools, usually at the 9-12 grade level. We present a full description of the system we have developed for the continued exploration of the Kuiper Belt.

  16. Implants as absolute anchorage.

    PubMed

    Rungcharassaeng, Kitichai; Kan, Joseph Y K; Caruso, Joseph M

    2005-11-01

    Anchorage control is essential for successful orthodontic treatment. Each tooth has its own anchorage potential as well as propensity to move when force is applied. When teeth are used as anchorage, the untoward movements of the anchoring units may result in the prolonged treatment time, and unpredictable or less-than-ideal outcome. To maximize tooth-related anchorage, techniques such as differential torque, placing roots into the cortex of the bone, the use of various intraoral devices and/or extraoral appliances have been implemented. Implants, as they are in direct contact with bone, do not possess a periodontal ligament. As a result, they do not move when orthodontic/orthopedic force is applied, and therefore can be used as "absolute anchorage." This article describes different types of implants that have been used as orthodontic anchorage. Their clinical applications and limitations are also discussed. PMID:16463910

  17. 47 CFR 25.278 - Additional coordination obligation for non-geostationary and geostationary satellite systems in...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite service. 25... SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.278 Additional coordination obligation for non-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite...

  18. 47 CFR 25.278 - Additional coordination obligation for non-geostationary and geostationary satellite systems in...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite service. 25... SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.278 Additional coordination obligation for non-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite...

  19. 47 CFR 25.278 - Additional coordination obligation for non-geostationary and geostationary satellite systems in...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite service. 25... SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.278 Additional coordination obligation for non-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite...

  20. 47 CFR 25.278 - Additional coordination obligation for non-geostationary and geostationary satellite systems in...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite service. 25... SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.278 Additional coordination obligation for non-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite...

  1. 47 CFR 25.278 - Additional coordination obligation for non-geostationary and geostationary satellite systems in...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite service. 25... SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.278 Additional coordination obligation for non-geostationary and geostationary satellite systems in frequencies allocated to the fixed-satellite...

  2. Commissioning and Implementation of an EPID Based IMRT QA System "Dosimetry Check" for 3D Absolute Dose Measurements and Quantitative Comparisons to MapCheck

    NASA Astrophysics Data System (ADS)

    Patel, Jalpa A.

    The software package "Dosimetry Check" by MathResolutions, LLC, provides an absolute 3D volumetric dose measurement for IMRT QA using the existing Electronic Portal Imaging Device (EPID) mounted on most linear accelerators. This package provides a feedback loop using the patient's treatment planning CT data as the phantom for dose reconstruction. The aim of this work is to study the difference between point, planar and volumetric doses with MapCheck and Dosimetry Check via the use of the EPID and the diode array respectively. Evaluating tools such as point doses at isocenter, 1-D profiles, gamma volume histograms, and dose volume histograms are used for IMRT dose comparison in three types of cases: head and neck, prostate, and lung. Dosimetry Check can be a valuable tool for IMRT QA as it uses patient specific attenuation corrections and the superiority of the EPID as compared to the MapCheck diode array. This helps reduce the uncertainty in dose for less variability in delivery and a more realistic measured vs computed dose verification system as compared to MapCheck.

  3. Constraining the Properties of the Eta Carinae System via 3-D SPH Models of Space-Based Observations: The Absolute Orientation of the Binary Orbit

    NASA Astrophysics Data System (ADS)

    Madura, Thomas I.; Gull, Theodore R.; Owocki, Stanley P.; Okazaki, Atsuo T.; Russell, Christopher M. P.

    2011-01-01

    The extremely massive (> 90 M_⊙) and luminous ( = 5 × 10^{6} L_⊙) star Eta Carinae, with its spectacular bipolar ``Homunculus'' nebula, comprises one of the most remarkable and intensely observed stellar systems in the Galaxy. However, many of its underlying physical parameters remain unknown. Multiwavelength variations observed to occur every 5.54 years are interpreted as being due to the collision of a massive wind from the primary star with the fast, less dense wind of a hot companion star in a highly elliptical (e ˜ 0.9) orbit. Using three-dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) simulations of the binary wind-wind collision, together with radiative transfer codes, we compute synthetic spectral images of [Fe III] emission line structures and compare them to existing Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) observations. We are thus able, for the first time, to tightly constrain the absolute orientation of the binary orbit on the sky. An orbit with an inclination of i ˜ 40°, an argument of periapsis ω ˜ 255°, and a projected orbital axis with a position angle of ˜ 312° east of north provides the best fit to the observations, implying that the orbital axis is closely aligned in 3-D space with the Homunculus symmetry axis, and that the companion star orbits clockwise on the sky relative to the primary.

  4. Constraining the Properties of the Eta Carinae System via 3-D SPH Models of Space-Based Observations: The Absolute Orientation of the Binary Orbit

    NASA Technical Reports Server (NTRS)

    Madura, Thomas I.; Gull, Theodore R.; Owocki, Stanley P.; Okazaki, Atsuo T.; Russell, Christopher M. P.

    2011-01-01

    The extremely massive (> 90 Stellar Mass) and luminous (= 5 x 10(exp 6) Stellar Luminosity) star Eta Carinae, with its spectacular bipolar "Homunculus" nebula, comprises one of the most remarkable and intensely observed stellar systems in the Galaxy. However, many of its underlying physical parameters remain unknown. Multiwavelength variations observed to occur every 5.54 years are interpreted as being due to the collision of a massive wind from the primary star with the fast, less dense wind of a hot companion star in a highly elliptical (e approx. 0.9) orbit. Using three-dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) simulations of the binary wind-wind collision, together with radiative transfer codes, we compute synthetic spectral images of [Fe III] emission line structures and compare them to existing Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) observations. We are thus able, for the first time, to tightly constrain the absolute orientation of the binary orbit on the sky. An orbit with an inclination of approx. 40deg, an argument of periapsis omega approx. 255deg, and a projected orbital axis with a position angle of approx. 312deg east of north provides the best fit to the observations, implying that the orbital axis is closely aligned in 3-D space with the Homunculus symmetry axis, and that the companion star orbits clockwise on the sky relative to the primary.

  5. Constraining the Properties of the Eta Carinae System via 3-D SPH Models of Space-Based Observations: The Absolute Orientation of the Binary Orbit

    NASA Technical Reports Server (NTRS)

    Madura, Thomas I.; Gull, Theodore R.; Owocki, Stanley P.; Okazaki, Atsuo T.; Russell, Christopher M. P.

    2010-01-01

    The extremely massive (> 90 Solar Mass) and luminous (= 5 x 10(exp 6) Solar Luminosity) star Eta Carinae, with its spectacular bipolar "Homunculus" nebula, comprises one of the most remarkable and intensely observed stellar systems in the galaxy. However, many of its underlying physical parameters remain a mystery. Multiwavelength variations observed to occur every 5.54 years are interpreted as being due to the collision of a massive wind from the primary star with the fast, less dense wind of a hot companion star in a highly elliptical (e approx. 0.9) orbit. Using three-dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) simulations of the binary wind-wind collision in Eta Car, together with radiative transfer codes, we compute synthetic spectral images of [Fe III] emission line structures and compare them to existing Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) observations. We are thus able, for the first time, to constrain the absolute orientation of the binary orbit on the sky. An orbit with an inclination of i approx. 40deg, an argument of periapsis omega approx. 255deg, and a projected orbital axis with a position angle of approx. 312deg east of north provides the best fit to the observations, implying that the orbital axis is closely aligned in 3-1) space with the Homunculus symmetry axis, and that the companion star orbits clockwise on the sky relative to the primary.

  6. Workshop for coordinating South Carolina`s pre-college systemic initiatives

    SciTech Connect

    1997-03-26

    The goal of the South Carolina Statewide Systemic Initiative (SC SSI) is to provide quality and effective learning experiences in science and mathematics to all people of South Carolina by affecting systemic change. To accomplish this goal, South Carolina must: (1) coordinate actions among many partners for science and mathematics change; (2) place the instruments of change into the hands of the effectors of change - teachers and schools; and (3) galvanize the support of policy makers, parents, and local communities for change. The SC SSI proposes to establish a network of 13 regional mathematics and science HUBs. The central idea of this plan is the accumulation of Teacher Leaders at each HUB who are prepared in special Curriculum Leadership Institutes to assist other teachers and schools. The HUB becomes a regional nexus for delivering services to schools who request assistance by matching schools with Teacher Leaders. Other initiatives such as the use of new student performance assessments, the integration of instructional technologies into the curriculum, a pilot preservice program, and Family Math and Family Science will be bundled together through the Teacher Leaders in the HUBs. Concurrent policy changes at the state level in teacher and administrator certification and recertification requirements, school regulations and accountability, and the student performance assessment system will enable teachers and schools to support instructional practices that model South Carolina`s new state Curriculum Frameworks in Mathematics and Science.

  7. Exact dynamics of stochastic linear delayed systems: Application to spatiotemporal coordination of comoving agents

    NASA Astrophysics Data System (ADS)

    McKetterick, Thomas John; Giuggioli, Luca

    2014-10-01

    Delayed dynamics result from finite transmission speeds of a signal in the form of energy, mass, or information. In stochastic systems the resulting lagged dynamics challenge our understanding due to the rich behavioral repertoire encompassing monotonic, oscillatory, and unstable evolution. Despite the vast literature, quantifying this rich behavior is limited by a lack of explicit analytic studies of high-dimensional stochastic delay systems. Here we fill this gap for systems governed by a linear Langevin equation of any number of delays and spatial dimensions with additive Gaussian noise. By exploiting Laplace transforms we are able to derive an exact time-dependent analytic solution of the Langevin equation. By using characteristic functionals we are able to construct the full time dependence of the multivariate probability distribution of the stochastic process as a function of the delayed and nondelayed random variables. As an application we consider interactions in animal collective movement that go beyond the traditional assumption of instantaneous alignment. We propose models for coordinated maneuvers of comoving agents applicable to recent empirical findings in pigeons and bats whereby individuals copy the heading of their neighbors with some delay. We highlight possible strategies that individual pairs may adopt to reduce the variance in their velocity difference and/or in their spatial separation. We also show that a minimum in the variance of the spatial separation at long times can be achieved with certain ratios of measurement to reaction delay.

  8. A PLM-based automated inspection planning system for coordinate measuring machine

    NASA Astrophysics Data System (ADS)

    Zhao, Haibin; Wang, Junying; Wang, Boxiong; Wang, Jianmei; Chen, Huacheng

    2006-11-01

    With rapid progress of Product Lifecycle Management (PLM) in manufacturing industry, automatic generation of inspection planning of product and the integration with other activities in product lifecycle play important roles in quality control. But the techniques for these purposes are laggard comparing with techniques of CAD/CAM. Therefore, an automatic inspection planning system for Coordinate Measuring Machine (CMM) was developed to improve the automatization of measuring based on the integration of inspection system in PLM. Feature information representation is achieved based on a PLM canter database; measuring strategy is optimized through the integration of multi-sensors; reasonable number and distribution of inspection points are calculated and designed with the guidance of statistic theory and a synthesis distribution algorithm; a collision avoidance method is proposed to generate non-collision inspection path with high efficiency. Information mapping is performed between Neutral Interchange Files (NIFs), such as STEP, DML, DMIS, XML, etc., to realize information integration with other activities in the product lifecycle like design, manufacturing and inspection execution, etc. Simulation was carried out to demonstrate the feasibility of the proposed system. As a result, the inspection process is becoming simpler and good result can be got based on the integration in PLM.

  9. A practical approach for active camera coordination based on a fusion-driven multi-agent system

    NASA Astrophysics Data System (ADS)

    Bustamante, Alvaro Luis; Molina, José M.; Patricio, Miguel A.

    2014-04-01

    In this paper, we propose a multi-agent system architecture to manage spatially distributed active (or pan-tilt-zoom) cameras. Traditional video surveillance algorithms are of no use for active cameras, and we have to look at different approaches. Such multi-sensor surveillance systems have to be designed to solve two related problems: data fusion and coordinated sensor-task management. Generally, architectures proposed for the coordinated operation of multiple cameras are based on the centralisation of management decisions at the fusion centre. However, the existence of intelligent sensors capable of decision making brings with it the possibility of conceiving alternative decentralised architectures. This problem is approached by means of a MAS, integrating data fusion as an integral part of the architecture for distributed coordination purposes. This paper presents the MAS architecture and system agents.

  10. Patient- and family-centered care coordination: a framework for integrating care for children and youth across multiple systems.

    PubMed

    2014-05-01

    Understanding a care coordination framework, its functions, and its effects on children and families is critical for patients and families themselves, as well as for pediatricians, pediatric medical subspecialists/surgical specialists, and anyone providing services to children and families. Care coordination is an essential element of a transformed American health care delivery system that emphasizes optimal quality and cost outcomes, addresses family-centered care, and calls for partnership across various settings and communities. High-quality, cost-effective health care requires that the delivery system include elements for the provision of services supporting the coordination of care across settings and professionals. This requirement of supporting coordination of care is generally true for health systems providing care for all children and youth but especially for those with special health care needs. At the foundation of an efficient and effective system of care delivery is the patient-/family-centered medical home. From its inception, the medical home has had care coordination as a core element. In general, optimal outcomes for children and youth, especially those with special health care needs, require interfacing among multiple care systems and individuals, including the following: medical, social, and behavioral professionals; the educational system; payers; medical equipment providers; home care agencies; advocacy groups; needed supportive therapies/services; and families. Coordination of care across settings permits an integration of services that is centered on the comprehensive needs of the patient and family, leading to decreased health care costs, reduction in fragmented care, and improvement in the patient/family experience of care. PMID:24777209

  11. Improved Power System Stability Using Backtracking Search Algorithm for Coordination Design of PSS and TCSC Damping Controller.

    PubMed

    Niamul Islam, Naz; Hannan, M A; Mohamed, Azah; Shareef, Hussain

    2016-01-01

    Power system oscillation is a serious threat to the stability of multimachine power systems. The coordinated control of power system stabilizers (PSS) and thyristor-controlled series compensation (TCSC) damping controllers is a commonly used technique to provide the required damping over different modes of growing oscillations. However, their coordinated design is a complex multimodal optimization problem that is very hard to solve using traditional tuning techniques. In addition, several limitations of traditionally used techniques prevent the optimum design of coordinated controllers. In this paper, an alternate technique for robust damping over oscillation is presented using backtracking search algorithm (BSA). A 5-area 16-machine benchmark power system is considered to evaluate the design efficiency. The complete design process is conducted in a linear time-invariant (LTI) model of a power system. It includes the design formulation into a multi-objective function from the system eigenvalues. Later on, nonlinear time-domain simulations are used to compare the damping performances for different local and inter-area modes of power system oscillations. The performance of the BSA technique is compared against that of the popular particle swarm optimization (PSO) for coordinated design efficiency. Damping performances using different design techniques are compared in term of settling time and overshoot of oscillations. The results obtained verify that the BSA-based design improves the system stability significantly. The stability of the multimachine power system is improved by up to 74.47% and 79.93% for an inter-area mode and a local mode of oscillation, respectively. Thus, the proposed technique for coordinated design has great potential to improve power system stability and to maintain its secure operation. PMID:26745265

  12. Improved Power System Stability Using Backtracking Search Algorithm for Coordination Design of PSS and TCSC Damping Controller

    PubMed Central

    Niamul Islam, Naz; Hannan, M. A.; Mohamed, Azah; Shareef, Hussain

    2016-01-01

    Power system oscillation is a serious threat to the stability of multimachine power systems. The coordinated control of power system stabilizers (PSS) and thyristor-controlled series compensation (TCSC) damping controllers is a commonly used technique to provide the required damping over different modes of growing oscillations. However, their coordinated design is a complex multimodal optimization problem that is very hard to solve using traditional tuning techniques. In addition, several limitations of traditionally used techniques prevent the optimum design of coordinated controllers. In this paper, an alternate technique for robust damping over oscillation is presented using backtracking search algorithm (BSA). A 5-area 16-machine benchmark power system is considered to evaluate the design efficiency. The complete design process is conducted in a linear time-invariant (LTI) model of a power system. It includes the design formulation into a multi-objective function from the system eigenvalues. Later on, nonlinear time-domain simulations are used to compare the damping performances for different local and inter-area modes of power system oscillations. The performance of the BSA technique is compared against that of the popular particle swarm optimization (PSO) for coordinated design efficiency. Damping performances using different design techniques are compared in term of settling time and overshoot of oscillations. The results obtained verify that the BSA-based design improves the system stability significantly. The stability of the multimachine power system is improved by up to 74.47% and 79.93% for an inter-area mode and a local mode of oscillation, respectively. Thus, the proposed technique for coordinated design has great potential to improve power system stability and to maintain its secure operation. PMID:26745265

  13. Service Coordination Caseloads in State Early Intervention Systems. NECTAS Notes, Number 8.

    ERIC Educational Resources Information Center

    Hurth, Joicey

    Under the Early Intervention Program for Infants and Toddlers with Disabilities (Part C) of the Individuals with Disabilities Education Act (IDEA), service coordination is defined as "the activities carried out by a service coordinator to assist and enable a child eligible under this part and the child's family to receive the rights, procedural…

  14. Application of a numerically generated orthogonal coordinate system to the solution of inviscid axisymmetric supersonic flow over blunt bodies

    NASA Technical Reports Server (NTRS)

    Hamilton, H. H., II; Graves, R. A., Jr.

