Science.gov

Sample records for absolute correlation energies

  1. Redetermining CEBAF's Absolute Energy

    NASA Astrophysics Data System (ADS)

    Su, Tong; Jlab Marathon Collaboration

    2015-04-01

    With the upgrade of the Jefferson Lab accelerator (CEBAF) from 6 GeV max energy to 12 GeV, all the dipole magnets in the machine were refurbished. Most of them were switched from open c-shaped to closed h-shaped by adding extra iron. With these upgraded magnets, the energy calibration of the accelerator needed to be redetermined. We will show how an extra external dipole, which is run in series with those in the machine, helps us cross check the current in the magnets as well as precisely map out the integral field for any machine setting. Using knowledge of the relative performance of the dipoles as well as the bend angle into the Hall, has allowed us to already determine a 4th pass 7 GeV beam to better than 7 MeV. In the future, we will use g-2 spin precession as a second independent energy determination. This work is supported by Kent State University, NSF Grant PHY-1405814, and DOE Contract DE-AC05-06OR23177 (JLab).

  2. Absolute surface energy for zincblende semiconductors

    NASA Astrophysics Data System (ADS)

    Zhang, S. B.; Wei, Su-Huai

    2003-03-01

    Recent advance in nanosciences requires the determination of surface (or facet) energy of semiconductors, which is often difficult due to the polar nature of some of the most important surfaces such as the (111)A/(111)B surfaces. Several approaches have been developed in the past [1-3] to deal with the problem but an unambiguous division of the polar surface energies is yet to come [2]. Here we show that an accurate division is indeed possible for the zincblende semiconductors and will present the results for GaAs, ZnSe, and CuInSe2 [4], respectively. A general trend emerges, relating the absolute surface energy to the ionicity of the bulk materials. [1] N. Chetty and R. M. Martin, Phys. Rev. B 45, 6074 (1992). [2] N. Moll, et al., Phys. Rev. B 54, 8844 (1996). [3] S. Mankefors, Phys. Rev. B 59, 13151 (1999). [4] S. B. Zhang and S.-H. Wei, Phys. Rev. B 65, 081402 (2002).

  3. Absolute plate velocities from seismic anisotropy: Importance of correlated errors

    NASA Astrophysics Data System (ADS)

    Zheng, Lin; Gordon, Richard G.; Kreemer, Corné

    2014-09-01

    The errors in plate motion azimuths inferred from shear wave splitting beneath any one tectonic plate are shown to be correlated with the errors of other azimuths from the same plate. To account for these correlations, we adopt a two-tier analysis: First, find the pole of rotation and confidence limits for each plate individually. Second, solve for the best fit to these poles while constraining relative plate angular velocities to consistency with the MORVEL relative plate angular velocities. Our preferred set of angular velocities, SKS-MORVEL, is determined from the poles from eight plates weighted proportionally to the root-mean-square velocity of each plate. SKS-MORVEL indicates that eight plates (Amur, Antarctica, Caribbean, Eurasia, Lwandle, Somalia, Sundaland, and Yangtze) have angular velocities that differ insignificantly from zero. The net rotation of the lithosphere is 0.25 ± 0.11° Ma-1 (95% confidence limits) right handed about 57.1°S, 68.6°E. The within-plate dispersion of seismic anisotropy for oceanic lithosphere (σ = 19.2°) differs insignificantly from that for continental lithosphere (σ = 21.6°). The between-plate dispersion, however, is significantly smaller for oceanic lithosphere (σ = 7.4°) than for continental lithosphere (σ = 14.7°). Two of the slowest-moving plates, Antarctica (vRMS = 4 mm a-1, σ = 29°) and Eurasia (vRMS = 3 mm a-1, σ = 33°), have two of the largest within-plate dispersions, which may indicate that a plate must move faster than ≈ 5 mm a-1 to result in seismic anisotropy useful for estimating plate motion. The tendency of observed azimuths on the Arabia plate to be counterclockwise of plate motion may provide information about the direction and amplitude of superposed asthenospheric flow or about anisotropy in the lithospheric mantle.

  4. Absolute surface energies, fracture toughness, and cracking in nitrides

    NASA Astrophysics Data System (ADS)

    Dreyer, Cyrus E.; Janotti, Anderson; van de Walle, Chris G.

    2014-03-01

    Growth of high quality single crystals and epitaxial layers of GaN is critical for producing high-efficiency optoelectronic and power electronic devices. One of the fundamental material properties that govern growth of single crystals is the absolute surface energy of the crystallographic planes. Knowledge of these energies is required to understand and optimize growth rates of different facets in GaN, and provide fracture toughnesses for brittle fracture. By means of hybrid functional calculations, we have determined absolute surface energies for the non-polar {11-20} a and {10-10} m planes, and approximated values for polar (0001) + c and (000-1) - c planes in wurtzite GaN. For all surfaces, we consider low-energy bare and hydrogenated reconstructions under a variety of conditions relevant to experimental growth techniques. We find that the energies of the m and a planes are similar, and constant over the range of conditions studied. In contrast, the energies of the polar planes are strongly condition dependent. Even so, we find that the + c polar plane is systematically lower in energy than the - c plane. We have used our surface energies to determine brittle fracture toughnesses in AlN and GaN, as well as the critical thickness for cracking of AlGaN on GaN.

  5. Absolute determination of inelastic mean-free paths and surface excitation parameters by absolute reflection electron energy loss spectrum analysis

    NASA Astrophysics Data System (ADS)

    Nagatomi, T.; Goto, K.

    2005-11-01

    An analytical approach was proposed for simultaneously determining an inelastic mean-free path (IMFP) and a surface excitation parameter (SEP) with absolute units by the analysis of an absolute experimental reflection electron energy loss spectrum. The IMFPs and SEPs in Ni were deduced for electrons of 300 to 3000 eV. The obtained IMFPs were in good agreement with those calculated using the TPP-2M equation. The Chen-type empirical formula was proposed for determining the SEP. The results confirmed the applicability of the present approach for determining the IMFP and SEP for medium-energy electrons.

  6. Absolute Binding Free Energy Calculations: On the Accuracy of Computational Scoring of Protein-ligand Interactions

    PubMed Central

    Singh, Nidhi; Warshel, Arieh

    2010-01-01

    Calculating the absolute binding free energies is a challenging task. Reliable estimates of binding free energies should provide a guide for rational drug design. It should also provide us with deeper understanding of the correlation between protein structure and its function. Further applications may include identifying novel molecular scaffolds and optimizing lead compounds in computer-aided drug design. Available options to evaluate the absolute binding free energies range from the rigorous but expensive free energy perturbation to the microscopic Linear Response Approximation (LRA/β version) and its variants including the Linear Interaction Energy (LIE) to the more approximated and considerably faster scaled Protein Dipoles Langevin Dipoles (PDLD/S-LRA version), as well as the less rigorous Molecular Mechanics Poisson–Boltzmann/Surface Area (MM/PBSA) and Generalized Born/Surface Area (MM/GBSA) to the less accurate scoring functions. There is a need for an assessment of the performance of different approaches in terms of computer time and reliability. We present a comparative study of the LRA/β, the LIE, the PDLD/S-LRA/β and the more widely used MM/PBSA and assess their abilities to estimate the absolute binding energies. The LRA and LIE methods perform reasonably well but require specialized parameterization for the non-electrostatic term. On the average, the PDLD/S-LRA/β performs effectively. Our assessment of the MM/PBSA is less optimistic. This approach appears to provide erroneous estimates of the absolute binding energies due to its incorrect entropies and the problematic treatment of electrostatic energies. Overall, the PDLD/S-LRA/β appears to offer an appealing option for the final stages of massive screening approaches. PMID:20186976

  7. Dark Energy:. the Absolute Electric Potential of the Universe

    NASA Astrophysics Data System (ADS)

    Jiménez, Jose Beltrán; Maroto, Antonio L.

    Is there an absolute cosmic electric potential? The recent discovery of the accelerated expansion of the universe could be indicating that this is certainly the case. In this essay we show that the consistency of the covariant and gauge-invariant theory of electromagnetism is truly questionable when considered on cosmological scales. Out of the four components of the electromagnetic field, Maxwell's theory contains only two physical degrees of freedom. However, in the presence of gravity, one of the "unphysical" states cannot be consistently eliminated, thus becoming real. This third polarization state is completely decoupled from charged matter, but can be excited gravitationally, thus breaking gauge invariance. On large scales the new state can be seen as a homogeneous cosmic electric potential, whose energy density behaves as a cosmological constant.

  8. Energy calibration via correlation

    NASA Astrophysics Data System (ADS)

    Maier, Daniel; Limousin, Olivier

    2016-03-01

    The main task of an energy calibration is to find a relation between pulse-height values and the corresponding energies. Doing this for each pulse-height channel individually requires an elaborated input spectrum with an excellent counting statistics and a sophisticated data analysis. This work presents an easy to handle energy calibration process which can operate reliably on calibration measurements with low counting statistics. The method uses a parameter based model for the energy calibration and concludes on the optimal parameters of the model by finding the best correlation between the measured pulse-height spectrum and multiple synthetic pulse-height spectra which are constructed with different sets of calibration parameters. A CdTe-based semiconductor detector and the line emissions of an 241Am source were used to test the performance of the correlation method in terms of systematic calibration errors for different counting statistics. Up to energies of 60 keV systematic errors were measured to be less than ~ 0.1 keV. Energy calibration via correlation can be applied to any kind of calibration spectra and shows a robust behavior at low counting statistics. It enables a fast and accurate calibration that can be used to monitor the spectroscopic properties of a detector system in near realtime.

  9. Correlation of symptom clusters of schizophrenia with absolute powers of main frequency bands in quantitative EEG

    PubMed Central

    Gross, Andres; Joutsiniemi, Sirkka-Liisa; Rimon, Ranan; Appelberg, Björn

    2006-01-01

    Background Research of QEEG activity power spectra has shown intriguing results in patients with schizophrenia. Different symptom clusters have been correlated to QEEG frequency bands. The findings have been to some extent inconsistent. Replication of the findings of previous research is thus an important task. In the current study we investigated the correlations between the absolute powers of delta, theta, alpha, and beta frequency bands over the fronto-central scalp area (FC) with the PANSS subscales and the Liddle's factors in 16 patients with schizophrenia. The authors hypothesised a priori the correlations reported by Harris et al (1999) of PANSS negative subscale with delta power, Liddle's psychomotor poverty with delta and beta powers, disorganisation with delta power and reality distortion with alpha power on the midline FC. Methods The sample consisted of 16 patients with chronic schizophrenia considered as having insufficient clinical response to conventional antipsychotic treatment and evidencing a relapse. The correlations between quantitative electroencephalography (QEEG) absolute powers of delta (1.5–3.0 Hz), theta (3.0–7.5 Hz), alpha (7.5–12.5 Hz), and beta (12.5–20.0 Hz) frequency bands over the fronto-central scalp area (FC) with PANSS subscales and Liddle's factors (reality distortion, disorganisation, psychomotor poverty) were investigated. Results Significant positive correlations were found between the beta and psychomotor poverty (p < 0.05). Trends towards positive correlations (p < 0.1) were observed between delta and PANSS negative subscale and psychomotor poverty. Alpha did not correlate with reality distortion and delta did not correlate with disorganisation. Post hoc analysis revealed correlations of the same magnitude between beta and psychopathology generally over FC. Conclusion The a priori hypothesis was partly supported by the correlation of the beta and psychomotor poverty. Liddle's factors showed correlations of the same

  10. Absolute calibration of an EMCCD camera by quantum correlation, linking photon counting to the analog regime.

    PubMed

    Avella, A; Ruo-Berchera, I; Degiovanni, I P; Brida, G; Genovese, M

    2016-04-15

    We show how the same setup and procedure, exploiting spatially multimode quantum correlations, allows the absolute calibration of an electron-multiplying charge-coupled (EMCCD) camera from the analog regime down to the single-photon-counting level, just by adjusting the brightness of the quantum source. At the single-photon level, an EMCCD can be operated as an on-off detector, where quantum efficiency depends on the discriminating threshold. We develop a simple model to explain the connection of the two different regimes demonstrating that the efficiency estimated in the analog (bright) regime allows us to accurately predict the detector behavior in the photocounting regime and vice versa. This work establishes a bridge between two regions of the optical measurements that up to now have been based on completely different standards, detectors, and measurement techniques. PMID:27082359

  11. Assessment of absolute added correlative coding in optical intensity modulation and direct detection channels

    NASA Astrophysics Data System (ADS)

    Dong-Nhat, Nguyen; Elsherif, Mohamed A.; Malekmohammadi, Amin

    2016-06-01

    The performance of absolute added correlative coding (AACC) modulation format with direct detection has been numerically and analytically reported, targeting metro data center interconnects. Hereby, the focus lies on the performance of the bit error rate, noise contributions, spectral efficiency, and chromatic dispersion tolerance. The signal space model of AACC, where the average electrical and optical power expressions are derived for the first time, is also delineated. The proposed modulation format was also compared to other well-known signaling, such as on-off-keying (OOK) and four-level pulse-amplitude modulation, at the same bit rate in a directly modulated vertical-cavity surface-emitting laser-based transmission system. The comparison results show a clear advantage of AACC in achieving longer fiber delivery distance due to the higher dispersion tolerance.

  12. Method to calibrate the absolute energy scale of air showers with ultrahigh energy photons.

    PubMed

    Homola, Piotr; Risse, Markus

    2014-04-18

    Calibrating the absolute energy scale of air showers initiated by ultrahigh energy (UHE) cosmic rays is an important experimental issue. Currently, the corresponding systematic uncertainty amounts to 14%-21% using the fluorescence technique. Here, we describe a new, independent method which can be applied if ultrahigh energy photons are observed. While such photon-initiated showers have not yet been identified, the capabilities of present and future cosmic-ray detectors may allow their discovery. The method makes use of the geomagnetic conversion of UHE photons (preshower effect), which significantly affects the subsequent longitudinal shower development. The conversion probability depends on photon energy and can be calculated accurately by QED. The comparison of the observed fraction of converted photon events to the expected one allows the determination of the absolute energy scale of the observed photon air showers and, thus, an energy calibration of the air shower experiment. We provide details of the method and estimate the accuracy that can be reached as a function of the number of observed photon showers. Already a very small number of UHE photons may help to test and fix the absolute energy scale. PMID:24785024

  13. Slowed oxygen uptake kinetics in hypoxia correlate with the transient peak and reduced spatial distribution of absolute skeletal muscle deoxygenation.

    PubMed

    Bowen, T Scott; Rossiter, Harry B; Benson, Alan P; Amano, Tatsuro; Kondo, Narihiko; Kowalchuk, John M; Koga, Shunsaku

    2013-11-01

    It remains unclear whether an overshoot in skeletal muscle deoxygenation (HHb; reflecting a microvascular kinetic mismatch of O2 delivery to consumption) contributes to the slowed adjustment of oxidative energy provision at the onset of exercise. We progressively reduced the fractional inspired O2 concentration (F(I,O2)) to investigate the relationship between slowed pulmonary O2 uptake (V(O2)) kinetics and the dynamics and spatial distribution of absolute[HHb]. Seven healthy men performed 8 min cycling transitions during normoxia (F(I,O2) = 0.21),moderate hypoxia (F(I,O2) = 0.16) and severe hypoxia (F(I,O2)= 0.12). V(O2) uptake was measured using a flowmeter and gas analyser system. Absolute [HHb] was quantified by multichannel,time-resolved near-infrared spectroscopy from the rectus femoris and vastus lateralis (proximal and distal regions), and corrected for adipose tissue thickness. The phase II V(O2) time constant was slowed (P <0.05) as F(I,O2) decreased (normoxia, 17 ± 3 s;moderate hypoxia, 22 ± 4 s; and severe hypoxia, 29 ± 9 s). The [HHb] overshoot was unaffected by hypoxia, but the transient peak [HHb] increased with the reduction in F(I,O2) (P <0.05). Slowed V(O2) kinetics in hypoxia were positively correlated with increased peak [HHb] in the transient (r(2) = 0.45; P <0.05), but poorly related to the [HHb] overshoot. A reduction of spatial heterogeneity in peak [HHb]was inversely correlated with slowed V(O2) kinetics (r(2) = 0.49; P <0.05). These data suggest that aerobic energy provision at the onset of exercise may be limited by the following factors: (i) the absolute ratio (i.e. peak [HHb]) rather than the kinetic ratio (i.e. [HHb] overshoot) of microvascular O2 delivery to consumption; and (ii) a reduced spatial distribution in the ratio of microvascular O2 delivery to consumption across the muscle. PMID:23851917

  14. Investigations of high-speed optical transmission systems employing Absolute Added Correlative Coding (AACC)

    NASA Astrophysics Data System (ADS)

    Dong-Nhat, Nguyen; Elsherif, Mohamed A.; Malekmohammadi, Amin

    2016-07-01

    A novel multilevel modulation format based on partial-response signaling called Absolute Added Correlative Coding (AACC) is proposed and numerically demonstrated for high-speed fiber-optic communication systems. A bit error rate (BER) estimation model for the proposed multilevel format has also been developed. The performance of AACC is examined and compared against other prevailing On-Off-Keying and multilevel modulation formats e.g. non-return-to-zero (NRZ), 50% return-to-zero (RZ), 67% carrier-suppressed return-to-zero (CS-RZ), duobinary and four-level pulse-amplitude modulation (4-PAM) in terms of receiver sensitivity, spectral efficiency and dispersion tolerance. Calculated receiver sensitivity at a BER of 10-9 and chromatic dispersion tolerance of the proposed system are ∼-28.3 dBm and ∼336 ps/nm, respectively. The performance of AACC is delineated to be improved by 7.8 dB in terms of receiver sensitivity compared to 4-PAM in back-to-back scenario. The comparison results also show a clear advantage of AACC in achieving longer fiber transmission distance due to the higher dispersion tolerance in optical access networks.

  15. Absolute, not relative brain size correlates with sociality in ground squirrels.

    PubMed

    Matějů, Jan; Kratochvíl, Lukáš; Pavelková, Zuzana; Pavelková Řičánková, Věra; Vohralík, Vladimír; Němec, Pavel

    2016-03-30

    The social brain hypothesis (SBH) contends that cognitive demands associated with living in cohesive social groups favour the evolution of large brains. Although the correlation between relative brain size and sociality reported in various groups of birds and mammals provides broad empirical support for this hypothesis, it has never been tested in rodents, the largest mammalian order. Here, we test the predictions of the SBH in the ground squirrels from the tribe Marmotini. These rodents exhibit levels of sociality ranging from solitary and single-family female kin groups to egalitarian polygynous harems but feature similar ecologies and life-history traits. We found little support for the association between increase in sociality and increase in relative brain size. Thus, sociality does not drive the evolution of encephalization in this group of rodents, a finding inconsistent with the SBH. However, body mass and absolute brain size increase with sociality. These findings suggest that increased social complexity in the ground squirrels goes hand in hand with larger body mass and brain size, which are tightly coupled to each other. PMID:27009231

  16. Investigations of high-speed optical transmission systems employing Absolute Added Correlative Coding (AACC)

    NASA Astrophysics Data System (ADS)

    Dong-Nhat, Nguyen; Elsherif, Mohamed A.; Malekmohammadi, Amin

    2016-07-01

    A novel multilevel modulation format based on partial-response signaling called Absolute Added Correlative Coding (AACC) is proposed and numerically demonstrated for high-speed fiber-optic communication systems. A bit error rate (BER) estimation model for the proposed multilevel format has also been developed. The performance of AACC is examined and compared against other prevailing On-Off-Keying and multilevel modulation formats e.g. non-return-to-zero (NRZ), 50% return-to-zero (RZ), 67% carrier-suppressed return-to-zero (CS-RZ), duobinary and four-level pulse-amplitude modulation (4-PAM) in terms of receiver sensitivity, spectral efficiency and dispersion tolerance. Calculated receiver sensitivity at a BER of 10-9 and chromatic dispersion tolerance of the proposed system are ˜-28.3 dBm and ˜336 ps/nm, respectively. The performance of AACC is delineated to be improved by 7.8 dB in terms of receiver sensitivity compared to 4-PAM in back-to-back scenario. The comparison results also show a clear advantage of AACC in achieving longer fiber transmission distance due to the higher dispersion tolerance in optical access networks.

  17. Absolute beam energy measurements in e+e- storage rings

    NASA Astrophysics Data System (ADS)

    Placidi, M.

    1997-01-01

    The CERN Large Electron Positron collider (LEP) was dedicated to the measurement of the mass Mz and the width Γz of the Z0 resonance during the LEP1 phase which terminated in September 1995. The Storage Ring operated in Energy Scan mode during the 1993 and 1995 physics runs by choosing the beam energy Ebeam to correspond to a center-of-mass (CM) energy at the interaction points (IPs) ECMpeak±1762 MeV. After a short review of the techniques usually adopted to set and control the beam energy, this paper describes in more detail two methods adopted at LEP for precise beam energy determination that are essential to reduce the contribution to the systematic error on Mz and Γz. The positron beam momentum was initially determined at the 20-GeV injection energy by measuring the speed of a less relativistic proton beam circulating on the same orbit, taking advantage of the unique opportunity to inject two beams into the LEP at short time intervals. The positron energy at the Z0 peak was in this case derived by extrapolation. Once transverse polarization became reproducible, the Resonant Depolarization (RD) technique was implemented at the Z0 operating energies, providing a ⩽2×10-5 instantaneous accuracy. RD Beam Energy Calibration has been adopted during the LEP Energy Scan campaigns as well as in Accelerator Physics runs for accurate measurement of machine parameters.

  18. Observables sensitive to absolute neutrino masses: Constraints and correlations from world neutrino data

    SciTech Connect

    Fogli, G.L.; Lisi, E.; Marrone, A.; Palazzo, A.; Melchiorri, A.; Serra, P.; Silk, J.

    2004-12-01

    In the context of three-flavor neutrino mixing, we present a thorough study of the phenomenological constraints applicable to three observables sensitive to absolute neutrino masses: The effective neutrino mass in Tritium beta-decay (m{sub {beta}}); the effective Majorana neutrino mass in neutrinoless double beta-decay (m{sub {beta}}{sub {beta}}); and the sum of neutrino masses in cosmology ({sigma}). We discuss the correlations among these variables which arise from the combination of all the available neutrino oscillation data, in both normal and inverse neutrino mass hierarchy. We set upper limits on m{sub {beta}} by combining updated results from the Mainz and Troitsk experiments. We also consider the latest results on m{sub {beta}}{sub {beta}} from the Heidelberg-Moscow experiment, both with and without the lower bound claimed by such experiment. We derive upper limits on {sigma} from an updated combination of data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite and the two degrees Fields (2dF) Galaxy Redshifts Survey, with and without Lyman-{alpha} forest data from the Sloan Digital Sky Survey (SDSS), in models with a nonzero running of the spectral index of primordial inflationary perturbations. The results are discussed in terms of two-dimensional projections of the globally allowed region in the (m{sub {beta}},m{sub {beta}}{sub {beta}},{sigma}) parameter space, which neatly show the relative impact of each data set. In particular, the (in)compatibility between {sigma} and m{sub {beta}}{sub {beta}} constraints is highlighted for various combinations of data. We also briefly discuss how future neutrino data (both oscillatory and nonoscillatory) can further probe the currently allowed regions.

  19. Techniques of absolute low energy x-ray calibration

    SciTech Connect

    Day, R.H.

    1986-01-01

    Recent advances in pulsed plasma research, materials science, and astrophysics have required many new diagnostic instruments for use in the low energy x-ray regime. The characterization of these instruments has provided a challenge to instrument designers and provided the momentum to improve x-ray sources and dosimetry techniques. In this paper, the present state-of-the-art in low energy x-ray characterization techniques is reviewed. A summary is given of low energy x-ray generator technology and dosimetry techniques including a discussion of thin window proportional counters and ionization chambers. A review is included of the widely used x-ray data bases and a sample of ultrasoft x-ray measuring procedures, chopped x-ray source generators, phase sensitive detection of ultralow currents, and angular divergence measurements.

  20. Absolute instability from linear conversion of counter-propagating positive and negative energy waves

    SciTech Connect

    Kaufman, A.N.; Brizard, A.J.; Morehead, J.J.; Tracy, E.R.

    1997-12-31

    The resonant interaction of a negative-energy wave with a positive-energy wave gives rise to a linear instability. Whereas a single crossing of rays in a nonuniform medium leads to a convectively saturated instability, we show that a double crossing can yield an absolute instability.

  1. Calculation of absolute free energy of binding for theophylline and its analogs to RNA aptamer using nonequilibrium work values

    NASA Astrophysics Data System (ADS)

    Tanida, Yoshiaki; Ito, Masakatsu; Fujitani, Hideaki

    2007-08-01

    The massively parallel computation of absolute binding free energy with a well-equilibrated system (MP-CAFEE) has been developed [H. Fujitani, Y. Tanida, M. Ito, G. Jayachandran, C.D. Snow, M.R. Shirts, E.J. Sorin, V.S. Pande, J. Chem. Phys. 123 (2005) 084108]. As an application, we perform the binding affinity calculations of six theophylline-related ligands with RNA aptamer. Basically, our method is applicable when using many compute nodes to accelerate simulations, thus a parallel computing system is also developed. To further reduce the computational cost, the adequate non-uniform intervals of coupling constant λ, connecting two equilibrium states, namely bound and unbound, are determined. The absolute binding energies Δ G thus obtained have effective linear relation between the computed and experimental values. If the results of two other different methods are compared, thermodynamic integration (TI) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) by the paper of Gouda et al. [H. Gouda, I.D. Kuntz, D.A. Case, P.A. Kollman, Biopolymers 68 (2003) 16], the predictive accuracy of the relative values ΔΔ G is almost comparable to that of TI: the correlation coefficients ( R) obtained are 0.99 (this work), 0.97 (TI), and 0.78 (MM-PBSA). On absolute binding energies meanwhile, a constant energy shift of ˜-7 kcal/mol against the experimental values is evident. To solve this problem, several presumable reasons are investigated.

  2. Superharp: A wire scanner with absolute position readout for beam energy measurement at CEBAF

    SciTech Connect

    Yan, C.

    1994-09-07

    Superharp is an upgrade CEBAF wire scanner with absolute position readout from shaft encoder. As high precision absolute beam position probe ({Delta}x {approximately} 10{mu}m), three pairs of superharps are installed at the entrance, the mid-point, and the exit of Hall C arc beamline in beam switch yard, which will be tuned in dispersive mode as energy spectrometer performing 10{sup {minus}3} beam energy measurement. With dual sensor system: the direct current pickup and the bremsstrahlung detection electronics, beam profile can be obtained by superharp at wide beam current range from 1 {mu}A to 100 {mu}A.

  3. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXI - Absolute energy distribution of stars in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Code, A. D.; Fairchild, E. T.

    1976-01-01

    The absolute energy distribution in the ultraviolet is given for the stars alpha Vir, eta UMa, and alpha Leo. The calibration is based on absolute heterochromatic photometry between 2920 and 1370 A carried out with an Aerobee sounding rocket. The fundamental radiation standard is the synchrotron radiation from 240-MeV electrons in a certain synchrotron storage ring. On the basis of the sounding-rocket calibration, the preliminary OAO-2 spectrometer calibration has been revised; the fluxes for the three program stars are tabulated in energy per second per square centimeter per unit wavelength interval.

  4. Procoagulant and platelet-derived microvesicle absolute counts determined by flow cytometry correlates with a measurement of their functional capacity

    PubMed Central

    Ayers, Lisa; Harrison, Paul; Kohler, Malcolm; Ferry, Berne

    2014-01-01

    Background Flow cytometry is the most commonly used technology to measure microvesicles (MVs). Despite reported limitations of this technique, MV levels obtained using conventional flow cytometry have yielded many clinically relevant findings, such as associations with disease severity and ability to predict clinical outcomes. This study aims to determine if MV enumeration by flow cytometry correlates with a measurement of their functional capacity, as this may explain how flow cytometry generates clinically relevant results. Methods One hundred samples from healthy individuals and patients with obstructive sleep apnoea were analysed by conventional flow cytometry (FACSCalibur) and by three functional MV assays: Zymuphen MP-activity in which data were given as phosphatidylserine equivalent, STA® Phospholipid Procoag Assay expressed as clotting time and Endogenous Thrombin Potential (ETP) reflecting in vitro thrombin generation. Correlations were determined by Spearman correlation. Results Absolute counts of lactadherin+ procoagulant MVs generated by flow cytometry weakly correlated with the results obtained from the Zymuphen MP-activity (r=0.5370, p<0.0001); correlated with ETP (r=0.7444, p<0.0001); negatively correlated with STA® Phospholipid Procoag Assay clotting time (−0.7872, p<0.0001), reflecting a positive correlation between clotting activity and flow cytometry. Levels of Annexin V+ procoagulant and platelet-derived MVs were also associated with functional assays. Absolute counts of MVs derived from other cell types were not correlated with the functional results. Conclusions Quantitative results of procoagulant and platelet-derived MVs from conventional flow cytometry are associated with the functional capability of the MVs, as defined by three functional MV assays. Flow cytometry is a valuable technique for the quantification of MVs from different cellular origins; however, a combination of several analytical techniques may give the most comprehensive

  5. A simplified confinement method for calculating absolute free energies and free energy and entropy differences.

    PubMed

    Ovchinnikov, Victor; Cecchini, Marco; Karplus, Martin

    2013-01-24

    A simple and robust formulation of the path-independent confinement method for the calculation of free energies is presented. The simplified confinement method (SCM) does not require matrix diagonalization or switching off the molecular force field, and has a simple convergence criterion. The method can be readily implemented in molecular dynamics programs with minimal or no code modifications. Because the confinement method is a special case of thermodynamic integration, it is trivially parallel over the integration variable. The accuracy of the method is demonstrated using a model diatomic molecule, for which exact results can be computed analytically. The method is then applied to the alanine dipeptide in vacuum, and to the α-helix ↔ β-sheet transition in a 16-residue peptide modeled in implicit solvent. The SCM requires less effort for the calculation of free energy differences than previous formulations because it does not require computing normal modes. The SCM has a diminished advantage for determining absolute free energy values, because it requires decreasing the MD integration step to obtain accurate results. An approximate confinement procedure is introduced, which can be used to estimate directly the configurational entropy difference between two macrostates, without the need for additional computation of the difference in the free energy or enthalpy. The approximation has convergence properties similar to those of the standard confinement method for the calculation of free energies. The use of the approximation requires about 5 times less wall-clock simulation time than that needed to compute enthalpy differences to similar precision from an MD trajectory. For the biomolecular systems considered in this study, the errors in the entropy approximation are under 10%. Practical applications of the methods to proteins are currently limited to implicit solvent simulations. PMID:23268557

  6. Electron correlation energies in atoms

    NASA Astrophysics Data System (ADS)

    McCarthy, Shane Patrick

    This dissertation is a study of electron correlation energies Ec in atoms. (1) Accurate values of E c are computed for isoelectronic sequences of "Coulomb-Hooke" atoms with varying mixtures of Coulombic and Hooke character. (2) Coupled-cluster calculations in carefully designed basis sets are combined with fully converged second-order Moller-Plesset perturbation theory (MP2) computations to obtain fairly accurate, non-relativistic Ec values for the 12 closed-shell atoms from Ar to Rn. The complete basis-set (CBS) limits of MP2 energies are obtained for open-shell atoms by computations in very large basis sets combined with a knowledge of the MP2/CBS limit for the next larger closed-shell atom with the same valence shell structure. Then higher-order correlation corrections are found by coupled-cluster calculations using basis sets that are not quite as large. The method is validated for the open-shell atoms from Al to Cl and then applied to get E c values, probably accurate to 3%, for the 4th-period open-shell atoms: K, Sc-Cu, and Ga-Br. (3) The results show that, contrary to quantum chemical folklore, MP2 overestimates |Ec| for atoms beyond Fe. Spin-component scaling arguments are used to provide a simple explanation for this overestimation. (4) Eleven non-relativistic density functionals, including some of the most widely-used ones, are tested on their ability to predict non-relativistic, electron correlation energies for atoms and their cations. They all lead to relatively poor predictions for the heavier atoms. Several novel, few-parameter, density functionals for the correlation energy are developed heuristically. Four new functionals lead to improved predictions for the 4th-period atoms without unreasonably compromising accuracy for the lighter atoms. (5) Simple models describing the variation of E c with atomic number are developed.

  7. Borehole magnetostratigraphy, absolute age dating, and correlation of sedimentary rocks, with examples from the Paris Basin, France

    SciTech Connect

    Bouisset, P.M. ); Augustin, A.M. )

    1993-04-01

    Total and CEA have conceived and developed two new logging tools which allow continuous, precise, and accurate in-situ magnetic measurements within weakly magnetized sedimentary rocks encountered in uncased industry drilled wells. The combination of these magnetic measurements permits for the first time continuous determination of natural remanent magnetization (NRM) polarities occurring in the logged section. The resulting well magnetostratigraphic sequence (WMS) which may be recognized from well to well (magnetostratigraphic correlations), may also be correlative to a geomagnetic polarity time scale (GPTS) of reference magnetostratigraphic scale (RMS), given adequate dating tie points and lack of noticeable remagnetizations. Application of this method to the Upper Jurrasic formation in four wells of the Paris basin has yielded promising results for both stratigraphic and near absolute age correlations as well as determination of facies diachronisms. The comparison of results obtained from magnetic measurements and from sequence stratigraphy analysis shows that third-order sequence boundaries may be correlative to geomagnetic reversals, but may also be diachronous in wells 80 km or less apart. The potential of borehole magnetic measurements as presented in this paper is still under investigation. However, these encouraging initial results show that this new investigating and dating method could be of great help in the analysis of subsurface stratigraphy by extending the concepts of magnetostratigraphy from the outcrops and laboratory directly into borehole logging. 81 refs., 18 figs.

  8. Absolute pulse energy measurements of soft x-rays at the Linac Coherent Light Source.

    PubMed

    Tiedtke, K; Sorokin, A A; Jastrow, U; Juranić, P; Kreis, S; Gerken, N; Richter, M; Arp, U; Feng, Y; Nordlund, D; Soufli, R; Fernández-Perea, M; Juha, L; Heimann, P; Nagler, B; Lee, H J; Mack, S; Cammarata, M; Krupin, O; Messerschmidt, M; Holmes, M; Rowen, M; Schlotter, W; Moeller, S; Turner, J J

    2014-09-01

    This paper reports novel measurements of x-ray optical radiation on an absolute scale from the intense and ultra-short radiation generated in the soft x-ray regime of a free electron laser. We give a brief description of the detection principle for radiation measurements which was specifically adapted for this photon energy range. We present data characterizing the soft x-ray instrument at the Linac Coherent Light Source (LCLS) with respect to the radiant power output and transmission by using an absolute detector temporarily placed at the downstream end of the instrument. This provides an estimation of the reflectivity of all x-ray optical elements in the beamline and provides the absolute photon number per bandwidth per pulse. This parameter is important for many experiments that need to understand the trade-offs between high energy resolution and high flux, such as experiments focused on studying materials via resonant processes. Furthermore, the results are compared with the LCLS diagnostic gas detectors to test the limits of linearity, and observations are reported on radiation contamination from spontaneous undulator radiation and higher harmonic content. PMID:25321502

  9. A new absolute method for the standardization of radionuclides emitting low-energy radiation.

    PubMed

    Leblanc, E; de, Marcillac P; Coron, N; Leblanc, J; Loidl, M; Metge, J F; Bouchard, J

    2002-01-01

    Microcalorimeters (or bolometers) operated at temperatures below 100 mK allow individual counting of photons and electrons with a very low energy detection threshold. The physics is based on the pulse temperature increase of the target (or absorber) of the detector due to the complete absorption of both electrons and photons. Since this target can be constructed with a perfect 4-pi geometry, a bolometer offers potentially a new method for absolute activity measurements of radionuclides emitting low-energy radiation. In this paper we present our first results of a feasibility study of activity standardization of a 55Fe solution with a prototype 4-pi bolometer. PMID:11839023

  10. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  11. Evaluation of Generalized Born Model Accuracy for Absolute Binding Free Energy Calculations.

    PubMed

    Zeller, Fabian; Zacharias, Martin

    2014-06-27

    Generalized Born (GB) implicit solvent models are widely used in molecular dynamics simulations to evaluate the interactions of biomolecular complexes. The continuum treatment of the solvent results in significant computational savings in comparison to an explicit solvent representation. It is, however, not clear how accurately the GB approach reproduces the absolute free energies of biomolecular binding. On the basis of induced dissociation by means of umbrella sampling simulations, the absolute binding free energies of small proline-rich peptide ligands and a protein receptor were calculated. Comparative simulations according to the same protocol were performed by employing an explicit solvent model and various GB-type implicit solvent models in combination with a nonpolar surface tension term. The peptide ligands differed in a key residue at the peptide-protein interface, including either a nonpolar, a neutral polar, a positively charged, or a negatively charged group. For the peptides with a neutral polar or nonpolar interface residue, very good agreement between the explicit solvent and GB implicit solvent results was found. Deviations in the main separation free energy contributions are smaller than 1 kcal/mol. In contrast, for peptides with a charged interface residue, significant deviations of 2-4 kcal/mol were observed. The results indicate that recent GB models can compete with explicit solvent representations in total binding free energy calculations as long as no charged residues are present at the binding interface. PMID:24941018

  12. Absolute Hydration Free Energies of Blocked Amino Acids: Implications for Protein Solvation and Stability

    PubMed Central

    König, Gerhard; Bruckner, Stefan; Boresch, Stefan

    2013-01-01

    Most proteins perform their function in aqueous solution. The interactions with water determine the stability of proteins and the desolvation costs of ligand binding or membrane insertion. However, because of experimental restrictions, absolute solvation free energies of proteins or amino acids are not available. Instead, solvation free energies are estimated based on side chain analog data. This approach implies that the contributions to free energy differences are additive, and it has often been employed for estimating folding or binding free energies. However, it is not clear how much the additivity assumption affects the reliability of the resulting data. Here, we use molecular dynamics–based free energy simulations to calculate absolute hydration free energies for 15 N-acetyl-methylamide amino acids with neutral side chains. By comparing our results with solvation free energies for side chain analogs, we demonstrate that estimates of solvation free energies of full amino acids based on group-additive methods are systematically too negative and completely overestimate the hydrophobicity of glycine. The largest deviation of additive protocols using side chain analog data was 6.7 kcal/mol; on average, the deviation was 4 kcal/mol. We briefly discuss a simple way to alleviate the errors incurred by using side chain analog data and point out the implications of our findings for the field of biophysics and implicit solvent models. To support our results and conclusions, we calculate relative protein stabilities for selected point mutations, yielding a root-mean-square deviation from experimental results of 0.8 kcal/mol. PMID:23442867

  13. Absolute polarimeter for the proton-beam energy of 200 MeV

    SciTech Connect

    Zelenski, A. N.; Atoian, G.; Bogdanov, A. A.; Nurushev, S. B.; Pylaev, F. S.; Raparia, D.; Runtso, M. F.; Stephenson, E.

    2013-12-15

    A polarimeter is upgraded and tested in a 200-MeV polarized-proton beam at the accelerator-collider facility of the Brookhaven National Laboratory. The polarimeter is based on the elastic polarizedproton scattering on a carbon target at an angle of 16.2°, in which case the analyzing power is close to unity and was measured to a very high degree of precision. It is shown that, in the energy range of 190–205 MeV, the absolute polarization can be measured to a precision better than ±0.5%.

  14. Computations of absolute solvation free energies of small molecules using explicit and implicit solvent model.

    SciTech Connect

    Shivakumar, D.; Deng, Y.; Roux, B.; Biosciences Division; Univ. of Chicago

    2009-01-01

    Accurate determination of absolute solvation free energy plays a critical role in numerous areas of biomolecular modeling and drug discovery. A quantitative representation of ligand and receptor desolvation, in particular, is an essential component of current docking and scoring methods. Furthermore, the partitioning of a drug between aqueous and nonpolar solvents is one of the important factors considered in pharmacokinetics. In this study, the absolute hydration free energy for a set of 239 neutral ligands spanning diverse chemical functional groups commonly found in drugs and drug-like candidates is calculated using the molecular dynamics free energy perturbation method (FEP/MD) with explicit water molecules, and compared to experimental data as well as its counterparts obtained using implicit solvent models. The hydration free energies are calculated from explicit solvent simulations using a staged FEP procedure permitting a separation of the total free energy into polar and nonpolar contributions. The nonpolar component is further decomposed into attractive (dispersive) and repulsive (cavity) components using the Weeks-Chandler-Anderson (WCA) separation scheme. To increase the computational efficiency, all of the FEP/MD simulations are generated using a mixed explicit/implicit solvent scheme with a relatively small number of explicit TIP3P water molecules, in which the influence of the remaining bulk is incorporated via the spherical solvent boundary potential (SSBP). The performances of two fixed-charge force fields designed for small organic molecules, the General Amber force field (GAFF), and the all-atom CHARMm-MSI, are compared. Because of the crucial role of electrostatics in solvation free energy, the results from various commonly used charge generation models based on the semiempirical (AM1-BCC) and QM calculations [charge fitting using ChelpG and RESP] are compared. In addition, the solvation free energies of the test set are also calculated using

  15. Probing carbohydrate product expulsion from a processive cellulase with multiple absolute binding free energy methods.

    PubMed

    Bu, Lintao; Beckham, Gregg T; Shirts, Michael R; Nimlos, Mark R; Adney, William S; Himmel, Michael E; Crowley, Michael F

    2011-05-20

    Understanding the enzymatic mechanism that cellulases employ to degrade cellulose is critical to efforts to efficiently utilize plant biomass as a sustainable energy resource. A key component of cellulase action on cellulose is product inhibition from monosaccharide and disaccharides in the product site of cellulase tunnel. The absolute binding free energy of cellobiose and glucose to the product site of the catalytic tunnel of the Family 7 cellobiohydrolase (Cel7A) of Trichoderma reesei (Hypocrea jecorina) was calculated using two different approaches: steered molecular dynamics (SMD) simulations and alchemical free energy perturbation molecular dynamics (FEP/MD) simulations. For the SMD approach, three methods based on Jarzynski's equality were used to construct the potential of mean force from multiple pulling trajectories. The calculated binding free energies, -14.4 kcal/mol using SMD and -11.2 kcal/mol using FEP/MD, are in good qualitative agreement. Analysis of the SMD pulling trajectories suggests that several protein residues (Arg-251, Asp-259, Asp-262, Trp-376, and Tyr-381) play key roles in cellobiose and glucose binding to the catalytic tunnel. Five mutations (R251A, D259A, D262A, W376A, and Y381A) were made computationally to measure the changes in free energy during the product expulsion process. The absolute binding free energies of cellobiose to the catalytic tunnel of these five mutants are -13.1, -6.0, -11.5, -7.5, and -8.8 kcal/mol, respectively. The results demonstrated that all of the mutants tested can lower the binding free energy of cellobiose, which provides potential applications in engineering the enzyme to accelerate the product expulsion process and improve the efficiency of biomass conversion. PMID:21454590

  16. Absolute Binding Free Energy Calculations Using Molecular Dynamics Simulations with Restraining Potentials

    PubMed Central

    Wang, Jiyao; Deng, Yuqing; Roux, Benoît

    2006-01-01

    The absolute (standard) binding free energy of eight FK506-related ligands to FKBP12 is calculated using free energy perturbation molecular dynamics (FEP/MD) simulations with explicit solvent. A number of features are implemented to improve the accuracy and enhance the convergence of the calculations. First, the absolute binding free energy is decomposed into sequential steps during which the ligand-surrounding interactions as well as various biasing potentials restraining the translation, orientation, and conformation of the ligand are turned “on” and “off.” Second, sampling of the ligand conformation is enforced by a restraining potential based on the root mean-square deviation relative to the bound state conformation. The effect of all the restraining potentials is rigorously unbiased, and it is shown explicitly that the final results are independent of all artificial restraints. Third, the repulsive and dispersive free energy contribution arising from the Lennard-Jones interactions of the ligand with its surrounding (protein and solvent) is calculated using the Weeks-Chandler-Andersen separation. This separation also improves convergence of the FEP/MD calculations. Fourth, to decrease the computational cost, only a small number of atoms in the vicinity of the binding site are simulated explicitly, while all the influence of the remaining atoms is incorporated implicitly using the generalized solvent boundary potential (GSBP) method. With GSBP, the size of the simulated FKBP12/ligand systems is significantly reduced, from ∼25,000 to 2500. The computations are very efficient and the statistical error is small (∼1 kcal/mol). The calculated binding free energies are generally in good agreement with available experimental data and previous calculations (within ∼2 kcal/mol). The present results indicate that a strategy based on FEP/MD simulations of a reduced GSBP atomic model sampled with conformational, translational, and orientational restraining

  17. ABSOLUTE MEASUREMENT OF THE POLARIZATION OF HIGH ENERGY PROTON BEAMS AT RHIC

    SciTech Connect

    MAKDISI,Y.; BRAVAR, A. BUNCE, G. GILL, R.; HUANG, H.; ET AL.

    2007-06-25

    The spin physics program at the Relativistic Heavy Ion Collider (RHIC) requires knowledge of the beam polarization to better than 5%. Such a goal is made the more difficult by the lack of knowledge of the analyzing power of high energy nuclear physics processes. To overcome this, a polarized hydrogen jet target was constructed and installed at one intersection region in RHIC where it intersects both beams and utilizes the precise knowledge of the jet atomic hydrogen beam polarization to measure the analyzing power in proton-proton elastic scattering in the Nuclear Coulomb Interference (CNI) region at the prescribed RHIC proton beam energy. The reverse reaction is used to assess the absolute beam polarization. Simultaneous measurements taken with fast high statistics polarimeters that measure the p-Carbon elastic scattering process also in the CNI region use the jet results to calibrate the latter.

  18. Determination of RW3-to-water mass-energy absorption coefficient ratio for absolute dosimetry.

    PubMed

    Seet, Katrina Y T; Hanlon, Peta M; Charles, Paul H

    2011-12-01

    The measurement of absorbed dose to water in a solid-phantom may require a conversion factor because it may not be radiologically equivalent to water. One phantom developed for the use of dosimetry is a solid water, RW3 white-polystyrene material by IBA. This has a lower mass-energy absorption coefficient than water due to high bremsstrahlung yield, which affects the accuracy of absolute dosimetry measurements. In this paper, we demonstrate the calculation of mass-energy absorption coefficient ratios, relative to water, from measurements in plastic water and RW3 with an Elekta Synergy linear accelerator (6 and 10 MV photon beams) as well as Monte Carlo modeling in BEAMnrc and DOSXYZnrc. From this, the solid-phantom-to-water correction factor was determined for plastic water and RW3. PMID:21960410

  19. Impact of correlated noise in an energy depot model

    NASA Astrophysics Data System (ADS)

    Zeng, Chunhua; Zeng, Jiakui; Liu, Feng; Wang, Hua

    2016-01-01

    Based on the depot model of the motion of active Brownian particles (ABPs), the impact of cross-correlated multiplicative and additive noises has been investigated. Using a nonlinear Langevin approach, we discuss a new mechanism for the transport of ABPs in which the energy originates from correlated noise. It is shown that the correlation between two types of noise breaks the symmetry of the potential to generate motion of the ABPs with a net velocity. The absolute maximum value of the mean velocity depends on correlated noise or multiplicative noise, whereas a monotonic decrease in the mean velocity occurs with additive noise. In the case of no correlation, the ABPs undergo pure diffusion with zero mean velocity, whereas in the case of perfect correlation, the ABPs undergo pure drift with zero diffusion. This shows that the energy stemming from correlated noise is primarily converted to kinetic energy of the intrawell motion and is eventually dissipated in drift motion. A physical explanation of the mechanisms for noise-driven transport of ABPs is derived from the effective potential of the Fokker-Planck equation.

  20. Impact of correlated noise in an energy depot model

    PubMed Central

    Zeng, Chunhua; Zeng, Jiakui; Liu, Feng; Wang, Hua

    2016-01-01

    Based on the depot model of the motion of active Brownian particles (ABPs), the impact of cross-correlated multiplicative and additive noises has been investigated. Using a nonlinear Langevin approach, we discuss a new mechanism for the transport of ABPs in which the energy originates from correlated noise. It is shown that the correlation between two types of noise breaks the symmetry of the potential to generate motion of the ABPs with a net velocity. The absolute maximum value of the mean velocity depends on correlated noise or multiplicative noise, whereas a monotonic decrease in the mean velocity occurs with additive noise. In the case of no correlation, the ABPs undergo pure diffusion with zero mean velocity, whereas in the case of perfect correlation, the ABPs undergo pure drift with zero diffusion. This shows that the energy stemming from correlated noise is primarily converted to kinetic energy of the intrawell motion and is eventually dissipated in drift motion. A physical explanation of the mechanisms for noise-driven transport of ABPs is derived from the effective potential of the Fokker-Planck equation. PMID:26786478

  1. Impact of correlated noise in an energy depot model.

    PubMed

    Zeng, Chunhua; Zeng, Jiakui; Liu, Feng; Wang, Hua

    2016-01-01

    Based on the depot model of the motion of active Brownian particles (ABPs), the impact of cross-correlated multiplicative and additive noises has been investigated. Using a nonlinear Langevin approach, we discuss a new mechanism for the transport of ABPs in which the energy originates from correlated noise. It is shown that the correlation between two types of noise breaks the symmetry of the potential to generate motion of the ABPs with a net velocity. The absolute maximum value of the mean velocity depends on correlated noise or multiplicative noise, whereas a monotonic decrease in the mean velocity occurs with additive noise. In the case of no correlation, the ABPs undergo pure diffusion with zero mean velocity, whereas in the case of perfect correlation, the ABPs undergo pure drift with zero diffusion. This shows that the energy stemming from correlated noise is primarily converted to kinetic energy of the intrawell motion and is eventually dissipated in drift motion. A physical explanation of the mechanisms for noise-driven transport of ABPs is derived from the effective potential of the Fokker-Planck equation. PMID:26786478

  2. Fast GPU-based absolute intensity determination for energy-dispersive X-ray Laue diffraction

    NASA Astrophysics Data System (ADS)

    Alghabi, F.; Send, S.; Schipper, U.; Abboud, A.; Pietsch, U.; Kolb, A.

    2016-01-01

    This paper presents a novel method for fast determination of absolute intensities in the sites of Laue spots generated by a tetragonal hen egg-white lysozyme crystal after exposure to white synchrotron radiation during an energy-dispersive X-ray Laue diffraction experiment. The Laue spots are taken by means of an energy-dispersive X-ray 2D pnCCD detector. Current pnCCD detectors have a spatial resolution of 384 × 384 pixels of size 75 × 75 μm2 each and operate at a maximum of 400 Hz. Future devices are going to have higher spatial resolution and frame rates. The proposed method runs on a computer equipped with multiple Graphics Processing Units (GPUs) which provide fast and parallel processing capabilities. Accordingly, our GPU-based algorithm exploits these capabilities to further analyse the Laue spots of the sample. The main contribution of the paper is therefore an alternative algorithm for determining absolute intensities of Laue spots which are themselves computed from a sequence of pnCCD frames. Moreover, a new method for integrating spectral peak intensities and improved background correction, a different way of calculating mean count rate of the background signal and also a new method for n-dimensional Poisson fitting are presented.We present a comparison of the quality of results from the GPU-based algorithm with the quality of results from a prior (base) algorithm running on CPU. This comparison shows that our algorithm is able to produce results with at least the same quality as the base algorithm. Furthermore, the GPU-based algorithm is able to speed up one of the most time-consuming parts of the base algorithm, which is n-dimensional Poisson fitting, by a factor of more than 3. Also, the entire procedure of extracting Laue spots' positions, energies and absolute intensities from a raw dataset of pnCCD frames is accelerated by a factor of more than 3.

  3. Absolute energy calibration for relativistic electron beams with pointing instability from a laser-plasma accelerator

    SciTech Connect

    Cha, H. J.; Choi, I. W.; Kim, H. T.; Kim, I J.; Nam, K. H.; Jeong, T. M.; Lee, J.

    2012-06-15

    The pointing instability of energetic electron beams generated from a laser-driven accelerator can cause a serious error in measuring the electron spectrum with a magnetic spectrometer. In order to determine a correct electron spectrum, the pointing angle of an electron beam incident on the spectrometer should be exactly defined. Here, we present a method for absolutely calibrating the electron spectrum by monitoring the pointing angle using a scintillating screen installed in front of a permanent dipole magnet. The ambiguous electron energy due to the pointing instability is corrected by the numerical and analytical calculations based on the relativistic equation of electron motion. It is also possible to estimate the energy spread of the electron beam and determine the energy resolution of the spectrometer using the beam divergence angle that is simultaneously measured on the screen. The calibration method with direct measurement of the spatial profile of an incident electron beam has a simple experimental layout and presents the full range of spatial and spectral information of the electron beams with energies of multi-hundred MeV level, despite the limited energy resolution of the simple electron spectrometer.

  4. Quantitative atomic resolution elemental mapping via absolute-scale energy dispersive X-ray spectroscopy.

    PubMed

    Chen, Z; Weyland, M; Sang, X; Xu, W; Dycus, J H; LeBeau, J M; D'Alfonso, A J; Allen, L J; Findlay, S D

    2016-09-01

    Quantitative agreement on an absolute scale is demonstrated between experiment and simulation for two-dimensional, atomic-resolution elemental mapping via energy dispersive X-ray spectroscopy. This requires all experimental parameters to be carefully characterized. The agreement is good, but some discrepancies remain. The most likely contributing factors are identified and discussed. Previous predictions that increasing the probe forming aperture helps to suppress the channelling enhancement in the average signal are confirmed experimentally. It is emphasized that simple column-by-column analysis requires a choice of sample thickness that compromises between being thick enough to yield a good signal-to-noise ratio while being thin enough that the overwhelming majority of the EDX signal derives from the column on which the probe is placed, despite strong electron scattering effects. PMID:27258645

  5. Superharp — A wire scanner with absolute position readout for beam energy measurement at CEBAF

    NASA Astrophysics Data System (ADS)

    Yan, C.; Adderley, P.; Barker, D.; Beaufait, J.; Capek, K.; Carlini, R.; Dahlberg, J.; Feldl, E.; Jordan, K.; Kross, B.; Oren, W.; Wojcik, R.; VanDyke, J.

    1995-02-01

    The CEBAF superharp is an upgraded beam wire scanner which provides absolute beam position readout using a shaft encoder. Superharps allow for high precision measurements of the beam's profile and position ( Δx ˜ 10 μm). The Hall C endstation at CEBAF will use three pairs of superharps to perform beam energy measurements with 10 -3 accuracy. The three pairs are installed at the beginning, the mid-point and the end of the Hall C arc beamline. Using superharps in conjunction with a dual sensor system: the direct current pick-up and the bremsstrahlung detectors, beam profile measurements can be obtained over a wide beam current range of 1 ˜ 200 μA.

  6. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    SciTech Connect

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; /more authors..

    2012-09-20

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between {approx}6 and {approx}13 GeV with an estimated uncertainty of {approx}2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  7. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbielini, G; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B,; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Gehrels, N.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Troja, E. J.

    2012-01-01

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron- plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between approx. 6 and approx. 13 GeV with an estimated uncertainty of approx. 2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  8. Setting Whole-Building Absolute Energy Use Targets for the K-12 School, Retail, and Healthcare Sectors: Preprint

    SciTech Connect

    Leach, M.; Bonnema, E.; Pless, S.; Torcellini, P.

    2012-08-01

    This paper helps owners' efficiency representatives to inform executive management, contract development, and project management staff as to how specifying and applying whole-building absolute energy use targets for new construction or renovation projects can improve the operational energy performance of commercial buildings.

  9. Surveying implicit solvent models for estimating small molecule absolute hydration free energies

    PubMed Central

    Knight, Jennifer L.

    2011-01-01

    Implicit solvent models are powerful tools in accounting for the aqueous environment at a fraction of the computational expense of explicit solvent representations. Here, we compare the ability of common implicit solvent models (TC, OBC, OBC2, GBMV, GBMV2, GBSW, GBSW/MS, GBSW/MS2 and FACTS) to reproduce experimental absolute hydration free energies for a series of 499 small neutral molecules that are modeled using AMBER/GAFF parameters and AM1-BCC charges. Given optimized surface tension coefficients for scaling the surface area term in the nonpolar contribution, most implicit solvent models demonstrate reasonable agreement with extensive explicit solvent simulations (average difference 1.0-1.7 kcal/mol and R2=0.81-0.91) and with experimental hydration free energies (average unsigned errors=1.1-1.4 kcal/mol and R2=0.66-0.81). Chemical classes of compounds are identified that need further optimization of their ligand force field parameters and others that require improvement in the physical parameters of the implicit solvent models themselves. More sophisticated nonpolar models are also likely necessary to more effectively represent the underlying physics of solvation and take the quality of hydration free energies estimated from implicit solvent models to the next level. PMID:21735452

  10. An energy decomposition analysis for second-order Møller–Plesset perturbation theory based on absolutely localized molecular orbitals

    SciTech Connect

    Thirman, Jonathan Head-Gordon, Martin

    2015-08-28

    An energy decomposition analysis (EDA) of intermolecular interactions is proposed for second-order Møller–Plesset perturbation theory (MP2) based on absolutely localized molecular orbitals (ALMOs), as an extension to a previous ALMO-based EDA for self-consistent field methods. It decomposes the canonical MP2 binding energy by dividing the double excitations that contribute to the MP2 wave function into classes based on how the excitations involve different molecules. The MP2 contribution to the binding energy is decomposed into four components: frozen interaction, polarization, charge transfer, and dispersion. Charge transfer is defined by excitations that change the number of electrons on a molecule, dispersion by intermolecular excitations that do not transfer charge, and polarization and frozen interactions by intra-molecular excitations. The final two are separated by evaluations of the frozen, isolated wave functions in the presence of the other molecules, with adjustments for orbital response. Unlike previous EDAs for electron correlation methods, this one includes components for the electrostatics, which is vital as adjustment to the electrostatic behavior of the system is in some cases the dominant effect of the treatment of electron correlation. The proposed EDA is then applied to a variety of different systems to demonstrate that all proposed components behave correctly. This includes systems with one molecule and an external electric perturbation to test the separation between polarization and frozen interactions and various bimolecular systems in the equilibrium range and beyond to test the rest of the EDA. We find that it performs well on these tests. We then apply the EDA to a halogen bonded system to investigate the nature of the halogen bond.

  11. Energy Decomposition Analysis Based on Absolutely Localized Molecular Orbitals for Large-Scale Density Functional Theory Calculations in Drug Design.

    PubMed

    Phipps, M J S; Fox, T; Tautermann, C S; Skylaris, C-K

    2016-07-12

    We report the development and implementation of an energy decomposition analysis (EDA) scheme in the ONETEP linear-scaling electronic structure package. Our approach is hybrid as it combines the localized molecular orbital EDA (Su, P.; Li, H. J. Chem. Phys., 2009, 131, 014102) and the absolutely localized molecular orbital EDA (Khaliullin, R. Z.; et al. J. Phys. Chem. A, 2007, 111, 8753-8765) to partition the intermolecular interaction energy into chemically distinct components (electrostatic, exchange, correlation, Pauli repulsion, polarization, and charge transfer). Limitations shared in EDA approaches such as the issue of basis set dependence in polarization and charge transfer are discussed, and a remedy to this problem is proposed that exploits the strictly localized property of the ONETEP orbitals. Our method is validated on a range of complexes with interactions relevant to drug design. We demonstrate the capabilities for large-scale calculations with our approach on complexes of thrombin with an inhibitor comprised of up to 4975 atoms. Given the capability of ONETEP for large-scale calculations, such as on entire proteins, we expect that our EDA scheme can be applied in a large range of biomolecular problems, especially in the context of drug design. PMID:27248370

  12. A rare gas optics-free absolute photon flux and energy analyzer to provide absolute photoionization rates of inflowing interstellar neutrals

    NASA Technical Reports Server (NTRS)

    Judge, Darrell L.

    1994-01-01

    A prototype spectrometer has been developed for space applications requiring long term absolute EUV photon flux measurements. The energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.

  13. Free Energy Perturbation Hamiltonian Replica-Exchange Molecular Dynamics (FEP\\H-REMD) for absolute ligand binding free energy calculations.

    SciTech Connect

    Jiang, W.; Roux, B.

    2010-09-01

    Free Energy Perturbation with Replica Exchange Molecular Dynamics (FEP/REMD) offers a powerful strategy to improve the convergence of free energy computations. In particular, it has been shown previously that a FEP/REMD scheme allowing random moves within an extended replica ensemble of thermodynamic coupling parameters '{lambda}' can improve the statistical convergence in calculations of absolute binding free energy of ligands to proteins [J. Chem. Theory Comput. 2009, 5, 2583]. In the present study, FEP/REMD is extended and combined with an accelerated MD simulations method based on Hamiltonian replica-exchange MD (H-REMD) to overcome the additional problems arising from the existence of kinetically trapped conformations within the protein receptor. In the combined strategy, each system with a given thermodynamic coupling factor {lambda} in the extended ensemble is further coupled with a set of replicas evolving on a biased energy surface with boosting potentials used to accelerate the interconversion among different rotameric states of the side chains in the neighborhood of the binding site. Exchanges are allowed to occur alternatively along the axes corresponding to the thermodynamic coupling parameter {lambda} and the boosting potential, in an extended dual array of coupled {lambda}- and H-REMD simulations. The method is implemented on the basis of new extensions to the REPDSTR module of the biomolecular simulation program CHARMM. As an illustrative example, the absolute binding free energy of p-xylene to the nonpolar cavity of the L99A mutant of the T4 lysozyme was calculated. The tests demonstrate that the dual {lambda}-REMD and H-REMD simulation scheme greatly accelerates the configurational sampling of the rotameric states of the side chains around the binding pocket, thereby improving the convergence of the FEP computations.

  14. Energy Correlation of Prompt Fission Neutrons

    NASA Astrophysics Data System (ADS)

    Elter, Zs.; Pázsit, I.

    2016-03-01

    In all cases where neutron fluctuations in a branching process (such as in multiplicity measurements) are treated in an energy dependent description, the energy correlations of the branching itself (energy correlations of the fission neutrons) need to be known. To date, these are not known from experiments. Such correlations can be theoretically and numerically derived by modelling the details of the fission process. It was suggested earlier that the fact that the prompt neutrons are emitted from the moving fission targets, will influence their energy and angular distributions in the lab system, which possibly induces correlations. In this paper the influence of the neutron emission process from the moving targets on the energy correlations is investigated analytically and via numerical simulations. It is shown that the correlations are generated by the random energy and direction distributions of the fission fragments. Analytical formulas are derived for the two-point energy distributions, and quantitative results are obtained by Monte-Carlo simulations. The results lend insight into the character of the two-point distributions, and give quantitative estimates of the energy correlations, which are generally small.

  15. Absolute Entropy and Energy of Carbon Dioxide Using the Two-Phase Thermodynamic Model.

    PubMed

    Huang, Shao-Nung; Pascal, Tod A; Goddard, William A; Maiti, Prabal K; Lin, Shiang-Tai

    2011-06-14

    The two-phase thermodynamic (2PT) model is used to determine the absolute entropy and energy of carbon dioxide over a wide range of conditions from molecular dynamics trajectories. The 2PT method determines the thermodynamic properties by applying the proper statistical mechanical partition function to the normal modes of a fluid. The vibrational density of state (DoS), obtained from the Fourier transform of the velocity autocorrelation function, converges quickly, allowing the free energy, entropy, and other thermodynamic properties to be determined from short 20-ps MD trajectories. The anharmonic effects in the vibrations are accounted for by the broadening of the normal modes into bands from sampling the velocities over the trajectory. The low frequency diffusive modes, which lead to finite DoS at zero frequency, are accounted for by considering the DoS as a superposition of gas-phase and solid-phase components (two phases). The analytical decomposition of the DoS allows for an evaluation of properties contributed by different types of molecular motions. We show that this 2PT analysis leads to accurate predictions of entropy and energy of CO2 over a wide range of conditions (from the triple point to the critical point of both the vapor and the liquid phases along the saturation line). This allows the equation of state of CO2 to be determined, which is limited only by the accuracy of the force field. We also validated that the 2PT entropy agrees with that determined from thermodynamic integration, but 2PT requires only a fraction of the time. A complication for CO2 is that its equilibrium configuration is linear, which would have only two rotational modes, but during the dynamics it is never exactly linear, so that there is a third mode from rotational about the axis. In this work, we show how to treat such linear molecules in the 2PT framework. PMID:26596450

  16. Calculation of the absolute free energy of a smectic-A phase

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Cheng; Ramachandran, Sanoop; Ryckaert, Jean-Paul

    2014-12-01

    In this paper, we provide a scheme to compute the absolute free energy of a smectic-A phase via the "indirect method." The state of interest is connected through a three-step reversible path to a reference state. This state consists of a low-density layer of rods coupled to two external fields maintaining these rods close to the layer's plane and oriented preferably normal to the layer. The low-density free energy of the reference state can be computed on the basis of the relevant second virial coefficients between two rods coupled to the two external fields. We apply this technique to the Gay-Berne potential for calamitics with a parameter set leading to stable isotropic (I), nematic (N), smectic-A (SmA), and crystal (Cr) phases. We locate the I-SmA phase transition at low pressure and the sequence of phase transitions I-N-SmA along higher-pressure isobars and we establish the location of the I-N-SmA triple point. Close to this triple point, we show that the N-SmA transition is clearly first order. Our results are compared to the coexistence lines of the approximate phase diagram elucidated by de Miguel et al. [J. Chem. Phys. 121, 11183 (2004), 10.1063/1.1810472] established through the direct observation of the sequence of phase transitions occurring along isobars under heating or cooling sequences of runs. Finally, we discuss the potential of our technique in studying similar transitions observed on layered phases under confinement.

  17. Calculation of the absolute free energy of a smectic-A phase.

    PubMed

    Huang, Chien-Cheng; Ramachandran, Sanoop; Ryckaert, Jean-Paul

    2014-12-01

    In this paper, we provide a scheme to compute the absolute free energy of a smectic-A phase via the "indirect method." The state of interest is connected through a three-step reversible path to a reference state. This state consists of a low-density layer of rods coupled to two external fields maintaining these rods close to the layer's plane and oriented preferably normal to the layer. The low-density free energy of the reference state can be computed on the basis of the relevant second virial coefficients between two rods coupled to the two external fields. We apply this technique to the Gay-Berne potential for calamitics with a parameter set leading to stable isotropic (I), nematic (N), smectic-A (SmA), and crystal (Cr) phases. We locate the I-SmA phase transition at low pressure and the sequence of phase transitions I-N-SmA along higher-pressure isobars and we establish the location of the I-N-SmA triple point. Close to this triple point, we show that the N-SmA transition is clearly first order. Our results are compared to the coexistence lines of the approximate phase diagram elucidated by de Miguel et al. [J. Chem. Phys. 121, 11183 (2004)] established through the direct observation of the sequence of phase transitions occurring along isobars under heating or cooling sequences of runs. Finally, we discuss the potential of our technique in studying similar transitions observed on layered phases under confinement. PMID:25615118

  18. Absolute Calibration of Image Plate for electrons at energy between 100 keV and 4 MeV

    SciTech Connect

    Chen, H; Back, N L; Eder, D C; Ping, Y; Song, P M; Throop, A

    2007-12-10

    The authors measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV to 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on the solid density targets. This paper presents the calibration results of image plate Photon Stimulated Luminescence PSL per electrons at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energies depositions at these angles. These provide a complete set of tools that allows extraction of the absolute calibration to other spectrometer setting at this electron energy range.

  19. Angular correlations and high energy evolution

    SciTech Connect

    Kovner, Alex; Lublinsky, Michael

    2011-11-01

    We address the question of to what extent JIMWLK evolution is capable of taking into account angular correlations in a high energy hadronic wave function. Our conclusion is that angular (and indeed other) correlations in the wave function cannot be reliably calculated without taking into account Pomeron loops in the evolution. As an example we study numerically the energy evolution of angular correlations between dipole scattering amplitudes in the framework of the large N{sub c} approximation to JIMWLK evolution (the 'projectile dipole model'). Target correlations are introduced via averaging over an (isotropic) ensemble of anisotropic initial conditions. We find that correlations disappear very quickly with rapidity even inside the saturation radius. This is in accordance with our physical picture of JIMWLK evolution. The actual correlations inside the saturation radius in the target QCD wave function, on the other hand, should remain sizable at any rapidity.

  20. Probing QCD at high energy via correlations

    SciTech Connect

    Jalilian-Marian, Jamal

    2011-04-26

    A hadron or nucleus at high energy or small x{sub Bj} contains many gluons and may be described as a Color Glass Condensate. Angular and rapidity correlations of two particles produced in high energy hadron-hadron collisions is a sensitive probe of high gluon density regime of QCD. Evolution equations which describe rapidity dependence of these correlation functions are derived from a QCD effective action.

  1. Absolute cross sections for electronic excitations of cytosine by low energy electron impact

    PubMed Central

    Bazin, M.; Michaud, M.; Sanche, L.

    2013-01-01

    The absolute cross sections (CS) for electronic excitations of cytosine by electron impact between 5 and 18 eV were measured by electron-energy loss (EEL) spectroscopy of the molecule deposited at low coverage on an inert Ar substrate. The lowest EEL features found at 3.55 and 4.02 eV are ascribed to transitions from the ground state to the two lowest triplet 1 3A′(π→π*) and 2 3A′(π→π*) valence states of the molecule. Their energy dependent CS exhibit essentially a common maximum at about 6 eV with a value of 1.84 × 10−17 cm2 for the former and 4.94 × 10−17 cm2 for the latter. In contrast, the CS for the next EEL feature at 4.65 eV, which is ascribed to the optically allowed transition to the 2 1A′(π→π*) valence state, shows only a steep rise to about 1.04 × 10−16 cm2 followed by a monotonous decrease with the incident electron energy. The higher EEL features at 5.39, 6.18, 6.83, and 7.55 eV are assigned to the excitations of the 3 3, 1A′(π→π*), 4 1A′(π→π*), 5 1A′(π→π*), and 6 1A′(π→π*) valence states, respectively. The CS for the 3 3, 1A′ and 4 1A′ states exhibit a common enhancement at about 10 eV superimposed on a more or less a steep rise, reaching respectively a maximum of 1.27 and 1.79 × 10−16 cm2, followed by a monotonous decrease. This latter enhancement and the maximum seen at about 6 eV in the lowest triplet states correspond to the core-excited electron resonances that have been found by dissociative electron attachment experiments with cytosine in the gas phase. The weak EEL feature found at 5.01 eV with a maximum CS of 3.8 × 10−18 cm2 near its excitation threshold is attributed to transitions from the ground state to the 1 3, 1A″(n→π*) states. The monotonous rise of the EEL signal above 8 eV is attributed to the ionization of the molecule. It is partitioned into four excitation energy regions at about 8.55, 9.21, 9.83, and 11.53 eV, which correspond closely to the ionization energies of

  2. Absolute cross sections for vibrational excitations of cytosine by low energy electron impact

    PubMed Central

    Michaud, M.; Bazin, M.; Sanche, L.

    2013-01-01

    The absolute cross sections (CSs) for vibrational excitations of cytosine by electron impact between 0.5 and 18 eV were measured by electron-energy loss (EEL) spectroscopy of the molecule deposited at monolayer coverage on an inert Ar substrate. The vibrational energies compare to those that have been reported from IR spectroscopy of cytosine isolated in Ar matrix, IR and Raman spectra of poly-crystalline cytosine, and ab initio calculation. The CSs for the various H bending modes at 142 and 160 meV are both rising from their energy threshold up to 1.7 and 2.1 × 10−17 cm2 at about 4 eV, respectively, and then decrease moderately while maintaining some intensity at 18 eV. The latter trend is displayed as well for the CS assigned to the NH2 scissor along with bending of all H at 179 meV. This overall behavior in electron-molecule collision is attributed to direct processes such as the dipole, quadrupole, and polarization contributions, etc. of the interaction of the incident electron with a molecule. The CSs for the ring deformation at 61 meV, the ring deformation with N-H symmetric wag at 77 meV, and the ring deformations with symmetric bending of all H at 119 meV exhibit common enhancement maxima at 1.5, 3.5, and 5.5 eV followed by a broad hump at about 12 eV, which are superimposed on the contribution due to the direct processes. At 3.5 eV, the CS values for the 61-, 77-, and 119-meV modes reach 4.0, 3.0, and 4.5 × 10−17 cm2, respectively. The CS for the C-C and C-O stretches at 202 meV, which dominates in the intermediate EEL region, rises sharply until 1.5 eV, reaches its maximum of 5.7 × 10−17 cm2 at 3.5 eV and then decreases toward 18 eV. The present vibrational enhancements, correspond to the features found around 1.5 and 4.5 eV in electron transmission spectroscopy (ETS) and those lying within 1.5–2.1 eV, 5.2–6.8 eV, and 9.5–10.9 eV range in dissociative electron attachment (DEA) experiments with cytosine in gas phase. While the ETS features

  3. Elucidating the energetics of entropically driven protein-ligand association: calculations of absolute binding free energy and entropy.

    PubMed

    Deng, Nan-jie; Zhang, Peng; Cieplak, Piotr; Lai, Luhua

    2011-10-20

    The binding of proteins and ligands is generally associated with the loss of translational, rotational, and conformational entropy. In many cases, however, the net entropy change due to binding is positive. To develop a deeper understanding of the energetics of entropically driven protein-ligand binding, we calculated the absolute binding free energies and binding entropies for two HIV-1 protease inhibitors Nelfinavir and Amprenavir using the double-decoupling method with molecular dynamics simulations in explicit solvent. For both ligands, the calculated absolute binding free energies are in general agreement with experiments. The statistical error in the computed ΔG(bind) due to convergence problem is estimated to be ≥2 kcal/mol. The decomposition of free energies indicates that, although the binding of Nelfinavir is driven by nonpolar interaction, Amprenavir binding benefits from both nonpolar and electrostatic interactions. The calculated absolute binding entropies show that (1) Nelfinavir binding is driven by large entropy change and (2) the entropy of Amprenavir binding is much less favorable compared with that of Nelfinavir. Both results are consistent with experiments. To obtain qualitative insights into the entropic effects, we decomposed the absolute binding entropy into different contributions based on the temperature dependence of free energies along different legs of the thermodynamic pathway. The results suggest that the favorable entropic contribution to binding is dominated by the ligand desolvation entropy. The entropy gain due to solvent release from binding site appears to be more than offset by the reduction of rotational and vibrational entropies upon binding. PMID:21899337

  4. Elucidating the Energetics of Entropically Driven Protein–Ligand Association: Calculations of Absolute Binding Free Energy and Entropy

    PubMed Central

    Deng, Nan-jie; Zhang, Peng; Cieplak, Piotr; Lai, Luhua

    2014-01-01

    The binding of proteins and ligands is generally associated with the loss of translational, rotational, and conformational entropy. In many cases, however, the net entropy change due to binding is positive. To develop a deeper understanding of the energetics of entropically driven protein–ligand binding, we calculated the absolute binding free energies and binding entropies for two HIV-1 protease inhibitors Nelfinavir and Amprenavir using the double-decoupling method with molecular dynamics simulations in explicit solvent. For both ligands, the calculated absolute binding free energies are in general agreement with experiments. The statistical error in the computed ΔG(bind) due to convergence problem is estimated to be ≥2 kcal/mol. The decomposition of free energies indicates that, although the binding of Nelfinavir is driven by nonpolar interaction, Amprenavir binding benefits from both nonpolar and electrostatic interactions. The calculated absolute binding entropies show that (1) Nelfinavir binding is driven by large entropy change and (2) the entropy of Amprenavir binding is much less favorable compared with that of Nelfinavir. Both results are consistent with experiments. To obtain qualitative insights into the entropic effects, we decomposed the absolute binding entropy into different contributions based on the temperature dependence of free energies along different legs of the thermodynamic pathway. The results suggest that the favorable entropic contribution to binding is dominated by the ligand desolvation entropy. The entropy gain due to solvent release from binding site appears to be more than offset by the reduction of rotational and vibrational entropies upon binding. PMID:21899337

  5. Absolute surface energy calculations of Wurtzite (0001)/(000-1): a study of ZnO and GaN

    NASA Astrophysics Data System (ADS)

    Zhang, Jingzhao; Zhang, Yiou; Tse, Kinfai; Deng, Bei; Xu, Hu; Zhu, Junyi

    The accurate absolute surface energies of (0001)/(000-1) surfaces of wurtzite structures are crucial in determining the thin film growth mode of important energy materials. However, the surface energies still remain to be solved due to the intrinsic difficulty of calculating dangling bond energy of asymmetrically bonded surface atoms. We used a pseudo-hydrogen passivation method to estimate the dangling bond energy and calculate the polar surfaces of ZnO and GaN. The calculations were based on the pseudo chemical potentials obtained from a set of tetrahedral clusters or simple pseudo-molecules, using density functional theory approaches, for both GGA and HSE. And the surface energies of (0001)/(000-1) surfaces of wurtzite ZnO and GaN we obtained showed relatively high self-consistencies. A wedge structure calculation with a new bottom surface passivation scheme of group I and group VII elements was also proposed and performed to show converged absolute surface energy of wurtzite ZnO polar surfaces. Part of the computing resources was provided by the High Performance Cluster Computing Centre, Hong Kong Baptist University. This work was supported by the start-up funding and direct Grant with the Project code of 4053134 at CUHK.

  6. Nondynamical correlation energy in model molecular systems

    NASA Astrophysics Data System (ADS)

    Chojnacki, Henryk

    The hypersurfaces for the deprotonation processes have been studied at the nonempirical level for H3O+, NH+4, PH+4, and H3S+ cations within their correlation consistent basis set. The potential energy curves were calculated and nondynamical correlation energies analyzed. We have found that the restricted Hartree-Fock wavefunction leads to the improper dissociation limit and, in the three latest cases requires multireference description. We conclude that these systems may be treated as a good models for interpretation of the proton transfer mechanism as well as for testing one-determinantal or multireference cases.

  7. Electronic correlation contributions to structural energies

    NASA Astrophysics Data System (ADS)

    Haydock, Roger

    2015-03-01

    The recursion method is used to calculate electronic excitation spectra including electron-electron interactions within the Hubbard model. The effects of correlation on structural energies are then obtained from these spectra and applied to stacking faults. http://arxiv.org/abs/1405.2288 Supported by the Richmond F. Snyder Fund and Gifts.

  8. An energy decomposition analysis for intermolecular interactions from an absolutely localized molecular orbital reference at the coupled-cluster singles and doubles level

    SciTech Connect

    Azar, R. Julian; Head-Gordon, Martin

    2012-01-14

    We propose a wave function-based method for the decomposition of intermolecular interaction energies into chemically-intuitive components, isolating both mean-field- and explicit correlation-level contributions. We begin by solving the locally-projected self-consistent field for molecular interactions equations for a molecular complex, obtaining an intramolecularly polarized reference of self-consistently optimized, absolutely-localized molecular orbitals (ALMOs), determined with the constraint that each fragment MO be composed only of atomic basis functions belonging to its own fragment. As explicit inter-electronic correlation is integral to an accurate description of weak forces underlying intermolecular interaction potentials, namely, coordinated fluctuations in weakly interacting electronic densities, we add dynamical correlation to the ALMO polarized reference at the coupled-cluster singles and doubles level, accounting for explicit dispersion and charge-transfer effects, which map naturally onto the cluster operator. We demonstrate the stability of energy components with basis set extension, follow the hydrogen bond-breaking coordinate in the C{sub s}-symmetry water dimer, decompose the interaction energies of dispersion-bound rare gas dimers and other van der Waals complexes, and examine charge transfer-dominated donor-acceptor interactions in borane adducts. We compare our results with high-level calculations and experiment when possible.