    1980-01-01

    A numerically generated orthogonal coordinate system (with the body surface and shock wave as opposite boundaries) was applied with a time asymptotic method to obtain steady flow solutions for axisymmetric inviscid flow over several blunt bodies including spheres, paraboloids, ellipsoids, hyperboloids, hemisphere cylinders, spherically blunted cones, and a body with a concavity in the stagnation region. Comparisons with experimental data and with the results of other computational methods are discussed. The numerically generated orthogonal coordinate system is described and applications of the method to complex body shapes, particularly those with concave regions, are discussed.

  15. Coordinated regulation of natural killer receptor expression in the maturing human immune system

    PubMed Central

    Strauss-Albee, Dara M.; Horowitz, Amir; Parham, Peter; Blish, Catherine A.

    2014-01-01

    Natural killer (NK) cells are responsible for recognizing and killing transformed, stressed, and infected cells. They recognize a set of non-antigen-specific features termed “altered self” through combinatorial signals from activating and inhibitory receptors. These natural killer cell receptors (NKR) are also expressed on CD4+ and CD8+ T cells, B cells, and monocytes, though a comprehensive inventory of NKR expression patterns across leukocyte lineages has never been performed. Using mass cytometry, we found that NKR expression patterns distinguish cell lineages in human peripheral blood. In individuals with high levels of CD57, indicative of a mature immune repertoire, NKR are more likely to be expressed on non-NK cells, especially CD8+ T cells. Mature NK and CD8+ T cell populations show increased diversity of NKR surface expression patterns, but with distinct determinants: mature NK cells acquire primarily inhibitory receptors, while CD8+ T cells attain a specific subset of both activating and inhibitory receptors, potentially imbuing them with a distinct functional role. Concurrently, monocytes show decreased expression of the generalized inhibitory receptor LILRB1, consistent with an increased activation threshold. Therefore, NKR expression is coordinately regulated as the immune system matures, resulting in the transfer of “altered self” recognition potential among leukocyte lineages. This likely reduces antigen specificity in the mature human immune system, and implies that vaccines and therapeutics that engage both its innate and adaptive branches may be more effective in the settings of aging and chronic infection. PMID:25288567

  16. Evaluation of Eight Methods for Aligning Orientation of Two Coordinate Systems.

    PubMed

    Mecheri, Hakim; Robert-Lachaine, Xavier; Larue, Christian; Plamondon, André

    2016-08-01

    The aim of this study was to evaluate eight methods for aligning the orientation of two different local coordinate systems. Alignment is very important when combining two different systems of motion analysis. Two of the methods were developed specifically for biomechanical studies, and because there have been at least three decades of algorithm development in robotics, it was decided to include six methods from this field. To compare these methods, an Xsens sensor and two Optotrak clusters were attached to a Plexiglas plate. The first optical marker cluster was fixed on the sensor and 20 trials were recorded. The error of alignment was calculated for each trial, and the mean, the standard deviation, and the maximum values of this error over all trials were reported. One-way repeated measures analysis of variance revealed that the alignment error differed significantly across the eight methods. Post-hoc tests showed that the alignment error from the methods based on angular velocities was significantly lower than for the other methods. The method using angular velocities performed the best, with an average error of 0.17 ± 0.08 deg. We therefore recommend this method, which is easy to perform and provides accurate alignment. PMID:27245737

  17. Learning robotic eye-arm-hand coordination from human demonstration: a coupled dynamical systems approach.

    PubMed

    Lukic, Luka; Santos-Victor, José; Billard, Aude

    2014-04-01

    We investigate the role of obstacle avoidance in visually guided reaching and grasping movements. We report on a human study in which subjects performed prehensile motion with obstacle avoidance where the position of the obstacle was systematically varied across trials. These experiments suggest that reaching with obstacle avoidance is organized in a sequential manner, where the obstacle acts as an intermediary target. Furthermore, we demonstrate that the notion of workspace travelled by the hand is embedded explicitly in a forward planning scheme, which is actively involved in detecting obstacles on the way when performing reaching. We find that the gaze proactively coordinates the pattern of eye-arm motion during obstacle avoidance. This study provides also a quantitative assessment of the coupling between the eye-arm-hand motion. We show that the coupling follows regular phase dependencies and is unaltered during obstacle avoidance. These observations provide a basis for the design of a computational model. Our controller extends the coupled dynamical systems framework and provides fast and synchronous control of the eyes, the arm and the hand within a single and compact framework, mimicking similar control system found in humans. We validate our model for visuomotor control of a humanoid robot. PMID:24570352

  18. Modeling and simulation of virtual human's coordination based on multi-agent systems

    NASA Astrophysics Data System (ADS)

    Zhang, Mei; Wen, Jing-Hua; Zhang, Zu-Xuan; Zhang, Jian-Qing

    2006-10-01

    The difficulties and hotspots researched in current virtual geographic environment (VGE) are sharing space and multiusers operation, distributed coordination and group decision-making. The theories and technologies of MAS provide a brand-new environment for analysis, design and realization of distributed opening system. This paper takes cooperation among virtual human in VGE which multi-user participate in as main researched object. First we describe theory foundation truss of VGE, and present the formalization description of Multi-Agent System (MAS). Then we detailed analyze and research arithmetic of collectivity operating behavior learning of virtual human based on best held Genetic Algorithm(GA), and establish dynamics action model which Multi-Agents and object interact dynamically and colony movement strategy. Finally we design a example which shows how 3 evolutional Agents cooperate to complete the task of colony pushing column box, and design a virtual world prototype of virtual human pushing box collectively based on V-Realm Builder 2.0, moreover we make modeling and dynamic simulation with Simulink 6.

  19. Informatics Systems and Tools to Facilitate Patient-centered Care Coordination

    PubMed Central

    Kneale, L.

    2015-01-01

    Summary Introduction There is a growing international focus on patient-centered care. A model designed to facilitate this type of care in the primary care setting is the patient-centered medical home. This model of care strives to be patient-focused, comprehensive, team-based, coordinated, accessible, and focused on quality and safety of care. Objective The objective of this paper is to identify the current status and future trends of patient-centered care and the role of informatics systems and tools in facilitating this model of care. Methods In this paper we review recent scientific literature of the past four years to identify trends and state of current evidence when it comes to patient-centered care overall, and more specifically medical homes. Results There are several studies that indicate growth and development in seven informatics areas within patient-centered care, namely clinical decision support, registries, team care, care transitions, personal health records, telehealth, and measurement. In some cases we are still lacking large randomized clinical trials and the evidence base is not always solid, but findings strongly indicate the potential of informatics to support patient-centered care. Conclusion Current evidence indicates that advancements have been made in implementing and evaluating patient-centered care models. Technical, legal, and practical challenges still remain. Further examination of the impact of patient-centered informatics tools and systems on clinical outcomes is needed. PMID:26293847

  20. A solution method for the unsteady incompressible Navier-Stokes equations in generalized coordinate systems

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Moshe; Kwak, Dochan; Vinokur, Marcel

    1988-01-01

    A solution method based on a fractional step approach is developed for obtaining time-dependent solutions of the three-dimensional, incompressible Navier-Stokes equations in generalized coordinate systems. The governing equations are discretized conservatively by finite volumes using a staggered mesh system. The primitive variable formulation uses the volume fluxes across the faces of each computational cell as dependent variables. This procedure, combined with accurate and consistent approximations of geometric parameters, is done to satisfy the discretized mass conservation equation to machine accuracy as well as to gain favorable convergence properties of the Poisson solver. The discretized equations are second-order-accurate in time and space and no smoothing terms are added. An approximate-factorization scheme is implemented in solving the momentum equations. A novel ZEBRA scheme with four-color ordering is devised for the efficient solution of the Poisson equation. Several two and three-dimensional solutions are compared with other numerical and experimental results to validate the present method.

  1. One System Integrated Project Team Progress in Coordinating Hanford Tank Farms and the Waste Treatment Plant

    SciTech Connect

    Skwarek, Raymond J.; Harp, Ben J.; Duncan, Garth M.

    2013-12-18

    The One System Integrated Project Team (IPT) was formed at the Hanford Site in late 2011 as a way to improve coordination and itegration between the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Tank Operations Contractor (TOC) on interfaces between the two projects, and to eliminate duplication and exploit opportunities for synergy. The IPT is composed of jointly staffed groups that work on technical issues of mutal interest, front-end design and project definition, nuclear safety, plant engineering system integration, commissioning, planning and scheduling, and environmental, safety, health and quality (ESH&Q) areas. In the past year important progress has been made in a number of areas as the organization has matured and additional opportunities have been identified. Areas covered in this paper include: Support for development of the Office of Envirnmental Management (EM) framework document to progress the Office of River Protection's (ORP) River Protection Project (RPP) mission; Stewardship of the RPP flowsheet; Collaboration with Savannah River Site (SRS), Savannah River National Laboratory (SRNL), and Pacific Northwest National Laboratory (PNNL); Operations programs integration; and, Further development of the waste acceptance criteria.

  2. The Application of Quasi-Mean-Element-Method to LEO under Additional Perturbation due to Change of Coordinate System

    NASA Astrophysics Data System (ADS)

    Tang, Jing-shi; Liu, Lin

    2010-10-01

    The perturbation caused by the oscillation of Earth's equator plane must be taken into account when working on the motion of satellite on a low Earth orbit (LEO) in the geocentric celestial coordinate system. Since 1960 s, an intermediate orbit coordinate system using true equator and mean equinox (TEME) is introduced. It effectively solves the problem and has been widely used in various applications till today. But this traditional reference frame is purely conceptual and has always been a headache when performing the transition between these systems especially for those who are unfamiliar with celestial frames. As proved in a previous paper, it is possible to avoid the intermediate TEME frame, and conversions between osculating elements and mean elements can be completed in a consistent geocentric celestial coordinate system where only short-period terms are required. In this paper, after including the improved secular and long-period terms, the quasi-mean-element-method is available to predict the orbit analytically, reaching the accuracy of 10 -6 in Earth's radius. And all these can be done in the same celestial frame. The results suggest that the celestial coordinate system (J2000.0 nowadays) can be used throughout any applications without having to introduce TEME system as intermediate frame any more.

  3. Distributed Data Integration Prototype System for Coordinated Enhanced Observing Period (CEOP) Data

    NASA Astrophysics Data System (ADS)

    Miura, S. H.; Aizawa, K.

    2006-12-01

    The purpose of the JAXA Prototype for CEOP Distributed Data Integration Service is to provide user-friendly access to the CEOP (in-situ, satellite and global gridded model output) data. The system is distributed in the sense that, while the system is located in Tokyo, the data is located in archive centers which are globally distributed. The in-situ data is archived at the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL) in Boulder, Colorado, USA. The NWP global gridded model output data is archived at the Max Planck Institute for Meteorology (MPIM) in cooperation with the World Data Center for Climate (WDC-Climate) in Hamburg, Germany. The satellite data is archived at the IIS (Institute of Industrial Science) at the University of Tokyo, in Tokyo, Japan. Other (non-CEOP) globally distributed data that is on DODS servers can be added in the future according to scientist's requests. The system is integrated in the sense that all of the data is temporally and geospatially coordinated and can be selected and viewed within the same system. The in-situ data are time series data and the global gridded model output data and satellite data are 4D (time series of 2D scenes at levels or in multiple frequency bands). The system knows the geolocation and time of all data sets and supports selection of the data through a uniform set of menus, by data type, reference site and station, and supports sub-setting according to time, area and height/depth. The basic concept for developing the JAXA prototype is " to use existing software where possible". Based on this concept, OPeNDAP, which is widely used in the ocean and atmospheric sciences, was chosen as the data access protocol to enable "access to distributed data". And also the open source Live Access Serve (LAS) was selected as the JAXA Prototype component to enable "integration service". Users can access the system at http://jaxa.ceos.org/wtf_ceop. This system has been online since June 1, 2005

  4. MARS, a Multi-Agent System for Assessing Rowers' Coordination via Motion-Based Stigmergy

    PubMed Central

    Avvenuti, Marco; Cesarini, Daniel; Cimino, Mario G. C. A.

    2013-01-01

    A crucial aspect in rowing is having a synchronized, highly-efficient stroke. This is very difficult to obtain, due to the many interacting factors that each rower of the crew must perceive. Having a system that monitors and represents the crew coordination would be of great help to the coach during training sessions. In the literature, some methods already employ wireless sensors for capturing motion patterns that affect rowing performance. A challenging problem is to support the coach's decisions at his same level of knowledge, using a limited number of sensors and avoiding the complexity of the biomechanical analysis of human movements. In this paper, we present a multi-agent information-processing system for on-water measuring of both the overall crew asynchrony and the individual rower asynchrony towards the crew. More specifically, in the system, the first level of processing is managed by marking agents, which release marks in a sensing space, according to the rowers' motion. The accumulation of marks enables a stigmergic cooperation mechanism, generating collective marks, i.e., short-term memory structures in the sensing space. At the second level of processing, information provided by marks is observed by similarity agents, which associate a similarity degree with respect to optimal marks. Finally, the third level is managed by granulation agents, which extract asynchrony indicators for different purposes. The effectiveness of the system has been experimented on real-world scenarios. The study includes the problem statement and its characterization in the literature, as well as the proposed solving approach and initial experimental setting. PMID:24036582

  5. Innovative Tools and Systems Addressing Space Weather Needs Developed By the Community Coordinated Modeling Center (CCMC)

    NASA Astrophysics Data System (ADS)

    Maddox, M. M.; Wiegand, C.; Mullinix, R.; Mays, M. L.; Chulaki, A.; Kuznetsova, M. M.; Pulkkinen, A. A.; Zheng, Y.

    2014-12-01

    The Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center has always been a pioneer in utilizing and developing innovative systems and tools in addressing the needs of the space weather community. This paper intends to introduce some of our cutting edge systems and tools that are available to everyone in the community. An important objective of the CCMC is to prototype, validate, and compare various methods for CME arrival predictions. As such, CCMC has developed three web based CME specific tools with the goal of facilitating advanced analysis and collaboration within the space weather community. The three tools we highlight in this abstract are: Stereoscopic CME Analysis Tool (StereoCAT), WSA-ENLIL+Cone Fast Track, and Space Weather Scoreboard. These three tools allow making CME measurements, executing space weather simulations in near real-time, and providing a systematic way for the scientific community to record and compare predictions both prior to, and after CME arrivals at near Earth. In order to address the space weather needs of NASA missions and encourage collaboration between various groups, CCMC has developed a web based system called the Space Weather Database Of Notifications, Knowledge, Information (SW DONKI). SW DONKI serves as an archive of all space weather activities including: flares, CMEs (including simulations), SEPs, and geomagnetic storms. An innovative feature of the system is the ability to generate, modify, and store complex linkages between activities - creating a comprehensive network of relationships between activities, and identifying potential cause-and-effect paradigms for each space weather "event". SW DONKI also provides public access to all human generated event analysis and other notifications produced by the Space Weather Research Center (SWRC) forecasting team.

  6. MARS, a multi-agent system for assessing rowers' coordination via motion-based stigmergy.

    PubMed

    Avvenuti, Marco; Cesarini, Daniel; Cimino, Mario G C A

    2013-01-01

    A crucial aspect in rowing is having a synchronized, highly-efficient stroke. This is very difficult to obtain, due to the many interacting factors that each rower of the crew must perceive. Having a system that monitors and represents the crew coordination would be of great help to the coach during training sessions. In the literature, some methods already employ wireless sensors for capturing motion patterns that affect rowing performance. A challenging problem is to support the coach's decisions at his same level of knowledge, using a limited number of sensors and avoiding the complexity of the biomechanical analysis of human movements. In this paper, we present a multi-agent information-processing system for on-water measuring of both the overall crew asynchrony and the individual rower asynchrony towards the crew. More specifically, in the system, the first level of processing is managed by marking agents, which release marks in a sensing space, according to the rowers' motion. The accumulation of marks enables a stigmergic cooperation mechanism, generating collective marks, i.e., short-term memory structures in the sensing space. At the second level of processing, information provided by marks is observed by similarity agents, which associate a similarity degree with respect to optimal marks. Finally, the third level is managed by granulation agents, which extract asynchrony indicators for different purposes. The effectiveness of the system has been experimented on real-world scenarios. The study includes the problem statement and its characterization in the literature, as well as the proposed solving approach and initial experimental setting. PMID:24036582

  7. Survey of the Child Neurology Program Coordinator Association: Workforce Issues and Readiness for the Next Accreditation System.

    PubMed

    Feist, Terri B; Campbell, Julia L; LaBare, Julie A; Gilbert, Donald L

    2016-03-01

    In preparation for the implementation of the Next Accreditation System in Child Neurology, the authors organized the first meeting of child neurology program coordinators in October 2014. A workforce and program-readiness survey was conducted initially. Coordinator job titles varied widely. Most respondents (65%) managed 1 or more fellowships plus child neurology residency. Most had worked in graduate medical education less than 5 years (53%), with no career path (88%), supervised by someone without graduate medical education experience (85%), in divisions where faculty knowledge was judged inadequate (72%). A small proportion of programs had established clinical competency committee policies (28%) and was ready to implement milestone-based evaluations (56%). A post-conference survey demonstrated substantial improvements in relevant skills. The complexity of residency program management in the Next Accreditation System era supports substantive modifications to the program coordinator role. Such changes should include defined career pathway, managerial classification, administrative support, and continuing education. PMID:26116383

  8. Absolute neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Wolf, Joachim

    2011-10-01

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.

  9. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  10. Assessment of Multi-Joint Coordination and Adaptation in Standing Balance: A Novel Device and System Identification Technique.