  9. Inelastic mean-free paths and surface excitation parameters by absolute reflection electron-energy loss measurements

    NASA Astrophysics Data System (ADS)

    Nagatomi, T.; Goto, K.

    2007-06-01

    An analytical approach is proposed for simultaneously determining the inelastic mean-free path (IMFP), the surface excitation parameter (SEP), and the differential SEP (DSEP) in absolute units from an absolute reflection electron energy loss spectroscopy (REELS) spectrum under the assumption that the normalized differential inelastic mean-free path for bulk excitations and the elastic scattering cross section are known. This approach was applied to an analysis of REELS spectra for Ni, and the IMFP, SEP, and DSEP in Ni for 300-3000eV electrons were determined. The resulting IMFPs showed good agreement with those calculated using the TPP-2M predictive equations and with those calculated from optical data. The deduced DSEPs show a reasonable agreement with those theoretically predicted. The obtained SEPs were compared with those calculated using several predictive equations. The present SEP results agreed well with the Chen formula with a material parameter proposed for Ni. The present approach has high potential for the experimental determination of IMFPs, SEPs, and DSEPs in absolute units.

  10. Correlations among experimental and theoretical NMR data to determine the absolute stereochemistry of darcyribeirine, a pentacyclic indole alkaloid isolated from Rauvolfia grandiflora

    NASA Astrophysics Data System (ADS)

    Cancelieri, Náuvia Maria; Ferreira, Thiago Resende; Vieira, Ivo José Curcino; Braz-Filho, Raimundo; Piló-Veloso, Dorila; Alcântara, Antônio Flávio de Carvalho

    2015-10-01

    Darcyribeirine (1) is a pentacyclic indole alkaloid isolated from Rauvolfia grandiflora. Stereochemistry of 1 was previously proposed based on 1D (coupling constant data) and 2D (NOESY correlations) NMR techniques, having been established a configuration 3R, 15S, and 20R (isomer 1a). Stereoisomers of 1 (i.e., 1a-1h) can be grouped into four sets of enantiomers. Carbon chemical shifts and hydrogen coupling constants were calculated using BLYP/6-31G* theory level for the eight isomers of 1. Calculated NMR data of 1a-1h were correlated with the corresponding experimental data of 1. The best correlations between theoretical and experimental carbon chemical shift data were obtained for the set of enantiomers 1e/1f to structures in the gaseous phase and considering solvent effects (using PCM and explicit models). Similar results were obtained when the same procedure was performed to correlations between theoretical and experimental coupling constant data. Finally, optical rotation calculations indicate 1e as its absolute stereochemistry. Orbital population analysis indicates that the hydrogen bonding between N-H of 1e and DMSO is due to contributions of its frontier unoccupied molecular orbitals, mainly LUMO+1, LUMO+2, and LUMO+3.

  11. Absolute energy distributions of Al, Cu, and Ta ions produced by nanosecond laser-generated plasmas at 1013 Wcm-2

    NASA Astrophysics Data System (ADS)

    Comet, M.; Versteegen, M.; Gobet, F.; Denis-Petit, D.; Hannachi, F.; Meot, V.; Tarisien, M.

    2016-01-01

    The charge state and energy distributions of ions produced by a pulsed 1 J, 9 ns Nd:YAG laser focused onto solid aluminum, copper, and tantalum targets were measured with an electrostatic analyzer coupled with a windowless electron multiplier detector. Special attention was paid to the detector response function measurements and to the determination of the analyzer transmission. Space charge effects are shown to strongly affect this transmission. Measured absolute energy distributions are presented for several charge states. They follow Boltzmann-like functions characterized by an effective ion temperature and an equivalent accelerating voltage. These parameters exhibit power laws as a function of I λ 2 which open the possibility to predict the expected shape of the relative energy distributions of ions on a large range of laser intensities (106-1016 Wcm-2 μm2).

  12. Absolute Zero

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.

    2006-12-01

    Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.

  13. A comparison of absolute performance of different correlative and mechanistic species distribution models in an independent area.

    PubMed

    Shabani, Farzin; Kumar, Lalit; Ahmadi, Mohsen

    2016-08-01

    To investigate the comparative abilities of six different bioclimatic models in an independent area, utilizing the distribution of eight different species available at a global scale and in Australia. Global scale and Australia. We tested a variety of bioclimatic models for eight different plant species employing five discriminatory correlative species distribution models (SDMs) including Generalized Linear Model (GLM), MaxEnt, Random Forest (RF), Boosted Regression Tree (BRT), Bioclim, together with CLIMEX (CL) as a mechanistic niche model. These models were fitted using a training dataset of available global data, but with the exclusion of Australian locations. The capabilities of these techniques in projecting suitable climate, based on independent records for these species in Australia, were compared. Thus, Australia is not used to calibrate the models and therefore it is as an independent area regarding geographic locations. To assess and compare performance, we utilized the area under the receiver operating characteristic (ROC) curves (AUC), true skill statistic (TSS), and fractional predicted areas for all SDMs. In addition, we assessed satisfactory agreements between the outputs of the six different bioclimatic models, for all eight species in Australia. The modeling method impacted on potential distribution predictions under current climate. However, the utilization of sensitivity and the fractional predicted areas showed that GLM, MaxEnt, Bioclim, and CL had the highest sensitivity for Australian climate conditions. Bioclim calculated the highest fractional predicted area of an independent area, while RF and BRT were poor. For many applications, it is difficult to decide which bioclimatic model to use. This research shows that variable results are obtained using different SDMs in an independent area. This research also shows that the SDMs produce different results for different species; for example, Bioclim may not be good for one species but works better

  14. A method for establishing absolute full-energy peak efficiency and its confidence interval for HPGe detectors

    NASA Astrophysics Data System (ADS)

    Rizwan, U.; Chester, A.; Domingo, T.; Starosta, K.; Williams, J.; Voss, P.

    2015-12-01

    A method is proposed for establishing the absolute efficiency calibration of a HPGe detector including the confidence interval in the energy range of 79.6-3451.2 keV. The calibrations were accomplished with the 133Ba, 60Co, 56Co and 152Eu point-like radioactive sources with only the 60Co source being activity calibrated to an accuracy of 2% at the 90% confidence level. All data sets measured from activity calibrated and uncalibrated sources were fit simultaneously using the linearized least squares method. The proposed fit function accounts for scaling of the data taken with activity uncalibrated sources to the data taken with the high accuracy activity calibrated source. The confidence interval for the fit was found analytically using the covariance matrix. Accuracy of the fit was below 3.5% at the 90% confidence level in the 79.6-3451.2 keV energy range.

  15. Combined Use of Absolute and Differential Seismic Arrival Time Data to Improve Absolute Event Location

    NASA Astrophysics Data System (ADS)

    Myers, S.; Johannesson, G.

    2012-12-01

    Arrival time measurements based on waveform cross correlation are becoming more common as advanced signal processing methods are applied to seismic data archives and real-time data streams. Waveform correlation can precisely measure the time difference between the arrival of two phases, and differential time data can be used to constrain relative location of events. Absolute locations are needed for many applications, which generally requires the use of absolute time data. Current methods for measuring absolute time data are approximately two orders of magnitude less precise than differential time measurements. To exploit the strengths of both absolute and differential time data, we extend our multiple-event location method Bayesloc, which previously used absolute time data only, to include the use of differential time measurements that are based on waveform cross correlation. Fundamentally, Bayesloc is a formulation of the joint probability over all parameters comprising the multiple event location system. The Markov-Chain Monte Carlo method is used to sample from the joint probability distribution given arrival data sets. The differential time component of Bayesloc includes scaling a stochastic estimate of differential time measurement precision based the waveform correlation coefficient for each datum. For a regional-distance synthetic data set with absolute and differential time measurement error of 0.25 seconds and 0.01 second, respectively, epicenter location accuracy is improved from and average of 1.05 km when solely absolute time data are used to 0.28 km when absolute and differential time data are used jointly (73% improvement). The improvement in absolute location accuracy is the result of conditionally limiting absolute location probability regions based on the precise relative position with respect to neighboring events. Bayesloc estimates of data precision are found to be accurate for the synthetic test, with absolute and differential time measurement

  16. Absolute Beam Energy Measurement using Elastic ep Scattering at Thomas Jefferson National Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Deur, Alexandre

    1999-10-01

    The Jefferson Lab beam energy measurement in Hall A using the elastic ep scattering will be described. This new, non-magnetic, energy measurement method allows a ( triangle E/E=10-4 ) precision. First-order corrections are canceled by the measurements of the electron and proton scattering angles for two symmetric kinematics. The measurement principle will be presented as well as the device and measurement results. Comparison with independent magnetic energy measurements of the same accuracy will be shown. This project is the result of a collaboration between the LPC: université Blaise Pascal/in2p3), Saclay and Jefferson Lab.

  17. ERP Energy and Cognitive Activity Correlates

    NASA Astrophysics Data System (ADS)

    Schillaci, Michael Jay; Vendemia, Jennifer M. C.

    2014-03-01

    We propose a novel analysis approach for high-density event related scalp potential (ERP) data where the integrated channel-power is used to attain an energy density functional state for channel-clusters of neurophysiological significance. The method is applied to data recorded during a two-stimulus, directed lie paradigm and shows that deceptive responses emit between 8% and 10% less power. A time course analysis of these cognitive activity measures over posterior and anterior regions of the cortex suggests that neocortical interactions, reflecting the differing workload demands during executive and semantic processes, take about 50% longer for the case of deception. These results suggest that the proposed method may provide a useful tool for the analysis of ERP correlates of high-order cognitive functioning. We also report on a possible equivalence between the energy functional distribution and near-infrared signatures that have been measured with other modalities.

  18. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  19. A Technique to Measure Energy Partitioning and Absolute Gas Pressures of Strombolian Explosions Using Doppler Radar at Erebus Volcano

    NASA Astrophysics Data System (ADS)

    Gerst, A.; Hort, M.; Kyle, P. R.; Voege, M.

    2008-12-01

    In 2005/06 we deployed three 24GHz (K-Band) continuous wave Doppler radar instruments at the crater rim of Erebus volcano in Antarctica. At the time there was a ~40 m wide, ~1000°C hot convecting phonolite lava lake, which was the source of ~0-6 Strombolian gas bubble explosions per day. We measured the velocities of ~50 explosions using a sample rate of 1-15 Hz. Data were downloaded in real-time through a wireless network. The measurements provide new insights into the still largely unknown mechanism of Strombolian eruptions, and help improve existing eruption models. We present a technique for a quasi in-situ measurement of the absolute pressure inside an eruption gas bubble. Pressures were derived using a simple eruption model and measured high resolution bubble surface velocities during explosions. Additionally, this technique allows us to present a comprehensive energy budget of a volcanic explosion as a time series of all important energy terms (i.e. potential, kinetic, dissipative, infrasonic, surface, seismic and thermal energy output). The absolute gas pressure inside rising expanding gas bubbles rapidly drops from ~3-10 atm (at the time when the lake starts to bulge) to ~1 atm before the bubble bursts, which usually occurs at radii of ~15-20m. These pressures are significantly lower than previously assumed for such explosions. The according internal energy of the gas agrees well with the observed total energy output. The results show that large explosions released about 109 to 1010 J each (equivalent to about 200-2000 kg of TNT), at a peak discharge rate frequently exceeding 109 W (the power output of a typical nuclear power plant). This dynamic output is mainly controlled by the kinetic and potential energy of the exploding magma shell, while other energy types were found to be much smaller (with the exception of thermal energy). Remarkably, most explosions at Erebus show two distinct surface acceleration peaks separated by ~0.3 seconds. This suggests

  20. Correlation Energy of A Model Problem

    NASA Astrophysics Data System (ADS)

    Campuzano, Mauricio; Fessatidis, Vassilios; Mancini, Jay D.; Bowen, Samuel P.

    2006-03-01

    The search for new analytic methods of calculating details of the energy spectrum of strongly interacting systems has long been the vocation of both theoretical chemists and physicists. In particular, the accurate calculation of both the ground-state and correlation energies are important in settling issues relating to the exact nature of the ground-state and low-lying excited states. Furthermore there exist a number of physically relevant systems that cannot be treated by perturbation theory or in which other approximation schemes yield completely erroneous results. Exact diagonalization studies are well known to suffer from size effects, while the neglection of correlations in fluctuations in mean-field theories, although calculationally tractable, leave much to be desired. Here we wish to apply a recently developed Generalized Moments Expansion (GMX) [1] to the problem of N coupled one dimensional harmonic oscillators given by the Hamiltonian: H=12∑j=1^N( -d^2dxj^2+2circ % xj^2) +g^2∑ij^Nxij. Comparisons are then made with other methods such as a Lanczos tridiagonalization scheme as well as a Canonical Sequence Method approach. 1] V. Fessatidis, J.D. Mancini, R. Murawski and S.P. Bowen, Phys. Lett. A.

  1. Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements.

    PubMed

    Diop, Mamadou; Verdecchia, Kyle; Lee, Ting-Yim; St Lawrence, Keith

    2011-07-01

    A primary focus of neurointensive care is the prevention of secondary brain injury, mainly caused by ischemia. A noninvasive bedside technique for continuous monitoring of cerebral blood flow (CBF) could improve patient management by detecting ischemia before brain injury occurs. A promising technique for this purpose is diffuse correlation spectroscopy (DCS) since it can continuously monitor relative perfusion changes in deep tissue. In this study, DCS was combined with a time-resolved near-infrared technique (TR-NIR) that can directly measure CBF using indocyanine green as a flow tracer. With this combination, the TR-NIR technique can be used to convert DCS data into absolute CBF measurements. The agreement between the two techniques was assessed by concurrent measurements of CBF changes in piglets. A strong correlation between CBF changes measured by TR-NIR and changes in the scaled diffusion coefficient measured by DCS was observed (R(2) = 0.93) with a slope of 1.05 ± 0.06 and an intercept of 6.4 ± 4.3% (mean ± standard error). PMID:21750781

  2. Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements

    PubMed Central

    Diop, Mamadou; Verdecchia, Kyle; Lee, Ting-Yim; St Lawrence, Keith

    2011-01-01

    A primary focus of neurointensive care is the prevention of secondary brain injury, mainly caused by ischemia. A noninvasive bedside technique for continuous monitoring of cerebral blood flow (CBF) could improve patient management by detecting ischemia before brain injury occurs. A promising technique for this purpose is diffuse correlation spectroscopy (DCS) since it can continuously monitor relative perfusion changes in deep tissue. In this study, DCS was combined with a time-resolved near-infrared technique (TR-NIR) that can directly measure CBF using indocyanine green as a flow tracer. With this combination, the TR-NIR technique can be used to convert DCS data into absolute CBF measurements. The agreement between the two techniques was assessed by concurrent measurements of CBF changes in piglets. A strong correlation between CBF changes measured by TR-NIR and changes in the scaled diffusion coefficient measured by DCS was observed (R2 = 0.93) with a slope of 1.05 ± 0.06 and an intercept of 6.4 ± 4.3% (mean ± standard error). PMID:21750781

  3. Absolute single-ion solvation free energy scale in methanol determined by the lithium cluster-continuum approach.

    PubMed

    Pliego, Josefredo R; Miguel, Elizabeth L M

    2013-05-01

    Absolute solvation free energy of the lithium cation in methanol was calculated by the cluster-continuum quasichemical theory of solvation. Clusters with up to five methanol molecules were investigated using X3LYP, MP2, and MP4 methods with DZVP, 6-311+G(2df,2p), TZVPP+diff, and QZVPP+diff basis sets and including the cluster solvation through the PCM and SMD continuum models. Our calculations have determined a value of -118.1 kcal mol(-1) for the solvation free energy of the lithium, in close agreement with a value of -116.6 kcal mol(-1) consistent with the TATB assumption. Using data of solvation and transfer free energy of a pair of ions, electrode potentials and pKa, we have obtained the solvation free energy of 25 ions in methanol. Our analysis leads to a value of -253.6 kcal mol(-1) for the solvation free energy of the proton, which can be compared with the value of -263.5 kcal mol(-1) obtained by Kelly et al. using the cluster pair approximation. Considering that this difference is due to the methanol surface potential, we have estimated that it corresponds to -0.429 V. PMID:23570440

  4. Momentum Distribution and Ground-State Energy of Liquid 4He at the Absolute Zero Temperature

    NASA Astrophysics Data System (ADS)

    Nishiyama, T.; Watanabe, Y.

    1980-11-01

    In the scheme of the density and phase operator approach, the momentum distribution nk and the ground-state energy E0 are obtained by employing the structure factor and the radial distribution function calculated by Chang and Campbell for the Morse dipole-dipole potential. The condensate fraction, the ratio of the occupation number of the single-particle zero-momentum state N0/N amounts to 0.096. The momentum distribution diverges as k-1 in the low-wave number limit. The ground-state energy becomes E0=-6.9NK at the mean density ρ0=0.02185Å-3.

  5. Absolute elastic differential electron scattering cross sections in the intermediate energy region. III - SF6 and UF6

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K.; Trajmar, S.; Chutjian, A.; Williams, W.

    1976-01-01

    A recently developed technique has been used to measure the ratios of elastic differential electron scattering cross sections (DCS) for SF6 and UF6 to those of He at electron impact energies of 5, 10, 15, 20, 30, 40, 50, 60, and 75 eV and at scattering angles of 20 to 135 deg. In order to obtain the absolute values of DCS from these ratios, He DCS of McConkey and Preston have been employed in the 20 to 90 deg range. At angles in the 90 to 135 deg range the recently determined cross sections of Srivastava and Trajmar have been utilized. From these DCS, elastic integral and momentum transfer cross sections have been obtained.

  6. Absolute energy distribution in the spectra of 32 Cygni. Eclipses of 1987 and 1990

    NASA Astrophysics Data System (ADS)

    Burnashev, V. I.; Burnasheva, B. A.

    2011-06-01

    The photometric observations during 1953-1994 were used for the construction of the summary light curve for 32 Cygni in the photometric UBV-system. On the basis of energy distribution data, the spectral classes and luminosities of the components of this binary system were obtained. The column density of HI during several ingresses and egresses was estimated, suggesting that the depression at λ 3650 Å was caused by hydrogen absorption.

  7. Measurement of Absolute Excitation Cross Sections in Highly-Charged Ions Using Electron Energy Loss and Merged Beams

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Smith, Steven J.; Lozano, J.

    2002-01-01

    There is increasing emphasis during this decade on understanding energy balance and phenomena observed in high electron temperature plasmas. The UV spectral return from FUSE, the X-ray spectral return from the HETG on Chandra and the LETGS 011 XMM-Newton are just beginning. Line emissions are almost entirely from highly-charged ions (HCIs) of C, N, 0, Ne, Mg, S, Si, Ca, and Fe. The Constellation-X mission will provide X-ray spectroscopy up to photon energies of 0.12 nm (10 keV) where primary line emitters will be HCIs. A variety of atomic parameters are required to model the stellar and solar plasma. These include cross sections for excitation, ionization, charge-exchange, X-ray emission, direct and indirect recombination, lifetimes and branching ratios, and dependences on l, m mixing by external E and B fields. In almost all cases the atomic quantities are calculated, and few comparisons to experiment have been carried out. Collision strengths and Einstein A-values are required to convert the observed spectral intensities to electron temperatures and densities in the stellar plasma. The JPL electron energy-loss and merged beam approach has been used to measure absolute collision strengths in a number of ions, with critical comparison made to the best available theories.

  8. A rare gas optics-free absolute photon flux and energy analyzer for solar and planetary observations

    NASA Technical Reports Server (NTRS)

    Judge, Darrell L.

    1994-01-01

    We have developed a prototype spectrometer for space applications requiring long term absolute EUV photon flux measurements. In this recently developed spectrometer, the energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.

  9. Core-core and core-valence correlation energy atomic and molecular benchmarks for Li through Ar

    SciTech Connect

    Ranasinghe, Duminda S.; Frisch, Michael J.; Petersson, George A.

    2015-12-07

    We have established benchmark core-core, core-valence, and valence-valence absolute coupled-cluster single double (triple) correlation energies (±0.1%) for 210 species covering the first- and second-rows of the periodic table. These species provide 194 energy differences (±0.03 mE{sub h}) including ionization potentials, electron affinities, and total atomization energies. These results can be used for calibration of less expensive methodologies for practical routine determination of core-core and core-valence correlation energies.

  10. Core-core and core-valence correlation energy atomic and molecular benchmarks for Li through Ar.

    PubMed

    Ranasinghe, Duminda S; Frisch, Michael J; Petersson, George A

    2015-12-01

    We have established benchmark core-core, core-valence, and valence-valence absolute coupled-cluster single double (triple) correlation energies (±0.1%) for 210 species covering the first- and second-rows of the periodic table. These species provide 194 energy differences (±0.03 mEh) including ionization potentials, electron affinities, and total atomization energies. These results can be used for calibration of less expensive methodologies for practical routine determination of core-core and core-valence correlation energies. PMID:26646872

  11. Probing the Crystal Structure, Composition-Dependent Absolute Energy Levels, and Electrocatalytic Properties of Silver Indium Sulfide Nanostructures.

    PubMed

    Saji, Pintu; Ganguli, Ashok K; Bhat, Mohsin A; Ingole, Pravin P

    2016-04-18

    The absolute electronic energy levels in silver indium sulfide (AIS) nanocrystals (NCs) with varying compositions and crystallographic phases have been determined by using cyclic voltammetry. Different crystallographic phases, that is, metastable cubic, orthorhombic, monoclinic, and a mixture of cubic and orthorhombic AIS NCs, were studied. The band gap values estimated from the cyclic voltammetry measurements match well with the band gap values calculated from the diffuse reflectance spectra measurements. The AIS nanostructures were found to show good electrocatalytic activity towards the hydrogen evolution reaction (HER). Our results clearly establish that the electronic and electrocatalytic properties of AIS NCs are strongly sensitive to the composition and crystal structure of AIS NCs. Monoclinic AIS was found to be the most active HER electrocatalyst, with electrocatalytic activity that is almost comparable to the MoS2 -based nanostructures reported in the literature, whereas cubic AIS was observed to be the least active of the studied crystallographic phases and compositions. In view of the HER activity and electronic band structure parameters observed herein, we hypothesize that the Fermi energy level of AIS NCs is an important factor that decides the electrocatalytic efficiency of these nanocomposites. The work presented herein, in addition to being the first of its kind regarding the composition and phase-dependence of electrochemical aspects of AIS NCs, also presents a simple solvothermal method for the synthesis of different crystallographic phases with various Ag/In molar ratios. PMID:26812447

  12. Probing non-covalent interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals.

    PubMed

    Horn, Paul R; Mao, Yuezhi; Head-Gordon, Martin

    2016-08-17

    An energy decomposition analysis (EDA) separates a calculated interaction energy into as many interpretable contributions as possible; for instance, permanent and induced electrostatics, Pauli repulsions, dispersion and charge transfer. The challenge is to construct satisfactory definitions of all terms in the chemically relevant regime where fragment densities overlap, rendering unique definitions impossible. Towards this goal, we present an improved EDA for Kohn-Sham density functional theory (DFT) with properties that have previously not been simultaneously attained. Building on the absolutely localized molecular orbital (ALMO)-EDA, this second generation ALMO-EDA is variational and employs valid antisymmetric electronic wavefunctions to produce all five contributions listed above. These contributions moreover all have non-trivial complete basis set limits. We apply the EDA to the water dimer, the T-shaped and parallel-displaced benzene dimer, the p-biphthalate dimer "anti-electrostatic" hydrogen bonding complex, the biologically relevant binding of adenine and thymine in stacked and hydrogen-bonded configurations, the triply hydrogen-bonded guanine-cytosine complex, the interaction of Cl(-) with s-triazine and with the 1,3-dimethyl imidazolium cation, which is relevant to the study of ionic liquids, and the water-formaldehyde-vinyl alcohol ter-molecular radical cationic complex formed in the dissociative photoionization of glycerol. PMID:27492057

  13. Absolute Quantitation of Met Using Mass Spectrometry for Clinical Application: Assay Precision, Stability, and Correlation with MET Gene Amplification in FFPE Tumor Tissue

    PubMed Central

    Catenacci, Daniel V. T.; Liao, Wei-Li; Thyparambil, Sheeno; Henderson, Les; Xu, Peng; Zhao, Lei; Rambo, Brittany; Hart, John; Xiao, Shu-Yuan; Bengali, Kathleen; Uzzell, Jamar; Darfler, Marlene; Krizman, David B.; Cecchi, Fabiola; Bottaro, Donald P.; Karrison, Theodore; Veenstra, Timothy D.; Hembrough, Todd; Burrows, Jon

    2014-01-01

    Background Overexpression of Met tyrosine kinase receptor is associated with poor prognosis. Overexpression, and particularly MET amplification, are predictive of response to Met-specific therapy in preclinical models. Immunohistochemistry (IHC) of formalin-fixed paraffin-embedded (FFPE) tissues is currently used to select for ‘high Met’ expressing tumors for Met inhibitor trials. IHC suffers from antibody non-specificity, lack of quantitative resolution, and, when quantifying multiple proteins, inefficient use of scarce tissue. Methods After describing the development of the Liquid-Tissue-Selected Reaction Monitoring-mass spectrometry (LT-SRM-MS) Met assay, we evaluated the expression level of Met in 130 FFPE gastroesophageal cancer (GEC) tissues. We assessed the correlation of SRM Met expression to IHC and mean MET gene copy number (GCN)/nucleus or MET/CEP7 ratio by fluorescence in situ hybridization (FISH). Results Proteomic mapping of recombinant Met identified 418TEFTTALQR426 as the optimal SRM peptide. Limits of detection (LOD) and quantitation (LOQ) for this peptide were 150 and 200 amol/µg tumor protein, respectively. The assay demonstrated excellent precision and temporal stability of measurements in serial sections analyzed one year apart. Expression levels of 130 GEC tissues ranged (<150 amol/µg to 4669.5 amol/µg. High correlation was observed between SRM Met expression and both MET GCN and MET/CEP7 ratio as determined by FISH (n = 30; R2 = 0.898). IHC did not correlate well with SRM (n = 44; R2 = 0.537) nor FISH GCN (n = 31; R2 = 0.509). A Met SRM level of ≥1500 amol/µg was 100% sensitive (95% CI 0.69–1) and 100% specific (95% CI 0.92–1) for MET amplification. Conclusions The Met SRM assay measured the absolute Met levels in clinical tissues with high precision. Compared to IHC, SRM provided a quantitative and linear measurement of Met expression, reliably distinguishing between non-amplified and amplified MET

  14. Methods for Calculating the Absolute Entropy and free energy of biological systems based on ideas from Polymer Physics

    PubMed Central

    Meirovitch, Hagai

    2009-01-01

    The commonly used simulation techniques, Metropolis Monte Carlo (MC) and molecular dynamics (MD) are of a dynamical type which enables one to sample system configurations i correctly with the Boltzmann probability, PiB while the value of PiB is not provided directly; therefore, it is difficult to obtain the absolute entropy, S ~ -ln PiB, and the Helmholtz free energy, F. With a different simulation approach developed in polymer physics, a chain is grown step-by-step with transition probabilities (TPs), and thus their product is the value of the construction probability; therefore, the entropy is known. Because all exact simulation methods are equivalent, i.e. they lead to the same averages and fluctuations of physical properties, one can treat an MC or MD sample as if its members have rather been generated step-by-step. Thus, each configuration i of the sample can be reconstructed (from nothing) by calculating the TPs with which it could have been constructed. This idea applies also to bulk systems such as fluids or magnets. This approach has led earlier to the “local states” (LS) and the “hypothetical scanning” (HS) methods, which are approximate in nature. A recent development is the hypothetical scanning Monte Carlo (HSMC) (or molecular dynamics, HSMD) method which is based on stochastic TPs where all interactions are taken into account. In this respect HSMC(D) can be viewed as exact and the only approximation involved is due to insufficient MC(MD) sampling for calculating the TPs. The validity of HSMC has been established by applying it first to liquid argon, TIP3P water, self-avoiding walks, and polyglycine models, where the results for F were found to agree with those obtained by other methods. Subsequently, HSMD was applied to mobile loops of the enzymes porcine pancreatic α-amylase and acetylcholineesterase in explicit water, where the difference of F between the bound and free states of the loop was calculated. Currently HSMD is being extended for

  15. Methods for calculating the absolute entropy and free energy of biological systems based on ideas from polymer physics.

    PubMed

    Meirovitch, Hagai

    2010-01-01

    The commonly used simulation techniques, Metropolis Monte Carlo (MC) and molecular dynamics (MD) are of a dynamical type which enables one to sample system configurations i correctly with the Boltzmann probability, P(i)(B), while the value of P(i)(B) is not provided directly; therefore, it is difficult to obtain the absolute entropy, S approximately -ln P(i)(B), and the Helmholtz free energy, F. With a different simulation approach developed in polymer physics, a chain is grown step-by-step with transition probabilities (TPs), and thus their product is the value of the construction probability; therefore, the entropy is known. Because all exact simulation methods are equivalent, i.e. they lead to the same averages and fluctuations of physical properties, one can treat an MC or MD sample as if its members have rather been generated step-by-step. Thus, each configuration i of the sample can be reconstructed (from nothing) by calculating the TPs with which it could have been constructed. This idea applies also to bulk systems such as fluids or magnets. This approach has led earlier to the "local states" (LS) and the "hypothetical scanning" (HS) methods, which are approximate in nature. A recent development is the hypothetical scanning Monte Carlo (HSMC) (or molecular dynamics, HSMD) method which is based on stochastic TPs where all interactions are taken into account. In this respect, HSMC(D) can be viewed as exact and the only approximation involved is due to insufficient MC(MD) sampling for calculating the TPs. The validity of HSMC has been established by applying it first to liquid argon, TIP3P water, self-avoiding walks (SAW), and polyglycine models, where the results for F were found to agree with those obtained by other methods. Subsequently, HSMD was applied to mobile loops of the enzymes porcine pancreatic alpha-amylase and acetylcholinesterase in explicit water, where the difference in F between the bound and free states of the loop was calculated. Currently

  16. DAQ Software Contributions, Absolute Scale Energy Calibration and Background Evaluation for the NOvA Experiment at Fermilab

    SciTech Connect

    Flumerfelt, Eric Lewis

    2015-08-01

    The NOvA (NuMI Off-axis ve [nu_e] Appearance) Experiment is a long-baseline accelerator neutrino experiment currently in its second year of operations. NOvA uses the Neutrinos from the Main Injector (NuMI) beam at Fermilab, and there are two main off-axis detectors: a Near Detector at Fermilab and a Far Detector 810 km away at Ash River, MN. The work reported herein is in support of the NOvA Experiment, through contributions to the development of data acquisition software, providing an accurate, absolute-scale energy calibration for electromagnetic showers in NOvA detector elements, crucial to the primary electron neutrino search, and through an initial evaluation of the cosmic background rate in the NOvA Far Detector, which is situated on the surface without significant overburden. Additional support work for the NOvA Experiment is also detailed, including DAQ Server Administration duties and a study of NOvA’s sensitivity to neutrino oscillations into a “sterile” state.

  17. Measured Absolute Cross Section of Charge Transfer in H + H2+ at Low Energy: Signature of vi = 2 and Trajectory Effects

    NASA Astrophysics Data System (ADS)

    Strom, R. A.; Bacani, K. G.; Chi, R. M.; Heczko, S. L.; Singh, B. N.; Tobar, J. A.; Vassantachart, A. K.; Andrianarijaona, V. M.; Seely, D. G.; Havener, C. C.

    2015-04-01

    Measurements of absolute cross sections of charge transfer (CT) in H + H2+--> H+ + H2 were conducted at the merged-beam apparatus at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, which can reliably create and access collision energies as low as 0.1 eV/u. The measured absolute cross section shows evidence of trajectory effects at low energy. Also, the comparison to state-to-state calculations (PRA 67 022708 (2003) suggests a strong contribution from vi = 2 of the H2+that are produced by the electron cyclotron resonance ion source. The data analysis will be presented here. Research supported by the NASA Solar & Heliospheric Physics Program NNH07ZDA001N, the Office of Fusion Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy, the National Science Foundation through Grant No. PHY-1068877.

  18. Absolute photofission cross sections for /sup 235,238/U in the energy range 11. 5--30 MeV

    SciTech Connect

    Ries, H.; Mank, G.; Drexler, J.; Heil, R.; Huber, K.; Kneissl, U.; Ratzek, R.; Stroeher, H.; Weber, T.; Wilke, W.

    1984-06-01

    Absolute photofission cross sections of /sup 235/U and /sup 238/U have been measured with quasimonoenergetic photons from e/sup +/ annihilation and direct fragment detection between 11.5 and 30 MeV. The results obtained in the energy range of the giant dipole resonance (up to 18 MeV) are compared with those from previous experiments.

  19. Constraining dark energy fluctuations with supernova correlations

    SciTech Connect

    Blomqvist, Michael; Enander, Jonas; Mörtsell, Edvard E-mail: enander@fysik.su.se

    2010-10-01

    We investigate constraints on dark energy fluctuations using type Ia supernovae. If dark energy is not in the form of a cosmological constant, that is if the equation of state w≠−1, we expect not only temporal, but also spatial variations in the energy density. Such fluctuations would cause local variations in the universal expansion rate and directional dependences in the redshift-distance relation. We present a scheme for relating a power spectrum of dark energy fluctuations to an angular covariance function of standard candle magnitude fluctuations. The predictions for a phenomenological model of dark energy fluctuations are compared to observational data in the form of the measured angular covariance of Hubble diagram magnitude residuals for type Ia supernovae in the Union2 compilation. The observational result is consistent with zero dark energy fluctuations. However, due to the limitations in statistics, current data still allow for quite general dark energy fluctuations as long as they are in the linear regime.

  20. Isoscaling: Geometry, correlations and symmetry energy

    SciTech Connect

    Dorso, C.O.

    2006-03-15

    This work uses a simple model to understand the properties of isoscaling. Using a generalized percolation model, it is first shown that isoscaling is a general property of fragmenting systems. In particular, it is found that the usual isoscaling property can be seen as a limit case of bond percolation in lattices in D dimensions, with N colors, with independent probabilities for each color, and for any regular topology. The effect of introducing correlations is also studied.

  1. Absolute calibration of the Agfa Structurix series films at energies between 2.7 and 6.2 keVa)

    NASA Astrophysics Data System (ADS)

    Lanier, N. E.; Cowan, J. S.

    2014-11-01

    Although photo-emulsion technology is many decades old, x-ray film still remains a key asset for diagnosing hydrodynamic features in High-Energy Density (HED) experiments. For decades, the preferred option had been Kodak's direct exposure film. After its discontinuance in 2004, the push to find alternatives began. In many situations, the Agfa Structurix series offers the most favorable substitute, but being new to the HED community, its characterization was lacking. To remedy this, recent experiments, conducted at Brookhaven's National Synchrotron Light Source, provide absolute, monochromatic calibration data for the Agfa Structurix series films at K-shell backlighter energies between 2.7 and 6.2 keV. Absolute response curves are presented for Agfa D8, D7, D4, D4sc, D3, and D2. Moreover, the transmission of each film type is also measured.

  2. Absolute cascade-free cross-sections for the 2S to 2P transition in Zn(+) using electron-energy-loss and merged-beams methods

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Man, K.-F.; Chutjian, A.; Mawhorter, R. J.; Williams, I. D.

    1991-01-01

    Absolute cascade-free excitation cross-sections in an ion have been measured for the resonance 2S to 2P transition in Zn(+) using electron-energy-loss and merged electron-ion beams methods. Measurements were carried out at electron energies of below threshold to 6 times threshold. Comparisons are made with 2-, 5-, and 15-state close-coupling and distorted-wave theories. There is good agreement between experiment and the 15-state close-coupling cross-sections over the energy range of the calculations.

  3. Absolute calibration of photostimulable image plate detectors used as (0.5-20 MeV) high-energy proton detectors.

    PubMed

    Mancić, A; Fuchs, J; Antici, P; Gaillard, S A; Audebert, P

    2008-07-01

    In this paper, the absolute calibration of photostimulable image plates (IPs) used as proton detectors is presented. The calibration is performed in a wide range of proton energies (0.5-20 MeV) by exposing simultaneously the IP and calibrated detectors (radiochromic films and solid state detector CR39) to a source of broadband laser-accelerated protons, which are spectrally resolved. The final result is a calibration curve that enables retrieving the proton number from the IP signal. PMID:18681694

  4. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  5. Energy Inputs Uncertainty: Total Amount, Distribution and Correlation Between Different Forms of Energy

    NASA Technical Reports Server (NTRS)

    Deng, Yue

    2014-01-01

    Describes solar energy inputs contributing to ionospheric and thermospheric weather processes, including total energy amounts, distributions and the correlation between particle precipitation and Poynting flux.

  6. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation

    SciTech Connect

    Aggelen, Helen van; Department of Chemistry, Duke University, Durham, North Carolina 27708 ; Yang, Yang; Yang, Weitao

    2014-05-14

    Despite their unmatched success for many applications, commonly used local, semi-local, and hybrid density functionals still face challenges when it comes to describing long-range interactions, static correlation, and electron delocalization. Density functionals of both the occupied and virtual orbitals are able to address these problems. The particle-hole (ph-) Random Phase Approximation (RPA), a functional of occupied and virtual orbitals, has recently known a revival within the density functional theory community. Following up on an idea introduced in our recent communication [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)], we formulate more general adiabatic connections for the correlation energy in terms of pairing matrix fluctuations described by the particle-particle (pp-) propagator. With numerical examples of the pp-RPA, the lowest-order approximation to the pp-propagator, we illustrate the potential of density functional approximations based on pairing matrix fluctuations. The pp-RPA is size-extensive, self-interaction free, fully anti-symmetric, describes the strong static correlation limit in H{sub 2}, and eliminates delocalization errors in H{sub 2}{sup +} and other single-bond systems. It gives surprisingly good non-bonded interaction energies – competitive with the ph-RPA – with the correct R{sup −6} asymptotic decay as a function of the separation R, which we argue is mainly attributable to its correct second-order energy term. While the pp-RPA tends to underestimate absolute correlation energies, it gives good relative energies: much better atomization energies than the ph-RPA, as it has no tendency to underbind, and reaction energies of similar quality. The adiabatic connection in terms of pairing matrix fluctuation paves the way for promising new density functional approximations.

  7. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    SciTech Connect

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L

    2006-10-15

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3 keV but has reduced sensitivity above 3 keV ({approx}50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  8. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    NASA Astrophysics Data System (ADS)

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L.

    2006-10-01

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si (Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3keV but has reduced sensitivity above 3keV (˜50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  9. Absolute Calibration of Kodak Biomax-MS Film Response to X Rays in the 1.5- to 8-keV Energy Range

    SciTech Connect

    Marshall, F.J.; Knauer, J.P.; Anderson, D.; Schmitt, B.L.

    2006-09-28

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory e-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations.

  10. Pseudo-Hydrogen Passivation: A Novel Way to Calculate Absolute Surface Energy of Zinc Blende (111)/(͞1 ͞1 ͞1) Surface

    NASA Astrophysics Data System (ADS)

    Zhang, Yiou; Zhang, Jingzhao; Tse, Kinfai; Wong, Lun; Chan, Chunkai; Deng, Bei; Zhu, Junyi

    2016-02-01

    Determining accurate absolute surface energies for polar surfaces of semiconductors has been a great challenge in decades. Here, we propose pseudo-hydrogen passivation to calculate them, using density functional theory approaches. By calculating the energy contribution from pseudo-hydrogen using either a pseudo molecule method or a tetrahedral cluster method, we obtained (111)/ surfaces energies of Si, GaP, GaAs, and ZnS with high self-consistency. This method quantitatively confirms that surface energy is determined by the number and the energy of dangling bonds of surface atoms. Our findings may greatly enhance the basic understandings of different surfaces and lead to novel strategies in the crystal growth.

  11. Pseudo-Hydrogen Passivation: A Novel Way to Calculate Absolute Surface Energy of Zinc Blende (111)/(¯1 ¯1 ¯1) Surface

    PubMed Central

    Zhang, Yiou; Zhang, Jingzhao; Tse, Kinfai; Wong, Lun; Chan, Chunkai; Deng, Bei; Zhu, Junyi

    2016-01-01

    Determining accurate absolute surface energies for polar surfaces of semiconductors has been a great challenge in decades. Here, we propose pseudo-hydrogen passivation to calculate them, using density functional theory approaches. By calculating the energy contribution from pseudo-hydrogen using either a pseudo molecule method or a tetrahedral cluster method, we obtained (111)/ surfaces energies of Si, GaP, GaAs, and ZnS with high self-consistency. This method quantitatively confirms that surface energy is determined by the number and the energy of dangling bonds of surface atoms. Our findings may greatly enhance the basic understandings of different surfaces and lead to novel strategies in the crystal growth. PMID:26831640

  12. Energy loss of correlated ions in dense plasma

    NASA Astrophysics Data System (ADS)

    Ahmed, Baida Muhsen; Ahmed, Khalid A.; Ahmed, Riayhd Khalil

    2016-05-01

    The interaction between proton clusters and plasma gas is studied using the dielectric function by fried-conte formalism. The theoretical formula of the potential basis equation derived and the energy loss of incident proton (point-like, correlate and dicluster) with different parameters (velocity, distance, densities and temperatures) is calculated numerically. Two different equations were used to enhance the correlation stopping (ECS), it is clear that the present results are consistent with the dielectric calculation of energy loss at parameters ne = 1017cm-3 and T = (2 - 10) eV. The result showed a good correlation with the previous work.

  13. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  14. Absolute cross sections for the dissociation of hydrogen cluster ions in high-energy collisions with helium atoms

    SciTech Connect

    Eden, S.; Tabet, J.; Samraoui, K.; Louc, S.; Farizon, B.; Farizon, M.; Ouaskit, S.; Maerk, T. D.

    2006-02-15

    Absolute dissociation cross sections are reported for H{sub n}{sup +} clusters of varied mass (n=3,5,...,35) following collisions with He atoms at 60 keV/amu. Initial results have been published previously for a smaller range of cluster sizes [Ouaskit et al., Phys. Rev. A 49, 1484 (1994)]. The present extended study includes further experimental results, reducing the statistical errors associated with the absolute cross sections. The previously suggested quasilinear dependence of the H{sub n}{sup +} dissociation cross sections upon n is developed with reference to expected series of geometrical shells of H{sub 2} molecules surrounding a H{sub 3}{sup +} core. Recent calculations identify n=9 as corresponding to the first closed H{sub 2} shell [e.g., Stich et al., J. Chem. Phys. 107, 9482 (1997)]. Recurrence of the distinct characteristics observed in the dissociation-cross-section dependence upon cluster size around n=9 provides the basis for the presently proposed subsequent closed shells at n=15, 21, 27, and 33, in agreement with the calculations of Nagashima et al. [J. Phys. Chem. 96, 4294 (1992)].

  15. Effect of critical dimension variation on SAW correlator energy.

    SciTech Connect

    Skinner, Jack L.

    2005-04-01

    The effect of critical dimension (CD) variation and metallization ratio on the efficiency of energy conversion of a surface acoustic wave (SAW) correlator is examined. We find that a 10% variation in the width of finger electrodes predicts only a 1% decrease in the efficiency of energy conversion. Furthermore, our model predicts that a metallization ratio of 0.74 represents an optimum value for energy extraction from the SAW by the interdigitated transducer (IDT).

  16. Correlated energy transfer between two ultracold atomic species

    NASA Astrophysics Data System (ADS)

    Krönke, Sven; Knörzer, Johannes; Schmelcher, Peter

    2015-05-01

    We study a single atom as an open quantum system, which is initially prepared in a coherent state of low energy and oscillates in a one-dimensional harmonic trap through an interacting ensemble of NA bosons, held in a displaced trap [arXiv:1410.8676]. The non-equilibrium quantum dynamics of the total system is simulated by means of an ab-initio method, giving us access to all properties of the open system and its finite environment. In this talk, we focus on unraveling the interplay of energy exchange and correlations between the subsystems, which are coupled in such a spatio-temporally localized manner. We show that an inter-species interaction-induced level splitting accelerates the energy transfer between the atomic species for larger NA, which becomes less complete at the same time. System-environment correlations prove to be significant except for times when the excess energy distribution among the subsystems is highly imbalanced. These correlations result in incoherent energy transfer processes, which accelerate the early energy donation of the single atom. By analyzing correlations between intra-subsystem excitations, certain energy transfer channels are shown to be (dis-)favored depending on the instantaneous direction of transfer.

  17. New approaches for calculating absolute surface energies of wurtzite (0001)/(000 1 ¯ ): A study of ZnO and GaN

    NASA Astrophysics Data System (ADS)

    Zhang, Jingzhao; Zhang, Yiou; Tse, Kinfai; Deng, Bei; Xu, Hu; Zhu, Junyi

    2016-05-01

    The accurate absolute surface energies of (0001)/(000 1 ¯ ) surfaces of wurtzite structures are crucial in determining the thin film growth mode of important energy materials. However, the surface energies still remain to be solved due to the intrinsic difficulty of calculating the dangling bond energy of asymmetrically bonded surface atoms. In this study, we used a pseudo-hydrogen passivation method to estimate the dangling bond energy and calculate the polar surfaces of ZnO and GaN. The calculations were based on the pseudo chemical potentials obtained from a set of tetrahedral clusters or simple pseudo-molecules, using density functional theory approaches. The surface energies of (0001)/(000 1 ¯ ) surfaces of wurtzite ZnO and GaN that we obtained showed relatively high self-consistencies. A wedge structure calculation with a new bottom surface passivation scheme of group-I and group-VII elements was also proposed and performed to show converged absolute surface energy of wurtzite ZnO polar surfaces, and these results were also compared with the above method. The calculated results generally show that the surface energies of GaN are higher than those of ZnO, suggesting that ZnO tends to wet the GaN substrate, while GaN is unlikely to wet ZnO. Therefore, it will be challenging to grow high quality GaN thin films on ZnO substrates; however, high quality ZnO thin film on GaN substrate would be possible. These calculations and comparisons may provide important insights into crystal growth of the above materials, thereby leading to significant performance enhancements in semiconductor devices.

  18. Angular correlations in gluon production at high energy

    SciTech Connect

    Kovner, Alex; Lublinsky, Michael

    2011-02-01

    We present a general, model independent argument demonstrating that gluons produced in high energy hadronic collision are necessarily correlated in rapidity and also in the emission angle. The strength of the correlation depends on the process and on the structure/model of the colliding particles. In particular we argue that it is strongly affected (and underestimated) by factorized approximations frequently used to quantify the effect.

  19. Total energy equation leading to exchange-correlation functional

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Wang, Tzu-Chiang

    2015-05-01

    By solving the total energy equation, we obtain the formula of exchange-correlation functional for the first time. This functional is usually determined by fitting experimental data or the numerical results of models. In the uniform electron gas limit, our exchange-correlation functional can exactly reproduce the results of Perdew-Zunger parameterization from the jellium model. By making use of a particular solution, our exchange-correlation functional could take into account the case of non-uniform electron density, and its validity can be confirmed through comparisons of the band structure, equilibrium lattice constant, and bulk modulus of aluminum and silicon. The absence of mechanical prescriptions for the systematic improvement of exchange-correlation functional hinders further development of density-functional theory (DFT), and the formula of exchange-correlation functional given in this study might provide a new perspective to help DFT out of this awkward situation.

  20. Tetrahedral cluster and pseudo molecule: New approaches to Calculate Absolute Surface Energy of Zinc Blende (111)/(-1-1-1) Surface

    NASA Astrophysics Data System (ADS)

    Zhang, Yiou; Zhang, Jingzhao; Tse, Kinfai; Wong, Lun; Chan, Chunkai; Deng, Bei; Zhu, Junyi

    Determining accurate absolute surface energies for polar surfaces of semiconductors has been a great challenge in decades. Here, we propose pseudo-hydrogen passivation to calculate them, using density functional theory approaches. By calculating the energy contribution from pseudo-hydrogen using either a pseudo molecule method or a tetrahedral cluster method, we obtained (111)/(-1-1-1) surfaces energies of Si, GaP, GaAs, and ZnS with high self-consistency. Our findings may greatly enhance the basic understandings of different surfaces and lead to novel strategies in the crystal growth. We would like to thank Su-huai Wei for helpful discussions. Computing resources were provided by the High Performance Cluster Computing Centre, Hong Kong Baptist University. This work was supported by the start-up funding and direct Grant with the Project.

  1. Advanced distortion-invariant minimum average correlation energy (MACE) filters.

    PubMed

    Casasent, D; Ravichandran, G

    1992-03-10

    The original minimum average correlation energy (MACE) filter is addressed by using a new database (strategic relocatable objects, missile launchers) and including noise performance, depression angle, and resolution effects on the number of training set images that are required. Major attention is given to our new MACE filter algorithms for distortion-invariant pattern recognition: shifted-MACE filters (to suppress large false correlation peaks), minimum variance-MACE filters (for improved noise performance), multiple symbolic encoded filters (to reduce the effect of false correlation peaks), and Gaussian-MACE filters (to improve noise performance and intraclass recognition and reduce the training set size). PMID:20720728

  2. Advanced distortion-invariant minimum average correlation energy (MACE) filters

    NASA Astrophysics Data System (ADS)

    Casasent, David; Ravichandran, Gopalan

    1992-03-01

    The original minimum average correlation energy (MACE) filter is addressed by using a new database (strategic relocatable objects and missile launchers) and including noise performance, depression angle, and resolution effects on the number of training set images that are required. Major attention is given to new MACE filter algorithms for distortion-invariant pattern recognition: shifted-MACE filters to suppress large false correlation peaks, minimum variance-MACE filters for improved noise performance, multiple symbolic encoded filters to reduce the effect of false correlation peaks, and Gaussian-MACE filters to improve noise performance and intraclass recognition and reduce the training set size.

  3. Absolute dose measurements by means of a small cylindrical ionization chamber for very high dose per pulse high energy electron beams

    SciTech Connect

    Karaj, E.; Righi, S.; Di Martino, F.

    2007-03-15

    Very high dose per pulse (3-13 cGy/pulse) high energy electron beams are currently produced by special linear accelerators (linac) dedicated to Intra Operative Radiation Therapy (IORT). The electron beams produced by such linacs are collimated by special Perspex applicators of various size and cylindrically shaped. The biggest problems from the dosimetric point of view are caused by the high dose-per-pulse values and the use of inclined applicators. In this work measurements of absolute dose for the inclined applicators were done by using a small cylindrical ionization chamber, type CC01 (Wellhofer), a parallel plane ionization chamber type Markus (PTW 23343) and radiochromic films type EBT. We show a method which allows calculating the quality correction factors for CC01 chamber with an uncertainty of 1% and the absolute dose value for the inclined applicators using CC01 with an uncertainty of 3.1% for electron beams of energy of 6 and 7 MeV produced by the linac dedicated to IORT Novac7.

  4. Electronic correlation in magnetic contributions to structural energies

    NASA Astrophysics Data System (ADS)

    Haydock, Roger

    For interacting electrons the density of transitions [see http://arxiv.org/abs/1405.2288] replaces the density of states in calculations of structural energies. Extending previous work on paramagnetic metals, this approach is applied to correlation effects on the structural stability of magnetic transition metals. Supported by the H. V. Snyder Gift to the University of Oregon.

  5. Stable Electron Beams With Low Absolute Energy Spread From a LaserWakefield Accelerator With Plasma Density Ramp Controlled Injection

    SciTech Connect

    Geddes, Cameron G.R.; Cormier-Michel, E.; Esarey, E.; Leemans,W.P.; Nakamura, K.; Panasenko, D.; Plateau, Guillaume R.; Schroeder, CarlB.; Toth, Csaba; Cary, J.R.

    2007-06-25

    Laser wakefield accelerators produce accelerating gradientsup to hundreds of GeV/m, and recently demonstrated 1-10 MeV energy spreadat energies up to 1 GeV using electrons self-trapped from the plasma.Controlled injection and staging may further improve beam quality bycircumventing tradeoffs between energy, stability, and energyspread/emittance. We present experiments demonstrating production of astable electron beam near 1 MeV with hundred-keV level energy spread andcentral energy stability by using the plasma density profile to controlselfinjection, and supporting simulations. Simulations indicate that suchbeams can be post accelerated to high energies,potentially reducingmomentum spread in laser acceleratorsby 100-fold or more.

  6. Comparison of high energy gamma rays from absolute value of b greater than 30 deg with the galactic neutral hydrogen distribution

    NASA Technical Reports Server (NTRS)

    Ozel, M. E.; Ogelman, H.; Tumer, T.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, F. J.

    1978-01-01

    High-energy gamma-ray (energy above 35 MeV) data from the SAS 2 satellite have been used to compare the intensity distribution of gamma rays with that of neutral hydrogen (H I) density along the line of sight, at high galactic latitudes (absolute values greater than 30 deg). A model has been constructed for the case where the observed gamma-ray intensity has been assumed to be the sum of a galactic component proportional to the H I distribution plus an isotropic extragalactic emission. A chi-squared test of the model parameters indicates that about 30% of the total high-latitude emission may originate within the Galaxy.

  7. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  8. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  9. Nucleon-energy correlations in. nu. d. --> nu. np

    SciTech Connect

    Singh, S.K.; Khan, S.A.

    1982-01-01

    The nucleon-energy correlation sigma (K/sub 1/,K/sub 2/), where K/sub 1/ and K/sub 2/ are the kinetic energies of the outgoing nucleons, is studied in the weak neutral disintegration of the deuteron, ..nu..+d..--> nu..+n+p. The studies are made in all five (S, P, T, A, and V) variants of the neutral-current weak-interaction Lagrangian. The study in the region of low kinetic energies of the nucleons provides means to distinguish between the axial-vector and tensor couplings.

  10. Effect of correlations between minima on a complex energy landscape

    NASA Astrophysics Data System (ADS)

    Pusuluri, Sai Teja; Lang, Alex H.; Mehta, Pankaj; Castillo, Horacio E.

    We recently modeled cellular interconvertion dynamics by using an epigenetic landscape model inspired by neural network models. Given an arbitrary set of patterns, the model can be used to construct an energy landscape in which those patterns are the global minima. We study the possible stable states and metastable states of the landscapes thus constructed. We consider three different cases: i) choosing the patterns to be random and independently distributed ii) choosing a set of patterns directly derived from the experimental cellular transcription factor expression data for a representative set of cell types in an organism and iii) choosing randomly generated trees of hierarchically correlated patterns, inspired by biology. For each of the three cases, we study the energy landscapes. In particular we study the basins of attraction of both the stable states and the metastable states, we compute the configurational entropy as a function of energy, and we demonstrate how those results depend on the correlations between the patterns.

  11. Correlation matrix renormalization approximation for total-energy calculations of correlated electron systems

    SciTech Connect

    Yao, Y. X.; Liu, Jun; Wang, Cai-Zhuang; Ho, Kai-Ming

    2014-01-23

    We generalized the commonly used Gutzwiller approximation for calculating the electronic structure and total energy of strongly correlated electron systems. In our method, the evaluation of one-body and two-body density matrix elements of the Hamiltonian is simplified using a renormalization approximation to achieve better scaling of the computational effort as a function of system size. To achieve a clear presentation of the concept and methodology, we describe the detailed formalism for a finite hydrogen system with minimal basis set. We applied the correlation matrix renormalization approximation approach to a H2 dimer and H8 cubic fragment with minimal basis sets, as well as a H2 molecule with a large basis set. The results compare favorably with sophisticated quantum chemical calculations. We believe our approach can serve as an alternative way to build up the exchange-correlation energy functional for an improved density functional theory description of systems with strong electron correlations.

  12. GRB physics and cosmology with peak energy-intensity correlations

    NASA Astrophysics Data System (ADS)

    Sawant, Disha; Amati, Lorenzo

    2015-12-01

    Gamma Ray Bursts (GRBs) are immensely energetic explosions radiating up to 1054 erg of energy isotropically (Eiso) and they are observed within a wide range of redshift (from ˜ 0.01 up to ˜ 9). Such enormous power and high redshift point at these phenomena being highly favorable to investigate the history and evolution of our universe. The major obstacle in their application as cosmological study-tools is to find a way to standardize the GRBs, for instance similar to SNe Ia. With respect to this goal, the correlation between spectral peak energy (Ep,i) and the "intensity" is a positively useful and investigated criterion. Moreover, it has been demonstrated that, through the Ep,i - Eiso correlation, the current data set of GRBs can already contribute to the independent evidence of the matter density ΩM being ˜ 0.3 for a flat universe scenario. We try to inspect and compare the correlations of Ep,i with different intensity indicators (e.g., radiated energy, average and peak luminosity, bolometric vs. monochromatic quantities, etc.) both in terms of intrinsic dispersion and precise estimation of ΩM. The outcome of such studies are further analyzed in verifying the reliability of the correlations for both GRB physics and their standardization for cosmology.

  13. GRB physics and cosmology with peak energy-intensity correlations

    SciTech Connect

    Sawant, Disha; Amati, Lorenzo

    2015-12-17

    Gamma Ray Bursts (GRBs) are immensely energetic explosions radiating up to 10{sup 54} erg of energy isotropically (E{sub iso}) and they are observed within a wide range of redshift (from ∼ 0.01 up to ∼ 9). Such enormous power and high redshift point at these phenomena being highly favorable to investigate the history and evolution of our universe. The major obstacle in their application as cosmological study-tools is to find a way to standardize the GRBs, for instance similar to SNe Ia. With respect to this goal, the correlation between spectral peak energy (E{sub p,i}) and the “intensity” is a positively useful and investigated criterion. Moreover, it has been demonstrated that, through the E{sub p,i} – E{sub iso} correlation, the current data set of GRBs can already contribute to the independent evidence of the matter density Ω{sub M} being ∼ 0.3 for a flat universe scenario. We try to inspect and compare the correlations of E{sub p,i} with different intensity indicators (e.g., radiated energy, average and peak luminosity, bolometric vs. monochromatic quantities, etc.) both in terms of intrinsic dispersion and precise estimation of Ω{sub M}. The outcome of such studies are further analyzed in verifying the reliability of the correlations for both GRB physics and their standardization for cosmology.

  14. Evaluation of the Effect of Fluctuation of Absolute Value for Diagnostic Accuracy of Fatigue Crack Monitoring Via Statistical Diagnostic Method Using Correlation between Sensors

    NASA Astrophysics Data System (ADS)

    Iwasaki, Atsushi; Morimoto, Akihiro; Yatomi, Masataka; Kimura, Tadashi

    This research is about improvement of the diagnostic accuracy of the fatigue crack monitoring via the statistical diagnostic method. Our research group proposes an unsupervised damage diagnostic method named SI-F method which diagnoses the damage from detecting the change of correlation between sensors caused by the initiation or propagation of the damage via the statistical evaluation. By the method, correlation between sensors is identified by using the response surface and the change of them is statistically investigated with the F-test. To identify the crack length by the method, identification about the relation between the crack length and the F0 statistic is required. Then in this research, to evaluate effect of the regression error, the noise magnitude and the fluctuation of the external force to the relation, numerical simulation was conducted. For the simulation, two sets of data, one with constant load and one with variable load, are generated and compared. And the applicability of the result of the simulation is experimentally investigated. Finally, the results indicate that the F0 affected by the regression error and the noise magnitude but not affected by the external force.

  15. Role of Modeling When Designing for Absolute Energy Use Intensity Requirements in a Design-Build Framework: Preprint

    SciTech Connect

    Hirsch, A.; Pless, S.; Guglielmetti, R.; Torcellini, P. A.; Okada, D.; Antia, P.

    2011-03-01

    The Research Support Facility was designed to use half the energy of an equivalent minimally code-compliant building, and to produce as much renewable energy as it consumes on an annual basis. These energy goals and their substantiation through simulation were explicitly included in the project's fixed firm price design-build contract. The energy model had to be continuously updated during the design process and to match the final building as-built to the greatest degree possible. Computer modeling played a key role throughout the design process and in verifying that the contractual energy goals would be met within the specified budget. The main tool was a whole building energy simulation program. Other models were used to provide more detail or to complement the whole building simulation tool. Results from these specialized models were fed back into the main whole building simulation tool to provide the most accurate possible inputs for annual simulations. This paper will detail the models used in the design process and how they informed important program and design decisions on the path from preliminary design to the completed building.

  16. Average local ionization energy generalized to correlated wavefunctions

    SciTech Connect

    Ryabinkin, Ilya G.; Staroverov, Viktor N.

    2014-08-28

    The average local ionization energy function introduced by Politzer and co-workers [Can. J. Chem. 68, 1440 (1990)] as a descriptor of chemical reactivity has a limited utility because it is defined only for one-determinantal self-consistent-field methods such as the Hartree–Fock theory and the Kohn–Sham density-functional scheme. We reinterpret the negative of the average local ionization energy as the average total energy of an electron at a given point and, by rewriting this quantity in terms of reduced density matrices, arrive at its natural generalization to correlated wavefunctions. The generalized average local electron energy turns out to be the diagonal part of the coordinate representation of the generalized Fock operator divided by the electron density; it reduces to the original definition in terms of canonical orbitals and their eigenvalues for one-determinantal wavefunctions. The discussion is illustrated with calculations on selected atoms and molecules at various levels of theory.

  17. Absolute detection efficiency of a microchannel plate detector to X rays in the 1-100 KeV energy range

    NASA Astrophysics Data System (ADS)

    Burginyon, Gary A.; Jacoby, Barry A.; Wobser, James K.; Ernst, Richard; Ancheta, Dione S.; Tirsell, Kenneth G.

    1993-02-01

    There is little information in the literature on the performance of working micro-channel plate (MCP) detectors at high x-ray energies. We have measured the absolute efficiency of a microchannel-plate-intensified, subnanosecond, one dimensional imaging x-ray detector developed at LLNL in the 1 to 100 keV range and at 1.25 MeV. The detector consists of a gold photocathode deposited on the front surface of the MCP (optimized for Ni K(subscript (alpha) ) x rays) to convert x rays to electrons, an MCP to amplify the electrons, and a fast In:CdS phosphor that converts the electron's kinetic energy to light. The phosphor is coated on a fiber-optic faceplate to transmit the light out of the vacuum system. Electrostatic focusing electrodes compress the electron current out of the MCP in one dimension while preserving spatial resolution in the other. The calibration geometry, dictated by a recent experiment, required grazing incidence x rays (15.6 degree(s)) onto the MCP detector in order to maximize deliverable current. The experiment also used a second detector made up of 0.071 in. thick BC422 plastic scintillator material from the Bicron Corporation. We compare the absolute efficiencies of these two detectors in units of optical W/cm(superscript 2) into 4 (pi) per x ray W/cm(superscript 2) incident. At 7.47 keV and 900 volts MCP bias, the MCP detector delivers approximately 1400 times more light than the scintillator detector.

  18. Hybrid exchange-correlation energy functionals for strongly correlated electrons: Applications to transition-metal monoxides

    NASA Astrophysics Data System (ADS)

    Tran, Fabien; Blaha, Peter; Schwarz, Karlheinz; Novák, Pavel

    2006-10-01

    For the treatment of strongly correlated electrons, the corresponding Hartree-Fock exchange energy is used instead of the local density approximation (LDA) or generalized gradient approximation (GGA) functional, as suggested recently [P. Novák , Phys. Status Solidi B 243, 563 (2006)]. If this is done only inside the atomic spheres, using an augmented plane wave scheme, a significant simplification and reduction of computational cost is achieved with respect to the usual but costly implementation of the Hartree-Fock formalism in solids. Starting from this, we construct exchange-correlation energy functionals of the hybrid form like B3PW91, PBE0, etc. These functionals are tested on the transition-metal monoxides MnO, FeO, CoO, and NiO, and the results are compared with the LDA, GGA, LDA+U , and experimental ones. The results show that the proposed method, which does not contain any system-dependent input parameter, gives results comparable or superior to the ones obtained with LDA+U which is designed to improve significantly over the LDA and GGA results for systems containing strongly correlated electrons. The computational efficiency, similar to the LDA+U one, and accuracy of the proposed method show that it represents a very good alternative to LDA+U .

  19. A measurement of the absolute energy spectra of galactic cosmic rays during the 1976-77 solar minimum

    NASA Technical Reports Server (NTRS)

    Derrickson, J. H.; Parnell, T. A.; Austin, R. W.; Selig, W. J.; Gregory, J. C.

    1992-01-01

    An instrument designed to measure elemental cosmic ray abundances from boron to nickel in the energy region 0.5-2.0 GeV/nucl was flown on a high altitude balloon from Sioux Falls, South Dakota, on 30 September through 1 October 1976 at an average atmospheric depth of about 5 g/sq cm. Differential energy spectra of B, C, N, O, Ne, Mg, Si and Fe, extrapolated to the top of the atmosphere, were measured. The float altitude exposure of 17 h ended near Alpena, Michigan. The flight trajectory maintained a north easterly heading out of Sioux Falls traversing the upper midwest region between 84 and 97 deg west longitude while remaining between 43.5 and 45 deg north latitude. The maximum vertical cut-off for this flight path was 1.77 GV or 0.35 GeV/nucl.

  20. Energy normalization of TV viewed optical correlation (automated correlation plane analyzer for an optical processor)

    NASA Technical Reports Server (NTRS)

    Grumet, A.

    1981-01-01

    An automatic correlation plane processor that can rapidly acquire, identify, and locate the autocorrelation outputs of a bank of multiple optical matched filters is described. The read-only memory (ROM) stored digital silhouette of each image associated with each matched filter allows TV video to be used to collect image energy to provide accurate normalization of autocorrelations. The resulting normalized autocorrelations are independent of the illumination of the matched input. Deviation from unity of a normalized correlation can be used as a confidence measure of correct image identification. Analog preprocessing circuits permit digital conversion and random access memory (RAM) storage of those video signals with the correct amplitude, pulse width, rising slope, and falling slope. TV synchronized addressing of 3 RAMs permits on-line storage of: (1) the maximum unnormalized amplitude, (2) the image x location, and (3) the image y location of the output of each of up to 99 matched filters. A fourth RAM stores all normalized correlations. A normalization approach, normalization for cross correlations, a system's description with block diagrams, and system's applications are discussed.

  1. ENERGY MODEL OF A CADMIUM STREAM WITH CORRELATION OF EMBODIED ENERGY AND TOXICITY

    EPA Science Inventory

    In surviving systems that have evolved designs for maximizing power, ability to amplify and control may be in proportion to embodied energy. The evaluation of control effect and energy required in equivalent embodied energy units allows the direct correlation of these two propert...

  2. Absolute neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Wolf, Joachim

    2011-10-01

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.

  3. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  4. Cluster-continuum quasichemical theory calculation of the lithium ion solvation in water, acetonitrile and dimethyl sulfoxide: an absolute single-ion solvation free energy scale.

    PubMed

    Carvalho, Nathalia F; Pliego, Josefredo R

    2015-10-28

    Absolute single-ion solvation free energy is a very useful property for understanding solution phase chemistry. The real solvation free energy of an ion depends on its interaction with the solvent molecules and on the net potential inside the solute cavity. The tetraphenyl arsonium-tetraphenyl borate (TATB) assumption as well as the cluster-continuum quasichemical theory (CC-QCT) approach for Li(+) solvation allows access to a solvation scale excluding the net potential. We have determined this free energy scale investigating the solvation of the lithium ion in water (H2O), acetonitrile (CH3CN) and dimethyl sulfoxide (DMSO) solvents via the CC-QCT approach. Our calculations at the MP2 and MP4 levels with basis sets up to the QZVPP+diff quality, and including solvation of the clusters and solvent molecules by the dielectric continuum SMD method, predict the solvation free energy of Li(+) as -116.1, -120.6 and -123.6 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively (1 mol L(-1) standard state). These values are compatible with the solvation free energy of the proton of -253.4, -253.2 and -261.1 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively. Deviations from the experimental TATB scale are only 1.3 kcal mol(-1) in H2O and 1.8 kcal mol(-1) in DMSO solvents. However, in the case of CH3CN, the deviation reaches a value of 9.2 kcal mol(-1). The present study suggests that the experimental TATB scale is inconsistent for CH3CN. A total of 125 values of the solvation free energy of ions in these three solvents were obtained. These new data should be useful for the development of theoretical solvation models. PMID:26395146

  5. Absolute solvation free energy of Li{sup +} and Na{sup +} ions in dimethyl sulfoxide solution: A theoretical ab initio and cluster-continuum model study

    SciTech Connect

    Westphal, Eduard; Pliego, Josefredo R. Jr.

    2005-08-15

    The solvation of the lithium and sodium ions in dimethyl sulfoxide solution was theoretically investigated using ab initio calculations coupled with the hybrid cluster-continuum model, a quasichemical theory of solvation. We have investigated clusters of ions with up to five dimethyl sulfoxide (DMSO) molecules, and the bulk solvent was described by a dielectric continuum model. Our results show that the lithium and sodium ions have four and five DMSO molecules into the first coordination shell, and the calculated solvation free energies are -135.5 and -108.6 kcal mol{sup -1}, respectively. These data suggest a solvation free energy value of -273.2 kcal mol{sup -1} for the proton in dimethyl sulfoxide solution, a value that is more negative than the present uncertain experimental value. This and previous studies on the solvation of ions in water solution indicate that the tetraphenylarsonium tetraphenylborate assumption is flawed and the absolute value of the free energy of transfer of ions from water to DMSO solution is higher than the present experimental values.

  6. Correlation between diffusion barriers and alloying energy in binary alloys.

    PubMed

    Vej-Hansen, Ulrik Grønbjerg; Rossmeisl, Jan; Stephens, Ifan E L; Schiøtz, Jakob

    2016-01-28

    In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells. Using density functional theory calculations, we show that there is a correlation between the alloying energy of an alloy, and the diffusion barriers of the minority component. Alloys with a negative alloying energy may show improved long term stability, despite the fact that there is typically a greater thermodynamic driving force towards dissolution of the solute metal over alloying. In addition to Pt, we find that this trend also appears to hold for alloys based on Al and Pd. PMID:26750475

  7. Optical self-energy in graphene due to correlations.

    PubMed

    Hwang, J; LeBlanc, J P F; Carbotte, J P

    2012-06-20

    In highly correlated systems one can define an optical self-energy in analogy to its quasiparticle (QP) self-energy counterpart. This quantity provides useful information on the nature of the excitations involved in inelastic scattering processes. Here we calculate the self-energy of the intraband optical transitions in graphene originating in the electron-electron interaction (EEI) as well as electron-phonon interaction (EPI). Although optics involves an average over all momenta (k) of the charge carriers, the structure in the optical self-energy is nevertheless found to mirror mainly that of the corresponding quasiparticles for k equal to or near the Fermi momentum k(F). Consequently, plasmaronic structures which are associated with momenta near the Dirac point at k = 0 are not important in the intraband optical response. While the structure of the electron-phonon interaction (EPI) reflects the sharp peaks of the phonon density of states, the excitation spectrum associated with the electron-electron interaction is in comparison structureless and flat and extends over an energy range which scales linearly with the value of the chemical potential. We introduce a method whereby detailed quantitative information on such excitation spectra can be extracted from optical data. Modulations seen on the edge of the interband optical conductivity as it rises towards its universal background value are traced to structure in the quasiparticle self-energies around k(F) of the lower Dirac cone associated with the occupied states. PMID:22609689

  8. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876

  9. Energy-momentum correlations for Abelian Higgs cosmic strings

    NASA Astrophysics Data System (ADS)

    Daverio, David; Hindmarsh, Mark; Kunz, Martin; Lizarraga, Joanes; Urrestilla, Jon

    2016-04-01

    We report on the energy-momentum correlators obtained with recent numerical simulations of the Abelian Higgs model, essential for the computation of cosmic microwave background and matter perturbations of cosmic strings. Due to significant improvements both in raw computing power and in our parallel simulation framework, the dynamical range of the simulations has increased fourfold both in space and time, and for the first time we are able to simulate strings with a constant physical width in both the radiation and matter eras. The new simulations improve the accuracy of the measurements of the correlation functions at the horizon scale and confirm the shape around the peak. The normalization is slightly higher in the high wave-number tails, due to a small increase in the string density. We study, for the first time, the behavior of the correlators across cosmological transitions and discover that the correlation functions evolve adiabatically; i.e., the network adapts quickly to changes in the expansion rate. We propose a new method for constructing source functions for Einstein-Boltzmann integrators, comparing it with two other methods previously used. The new method is more consistent, easier to implement, and significantly more accurate.

  10. Climatic correlates of tree mortality in water- and energy-limited forests

    USGS Publications Warehouse

    Das, Adrian J.; Stephenson, Nathan L.; Flint, Alan; Das, Tapash; van Mantgem, Phillip J.

    2013-01-01

    Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California’s Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes.

  11. Spin correlation parameter and analyzing power in n - p elastic scattering at intermediate energies

    SciTech Connect

    Bandyopadhyay, D. ); Abegg, R.; Ahmad, M.; Birchall, J.; Chantziantoniou, K.; Davis, C.A.; Davison, N.E.; Delheij, P.P.J.; Green, P.W.; Greeniaus, L.G.; Healey, D.C.; Lapointe, C.; McDonald, W.J.; Miller, C.A.; Moss, G.A.; Page, S.A.; Ramsay, W.D.; Rodning, N.L.; Roy, G.; van Oers, W.T.H.; Wait, G.D.; Watson, J.W.; Ye, Y.

    1989-12-01

    In order to improve existing {ital I}=0 phase shift solutions, the spin correlation parameter {ital A}{sub {ital NN}} and the analyzing powers {ital A}{sub 0{ital N}} and {ital A}{sub {ital N}0} have been measured in {ital n}-{ital p} elastic scattering over an angular range of 50{degree}--150{degree} (c.m.) at three neutron energies (220, 325, and 425 MeV) to an absolute accuracy of {plus minus}0.03. The data have a profound effect on various phase parameters, particularly the {sup 1}P{sub 1}, {sup 3}D{sub 2}, and {epsilon}{sub 1} phase parameters which in some cases change by almost a degree. With the exception of the highest energy, the data support the predictions of the latest version of the Bonn potential. Also, the analyzing power data ({ital A}{sub 0{ital N}} and {ital A}{sub {ital N}0}) measured at 477 MeV in a different experiment over a limited angular range (60{degree}--80{degree} (c.m.)) are reported here.

  12. Climatic correlates of tree mortality in water- and energy-limited forests.

    PubMed

    Das, Adrian J; Stephenson, Nathan L; Flint, Alan; Das, Tapash; van Mantgem, Phillip J

    2013-01-01

    Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California's Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes. PMID:23936118

  13. Climatic Correlates of Tree Mortality in Water- and Energy-Limited Forests

    PubMed Central

    Das, Adrian J.; Stephenson, Nathan L.; Flint, Alan; Das, Tapash; van Mantgem, Phillip J.

    2013-01-01

    Recent increases in tree mortality rates across the western USA are correlated with increasing temperatures, but mechanisms remain unresolved. Specifically, increasing mortality could predominantly be a consequence of temperature-induced increases in either (1) drought stress, or (2) the effectiveness of tree-killing insects and pathogens. Using long-term data from California’s Sierra Nevada mountain range, we found that in water-limited (low-elevation) forests mortality was unambiguously best modeled by climatic water deficit, consistent with the first mechanism. In energy-limited (high-elevation) forests deficit models were only equivocally better than temperature models, suggesting that the second mechanism is increasingly important in these forests. We could not distinguish between models predicting mortality using absolute versus relative changes in water deficit, and these two model types led to different forecasts of mortality vulnerability under future climate scenarios. Our results provide evidence for differing climatic controls of tree mortality in water- and energy-limited forests, while highlighting the need for an improved understanding of tree mortality processes. PMID:23936118

  14. Nucleon-nucleon correlations in heavy ion transfer reactions: Recent investigations at energies far below the Coulomb barrier

    SciTech Connect

    Corradi, Lorenzo

    2015-10-15

    Excitation functions of one- and two-neutron transfer channels have been measured for the {sup 96}Zr+{sup 40}Ca and {sup 116}Sn+{sup 60}Ni systems at bombarding energies ranging from the Coulomb barrier to ∼25% below. Target-like recoils have been identified in A, Z and velocity with the large solid angle magnetic spectrometer PRISMA. The experimental transfer probabilities have been compared, in absolute values and in slope, with semiclassical microscopic calculations which incorporate nucleon-nucleon pairing correlations. For the first time in a heavy ion collision, one was able to provide a consistent description of one and two neutron transfer reactions by incorporating, in the reaction mechanism, all known structure information of entrance and exit channels nuclei. In particular, there is no need to introduce any enhancement factor for the description of two neutron transfer, of course very important are the correlations induced by the pairing interaction.

  15. Ultraviolet photochemistry of buta-1,3- and buta-1,2-dienes: Laser spectroscopic absolute hydrogen atom quantum yield and translational energy distribution measurements

    SciTech Connect

    Hanf, A.; Volpp, H.-R.; Sharma, P.; Mittal, J. P.; Vatsa, R. K.

    2010-07-14

    Using pulsed H-atom Lyman-{alpha} laser-induced fluorescence spectroscopy along with a photolytic calibration approach, absolute H-atom product quantum yields of {phi}{sub H-b13d}=(0.32{+-}0.04) and {phi}{sub H-b12d}=(0.36{+-}0.04) were measured under collision-free conditions for the 193 nm gas-phase laser flash photolysis of buta-1,3- and buta-1,2-diene at room temperature, which demonstrate that nascent H-atom formation is of comparable importance for both parent molecules. Comparison of the available energy fraction, f{sub T-b13d}=(0.22{+-}0.03) and f{sub T-b12d}=(0.13{+-}0.01), released as H+C{sub 4}H{sub 5} product translational energy with results of impulsive and statistical energy partitioning modeling calculations indicates that for both, buta-1,3- and buta-1,2-diene, H-atom formation is preceded by internal conversion to the respective electronic ground state (S{sub 0}) potential energy surfaces. In addition, values of {sigma}{sub b-1,3-d-L{alpha}=}(3.5{+-}0.2)x10{sup -17} cm{sup 2} and {sigma}{sub b-1,2-d-L{alpha}=}(4.4{+-}0.2)x10{sup -17} cm{sup 2} for the previously unknown Lyman-{alpha} (121.6 nm) radiation photoabsorption cross sections of buta-1,3- and buta-1,2-diene in the gas-phase were determined.

  16. The absolute path command

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  17. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  18. A density functional for core-valence correlation energy

    NASA Astrophysics Data System (ADS)

    Ranasinghe, Duminda S.; Frisch, Michael J.; Petersson, George A.