    PubMed

    Engelhart, Denise; Schouten, Alfred C; Aarts, Ronald G K M; van der Kooij, Herman

    2015-11-01

    The ankles and hips play an important role in maintaining standing balance and the coordination between joints adapts with task and conditions, like the disturbance magnitude and type, and changes with age. Assessment of multi-joint coordination requires the application of multiple continuous and independent disturbances and closed loop system identification techniques (CLSIT). This paper presents a novel device, the double inverted pendulum perturbator (DIPP), which can apply disturbing forces at the hip level and between the shoulder blades. In addition to the disturbances, the device can provide force fields to study adaptation of multi-joint coordination. The performance of the DIPP and a novel CLSIT was assessed by identifying a system with known mechanical properties and model simulations. A double inverted pendulum was successfully identified, while force fields were able to keep the pendulum upright. The estimated dynamics were similar as the theoretical derived dynamics. The DIPP has a sufficient bandwidth of 7 Hz to identify multi-joint coordination dynamics. An experiment with human subjects where a stabilizing force field was rendered at the hip (1500 N/m), showed that subjects adapt by lowering their control actions around the ankles. The stiffness from upper and lower segment motion to ankle torque dropped with 30% and 48%, respectively. Our methods allow to study (pathological) changes in multi-joint coordination as well as adaptive capacity to maintain standing balance. PMID:25423654

  11. Magnetic potential, vector and gradient tensor fields of a tesseroid in a geocentric spherical coordinate system

    NASA Astrophysics Data System (ADS)

    Du, Jinsong; Chen, Chao; Lesur, Vincent; Lane, Richard; Wang, Huilin

    2015-06-01

    We examined the mathematical and computational aspects of the magnetic potential, vector and gradient tensor fields of a tesseroid in a geocentric spherical coordinate system (SCS). This work is relevant for 3-D modelling that is performed with lithospheric vertical scales and global, continent or large regional horizontal scales. The curvature of the Earth is significant at these scales and hence, a SCS is more appropriate than the usual Cartesian coordinate system (CCS). The 3-D arrays of spherical prisms (SP; `tesseroids') can be used to model the response of volumes with variable magnetic properties. Analytical solutions do not exist for these model elements and numerical or mixed numerical and analytical solutions must be employed. We compared various methods for calculating the response in terms of accuracy and computational efficiency. The methods were (1) the spherical coordinate magnetic dipole method (MD), (2) variants of the 3-D Gauss-Legendre quadrature integration method (3-D GLQI) with (i) different numbers of nodes in each of the three directions, and (ii) models where we subdivided each SP into a number of smaller tesseroid volume elements, (3) a procedure that we term revised Gauss-Legendre quadrature integration (3-D RGLQI) where the magnetization direction which is constant in a SCS is assumed to be constant in a CCS and equal to the direction at the geometric centre of each tesseroid, (4) the Taylor's series expansion method (TSE) and (5) the rectangular prism method (RP). In any realistic application, both the accuracy and the computational efficiency factors must be considered to determine the optimum approach to employ. In all instances, accuracy improves with increasing distance from the source. It is higher in the percentage terms for potential than the vector or tensor response. The tensor errors are the largest, but they decrease more quickly with distance from the source. In our comparisons of relative computational efficiency, we found

  12. An Adaptive Coordinated Control for an Offshore Wind Farm Connected VSC Based Multi-Terminal DC Transmission System

    NASA Astrophysics Data System (ADS)

    Kumar, M. Ajay; Srikanth, N. V.

    2014-11-01

    The voltage source converter (VSC) based multiterminal high voltage direct current (MTDC) transmission system is an interesting technical option to integrate offshore wind farms with the onshore grid due to its unique performance characteristics and reduced power loss via extruded DC cables. In order to enhance the reliability and stability of the MTDC system, an adaptive neuro fuzzy inference system (ANFIS) based coordinated control design has been addressed in this paper. A four terminal VSC-MTDC system which consists of an offshore wind farm and oil platform is implemented in MATLAB/ SimPowerSystems software. The proposed model is tested under different fault scenarios along with the converter outage and simulation results show that the novel coordinated control design has great dynamic stabilities and also the VSC-MTDC system can supply AC voltage of good quality to offshore loads during the disturbances.

  13. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  14. Coordinated Regulation of Virulence during Systemic Infection of Salmonella enterica serovar Typhimurium

    SciTech Connect

    Yoon, Hyunjin; McDermott, Jason E.; Porwollik, Steffen; Mcclelland, Michael; Heffron, Fred

    2009-02-20

    Salmonella must respond to a myriad of environmental cues during infection of a mouse and express specific subsets of genes in a temporal and spatial manner to subvert the host defense mechanisms but these regulatory pathways are poorly established. To unravel how micro-environmental signals are processed and integrated into coordinated action, we constructed in-frame non-polar deletions of 84 regulators inferred to play a role in Salmonella typhimurium virulence and tested them in three virulence assays (intraperitoneal (i.p.), and intragastric (i.g.) infection in BALB/c mice, and persistence in SvJ129 mice). Overall 36 regulators were identified that were less virulent in at least one assay, and of those, 15 regulators were required for systemic mouse infection in an acute infection model. As a first step towards understanding the interplay between a pathogen and its host from a systems biology standpoint we focused on these 15 genes. Transcriptional profiles were obtained for each of these 15 regulators from strains grown under four different environmental conditions. These results as well as publicly available transcriptional profiles were analyzed using both network inference and cluster analysis algorithms. The analysis predicts a regulatory network in which all 15 regulators control a specific set of genes necessary for Salmonella to cause systemic infection. We tested the regulatory model by expressing a subset of the regulators in trans and monitoring transcription of 7 known virulence factors located within Salmonella pathogenicity island 2 (SPI-2). These experiments validated the regulatory model and showed that, for these 7 genes, the response regulator SsrB and the marR type regulator SlyA co-regulate in a regulatory cascade by integrating multiple signals.

  15. Thermal conductance and basal metabolic rate are part of a coordinated system for heat transfer regulation

    PubMed Central

    Naya, Daniel E.; Spangenberg, Lucía; Naya, Hugo; Bozinovic, Francisco

    2013-01-01

    Thermal conductance measures the ease with which heat leaves or enters  an organism's body. Although the analysis of this physiological variable in relation to climatic and ecological factors can be traced to studies by Scholander and colleagues, only small advances have occurred ever since. Here, we analyse the relationship between minimal thermal conductance estimated during summer (Cmin) and several ecological, climatic and geographical factors for 127 rodent species, in order to identify the exogenous factors that have potentially affected the evolution of thermal conductance. In addition, we evaluate whether there is compensation between Cmin and basal metabolic rate (BMR)—in such a way that a scale-invariant ratio between both variables is equal to one—as could be expected from the Scholander–Irving model of heat transfer. Our major findings are (i) annual mean temperature is the best single predictor of mass-independent Cmin. (ii) After controlling for the effect of body mass, there is a strong positive correlation between log10 (Cmin) and log10 (BMR). Further, the slope of this correlation is close to one, indicating an almost perfect compensation between both physiological variables. (iii) Structural equation modelling indicated that Cmin values are adjusted to BMR values and not the other way around. Thus, our results strongly suggest that BMR and thermal conductance integrate a coordinated system for heat regulation in endothermic animals and that summer conductance values are adjusted (in an evolutionary sense) to track changes in BMRs. PMID:23902915

  16. Social coordination in toddler's word learning: interacting systems of perception and action

    NASA Astrophysics Data System (ADS)

    Pereira, Alfredo; Smith, Linda; Yu, Chen

    2008-06-01

    We measured turn-taking in terms of hand and head movements and asked if the global rhythm of the participants' body activity relates to word learning. Six dyads composed of parents and toddlers (M=18 months) interacted in a tabletop task wearing motion-tracking sensors on their hands and head. Parents were instructed to teach the labels of 10 novel objects and the child was later tested on a name-comprehension task. Using dynamic time warping, we compared the motion data of all body-part pairs, within and between partners. For every dyad, we also computed an overall measure of the quality of the interaction, that takes into consideration the state of interaction when the parent uttered an object label and the overall smoothness of the turn-taking. The overall interaction quality measure was correlated with the total number of words learned. In particular, head movements were inversely related to other partner's hand movements, and the degree of bodily coupling of parent and toddler predicted the words that children learned during the interaction. The implications of joint body dynamics to understanding joint coordination of activity in a social interaction, its scaffolding effect on the child's learning and its use in the development of artificial systems are discussed.

  17. Social coordination in toddler’s word learning: interacting systems of perception and action

    PubMed Central

    Pereira, Alfredo F.; Smith, Linda B.; Yu, Chen

    2010-01-01

    We measured turn-taking in terms of hand and head movements and asked if the global rhythm of the participants’ body activity relates to word learning. Six dyads composed of parents and toddlers (M = 18 months) interacted in a tabletop task wearing motion-tracking sensors on their hands and head. Parents were instructed to teach the labels of 10 novel objects and the child was later tested on a name-comprehension task. Using dynamic time warping, we compared the motion data of all body-part pairs, within and between partners. For every dyad, we also computed an overall measure of the quality of the interaction, that takes into consideration the state of interaction when the parent uttered an object label and the overall smoothness of the turn-taking. The overall interaction quality measure was correlated with the total number of words learned. In particular, head movements were inversely related to other partner’s hand movements, and the degree of bodily coupling of parent and toddler predicted the words that children learned during the interaction. The implications of joint body dynamics to understanding joint coordination of activity in a social interaction, its scaffolding effect on the child’s learning and its use in the development of artificial systems are discussed. PMID:20953274

  18. Coordinating Multi-Rover Systems: Evaluation Functions for Dynamic and Noisy Environments

    NASA Technical Reports Server (NTRS)

    Turner, Kagan; Agogino, Adrian

    2005-01-01

    This paper addresses the evolution of control strategies for a collective: a set of entities that collectively strives to maximize a global evaluation function that rates the performance of the full system. Directly addressing such problems by having a population of collectives and applying the evolutionary algorithm to that population is appealing, but the search space is prohibitively large in most cases. Instead, we focus on evolving control policies for each member of the collective. The fundamental issue in this approach is how to create an evaluation function for each member of the collective that is both aligned with the global evaluation function and is sensitive to the fitness changes of the member, while relatively insensitive to the fitness changes of other members. We show how to construct evaluation functions in dynamic, noisy and communication-limited collective environments. On a rover coordination problem, a control policy evolved using aligned and member-sensitive evaluations outperfoms global evaluation methods by up to 400%. More notably, in the presence of a larger number of rovers or rovers with noisy and communication limited sensors, the proposed method outperforms global evaluation by a higher percentage than in noise-free conditions with a small number of rovers.

  19. Applying User Input to the Design and Testing of an Electronic Behavioral Health Information System for Wraparound Care Coordination

    PubMed Central

    Bruns, Eric J.; Hyde, Kelly L.; Sather, April; Hook, Alyssa; Lyon, Aaron R.

    2015-01-01

    Health information technology (HIT) and care coordination for individuals with complex needs are high priorities for quality improvement in health care. However, there is little empirical guidance about how best to design electronic health record systems and related technologies to facilitate implementation of care coordination models in behavioral health, or how best to apply user input to the design and testing process. In this paper, we describe an iterative development process that incorporated user/stakeholder perspectives at multiple points and resulted in an electronic behavioral health information system (EBHIS) specific to the wraparound care coordination model for youth with serious emotional and behavioral disorders. First, we review foundational HIT research on how EBHIS can enhance efficiency and outcomes of wraparound that was used to inform development. After describing the rationale for and functions of a prototype EBHIS for wraparound, we describe methods and results for a series of six small studies that informed system development across four phases of effort – predevelopment, development, initial user testing, and commercialization – and discuss how these results informed system design and refinement. Finally, we present next steps, challenges to dissemination, and guidance for others aiming to develop specialized behavioral health HIT. The research team's experiences reinforce the opportunity presented by EBHIS to improve care coordination for populations with complex needs, while also pointing to a litany of barriers and challenges to be overcome to implement such technologies. PMID:26060099

  20. Provincial Coordination and Inter-Institutional Collaboration in British Columbia's College, University College and Institute System. Monograph Series.

    ERIC Educational Resources Information Center

    Gaber, Devron

    This document addresses a study that aimed to better understand the historical development of British Columbia community college, university college, and institute system with special attention given to recent changes in inter-institutional collaboration in relation to provincial coordination. The study also addresses centralization and…

  1. The 2008-2009 Pennsylvania System of School Assessment Handbook for Assessment Coordinators: Writing, Reading and Mathematics, Science

    ERIC Educational Resources Information Center

    Pennsylvania Department of Education, 2010

    2010-01-01

    This handbook describes the responsibilities of district and school assessment coordinators in the administration of the Pennsylvania System of School Assessment (PSSA). This updated guidebook contains the following sections: (1) General Assessment Guidelines for All Assessments; (2) Writing Specific Guidelines; (3) Reading and Mathematics…

  2. Preventing Elder Abuse: The Texas Plan for a Coordinated Service Delivery System. Collaborative Elder Abuse Prevention Project.

    ERIC Educational Resources Information Center

    McDaniel, Garry L.

    The Texas Department of Human Services, in collaboration with 13 other public and private organizations, co-sponsored a statewide Collaborative Elder Abuse Prevention project. The goal of this project is to develop a comprehensive, long-range plan for the prevention of elder abuse, a method for achieving a coordinated service delivery system for…

  3. Statistical Supplement to the Annual Report of the Coordinating Board, Texas College and University System for Fiscal Year 1978.

    ERIC Educational Resources Information Center

    Ashworth, Kenneth H.

    This supplement to the 1978 Annual Report of the Coordinating Board, Texas College and University System, contains comprehensive statistical data on higher education in Texas. The supplement provides facts, figures, and formulas relating to student enrollments and faculty headcounts, program development and productivity, faculty salaries and…

  4. Applying User Input to the Design and Testing of an Electronic Behavioral Health Information System for Wraparound Care Coordination.

    PubMed

    Bruns, Eric J; Hyde, Kelly L; Sather, April; Hook, Alyssa N; Lyon, Aaron R

    2016-05-01

    Health information technology (HIT) and care coordination for individuals with complex needs are high priorities for quality improvement in health care. However, there is little empirical guidance about how best to design electronic health record systems and related technologies to facilitate implementation of care coordination models in behavioral health, or how best to apply user input to the design and testing process. In this paper, we describe an iterative development process that incorporated user/stakeholder perspectives at multiple points and resulted in an electronic behavioral health information system (EBHIS) specific to the wraparound care coordination model for youth with serious emotional and behavioral disorders. First, we review foundational HIT research on how EBHIS can enhance efficiency and outcomes of wraparound that was used to inform development. After describing the rationale for and functions of a prototype EBHIS for wraparound, we describe methods and results for a series of six small studies that informed system development across four phases of effort-predevelopment, development, initial user testing, and commercialization-and discuss how these results informed system design and refinement. Finally, we present next steps, challenges to dissemination, and guidance for others aiming to develop specialized behavioral health HIT. The research team's experiences reinforce the opportunity presented by EBHIS to improve care coordination for populations with complex needs, while also pointing to a litany of barriers and challenges to be overcome to implement such technologies. PMID:26060099

  5. Adventures in Coordinate Space

    NASA Astrophysics Data System (ADS)

    Chambers, J. E.

    2003-08-01

    A variety of coordinate systems have been used to study the N-body problem for cases involving a dominant central mass. These include the traditional Keplerian orbital elements and the canonical Delaunay variables, which both incorporate conserved quantities of the two-body problem. Recently, Cartesian coordinate systems have returned to favour with the rise of mixed-variable symplectic integrators, since these coordinates prove to be more efficient than using orbital elements. Three sets of canonical Cartesian coordinates are well known, each with its own advantages and disadvantages. Inertial coordinates (which include barycentric coordinates as a special case) are the simplest and easiest to implement. However, they suffer from the disadvantage that the motion of the central body must be calculated explicitly, leading to relatively large errors in general. Jacobi coordinates overcome this problem by replacing the coordinates and momenta of the central body with those of the system as a whole, so that momentum is conserved exactly. This leads to substantial improvements in accuracy, but has the disadvantage that every object is treated differently, and interactions between each pair of bodies are now expressed in a complicated manner involving the coordinates of many bodies. Canonical heliocentric coordinates (also known as democratic heliocentric coordinates) treat all bodies equally, and conserve the centre of mass motion, but at the cost of introducing momentum cross terms into the kinetic energy. This complicates the development of higher order symplectic integrators and symplectic correctors, as well as the development of methods used to resolve close encounters with the central body. Here I will re-examine the set of possible canonical Cartesian coordinate systems to determine if it is possible to (a) conserve the centre of mass motion, (b) treat all bodies equally, and (c) eliminate the momentum cross terms. I will demonstrate that this is indeed possible

  6. Effects of coordinate system choice on measured regional myocardial function in short axis cine electron-beam tomography

    SciTech Connect

    Reed, J.; Rumberger, J.; Buithieu, J.; Behrenbeck, T.; Breen, J.; Sheedy, P. II

    1995-12-31

    Following myocardial infarction, the size of the infarcted region and the systolic functioning of the non-infarcted region are commonly assessed by various cross-sectional imaging techniques. For the assessment of patterns of ventricular contraction, images are commonly acquired of ventricular cross-sections normal to the long axis of the heart and parallel to the mitral valve plane. The endocardial and epicardial surfaces of the myocardium are identified. Then the ventricle is divided into sectors and the volumes of blood and myocardium within each sector at multiple phases of the cardiac cycle are measured. Regional function parameters are derived from these measurements. This generally mandates the use of a polar or cylindrical coordinate system. Various algorithms have been used to select the origin of this coordinate system. These include the centroid of the endocardial surface, the epicardial surface, or of a polygon whose vertices lie midway between the epicardial and endocardial surfaces of the myocardium (centerline method). Another algorithm has been developed in the laboratory. This uses the centroid (or center of mass) of the myocardium exclusive of the ventricular cavity.Each of these choices for origin of coordinate system can be derived from the end-diastolic image or from the end-systolic image. Alternately, new coordinate system can be selected for each phase of the cardiac cycle. These are referred to as floating coordinate systems. A series of computer models have been developed in the laboratory to study the effects of each of these choices on the regional function parameters of normal ventricles and how these choices effect the quantification of regional abnormalities after myocardial infarction.