    2015-12-01

    A density functional, ɛCV-DFT(ρc, ρv), describing the core-valence correlation energy has been constructed as a linear combination of ɛLY Pcorr(ρc), ɛV WN5corr(ρc, ρv), ɛPBEcorr(ρc, ρv), ɛSlaterex(ρc, ρv), ɛHCTHex(ρc, ρv), ɛHFex(ρc, ρv), and F CV -DFT (" separators=" N i , Z i ) , a function of the nuclear charges. This functional, with 6 adjustable parameters, reproduces (±0.27 kcal/mol rms error) a benchmark set of 194 chemical energy changes including 9 electron affinities, 18 ionization potentials, and 167 total atomization energies covering the first- and second-rows of the periodic table. This is almost twice the rms error (±0.16 kcal/mol) obtained with CCSD(T)/MTsmall calculations, but less than half the rms error (±0.65 kcal/mol) obtained with MP2/GTlargeXP calculations, and somewhat smaller than the rms error (±0.39 kcal/mol) obtained with CCSD/MTsmall calculations. The largest positive and negative errors from ɛCV-DFT(ρc, ρv) were 0.88 and -0.75 kcal/mol with the set of 194 core-valence energy changes ranging from +3.76 kcal/mol for the total atomization energy of propyne to -9.05 kcal/mol for the double ionization of Mg. Evaluation of the ɛCV-DFT(ρc, ρv) functional requires less time than a single SCF iteration, and the accuracy is adequate for any model chemistry based on the CCSD(T) level of theory.

  19. A density functional for core-valence correlation energy.

    PubMed

    Ranasinghe, Duminda S; Frisch, Michael J; Petersson, George A

    2015-12-01

    A density functional, εCV-DFT(ρc, ρv), describing the core-valence correlation energy has been constructed as a linear combination of εLY P (corr)(ρc), εV WN5 (corr)(ρc, ρv), εPBE (corr)(ρc, ρv), εSlater (ex)(ρc, ρv), εHCTH (ex)(ρc, ρv), εHF (ex)(ρc, ρv), and FCV-DFTNi,Zi, a function of the nuclear charges. This functional, with 6 adjustable parameters, reproduces (±0.27 kcal/mol rms error) a benchmark set of 194 chemical energy changes including 9 electron affinities, 18 ionization potentials, and 167 total atomization energies covering the first- and second-rows of the periodic table. This is almost twice the rms error (±0.16 kcal/mol) obtained with CCSD(T)/MTsmall calculations, but less than half the rms error (±0.65 kcal/mol) obtained with MP2/GTlargeXP calculations, and somewhat smaller than the rms error (±0.39 kcal/mol) obtained with CCSD/MTsmall calculations. The largest positive and negative errors from εCV-DFT(ρc, ρv) were 0.88 and -0.75 kcal/mol with the set of 194 core-valence energy changes ranging from +3.76 kcal/mol for the total atomization energy of propyne to -9.05 kcal/mol for the double ionization of Mg. Evaluation of the εCV-DFT(ρc, ρv) functional requires less time than a single SCF iteration, and the accuracy is adequate for any model chemistry based on the CCSD(T) level of theory. PMID:26646873

  20. Stability of the Free and Bound Microstates of a Mobile Loop of α-Amylase Obtained from the Absolute Entropy and Free Energy.

    PubMed

    Cheluvaraja, Srinath; Meirovitch, Hagai

    2008-01-01

    The hypothetical scanning molecular dynamics (HSMD) method is a relatively new technique for calculating the absolute entropy, S, and free energy, F, from a given sample generated by any simulation procedure. Thus, each sample conformation, i, is reconstructed by calculating transition probabilities that their product leads to the probability of i, hence to the entropy. HSMD is an exact method where all interactions are considered, and the only approximation is due to insufficient sampling. In previous studies HSMD (and HS Monte Carlo - HSMC) has been applied very successfully to liquid argon, TIP3P water, self-avoiding walks, and peptides in a α-helix, extended, and hairpin microstates. In this paper HSMD is developed further as applied to the flexible 7-residue surface loop, 304-310 (Gly-His-Gly-Ala-Gly-Gly-Ser) of the enzyme porcine pancreatic α-amylase. We are mainly interested in entropy and free energy differences ΔS = Sfree - Sbound (and ΔF=Ffree-Fbound) between the free and bound microstates of the loop, which are obtained from two separate MD samples of these microstates without the need to carry out thermodynamic integration. As for peptides, we find that relatively large systematic errors in Sfree and Sbound (and Ffree and Fbound) are cancelled in ΔS (ΔF) which is thus obtained efficiently with high accuracy, i.e., with a statistical error of 0.1-0.2 kcal/mol (T=300 K) using the AMBER force field and AMBER with the implicit solvation GB/SA. We provide theoretical arguments in support of this cancellation, discuss in detail the problems involved in the computational definition of a microstate in conformational space, suggest potential ways for enhancing efficiency further, and describe the next development where explicit water will replace implicit solvation. PMID:26619992

  1. Absolute quantification of UGT1A1 in various tissues and cell lines using isotope label-free UPLC-MS/MS method determines its turnover number and correlates with its glucuronidation activities.

    PubMed

    Xu, Beibei; Gao, Song; Wu, Baojian; Yin, Taijun; Hu, Ming

    2014-01-01

    Uridine 5'-diphosphate-glucuronosyltransferase (UGT)1A1 is a major phase II metabolism enzyme responsible for glucuronidation of drugs and endogenous compounds. The purpose of this study was to determine the expression level of UGT1A1 in human liver microsomes and human cell lines by using an isotope label-free LC-MS/MS method. A Waters Ultra performance liquid chromatography (UPLC) system coupled with an API 5500Qtrap mass spectrometer was used for the analysis. Two signature peptides (Pep-1, and Pep-2) were employed to quantify UGT1A1 by multiple reaction monitoring (MRM) approach. Standard addition method was used to validate the assay to account for the matrix effect. 17β-Estradiol was used as the marker substrate to determine UGT1A1 activities. The validated method has a linear range of 200-0.0195nM for both signature peptides. The precision, accuracy, and matrix effect were in acceptable ranges. UGT1A1 expression levels were then determined using 8 individual human liver microsomes, a pooled human liver microsomes, three UGT1A1 genotyped human liver microsomes, and four cell lines (Caco-2, MCF-7, Hela, and HepG2). The correlations study showed that the UGT1A1 protein levels were strongly correlated with its glucuronidation activities in human liver microsomes (R(2)=0.85) and in microsomes prepared from cell lines (R(2)=0.95). Isotope-labeled peptides were not necessary for LC-MS/MS quantitation of proteins. The isotope label-free absolute quantification method used here had good accuracy, sensitivity, linear range, and reproducibility, and were used successfully for the accurate determination of UGT1A1 from tissues and cell lines. PMID:24055854

  2. Gradient corrections to the exchange-correlation free energy

    SciTech Connect

    Sjostrom, Travis; Daligault, Jerome

    2014-10-07

    We develop the first-order gradient correction to the exchange-correlation free energy of the homogeneous electron gas for use in finite-temperature density functional calculations. Based on this, we propose and implement a simple temperature-dependent extension for functionals beyond the local density approximation. These finite-temperature functionals show improvement over zero-temperature functionals, as compared to path-integral Monte Carlo calculations for deuterium equations of state, and perform without computational cost increase compared to zero-temperature functionals and so should be used for finite-temperature calculations. Furthermore, while the present functionals are valid at all temperatures including zero, non-negligible difference with zero-temperature functionals begins at temperatures above 10 000 K.

  3. Gradient corrections to the exchange-correlation free energy

    DOE PAGESBeta

    Sjostrom, Travis; Daligault, Jerome

    2014-10-07

    We develop the first-order gradient correction to the exchange-correlation free energy of the homogeneous electron gas for use in finite-temperature density functional calculations. Based on this, we propose and implement a simple temperature-dependent extension for functionals beyond the local density approximation. These finite-temperature functionals show improvement over zero-temperature functionals, as compared to path-integral Monte Carlo calculations for deuterium equations of state, and perform without computational cost increase compared to zero-temperature functionals and so should be used for finite-temperature calculations. Furthermore, while the present functionals are valid at all temperatures including zero, non-negligible difference with zero-temperature functionals begins at temperatures abovemore » 10 000 K.« less

  4. Correlation energy and dispersion interaction in the ab initio potential energy curve of the neon dimer

    SciTech Connect

    Bytautas, L.; Ruedenberg, K.

    2008-06-06

    A close approximation to the empirical potential energy curve of the neon dimer is obtained by coupled-cluster singles plus doubles plus noniterative triples calculations by using nonaugmented correlation-consistent basis sets without counterpoise corrections and complementing them by three-term extrapolations to the complete basis set limit. The potential energy is resolved into a self-consistent-field Hartree-Fock contribution and a correlation contribution. The latter is shown to decay in the long-range region in accordance with the empirical dispersion expansion.

  5. Correlation energy and dispersion interaction in the ab initio potential energy curve of the neon dimer.

    PubMed

    Bytautas, Laimutis; Ruedenberg, Klaus

    2008-06-01

    A close approximation to the empirical potential energy curve of the neon dimer is obtained by coupled-cluster singles plus doubles plus noniterative triples calculations by using nonaugmented correlation-consistent basis sets without counterpoise corrections and complementing them by three-term extrapolations to the complete basis set limit. The potential energy is resolved into a self-consistent-field Hartree-Fock contribution and a correlation contribution. The latter is shown to decay in the long-range region in accordance with the empirical dispersion expansion. PMID:18537423

  6. Development of reference states for use in absolute free energy calculations of atomic clusters with application to 55-atom Lennard-Jones clusters in the solid and liquid states

    NASA Astrophysics Data System (ADS)

    Amon, L. M.; Reinhardt, W. P.

    2000-09-01

    In this paper four reference states allowing computation of the absolute internal free energies of solid and liquid clusters are introduced and implemented. Three of these are introduced for the first time. Two of these references are useful for highly fluctional liquidlike clusters while the other two are appropriate for more rigid solidlike clusters. These reference states are combined with a finite time variational method to obtain upper and lower bounds to the absolute free energies of clusters of Lennard-Jones (LJ) atoms, LJ4 and LJ55, allowing the efficiency of each of the four reference states to be elucidated. The optimal references are then applied to obtain upper and lower bounds to the internal free energies (the absolute free energy in the cluster center of mass frame) of LJ55 over a series of fixed temperatures including the solid-liquid coexistence regime. The reversible scaling method, recently introduced by de Koning, Antonelli, and Yip, is then used to extend the results over a continuous range of temperatures. Estimation of the rotational free energy allows comparisons to free energies of LJ55 in the nonrotating center of mass frame as estimated by Doye and Wales.

  7. Proton-Λ correlation functions at energies available at the CERN Large Hadron Collider taking into account residual correlations

    NASA Astrophysics Data System (ADS)

    Shapoval, V. M.; Sinyukov, Yu. M.; Naboka, V. Yu.

    2015-10-01

    The theoretical analysis of the p ¯-Λ ⊕p -Λ ¯ correlation function in 10% most central Au+Au collisions at Relativistic Heavy Ion Collider (RHIC) energy √{sNN}=200 GeV shows that the contribution of residual correlations is a necessary factor for obtaining a satisfactory description of the experimental data. Neglecting the residual correlation effect leads to an unrealistically low source radius, about 2 times smaller than the corresponding value for p -Λ ⊕p ¯-Λ ¯ case, when one fits the experimental correlation function within Lednický-Lyuboshitz analytical model. Recently an approach that accounts effectively for residual correlations for the baryon-antibaryon correlation function was proposed, and a good RHIC data description was reached with the source radius extracted from the hydrokinetic model (HKM). The p ¯-Λ scattering length, as well as the parameters characterizing the residual correlation effect—annihilation dip amplitude and its inverse width—were extracted from the corresponding fit. In this paper we use these extracted values and simulated in HKM source functions for Pb+Pb collisions at the LHC energy √{sNN}=2.76 TeV to predict the corresponding p Λ and p Λ ¯ correlation functions.

  8. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  9. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  10. Precise Measurement of the Absolute Fluorescence Yield

    NASA Astrophysics Data System (ADS)

    Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; di Giulio, C.; San Luis, P. Facal; Gonzales, D.; Hojvat, C.; Hörandel, J. R.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; D'Orfeuil, B. Rouille; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.

    2011-09-01

    We present preliminary results of the absolute yield of fluorescence emission in atmospheric gases. Measurements were performed at the Fermilab Test Beam Facility with a variety of beam particles and gases. Absolute calibration of the fluorescence yield to 5% level was achieved by comparison with two known light sources--the Cherenkov light emitted by the beam particles, and a calibrated nitrogen laser. The uncertainty of the energy scale of current Ultra-High Energy Cosmic Rays experiments will be significantly improved by the AIRFLY measurement.

  11. ABSOLUTE POLARIMETRY AT RHIC.

    SciTech Connect

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  12. Accurate calculation of the absolute free energy of binding for drug molecules† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc02678d Click here for additional data file.

    PubMed Central

    Aldeghi, Matteo; Heifetz, Alexander; Bodkin, Michael J.; Knapp, Stefan

    2016-01-01

    Accurate prediction of binding affinities has been a central goal of computational chemistry for decades, yet remains elusive. Despite good progress, the required accuracy for use in a drug-discovery context has not been consistently achieved for drug-like molecules. Here, we perform absolute free energy calculations based on a thermodynamic cycle for a set of diverse inhibitors binding to bromodomain-containing protein 4 (BRD4) and demonstrate that a mean absolute error of 0.6 kcal mol–1 can be achieved. We also show a similar level of accuracy (1.0 kcal mol–1) can be achieved in pseudo prospective approach. Bromodomains are epigenetic mark readers that recognize acetylation motifs and regulate gene transcription, and are currently being investigated as therapeutic targets for cancer and inflammation. The unprecedented accuracy offers the exciting prospect that the binding free energy of drug-like compounds can be predicted for pharmacologically relevant targets. PMID:26798447

  13. Correlation energy as a measure of non-locality: Quantum entanglement of helium-like systems

    NASA Astrophysics Data System (ADS)

    Esquivel, R. O.; López-Rosa, S.; Dehesa, J. S.

    2015-08-01

    In this work we discuss the essential quantum origin of correlation energy as measured through the wave function regardless of any extrinsic Hamiltonian. The ambiguous physical meaning of correlation energy is clarified by identifying the non-dynamical correlations inherent in the system state of Slater rank different than one with the quantum phenomenon of nonlocality. This is achieved by relating correlation energy to entanglement as measured through the von Neumann and the linear entropies. Indeed, for helium-like systems with varying Z we observe one-to-one correspondence between entanglement and correlation energy. We present numerical evidence of the linear relation between the correlation energy E\\textit{corr} and the quantum entanglement for various members of the helium isoelectronic series by use of highly correlated wave functions of configuration-interaction type.

  14. The role of correlation in the ground state energy of confined helium atom

    SciTech Connect

    Aquino, N.

    2014-01-14

    We analyze the ground state energy of helium atom confined by spherical impenetrable walls, and the role of the correlation energy in the total energy. The confinement of an atom in a cavity is one way in which we can model the effect of the external pressure on an atom. The calculations of energy of the system are carried out by the variational method. We find that the correlation energy remains almost constant for a range values of size of the boxes analyzed.

  15. Correlating absolute concentrations of gas-phase species determined by microwave, Fourier transform infrared, and atomic absorption spectroscopies to properties of silicon dioxide films deposited in an electron cyclotron resonance reactor

    NASA Astrophysics Data System (ADS)

    Cornett, Mary Jezl

    Three different gas-phase absorption spectroscopies (microwave, FTIR, and silicon atomic absorption) were used simultaneously during the plasma enhanced chemical vapor deposition of SiO2 and fluorinated SiO 2 films using an ECR deposition reactor. With these spectroscopic techniques, absolute concentrations of a large number of species present in these deposition plasmas were determined. A new ECR system with multiple diagnostic ports on the same horizontal plane, and incorporating an electrostatic chuck, rf-bias, and He-backside cooling, was constructed to facilitate these studies. Correlations to the quality of the resulting films were made using ellipsometry, FTIR, XPS, and wet etch rate techniques. The systems investigated were SiH 4/O2/Ar, SiH4/SiF4/O2 and TEOS/O2 plasmas. The SiH4/O2 plasmas are found to contain less water than previously expected (under our detection limit of 0.1 mTorr). The molecular fragment SiO was monitored as a function of power, pressure, oxygen flow, and argon flow at densities between 3.7 × 109 and 1.3 × 10-11 cm-3 in this system. Silicon atoms were detected at densities between 5.1 × 109 and 5.8 × 1010 cm -3. The decomposition of SiF4 is investigated and is shown to occur at a constant rate of about 98% in pure SiF4/O 2 plasmas. This dissociation rate is enhanced when silane is added. Water and HF are generated in large quantities when SiH4 and SiF 4 are both present in the system, and reach their maximum concentrations at the SiF4/SiH4 ratio where the film quality appears to be the best. Fluorine incorporation into SiOF films result in a consistent decrease in index of refraction values. No SiO molecules were detected in SiH4/SiF4/O2 chemistries (<5 × 10 9 cm-3). Plasmas employing TEOS/O2 chemistries show large concentrations of CO, CO2 and H2O. Larger organic molecules (ethanol, acetaldehyde, methanol, formaldehyde, and formic acid) are also present in these plasmas, totaling about 9% of the species present under most

  16. Implants as absolute anchorage.

    PubMed

    Rungcharassaeng, Kitichai; Kan, Joseph Y K; Caruso, Joseph M

    2005-11-01

    Anchorage control is essential for successful orthodontic treatment. Each tooth has its own anchorage potential as well as propensity to move when force is applied. When teeth are used as anchorage, the untoward movements of the anchoring units may result in the prolonged treatment time, and unpredictable or less-than-ideal outcome. To maximize tooth-related anchorage, techniques such as differential torque, placing roots into the cortex of the bone, the use of various intraoral devices and/or extraoral appliances have been implemented. Implants, as they are in direct contact with bone, do not possess a periodontal ligament. As a result, they do not move when orthodontic/orthopedic force is applied, and therefore can be used as "absolute anchorage." This article describes different types of implants that have been used as orthodontic anchorage. Their clinical applications and limitations are also discussed. PMID:16463910

  17. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  18. Correlations in Intermediate Energy Two-Proton Removal Reactions

    NASA Astrophysics Data System (ADS)

    Wimmer, K.; Bazin, D.; Gade, A.; Tostevin, J. A.; Baugher, T.; Chajecki, Z.; Coupland, D.; Famiano, M. A.; Ghosh, T. K.; Grinyer, G. F.; Hodges, R.; Howard, M. E.; Kilburn, M.; Lynch, W. G.; Manning, B.; Meierbachtol, K.; Quarterman, P.; Ratkiewicz, A.; Sanetullaev, A.; Simpson, E. C.; Stroberg, S. R.; Tsang, M. B.; Weisshaar, D.; Winkelbauer, J.; Winkler, R.; Youngs, M.

    2012-11-01

    We report final-state-exclusive measurements of the light charged fragments in coincidence with Ne26 residual nuclei following the direct two-proton removal from a neutron-rich Mg28 secondary beam. A Dalitz-plot analysis and comparisons with simulations show that a majority of the triple-coincidence events with two protons display phase-space correlations consistent with the (two-body) kinematics of a spatially correlated pair-removal mechanism. The fraction of such correlated events, 56(12)%, is consistent with the fraction of the calculated cross section, 64%, arising from spin S=0 two-proton configurations in the entrance-channel (shell-model) Mg28 ground state wave function. This result promises access to an additional and more specific probe of the spin and spatial correlations of valence nucleon pairs in exotic nuclei produced as fast secondary beams.

  19. Correlations between D and Dbar mesons in high energy photoproduction

    SciTech Connect

    Erik E Gottschalk

    2002-11-13

    Over 7000 events containing a fully reconstructed D{bar D} pair have been extracted from data recorded by the FOCUS photoproduction experiment at Fermilab. Preliminary results from a study of correlations between D and {bar D} mesons are presented. Correlations are used to study perturbative QCD predictions and investigate non-perturbative effects. We also present a preliminary result on the production of {psi}(3770).

  20. Future directions for probing two and three nucleon short-range correlations at high energies

    SciTech Connect

    Frankfurt, Leonid; Sargsian, Misak; Strikman, Mark

    2008-10-13

    We summarize recent progress in the studies of the short-rang correlations (SRC) in nuclei in high energy electron and hadron nucleus scattering and suggest directions for the future high energy studies aimed at establishing detailed structure of two-nucleon SRCs, revealing structure of three nucleon SRC correlations and discovering non-nucleonic degrees of freedom in nuclei.

  1. Pauli correlations in heavy-ion collisions at high energies

    NASA Technical Reports Server (NTRS)

    Franco, V.; Nutt, W. T.

    1977-01-01

    We calculate the effects of short-range correlations on the Glauber expansion for nucleus-nucleus collisions using the Fermi gas model for nuclei. When we neglect the Pauli principle for collisions between heavy nuclei, calculation of the optical phase-shift function leads to non-unitary results and we cannot obtain cross sections. When we include Pauli correlations we find important cancellations in the optical phase-shift function, which make possible the calculation of total and differential cross sections for heavy nuclei.

  2. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  3. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  4. Informatics-Based Energy Fitting Scheme for Correlation Energy at Complete Basis Set Limit.

    PubMed

    Seino, Junji; Nakai, Hiromi

    2016-09-30

    Energy fitting schemes based on informatics techniques using hierarchical basis sets with small cardinal numbers were numerically investigated to estimate correlation energies at the complete basis set limits. Numerical validations confirmed that the conventional two-point extrapolation models can be unified into a simple formula with optimal parameters obtained by the same test sets. The extrapolation model was extended to two-point fitting models by a relaxation of the relationship between the extrapolation coefficients or a change of the fitting formula. Furthermore, n-scheme fitting models were developed by the combinations of results calculated at several theory levels and basis sets to compensate for the deficiencies in the fitting model at one level of theory. Systematic assessments on the Gaussian-3X and Gaussian-2 sets revealed that the fitting models drastically reduced errors with equal or smaller computational effort. © 2016 Wiley Periodicals, Inc. PMID:27454327

  5. Absolute Energy Calibration of X-ray TESs with 0.04 eV Uncertainty at 6.4 keV in a Hadron-Beam Environment

    NASA Astrophysics Data System (ADS)

    Tatsuno, H.; Doriese, W. B.; Bennett, D. A.; Curceanu, C.; Fowler, J. W.; Gard, J.; Gustafsson, F. P.; Hashimoto, T.; Hayano, R. S.; Hays-Wehle, J. P.; Hilton, G. C.; Iliescu, M.; Ishimoto, S.; Itahashi, K.; Iwasaki, M.; Kuwabara, K.; Ma, Y.; Marton, J.; Noda, H.; O'Neil, G. C.; Okada, S.; Outa, H.; Reintsema, C. D.; Sato, M.; Schmidt, D. R.; Shi, H.; Suzuki, K.; Suzuki, T.; Uhlig, J.; Ullom, J. N.; Widmann, E.; Yamada, S.; Zmeskal, J.; Swetz, D. S.

    2016-01-01

    A performance evaluation of superconducting transition-edge sensors (TESs) in the environment of a pion beam line at a particle accelerator is presented. Averaged across the 209 functioning sensors in the array, the achieved energy resolution is 5.2 eV FWHM at Co K_{α } (6.9 keV) when the pion beam is off and 7.3 eV at a beam rate of 1.45 MHz. Absolute energy uncertainty of ± 0.04 eV is demonstrated for Fe K_{α } (6.4 keV) with in-situ energy calibration obtained from other nearby known X-ray lines. To achieve this small uncertainty, it is essential to consider the non-Gaussian energy response of the TESs and thermal cross-talk pile-up effects due to charged particle hits in the silicon substrate of the TES array.

  6. Absolute Energy Calibration of X-ray TESs with 0.04 eV Uncertainty at 6.4 keV in a Hadron-Beam Environment

    NASA Astrophysics Data System (ADS)

    Tatsuno, H.; Doriese, W. B.; Bennett, D. A.; Curceanu, C.; Fowler, J. W.; Gard, J.; Gustafsson, F. P.; Hashimoto, T.; Hayano, R. S.; Hays-Wehle, J. P.; Hilton, G. C.; Iliescu, M.; Ishimoto, S.; Itahashi, K.; Iwasaki, M.; Kuwabara, K.; Ma, Y.; Marton, J.; Noda, H.; O'Neil, G. C.; Okada, S.; Outa, H.; Reintsema, C. D.; Sato, M.; Schmidt, D. R.; Shi, H.; Suzuki, K.; Suzuki, T.; Uhlig, J.; Ullom, J. N.; Widmann, E.; Yamada, S.; Zmeskal, J.; Swetz, D. S.

    2016-08-01

    A performance evaluation of superconducting transition-edge sensors (TESs) in the environment of a pion beam line at a particle accelerator is presented. Averaged across the 209 functioning sensors in the array, the achieved energy resolution is 5.2 eV FWHM at Co K_{α } (6.9 keV) when the pion beam is off and 7.3 eV at a beam rate of 1.45 MHz. Absolute energy uncertainty of ± 0.04 eV is demonstrated for Fe K_{α } (6.4 keV) with in-situ energy calibration obtained from other nearby known X-ray lines. To achieve this small uncertainty, it is essential to consider the non-Gaussian energy response of the TESs and thermal cross-talk pile-up effects due to charged particle hits in the silicon substrate of the TES array.

  7. Absolute Identification by Relative Judgment

    ERIC Educational Resources Information Center

    Stewart, Neil; Brown, Gordon D. A.; Chater, Nick

    2005-01-01

    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…

  8. Be Resolute about Absolute Value

    ERIC Educational Resources Information Center

    Kidd, Margaret L.

    2007-01-01

    This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

  9. Molecular tests of the random phase approximation to the exchange-correlation energy functional

    NASA Astrophysics Data System (ADS)

    Furche, Filipp

    2001-11-01

    The exchange-correlation energy functional within the random phase approximation (RPA) is recast into an explicitly orbital-dependent form. A method to evaluate the functional in finite basis sets is introduced. The basis set dependence of the RPA correlation energy is analyzed. Extrapolation using large, correlation-consistent basis sets is essential for accurate estimates of RPA correlation energies. The potential energy curve of N2 is discussed. The RPA is found to recover most of the strong static correlation at large bond distance. Atomization energies of main-group molecules are rather uniformly underestimated by the RPA. The method performs better than generalized-gradient-type approximations (GGA's) only for some electron-rich systems. However, the RPA functional is free of error cancellation between exchange and correlation, and behaves qualitatively correct in the high-density limit, as is demonstrated by the coupling strength decomposition of the atomization energy of F2. The GGA short-range correlation correction to the RPA by Yan, Perdew, and Kurth [Phys. Rev. B 61, 16 430 (2000)] does not seem to improve atomization energies consistently.

  10. Spatial correlation of high-energy grain boundaries in two-dimensional simulated polycrystals

    SciTech Connect

    Clinton DeW. Van Siclen

    2007-02-01

    A polycrystal undergoes microstructural changes to reach a lower energy state. In particular, the system evolves so as to reduce the total grain boundary energy. A simple two-dimensional model of a polycrystal comprised of randomly oriented crystalline grains suggests that energy minimization reduces or eliminates any spatial correlation among high-energy grain boundaries. Thus grain boundary engineering not only reduces the density of high-energy boundaries, but it prevents their organization into a coarse, albeit discontinuous, network.

  11. Multi-layer model of correlated energy prices

    NASA Astrophysics Data System (ADS)

    Grine, Slimane; Diko, Pavel

    2010-03-01

    In this article we develop an extension of the affine jump-diffusion modeling framework and use it to build an intuitive and tractable model of an energy price complex. The development is motivated by the need to model prices of electricity while capturing their dependence on the price of other energy commodities. Such a model is essential for valuing a range of typical derivatives traded in the electricity markets: cross-commodity spread options, cross-location spread options, fuel-switching powerplants, etc. We give an approximate pricing method for these derivatives together with precise error bound estimates.

  12. The absolute disparity anomaly and the mechanism of relative disparities.

    PubMed

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-06-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  13. The absolute disparity anomaly and the mechanism of relative disparities

    PubMed Central

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-01-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  14. Long-range correlation energy calculated from coupled atomic response functions

    SciTech Connect

    Ambrosetti, Alberto; Reilly, Anthony M.; Tkatchenko, Alexandre; DiStasio, Robert A.

    2014-05-14

    An accurate determination of the electron correlation energy is an essential prerequisite for describing the structure, stability, and function in a wide variety of systems. Therefore, the development of efficient approaches for the calculation of the correlation energy (and hence the dispersion energy as well) is essential and such methods can be coupled with many density-functional approximations, local methods for the electron correlation energy, and even interatomic force fields. In this work, we build upon the previously developed many-body dispersion (MBD) framework, which is intimately linked to the random-phase approximation for the correlation energy. We separate the correlation energy into short-range contributions that are modeled by semi-local functionals and long-range contributions that are calculated by mapping the complex all-electron problem onto a set of atomic response functions coupled in the dipole approximation. We propose an effective range-separation of the coupling between the atomic response functions that extends the already broad applicability of the MBD method to non-metallic materials with highly anisotropic responses, such as layered nanostructures. Application to a variety of high-quality benchmark datasets illustrates the accuracy and applicability of the improved MBD approach, which offers the prospect of first-principles modeling of large structurally complex systems with an accurate description of the long-range correlation energy.

  15. High energy factorization in nucleus-nucleus collisions III. Long range rapidity correlations

    SciTech Connect

    Venugopalan, R.; Gelis, F., Lappi, T.

    2009-10-27

    We obtain a novel result in QCD for long range rapidity correlations between gluons produced in the collision of saturated high energy hadrons or nuclei. This result, obtained in a high energy factorization framework, provides strong justification for the Glasma flux tube picture of coherent strong color fields. Our formalism can be applied to 'near side ridge' events at the Relativistic Heavy Ion Collider and in future studies of long range rapidity correlations at the LHC.

  16. High energy factorization in nucleus-nucleus collisions. III. Long range rapidity correlations

    SciTech Connect

    Gelis, Francois

    2009-05-01

    We obtain a novel result in QCD for long range rapidity correlations between gluons produced in the collision of saturated high energy hadrons or nuclei. This result, obtained in a high energy factorization framework, provides strong justification for the Glasma flux tube picture of coherent strong color fields. Our formalism can be applied to 'near side ridge' events at the Relativistic Heavy Ion Collider and in future studies of long range rapidity correlations at the LHC.

  17. Metallic Magnetic Calorimeters for Absolute Activity Measurement

    NASA Astrophysics Data System (ADS)

    Loidl, M.; Leblanc, E.; Rodrigues, M.; Bouchard, J.; Censier, B.; Branger, T.; Lacour, D.

    2008-05-01

    We present a prototype of metallic magnetic calorimeters that we are developing for absolute activity measurements of low energy emitting radionuclides. We give a detailed description of the realization of the prototype, containing an 55Fe source inside the detector absorber. We present the analysis of first data taken with this detector and compare the result of activity measurement with liquid scintillation counting. We also propose some ways for reducing the uncertainty on the activity determination with this new technique.

  18. Accurate ab initio potential energy curve of O2. II. Core-valence correlations, relativistic contributions, and vibration-rotation spectrum.

    PubMed

    Bytautas, Laimutis; Matsunaga, Nikita; Ruedenberg, Klaus

    2010-02-21

    In the first paper of this series, a very accurate ab initio potential energy curve of the (3)Sigma(g)(-) ground state of O(2) has been determined in the approximation that all valence shell electron correlations were calculated at the complete basis set limit. In the present study, the corrections arising from core electron correlations and relativity effects, viz., spin-orbit coupling and scalar relativity, are determined and added to the potential energy curve. From the 24 points calculated on this curve, an analytical expression in terms of even-tempered Gaussian functions is determined and, from it, the vibrational and rotational energy levels are calculated by means of the discrete variable representation. We find 42 vibrational levels. Experimental data (from the Schumann-Runge band system) only yield the lowest 36 levels due to significant reduction in the transition intensities of higher levels. For the 35 term values G(v), the mean absolute deviation between theoretical and experimental data is 12.8 cm(-1). The dissociation energy with respect to the lowest vibrational energy is calculated within 25 cm(-1) of the experimental value of 41,268.2+/-3 cm(-1). The theoretical crossing between the (3)Sigma(g)(-) state and the (1)Sigma(g)(+) state is found to occur at 2.22 A and the spin-orbit coupling in this region is analyzed. PMID:20170227

  19. Circumpulsar Asteroids: Inferences from Nulling Statistics and High Energy Correlations

    NASA Astrophysics Data System (ADS)

    Shannon, Ryan; Cordes, J. M.

    2006-12-01

    We have proposed that some classes of radio pulsar variability are associated with the entry of neutral asteroidal material into the pulsar magnetosphere. The region surrounding neutron stars is polluted with supernova fall-back material, which collapses and condenses into an asteroid-bearing disk that is stable for millions of years. Over time, collisional and radiative processes cause the asteroids to migrate inward until they are heated to the point of ionization. For older and cooler pulsars, asteroids ionize within the large magnetospheres and inject a sufficient amount of charged particles to alter the electrodynamics of the gap regions and modulate emission processes. This extrinsic model unifies many observed phenomena of variability that occur on time scales that are disparate with the much shorter time scales associated with pulsars and their magnetospheres. One such type of variability is nulling, in which certain pulsars exhibit episodes of quiescence that for some objects may be as short as a few pulse periods, but, for others, is longer than days. Here, in the context of this model, we examine the nulling phenomenon. We analyze the relationship between in-falling material and the statistics of nulling. In addition, as motivation for further high energy observations, we consider the relationship between the nulling and other magnetospheric processes.

  20. Correlation functions of the energy-momentum tensor in SU(2) gauge theory at finite temperature

    SciTech Connect

    Huebner, K.; Pica, C.; Karsch, F.

    2008-11-01

    We calculate correlation functions of the energy-momentum tensor in the vicinity of the deconfinement phase transition of (3+1)-dimensional SU(2) gauge theory and discuss their critical behavior in the vicinity of the second order deconfinement transition. We show that correlation functions of the trace of the energy-momentum tensor diverge uniformly at the critical point in proportion to the specific heat singularity. Correlation functions of the pressure, on the other hand, stay finite at the critical point. We discuss the consequences of these findings for the analysis of transport coefficients, in particular, the bulk viscosity, in the vicinity of a second order phase transition point.

  1. Renormalization group evolution of multi-gluon correlators in high energy QCD

    SciTech Connect

    Dumitru A.; Venugopalan R.; Jalilian-Marian, J.; Lappi, T.; Schenke, B.

    2011-11-06

    Many-body QCD in leading high energy Regge asymptotics is described by the Balitsky-JIMWLK hierarchy of renormalization group equations for the x evolution of multi-point Wilson line correlators. These correlators are universal and ubiquitous in final states in deeply inelastic scattering and hadronic collisions. For instance, recently measured di-hadron correlations at forward rapidity in deuteron-gold collisions at the Relativistic Heavy Ion Collider (RHIC) are sensitive to four and six point correlators of Wilson lines in the small x color fields of the dense nuclear target. We evaluate these correlators numerically by solving the functional Langevin equation that describes the Balitsky-JIMWLK hierarchy. We compare the results to mean-field Gaussian and large Nc approximations used in previous phenomenological studies. We comment on the implications of our results for quantitative studies of multi-gluon final states in high energy QCD.

  2. Incident Energy Dependence of pt Correlations at RHIC

    SciTech Connect

    Adams, J.; Aggarwal, M. M.; Ahammed, Z.; Amonett, J.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Badyal, S. K.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Bekele, S.; Belaga, V. V.; Bellwied, R.; Berger, J.; Bezverkhny, B. I; Bharadwaj, S.; Bhasin, A.; Bhati, A. K.; Bhatia, V. S.; Bichsel, H.; Billmeier, A.; Bland, L. C.; Blyth, C. O.; Bonner, B. E.; Botje, M.; Boucham, A.; Brandin, A. V.; Bravar, A.; Bystersky, M.; Cadman, R. V.; Cai, X. Z.; Caines, H.; Castillo, J.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J. P.; Cormier, T. M.; Cramer, J. G.; Crawford, H. J.; Das, D.; Das, S.; de Moura, M. M.; Derevschikov, A. A.; Didenko, L.; Dietel, T.; Dogra, S. M.; Dong, W. J.; Dong, X.; Draper, J. E.; Du, F.; Dubey, A. K.; Dunin, V. B.; Dunlop, J. C.; Dutta Mazumdar, M. R.; Eckardt, V.; Edwards, W. R.; Efimov, L. G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faivre, J.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fomenko, K.; Fu, J.; Gagliardi, C. A.; Gaillard, L.; Gans, J.; Ganti, M. S.; Gaudichet, L.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J. E.; Grachov, O.; Grebenyuk, O.; Grosnick, D.; Guertin, S. M.; Guo, Y.; Gupta, A.; Gutierrez, T. D.; Hallman, T. J.; Hamed, A.; Hardtke, D.; Harris, J. W.; Heinz, M.; Henry, T. W.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G. W.; Huang, H. Z.; Huang, S. L.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W. W.; Janik, M.; Jiang, H.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kang, K.; Kaplan, M.; Keane, D.; Khodyrev, V. Yu; Kiryluk, J.; Kisiel, A.; Kislov, E. M.; Klay, J.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kramer, M.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kulikov, A. I.; Kumar, A.; Kutuev, R. Kh

    2005-10-01

    We present results for two-particle transverse momentum correlations, Δpt,iΔt,j, as a function of event centrality for Au+Au collisions at √(sNN) = 20, 62, 130, and 200 GeV at the Relativistic Heavy Ion Collider. We observe correlations decreasing with centrality that are similar at all four incident energies. The correlations multiplied by the multiplicity density increase with incident energy and the centrality dependence may show evidence of processes such as thermalization, jet production, or the saturation of transverse flow. The square root of the correlations divided by the event-wise average transverse momentum per event shows little or no beam energy dependence and generally agrees with previous measurements at the Super Proton Synchrotron.

  3. Equivalence of particle-particle random phase approximation correlation energy and ladder-coupled-cluster doubles.

    PubMed

    Peng, Degao; Steinmann, Stephan N; van Aggelen, Helen; Yang, Weitao

    2013-09-14

    The recent proposal to determine the (exact) correlation energy based on pairing matrix fluctuations by van Aggelen et al. ["Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation," preprint arXiv:1306.4957 (2013)] revived the interest in the simplest approximation along this path: the particle-particle random phase approximation (pp-RPA). In this paper, we present an analytical connection and numerical demonstrations of the equivalence of the correlation energy from pp-RPA and ladder-coupled-cluster doubles. These two theories reduce to identical algebraic matrix equations and correlation energy expressions. The numerical examples illustrate that the correlation energy missed by pp-RPA in comparison with coupled-cluster singles and doubles is largely canceled out when considering reaction energies. This theoretical connection will be beneficial to design density functionals with strong ties to coupled-cluster theories and to study molecular properties at the pp-RPA level relying on well established coupled cluster techniques. PMID:24050333

  4. Dielectric Matrix Formulation of Correlation Energies in the Random Phase Approximation: Inclusion of Exchange Effects.

    PubMed

    Mussard, Bastien; Rocca, Dario; Jansen, Georg; Ángyán, János G

    2016-05-10

    Starting from the general expression for the ground state correlation energy in the adiabatic-connection fluctuation-dissipation theorem (ACFDT) framework, it is shown that the dielectric matrix formulation, which is usually applied to calculate the direct random phase approximation (dRPA) correlation energy, can be used for alternative RPA expressions including exchange effects. Within this famework, the ACFDT analog of the second order screened exchange (SOSEX) approximation leads to a logarithmic formula for the correlation energy similar to the direct RPA expression. Alternatively, the contribution of the exchange can be included in the kernel used to evaluate the response functions. In this case, the use of an approximate kernel is crucial to simplify the formalism and to obtain a correlation energy in logarithmic form. Technical details of the implementation of these methods are discussed, and it is shown that one can take advantage of density fitting or Cholesky decomposition techniques to improve the computational efficiency; a discussion on the numerical quadrature made on the frequency variable is also provided. A series of test calculations on atomic correlation energies and molecular reaction energies shows that exchange effects are instrumental for improvement over direct RPA results. PMID:26986444

  5. Binding energy of adsorbates on a noble-metal surface: exchange and correlation effects.

    PubMed

    Rohlfing, Michael; Bredow, Thomas

    2008-12-31

    We discuss the adsorption of xenon and of PTCDA on the silver (111) surface within a first-principles approach, focusing on the adsorbate-substrate interaction energy as a function of distance. We combine exact exchange with correlation energy from the adiabatic-connection fluctuation-dissipation theorem. At a large distance Z from the surface, the correlation causes a van der Waals attraction [approximately -C3/(Z - Z0)3]. At a closer distance, the attraction deviates from its asymptotic form and, combined with the repulsive exact-exchange energy, yields an equilibrium in close agreement with experiment. PMID:19437654

  6. Correlation effects in sequential energy branching: an exactly solvable model of Fano statistics.

    PubMed

    Subashiev, Arsen V; Luryi, Serge

    2010-02-01

    Correlation effects in the fluctuation of the number of particles in the process of energy branching by sequential impact ionizations are studied using an exactly soluble model of random parking on a line. The Fano factor F calculated in an uncorrelated final-state "shot-glass" model does not give an accurate answer even with the exact gap-distribution statistics. Allowing for the nearest-neighbor correlation effects gives a correction to F that brings F very close to its exact value. We discuss the implications of our results for energy resolution of semiconductor gamma detectors, where the value of F is of the essence. We argue that F is controlled by correlations in the cascade energy branching process and hence the widely used final-state model estimates are not reliable--especially in the practically relevant cases when the energy branching is terminated by competition between impact ionization and phonon emission. PMID:20365546

  7. A serach for moderate- and high-energy neturino emission correlated with gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Becker-Szendy, R.; Bratton, C. B.; Breault, J.; Casper, D.; Dye, S. T.; Gajewski, W.; Goldhaber, M.; Haines, T. J.; Halverson, P. G.; Kielczewska, D.

    1995-01-01

    A temporal correlation analysis between moderate- (60 Mev less than or equal to E(sub nu)greater than or equal to 2500 MeV) and high-energy (E(sub nu) greater than or equal to 2000 MeV) neutrino interactions consist of two types: the moderate-energy interactions that are contained within the volume of IMB-3 and the upward-going muons produced by high-energy nu(sub mu) interactions in the rock around the detector. No evidence is found for moderate- or high-energy neutrino emission from GRBs nor for any neutrino/neutrino correlation. The nonobservation of nu/GRB correlations allows upper limits to be placed on the neutrino flux associated with GRBs.

  8. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  9. An optimal energy estimator to reduce correlated noise for the EXO-200 light readout

    NASA Astrophysics Data System (ADS)

    Davis, C. G.; Hall, C.; Albert, J. B.; Barbeau, P. S.; Beck, D.; Belov, V.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cao, G. F.; Cen, W. R.; Chambers, C.; Cleveland, B.; Coon, M.; Craycraft, A.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Davis, J.; Delaquis, S.; Der Mesrobian-Kabakian, A.; DeVoe, R.; Didberidze, T.; Dilling, J.; Dolgolenko, A.; Dolinski, M. J.; Dunford, M.; Fairbank, W., Jr.; Farine, J.; Feldmeier, W.; Feyzbakhsh, S.; Fierlinger, P.; Fudenberg, D.; Gornea, R.; Graham, K.; Gratta, G.; Hughes, M.; Jewell, M. J.; Johnson, A.; Johnson, T. N.; Johnston, S.; Karelin, A.; Kaufman, L. J.; Killick, R.; Koffas, T.; Kravitz, S.; Krücken, R.; Kuchenkov, A.; Kumar, K. S.; Leonard, D. S.; Licciardi, C.; Lin, Y. H.; Ling, J.; MacLellan, R.; Marino, M. G.; Mong, B.; Moore, D.; Njoya, O.; Nelson, R.; Odian, A.; Ostrovskiy, I.; Piepke, A.; Pocar, A.; Prescott, C. Y.; Retière, F.; Rowson, P. C.; Russell, J. J.; Schubert, A.; Sinclair, D.; Smith, E.; Stekhanov, V.; Tarka, M.; Tolba, T.; Tsang, R.; Twelker, K.; Vuilleumier, J.-L.; Waite, A.; Walton, J.; Walton, T.; Weber, M.; Wen, L. J.; Wichoski, U.; Wood, J.; Yang, L.; Yen, Y.-R.; Zeldovich, O. Ya.

    2016-07-01

    The energy resolution of the EXO-200 detector is limited by electronics noise in the measurement of the scintillation response. Here we present a new technique to extract optimal scintillation energy measurements for signals split across multiple channels in the presence of correlated noise. The implementation of these techniques improves the energy resolution of the detector at the neutrinoless double beta decay Q-value from [1.9641 ± 0.0039]% to [1.5820 ± 0.0044]%.

  10. The Effects of Velocity Correlation Times on the Turbulent Amplification of Magnetic Energy

    NASA Astrophysics Data System (ADS)

    Chandran, Benjamin D. G.

    1997-06-01

    This paper extends the quasilinear theory of Kulsrud & Anderson to assess the effects of realistically long velocity correlation times on the turbulent amplification of a very weak magnetic field. A computer simulation is presented that tracks the growth of the magnetic energy in a turbulent plasma at a single point moving with the turbulent flow. The velocities are assumed to conform to the ideas of Kraichnan concerning Lagrangian correlation times, and are modeled as a set of randomly generated pulses chosen to reproduce the correct two-time Lagrangian correlation tensor. The model is simple computationally and can be used to calculate the growth rate of the magnetic energy for arbitrarily high magnetic Reynolds numbers. The simulations show that the magnetic energy grows roughly half as fast as predicted in the short correlation time approximation of Kulsrud & Anderson's quasilinear theory. In a separate analysis, the effects of nonzero correlation times are considered using an analytic method developed by van Kampen. The growth rate is expanded, roughly speaking, in powers of the correlation time divided by the time required for the energy to exponentiate once. The first two terms in the series are calculated. In themselves, these two terms do not exactly determine the growth rate, but they are consistent with the numerical results. The analytic treatment is included mostly for completeness and because it offers some physical understanding of the problem. The main conclusion of the paper is that velocity correlation times do not play an important role in the growth of the magnetic energy. As a result, Kulsrud & Anderson's short correlation time analysis of the spectrum of amplified small-scale fields should be approximately correct.

  11. Pressure-energy correlations and thermodynamic scaling in viscous Lennard-Jones liquids

    NASA Astrophysics Data System (ADS)

    Coslovich, D.; Roland, C. M.

    2009-01-01

    We use molecular dynamics simulation results on viscous binary Lennard-Jones mixtures to examine the correlation between the potential energy and the virial. In accord with a recent proposal [U. R. Pedersen et al., Phys. Rev. Lett. 100, 015701 (2008)], the fluctuations in the two quantities are found to be strongly correlated, exhibiting a proportionality constant, Γ, numerically equal to one-third the slope of an inverse power law approximation to the intermolecular potential function. The correlation is stronger at higher densities, where interatomic separations are in the range where the inverse power law approximation is more accurate. These same liquids conform to thermodynamic scaling of their dynamics, with the scaling exponent equal to Γ. Thus, the properties of strong correlation between energy and pressure and thermodynamic scaling both reflect the ability of an inverse power law representation of the potential to capture interesting features of the dynamics of dense, highly viscous liquids.

  12. Effective Hamiltonians for correlated narrow energy band systems and magnetic insulators: Role of spin-orbit interactions in metal-insulator transitions and magnetic phase transitions.

    PubMed

    Chakraborty, Subrata; Vijay, Amrendra

    2016-04-14

    Using a second-quantized many-electron Hamiltonian, we obtain (a) an effective Hamiltonian suitable for materials whose electronic properties are governed by a set of strongly correlated bands in a narrow energy range and (b) an effective spin-only Hamiltonian for magnetic materials. The present Hamiltonians faithfully include phonon and spin-related interactions as well as the external fields to study the electromagnetic response properties of complex materials and they, in appropriate limits, reduce to the model Hamiltonians due to Hubbard and Heisenberg. With the Hamiltonian for narrow-band strongly correlated materials, we show that the spin-orbit interaction provides a mechanism for metal-insulator transition, which is distinct from the Mott-Hubbard (driven by the electron correlation) and the Anderson mechanism (driven by the disorder). Next, with the spin-only Hamiltonian, we demonstrate the spin-orbit interaction to be a reason for the existence of antiferromagnetic phase in materials which are characterized by a positive isotropic spin-exchange energy. This is distinct from the Néel-VanVleck-Anderson paradigm which posits a negative spin-exchange for the existence of antiferromagnetism. We also find that the Néel temperature increases as the absolute value of the spin-orbit coupling increases. PMID:27083708

  13. Effective Hamiltonians for correlated narrow energy band systems and magnetic insulators: Role of spin-orbit interactions in metal-insulator transitions and magnetic phase transitions

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subrata; Vijay, Amrendra

    2016-04-01

    Using a second-quantized many-electron Hamiltonian, we obtain (a) an effective Hamiltonian suitable for materials whose electronic properties are governed by a set of strongly correlated bands in a narrow energy range and (b) an effective spin-only Hamiltonian for magnetic materials. The present Hamiltonians faithfully include phonon and spin-related interactions as well as the external fields to study the electromagnetic response properties of complex materials and they, in appropriate limits, reduce to the model Hamiltonians due to Hubbard and Heisenberg. With the Hamiltonian for narrow-band strongly correlated materials, we show that the spin-orbit interaction provides a mechanism for metal-insulator transition, which is distinct from the Mott-Hubbard (driven by the electron correlation) and the Anderson mechanism (driven by the disorder). Next, with the spin-only Hamiltonian, we demonstrate the spin-orbit interaction to be a reason for the existence of antiferromagnetic phase in materials which are characterized by a positive isotropic spin-exchange energy. This is distinct from the Néel-VanVleck-Anderson paradigm which posits a negative spin-exchange for the existence of antiferromagnetism. We also find that the Néel temperature increases as the absolute value of the spin-orbit coupling increases.

  14. Why do TD-DFT excitation energies of BODIPY/Aza-BODIPY families largely deviate from experiment? Answers from electron correlated and multireference methods.

    PubMed

    Momeni, Mohammad R; Brown, Alex

    2015-06-01

    The vertical excitation energies of 17 boron-dipyrromethene (BODIPY) core structures with a variety of substituents and ring sizes are benchmarked using time-dependent density functional theory (TD-DFT) with nine different functionals combined with the cc-pVTZ basis set. When compared to experimental measurements, all functionals provide mean absolute errors (mean AEs) greater than 0.3 eV, larger than the 0.1-0.3 eV differences typically expected from TD-DFT. Due to the high linear correlation of TD-DFT results with experiment, most functionals can be used to predict excitation energies if corrected empirically. Using the CAM-B3LYP functional, 0-0 transition energies are determined, and while the absolute difference is improved (mean AE = 0.478 eV compared to 0.579 eV), the correlation diminishes substantially (R(2) = 0.961 to 0.862). Two very recently introduced charge transfer (CT) indices, q(CT) and d(CT), and electron density difference (EDD) plots demonstrate that CT does not play a significant role for most of the BODIPYs examined and, thus, cannot be the source of error in TD-DFT. To assess TD-DFT methods, vertical excitation energies are determined utilizing TD-HF, configuration interaction CIS and CIS(D), equation of motion EOM-CCSD, SAC-CI, and Laplace-transform based local coupled-cluster singles and approximate doubles LCC2* methods. Moreover, multireference CASSCF and CASPT2 vertical excitation energies were also obtained for all species (except CASPT2 was not feasible for the four largest systems). The SAC-CI/cc-pVDZ, LCC2*/cc-pVDZ, and CASPT2/cc-pVDZ approaches are shown to have the smallest mean AEs of 0.154, 0.109, and 0.100 eV, respectively; the utility of the LCC2* approach is demonstrated for eight extended BODIPYs and aza-BODIPYs. We found that the problems with TD-DFT arise from difficulties in dealing with the differential electron correlation (as assessed by comparing CCS, CC2, LR-CCSD, CCSDR(T), and CCSDR(3) vertical excitation energies for

  15. Construction of the energy matrix for complex atoms. Part V: Electrostatically correlated spin-orbit and electrostatically correlated hyperfine interactions

    NASA Astrophysics Data System (ADS)

    Elantkowska, Magdalena; Ruczkowski, Jarosław; Dembczyński, Jerzy

    2016-02-01

    The continuation of the previous series of papers related to the construction of the energy matrix for complex atoms is presented. The contributions from the second-order perturbation theory concerning electrostatically correlated spin-orbit interactions (CSO), as well as electrostatically correlated hyperfine interactions (CHFS) to the atomic structure of nlN, nlNn1l1^{N_1} and nlNn1l1^{N_1}n2l2^{N_2} configurations, are considered. This theory assumes that the electron excitation n0l0→ nl affects spin-orbit splitting and magnetic dipole and electric quadrupole hyperfine structure in the same way which will be discussed below. Part I of the series presented, in general terms, a method allowing the analysis of complex electronic systems. Parts II, III and IV provided a description of an electrostatic interaction up to second-order perturbation theory; they constitute the basis for the design of an efficient computer program package for large-scale calculations of accurate wave functions. Analyses presented in the entire series of our papers clearly demonstrate that obtaining the precise wave functions is impossible without considering the contribution from the second-order effects into fine and hyperfine atomic structure.

  16. Correlation of /sup 239/Pu thermal and fast reactor fission yields with neutron energy

    SciTech Connect

    Maeck, W.J.

    1981-10-01

    The relative isotopic abundances and the fisson yields for over 40 stable and long-lived fission products from /sup 239/Pu fast fission were evaluated to determine if the data could be correlated with neutron energy. Only mass spectrometric data were used in this study. For some nuclides changes of only a few percent in the relative isotopic abundance or the fission yields over the energy range of thermal to 1 MeV are easily discernable and significant; for others the data are too sparse and scattered to obtain a good correlation. The neutron energy index usedin this study is the /sup 150/Nd//sup 143/Nd isotopic ratio. The results of this correlation study compared to the US Evaluated Nuclear Data File (ENDF) fast fission yield compilation. Several discrepancies are noted and suggestions for future work are presented.

  17. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams

    NASA Astrophysics Data System (ADS)

    Pinto, M.; Pimpinella, M.; Quini, M.; D'Arienzo, M.; Astefanoaei, I.; Loreti, S.; Guerra, A. S.

    2016-02-01

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm-2, and at a dose rate of about 0.15 Gy min-1, results of calorimetric measurements of absorbed dose to water, D w, were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D w and D wK were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D w uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D w, it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  18. Bond Functions and Core Correlation Energy Contributions To HeBe Potential

    NASA Astrophysics Data System (ADS)

    Shalabi, A. S.; Nour, E. M.; Abdel Halim, W. S.

    An empirical scheme for implementation of bond functions in heteronuclear diatomics is suggested and applied to HeBe using universal even-tempered functions. The effects of bond functions and core-correlation energy on the interaction potential of HeBe calculated at the uncorrelated (SCF) and correlated (MBPT and CC) levels are examined. The results confirm that an accuracy of sub μ Hartree level can be obtained using even-tempered functions with s-, p-, and d- symmetry and that bond functions of size {4s2p} for He and {6s3p} for Be recovers 100% of energy lowering obtained from the addition of 10d atom-centered functions to He and 13d atom centred functions to Be. The various treatments of the electron correlation, conclude that the system is interacting weakly with a well depth from 14.5-24.7 μEh at a separation near 9.1a0 compared with 20.7-25.5 μEh previously reported with a rather limited basis set. The most reliable well depth corrected for BSSE (19.0 μEh) was obtained at the CC-SD(T)level at separation of 8.71a0 taking into account the effects of bond functions and core correlation energy. Potential energy curves at the CC-SD(T) valence and CC-SD(T) valence + core correlation levels are analyzed in analytical forms in terms of exchange repulsion, induction and dispersion components.

  19. Self-interaction-free nonlocal correlation energy functional associated with a Jastrow function

    NASA Astrophysics Data System (ADS)

    Umezawa, Naoto; Austin, Brian; Lester, William A., Jr.

    2010-03-01

    We propose a self-interaction-free nonlocal correlation energy functional based on the transcorrelated method [1]. An effective Hamiltonian, Heff=1F H F, is derived from a similarity transformation with respect to a `Jastrow' correlation factor, F. The total energy is given by the expectation value of Heff with respect to a single Slater determinant. If a two-body Jastrow function is adopted, the resulting method resembles a Kohn-Sham density functional theory in which the correlation energy functional consists of two- and three-body interactions [2]. To simplify our calculations, we exclude the three-body terms and instead multiply the two-body term by an adjustable parameter that ensures convergence of the correlation energy to the exact limit for the homogeneous electron gas. The computational cost of the proposed method is comparable to the Hartree-Fock method. Moreover, the present correlation functional does not include self-interaction terms. The performance of this functional for various atoms and molecules will be presented. [1]S. F. Boys and N. C. Handy, Proc. Roy. Soc. A, 309, 209; 310, 43; 310, 63; 311, 309 (1969). [2] N. Umezawa and T. Chikyow, Phys. Rev. A 73, 062116 (2006).

  20. Absolute dosimetry for extreme-ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Berger, Kurt W.; Campiotti, Richard H.

    2000-06-01

    The accurate measurement of an exposure dose reaching the wafer on an extreme ultraviolet (EUV) lithographic system has been a technical challenge directly applicable to the evaluation of candidate EUV resist materials and calculating lithography system throughputs. We have developed a dose monitoring sensor system that can directly measure EUV intensities at the wafer plane of a prototype EUV lithographic system. This sensor system, located on the wafer stage adjacent to the electrostatic chuck used to grip wafers, operates by translating the sensor into the aerial image, typically illuminating an 'open' (unpatterned) area on the reticle. The absolute signal strength can be related to energy density at the wafer, and thus used to determine resist sensitivity, and the signal as a function of position can be used to determine illumination uniformity at the wafer plane. Spectral filtering to enhance the detection of 13.4 nm radiation was incorporated into the sensor. Other critical design parameters include the packaging and amplification technologies required to place this device into the space and vacuum constraints of a EUV lithography environment. We describe two approaches used to determine the absolute calibration of this sensor. The first conventional approach requires separate characterization of each element of the sensor. A second novel approach uses x-ray emission from a mildly radioactive iron source to calibrate the absolute response of the entire sensor system (detector and electronics) in a single measurement.

  1. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  2. Searching for squeezed particle-antiparticle correlations in high-energy heavy-ion collisions

    SciTech Connect

    Padula, Sandra S.; Socolowski, O. Jr.

    2010-09-15

    Squeezed correlations of particle-antiparticle pairs were predicted to exist if the hadron masses were modified in the hot and dense medium formed in high-energy heavy-ion collisions. Although well-established theoretically, they have not yet been observed experimentally. We suggest here a clear method to search for such a signal by analyzing the squeezed correlation functions in terms of measurable quantities. We illustrate this suggestion for simulated {phi}{phi} pairs at the Relativistic Heavy Ion Collider (RHIC) energies.

  3. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    PubMed

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams. PMID:26841127

  4. Accurate Complete Basis Set Extrapolation of Direct Random Phase Correlation Energies.

    PubMed

    Mezei, Pál D; Csonka, Gábor I; Ruzsinszky, Adrienn

    2015-08-11

    The direct random phase approximation (dRPA) is a promising way to obtain improvements upon the standard semilocal density functional results in many aspects of computational chemistry. In this paper, we address the slow convergence of the calculated dRPA correlation energy with the increase of the quality and size of the popular Gaussian-type Dunning's correlation consistent aug-cc-pVXZ split valence atomic basis set family. The cardinal number X controls the size of the basis set, and we use X = 3-6 in this study. It is known that even the very expensive X = 6 basis sets lead to large errors for the dRPA correlation energy, and thus complete basis set extrapolation is necessary. We study the basis set convergence of the dRPA correlation energies on a set of 65 hydrocarbon isomers from CH4 to C6H6. We calculate the iterative density fitted dRPA correlation energies using an efficient algorithm based on the CC-like form of the equations using the self-consistent HF orbitals. We test the popular inverse cubic, the optimized exponential, and inverse power formulas for complete basis set extrapolation. We have found that the optimized inverse power based extrapolation delivers the best energies. Further analysis showed that the optimal exponent depends on the molecular structure, and the most efficient two-point energy extrapolations that use X = 3 and 4 can be improved considerably by considering the atomic composition and hybridization states of the atoms in the molecules. Our results also show that the optimized exponents that yield accurate X = 3 and 4 extrapolated dRPA energies for atoms or small molecules might be inaccurate for larger molecules. PMID:26574475

  5. Information Content of the Low-Energy Electric Dipole Strength: Correlation Analysis

    SciTech Connect

    Reinhard, P.-G.; Nazarewicz, Witold

    2013-01-01

    Background: Recent experiments on the electric dipole (E1) polarizability in heavy nuclei have stimulated theoretical interest in the low-energy electric dipole strength, both isovector and isoscalar. Purpose: We study the information content carried by the electric dipole strength with respect to isovector and isoscalar indicators characterizing bulk nuclear matter and finite nuclei. To separate isoscalar and isovector modes, and low-energy strength and giant resonances, we analyze the E1 strength as a function of the excitation energy E and momentum transfer q. Methods: We use the self-consistent nuclear density functional theory with Skyrme energy density functionals, augmented by the random phase approximation, to compute the E1 strength and covariance analysis to assess correlations between observables. Calculations are performed for the spherical, doubly magic nuclei 208Pb and 132Sn. Results: We demonstrate that E1 transition densities in the low-energy region below the giant dipole resonance exhibit appreciable state dependence and multinodal structures, which are fingerprints of weak collectivity. The correlation between the accumulated low-energy strength and the symmetry energy is weak, and dramatically depends on the energy cutoff assumed. On the other hand, a strong correlation is predicted between isovector indicators and the accumulated isovector strength at E around 20 MeV and momentum transfer q 0.65 fm 1. Conclusions: Momentum- and coordinate-space patterns of the low-energy dipole modes indicate a strong fragmentation into individual particle-hole excitations. The global measure of low-energy dipole strength correlates poorly with the nuclear symmetry energy and other isovector characteristics. Consequently, our results do not support the suggestion that there exists a collective pygmy dipole resonance, which is a strong indicator of nuclear isovector properties. By considering nonzero values of momentum transfer, one can isolate individual

  6. Accuracy of exchange-correlation functionals and effect of solvation on the surface energy of copper

    NASA Astrophysics Data System (ADS)

    Fishman, Matthew; Zhuang, Houlong L.; Mathew, Kiran; Dirschka, William; Hennig, Richard G.

    2013-06-01

    Surface energies are important for predicting the shapes of nanocrystals and describing the faceting and roughening of surfaces. Copper surfaces are of particular interest in recent years since they are the preferred surfaces for growing graphene using chemical vapor deposition. In this study we calculate the surface energies of copper for the three low-index facets (111), (100), and (110) and one high-index facet, (210), using density-functional theory with both the local-density approximation and various parametrizations of the generalized-gradient approximation to the exchange-correlation functional. To assess the accuracy of the different functionals, we obtain the average surface energies of an isotropic crystal using a broken-bond model. We use this method, which can be generalized to other crystal structures, to compare calculated surface energies to experimental surface energies for fcc crystals. We find that the recent exchange-correlation functionals AM05 and PBEsol are the most accurate functionals for calculating the surface energies of copper. To determine how solvents affect the surface energies of copper, we perform calculations using a continuum solvation model. We find that aqueous solvation changes the overall magnitude of the surface energies only slightly but leads to more isotropic surface energies.

  7. Quantification of correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism in lizards

    PubMed Central

    Artacho, Paulina; Saravia, Julia; Ferrandière, Beatriz Decencière; Perret, Samuel; Le Galliard, Jean-François

    2015-01-01

    Phenotypic selection is widely accepted as the primary cause of adaptive evolution in natural populations, but selection on complex functional properties linking physiology, behavior, and morphology has been rarely quantified. In ectotherms, correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism is of special interest because of their potential coadaptation. We quantified phenotypic selection on thermal sensitivity of locomotor performance (sprint speed), thermal preferences, and resting metabolic rate in captive populations of an ectothermic vertebrate, the common lizard, Zootoca vivipara. No correlational selection between thermal sensitivity of performance, thermoregulatory behavior, and energy metabolism was found. A combination of high body mass and resting metabolic rate was positively correlated with survival and negatively correlated with fecundity. Thus, different mechanisms underlie selection on metabolism in lizards with small body mass than in lizards with high body mass. In addition, lizards that selected the near average preferred body temperature grew faster that their congeners. This is one of the few studies that quantifies significant correlational selection on a proxy of energy expenditure and stabilizing selection on thermoregulatory behavior. PMID:26380689

  8. Absolute rates of hole transfer in DNA.

    PubMed

    Senthilkumar, Kittusamy; Grozema, Ferdinand C; Guerra, Célia Fonseca; Bickelhaupt, F Matthias; Lewis, Frederick D; Berlin, Yuri A; Ratner, Mark A; Siebbeles, Laurens D A

    2005-10-26

    Absolute rates of hole transfer between guanine nucleobases separated by one or two A:T base pairs in stilbenedicarboxamide-linked DNA hairpins were obtained by improved kinetic analysis of experimental data. The charge-transfer rates in four different DNA sequences were calculated using a density-functional-based tight-binding model and a semiclassical superexchange model. Site energies and charge-transfer integrals were calculated directly as the diagonal and off-diagonal matrix elements of the Kohn-Sham Hamiltonian, respectively, for all possible combinations of nucleobases. Taking into account the Coulomb interaction between the negative charge on the stilbenedicarboxamide linker and the hole on the DNA strand as well as effects of base pair twisting, the relative order of the experimental rates for hole transfer in different hairpins could be reproduced by tight-binding calculations. To reproduce quantitatively the absolute values of the measured rate constants, the effect of the reorganization energy was taken into account within the semiclassical superexchange model for charge transfer. The experimental rates could be reproduced with reorganization energies near 1 eV. The quantum chemical data obtained were used to discuss charge carrier mobility and hole-transport equilibria in DNA. PMID:16231945

  9. Effect of partonic "wind" on charm quark correlations in high-energy nuclear collisions.

    PubMed

    Zhu, X; Xu, N; Zhuang, P

    2008-04-18

    In high-energy collisions, massive heavy quarks are produced back to back initially and they are sensitive to early dynamical conditions. The strong collective partonic wind from the fast expanding quark-gluon plasma created in high-energy nuclear collisions modifies the correlation pattern significantly. While the hot and dense medium in collisions at the BNL Relativistic Heavy Ion Collider (sqrt[_s{NN}]=200 GeV) can only smear the initial back-to-back D_D correlation, a clear and strong near side D_D correlation is expected at the CERN Large Hadron Collider (sqrt[_s{NN}]=5500 GeV). This is considered as a signature for the strongly coupled quark-gluon plasma. PMID:18518098

  10. Long range correlations in stochastic transport with energy and momentum conservation

    NASA Astrophysics Data System (ADS)

    Kundu, Anupam; Hirschberg, Ori; Mukamel, David

    2016-03-01

    We consider a simple one-dimensional stochastic model of heat transport which locally conserves both energy and momentum and which is coupled to heat reservoirs with different temperatures at its two ends. The steady state is analyzed and the model is found to obey the Fourier law with finite heat conductivity. In the infinite length limit, the steady state is described locally by an equilibrium Gibbs state. However finite size corrections to this local equilibrium state are present. We analyze these finite size corrections by calculating the on-site fluctuations of the momentum and the two point correlation of the momentum and energy. These correlations are long ranged and have scaling forms which are computed explicitly. We also introduce a multi-lane variant of the model in which correlations vanish in the steady state. The deviation from local equilibrium in this model as expressed in terms of the on-site momentum fluctuations is calculated in the large length limit.

  11. Suppression of back-to-back particle-antiparticle correlations in high-energy nuclear collisions

    SciTech Connect

    Knoll, Joern

    2011-04-15

    Analytical formulas are presented which provide quantitative estimates for the suppression of the anticipated back-to-back particle-antiparticle correlations in high-energy nuclear collisions, due to both the finite duration of the transition dynamics and the continuous freeze-out. They show that the effect is unlikely to be observed.

  12. Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei

    SciTech Connect

    Collaboration, The Pierre auger

    2007-12-01

    Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the highest energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [1]. The correlation has maximum significance for cosmic rays with energy greater than {approx} 6 x 10{sup 19} eV and AGN at a distance less than {approx} 75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified a priori, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest energies originate from extra-galactic sources close enough so that their flux is not significantly attenuated by interaction with the cosmic background radiation (the Greisen-Zatsepin-Kuzmin effect). The angular scale of the correlation observed is a few degrees, which suggests a predominantly light composition unless the magnetic fields are very weak outside the thin disk of our galaxy. Our present data do not identify AGN as the sources of cosmic rays unambiguously, and other candidate sources which are distributed as nearby AGN are not ruled out. We discuss the prospect of unequivocal identification of individual sources of the highest-energy cosmic rays within a few years of continued operation of the Pierre Auger Observatory.

  13. Scaled Opposite Spin Second Order Moller-Plesset Correlation Energy: An Economical Electronic Structure Method

    SciTech Connect

    Jung, Yousung; Lochan, Rohini C.; Dutoi, Anthony D.; Head-Gordon, Martin

    2004-08-02

    A simplified approach to treating the electron correlation energy is suggested in which only the alpha-beta component of the second order Moller-Plesset energy is evaluated, and then scaled by an empirical factor which is suggested to be 1.3. This scaled opposite spin second order energy (SOS-MP2) yields results for relative energies and derivative properties that are statistically improved over the conventional MP2 method. Furthermore, the SOS-MP2 energy can be evaluated without the 5th order computational steps associated with MP2 theory, even without exploiting any spatial locality. A 4th order algorithm is given for evaluating the opposite spin MP2 energy using auxiliary basis expansions, and a Laplace approach, and timing comparisons are given.

  14. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  15. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  16. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  17. Statistical mechanics of a correlated energy landscape model for protein folding funnels

    NASA Astrophysics Data System (ADS)

    Plotkin, Steven S.; Wang, Jin; Wolynes, Peter G.

    1997-02-01

    In heteropolymers, energetic correlations exist due to polymeric constraints and the locality of interactions. Pair correlations in conjunction with the a priori specification of the existence of a particularly low energy state provide a method of introducing the aspect of minimal frustration to the energy landscapes of random heteropolymers. The resulting funneled landscape exhibits both a phase transition from a molten globule to a folded state, and the heteropolymeric glass transition in the globular state. We model the folding transition in the self-averaging regime, which together with a simple theory of collapse allows us to depict folding as a double-well free energy surface in terms of suitable reaction coordinates. Observed trends in barrier positions and heights with protein sequence length and thermodynamic conditions are discussed within the context of the model. We also discuss the new physics which arises from the introduction of explicitly cooperative many-body interactions, as might arise from sidechain packing and nonadditive hydrophobic forces.

  18. Correlation between {alpha}-Decay Energies of Superheavy Nuclei Involving the Effects of Symmetry Energy

    SciTech Connect

    Dong Jianmin; Zuo Wei; Scheid, Werner

    2011-07-01

    A formula for the relationship between the {alpha}-decay energies (Q values) of superheavy nuclei (SHN) is presented, which is composed of the effects of Coulomb energy and symmetry energy. It can be employed not only to validate the experimental observations and measurements to a large extent, but also to predict the Q values of heaviest SHN with a high accuracy generally which will be very useful for future experiments. Furthermore, the shell closures in superheavy region and the effect of the symmetry energy on the stability of SHN against {alpha} decay are discussed with the help of this formula.

  19. Correlation between α-decay energies of superheavy nuclei involving the effects of symmetry energy.

    PubMed

    Dong, Jianmin; Zuo, Wei; Scheid, Werner

    2011-07-01

    A formula for the relationship between the α-decay energies (Q values) of superheavy nuclei (SHN) is presented, which is composed of the effects of Coulomb energy and symmetry energy. It can be employed not only to validate the experimental observations and measurements to a large extent, but also to predict the Q values of heaviest SHN with a high accuracy generally which will be very useful for future experiments. Furthermore, the shell closures in superheavy region and the effect of the symmetry energy on the stability of SHN against α decay are discussed with the help of this formula. PMID:21797540

  20. Correlation between Dual-Energy and Perfusion CT in Patients with Hepatocellular Carcinoma.

    PubMed

    Gordic, Sonja; Puippe, Gilbert D; Krauss, Bernhard; Klotz, Ernst; Desbiolles, Lotus; Lesurtel, Mickaël; Müllhaupt, Beat; Pfammatter, Thomas; Alkadhi, Hatem

    2016-07-01

    Purpose To develop a dual-energy contrast media-enhanced computed tomographic (CT) protocol by using time-attenuation curves from previously acquired perfusion CT data and to evaluate prospectively the relationship between iodine enhancement metrics at dual-energy CT and perfusion CT parameters in patients with hepatocellular carcinoma (HCC). Materials and Methods Institutional review board and local ethics committee approval and written informed consent were obtained. The retrospective part of this study included the development of a dual-energy CT contrast-enhanced protocol to evaluate peak arterial enhancement of HCC in the liver on the basis of time-attenuation curves from previously acquired perfusion CT data in 20 patients. The prospective part of the study consisted of an intraindividual comparison of dual-energy CT and perfusion CT data in another 20 consecutive patients with HCC. Iodine density and iodine ratio (iodine attenuation of the lesion divided by iodine attenuation in the aorta) from dual-energy CT and arterial perfusion (AP), portal venous perfusion, and total perfusion (TP) from perfusion CT were compared. Pearson R and linear correlation coefficients were calculated for AP and iodine density, AP and iodine ratio, TP and iodine density, and TP and iodine ratio. Results The dual-energy CT protocol consisted of bolus tracking in the abdominal aorta (threshold, 150 HU; scan delay, 9 seconds). The strongest intraindividual correlations in HCCs were found between iodine density and AP (r = 0.75, P = .0001). Moderate correlations were found between iodine ratio and AP (r = 0.50, P = .023) and between iodine density and TP (r = 0.56, P = .011). No further significant correlations were found. The volume CT dose index (11.4 mGy) and dose-length product (228.0 mGy · cm) of dual-energy CT was lower than those of the arterial phase of perfusion CT (36.1 mGy and 682.3 mGy · cm, respectively). Conclusion A contrast-enhanced dual-energy CT protocol developed

  1. Thyroid hormones correlate with resting metabolic rate, not daily energy expenditure, in two charadriiform seabirds

    PubMed Central

    Elliott, Kyle H.; Welcker, Jorg; Gaston, Anthony J.; Hatch, Scott A.; Palace, Vince; Hare, James F.; Speakman, John R.; Anderson, W. Gary

    2013-01-01

    Summary Thyroid hormones affect in vitro metabolic intensity, increase basal metabolic rate (BMR) in the lab, and are sometimes correlated with basal and/or resting metabolic rate (RMR) in a field environment. Given the difficulty of measuring metabolic rate in the field—and the likelihood that capture and long-term restraint necessary to measure metabolic rate in the field jeopardizes other measurements—we examined the possibility that circulating thyroid hormone levels were correlated with RMR in two free-ranging bird species with high levels of energy expenditure (the black-legged kittiwake, Rissa tridactyla, and thick-billed murre, Uria lomvia). Because BMR and daily energy expenditure (DEE) are purported to be linked, we also tested for a correlation between thyroid hormones and DEE. We examined the relationships between free and bound levels of the thyroid hormones thyroxine (T4) and triiodothyronine (T3) with DEE and with 4-hour long measurements of post-absorptive and thermoneutral resting metabolism (resting metabolic rate; RMR). RMR but not DEE increased with T3 in both species; both metabolic rates were independent of T4. T3 and T4 were not correlated with one another. DEE correlated with body mass in kittiwakes but not in murres, presumably owing to the larger coefficient of variation in body mass during chick rearing for the more sexually dimorphic kittiwakes. We suggest T3 provides a good proxy for resting metabolism but not DEE in these seabird species. PMID:23789108

  2. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-01

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  3. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    SciTech Connect

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.

  4. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    DOE PAGESBeta

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate themore » slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions« less

  5. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    SciTech Connect

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; Fleming, Graham R.

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate the slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions

  6. The limits of local correlation theory: electronic delocalization and chemically smooth potential energy surfaces.

    PubMed

    Subotnik, Joseph E; Sodt, Alex; Head-Gordon, Martin

    2008-01-21

    Local coupled-cluster theory provides an algorithm for measuring electronic correlation quickly, using only the spatial locality of localized electronic orbitals. Previously, we showed [J. Subotnik et al., J. Chem. Phys. 125, 074116 (2006)] that one may construct a local coupled-cluster singles-doubles theory which (i) yields smooth potential energy surfaces and (ii) achieves near linear scaling. That theory selected which orbitals to correlate based only on the distances between the centers of different, localized orbitals, and the approximate potential energy surfaces were characterized as smooth using only visual identification. This paper now extends our previous algorithm in three important ways. First, locality is now based on both the distances between the centers of orbitals as well as the spatial extent of the orbitals. We find that, by accounting for the spatial extent of a delocalized orbital, one can account for electronic correlation in systems with some electronic delocalization using fast correlation methods designed around orbital locality. Second, we now enforce locality on not just the amplitudes (which measure the exact electron-electron correlation), but also on the two-electron integrals themselves (which measure the bare electron-electron interaction). Our conclusion is that we can bump integrals as well as amplitudes, thereby gaining a tremendous increase in speed and paradoxically increasing the accuracy of our LCCSD approach. Third and finally, we now make a rigorous definition of chemical smoothness as requiring that potential energy surfaces not support artificial maxima, minima, or inflection points. By looking at first and second derivatives from finite difference techniques, we demonstrate complete chemical smoothness of our potential energy surfaces (bumping both amplitudes and integrals). These results are significant both from a theoretical and from a computationally practical point of view. PMID:18205484

  7. Discovery of an Io-correlated energy source for Io's hot plasma torus

    NASA Astrophysics Data System (ADS)

    Sandel, B. R.; Broadfoot, A. L.

    1982-04-01

    Energy flowing into Io's hot plasma torus from a local-time correlated source and from an Io-related source are discussed, and a correlation of the brightness of the ansae of the torus with the apparent orbital phase of Io is reported. It is shown that the energy flows cause an azimuthal modulation of the brightness of the torus that is correlated with the position of Io, and the plasma downstream from Io is shown to be brighter in S III 685-A emission, which indicates a higher electron temperature. Differences in electron temperature inferred from spectral analyses account for all observed differences in brightness, implying that no change in the composition or density of the hot plasma occurs. The mechanism regulating the Io-related source is clearly distinct from the mechanism driving the local time source, although both draw on the same pool of energy, and the combination of the two sources is easily capable of supplying all the energy radiated by the torus.