  7. Absolute Identification by Relative Judgment

    ERIC Educational Resources Information Center

    Stewart, Neil; Brown, Gordon D. A.; Chater, Nick

    2005-01-01

    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…

  8. Be Resolute about Absolute Value

    ERIC Educational Resources Information Center

    Kidd, Margaret L.

    2007-01-01

    This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

  9. Lanthanide-directed synthesis of luminescent self-assembly supramolecular structures and mechanically bonded systems from acyclic coordinating organic ligands.

    PubMed

    Barry, Dawn E; Caffrey, David F; Gunnlaugsson, Thorfinnur

    2016-06-01

    Herein some examples of the use of lanthanide ions (f-metal ions) to direct the synthesis of luminescent self-assembly systems (architectures) will be discussed. This area of lanthanide supramolecular chemistry is fast growing, thanks to the unique physical (magnetic and luminescent) and coordination properties of the lanthanides, which are often transferred to the resulting supermolecule. The emphasis herein will be on systems that are luminescent, and hence, generated by using either visibly emitting ions (such as Eu(III), Tb(III) and Sm(III)) or near infrared emitting ions (like Nd(III), Yb(III) and Er(III)), formed through the use of templating chemistry, by employing structurally simple ligands, possessing oxygen and nitrogen coordinating moieties. As the lanthanides have high coordination requirements, their use often allows for the formation of coordination compounds and supramolecular systems such as bundles, grids, helicates and interlocked molecules that are not synthetically accessible through the use of other commonly used templating ions such as transition metal ions. Hence, the use of the rare-earth metal ions can lead to the formation of unique and stable species in both solution and in the solid state, as well as functional and responsive structures. PMID:27137947

  10. Study of Two-Electron Systems in a Radiation Field Using Interparticle Coordinates

    NASA Astrophysics Data System (ADS)

    Yang, Binwei

    We provide a general formulation of the energy eigenvalue problem for a two-electron system interacting with a monochromatic radiation field, using the interparticle coordinates to describe the internal motion, with electron correlation fully incorporated. No restriction is placed on the total orbital angular momentum of the system. The solution of the Schrodinger wave equation for a two-electron system is obtained by expanding the atomic wavefunction on a set of basis functions that are eigenfunctions of the total orbital angular momentum operator. The angular dependence of the wave function is determined a priori. The derivation of the interaction of the two-electron system with a radiation field is carried out in both length and velocity gauges. The time-independent Schrodinger equation is solved by using the Rayleigh-Schrodinger expansion of the quasienergy, and alternatively, using an effective Hamiltonian that is the representation of the Hamiltonian on a finite set of basis vectors that are successive terms in the Rayleigh-Schrodinger expansion of the Floquet wavefunction. We have applied this formulation to the calculation of accurate second- and fourth-order ac shifts and widths of both the negative hydrogen ion and helium. In addition, by constructing a 3-level model Hamiltonian from the zeroth-, first-, and second-order perturbed wavefunctions, we have obtained estimates of the ac shifts and widths of the negative hydrogen ion in the nonperturbative-field regime, where the atom-field interaction is relatively strong. Using this model for the negative hydrogen ion, we have explored photodecay in the autoionizing resonance region below the two-electron escape threshold, and stabilization (against ionization) at frequencies above the threshold for two-electron escape. Furthermore, we have gained some insight into the properties of electron correlation in ground states of the negative hydrogen ion and helium by plotting the unperturbed spatial probability

  11. The Neural Network In Coordinate Transformation

    NASA Astrophysics Data System (ADS)

    Urusan, Ahmet Yucel

    2011-12-01

    In international literature, Coordinate operations is divided into two categories. They are coordinate conversion and coordinate transformation. Coordinates converted from coordinate system A to coordinate system B in the same datum (mean origine, scale and axis directions are same) by coordinate conversion. There are two different datum in coordinate transformation. The basis of each datum to a different coordinate reference system. In Coordinate transformation, coordinates are transformed from coordinate reference system A to coordinate referance system B. Geodetic studies based on physical measurements. Coordinate transformation needs identical points which were measured in each coordinate reference system (A and B). However it is difficult (and need a big reserved budget) to measure in some places like as top of mountain, boundry of countries and seaside. In this study, this sample problem solution was researched. The method of learning which is one of the neural network methods, was used for solution of this problem.

  12. Geometrically motivated coordinate system for exploring spacetime dynamics in numerical-relativity simulations using a quasi-Kinnersley tetrad

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Brink, Jeandrew; Szilágyi, Béla; Lovelace, Geoffrey

    2012-10-01

    We investigate the suitability and properties of a quasi-Kinnersley tetrad and a geometrically motivated coordinate system as tools for quantifying both strong-field and wave-zone effects in numerical relativity (NR) simulations. We fix two of the coordinate degrees of freedom of the metric, namely, the radial and latitudinal coordinates, using the Coulomb potential associated with the quasi-Kinnersley transverse frame. These coordinates are invariants of the spacetime and can be used to unambiguously fix the outstanding spin-boost freedom associated with the quasi-Kinnersley frame (and thus can be used to choose a preferred quasi-Kinnersley tetrad). In the limit of small perturbations about a Kerr spacetime, these geometrically motivated coordinates and quasi-Kinnersley tetrad reduce to Boyer-Lindquist coordinates and the Kinnersley tetrad, irrespective of the simulation gauge choice. We explore the properties of this construction both analytically and numerically, and we gain insights regarding the propagation of radiation described by a super-Poynting vector, further motivating the use of this construction in NR simulations. We also quantify in detail the peeling properties of the chosen tetrad and gauge. We argue that these choices are particularly well-suited for a rapidly converging wave-extraction algorithm as the extraction location approaches infinity, and we explore numerically the extent to which this property remains applicable on the interior of a computational domain. Using a number of additional tests, we verify numerically that the prescription behaves as required in the appropriate limits regardless of simulation gauge; these tests could also serve to benchmark other wave extraction methods. We explore the behavior of the geometrically motivated coordinate system in dynamical binary-black-hole NR mergers; while we obtain no unexpected results, we do find that these coordinates turn out to be useful for visualizing NR simulations (for example, for

  13. Combined Use of Absolute and Differential Seismic Arrival Time Data to Improve Absolute Event Location

    NASA Astrophysics Data System (ADS)

    Myers, S.; Johannesson, G.

    2012-12-01

    Arrival time measurements based on waveform cross correlation are becoming more common as advanced signal processing methods are applied to seismic data archives and real-time data streams. Waveform correlation can precisely measure the time difference between the arrival of two phases, and differential time data can be used to constrain relative location of events. Absolute locations are needed for many applications, which generally requires the use of absolute time data. Current methods for measuring absolute time data are approximately two orders of magnitude less precise than differential time measurements. To exploit the strengths of both absolute and differential time data, we extend our multiple-event location method Bayesloc, which previously used absolute time data only, to include the use of differential time measurements that are based on waveform cross correlation. Fundamentally, Bayesloc is a formulation of the joint probability over all parameters comprising the multiple event location system. The Markov-Chain Monte Carlo method is used to sample from the joint probability distribution given arrival data sets. The differential time component of Bayesloc includes scaling a stochastic estimate of differential time measurement precision based the waveform correlation coefficient for each datum. For a regional-distance synthetic data set with absolute and differential time measurement error of 0.25 seconds and 0.01 second, respectively, epicenter location accuracy is improved from and average of 1.05 km when solely absolute time data are used to 0.28 km when absolute and differential time data are used jointly (73% improvement). The improvement in absolute location accuracy is the result of conditionally limiting absolute location probability regions based on the precise relative position with respect to neighboring events. Bayesloc estimates of data precision are found to be accurate for the synthetic test, with absolute and differential time measurement

  14. Extraction of local coordination structure in a low-concentration uranyl system by XANES.

    PubMed

    Zhang, Linjuan; Zhou, Jing; Zhang, Jianyong; Su, Jing; Zhang, Shuo; Chen, Ning; Jia, Yunpeng; Li, Jiong; Wang, Yu; Wang, Jian Qiang

    2016-05-01

    Obtaining structural information of uranyl species at an atomic/molecular scale is a critical step to control and predict their physical and chemical properties. To obtain such information, experimental and theoretical L3-edge X-ray absorption near-edge structure (XANES) spectra of uranium were studied systematically for uranyl complexes. It was demonstrated that the bond lengths (R) in the uranyl species and relative energy positions (ΔE) of the XANES were determined as follows: ΔE1 = 168.3/R(U-Oax)(2) - 38.5 (for the axial plane) and ΔE2 = 428.4/R(U-Oeq)(2) - 37.1 (for the equatorial plane). These formulae could be used to directly extract the distances between the uranium absorber and oxygen ligand atoms in the axial and equatorial planes of uranyl ions based on the U L3-edge XANES experimental data. In addition, the relative weights were estimated for each configuration derived from the water molecule and nitrate ligand based on the obtained average equatorial coordination bond lengths in a series of uranyl nitrate complexes with progressively varied nitrate concentrations. Results obtained from XANES analysis were identical to that from extended X-ray absorption fine-structure (EXAFS) analysis. XANES analysis is applicable to ubiquitous uranyl-ligand complexes, such as the uranyl-carbonate complex. Most importantly, the XANES research method could be extended to low-concentration uranyl systems, as indicated by the results of the uranyl-amidoximate complex (∼40 p.p.m. uranium). Quantitative XANES analysis, a reliable and straightforward method, provides a simplified approach applied to the structural chemistry of actinides. PMID:27140156

  15. Measuring mandibular asymmetry in Class I normal subjects using 3D novel coordinate system

    PubMed Central

    Kheir, Nadia Abou; Kau, Chung How

    2014-01-01

    Introduction: Orthodontic treatment plays a major role in cosmetic dentistry. A harmonious facial balance is normally the end point in comprehensive orthodontic outcomes. In order to achieve this goal, correct diagnosis of asymmetry should be done starting from the outer facial morphology forms and progressively moving to the dental occlusion. The prime importance of measuring mandibular asymmetry is its tremendous effect on the occlusion. Objective: The aim of this study was to measure mandibular asymmetry in a cohort Class I molar relationship comparing right and left sides using new three-dimensions (3D) imaging technique with the aid of 3D software (in vivo 5.2.3 [San Jose, CA]). Materials and Methods: 35 DICOM files were initially collected retrospectively and seven were excluded due to (1) condylar resorption, (2) history of trauma and (3) unclear DICOM file. A new coordinate system was set for the mid-sagittal plane (MSP), Frankfort horizontal plane and frontal plane (FP). Each cone beam computed tomography (CBCT) was appraised using 16 evaluation criteria bilaterally. Five mandibular landmarks were selected: Condylion_R, Gonion_R, Menton, Gonion_L and Condylion_L. Using these points, the mandible was further divided into four parts: (1) Ramus length right side, body of the mandible right side, body of the Ramus left side and Ramus length left side. The angles between each line and the three different planes were acquired in order to compare each line from a 3D aspect. Mean and standard deviation were calculated for the 28 CBCTs. Results: Significant bilateral differences were reported in the angle between the ramus length and MSP and the ramus length and the FP (P < 0.05). Significant lateroanterior shift of the mandibular ramus on the left side in comparison with the right side. Conclusion: Viewing an object using three different angles between the four parts of the mandible and each plane is a valid method to replicate the actual object. PMID:24987596

  16. Bio-inspired metal-coordination dynamics: A unique tool for engineering novel properties in soft matter systems

    NASA Astrophysics Data System (ADS)

    Grindy, Scott; Li, Qiaochu; Halim, Abigail; Learsch, Robert; Holten-Andersen, Niels

    2015-03-01

    In soft material systems, materials properties are generally governed by transient, dynamic interactions of many types over many hierarchal length- and time-scales. However, explicit control over these dynamics is not always possible, leaving open questions into how transient interactions can be exploited to design soft materials with unique and exceptional properties. Inspired by the adhesive chemistry and tough character of mussel byssal threads, we present several studies on both the mechanical properties of soft materials and templated crystallization kinetics to show the diverse array of materials properties that can be generated using bio-inspired metal-coordination. By studying our model systems, we can determine the explicit effects of metal-coordination dynamics on various bulk properties, further adding to the set of tools we can use to design soft material systems.

  17. Movement Coordination during Conversation

    PubMed Central

    Latif, Nida; Barbosa, Adriano V.; Vatiokiotis-Bateson, Eric; Castelhano, Monica S.; Munhall, K. G.

    2014-01-01

    Behavioral coordination and synchrony contribute to a common biological mechanism that maintains communication, cooperation and bonding within many social species, such as primates and birds. Similarly, human language and social systems may also be attuned to coordination to facilitate communication and the formation of relationships. Gross similarities in movement patterns and convergence in the acoustic properties of speech have already been demonstrated between interacting individuals. In the present studies, we investigated how coordinated movements contribute to observers’ perception of affiliation (friends vs. strangers) between two conversing individuals. We used novel computational methods to quantify motor coordination and demonstrated that individuals familiar with each other coordinated their movements more frequently. Observers used coordination to judge affiliation between conversing pairs but only when the perceptual stimuli were restricted to head and face regions. These results suggest that observed movement coordination in humans might contribute to perceptual decisions based on availability of information to perceivers. PMID:25119189

  18. Using the Onto-Semiotic Approach to Identify and Analyze Mathematical Meaning when Transiting between Different Coordinate Systems in a Multivariate Context

    ERIC Educational Resources Information Center

    Montiel, Mariana; Wilhelmi, Miguel R.; Vidakovic, Draga; Elstak, Iwan

    2009-01-01

    The main objective of this paper is to apply the onto-semiotic approach to analyze the mathematical concept of different coordinate systems, as well as some situations and university students' actions related to these coordinate systems. The identification of objects that emerge from the mathematical activity and a first intent to describe an…

  19. Relationship between Students' Understanding of Functions in Cartesian and Polar Coordinate Systems

    ERIC Educational Resources Information Center

    Montiel, Mariana; Vidakovic, Draga; Kabael, Tangul

    2009-01-01

    The present study was implemented as a prelude to a study on the generalization of the single variable function concept to multivariate calculus. In the present study we analyze students' mental processes and adjustments, as they are being exposed to single variable calculus with polar coordinates. The results show that there appears to be a…

  20. The Impact of a Technology Coordinator's Belief System upon Using Technology to Create a Community's History

    ERIC Educational Resources Information Center

    Waring, Scott M.

    2010-01-01

    As it has been shown that teachers of social studies content are less likely than teachers of other content areas to utilize technology in their classroom, this study focuses on one instructional technology coordinators' beliefs towards technology, instruction, and students and how these beliefs impacted how technology was utilized during a…

  1. Building Management Information Systems to Coordinate Citywide Afterschool Programs: A Toolkit for Cities

    ERIC Educational Resources Information Center

    Kingsley, Chris

    2012-01-01

    The National League of Cities (NLC), through its Institute for Youth, Education and Families, produced this report to help city leaders, senior municipal staff and their local partners answer those questions as they work to strengthen and coordinate services for youth and families, particularly for those cities building comprehensive afterschool…

  2. Market-Based Coordination and Auditing Mechanisms for Self-Interested Multi-Robot Systems

    ERIC Educational Resources Information Center

    Ham, MyungJoo

    2009-01-01

    We propose market-based coordinated task allocation mechanisms, which allocate complex tasks that require synchronized and collaborated services of multiple robot agents to robot agents, and an auditing mechanism, which ensures proper behaviors of robot agents by verifying inter-agent activities, for self-interested, fully-distributed, and…

  3. A new method to determine the projected coordinate origin of a cone-beam CT system using elliptical projection

    NASA Astrophysics Data System (ADS)

    Yang, Min; Jin, Xu-Ling; Li, Bao-Lei

    2010-10-01

    In order to determine the projected coordinate origin in the cone-beam CT scanning system with respect to the Feldkamp-Davis-Kress (FDK) algorithm, we propose a simple yet feasible method to accurately measure the projected coordinate origin. This method was established on the basis of the theory that the projection of a spherical object in the cone-beam field is an ellipse. We first utilized image processing and the least square estimation method to get each major axis of the elliptical Digital Radiography (DR) projections of a group of spherical objects. Then we determined the intersection point of the group of major axis by solving an over-determined equation set that was composed by the major axis equations of all the elliptical projections. Based on the experimental results, this new method was proved to be easy to implement in practical scanning systems with high accuracy and anti-noise capability.

  4. Examination of conventional and even-parity formulations of discrete ordinates method in a body-fitted coordinate system.

    NASA Astrophysics Data System (ADS)

    Liu, J.; Chen, Y. S.

    1999-03-01

    The conventional radiative transfer equation (RTE) and the even-parity formulation (EPF) of the RTE in a general body-fitted coordinate system have been developed and they are used to simulate multi-dimensional radiative heat transfer in irregular geometries by the discrete ordinates method (DOM). The discrete ordinates equations for the EPF are second-order differential equations and they are spatially discretized using a second-order central difference scheme. At the boundary, a higher-order upwind scheme is employed to prevent solution instability and minimize errors. The spatially discretized equations are solved by a preconditioned conjugate gradients method. To investigate the accuracy and efficiency of the conventional RTE and the even-parity RTE in a body-fitted coordinate system, five two-dimensional and three-dimensional benchmark problems with absorbing - emitting and scattering media enclosed by irregular walls are considered.

  5. A theoretical and experimental study on no-guide light pen type 3D-coordinate measurement system

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofang; Yu, Xin; Jiang, Chengzhi; Wang, Baoguang

    2003-04-01

    A novel no-guide light pen type 3D-coordinate measurement system with three sets of position sensitive devices (PSDs) to realize intersection converge imaging is introduced. It is called as the light pen type measurement system, because the measuring head is shaped as a pen with several light sources on it. The structure design, measurement principle and experimental results are presented. The theoretical analysis and experimental results prove that this system has advanced features of simple structure, high automation, and high accuracy, and can be used in the measurement fields of mechanical manufacture, robot, auto, aviation and medicine effectively.

  6. Absolute dosimetry for extreme-ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Berger, Kurt W.; Campiotti, Richard H.

    2000-06-01

    The accurate measurement of an exposure dose reaching the wafer on an extreme ultraviolet (EUV) lithographic system has been a technical challenge directly applicable to the evaluation of candidate EUV resist materials and calculating lithography system throughputs. We have developed a dose monitoring sensor system that can directly measure EUV intensities at the wafer plane of a prototype EUV lithographic system. This sensor system, located on the wafer stage adjacent to the electrostatic chuck used to grip wafers, operates by translating the sensor into the aerial image, typically illuminating an 'open' (unpatterned) area on the reticle. The absolute signal strength can be related to energy density at the wafer, and thus used to determine resist sensitivity, and the signal as a function of position can be used to determine illumination uniformity at the wafer plane. Spectral filtering to enhance the detection of 13.4 nm radiation was incorporated into the sensor. Other critical design parameters include the packaging and amplification technologies required to place this device into the space and vacuum constraints of a EUV lithography environment. We describe two approaches used to determine the absolute calibration of this sensor. The first conventional approach requires separate characterization of each element of the sensor. A second novel approach uses x-ray emission from a mildly radioactive iron source to calibrate the absolute response of the entire sensor system (detector and electronics) in a single measurement.

  7. 6. Coordination and control.

    PubMed

    2014-05-01

    Any complex operation requires a system for management. In most societies, disaster management is the responsibility of the government. Coordination and control is a system that provides the oversight for all of the disaster management functions. The roles and responsibilities of a coordination and control centre include: (1) planning; (2) maintenance of inventories; (3) activation of the disaster response plan; (4) application of indicators of function; (5) surveillance; (6) information management; (7) coordination of activities of the BSFs; (8) decision-making; (9) priority setting; (10) defining overarching goal and objectives for interventions; (11) applying indicators of effectiveness; (12) applying indicators of benefit and impact; (13) exercising authority; (14) managing resources; (15) initiating actions; (16) preventing influx of unneeded resources; (17) defining progress; (18) providing information; (19) liasing with responding organisations; and (20) providing quality assurance. Coordination and control is impossible without communications. To accomplish coordination and control, three factors must be present: (1) mandate; (2) power and authority; and (3) available resources. Coordination and control is responsible for the evaluation of the effectiveness and benefits/impacts of all interventions. Coordination and control centres (CCCs) are organised hierarchically from the on-scene CCCs (incident command) to local provincial to national CCCs. Currently, no comprehensive regional and international CCCs have been universally endorsed. Systems such as the incident command system, the unified command system, and the hospital incident command system are described as are the humanitarian reform movement and the importance of coordination and control in disaster planning and preparedness. PMID:24785803

  8. Boundary-fitted curvilinear coordinate systems for solution of partial differential equations on fields containing any number of arbitrary two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Thames, F. C.; Mastin, C. W.

    1977-01-01

    A method is presented for automatic numerical generation of a general curvilinear coordinate system with coordinate lines coincident with all boundaries of a general multi-connected two-dimensional region containing any number of arbitrarily shaped bodies. No restrictions are placed on the shape of the boundaries, which may even be time-dependent, and the approach is not restricted in principle to two dimensions. With this procedure the numerical solution of a partial differential system may be done on a fixed rectangular field with a square mesh with no interpolation required regardless of the shape of the physical boundaries, regardless of the spacing of the curvilinear coordinate lines in the physical field, and regardless of the movement of the coordinate system in the physical plane. A number of examples of coordinate systems and application thereof to the solution of partial differential equations are given. The FORTRAN computer program and instructions for use are included.

  9. Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Thompson, J. F.; Mastin, C. W.; Thames, F. C.

    1974-01-01

    A method for automatic numerical generation of a general curvilinear coordinate system with coordinate lines coincident with all boundaries of a general multi-connected region containing any number of arbitrarily shaped bodies is presented. With this procedure the numerical solution of a partial differential system may be done on a fixed rectangular field with a square mesh with no interpolation required regardless of the shape of the physical boundaries, regardless of the spacing of the curvilinear coordinate lines in the physical field, and regardless of the movement of the coordinate system. Numerical solutions for the lifting and nonlifting potential flow about Joukowski and Karman-Trefftz airfoils using this coordinate system generation show excellent comparison with the analytic solutions. The application to fields with multiple bodies is illustrated by a potential flow solution for multiple airfoils.

  10. Localization of Anterosuperior Point of Transverse-sigmoid Sinus Junction Using a Reference Coordinate System on Lateral Skull Surface

    PubMed Central

    Li, Rui-Chun; Liu, Ji-Feng; Li, Kuo; Qi, Lei; Yan, Si-Yao; Wang, Mao-De; Xie, Wan-Fu

    2016-01-01

    Background: During craniotomies using the transpetrosal-presigmoid approach, exposure of the sigmoid sinus remains an essential but hazardous step. In such procedures, accurate localization of the anterosuperior point of the transverse-sigmoid sinus junction (ASTS) is very important for reducing surgical morbidity. This study aimed to create an accurate and practical method for identifying the ASTS. Methods: On the lateral surfaces of 40 adult skulls (19 male skulls and 21 female skulls), a rectangular coordinate system was defined to measure the x and y coordinates of two points: the ASTS and the squamosal-parietomastoid suture junction (SP). With the coordinate system, the distribution characteristics of the ASTS were statistically analyzed and the differences between the ASTS and SP were investigated. Results: For ASTS-x, significant differences were found in different sides (P = 0.020); the ASTS-x in male skulls was significantly higher on the right side (P = 0.017); there was no significant difference between the sides in female skulls. There were no significant differences in gender or interaction of gender and side for ASTS-x, and for ASTS-y, there were no significant differences in side, gender, or interaction of gender and side. For both sides combined, the mean ASTS-x was significantly higher than the mean SP-x (P = 0.003) and the mean ASTS-y was significantly higher than the mean SP-y (P = 0.011). Conclusions: This reference coordinate system may be an accurate and practical method for identifying the ASTS during presigmoid craniotomy. The SP might be difficult to find during presigmoid craniotomy and, therefore, it is not always a reliable landmark for defining the ASTS. PMID:27453235

  11. Testing proprioception in intrinsic and extrinsic coordinate systems: is there a difference?

    PubMed

    Iandolo, Riccardo; Squeri, Valentina; De Santis, Dalia; Giannoni, Psiche; Morasso, Pietro; Casadio, Maura

    2014-01-01

    An intact position sense is considered important for neuromotor recovery, but the available methods and protocols for its assessment are still limited. In the clinical practice it is generally tested trough a bimanual position matching test, that consists of replicating with one arm the angular positions of the other arm in space (intrinsic coordinates matching). However, the same test could be carried out by matching the hand location in space (extrinsic coordinates matching). Is there any difference between the procedures that may be relevant to the evaluation of position sense deficits? In this study we compared the performance of eight right handed subjects and two stroke survivors with left hemiparesis performing the test in the two conditions. A robotic manipulandum passively moved the left arm of the participants in twenty-four positions in the workspace. Subjects had to match the left arm position with their right arm either in intrinsic or extrinsic coordinates. The results show that all the subjects (impaired and controls) performed better when using the extrinsic paradigm. PMID:25571597

  12. Exploring chemical reactivity of complex systems with path-based coordinates: role of the distance metric.

    PubMed

    Zinovjev, Kirill; Tuñón, Iñaki

    2014-09-01

    Path-based reaction coordinates constitute a valuable tool for free-energy calculations in complex processes. When a reference path is defined by means of collective variables, a nonconstant distance metric that incorporates the nonorthonormality of these variables should be taken into account. In this work, we show that, accounting for the correct metric tensor, these kind of variables can provide iso-hypersurfaces that coincide with the iso-committor surfaces and that activation free energies equal the value that would be obtained if the committor function itself were used as reaction coordinate. The advantages of the incorporation of the variable metric tensor are illustrated with the analysis of the enzymatic reaction catalyzed by isochorismate-pyruvate lyase. Hybrid QM/MM techniques are used to obtain the free energy profile and to analyze reactive trajectories initiated at the transition state. For this example, the committor histogram is peaked at 0.5 only when a variable metric tensor is incorporated in the definition of the path-based coordinate. PMID:24986052

  13. Absolute cavity pyrgeometer

    DOEpatents

    Reda, Ibrahim

    2013-10-29

    Implementations of the present disclosure involve an apparatus and method to measure the long-wave irradiance of the atmosphere or long-wave source. The apparatus may involve a thermopile, a concentrator and temperature controller. The incoming long-wave irradiance may be reflected from the concentrator to a thermopile receiver located at the bottom of the concentrator to receive the reflected long-wave irradiance. In addition, the thermopile may be thermally connected to a temperature controller to control the device temperature. Through use of the apparatus, the long-wave irradiance of the atmosphere may be calculated from several measurements provided by the apparatus. In addition, the apparatus may provide an international standard of pyrgeometers' calibration that is traceable back to the International System of Units (SI) rather than to a blackbody atmospheric simulator.

  14. [Geriatrics: an absolute necessity].

    PubMed

    Oostvogel, F J

    1982-02-01

    The medical care for elderly people could be greatly improved. If no specific attention is paid immediately, namely through the various training courses and by way of further and part-time schooling, then this medical care will remain unsatisfactory. This situation worsens continually due to the growing number of elderly people and, within this group, a much higher rate of very aged people. Increasing the care in institutions is altogether unsatisfactory. The problem should be dealt with structurally and the emphasis placed upon prevention and early-diagnosis. There is an urgent need for an integrated method, keeping in mind the limits of the elderly person, from the physical, psychological and social aspects. This demands teamwork in a multidisciplinary system inside as well as outside the institutions. It demands a thorough knowledge of geriatrics based upon gerontology. Geriatricians are urgently needed in this development together with doctors in nursing homes, general practitioners and specialists, so that the necessary care may be established as quickly as possible. PMID:7101393

  15. Modulation of the central melanocortin system by leptin, insulin, and serotonin: co-ordinated actions in a dispersed neuronal network

    PubMed Central

    Williams, Kevin W.; Scott, Michael M.; Elmquist, Joel K.

    2011-01-01

    Over the past century, prevalent models of energy and glucose homeostasis have been developed from a better understanding of the neural circuits underlying obesity and diabetes. From the early hypothalamic lesion reports to the more recent pharmacological and molecular/genetic studies, the hypothalamic melanocortin system has been shown to play a critical role in the regulation of metabolism. This review attempts to highlight contributions to our current understanding of how numerous neuromodulators (leptin, insulin, and serotonin) integrate with the central melanocortin system to coordinate alterations in energy and glucose balance. PMID:21211525

  16. Transformation from proper time on earth to coordinate time in solar system barycentric space-time frame of reference

    NASA Technical Reports Server (NTRS)

    Moyer, T. D.

    1976-01-01

    An expression was derived for the time transformation t - tau, where t is coordinate time in the solar system barycentric space-time frame of reference and tau is proper time obtained from a fixed atomic clock on earth. This transformation is suitable for use in the computation of high-precision earth-based range and Doppler observables of a spacecraft or celestial body located anywhere in the solar system; it can also be used in obtaining computed values of very long baseline interferometry data types. The formulation for computing range and Doppler observables, which is an explicit function of the transformation t - tau, is described briefly.

  17. IVS Technology Coordinator Report

    NASA Technical Reports Server (NTRS)

    Whitney, Alan

    2013-01-01

    This report of the Technology Coordinator includes the following: 1) continued work to implement the new VLBI2010 system, 2) the 1st International VLBI Technology Workshop, 3) a VLBI Digital- Backend Intercomparison Workshop, 4) DiFX software correlator development for geodetic VLBI, 5) a review of progress towards global VLBI standards, and 6) a welcome to new IVS Technology Coordinator Bill Petrachenko.

  18. A Direct Method for Mapping the Center of Pressure Measured by an Insole Pressure Sensor System to the Shoe's Local Coordinate System.

    PubMed

    Weaver, Brian T; Braman, Jerrod E; Haut, Roger C

    2016-06-01

    A direct method to express the center of pressure (CoP) measured by an insole pressure sensor system (IPSS) into a known coordinate system measured by motion tracking equipment is presented. A custom probe was constructed with reflective markers to allow its tip to be precisely tracked with motion tracking equipment. This probe was utilized to activate individual sensors on an IPSS that was placed in a shoe fitted with reflective markers used to establish a local shoe coordinate system. When pressed onto the IPSS the location of the probe's tip was coincident with the CoP measured by the IPSS (IPSS-CoP). Two separate pushes (i.e., data points) were used to develop vectors in each respective coordinate system. Simple vector mathematics determined the rotational and translational components of the transformation matrix needed to express the IPSS-CoP into the local shoe coordinate system. Validation was performed by comparing IPSS-CoP with an embedded force plate measured CoP (FP-CoP) from data gathered during kinematic trials. Six male subjects stood on an embedded FP and performed anterior/posterior (AP) sway, internal rotation, and external rotation of the body relative to a firmly planted foot. The IPSS-CoP was highly correlated with the FP-CoP for all motions, root mean square errors (RMSRRs) were comparable to other research, and there were no statistical differences between the displacement of the IPSS-CoP and FP-CoP for both the AP and medial/lateral (ML) axes, respectively. The results demonstrated that this methodology could be utilized to determine the transformation variables need to express IPSS-CoP into a known coordinate system measured by motion tracking equipment and that these variables can be determined outside the laboratory anywhere motion tracking equipment is available. PMID:27109294

  19. Technology coordination

    NASA Technical Reports Server (NTRS)

    Hartman, Steven

    1992-01-01

    Viewgraphs on technology coordination are provided. Topics covered include: technology coordination process to date; goals; how the Office of Aeronautics and Space Technology (OAST) can support the Office of Space Science and Applications (OSSA); how OSSA can support OAST; steps to technology transfer; and recommendations.

  20. Absolute distance measurements by variable wavelength interferometry

    NASA Astrophysics Data System (ADS)

    Bien, F.; Camac, M.; Caulfield, H. J.; Ezekiel, S.

    1981-02-01

    This paper describes a laser interferometer which provides absolute distance measurements using tunable lasers. An active feedback loop system, in which the laser frequency is locked to the optical path length difference of the interferometer, is used to tune the laser wavelengths. If the two wavelengths are very close, electronic frequency counters can be used to measure the beat frequency between the two laser frequencies and thus to determine the optical path difference between the two legs of the interferometer.

  1. GUI for Coordinate Measurement of an Image for the Estimation of Geometric Distortion of an Opto-electronic Display System

    NASA Astrophysics Data System (ADS)

    Saini, Surender Singh; Sardana, Harish Kumar; Pattnaik, Shyam Sundar

    2016-07-01

    Conventional image editing software in combination with other techniques are not only difficult to apply to an image but also permits a user to perform some basic functions one at a time. However, image processing algorithms and photogrammetric systems are developed in the recent past for real-time pattern recognition applications. A graphical user interface (GUI) is developed which can perform multiple functions simultaneously for the analysis and estimation of geometric distortion in an image with reference to the corresponding distorted image. The GUI measure, record, and visualize the performance metric of X/Y coordinates of one image over the other. The various keys and icons provided in the utility extracts the coordinates of distortion free reference image and the image with geometric distortion. The error between these two corresponding points gives the measure of distortion and also used to evaluate the correction parameters for image distortion. As the GUI interface minimizes human interference in the process of geometric correction, its execution just requires use of icons and keys provided in the utility; this technique gives swift and accurate results as compared to other conventional methods for the measurement of the X/Y coordinates of an image.

  2. Soft Regulation with Crowd Recommendation: Coordinating Self-Interested Agents in Sociotechnical Systems under Imperfect Information

    PubMed Central

    2016-01-01

    Regulating emerging industries is challenging, even controversial at times. Under-regulation can result in safety threats to plant personnel, surrounding communities, and the environment. Over-regulation may hinder innovation, progress, and economic growth. Since one typically has limited understanding of, and experience with, the novel technology in practice, it is difficult to accomplish a properly balanced regulation. In this work, we propose a control and coordination policy called soft regulation that attempts to strike the right balance and create a collective learning environment. In soft regulation mechanism, individual agents can accept, reject, or partially accept the regulator’s recommendation. This non-intrusive coordination does not interrupt normal operations. The extent to which an agent accepts the recommendation is mediated by a confidence level (from 0 to 100%). Among all possible recommendation methods, we investigate two in particular: the best recommendation wherein the regulator is completely informed and the crowd recommendation wherein the regulator collects the crowd’s average and recommends that value. We show by analysis and simulations that soft regulation with crowd recommendation performs well. It converges to optimum, and is as good as the best recommendation for a wide range of confidence levels. This work sheds a new theoretical perspective on the concept of the wisdom of crowds. PMID:26977699

  3. Soft Regulation with Crowd Recommendation: Coordinating Self-Interested Agents in Sociotechnical Systems under Imperfect Information.