  8. Correlates of University Students’ Soft and Energy Drink Consumption According to Gender and Residency

    PubMed Central

    Deliens, Tom; Clarys, Peter; De Bourdeaudhuij, Ilse; Deforche, Benedicte

    2015-01-01

    This study assessed personal and environmental correlates of Belgian university students’ soft and energy drink consumption and investigated whether these associations were moderated by gender or residency. Four hundred twenty-five university students completed a self-reported on-line questionnaire assessing socio-demographics, health status, soft and energy drink consumption, as well as personal and environmental factors related to soft and energy drink consumption. Multiple linear regression analyses were conducted. Students believing soft drink intake should be minimized (individual subjective norm), finding it less difficult to avoid soft drinks (perceived behavioral control), being convinced they could avoid soft drinks in different situations (self-efficacy), having family and friends who rarely consume soft drinks (modelling), and having stricter family rules about soft drink intake were less likely to consume soft drinks. Students showing stronger behavioral control, having stricter family rules about energy drink intake, and reporting lower energy drink availability were less likely to consume energy drinks. Gender and residency moderated several associations between psychosocial constructs and consumption. Future research should investigate whether interventions focusing on the above personal and environmental correlates can indeed improve university students’ beverage choices. PMID:26258790

  9. Correlates of University Students' Soft and Energy Drink Consumption According to Gender and Residency.

    PubMed

    Deliens, Tom; Clarys, Peter; De Bourdeaudhuij, Ilse; Deforche, Benedicte

    2015-08-01

    This study assessed personal and environmental correlates of Belgian university students' soft and energy drink consumption and investigated whether these associations were moderated by gender or residency. Four hundred twenty-five university students completed a self-reported on-line questionnaire assessing socio-demographics, health status, soft and energy drink consumption, as well as personal and environmental factors related to soft and energy drink consumption. Multiple linear regression analyses were conducted. Students believing soft drink intake should be minimized (individual subjective norm), finding it less difficult to avoid soft drinks (perceived behavioral control), being convinced they could avoid soft drinks in different situations (self-efficacy), having family and friends who rarely consume soft drinks (modelling), and having stricter family rules about soft drink intake were less likely to consume soft drinks. Students showing stronger behavioral control, having stricter family rules about energy drink intake, and reporting lower energy drink availability were less likely to consume energy drinks. Gender and residency moderated several associations between psychosocial constructs and consumption. Future research should investigate whether interventions focusing on the above personal and environmental correlates can indeed improve university students' beverage choices. PMID:26258790

  10. DOES GALACTIC MAGNETIC FIELD DISTURB THE CORRELATION OF THE HIGHEST ENERGY COSMIC RAYS WITH THEIR SOURCES?

    SciTech Connect

    Takami, Hajime; Sato, Katsuhiko

    2010-12-01

    The propagation trajectories of the highest energy cosmic rays (HECRs) are deflected by not only intergalactic magnetic field but also Galactic magnetic field (GMF). These magnetic fields can weaken the positive correlation between the arrival directions of HECRs and the positions of their sources. In order to explore the effect of GMF on the expected correlation, we simulate the arrival distribution of protons with energy above 6 x 10{sup 19} eV taking several GMF models into account, and then test the correlation between the protons and their sources assumed in the simulation. The dependence of the correlation signals on GMF models is also investigated. The correlation can be observed by accumulating {approx}200 protons in a half-hemisphere. The typical angular scale at which the positive signal of the correlation is maximized depends on the spiral component of the GMF model. That angular scale is {approx}5{sup 0} for bisymmetric spiral (BS) GMF models and {approx}7{sup 0} for axisymmetric spiral (AS) GMF models if the number density of HECR sources, n{sub s} , is {approx}10{sup -4} Mpc{sup -3}. An additional vertical (dipole) component of GMF affects these angular scales by 0.{sup 0}5-1{sup 0}. The difference between the correlation signal for the BS models and that for the AS models is prominent in the northern sky. The significance of the positive correlation depends on source distribution. The probability that the number of simulated HECR events correlating with sources is smaller than the number of random events correlating with the same sources by chance is much less than 10{sup -3} ({approx}3{sigma}) in almost all the source distributions with n{sub s} = 10{sup -4} Mpc{sup -3} for detection of under 200 protons, but {approx}10% of source distributions predict a chance probability more than 10{sup -3} in the AS GMF model. In addition, we also briefly discuss the effect of GMF for heavy-nuclei-dominated composition.

  11. Absolute nonlocality via distributed computing without communication

    NASA Astrophysics Data System (ADS)

    Czekaj, Ł.; Pawłowski, M.; Vértesi, T.; Grudka, A.; Horodecki, M.; Horodecki, R.

    2015-09-01

    Understanding the role that quantum entanglement plays as a resource in various information processing tasks is one of the crucial goals of quantum information theory. Here we propose an alternative perspective for studying quantum entanglement: distributed computation of functions without communication between nodes. To formalize this approach, we propose identity games. Surprisingly, despite no signaling, we obtain that nonlocal quantum strategies beat classical ones in terms of winning probability for identity games originating from certain bipartite and multipartite functions. Moreover we show that, for a majority of functions, access to general nonsignaling resources boosts success probability two times in comparison to classical ones for a number of large enough outputs. Because there are no constraints on the inputs and no processing of the outputs in the identity games, they detect very strong types of correlations: absolute nonlocality.

  12. Energy and daylighting: A correlation between quality of light and energy consciousness

    SciTech Connect

    Krug, N.

    1997-12-31

    Energy and Daylighting, an advanced topics graduate/professional elective has been established to help the student develop a deeper understanding of Architectural Daylighting, Energy Conserving Design, and Material/Construction/Methods through direct application. After a brief survey of the principles and applications of current and developing attitudes and techniques in energy conservation and natural lighting strategies is conducted (in order to build upon previous courses), an extensive exercise follows which allows the student the opportunity for direct applications. Both computer modeling/analysis and physical modeling (light box simulation with photographic documentation) are employed to focus attention on the interrelationships between natural lighting and passive energy conserving design--all within the context of establishing environmental (interior) quality and (exterior) design direction. As a result, students broaden their understanding of natural light and energy conservation as design tools; the importance of environmental responsibility, both built and natural environments; and using computer analysis as a design tool. This presentation centers around the activities and results obtained from explorations into Energy and Daylighting. Discussion will highlight the course objectives, the methodology involved in the studies, specific requirements and means of evaluation, a slide show of befores and afters (results), and a retrospective look at the course`s value, as well as future directions and implications.

  13. The AFGL absolute gravity program

    NASA Technical Reports Server (NTRS)

    Hammond, J. A.; Iliff, R. L.

    1978-01-01

    A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.

  14. Precipitation correlation between convective available potential energy, convective inhibition and saturation fraction in middle latitudes

    NASA Astrophysics Data System (ADS)

    Barkiđija, Sanda; Fuchs, Željka

    2013-04-01

    Saturation fraction (SF), convective inhibition (CIN) and convective available potential energy (CAPE) are discussed to see with which of these parameters' precipitation rate is better correlated in the middle latitudes. The study is based on measurements from 20 European stations for the period of 1972-2009. We also use the results of the Global Forecasting System (GFS) model to see how mentioned parameters behave in numerical models. Our research results indicate that CAPE is not a good measure of precipitation rate for all latitudes, although, in model results, CAPE and precipitation rate are found to be better correlated for middle latitudes then in higher latitudes and tropical regions. The best correlation with precipitation rate in middle latitudes is one with SF. Our results suggest that moisture is underestimated in numerical models for middle latitudes and encourage further work in including SF or similar parameter into precipitation parameterization in addition to the current one.

  15. On The Origin Of High Energy Correlations in Gamma-ray Bursts

    SciTech Connect

    Kocevski, Daniel

    2012-04-03

    I investigate the origin of the observed correlation between a gamma-ray burst's {nu}F{sub {nu}} spectral peak E{sub pk} and its isotropic equivalent energy E{sub iso} through the use of a population synthesis code to model the prompt gamma-ray emission from GRBs. By using prescriptions for the distribution of prompt spectral parameters as well as the population's luminosity function and co-moving rate density, I generate a simulated population of GRBs and examine how bursts of varying spectral properties and redshift would appear to a gamma-ray detector here on Earth. I find that a strong observed correlation can be produced between the source frame Epk and Eiso for the detected population despite the existence of only a weak and broad correlation in the original simulated population. The energy dependance of a gamma-ray detector's flux-limited detection threshold acts to produce a correlation between the source frame E{sub pk} and E{sub iso} for low luminosity GRBs, producing the left boundary of the observed correlation. Conversely, very luminous GRBs are found at higher redshifts than their low luminosity counterparts due to the standard Malquest bias, causing bursts in the low E{sub pk}, high E{sub iso} regime to go undetected because their E{sub pk} values would be redshifted to energies at which most gamma-ray detectors become less sensitive. I argue that it is this previously unexamined effect which produces the right boundary of the observed correlation. Therefore, the origin of the observed correlation is a complex combination of the instrument's detection threshold, the intrinsic cutoff in the GRB luminosity function, and the broad range of redshifts over which GRBs are detected. Although the GRB model presented here is a very simplified representation of the complex nature of GRBs, these simulations serve to demonstrate how selection effects caused by a combination of instrumental sensitivity and the cosmological nature of an astrophysical population

  16. Low-energy pion double charge exchange and nucleon-nucleon correlations in nuclei

    SciTech Connect

    Leitch, M.J.

    1989-01-01

    Recent measurements of pion double-charge exchange (DCX) at energies 20 to 70 MeV are providing a new means for studying nucleon-nucleon correlations in nuclei. At these energies the nucleus is relatively transparent, allowing simpler theoretical models to be used in interpreting the data and leading to a clearer picture. Also the contribution to DCX of sequential charge-exchange scattering through the intermediate analog state is suppressed near 50 MeV and transitions through non-analog intermediate states become very important. Recent theoretical studies by several groups have shown that while transitions through the analog route involve relatively long nucleon-nucleon distances, those through non-analog intermediate states obtain nearly half their strength from nucleon pairs with less than 1 fermi separation. Thus DCX near 50 MeV is an excellent way to study short-range nucleon-nucleon correlations. 31 refs., 29 figs., 4 tabs.

  17. Correlation energy for the homogeneous electron gas: Exact Bethe-Salpeter solution and an approximate evaluation

    NASA Astrophysics Data System (ADS)

    Maggio, Emanuele; Kresse, Georg

    2016-06-01

    The correlation energy of the homogeneous electron gas is evaluated by solving the Bethe-Salpeter equation (BSE) beyond the Tamm-Dancoff approximation for the electronic polarization propagator. The BSE is expected to improve on the random-phase approximation, owing to the inclusion of exchange diagrams. For instance, since the BSE reduces in second order to Møller-Plesset perturbation theory, it is self-interaction free in second order. Results for the correlation energy are compared with quantum Monte Carlo benchmarks and excellent agreement is observed. For low densities, however, we find imaginary eigenmodes in the polarization propagator. To avoid the occurrence of imaginary eigenmodes, an approximation to the BSE kernel is proposed that allows us to completely remove this issue in the low-electron-density region. We refer to this approximation as the random-phase approximation with screened exchange (RPAsX). We show that this approximation even slightly improves upon the standard BSE kernel.

  18. Correlation of the highest energy cosmic rays with nearby extragalactic objects

    SciTech Connect

    Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez, C.; Alvarez-Muniz, J.; Ambrosio, M.; /Balseiro Inst., San Carlos de Bariloche /Buenos Aires, CONICET /CNEA, Buenos Aires /Pierre Auger Observ. /La Plata U. /Natl. Tech. U., San Rafael /Adelaide U. /Catholic U. of Bolivia, La Paz /Bolivia U. /Rio de Janeiro, CBPF /Sao Paulo U.

    2007-11-01

    Using data collected at the Pierre Auger Observatory during the past 3.7 years, we demonstrate that there is a correlation between the arrival directions of cosmic rays with energy above {approx} 6 x 10{sup 19} eV and the positions of active galactic nuclei (AGN) lying within {approx} 75 Mpc. We reject the hypothesis of an isotropic distribution of these cosmic rays at over 99% confidence level from a prescribed a priori test. The correlation we observe is compatible with the hypothesis that the highest energy particles originate from nearby extragalactic sources whose flux has not been significantly reduced by interaction with the cosmic background radiation. AGN or objects having a similar spatial distribution are possible sources.

  19. Accurate potential energy curve of the LiH+ molecule calculated with explicitly correlated Gaussian functions.

    PubMed

    Tung, Wei-Cheng; Adamowicz, Ludwik

    2014-03-28

    Very accurate calculations of the ground-state potential energy curve (PEC) of the LiH(+) ion performed with all-electron explicitly correlated Gaussian functions with shifted centers are presented. The variational method is employed. The calculations involve optimization of nonlinear exponential parameters of the Gaussians performed with the aid of the analytical first derivatives of the energy determined with respect to the parameters. The diagonal adiabatic correction is also calculated for each PEC point. The PEC is then used to calculate the vibrational energies of the system. In that calculation, the non-adiabatic effects are accounted for by using an effective vibrational mass obtained by the minimization of the difference between the vibrational energies obtained from the calculations where the Born-Oppenheimer approximation was not assumed and the results of the present calculations. PMID:24697449

  20. Accurate potential energy curve of the LiH+ molecule calculated with explicitly correlated Gaussian functions

    NASA Astrophysics Data System (ADS)

    Tung, Wei-Cheng; Adamowicz, Ludwik

    2014-03-01

    Very accurate calculations of the ground-state potential energy curve (PEC) of the LiH+ ion performed with all-electron explicitly correlated Gaussian functions with shifted centers are presented. The variational method is employed. The calculations involve optimization of nonlinear exponential parameters of the Gaussians performed with the aid of the analytical first derivatives of the energy determined with respect to the parameters. The diagonal adiabatic correction is also calculated for each PEC point. The PEC is then used to calculate the vibrational energies of the system. In that calculation, the non-adiabatic effects are accounted for by using an effective vibrational mass obtained by the minimization of the difference between the vibrational energies obtained from the calculations where the Born-Oppenheimer approximation was not assumed and the results of the present calculations.

  1. Wave energy level and geographic setting correlate with Florida beach water quality.

    PubMed

    Feng, Zhixuan; Reniers, Ad; Haus, Brian K; Solo-Gabriele, Helena M; Kelly, Elizabeth A

    2016-03-15

    Many recreational beaches suffer from elevated levels of microorganisms, resulting in beach advisories and closures due to lack of compliance with Environmental Protection Agency guidelines. We conducted the first statewide beach water quality assessment by analyzing decadal records of fecal indicator bacteria (enterococci and fecal coliform) levels at 262 Florida beaches. The objectives were to depict synoptic patterns of beach water quality exceedance along the entire Florida shoreline and to evaluate their relationships with wave condition and geographic location. Percent exceedances based on enterococci and fecal coliform were negatively correlated with both long-term mean wave energy and beach slope. Also, Gulf of Mexico beaches exceeded the thresholds significantly more than Atlantic Ocean ones, perhaps partially due to the lower wave energy. A possible linkage between wave energy level and water quality is beach sand, a pervasive nonpoint source that tends to harbor more bacteria in the low-wave-energy environment. PMID:26892203

  2. Energy scan of correlations in p+p and Be+Be from NA61/SHINE

    NASA Astrophysics Data System (ADS)

    Seryakov, A.

    2016-01-01

    The existence of the critical point (CP) of strongly interacting matter is still an open problem. An extensive strong interactions program including a search of the CP and the study of the onset of deconfinement was started by the NA61/SHINE experiment at the CERN SPS. A two dimensional scan of the phase diagram is performed to search for the CP and to shed light on the phase transition region. This program includes studies of hadron production in proton- proton, proton-nucleus and nucleus-nucleus interactions measured in a wide range of colliding energy and system size. Correlations between various observables measured at midrapidity as well as in separated rapidity intervals are considered as additional and sensitive tools of this phase diagram scan. We present NA61/SHINE results of studies of energy dependence of two- particle correlations of pseudo-rapidity and azimuthal angle in p+p collisions at the SPS and the first results on correlations between multiplicity and mean transverse momentum in 7Be + 9Be collisions at 150A GeV/c obtained for separated pseudo-rapidity intervals (so called long-range correlations). Comparison with data calculations using the EPOS 1.99 model are also discussed.

  3. High-energy spin-density-wave correlated fluctuations in paramagnetic Cr + 5 at. % V

    SciTech Connect

    Werner, S.A.; Fawcett, E.; Elmiger, M.W.; Shirane, G.

    1992-11-01

    Measurements of the magnetic fluctuations, termed spin-density-wave (SDW) paramagnons, in the nearly antiferromagnetic alloy Cr + 5 at.%V are extended up in energy to about 80 MeV. These fluctuating spin-spin correlations occur at incommensurate positions, corresponding to the SDW wavevector Q. Their characteristic energy is at least an order of magnitude larger than that of the magnetic fluctuations seen in the paramagnetic phase of pure Cr, but their intensity is more than two orders of magnitude smaller. We find that the dynamic susceptibility decreases by about 50% between temperature T = 10K and 300K.

  4. High-energy spin-density-wave correlated fluctuations in paramagnetic Cr + 5 at. % V

    SciTech Connect

    Werner, S.A. . Dept. of Physics); Fawcett, E. . Dept. of Physics); Elmiger, M.W.; Shirane, G. )

    1992-01-01

    Measurements of the magnetic fluctuations, termed spin-density-wave (SDW) paramagnons, in the nearly antiferromagnetic alloy Cr + 5 at.%V are extended up in energy to about 80 MeV. These fluctuating spin-spin correlations occur at incommensurate positions, corresponding to the SDW wavevector Q. Their characteristic energy is at least an order of magnitude larger than that of the magnetic fluctuations seen in the paramagnetic phase of pure Cr, but their intensity is more than two orders of magnitude smaller. We find that the dynamic susceptibility decreases by about 50% between temperature T = 10K and 300K.

  5. Energy deposition of heavy ions in the regime of strong beam-plasma correlations.

    PubMed

    Gericke, D O; Schlanges, M

    2003-03-01

    The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly. PMID:12689203

  6. Dynamic Electron Correlation Effects on the Ground State Potential Energy Surface of a Retinal Chromophore Model.

    PubMed

    Gozem, Samer; Huntress, Mark; Schapiro, Igor; Lindh, Roland; Granovsky, Alexander A; Angeli, Celestino; Olivucci, Massimo

    2012-11-13

    The ground state potential energy surface of the retinal chromophore of visual pigments (e.g., bovine rhodopsin) features a low-lying conical intersection surrounded by regions with variable charge-transfer and diradical electronic structures. This implies that dynamic electron correlation may have a large effect on the shape of the force fields driving its reactivity. To investigate this effect, we focus on mapping the potential energy for three paths located along the ground state CASSCF potential energy surface of the penta-2,4-dieniminium cation taken as a minimal model of the retinal chromophore. The first path spans the bond length alternation coordinate and intercepts a conical intersection point. The other two are minimum energy paths along two distinct but kinetically competitive thermal isomerization coordinates. We show that the effect of introducing the missing dynamic electron correlation variationally (with MRCISD) and perturbatively (with the CASPT2, NEVPT2, and XMCQDPT2 methods) leads, invariably, to a stabilization of the regions with charge transfer character and to a significant reshaping of the reference CASSCF potential energy surface and suggesting a change in the dominating isomerization mechanism. The possible impact of such a correction on the photoisomerization of the retinal chromophore is discussed. PMID:26605574

  7. Correlation of size, velocity, and autonomous phase of a plasmoid in atmosphere with the dissipated energy

    NASA Astrophysics Data System (ADS)

    Fantz, U.; Friedl, R.; Briefi, S.

    2015-05-01

    The visual properties of a large plasmoid rising from a water container into the air for up to 450 ms are brought into correlation with the total energy dissipated into the system, and, in particular, with the energy used for plasma generation. The latter parameters are deduced from the time-resolved discharge current and voltage of the capacitor bank which is used as energy supply. By varying the experimental parameters, the energy dissipated to the system varies between 5 kJ and 30 kJ from which 10% to 30% is transferred to the plasma. Clear correlations are obtained for the size of the plasmoid changing from 15 cm to 35 cm in width, the ascent velocity ranging from 1 m/s to 2 m/s, and the rising height for which up to 85 cm is measured. For the relation of the autonomous phase with the energy transferred to the plasma, two trends are observed: 450 ms duration is achieved in maximum with the present setup being almost independent on the electrode gap, the voltage-on time, the water conductivity, or the type of salt dissolved in the water. On the other hand, an almost linear dependence is obtained by changing the capacitance.

  8. Socioecological correlates of energy balance using urinary C-peptide measurements in wild female mountain gorillas.

    PubMed

    Grueter, Cyril C; Deschner, Tobias; Behringer, Verena; Fawcett, Katie; Robbins, Martha M

    2014-03-29

    Maintaining a balanced energy budget is important for survival and reproduction, but measuring energy balance in wild animals has been fraught with difficulties. Female mountain gorillas are interesting subjects to examine environmental correlates of energy balance because their diet is primarily herbaceous vegetation, their food supply shows little seasonal variation and is abundant, yet they live in cooler, high-altitude habitats that may bring about energetic challenges. Social and reproductive parameters may also influence energy balance. Urinary C-peptide (UCP) has emerged as a valuable non-invasive biomarker of energy balance in primates. Here we use this method to investigate factors influencing energy balance in mountain gorillas of the Virunga Volcanoes, Rwanda. We examined a range of socioecological variables on energy balance in adult females in three groups monitored by the Karisoke Research Center over nine months. Three variables had significant effects on UCP levels: habitat (highest levels in the bamboo zone), season (highest levels in November during peak of the bamboo shoot availability) and day time (gradually increasing from early morning to early afternoon). There was no significant effect of reproductive state and dominance rank. Our study indicates that even in species that inhabit an area with a seemingly steady food supply, ecological variability can have pronounced effects on female energy balance. PMID:24472322

  9. Measurements of the reactor neutron power in absolute units

    NASA Astrophysics Data System (ADS)

    Lebedev, G. V.

    2015-12-01

    The neutron power of the reactor of the Yenisei space nuclear power plant is measured in absolute units using the modernized method of correlation analysis during the ground-based tests of the Yenisei prototypes. Results of the experiments are given. The desired result is obtained in a series of experiments carried out at the stage of the plant preparation for tests. The acceptability of experimental data is confirmed by the results of measuring the reactor neutron power in absolute units at the nominal level by the thermal balance during the life cycle tests of the ground prototypes.

  10. Measurements of the reactor neutron power in absolute units

    SciTech Connect

    Lebedev, G. V.

    2015-12-15

    The neutron power of the reactor of the Yenisei space nuclear power plant is measured in absolute units using the modernized method of correlation analysis during the ground-based tests of the Yenisei prototypes. Results of the experiments are given. The desired result is obtained in a series of experiments carried out at the stage of the plant preparation for tests. The acceptability of experimental data is confirmed by the results of measuring the reactor neutron power in absolute units at the nominal level by the thermal balance during the life cycle tests of the ground prototypes.

  11. Proceedings of RIKEN BNL Resarch Center Workshop: Fluctuations, Correlations and RHIC Low Energy Runs

    SciTech Connect

    Karsch, F.; Kojo, T.; Mukherjee, S.; Stephanov, M.; Xu, N.

    2011-10-27

    Most of our visible universe is made up of hadronic matter. Quantum Chromodynamics (QCD) is the theory of strong interaction that describes the hadronic matter. However, QCD predicts that at high enough temperatures and/or densities ordinary hadronic matter ceases to exist and a new form of matter is created, the so-called Quark Gluon Plasma (QGP). Non-perturbative lattice QCD simulations shows that for high temperature and small densities the transition from the hadronic to the QCD matter is not an actual phase transition, rather it takes place via a rapid crossover. On the other hand, it is generally believed that at zero temperature and high densities such a transition is an actual first order phase transition. Thus, in the temperature-density phase diagram of QCD, the first order phase transition line emanating from the zero temperature high density region ends at some higher temperature where the transition becomes a crossover. The point at which the first order transition line turns into a crossover is a second order phase transition point belonging to three dimensional Ising universality class. This point is known as the QCD Critical End Point (CEP). For the last couple of years the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory has been performing experiments at lower energies in search of the elusive QCD CEP. In general critical behaviors are manifested through appearance of long range correlations and increasing fluctuations associated with the presence of mass-less modes in the vicinity of a second order phase transition. Experimental signatures of the CEP are likely to be found in observables related to fluctuations and correlations. Thus, one of the major focuses of the RHIC low energy scan program is to measure various experimental observables connected to fluctuations and correlations. On the other hand, with the start of the RHIC low energy scan program, a flurry of activities are taking place to provide solid theoretical

  12. Pressure-energy correlations in liquids. IV. ``Isomorphs'' in liquid phase diagrams

    NASA Astrophysics Data System (ADS)

    Gnan, Nicoletta; Schrøder, Thomas B.; Pedersen, Ulf R.; Bailey, Nicholas P.; Dyre, Jeppe C.

    2009-12-01

    This paper is the fourth in a series devoted to identifying and explaining the properties of strongly correlating liquids, i.e., liquids where virial and potential energy correlate better than 90% in their thermal equilibrium fluctuations in the N V T ensemble. For such liquids we here introduce the concept of "isomorphic" curves in the phase diagram. A number of thermodynamic, static, and dynamic isomorph invariants are identified. These include the excess entropy, the isochoric specific heat, reduced-unit static and dynamic correlation functions, as well as reduced-unit transport coefficients. The dynamic invariants apply for both Newtonian and Brownian dynamics. It is shown that after a jump between isomorphic state points the system is instantaneously in thermal equilibrium; consequences of this for generic aging experiments are discussed. Selected isomorph predictions are validated by computer simulations of the Kob-Andersen binary Lennard-Jones mixture, which is a strongly correlating liquid. The final section of the paper relates the isomorph concept to phenomenological melting rules, Rosenfeld's excess entropy scaling, Young and Andersen's approximate scaling principle, and the two-order parameter maps of Debenedetti and co-workers. This section also shows how the existence of isomorphs implies an "isomorph filter" for theories for the non-Arrhenius temperature dependence of viscous liquids' relaxation time, and it explains isochronal superposition for strongly correlating viscous liquids.

  13. Correlation between surface free energy and anchoring energy of 6CHBT on polyimide surface

    NASA Astrophysics Data System (ADS)

    Borycki, Jerzy; Okulska-Bozek, Malgorzata; Kedzierski, Jerzy; Kojdecki, Marek A.

    2002-06-01

    Polyimides were prepared in the classical two-step method via poly(amic acids). Poly(amic acids) were obtained from 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), 4,4'- (hexafluoroisopropylidene)diphthalic anhydride (6FDA), pyromellitic dianhydride (PMDA), 3,3',4,4'- diphenylsulfonetetracarboxylic dianhydride (DSDA), 4,4'- oxydiphthalic anhydride (ODPA) and amines 4,4'-oxydianiline (ODA), 1,3-phenylenediamine (MPD), 1,4-phenylenediamine (PPD), 4,4'-diaminodiphenylmethane (MDA), 4,4'- ethylenedianiline (DAB), 2,4,6-trimethyl-1,3- phenylenediamine (TMPD), 4-methyl-1,3-phenylenediamine (MMPD) and 2,3,5,6-tetramethyl-1,4-phenylenediamine (DAD) in dimethylformamide. The indium tin oxide (ITO)-glass plates were spin-coated with the poly(amic acids) solutions and dried. A thermal imidization process was then carried out at 250 degree(s)C for 4 h. In this study the anchoring energies of 6CHBT molecules were evaluated on rubbing aligning layers of PI films. The polar anchoring energy coefficient was determined by wedge cell method. The surface free energy and its components of polyimide layers were determined by measuring the contact angles of water, ethylene glycol, formamide and diiodomethane drops on the rubbing polymer surfaces. The Lifshitz-van der Waals and acidic-basic components of surface free energies were found from van Oss equation.

  14. Water-Energy Correlations: Analysis of Water Technologies, Processes and Systems in Rural and Urban India

    NASA Astrophysics Data System (ADS)

    Murumkar, A. R.; Gupta, S.; Kaurwar, A.; Satankar, R. K.; Mounish, N. K.; Pitta, D. S.; Virat, J.; Kumar, G.; Hatte, S.; Tripathi, R. S.; Shedekar, V.; George, K. J.; Plappally, A. K.

    2015-12-01

    In India, the present value of water, both potable and not potable, bears no relation to the energy of water production. However, electrical energy spent on ground water extraction alone is equivalent to the nation's hydroelectric capacity of 40.1 GWh. Likewise, desalinating 1m3 water of the Bay of Bengal would save three times the energy for potable ground water extraction along the coast of the Bay. It is estimated that every second woman in rural India expends 0.98 kWhe/m3/d for bringing water for household needs. Yet, the water-energy nexus remains to be a topic which is gravely ignored. This is largely caused by factors such as lack of awareness, defective public policies, and intrusive cultural practices. Furthermore, there are instances of unceasing dereliction towards water management and maintenance of the sparsely distributed water and waste water treatment plants across the country. This pollutes the local water across India apart from other geogenic impurities. Additionally, product aesthetics and deceptive advertisements take advantage of the abulia generated by users' ignorance of technical specifications of water technologies and processes in mismanagement of water use. Accordingly, urban residents are tempted to expend on energy intensive water technologies at end use. This worsens the water-energy equation at urban households. Cooking procedures play a significant role in determining the energy expended on water at households. The paper also evaluates total energy expense involved in cultivating some major Kharif and Rabi crops. Manual and traditional agricultural practices are more prominent than mechanized and novel agricultural techniques. The specific energy consumption estimate for different water technologies will help optimize energy expended on water in its life cycles. The implication of the present study of water-energy correlation will help plan and extend water management infrastructure at different locations across India.

  15. Efficient energy transfer in light-harvesting systems, I: optimal temperature, reorganization energy and spatial-temporal correlations

    NASA Astrophysics Data System (ADS)

    Wu, Jianlan; Liu, Fan; Shen, Young; Cao, Jianshu; Silbey, Robert J.

    2010-10-01

    Understanding the mechanisms of efficient and robust energy transfer in light-harvesting systems provides new insights for the optimal design of artificial systems. In this paper, we use the Fenna-Matthews-Olson (FMO) protein complex and phycocyanin 645 (PC 645) to explore the general dependence on physical parameters that help maximize the efficiency and maintain its stability. With the Haken-Strobl model, the maximal energy transfer efficiency (ETE) is achieved under an intermediate optimal value of dephasing rate. To avoid the infinite temperature assumption in the Haken-Strobl model and the failure of the Redfield equation in predicting the Forster rate behavior, we use the generalized Bloch-Redfield (GBR) equation approach to correctly describe dissipative exciton dynamics, and we find that maximal ETE can be achieved under various physical conditions, including temperature, reorganization energy and spatial-temporal correlations in noise. We also identify regimes of reorganization energy where the ETE changes monotonically with temperature or spatial correlation and therefore cannot be optimized with respect to these two variables.

  16. Benchmark calculations with correlated molecular wave functions. VII. Binding energy and structure of the HF dimer

    SciTech Connect

    Peterson, K.A. ); Dunning, T.H. Jr. )

    1995-02-01

    The hydrogen bond energy and geometry of the HF dimer have been investigated using the series of correlation consistent basis sets from aug-cc-pVDZ to aug-cc-pVQZ and several theoretical methods including Moller--Plesset perturbation and coupled cluster theories. Estimates of the complete basis set (CBS) limit have been derived for the binding energy of (HF)[sub 2] at each level of theory by utilizing the regular convergence characteristics of the correlation consistent basis sets. CBS limit hydrogen bond energies of 3.72, 4.53, 4.55, and 4.60 kcal/mol are estimated at the SCF, MP2, MP4, and CCSD(T) levels of theory, respectively. CBS limits for the intermolecular F--F distance are estimated to be 2.82, 2.74, 2.73, and 2.73 A, respectively, for the same correlation methods. The effects of basis set superposition error (BSSE) on both the binding energies and structures have also been investigated for each basis set using the standard function counterpoise (CP) method. While BSSE has a negligible effect on the intramolecular geometries, the CP-corrected F--F distance and binding energy differ significantly from the uncorrected values for the aug-cc-pVDZ basis set; these differences decrease regularly with increasing basis set size, yielding the same limits in the CBS limit. Best estimates for the equilibrium properties of the HF dimer from CCSD(T) calculations are [ital D][sub [ital e

  17. Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au +Au Collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, X.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, X.; Li, Y.; Li, W.; Lin, T.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, R.; Ma, G. L.; Ma, Y. G.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Z.; Sun, X. M.; Sun, Y.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, G.; Wang, J. S.; Wang, H.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xin, K.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Xu, H.; Xu, Z.; Xu, J.; Yang, S.; Yang, Y.; Yang, Y.; Yang, C.; Yang, Y.; Yang, Q.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Y.; Zhang, J.; Zhang, J.; Zhang, S.; Zhang, S.; Zhang, Z.; Zhang, J. B.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-03-01

    We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au +Au collisions for energies ranging from √{sN N }=7.7 to 200 GeV. The third harmonic v32{2 }=⟨cos 3 (ϕ1-ϕ2)⟩ , where ϕ1-ϕ2 is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs Δ η =η1-η2 . Nonzero v32{2 } is directly related to the previously observed large-Δ η narrow-Δ ϕ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity quark gluon plasma phase. For sufficiently central collisions, v32{2 } persist down to an energy of 7.7 GeV, suggesting that quark gluon plasma may be created even in these low energy collisions. In peripheral collisions at these low energies, however, v32{2 } is consistent with zero. When scaled by the pseudorapidity density of charged-particle multiplicity per participating nucleon pair, v32{2 } for central collisions shows a minimum near √{sN N }=20 GeV .

  18. Extended self-energy functional approach for strongly correlated lattice bosons in the superfluid phase

    SciTech Connect

    Arrigoni, Enrico; Knap, Michael; Linden, Wolfgang von der

    2011-07-01

    Among the various numerical techniques to study the physics of strongly correlated quantum many-body systems, the self-energy functional approach (SFA) has become increasingly important. In its previous form, however, SFA is not applicable to Bose-Einstein condensation or superfluidity. In this paper, we show how to overcome this shortcoming. To this end, we identify an appropriate quantity, which we term D, that represents the correlation correction of the condensate order parameter, as it does the self-energy for Green's function. An appropriate functional is derived, which is stationary at the exact physical realization of D and of the self-energy. Its derivation is based on a functional-integral representation of the grand potential followed by an appropriate sequence of Legendre transformations. The approach is not perturbative and, therefore, applicable to a wide range of models with local interactions. We show that the variational cluster approach based on the extended self-energy functional is equivalent to the ''pseudoparticle'' approach proposed in Phys. Rev. B 83, 134507 (2011). We present results for the superfluid density in the two-dimensional Bose-Hubbard model, which shows a remarkable agreement with those of quantum-Monte-Carlo calculations.

  19. Energy and energy gradient matrix elements with N-particle explicitly correlated complex Gaussian basis functions with L=1.

    PubMed

    Bubin, Sergiy; Adamowicz, Ludwik

    2008-03-21

    In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L=1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy. PMID:18361554

  20. Two-scale correlation and energy cascade in three-dimensional turbulent flows

    NASA Astrophysics Data System (ADS)

    Huang, Y. X.; Schmitt, F. G.; Gagne, Y.

    2014-05-01

    In this paper, we propose a high-order harmonic-free methodology, namely arbitrary-order Hilbert spectral analysis, to estimate the two-scale correlation (TSC). When applied to fully developed turbulent velocity, we find that the scale-dependent Hilbert energy satisfies a lognormal distribution on both the inertial and dissipation ranges. The maximum probability density function of the logarithm of the Hilbert energy obeys a power law with a scaling exponent γ ≃ 0.33 in the inertial range. For the measured TSC, we observe a logarithmic correlation law with an experimental exponent α ≃ 0.37 on both the inertial and dissipation ranges. The correlation itself is found to be self-similar with respect to the distance between the two considered scales and a central frequency ωc in the logarithm space. An empirical nonlinear and nonlocal triad-scale interaction formula is proposed to describe the observed TSC. This triadic interaction can be interpreted as experimental evidence of a small-scale nonlinear and nonlocal coupling inside the self-similarity of the Richardson-Kolmogorov phenomenological cascade picture.

  1. Experimental results using a nonlinear extension of the minimum average correlation energy (MACE) filter

    NASA Astrophysics Data System (ADS)

    Fisher, John W., III; Principe, Jose C.

    1995-03-01

    The minimum average correlation energy filter (MACE) filter has been shown to have superior performance for rejecting out of class inputs in pattern recognition applications. The MACE filter exhibits a sharp correlation peak at a specified location in the output plane and low correlation energy elsewhere. It has also been shown that the MACE filter suffers from poor generalization. Increasing the number of exemplars used to compute the filter coefficients can improve the generalization, but the number of exemplars is restricted by the stability of the computation. We show a simple extension of the MACE filter to nonlinear processing techniques (i.e. nonlinear associative memories) which exhibits improved generalization and discrimination performance. The operating parameters of the proposed extension are difficult to compute analytically and adaptive learning methods are needed. Since the output of the MACE filter is optimized over the output plane any nonlinear extension of the MACE filter should encompass the output plane as well. In general this leads to exhaustive training over the entire output plane over all training exemplars. We present an efficient method for computing the parameters of the nonlinear extension which greatly reduces the training iterations required. Experimental results with 35 GHz inverse synthetic aperture radar (ISAR) data are also shown.

  2. Neutron-fragment and Neutron-neutron Correlations in Low-energy Fission

    NASA Astrophysics Data System (ADS)

    Lestone, J. P.

    2016-01-01

    A computational method has been developed to simulate neutron emission from thermal-neutron induced fission of 235U and from spontaneous fission of 252Cf. Measured pre-emission mass-yield curves, average total kinetic energies and their variances, both as functions of mass split, are used to obtain a representation of the distribution of fragment velocities. Measured average neutron multiplicities as a function of mass split and their dependence on total kinetic energy are used. Simulations can be made to reproduce measured factorial moments of neutron-multiplicity distributions with only minor empirical adjustments to some experimental inputs. The neutron-emission spectra in the rest-frame of the fragments are highly constrained by ENDF/B-VII.1 prompt-fission neutron-spectra evaluations. The n-f correlation measurements of Vorobyev et al. (2010) are consistent with predictions where all neutrons are assumed to be evaporated isotropically from the rest frame of fully accelerated fragments. Measured n-f and n-n correlations of others are a little weaker than the predictions presented here. These weaker correlations could be used to infer a weak scission-neutron source. However, the effect of neutron scattering on the experimental results must be studied in detail before moving away from a null hypothesis that all neutrons are evaporated from the fragments.

  3. Absolute Measurement of Electron Cloud Density

    SciTech Connect

    Covo, M K; Molvik, A W; Cohen, R H; Friedman, A; Seidl, P A; Logan, G; Bieniosek, F; Baca, D; Vay, J; Orlando, E; Vujic, J L

    2007-06-21

    Beam interaction with background gas and walls produces ubiquitous clouds of stray electrons that frequently limit the performance of particle accelerator and storage rings. Counterintuitively we obtained the electron cloud accumulation by measuring the expelled ions that are originated from the beam-background gas interaction, rather than by measuring electrons that reach the walls. The kinetic ion energy measured with a retarding field analyzer (RFA) maps the depressed beam space-charge potential and provides the dynamic electron cloud density. Clearing electrode current measurements give the static electron cloud background that complements and corroborates with the RFA measurements, providing an absolute measurement of electron cloud density during a 5 {micro}s duration beam pulse in a drift region of the magnetic transport section of the High-Current Experiment (HCX) at LBNL.

  4. Energy consumption and temperature correlations for 4 Greek Ionian Sea islands

    NASA Astrophysics Data System (ADS)

    Psiloglou, B.; Giannakopoulos, C.; Dagoumas, A.; Skourtis, K.

    2012-04-01

    Energy consumption, especially for space heating and cooling, is linked to several weather variables, mainly air temperature. This study investigates the relationship between residential energy consumption load demand and daily mean air temperature for 4 Greek islands in the Ionian Sea for the period 2005-2011.These islands are Zante, Cephallonia, Corfu and Lefkada and were selected due to their data availability as they are interconnected to the mainland power distribution system. We present the time series of diurnal, daily, monthly and yearly variations of energy consumption for each of the selected sites and subsequently identify correlations with mean daily air temperature. Several effects such as weekly and holiday effects, unrelated to weather conditions, can be detected. Daily and monthly seasonal effects have been studied separately to isolate the weather influence on energy consumption. The most important finding, however, is the outstanding increase in consumption during the tourism season. Depending on the island, increased levels of consumption are present for 4,5 or more months per year, related to tourists arrivals on the island. This effect combined with energy consumption peaks on the hot days of the year should be taken into account during energy conservation planning.