    PubMed

    Luo, Yu; Iyengar, Garud; Venkatasubramanian, Venkat

    2016-01-01

    Regulating emerging industries is challenging, even controversial at times. Under-regulation can result in safety threats to plant personnel, surrounding communities, and the environment. Over-regulation may hinder innovation, progress, and economic growth. Since one typically has limited understanding of, and experience with, the novel technology in practice, it is difficult to accomplish a properly balanced regulation. In this work, we propose a control and coordination policy called soft regulation that attempts to strike the right balance and create a collective learning environment. In soft regulation mechanism, individual agents can accept, reject, or partially accept the regulator's recommendation. This non-intrusive coordination does not interrupt normal operations. The extent to which an agent accepts the recommendation is mediated by a confidence level (from 0 to 100%). Among all possible recommendation methods, we investigate two in particular: the best recommendation wherein the regulator is completely informed and the crowd recommendation wherein the regulator collects the crowd's average and recommends that value. We show by analysis and simulations that soft regulation with crowd recommendation performs well. It converges to optimum, and is as good as the best recommendation for a wide range of confidence levels. This work sheds a new theoretical perspective on the concept of the wisdom of crowds. PMID:26977699

  4. Development of a model of machine hand eye coordination and program specifications for a topological machine vision system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A unified approach to computer vision and manipulation is developed which is called choreographic vision. In the model, objects to be viewed by a projected robot in the Viking missions to Mars are seen as objects to be manipulated within choreographic contexts controlled by a multimoded remote, supervisory control system on Earth. A new theory of context relations is introduced as a basis for choreographic programming languages. A topological vision model is developed for recognizing objects by shape and contour. This model is integrated with a projected vision system consisting of a multiaperture image dissector TV camera and a ranging laser system. System program specifications integrate eye-hand coordination and topological vision functions and an aerospace multiprocessor implementation is described.

  5. Svalbard Integrated Arctic Earth Observing System - A New Coordinated Foundation for Environmental Services in and around Svalbard

    NASA Astrophysics Data System (ADS)

    Lilja Bye, Bente

    2015-04-01

    Svalbard Integrated Earth Observing System (SIOS) is an international infrastructure project. There were 28 partners from Europe and Asia involved in the preparatory phase of this ESFRI project. The essential objectives are to establish a mechanism for integration among the existing research institutions in Svalbard to create a joint state-of-the-art observing system in Earth System Science, and better coordinated services for the International Research community with respect to access, data and knowledge management, logistics and training. In addition to the SIOS members various data services, SIOS itself will provide a few new services such as processed satellite data (from Copernicus' Sentinels as well as others) and combined in-situ and satellite data. All in all SIOS represent a new capacity and foundation for more Earth System Science, including climate and environment, data services in and around Svalbard. A presentation of SIOS including time schedule for implementation of the basic services will be given.

  6. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  7. Velocity-correction schemes for the incompressible Navier-Stokes equations in general coordinate systems

    NASA Astrophysics Data System (ADS)

    Serson, D.; Meneghini, J. R.; Sherwin, S. J.

    2016-07-01

    This paper presents methods of including coordinate transformations into the solution of the incompressible Navier-Stokes equations using the velocity-correction scheme, which is commonly used in the numerical solution of unsteady incompressible flows. This is important when the transformation leads to symmetries that allow the use of more efficient numerical techniques, like employing a Fourier expansion to discretize a homogeneous direction. Two different approaches are presented: in the first approach all the influence of the mapping is treated explicitly, while in the second the mapping terms related to convection are treated explicitly, with the pressure and viscous terms treated implicitly. Through numerical results, we demonstrate how these methods maintain the accuracy of the underlying high-order method, and further apply the discretisation strategy to problems where mixed Fourier-spectral/hp element discretisations can be applied, thereby extending the usefulness of this discretisation technique.

  8. Approaches to analysis of handwriting as a task of coordinating a redundant motor system

    PubMed Central

    Latash, Mark L.; Danion, Frederic; Scholz, John F.; Zatsiorsky, Vladimir M.; Schöner, Gregor

    2010-01-01

    We consider problems of motor redundancy associated with handwriting using the framework of the uncontrolled manifold (UCM) hypothesis. Recent studies of finger coordination during force production tasks have demonstrated that the UCM-hypothesis provides a fruitful framework for analysis of multi-finger actions. In particular, it has been shown that during relatively fast force changes, finger force variance across trials is structured such that a time pattern of total moment produced by the fingers with respect to a point between the two most lateral fingers involved in the task is stabilized while the time pattern of total force may be destabilized. The findings of selective moment stabilization have been interpreted as being conditioned by the experience with everyday motor tasks that commonly pose more strict requirements to stabilization of total moment than to stabilization of total force. We discuss implications of these findings for certain features of handwriting seen in elderly, children, patients with neurological disorders, and forgers. PMID:12667747

  9. Coordinates Analyses of Hydrated Interplanetary Dust Particles: Samples of Primitive Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Snead, C.; McKeegan, K. D.

    2016-01-01

    Interplanetary dust particles (IDPs) collected in the stratosphere fall into two major groups: an anhydrous group termed the "chondritic-porous (CP) IDPs and a hydrated group, the "chondritic-smooth (CS) IDPs, although rare IDPs with mineralogies intermediate between these two groups are known [1]. The CP-IDPs are widely believed to be derived from cometary sources [e.g. 2]. The hydrated CS-IDPs show mineralogical similarities to heavily aqueously altered carbonaceous chondrites (e.g. CI chondrites), but only a few have been directly linked to carbonaceous meteorite parent bodies [e.g. 3, 4]. Most CS-IDPs show distinct chemical [5] and oxygen isotopic composition differences [6-8] from primitive carbonaceous chondrites. Here, we report on our coordinated analyses of a suite of carbon-rich CS-IDPs focusing on their bulk compositions, mineralogy, mineral chemistry, and isotopic compositions.

  10. Absolute enantioselective separation: optical activity ex machina.

    PubMed

    Bielski, Roman; Tencer, Michal

    2005-11-01

    The paper describes methodology of using three independent macroscopic factors affecting molecular orientation to accomplish separation of a racemic mixture without the presence of any other chiral compounds, i. e., absolute enantioselective separation (AES) which is an extension of a concept of applying these factors to absolute asymmetric synthesis. The three factors may be applied simultaneously or, if their effects can be retained, consecutively. The resulting three mutually orthogonal or near orthogonal directors constitute a true chiral influence and their scalar triple product is the measure of the chirality of the system. AES can be executed in a chromatography-like microfluidic process in the presence of an electric field. It may be carried out on a chemically modified flat surface, a monolithic polymer column made of a mesoporous material, each having imparted directional properties. Separation parameters were estimated for these media and possible implications for the natural homochirality are discussed. PMID:16342798

  11. Computerized parts list system coordinates engineering releases, parts control, and manufacturing planning

    NASA Technical Reports Server (NTRS)

    Horton, W.; Kinsey, M.

    1967-01-01

    Computerized parts list system compiles and summarize all pertinent and available information on complex new systems. The parts list system consists of three computer subroutines - list of parts, parts numerical sequence list, and specifications list.

  12. Accurate prediction of V1 location from cortical folds in a surface coordinate system

    PubMed Central

    Hinds, Oliver P.; Rajendran, Niranjini; Polimeni, Jonathan R.; Augustinack, Jean C.; Wiggins, Graham; Wald, Lawrence L.; Rosas, H. Diana; Potthast, Andreas; Schwartz, Eric L.; Fischl, Bruce

    2008-01-01

    Previous studies demonstrated substantial variability of the location of primary visual cortex (V1) in stereotaxic coordinates when linear volume-based registration is used to match volumetric image intensities (Amunts et al., 2000). However, other qualitative reports of V1 location (Smith, 1904; Stensaas et al., 1974; Rademacher et al., 1993) suggested a consistent relationship between V1 and the surrounding cortical folds. Here, the relationship between folds and the location of V1 is quantified using surface-based analysis to generate a probabilistic atlas of human V1. High-resolution (about 200 μm) magnetic resonance imaging (MRI) at 7 T of ex vivo human cerebral hemispheres allowed identification of the full area via the stria of Gennari: a myeloarchitectonic feature specific to V1. Separate, whole-brain scans were acquired using MRI at 1.5 T to allow segmentation and mesh reconstruction of the cortical gray matter. For each individual, V1 was manually identified in the high-resolution volume and projected onto the cortical surface. Surface-based intersubject registration (Fischl et al., 1999b) was performed to align the primary cortical folds of individual hemispheres to those of a reference template representing the average folding pattern. An atlas of V1 location was constructed by computing the probability of V1 inclusion for each cortical location in the template space. This probabilistic atlas of V1 exhibits low prediction error compared to previous V1 probabilistic atlases built in volumetric coordinates. The increased predictability observed under surface-based registration suggests that the location of V1 is more accurately predicted by the cortical folds than by the shape of the brain embedded in the volume of the skull. In addition, the high quality of this atlas provides direct evidence that surface-based intersubject registration methods are superior to volume-based methods at superimposing functional areas of cortex, and therefore are better

  13. Consensus panel on a cochlear coordinate system applicable in histological, physiological and radiological studies of the human cochlea

    PubMed Central

    Verbist, Berit M; Skinner, Margaret W; Cohen, Lawrence T; Leake, Patricia A.; James, Chris; Boëx, Colette; Holden, Timothy A; Finley, Charles C; Roland, Peter S; Roland, J. Thomas; Haller, Matt; Patrick, Jim F; Jolly, Claude N; Faltys, Mike A; Briaire, Jeroen J; Frijns, Johan HM

    2010-01-01

    Hypothesis An objective cochlear framework, for evaluation of the cochlear anatomy and description of the position of an implanted cochlear implant electrode, would allow the direct comparison of measures performed within the various sub-disciplines involved in cochlear implant research. Background Research on the human cochlear anatomy in relation to tonotopy and cochlear implantation is conducted by specialists from numerous disciplines such as histologists, surgeons, physicists, engineers, audiologists and radiologists. To allow accurate comparisons between and combinations of previous and forthcoming scientific and clinical studies, cochlear structures and electrode positions must be specified in a consistent manner. Methods Researchers with backgrounds in the various fields of inner ear research as well as representatives of the different manufacturers of cochlear implants (Advanced Bionics Corp, Med-El, Cochlear Corp) were involved in consensus meetings held in Dallas, March 2005 and Asilomar, August 2005. Existing coordinate systems were evaluated and requisites for an objective cochlear framework were discussed. Results The consensus panel agreed upon a 3-dimensional, cylindrical coordinate system of the cochlea using the “Cochlear View” as a basis and choosing a z-axis through the modiolus. The zero reference angle was chosen at the centre of the round window, which has a close relationship to the basal end of the Organ of Corti. Conclusions Consensus was reached on an objective cochlear framework, allowing the outcomes of studies from different fields of research to be compared directly. PMID:20147866

  14. Absolute Priority for a Vehicle in VANET

    NASA Astrophysics Data System (ADS)

    Shirani, Rostam; Hendessi, Faramarz; Montazeri, Mohammad Ali; Sheikh Zefreh, Mohammad

    In today's world, traffic jams waste hundreds of hours of our life. This causes many researchers try to resolve the problem with the idea of Intelligent Transportation System. For some applications like a travelling ambulance, it is important to reduce delay even for a second. In this paper, we propose a completely infrastructure-less approach for finding shortest path and controlling traffic light to provide absolute priority for an emergency vehicle. We use the idea of vehicular ad-hoc networking to reduce the imposed travelling time. Then, we simulate our proposed protocol and compare it with a centrally controlled traffic light system.

  15. Using a co-ordinate measuring machine to align multiple element large optical systems

    NASA Astrophysics Data System (ADS)

    Howick, Eleanor F.; Cochrane, David; Meier, David

    2007-09-01

    A high precision Co-ordinate Measuring Machine (CMM) is an ideal instrument for aligning mid to large (400 to 600 mm) diameter multiple element lens assemblies. The CMM has many advantages over simpler dial gauge and rotary table setups. For example, these traditional methods do not necessarily make it easy to separate the out-of-roundness of a lens or its mounting cell, from a misalignment of the lens and cell. With a CMM, the 'as made' geometry of both the lenses and their mounting cells can be determined before the mounting and alignment process begins. By considering the actual shape of the lenses and cells, adjustments can be made during the alignment process to ensure that the complete assembly meets the designer's tolerances. This paper discusses CMM alignment techniques used and experience gained while assembling large lens corrector assemblies (for example, the three element Prime Focus Unit for FMOS, the Subaru Fibre Multi-Object Spectrograph) destined for installation in astronomical telescopes.

  16. Relative errors can cue absolute visuomotor mappings.

    PubMed

    van Dam, Loes C J; Ernst, Marc O

    2015-12-01

    When repeatedly switching between two visuomotor mappings, e.g. in a reaching or pointing task, adaptation tends to speed up over time. That is, when the error in the feedback corresponds to a mapping switch, fast adaptation occurs. Yet, what is learned, the relative error or the absolute mappings? When switching between mappings, errors with a size corresponding to the relative difference between the mappings will occur more often than other large errors. Thus, we could learn to correct more for errors with this familiar size (Error Learning). On the other hand, it has been shown that the human visuomotor system can store several absolute visuomotor mappings (Mapping Learning) and can use associated contextual cues to retrieve them. Thus, when contextual information is present, no error feedback is needed to switch between mappings. Using a rapid pointing task, we investigated how these two types of learning may each contribute when repeatedly switching between mappings in the absence of task-irrelevant contextual cues. After training, we examined how participants changed their behaviour when a single error probe indicated either the often-experienced error (Error Learning) or one of the previously experienced absolute mappings (Mapping Learning). Results were consistent with Mapping Learning despite the relative nature of the error information in the feedback. This shows that errors in the feedback can have a double role in visuomotor behaviour: they drive the general adaptation process by making corrections possible on subsequent movements, as well as serve as contextual cues that can signal a learned absolute mapping. PMID:26280315

  17. Computing and Systems Applied in Support of Coordinated Energy, Environmental, and Climate Planning

    EPA Science Inventory

    This talk focuses on how Dr. Loughlin is applying Computing and Systems models, tools and methods to more fully understand the linkages among energy systems, environmental quality, and climate change. Dr. Loughlin will highlight recent and ongoing research activities, including: ...

  18. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  19. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  20. Setting Standards at the Forefront of Delivery System Reform: Aligning Care Coordination Quality Measures for Multiple Chronic Conditions

    PubMed Central

    DuGoff, Eva H.; Dy, Sydney; Giovannetti, Erin R.; Leff, Bruce; Boyd, Cynthia M.

    2015-01-01

    The primary study objective is to assess how three major health reform care coordination initiatives (Accountable Care Organizations, Independence at Home, and Community-based Care Transitions) measure concepts critical to care coordination for people with multiple chronic conditions. We find that there are major differences in quality measurement across these three large and politically important programs. Quality measures currently used or proposed for these new health reform-related programs addressing care coordination primarily capture continuity of care. Other key areas of care coordination, such as care transitions, patient-centeredness, and cross-cutting care across multiple conditions are infrequently addressed. The lack of a comprehensive and consistent measure set for care coordination will pose challenges for health care providers and policymakers who seek, respectively, to provide and reward well-coordinated care. In addition, this heterogeneity in measuring care coordination quality will generate new information, but will inhibit comparisons between these care coordination programs. PMID:24004040

  1. Setting standards at the forefront of delivery system reform: aligning care coordination quality measures for multiple chronic conditions.

    PubMed

    DuGoff, Eva H; Dy, Sydney; Giovannetti, Erin R; Leff, Bruce; Boyd, Cynthia M

    2013-01-01

    The primary study objective is to assess how three major health reform care coordination initiatives (Accountable Care Organizations, Independence at Home, and Community-Based Care Transitions) measure concepts critical to care coordination for people with multiple chronic conditions. We find that there are major differences in quality measurement across these three large and politically important programs. Quality measures currently used or proposed for these new health reform-related programs addressing care coordination primarily capture continuity of care. Other key areas of care coordination, such as care transitions, patient-centeredness, and cross-cutting care across multiple conditions are infrequently addressed. The lack of a comprehensive and consistent measure set for care coordination will pose challenges for healthcare providers and policy makers who seek, respectively, to provide and reward well-coordinated care. In addition, this heterogeneity in measuring care coordination quality will generate new information, but will inhibit comparisons between these care coordination programs. PMID:24004040

  2. The coordinate transformation method for design of polarizers on HL-2A electron cyclotron resonance heating and current drive systems

    SciTech Connect

    Xia, D. H.; Huang, M.; Zhou, J.; Rao, J.; Zhuang, G.

    2013-10-15

    Polarizers are widely used to change the polarization of millimeter waves on the electron cyclotron resonance heating and current drive (ECRH and CD) systems. A new method based on the coordinate transformation and the Fourier expansion (the so-called C-method) has been developed for design of polarizers on the HL-2A ECRH and CD systems. This method transforms the grating problem to an eigenvalue problem, making it easy and clear to understand and solve. The comparison between the C-method, the integral method, and the low power test results is presented. It indicates that the C-method can be considered as a rigorous numerical method for the design of polarizers. Finally, two polarizers were designed based on the C-method which can be used together to achieve almost arbitrary polarization.

  3. Semantic Registration and Discovery System of Subsystems and Services within an Interoperable Coordination Platform in Smart Cities.

    PubMed

    Rubio, Gregorio; Martínez, José Fernán; Gómez, David; Li, Xin

    2016-01-01

    Smart subsystems like traffic, Smart Homes, the Smart Grid, outdoor lighting, etc. are built in many urban areas, each with a set of services that are offered to citizens. These subsystems are managed by self-contained embedded systems. However, coordination and cooperation between them are scarce. An integration of these systems which truly represents a "system of systems" could introduce more benefits, such as allowing the development of new applications and collective optimization. The integration should allow maximum reusability of available services provided by entities (e.g., sensors or Wireless Sensor Networks). Thus, it is of major importance to facilitate the discovery and registration of available services and subsystems in an integrated way. Therefore, an ontology-based and automatic system for subsystem and service registration and discovery is presented. Using this proposed system, heterogeneous subsystems and services could be registered and discovered in a dynamic manner with additional semantic annotations. In this way, users are able to build customized applications across different subsystems by using available services. The proposed system has been fully implemented and a case study is presented to show the usefulness of the proposed method. PMID:27347965

  4. Global disaster satellite communications system for disaster assessment and relief coordination

    NASA Technical Reports Server (NTRS)

    Leroy, B. E.

    1979-01-01

    The global communication requirements for disaster assistance and examines operationally feasible satellite system concepts and the associated system parameters are analyzed. Some potential problems associated with the current method of providing disaster assistance and a scenario for disaster assistance relying on satellite communications are described. Historical statistics are used with the scenario to assess service requirements. Both present and planned commercially available systems are considered. The associated global disaster communication yearly service costs are estimated.

  5. Finding economies of scale and coordination of care along the continuum to achieve true system integration.

    PubMed

    Davies, Maura

    2014-01-01

    Is it time to reduce hospitals and replace them with digitally enabled distributed specialty service delivery channels that focus on ambulatory care, urgent care, and patient reactivation? Is delivery system integration immaterial if care is standardized and supported by integrated information systems? Maybe Lean methodology needs to be applied across the entire delivery systems, not just within its component functions and processes. Comments are offered on each of these perspectives. PMID:25671876

  6. [Workshop for coordinating South Carolina`s pre-college systemic initiatives in science and mathematics

    SciTech Connect

    Not Available

    1992-12-31

    On December 19, 1991, South Carolina`s Governor, established the Governor`s Mathematics and Sciences Advisory Board (MSAB) to articulate a vision and develop a statewide plan for improving science and mathematics education in South Carolina. The MSAB recognized that systemic change must occur if the achievement levels of students in South Carolina are to improve in a dramatic way. The MSAB holds two fundamental beliefs about systemic change: (1) All the elements of the science and mathematics education system must be working in harmony towards the same vision; and (2) Each element of the system must be held against high standards and progress must be assessed regularly against these standards.

  7. Forebody and afterbody solutions of the Navier-Stokes equations for supersonic flow over blunt bodies in a generalized orthogonal coordinate system

    NASA Technical Reports Server (NTRS)

    Gnoffo, P. A.

    1978-01-01

    A coordinate transformation, which can approximate many different two-dimensional and axisymmetric body shapes with an analytic function, is used as a basis for solving the Navier-Stokes equations for the purpose of predicting 0 deg angle of attack supersonic flow fields. The transformation defines a curvilinear, orthogonal coordinate system in which coordinate lines are perpendicular to the body and the body is defined by one coordinate line. This system is mapped in to a rectangular computational domain in which the governing flow field equations are solved numerically. Advantages of this technique are that the specification of boundary conditions are simplified and, most importantly, the entire flow field can be obtained, including flow in the wake. Good agreement has been obtained with experimental data for pressure distributions, density distributions, and heat transfer over spheres and cylinders in supersonic flow. Approximations to the Viking aeroshell and to a candidate Jupiter probe are presented and flow fields over these shapes are calculated.

  8. Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system

    NASA Technical Reports Server (NTRS)

    Drury, H. A.; Van Essen, D. C.; Anderson, C. H.; Lee, C. W.; Coogan, T. A.; Lewis, J. W.

    1996-01-01

    We present a new method for generating two-dimensional maps of the cerebral cortex. Our computerized, two-stage flattening method takes as its input any well-defined representation of a surface within the three-dimensional cortex. The first stage rapidly converts this surface to a topologically correct two-dimensional map, without regard for the amount of distortion introduced. The second stage reduces distortions using a multiresolution strategy that makes gross shape changes on a coarsely sampled map and further shape refinements on progressively finer resolution maps. We demonstrate the utility of this approach by creating flat maps of the entire cerebral cortex in the macaque monkey and by displaying various types of experimental data on such maps. We also introduce a surface-based coordinate system that has advantages over conventional stereotaxic coordinates and is relevant to studies of cortical organization in humans as well as non-human primates. Together, these methods provide an improved basis for quantitative studies of individual variability in cortical organization.

  9. Luminescent molecular hybrid system derived from 2-furancarboxylic acid and silylated monomer coordinated to rare earth ions

    NASA Astrophysics Data System (ADS)

    Sui, Yu-Long; Yan, Bing

    2006-04-01

    In this study, silica-based organic-inorganic hybrids were prepared by the sol-gel method. Tetraethoxysilane (abbreviated as TEOS) and a kind of monomer (abbreviated as FA-APES) derived from modified 2-furancarboxylic acid (abbreviated as FA) with (3-aminopropyl)triethoxysilane (abbreviated as APES) were used as the inorganic and organic fragments, respectively. Coordination reaction between lanthanides (europium and terbium ions) and sbnd C dbnd O group of the monomer happened simultaneously. And after days of aging process the resultant materials showed characteristic luminescence of lanthanides. The enhancement of luminescence can be seen by the comparison with simply doped lanthanide hybrid systems. And it can be explained by the coordination ability of the organic counterpart. IR, NMR, UV-vis absorption, low-temperature phosphorescence spectroscopy and fluorescence spectroscopy were applied to characterize and the above spectroscopic data revealed that the triplet state energy of organic ligand matches with the emissive energy level of lanthanides (especially of Tb 3+).

  10. Determination of Rectification Corrections for Semi Gantry Crane Rail Axes in the Local 3D Coordinate System

    NASA Astrophysics Data System (ADS)

    Filipiak, Daria; Kamiński, Waldemar

    2015-02-01

    Electronic tacheometers are currently the standard instruments used in geodetic work, including also geodetic engineering measurements. The main advantage connected with this equipment is among others high accuracy of the measurement and thus high accuracy of the final determinations represented for example by the points' coordinates. One of many applications of the tacheometers is the measurement of crane rail axes. This measurement is based on polar method and it allows to get the spatial coordinates of points in 3D local system. The standard technology of measurement of crane rail axes and development of its calculations' results is well-known and widely presented in the subject literature. At the same time new methods of observations results evaluation are developing. Some new proposals for the development of measurement results were already presented in (Kamiński, 2013). This paper is a generalisation of the paper quoted above. The authors developed the concept which was presented there by a proposal for determining rectification corrections for semi gantry crane rail axes. To carried out the task, the parametric method with conditions on parameters was used. Moreover the practical tests on simulated measurement results were conducted. The results obtained from alignment confirmed the theoretical assumptions. Despite the fact that analyses were carried out only on the simulated data, it is already possible to say that presented method for determination of rectification corrections for crane rail axes can be used for development of the observations from real measurement.

  11. 47 CFR 25.272 - General inter-system coordination procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... network control center which will have the responsibility to do the following: (1) Monitor space-to-Earth transmissions in its system (thus indirectly monitoring uplink earth station transmissions in its system) and (2... and correct the problem promptly. (b) (c) The transmitting earth station licensee shall provide...

  12. 47 CFR 25.272 - General inter-system coordination procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... network control center which will have the responsibility to do the following: (1) Monitor space-to-Earth transmissions in its system (thus indirectly monitoring uplink earth station transmissions in its system) and (2... issues. (c) The transmitting earth station licensee shall provide the operator(s) of the satellites,...

  13. The Effect of System-Assigned Exemplar-Comparison Strategies on Acquisition of Coordinate Concepts.

    ERIC Educational Resources Information Center

    Allen, Brockenbrough S.

    The feasibility of guiding students of moderate aptitude to select appropriate learning strategies while they are learning an imaginary classification system was investigated in a study that contrasted the effect of system-assigned strategies for learning concepts with strategies selected by students. Subject-matter content was based on a set of…

  14. Coordinated power control of unified power flow controller and its application for enhancing dynamic power system performance

    NASA Astrophysics Data System (ADS)

    Fang, Wanliang

    This thesis focuses on reporting my research study on a problem area relating to use of Unified Power Flow Controller (UPFC) for coordinating load flow in power systems so as to enhance their static and dynamic performance by having more secure and economical operation and higher dynamic stability margin. UPFC is considered as one of the most promising devices for implementing the Flexible AC Transmission System (FACTS) concept. Although development of UPFC is still on an infant stage, probing into its impact on power system operation is actively pursued and significant effort has been devoted to put it forward as a practical FACTS device and as a challenging academic research object. In order to consider UPFC as a basic power system element, it has to be involved in associated load flow computation essentially for power system control analysis and operational planning. An up front problem for design engineers is therefore pointing to a need to modify existing load flow program so as to accommodate interactions of UPFCs. A lot of research output start coming out but their computational efficiency are not high enough. In this regard, I propose two methods to perform the UPFC embedded load flow calculation to cater for two different types of application. The first one caters for analyzing direct control of load flow on transmission lines with embedded UPFCs. In this type of problem, active and reactive power of the lines, as well as the magnitude of bus voltages are priori given. The load flow solution can then be obtained and enables the UPFC parameters to be determined with a significantly improved computational efficiency. The second one works in contrary to the first one by which parameters of UPFCs are given before hand and the load flow calculation is performed for conforming a feasible operation. It can be regarded as an indirect load flow control calculation which is useful in planning stage for incorporating UPFC into existing system and/or carrying out

  15. Semantic Registration and Discovery System of Subsystems and Services within an Interoperable Coordination Platform in Smart Cities

    PubMed Central

    Rubio, Gregorio; Martínez, José Fernán; Gómez, David; Li, Xin

    2016-01-01

    Smart subsystems like traffic, Smart Homes, the Smart Grid, outdoor lighting, etc. are built in many urban areas, each with a set of services that are offered to citizens. These subsystems are managed by self-contained embedded systems. However, coordination and cooperation between them are scarce. An integration of these systems which truly represents a “system of systems” could introduce more benefits, such as allowing the development of new applications and collective optimization. The integration should allow maximum reusability of available services provided by entities (e.g., sensors or Wireless Sensor Networks). Thus, it is of major importance to facilitate the discovery and registration of available services and subsystems in an integrated way. Therefore, an ontology-based and automatic system for subsystem and service registration and discovery is presented. Using this proposed system, heterogeneous subsystems and services could be registered and discovered in a dynamic manner with additional semantic annotations. In this way, users are able to build customized applications across different subsystems by using available services. The proposed system has been fully implemented and a case study is presented to show the usefulness of the proposed method. PMID:27347965

  16. Transient absolute robustness in stochastic biochemical networks.

    PubMed

    Enciso, German A

    2016-08-01

    Absolute robustness allows biochemical networks to sustain a consistent steady-state output in the face of protein concentration variability from cell to cell. This property is structural and can be determined from the topology of the network alone regardless of rate parameters. An important question regarding these systems is the effect of discrete biochemical noise in the dynamical behaviour. In this paper, a variable freezing technique is developed to show that under mild hypotheses the corresponding stochastic system has a transiently robust behaviour. Specifically, after finite time the distribution of the output approximates a Poisson distribution, centred around the deterministic mean. The approximation becomes increasingly accurate, and it holds for increasingly long finite times, as the total protein concentrations grow to infinity. In particular, the stochastic system retains a transient, absolutely robust behaviour corresponding to the deterministic case. This result contrasts with the long-term dynamics of the stochastic system, which eventually must undergo an extinction event that eliminates robustness and is completely different from the deterministic dynamics. The transiently robust behaviour may be sufficient to carry out many forms of robust signal transduction and cellular decision-making in cellular organisms. PMID:27581485

  17. Improving power transaction coordination techniques; A challenge for NSP system operators

    SciTech Connect

    Larson, J.A.; Will, B.F. ); Le, K.D.; Boyle, R.F.; Mousseau, T.E. )

    1989-01-01

    The authors report on the acquisition and utilization of an energy management system by Northern States Power Company (NSP). This paper details how the company has purchased hydro energy from a Canadian utility and how this transmission link is managed.

  18. Use of generalized curvilinear coordinate systems in electromagnetic and hybrid codes

    SciTech Connect

    Swift, D.W.

    1995-07-01

    The author develops a code to simulate the dynamics in the magnetosphere system. The calculation involves a single level, structured, curvilinear 2D mesh. The mesh density is varied to support regions which demand higher resolution.

  19. COORDINATED AV.

    ERIC Educational Resources Information Center

    CLEAVES, PAUL C.; AND OTHERS

    THE INSTRUCTIONAL MATERIALS CENTER IS LOCATED IN THE LOCAL HIGH SCHOOL AND SUPPLIES ALL SCHOOLS IN THE AREA. AUDIOVISUAL EQUIPMENT ORDERS, AFTER SELECTIONS ARE MADE BY THE CLASSROOM TEACHER, ARE PROCESSED BY THE CENTER, CONFIRMED AND DELIVERED BY TRUCK THREE TIMES EACH WEEK. EACH SCHOOL HAS A BUILDING COORDINATOR WHO CHECKS THE ORDERS INTO THE…

  20. Absolute calibration of the Auger fluorescence detectors

    SciTech Connect

    Bauleo, P.; Brack, J.; Garrard, L.; Harton, J.; Knapik, R.; Meyhandan, R.; Rovero, A.C.; Tamashiro, A.; Warner, D.

    2005-07-01

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the combined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.

  1. Mapping Health Outcome and Costs when Coordinating Local Information System Redesign.

    PubMed

    Walldius, Åke; Olve, Nils-Göran; Aminoff, Hedvig

    2015-01-01

    As costs for healthcare are rising in society, information systems are often seen as enablers of new cost-saving healthcare processes. But an on-going deployment of a wide range of new kinds of systems requires close attention to interoperability between new and legacy systems. Another challenge is to assure that the healthcare professions are given realistic opportunities to play an active part in designing the new ways of working that the new, integrated systems are designed to support. We argue that a feasible way to approach such a user participation in design of work processes and systems is to extend well known user-survey and strategy-mapping methods with the new value-based healthcare approach which invites health professionals to participate in strategic assessments of health outcome and costs along the care chain in which they work. We also argue that such a combination of practical research methods resonates well with Techno-Anthropology's foregrounding of ethical considerations to inform the interdisciplinary cross-fertilization of interactional competencies in health informatics research. PMID:26249201

  2. Quality control measurements for fluoroscopy systems in eight countries participating in the SENTINEL EU coordination action.

    PubMed

    Zoetelief, J; Schultz, F W; Kottou, S; Gray, L; O'Connor, U; Salat, D; Kepler, K; Kaplanis, P; Jankowski, J; Schreiner, A; Vassileva, J

    2008-01-01

    Quality control (QC) is becoming increasingly important in relation to the introduction of digital medical imaging systems using X rays. It was, therefore, decided to organise and perform a trial on image quality and physical measurements. The SENTINEL toolkit for QC measurements of fluoroscopy systems containing equipment and instructions for their use in the assessment of dose and image quality circulated among participants in the trial. The participants reported on their results. In the present contribution, the impact of the trial on the selected protocols is presented. The Medical Physics and Bioengineering protocol appeared to be useful for QC, and also for digital systems. The protocol needs an additional section, or an addition to each section, to state compliance with the requirements. The circular cross-sections of the Leeds test objects need adaptation for rectangular flat panel detector (FPD) systems. Only one participant was able to perform the monitor test using MoniQA. This is due to the fact that assistance is required from the suppliers of the X-ray systems. This problem needs to be solved to apply MoniQA in practice. PMID:18310607

  3. Vector analysis of bending waveguides by using a modified finite-difference method in a local cylindrical coordinate system.

    PubMed

    Xiao, Jinbiao; Sun, Xiaohan

    2012-09-10

    A vector mode solver for bending waveguides by using a modified finite-difference (FD) method is developed in a local cylindrical coordinate system, where the perfectly matched layer absorbing boundary conditions are incorporated. Utilizing Taylor series expansion technique and continuity condition of the longitudinal field components, a standard matrix eigenvalue equation without the averaged index approximation approach for dealing with the discrete points neighboring the dielectric interfaces is obtained. Complex effective indexes and field distributions of leaky modes for a typical rib bending waveguide and a silicon wire bend are presented, and solutions accord well with those from the film mode matching method, which shows the validity and utility of the established method. PMID:23037277

  4. A fractional step solution method for the unsteady incompressible Navier-Stokes equations in generalized coordinate systems

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Moshe; Kwak, Dochan; Vinokur, Marcel

    1991-01-01

    The time-dependent, three-dimensional incompressible Navier-Stokes equations are presently solved in generalized coordinate systems by means of a fractional-step method whose primitive variable formulation uses as dependent variables, in place of the Cartesian components of the velocity: (1) pressure (defined at the center of the computational cell), and (2) volume fluxes across the faces of the cells. The momentum equations are solved by means of an approximate factorization method. A novel 'ZEBRA' scheme incorporating four-color ordering efficiently solves the Poisson equation. Illustrative two- and three-dimensional laminar flow test cases are computed and evaluated relative to extant numerical and experimental results, and good agreement is obtained.

  5. LUMIS: Land Use Management and Information Systems; coordinate oriented program documentation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An integrated geographic information system to assist program managers and planning groups in metropolitan regions is presented. The series of computer software programs and procedures involved in data base construction uses the census DIME file and point-in-polygon architectures. The system is described in two parts: (1) instructions to operators with regard to digitizing and editing procedures, and (2) application of data base construction algorithms to achieve map registration, assure the topological integrity of polygon files, and tabulate land use acreages within administrative districts.

  6. New methods for state estimation and adaptive observation of environmental flow systems leveraging coordinated swarms of sensor vehicles

    NASA Astrophysics Data System (ADS)

    Bewley, Thomas

    2015-11-01

    Accurate long-term forecasts of the path and intensity of hurricanes are imperative to protect property and save lives. Accurate estimations and forecasts of the spread of large-scale contaminant plumes, such as those from Deepwater Horizon, Fukushima, and recent volcanic eruptions in Iceland, are essential for assessing environment impact, coordinating remediation efforts, and in certain cases moving folks out of harm's way. The challenges in estimating and forecasting such systems include: (a) environmental flow modeling, (b) high-performance real-time computing, (c) assimilating measured data into numerical simulations, and (d) acquiring in-situ data, beyond what can be measured from satellites, that is maximally relevant for reducing forecast uncertainty. This talk will focus on new techniques for addressing (c) and (d), namely, data assimilation and adaptive observation, in both hurricanes and large-scale environmental plumes. In particular, we will present a new technique for the energy-efficient coordination of swarms of sensor-laden balloons for persistent, in-situ, distributed, real-time measurement of developing hurricanes, leveraging buoyancy control only (coupled with the predictable and strongly stratified flowfield within the hurricane). Animations of these results are available at http://flowcontrol.ucsd.edu/3dhurricane.mp4 and http://flowcontrol.ucsd.edu/katrina.mp4. We also will survey our unique hybridization of the venerable Ensemble Kalman and Variational approaches to large-scale data assimilation in environmental flow systems, and how essentially the dual of this hybrid approach may be used to solve the adaptive observation problem in a uniquely effective and rigorous fashion.

  7. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system

    SciTech Connect

    AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide

    2015-11-19

    Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database in which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the

  8. An affinity-structure database of helix-turn-helix: DNA complexes with a universal coordinate system

    DOE PAGESBeta

    AlQuraishi, Mohammed; Tang, Shengdong; Xia, Xide

    2015-11-19

    Molecular interactions between proteins and DNA molecules underlie many cellular processes, including transcriptional regulation, chromosome replication, and nucleosome positioning. Computational analyses of protein-DNA interactions rely on experimental data characterizing known protein-DNA interactions structurally and biochemically. While many databases exist that contain either structural or biochemical data, few integrate these two data sources in a unified fashion. Such integration is becoming increasingly critical with the rapid growth of structural and biochemical data, and the emergence of algorithms that rely on the synthesis of multiple data types to derive computational models of molecular interactions. We have developed an integrated affinity-structure database inmore » which the experimental and quantitative DNA binding affinities of helix-turn-helix proteins are mapped onto the crystal structures of the corresponding protein-DNA complexes. This database provides access to: (i) protein-DNA structures, (ii) quantitative summaries of protein-DNA binding affinities using position weight matrices, and (iii) raw experimental data of protein-DNA binding instances. Critically, this database establishes a correspondence between experimental structural data and quantitative binding affinity data at the single basepair level. Furthermore, we present a novel alignment algorithm that structurally aligns the protein-DNA complexes in the database and creates a unified residue-level coordinate system for comparing the physico-chemical environments at the interface between complexes. Using this unified coordinate system, we compute the statistics of atomic interactions at the protein-DNA interface of helix-turn-helix proteins. We provide an interactive website for visualization, querying, and analyzing this database, and a downloadable version to facilitate programmatic analysis. Lastly, this database will facilitate the analysis of protein-DNA interactions and the

  9. Absolute Spectrophotometry of 237 Open Cluster Stars

    NASA Astrophysics Data System (ADS)

    Clampitt, L.; Burstein, D.

    1994-12-01

    We present absolute spectrophotometry of 237 stars in 7 nearby open clusters: Hyades, Pleiades, Alpha Persei, Praesepe, Coma Berenices, IC 4665, and M 39. The observations were taken using the Wampler single-channel scanner (Wampler 1966) on the Crossley 0.9m telescope at Lick Observatory from July 1973 through December 1974. 21 bandpasses spanning the spectral range 3500 Angstroms to 7780 Angstroms were observed for each star, with bandwiths ranging from 32Angstroms to 64 Angstroms. Data are standardized to the Hayes--Latham (1975) system. Our measurements are compared to filter colors on the Johnson BV, Stromgren ubvy, and Geneva U V B_1 B_2 V_1 G systems, as well as to spectrophotometry of a few stars published by Gunn, Stryker & Tinsley and in the Spectrophotometric Standards Catalog (Adelman; as distributed by the NSSDC). Both internal and external comparisons to the filter systems indicate a formal statistical accuracy per bandpass of 0.01 to 0.02 mag, with apparent larger ( ~ 0.03 mag) differences in absolute calibration between this data set and existing spectrophotometry. These data will comprise part of the spectrophotometry that will be used to calibrate the Beijing-Arizona-Taipei-Connecticut Color Survey of the Sky (see separate paper by Burstein et al. at this meeting).

  10. Workforce Information: A Critical Component of Coordinated State Early Care and Education Data Systems. Policy Brief

    ERIC Educational Resources Information Center

    Kipnis, Fran; Whitebook, Marcy

    2011-01-01

    The Center for the Study of Child Care Employment (CSCCE) receives support from the Birth to Five Policy Alliance and the David and Lucile Packard Foundation to assist states with early care and education (ECE) workforce systems development. Their efforts include membership in the Early Childhood Data Collaborative (ECDC), and their participation…

  11. Coordination and decision making of regulation, operation, and market activities in power systems

    NASA Astrophysics Data System (ADS)

    Nakashima, Tomoaki

    Electric power has been traditionally supplied to customers at regulated rates by vertically integrated utilities (VIUs), which own generation, transmission, and distribution systems. However, the regulatory authorities of VIUs are promoting competition in their businesses to lower the price of electric energy. Consequently, in new deregulated circumstances, many suppliers and marketers compete in the generation market, and conflict of interest may often occur over transmission. Therefore, a neutral entity, called an independent system operator (ISO), which operates the power system independently, has been established to give market participants nondiscriminatory access to transmission sectors with a natural monopoly, and to facilitate competition in generation sectors. Several types of ISOs are established at present, with their respective regions and authorities. The ISO receives many requests from market participants to transfer power, and must evaluate the feasibility of their requests under the system's condition. In the near future, regulatory authorities may impose various objectives on the ISOs. Then, based on the regulators' policies, the ISO must determine the optimal schedules from feasible solutions, or change the market participants' requests. In a newly developed power market, market participants will conduct their transactions in order to maximize their profit. The most crucial information in conducting power transactions is price and demand. A direct transaction between suppliers and consumers may become attractive because of its stability of price, while in a power exchange market, gaming and speculation of participants may push up electricity prices considerably. To assist the consumers in making effective decisions, suitable methods for forecasting volatile market price are necessary. This research has been approached from three viewpoints: Firstly, from the system operator's point of view, desirable system operation and power market structure

  12. IOrchestrator: improving the performance of multi-node I/O systems via inter-server coordination

    SciTech Connect

    Davis, Marion Kei; Zhang, Xuechen; Jiang, Song

    2010-01-01

    A cluster of I/O nodes and a parallel file system are often used to provide high-throughput I/O service to a parallel compute cluster. To exploit I/O parallelism parallel file systems stripe file data across the I/O nodes. While this practice is effective in serving asynchronous requests, it may break individual program's spatial locality, which can seriously degrade I/O performance when the I/O nodes concurrently serve synchronous requests from multiple I/O-intensive programs. In this paper we propose a scheme, Orchestrator, to improve the I/O performance of multi-I/O-node systems by orchestrating I/O services among programs when such inter-I/O-node coordination is dynamically determined to be cost effective. We have implemented IOrchestrator in the PVFS2 parallel file system. Our experiments with representative parallel benchmarks show that IOrchestrator can significantly improve I/O performance - by up to a factor of 2.5 - delivered by a cluster of I/O nodes servicing concurrently-running parallel programs. Notably, we have not observed any scenarios in which the use of IOrchestrator causes significant performance degradation.

  13. Development of a probing system for a micro-coordinate measuring machine by utilizing shear-force detection

    NASA Astrophysics Data System (ADS)

    Ito, So; Kodama, Issei; Gao, Wei

    2014-06-01

    This paper introduces a newly developed probing system for a micro-coordinate measurement machine (micro-CMM) based on an interaction force generated by the water layer on the surface of the measuring object. In order to measure the dimensions of the micrometric structures, a probing system using a nanopipette ball stylus has been developed. A glass microsphere with diameter of 9 µm is used as a stylus tip of the probing system. The glass nanopipette, which is fabricated from a capillary glass tube by a thermal pulling process, is employed as a stylus shaft to improve the fixation strength of the stylus tip. The approach between the stylus tip and the surface of the measuring object can be detected by utilizing the method of shear-force detection. The stylus is oscillated in the lateral direction at its resonant frequency to detect an interaction force owing to the viscoelasticity of the meniscus layer existing on the surface of the measuring object. The oscillation amplitude is decreased by the shear-force applied to the stylus tip. In this study, the basic characteristics of the probing system including sensitivity, resolution and reproducibility are investigated. The experimental result of dimensional measurement of micrometer-scale structure is presented.

  14. Coordinated control of wind generation and energy storage for power system frequency regulation

    NASA Astrophysics Data System (ADS)

    Baone, Chaitanya Ashok

    Large-scale centralized synchronous generators have long been the primary actors in exercising active power and frequency control, and much of the existing grid control framework is predicated upon their dynamic terminal characteristics. Important among these characteristics is the inertia of such generators. These play key roles in determining the electromechanical stability of the electric power grid. Modern wind generator systems are partially or fully connected to the grid through power electronic interfaces, and hence do not present the same level of inertial coupling. The absence of inertial frequency response from modern wind generator systems is a topic of growing concern in power engineering practice, as the penetration of wind generation is expected to grow dramatically in the next few years. Solutions proposed in the literature have sought to address this problem by seeking to mimic the inherent inertial response characteristics of traditional synchronous generators via control loops added to wind generators. Recent literature has raised concerns regarding this approach, and the work here will further examine its shortcomings, motivating approaches that seek to optimally design for the characteristics of the equipment exercising the control, rather than forcing new technologies to mimic the characteristics of synchronous machines. In particular, this work will develop a new approach to power system frequency regulation, with features suited to distributed energy storage devices such as grid-scale batteries and wind turbine speed and blade pitch control. The dynamic characteristics of these new technologies are treated along with existing mechanisms, such as synchronous machine governor control, to develop a comprehensive multi-input control design approach. To make the method practically feasible for geographically distributed power systems, an observer-based distributed control design utilizing phasor measurement unit (PMU) signals along with local

  15. Coordination Reactions and Noncovalent Interactions of Polyamines with Nucleotides in Binary Systems and with Nucleotides and Copper(II) Ion in Ternary Systems

    PubMed Central

    Lomozik, Lechoslaw; Gasowska, Anna; Krzysko, Grzegorz; Bregier-Jarzebowska, Romualda

    2010-01-01

    Interactions of nucleotides (AMP, CMP) and 1,2-diaminopropane (tn-1) or 2-methyl-1,2-diaminopropane (tn-2) in metal-free systems as well as in the systems including copper(II) ions were studied. The composition and overall stability constants of the complexes formed were determined by the potentiometric method, whereas the interaction centres and coordination sites were identified by spectroscopic methods. It was found that phosphate groups of nucleotides and the protonated amine groups of polyamines are the centres of interaction. The differences in the interactions with the polyamines which act as models of biogenic amines are impacted by the presence of lateral chains (methylene groups) in tn-1 and tn-2. In the ternary systems with Cu(II) ions, the heteroligand complexes are mainly of the ML⋯L' type, in which the protonated polyamine is engaged in noncovalent interactions with the anchoring Cu(II)-nucleotide complex. The complexes formed in the Cu/NMP)/tn-1 system are more stable than those formed in the system with tn-2. The mode of coordination in the complex is realised mainly through the phosphate groups of the nucleotide with involvement of the endocyclic nitrogen atoms in a manner which depends upon the steric conditions and in particular on the number of the methylene groups in the polyamine molecule. PMID:20885917

  16. Automated electroencephalography system and electroencephalographic coordinates of space motion sickness, part 1

    NASA Technical Reports Server (NTRS)

    Frost, J. D., Jr.

    1976-01-01

    A self-contained and portable device which permits clinical electroencephalography (EEG) to be conducted in remote locations by minimally trained, nontechnical personnel was developed and tested. The unit accomplishes semiautomatic acquisition of EEG data from the patient, simultaneous transmission of eight data channels to a central hospital facility over conventional telephone equipment, and automatic printing (at the remote site) of the EEG report generated at the central location. Consequently, this system enables the delivery of high-quality EEG diagnostic services in a geographically remote site with the accuracy and speed formerly possible only in certain large medical centers. Beside obvious potential clinical applications, this system serves as an initial prototype of a unit which could provide inflight EEG during future space missions.

  17. Decentralised coordination of a multi-agent system based on intermittent data

    NASA Astrophysics Data System (ADS)

    DeLellis, Pietro; Garofalo, Franco; Lo Iudice, Francesco; Mancini, Giovanni

    2015-08-01

    In this paper, we present a novel decentralised and non-cooperative algorithm for estimation and control of a multi-agent system. The control goal is to achieve a balanced formation on a generic closed curve. Different from previous work, each agent only gathers a measurement of its Euclidean distance from the other agents when they are in its proximity. This distance is usually different from the controlled distance along the curve, thus producing an uncertain and intermittent information on the actual spacing among agents. This fleeting data flow is processed by an estimation algorithm to produce an interval estimate of the relative position, which is then used by an 'interval feedback control law' to steer the system dynamics. The effectiveness of the approach and its performance are demonstrated through an extensive numerical analysis on two representative examples.

  18. Estimating the coordinates of pillars and posts in the parking lots for intelligent parking assist system

    NASA Astrophysics Data System (ADS)

    Choi, Jae Hyung; Kuk, Jung Gap; Kim, Young Il; Cho, Nam Ik

    2012-01-01

    This paper proposes an algorithm for the detection of pillars or posts in the video captured by a single camera implemented on the fore side of a room mirror in a car. The main purpose of this algorithm is to complement the weakness of current ultrasonic parking assist system, which does not well find the exact position of pillars or does not recognize narrow posts. The proposed algorithm is consisted of three steps: straight line detection, line tracking, and the estimation of 3D position of pillars. In the first step, the strong lines are found by the Hough transform. Second step is the combination of detection and tracking, and the third is the calculation of 3D position of the line by the analysis of trajectory of relative positions and the parameters of camera. Experiments on synthetic and real images show that the proposed method successfully locates and tracks the position of pillars, which helps the ultrasonic system to correctly locate the edges of pillars. It is believed that the proposed algorithm can also be employed as a basic element for vision based autonomous driving system.

  19. Tele-autonomous systems: New methods for projecting and coordinating intelligent action at a distance

    NASA Technical Reports Server (NTRS)

    Conway, Lynn; Volz, Richard; Walker, Michael W.

    1989-01-01

    There is a growing need for humans to perform complex remote operations and to extend the intelligence and experience of experts to distant applications. It is asserted that a blending of human intelligence, modern information technology, remote control, and intelligent autonomous systems is required, and have coined the term tele-autonomous technology, or tele-automation, for methods producing intelligent action at a distance. Tele-automation goes beyond autonomous control by blending in human intelligence. It goes beyond tele-operation by incorporating as much autonomy as possible and/or reasonable. A new approach is discussed for solving one of the fundamental problems facing tele-autonomous systems: The need to overcome time delays due to telemetry and signal propagation. New concepts are introduced called time and position clutches, that allow the time and position frames between the local user control and the remote device being controlled, to be desynchronized respectively. The design and implementation of these mechanisms are described in detail. It is demonstrated that these mechanisms lead to substantial telemanipulation performance improvements, including the result of improvements even in the absence of time delays. The new controls also yield a simple protocol for control handoffs of manipulation tasks between local operators and remote systems.

  20. A system for the study of visuomotor coordination during reaching for moving targets.

    PubMed

    Schenk, T; Philipp, J; Häussler, A; Hauck, A; Hermsdörfer, J; Mai, N

    2000-07-31

    Prehensile behavior is a popular task in current research on human motor control. Most studies on reaching used stationary target objects and, therefore, most models do not address the challenges the motor system must respond to when reaching for moving objects. The machines used in earlier studies to produce object motion offered a limited range of trajectories and restricted control over various movement parameters. We have developed a device that allows a great variety of object trajectories along a flat-table surface and gives the experimenter full control over all movement parameters. A linear positioning system is used to move a sled beneath the table surface. Magnetic coupling transfers the sled's movement to the target object on the tabletop. This arrangement allows fast movements of the object (up to 5 m/s) and at the same time protects subjects from any harm due to the moving parts. The system is connected to LC shutter glasses, a 3-D movement registration device, and a switch that detects the onset of hand motion. This allows the selective withdrawal of vision during the reaching task or the introduction of changes in the object motion depending on the subject's reactions. PMID:11040360