  5. LORENTZ-FACTOR-ISOTROPIC-LUMINOSITY/ENERGY CORRELATIONS OF GAMMA-RAY BURSTS AND THEIR INTERPRETATION

    SciTech Connect

    Lue Jing; Zou Yuanchuan; Lei Weihua; Wu Qingwen; Wang Dingxiong; Zhang Bing; Lue Houjun; Liang Enwei E-mail: leiwh@hust.edu.cn

    2012-05-20

    The bulk Lorentz factor of the gamma-ray burst (GRB) ejecta ({Gamma}{sub 0}) is a key parameter to understanding GRB physics. Liang et al. have discovered a correlation between {Gamma}{sub 0} and isotropic {gamma}-ray energy: {Gamma}{sub 0}{proportional_to}E{sup 0.25}{sub {gamma},iso,52}. By including more GRBs with updated data and more methods to derive {Gamma}{sub 0}, we confirm this correlation and obtain {Gamma}{sub 0} {approx_equal} 91E{sup 0.29}{sub {gamma},iso,52}. Evaluating the mean isotropic {gamma}-ray luminosities L{sub {gamma},iso} of the GRBs in the same sample, we discover an even tighter correlation {Gamma}{sub 0} {approx_equal} 249L{sup 0.30}{sub {gamma},iso,52}. We propose an interpretation to this later correlation. Invoking a neutrino-cooled hyperaccretion disk around a stellar mass black hole as the central engine of GRBs, we derive jet luminosity powered by neutrino annihilation and baryon loading from a neutrino-driven wind. Applying beaming correction, we finally derive {Gamma}{sub 0}{proportional_to}L{sup 0.22}{sub {gamma},iso}, which is consistent with the data. This suggests that the central engine of long GRBs is likely a stellar mass black hole surrounded by a hyper-accreting disk.

  6. An expanded calibration study of the explicitly correlated CCSD(T)-F12b method using large basis set standard CCSD(T) atomization energies

    NASA Astrophysics Data System (ADS)

    Feller, David; Peterson, Kirk A.

    2013-08-01

    The effectiveness of the recently developed, explicitly correlated coupled cluster method CCSD(T)-F12b is examined in terms of its ability to reproduce atomization energies derived from complete basis set extrapolations of standard CCSD(T). Most of the standard method findings were obtained with aug-cc-pV7Z or aug-cc-pV8Z basis sets. For a few homonuclear diatomic molecules it was possible to push the basis set to the aug-cc-pV9Z level. F12b calculations were performed with the cc-pVnZ-F12 (n = D, T, Q) basis set sequence and were also extrapolated to the basis set limit using a Schwenke-style, parameterized formula. A systematic bias was observed in the F12b method with the (VTZ-F12/VQZ-F12) basis set combination. This bias resulted in the underestimation of reference values associated with small molecules (valence correlation energies <0.5 Eh) and an even larger overestimation of atomization energies for bigger systems. Consequently, caution should be exercised in the use of F12b for high accuracy studies. Root mean square and mean absolute deviation error metrics for this basis set combination were comparable to complete basis set values obtained with standard CCSD(T) and the aug-cc-pVDZ through aug-cc-pVQZ basis set sequence. However, the mean signed deviation was an order of magnitude larger. Problems partially due to basis set superposition error were identified with second row compounds which resulted in a weak performance for the smaller VDZ-F12/VTZ-F12 combination of basis sets.

  7. Monte Carlo approach for hadron azimuthal correlations in high energy proton and nuclear collisions

    NASA Astrophysics Data System (ADS)

    Ayala, Alejandro; Dominguez, Isabel; Jalilian-Marian, Jamal; Magnin, J.; Tejeda-Yeomans, Maria Elena

    2012-09-01

    We use a Monte Carlo approach to study hadron azimuthal angular correlations in high-energy proton-proton and central nucleus-nucleus collisions at the BNL Relativistic Heavy Ion Collider energies at midrapidity. We build a hadron event generator that incorporates the production of 2→2 and 2→3 parton processes and their evolution into hadron states. For nucleus-nucleus collisions we include the effect of parton energy loss in the quark-gluon plasma using a modified fragmentation function approach. In the presence of the medium, for the case when three partons are produced in the hard scattering, we analyze the Monte Carlo sample in parton and hadron momentum bins to reconstruct the angular correlations. We characterize this sample by the number of partons that are able to hadronize by fragmentation within the selected bins. In the nuclear environment the model allows hadronization by fragmentation only for partons with momentum above a threshold pTthresh=2.4 GeV. We argue that one should treat properly the effect of those partons with momentum below the threshold, because their interaction with the medium may lead to showers of low-momentum hadrons along the direction of motion of the original partons as the medium becomes diluted.

  8. Statistical analysis of the correlation between active galactic nuclei and ultra-high energy cosmic rays

    SciTech Connect

    Kim, Hang Bae; Kim, Jihyun E-mail: jihyunkim@hanyang.ac.kr

    2011-03-01

    We develop the statistical methods for comparing two sets of arrival directions of cosmic rays in which the two-dimensional distribution of arrival directions is reduced to the one-dimensional distributions so that the standard one-dimensional Kolmogorov-Smirnov test can be applied. Then we apply them to the analysis of correlation between the ultra-high energy cosmic rays (UHECR) with energies above 5.7 × 10{sup 19} eV, observed by Pierre Auger Observatory (PAO) and Akeno Giant Air Shower Array (AGASA), and the active galactic nuclei (AGN) within the distance 100 Mpc. For statistical test, we set up the simple AGN model for UHECR sources in which a certain fraction of observed UHECR are originated from AGN within a chosen distance, assuming that all AGN have equal UHECR luminosity and smearing angle, and the remaining fraction are from the isotropic background contribution. For the PAO data, our methods exclude not only a hypothesis that the observed UHECR are simply isotropically distributed but also a hypothesis that they are completely originated from the selected AGN. But, the addition of appropriate amount of isotropic component either through the background contribution or through the large smearing effect improves the correlation greatly and makes the AGN hypothesis for UHECR sources a viable one. We also point out that restricting AGN within the distance bin of 40–60 Mpc happens to yield a good correlation without appreciable isotropic component and large smearing effect. For the AGASA data, we don't find any significant correlation with AGN.

  9. Improved cavity-type absolute total-radiation radiometer

    NASA Technical Reports Server (NTRS)

    Kendall, J. M., Sr.; Plamondon, J. A., Jr.

    1967-01-01

    Conical cavity-type absolute radiometer measures the intensity of radiant energy to an accuracy of one to two percent in a vacuum of ten to the minus fifth torr or lower. There is a uniform response over the ultraviolet, visible, and infrared range, and it requires no calibration or comparison with a radiation standard.

  10. A CORRELATION BETWEEN THE HIGHEST ENERGY COSMIC RAYS AND NEARBY ACTIVE GALACTIC NUCLEI DETECTED BY FERMI

    SciTech Connect

    Nemmen, Rodrigo S.; Bonatto, Charles; Storchi-Bergmann, Thaisa

    2010-10-10

    We analyze the correlation of the positions of {gamma}-ray sources in the Fermi Large Area Telescope (LAT) First Source Catalog (1FGL) and the First LAT Active Galactic Nuclei (AGNs) Catalog (1LAC) with the arrival directions of ultra-high-energy cosmic rays (UHECRs) observed with the Pierre Auger Observatory, in order to investigate the origin of UHECRs. We find that Galactic sources and blazars identified in the 1FGL are not significantly correlated with UHECRs, while the 1LAC sources display a mild correlation (2.6{sigma} level) on an {approx}2.{sup 0}4 angular scale. When selecting only the 1LAC AGNs closer than 200 Mpc, we find a strong association (5.4{sigma}) between their positions and the directions of UHECRs on an {approx}17{sup 0} angular scale; the probability of the observed configuration being due to an isotropic flux of cosmic rays is 5 x 10{sup -8}. There is also a 5{sigma} correlation with nearby 1LAC sources on a 6.{sup 0}5 scale. We identify seven '{gamma}-ray loud' AGNs which are associated with UHECRs within {approx}17{sup 0} and are likely candidates for the production sites of UHECRs: Centaurus A, NGC 4945, ESO 323-G77, 4C+04.77, NGC 1218, RX J0008.0+1450, and NGC 253. We interpret these results as providing additional support to the hypothesis of the origin of UHECRs in nearby extragalactic objects. As the angular scales of the correlations are large, we discuss the possibility that intervening magnetic fields might be considerably deflecting the trajectories of the particles on their way to Earth.

  11. Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes

    SciTech Connect

    Liu, Kexi; Lei, Yinkai; Wang, Guofeng

    2013-11-28

    Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O{sub 2} adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N{sub 4} chelation, as well as the molecular and electronic structures for the O{sub 2} adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O{sub 2} on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d{sub z{sup 2}}, d{sub xy}, d{sub xz}, and d{sub yz}) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O{sub 2} adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.

  12. Study of Isospin Correlation in High Energy Heavy Ion Interactions with the RHIC PHENIX. Final Report

    SciTech Connect

    Takahashi, Y.

    2003-06-08

    This report describes the research work performed under the support of the DOE research grant E-FG02-97ER4108. The work is composed of three parts: (1) Visual analysis and quality control of the Micro Vertex Detector (MVD) of the PHENIX experiments carried out of Brookhaven National Laboratory. (2) Continuation of the data analysis of the EMU05/09/16 experiments for the study of the inclusive particle production spectra and multi-particle correlation. (3) Exploration of a new statistical means to study very high-multiplicity of nuclear-particle ensembles and its perspectives to apply to the higher energy experiments.

  13. Damage correlations in semiconductor devices exposed to gamma and high energy swift heavy ions

    SciTech Connect

    Pushpa, N.; Prakash, A. P. Gnana

    2015-05-15

    NPN rf power transistors and N-channel depletion MOSFETs are irradiated by different high energy swift heavy ions and {sup 60}Co gamma radiation in the dose range of 100 krad to 100 Mrad. The damage created by different heavy ions and {sup 60}Co gamma radiation in NPN rf power transistors and N-channel depletion MOSFETs have been correlated and studied in the same dose range. The recoveries in the electrical characteristics of different swift heavy ions and {sup 60}Co gamma irradiated devices have been studied after annihilation.

  14. Deuterons and space-momentum correlations in high energy nuclear collisions

    SciTech Connect

    Monreal, B.; Li, Q.; Sakrejda, I.; Snellings, R.; Spieles, C.; Thomas, J.; Voloshin, S.; Wang, F.; Xu, N. ); Bass, S.A. ); Bleicher, M.; Greiner, W.; Stoecker, H. ); Esumi, S. ); Liu, H.; Panitkin, S. ); Llope, W.J. ); Mattiello, R. ); Sorge, H. )

    1999-09-01

    Using a microscopic transport model together with a coalescence afterburner, we study the formation of deuterons in Au+Au central collisions at [radical] (s) =200A GeV. It is found that the deuteron transverse momentum distributions are strongly affected by the nucleon space-momentum correlations, at the moment of freeze-out, which are mostly determined by the number of rescatterings. This feature is useful for studying collision dynamics at ultrarelativistic energies. [copyright] [ital 1999] [ital The American Physical Society

  15. High energy factorization in nucleus-nucleus collisions. II. Multigluon correlations

    SciTech Connect

    Gelis, Francois; Lappi, Tuomas

    2008-09-01

    We extend previous results from the preceding paper on factorization in high energy nucleus-nucleus collisions by computing the inclusive multigluon spectrum to next-to-leading order. The factorization formula is strictly valid for multigluon emission in a slice of rapidity of width {delta}Y{<=}{alpha}{sub s}{sup -1}. Our results shows that often neglected disconnected graphs dominate the inclusive multigluon spectrum, and are crucial in order to achieve factorization for this quantity. These results provide a dynamical framework for the Glasma flux tube picture of the striking ''ridge''-like correlation seen in heavy ion collisions.

  16. Calculation of quasiparticle energy spectrum of silicon using the correlated Hartree-Fock method

    NASA Astrophysics Data System (ADS)

    Ishihara, Takamitsu; Yamagami, Hiroshi; Matsuzawa, Kazuya; Yasuhara, Hiroshi

    1999-06-01

    We present quasiparticle energy spectrum calculations of silicon using the correlated Hartree-Fock method proposed by Yasuhara and Takada [Phys. Rev. B 43, 7200 (1991)], in which the information on the effective mass of an electron liquid is included in the form of a nonlocal spin-parallel potential in addition to a local potential. The calculated band gaps of silicon are much improved, compared with the local density approximation values. The minimum indirect band gap is evaluated to be 1.37 eV.

  17. Damage correlations in semiconductor devices exposed to gamma and high energy swift heavy ions

    NASA Astrophysics Data System (ADS)

    Pushpa, N.; Prakash, A. P. Gnana

    2015-05-01

    NPN rf power transistors and N-channel depletion MOSFETs are irradiated by different high energy swift heavy ions and 60Co gamma radiation in the dose range of 100 krad to 100 Mrad. The damage created by different heavy ions and 60Co gamma radiation in NPN rf power transistors and N-channel depletion MOSFETs have been correlated and studied in the same dose range. The recoveries in the electrical characteristics of different swift heavy ions and 60Co gamma irradiated devices have been studied after annihilation.

  18. Correlation between the refractive index and the energy gap of simple and complex binary compounds

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Singh, P.; Sarkar, K. K.

    1986-01-01

    A simple relation between the high-frequency refractive index and the corresponding energy gap, established by Gopal, has been critically examined. It has been shown that the validity of such a relation is highly questionable. Through a close analysis of this relation, its shortcomings are eliminated and a generalized single parameter correlation is proposed which is valid for a large number of binary A NB 8- N type solids and also for the complex A 2B, AB 2, A 3B and A 3B 2 semiconductors.

  19. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems

    NASA Astrophysics Data System (ADS)

    Huo, Pengfei; Coker, David F.

    2012-03-01

    Two-dimensional photon-echo experiments indicate that excitation energy transfer between chromophores near the reaction center of the photosynthetic purple bacterium Rhodobacter sphaeroides occurs coherently with decoherence times of hundreds of femtoseconds, comparable to the energy transfer time scale in these systems. The original explanation of this observation suggested that correlated fluctuations in chromophore excitation energies, driven by large scale protein motions could result in long lived coherent energy transfer dynamics. However, no significant site energy correlation has been found in recent molecular dynamics simulations of several model light harvesting systems. Instead, there is evidence of correlated fluctuations in site energy-electronic coupling and electronic coupling-electronic coupling. The roles of these different types of correlations in excitation energy transfer dynamics are not yet thoroughly understood, though the effects of site energy correlations have been well studied. In this paper, we introduce several general models that can realistically describe the effects of various types of correlated fluctuations in chromophore properties and systematically study the behavior of these models using general methods for treating dissipative quantum dynamics in complex multi-chromophore systems. The effects of correlation between site energy and inter-site electronic couplings are explored in a two state model of excitation energy transfer between the accessory bacteriochlorophyll and bacteriopheophytin in a reaction center system and we find that these types of correlated fluctuations can enhance or suppress coherence and transfer rate simultaneously. In contrast, models for correlated fluctuations in chromophore excitation energies show enhanced coherent dynamics but necessarily show decrease in excitation energy transfer rate accompanying such coherence enhancement. Finally, for a three state model of the Fenna-Matthews-Olsen light

  20. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems.

    PubMed

    Huo, Pengfei; Coker, David F

    2012-03-21

    Two-dimensional photon-echo experiments indicate that excitation energy transfer between chromophores near the reaction center of the photosynthetic purple bacterium Rhodobacter sphaeroides occurs coherently with decoherence times of hundreds of femtoseconds, comparable to the energy transfer time scale in these systems. The original explanation of this observation suggested that correlated fluctuations in chromophore excitation energies, driven by large scale protein motions could result in long lived coherent energy transfer dynamics. However, no significant site energy correlation has been found in recent molecular dynamics simulations of several model light harvesting systems. Instead, there is evidence of correlated fluctuations in site energy-electronic coupling and electronic coupling-electronic coupling. The roles of these different types of correlations in excitation energy transfer dynamics are not yet thoroughly understood, though the effects of site energy correlations have been well studied. In this paper, we introduce several general models that can realistically describe the effects of various types of correlated fluctuations in chromophore properties and systematically study the behavior of these models using general methods for treating dissipative quantum dynamics in complex multi-chromophore systems. The effects of correlation between site energy and inter-site electronic couplings are explored in a two state model of excitation energy transfer between the accessory bacteriochlorophyll and bacteriopheophytin in a reaction center system and we find that these types of correlated fluctuations can enhance or suppress coherence and transfer rate simultaneously. In contrast, models for correlated fluctuations in chromophore excitation energies show enhanced coherent dynamics but necessarily show decrease in excitation energy transfer rate accompanying such coherence enhancement. Finally, for a three state model of the Fenna-Matthews-Olsen light

  1. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    SciTech Connect

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  2. Absolute decay width measurements in 16O

    NASA Astrophysics Data System (ADS)

    Wheldon, C.; Ashwood, N. I.; Barr, M.; Curtis, N.; Freer, M.; Kokalova, Tz; Malcolm, J. D.; Spencer, S. J.; Ziman, V. A.; Faestermann, Th; Krücken, R.; Wirth, H.-F.; Hertenberger, R.; Lutter, R.; Bergmaier, A.

    2012-09-01

    The reaction 126C(63Li, d)168O* at a 6Li bombarding energy of 42 MeV has been used to populate excited states in 16O. The deuteron ejectiles were measured using the high-resolution Munich Q3D spectrograph. A large-acceptance silicon-strip detector array was used to register the recoil and break-up products. This complete kinematic set-up has enabled absolute α-decay widths to be measured with high-resolution in the 13.9 to 15.9 MeV excitation energy regime in 16O; many for the first time. This energy region spans the 14.4 MeV four-α breakup threshold. Monte-Carlo simulations of the detector geometry and break-up processes yield detection efficiencies for the two dominant decay modes of 40% and 37% for the α+12C(g.s.) and a+12C(2+1) break-up channels respectively.

  3. Missing derivative discontinuity of the exchange-correlation energy for attractive interactions: The charge Kondo effect

    NASA Astrophysics Data System (ADS)

    Perfetto, E.; Stefanucci, G.

    2012-08-01

    We show that the energy functional of ensemble density functional theory (DFT) [Perdew , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.49.1691 49, 1691 (1982)] in systems with attractive interactions is a convex function of the fractional particle number N and is given by a series of straight lines joining a subset of ground-state energies. As a consequence the exchange-correlation (XC) potential is not discontinuous for all N. We highlight the importance of this exact result in the ensemble-DFT description of the negative-U Anderson model. In the atomic limit the discontinuity of the XC potential is missing for odd N while for finite hybridizations the discontinuity at even N is broadened. We demonstrate that the inclusion of these properties in any approximate XC potential is crucial to reproduce the characteristic signatures of the charge-Kondo effect in the conductance and charge susceptibility.

  4. Total energy calculations of correlated electron compounds: theory and application to rare earth nickelates

    NASA Astrophysics Data System (ADS)

    Park, Hyowon; Millis, Andrew; Marianetti, Chris

    2013-03-01

    We use density functional theory (DFT) plus dynamical mean field theory (DMFT) method, along with DFT+U and Hartree-Fock methods to compute the electronic energy as a function of crystal structure for rare earth nickelates. We show that full charge self-consistency can be essential for obtaining qualitative agreement with experiment and that the choice of double counting correction has an important effect on the energy. Furthermore, the precise definition (projector vs Wannier) of the correlated d-orbitals has a minimal effect. We show that charge self-consistent DFT+DMFT, as opposed to DFT+U, is critical to describing the magnetic-insulator to paramagnetic-metal phase boundary in the rare earth nickelate phase diagram. The authors acknowledge funding from the U. S. Army Research Office via grant No. W911NF0910345 56032PH.

  5. Accurate exchange-correlation energies for the warm dense electron gas

    NASA Astrophysics Data System (ADS)

    Malone, Fionn; Blunt, Nicholas; Shepherd, James; Lee, Derek; Spencer, James; Foulkes, Matthew

    The accurate treatment of matter at high temperatures and densities is of increasing importance to many fields in physics and chemistry, with applications ranging from planetary physics to inertial confinement fusion and plasmonic catalysis. Faithfully including the effects of temperature in density functional theory simulations of warm dense matter requires accurate results for the uniform electron gas (UEG) across the whole temperature-density plane. While accurate ground state quantum Monte Carlo data have existed for over 30 years, there remains significant disagreement between results obtained using different path integral Monte Carlo methods at finite temperature. To resolve this disagreement, we use the systematically improvable density matrix quantum Monte Carlo method to calculate the exchange-correlation energy of the UEG. We also demonstrate how the evaluation of free energies emerges naturally from our method.

  6. Improving HST Pointing & Absolute Astrometry

    NASA Astrophysics Data System (ADS)

    Lallo, Matthew; Nelan, E.; Kimmer, E.; Cox, C.; Casertano, S.

    2007-05-01

    Accurate absolute astrometry is becoming increasingly important in an era of multi-mission archives and virtual observatories. Hubble Space Telescope's (HST's) Guidestar Catalog II (GSC2) has reduced coordinate error to around 0.25 arcsecond, a factor 2 or more compared with GSC1. With this reduced catalog error, special attention must be given to calibrate and maintain the Fine Guidance Sensors (FGSs) and Science Instruments (SIs) alignments in HST to a level well below this in order to ensure that the accuracy of science product's astrometry keywords and target positioning are limited only by the catalog errors. After HST Servicing Mission 4, such calibrations' improvement in "blind" pointing accuracy will allow for more efficient COS acquisitions. Multiple SIs and FGSs each have their own footprints in the spatially shared HST focal plane. It is the small changes over time in primarily the whole-body positions & orientations of these instruments & guiders relative to one another that is addressed by this work. We describe the HST Cycle 15 program CAL/OTA 11021 which, along with future variants of it, determines and maintains positions and orientations of the SIs and FGSs to better than 50 milli- arcseconds and 0.04 to 0.004 degrees of roll, putting errors associated with the alignment sufficiently below GSC2 errors. We present recent alignment results and assess their errors, illustrate trends, and describe where and how the observer sees benefit from these calibrations when using HST.

  7. Absolute oral bioavailability of ciprofloxacin.

    PubMed

    Drusano, G L; Standiford, H C; Plaisance, K; Forrest, A; Leslie, J; Caldwell, J

    1986-09-01

    We evaluated the absolute bioavailability of ciprofloxacin, a new quinoline carboxylic acid, in 12 healthy male volunteers. Doses of 200 mg were given to each of the volunteers in a randomized, crossover manner 1 week apart orally and as a 10-min intravenous infusion. Half-lives (mean +/- standard deviation) for the intravenous and oral administration arms were 4.2 +/- 0.77 and 4.11 +/- 0.74 h, respectively. The serum clearance rate averaged 28.5 +/- 4.7 liters/h per 1.73 m2 for the intravenous administration arm. The renal clearance rate accounted for approximately 60% of the corresponding serum clearance rate and was 16.9 +/- 3.0 liters/h per 1.73 m2 for the intravenous arm and 17.0 +/- 2.86 liters/h per 1.73 m2 for the oral administration arm. Absorption was rapid, with peak concentrations in serum occurring at 0.71 +/- 0.15 h. Bioavailability, defined as the ratio of the area under the curve from 0 h to infinity for the oral to the intravenous dose, was 69 +/- 7%. We conclude that ciprofloxacin is rapidly absorbed and reliably bioavailable in these healthy volunteers. Further studies with ciprofloxacin should be undertaken in target patient populations under actual clinical circumstances. PMID:3777908

  8. Absolute Instability in Coupled-Cavity TWTs

    NASA Astrophysics Data System (ADS)

    Hung, D. M. H.; Rittersdorf, I. M.; Zhang, Peng; Lau, Y. Y.; Simon, D. H.; Gilgenbach, R. M.; Chernin, D.; Antonsen, T. M., Jr.

    2014-10-01

    This paper will present results of our analysis of absolute instability in a coupled-cavity traveling wave tube (TWT). The structure mode at the lower and upper band edges are respectively approximated by a hyperbola in the (omega, k) plane. When the Briggs-Bers criterion is applied, a threshold current for onset of absolute instability is observed at the upper band edge, but not the lower band edge. The nonexistence of absolute instability at the lower band edge is mathematically similar to the nonexistence of absolute instability that we recently demonstrated for a dielectric TWT. The existence of absolute instability at the upper band edge is mathematically similar to the existence of absolute instability in a gyroton traveling wave amplifier. These interesting observations will be discussed, and the practical implications will be explored. This work was supported by AFOSR, ONR, and L-3 Communications Electron Devices.

  9. Energy dependence of fluctuation and correlation observables of transverse momentum in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Novak, John F.

    In collisions of heavy ions of sufficient energy, cold nuclear matter can be forced into a strongly interacting state of quark-gloun plasma (QGP). To study the properties of QGP and the phase transition to hadronic matter, Au+Au collisions were performed at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) and studied using the Solendoidal Tracker at RHIC (STAR) detector. These Au+Au collision were taken during 2010 and 2011 as part of the RHIC Beam Energy Scan (BES) at energies NsN = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV. The primary goal of the BES was to search for the critical point of the phase transition between the QGP phase and the hadronic matter phase of nuclear matter. In this dissertation two analyses on these data are presented which focus on fluctuations of the average transverse momentum (

    ) of the particles produced in heavy-ion collisions. < pt> is related to the temperature of the systems produced in the collisions [35], and fluctuations of

    should be sensitive to fluctuations of the temperature [40]. The moments of the distributions has also been proposed to be sensitive to the correlation length of the QGP medium [41, 42], which will diverge at the critical point. Fluctuations of will depend upon both dynamic fluctuations of the produced systems, and statistical fluctuations due to limited statistics. The first analysis presented in this dissertation is of the two particle relative momentum correlator which is a direct measure of the dynamic fluctuations of the variance of the < pt> distribution, s2 ,dynamic . The second analysis presented in this dissertation is of the higher moments of the distribution. The dynamic higher moments are inferred by comparison of the measured data with mixed events and statically sampled events which reproduce the statistical fluctuations while having no dynamic fluctuations. No consistent non-monotonic behavior, which would

  10. Correlations between Energy and Displacement Demands for Performance-Based Seismic Engineering

    NASA Astrophysics Data System (ADS)

    Mollaioli, Fabrizio; Bruno, Silvia; Decanini, Luis; Saragoni, Rodolfo

    2011-01-01

    The development of a scientific framework for performance-based seismic engineering requires, among other steps, the evaluation of ground motion intensity measures at a site and the characterization of their relationship with suitable engineering demand parameters (EDPs) which describe the performance of a structure. In order to be able to predict the damage resulting from earthquake ground motions in a structural system, it is first necessary to properly identify ground motion parameters that are well correlated with structural response and, in turn, with damage. Since structural damage during an earthquake ground motion may be due to excessive deformation or to cumulative cyclic damage, reliable methods for estimating displacement demands on structures are needed. Even though the seismic performance is directly related to the global and local deformations of the structure, energy-based methodologies appear more helpful in concept, as they permit a rational assessment of the energy absorption and dissipation mechanisms that can be effectively accomplished to balance the energy imparted to the structure. Moreover, energy-based parameters are directly related to cycles of response of the structure and, therefore, they can implicitly capture the effect of ground motion duration, which is ignored by conventional spectral parameters. Therefore, the identification of reliable relationships between energy and displacement demands represents a fundamental issue in both the development of more reliable seismic code provisions and the evaluation of seismic vulnerability aimed at the upgrading of existing hazardous facilities. As these two aspects could become consistently integrated within a performance-based seismic design methodology, understanding how input and dissipated energy are correlated with displacement demands emerges as a decisive prerequisite. The aim of the present study is the establishment of functional relationships between input and dissipated energy

  11. Absolute luminosity measurements with the LHCb detector at the LHC

    NASA Astrophysics Data System (ADS)

    LHCb Collaboration

    2012-01-01

    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic ``van der Meer scan'' method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overal precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.

  12. Squeezed K{sup +}K{sup -} correlations in high energy heavy ion collisions

    SciTech Connect

    Dudek, Danuce M.; Padula, Sandra S.

    2010-09-15

    The hot and dense medium formed in high energy heavy ion collisions may modify some hadronic properties. In particular, if hadron masses are shifted in-medium, it was demonstrated that this could lead to back-to-back squeezed correlations (BBC) of particle-antiparticle pairs. Although well-established theoretically, the squeezed correlations have not yet been discovered experimentally. A method has been suggested for the empirical search of this effect, which was previously illustrated for {phi}{phi} pairs. We apply here the formalism and the suggested method to the case of K{sup +}K{sup -} pairs, since they may be easier to identify experimentally. The time distribution of the emission process plays a crucial role in the survival of the BBC's. We analyze the cases where the emission is supposed to occur suddenly or via a Lorentzian distribution, and compare with the case of a Levy distribution in time. Effects of squeezing on the correlation function of identical particles are also analyzed.

  13. Benchmark Calculations with Correlated Molecular Wave Functions. XIII. Potential Energy Curves for He-2, Ne-2, and Ar-2 Using Correlation Consistent Basis Sets Through Augmented Sextuple Zeta.

    SciTech Connect

    Mourik, Van Tonja; Wilson, Angela K.; Dunning, Thomas H.

    1999-02-20

    The potential energy curves of the rare gas dimers He2, Ne2, and Ar2 have been computed using correlation consistent basis sets ranging from singly augmented aug-cc-pVDZ sets through triply augmented t-aug-cc-pV6Z sets, with the augmented sextuple basis sets being reported herein. Several methods for including electron correlation were investigated, namely Moller Plesset perturbation theory (MP2, MP3 and MP4) and coupled cluster theory [CCSD and CCSD(T)].

  14. Absolute negative mobility of interacting Brownian particles

    NASA Astrophysics Data System (ADS)

    Ou, Ya-li; Hu, Cai-tian; Wu, Jian-chun; Ai, Bao-quan

    2015-12-01

    Transport of interacting Brownian particles in a periodic potential is investigated in the presence of an ac force and a dc force. From Brownian dynamic simulations, we find that both the interaction between particles and the thermal fluctuations play key roles in the absolute negative mobility (the particle noisily moves backwards against a small constant bias). When no the interaction acts, there is only one region where the absolute negative mobility occurs. In the presence of the interaction, the absolute negative mobility may appear in multiple regions. The weak interaction can be helpful for the absolute negative mobility, while the strong interaction has a destructive impact on it.

  15. Domain-averaged exchange-correlation energies as a physical underpinning for chemical graphs.

    PubMed

    García-Revilla, M; Francisco, E; Popelier, Paul L A; Martín Pendás, Angel

    2013-04-15

    A novel solution to the problem of assigning a molecular graph to a collection of nuclei (i.e. how to draw a molecular structure) is presented. Molecules are universally understood as a set of nuclei linked by bonds, but establishing which nuclei are bonded and which are not is still an empirical matter. Our approach borrows techniques from quantum chemical topology, which showed for the first time the construction of chemical graphs from wave functions, shifting the focus on energetics. This new focus resolves issues surrounding previous topological analyses, in which domain-averaged exchange-correlation energies (V(xc)), quantities defined in real space between each possible atom pair, hold the key. Exponential decay of V(xc) in non-metallic systems as the intercenter distance increases guarantees a well-defined hierarchy for all possible V(xc) values in a molecule. Herein, we show that extracting the set of atom pairs that display the largest V(xc) values in the hierarchy is equivalent to retrieving the molecular graph itself. Notably, domain-averaged exchange-correlation energies are transferable, and they can be used to calculate bond strengths. Fine-grained details resulted to be related to simple stereoelectronic effects. These ideas are demonstrated in a set of simple pilot molecules. PMID:23553819

  16. Explicit correlation treatment of the potential energy surface of CO2 dimer.

    PubMed

    Kalugina, Yulia N; Buryak, Ilya A; Ajili, Yosra; Vigasin, Andrei A; Jaidane, Nejm Eddine; Hochlaf, Majdi

    2014-06-21

    We present an extensive study of the four-dimensional potential energy surface (4D-PES) of the carbon dioxide dimer, (CO2)2. This PES is developed over the set of intermolecular coordinates. The electronic computations are carried out at the explicitly correlated coupled cluster method with single, double, and perturbative triple excitations [CCSD(T)-F12] level of theory in connection with the augmented correlation-consistent aug-cc-pVTZ basis set. An analytic representation of the 4D-PES is derived. Our extensive calculations confirm that "Slipped Parallel" is the most stable form and that the T-shaped structure corresponds to a transition state. Later on, this PES is employed for the calculations of the vibrational energy levels of the dimer. Moreover, the temperature dependence of the dimer second virial coefficient and of the first spectral moment of rototranslational collision-induced absorption spectrum is derived. For both quantities, a good agreement is found between our values and the experimental data for a wide range of temperatures. This attests to the high quality of our PES. Generally, our PES and results can be used for modeling CO2 supercritical fluidity and examination of its role in planetary atmospheres. It can be also incorporated into dynamical computations of CO2 capture and sequestration. This allows deep understanding, at the microscopic level, of these processes. PMID:24952544

  17. Explicit correlation treatment of the potential energy surface of CO{sub 2} dimer

    SciTech Connect

    Kalugina, Yulia N.; Buryak, Ilya A.; Ajili, Yosra; Vigasin, Andrei A.; Jaidane, Nejm Eddine; Hochlaf, Majdi

    2014-06-21

    We present an extensive study of the four-dimensional potential energy surface (4D-PES) of the carbon dioxide dimer, (CO{sub 2}){sub 2}. This PES is developed over the set of intermolecular coordinates. The electronic computations are carried out at the explicitly correlated coupled cluster method with single, double, and perturbative triple excitations [CCSD(T)-F12] level of theory in connection with the augmented correlation-consistent aug-cc-pVTZ basis set. An analytic representation of the 4D-PES is derived. Our extensive calculations confirm that “Slipped Parallel” is the most stable form and that the T-shaped structure corresponds to a transition state. Later on, this PES is employed for the calculations of the vibrational energy levels of the dimer. Moreover, the temperature dependence of the dimer second virial coefficient and of the first spectral moment of rototranslational collision-induced absorption spectrum is derived. For both quantities, a good agreement is found between our values and the experimental data for a wide range of temperatures. This attests to the high quality of our PES. Generally, our PES and results can be used for modeling CO{sub 2} supercritical fluidity and examination of its role in planetary atmospheres. It can be also incorporated into dynamical computations of CO{sub 2} capture and sequestration. This allows deep understanding, at the microscopic level, of these processes.

  18. Highly correlated systems. Excitation energies of first row transition metals Sc--Cu

    SciTech Connect

    Raghavachari, K.; Trucks, G. W.

    1989-07-15

    The low-lying /ital d//sup /ital n/s//sup 2//r arrow//ital d//sup /ital n/+1//ital s//sup 1/ excitation energies of the first row transition metal atoms Sc--Cu are calculated using fourth-order M/congruent/ller--Plesset perturbation theory (MP4) as well as quadratic configuration interaction (QCI) techniques with large /ital spd/ and /ital spdf/ basis sets. The MP4 method performs well for Sc--Mn but fails dramatically for Fe--Cu. In contrast, the QCI technique performs uniformly for all excitation energies with a mean deviation from experiment of only 0.14 eV after including relativistic corrections. /ital f/ functions contribute 0.1--0.4 eV to the excitation energies for these systems. The highly correlated /ital d//sup 10/ state of the Ni atom is also considered in detail. The QCI technique obtains the /ital d//sup 9//ital s1//r arrow//ital d10/ splitting of the Ni atom with an error of only 0.13 eV. The results show that single-configuration Hartree--Fock based methods can be successful in calculating excitation energies of transition metal atoms.

  19. Absolute partial decay branching-ratios in 16O

    NASA Astrophysics Data System (ADS)

    Wheldon, C.; Ashwood, N. I.; Barr, M.; Curtis, N.; Freer, M.; Kokalova, Tz; Malcolm, J. D.; Spencer, S. J.; Ziman, V. A.; Faestermann, Th; Krücken, R.; Wirth, H.-F.; Hertenberger, R.; Lutter, R.; Bergmaier, A.

    2013-04-01

    The a-transfer reaction 126C(63Li, d)168O* has been performed at a 6Li bombarding energy of 42 MeV to populate excited states in 13C and 16O. Absolute branching ratios have been unambiguously determined for states in the excitation energy range 13.85 to 15.87 MeV and reduced widths are extracted.

  20. Spectroscopic constants of diatomic molecules computed correcting Hartree-Fock or general-valence-bond potential-energy curves with correlation-energy functionals

    NASA Astrophysics Data System (ADS)

    Pérez-Jordá, José M.; San-Fabián, Emilio; Moscardó, Federico

    1992-04-01

    The Kohn-Sham energy with exact exchange [using the exact Hartree-Fock (HF) exchange but an approximate correlation-energy functional] may be computed very accurately by adding the correlation obtained from the HF density to the total HF energy. Three density functionals are used: local spin density (LSD), LSD with self-interaction correction, and LSD with generalized gradient correction. This scheme has been extended (Lie-Clementi, Colle-Salvetti, and Moscardo-San-Fabian) to be used with general-valence-bond (GVB) energies and wave functions, so that the extra correlation included in the GVB energy is not counted again. The effect of all these approximate correlations on HF or GVB spectroscopic constants (Re,ωe, and De) is studied. Approximate relations showing how correlation affects them are derived, and may be summarized as follows: (1) the effect on Re and ωe depends only on the correlation derivative at Re, and (2) the effect on De depends mainly on the correlation difference between quasidissociated and equilibrium geometries. A consequence is that all the correlation corrections tested here give larger ωe and De and shorter Re than the uncorrected HF or GVB values. This trend is correct for De for both HF and GVB. For Re and ωe, it is correct in most cases for GVB, but it often fails for the HF cases. A comparison is made with Kohn-Sham calculations with both exchange and correlation approximated. As a final conclusion, it is found that, within the present scheme, a qualitatively correct HF or GVB potential-energy curve, together with a correlation-energy approximation with correct dissociation behavior, is crucial for obtaining good estimates of spectroscopic constants.

  1. Direct comparisons between absolute and relative geomagnetic paleointensities: Absolute calibration of a relative paleointensity stack

    NASA Astrophysics Data System (ADS)

    Mochizuki, N.; Yamamoto, Y.; Hatakeyama, T.; Shibuya, H.

    2013-12-01

    Absolute geomagnetic paleointensities (APIs) have been estimated from igneous rocks, while relative paleomagnetic intensities (RPIs) have been reported from sediment cores. These two datasets have been treated separately, as correlations between APIs and RPIs are difficult on account of age uncertainties. High-resolution RPI stacks have been constructed from globally distributed sediment cores with high sedimentation rates. Previous studies often assumed that the RPI stacks have a linear relationship with geomagnetic axial dipole moments, and calibrated the RPI values to API values. However, the assumption of a linear relationship between APIs and RPIs has not been evaluated. Also, a quantitative calibration method for the RPI is lacking. We present a procedure for directly comparing API and RPI stacks, thus allowing reliable calibrations of RPIs. Direct comparisons between APIs and RPIs were conducted with virtually no associated age errors using both tephrochronologic correlations and RPI minima. Using the stratigraphic positions of tephra layers in oxygen isotope stratigraphic records, we directly compared the RPIs and APIs reported from welded tuffs contemporaneously extruded with the tephra layers. In addition, RPI minima during geomagnetic reversals and excursions were compared with APIs corresponding to the reversals and excursions. The comparison of APIs and RPIs at these exact points allowed a reliable calibration of the RPI values. We applied this direct comparison procedure to the global RPI stack PISO-1500. For six independent calibration points, virtual axial dipole moments (VADMs) from the corresponding APIs and RPIs of the PISO-1500 stack showed a near-linear relationship. On the basis of the linear relationship, RPIs of the stack were successfully calibrated to the VADMs. The direct comparison procedure provides an absolute calibration method that will contribute to the recovery of temporal variations and distributions of geomagnetic axial dipole

  2. Correlates of dietary energy sources with cardiovascular disease risk markers in Mexican school-age children.

    PubMed

    Perichart-Perera, Otilia; Balas-Nakash, Margie; Rodríguez-Cano, Ameyalli; Muñoz-Manrique, Cinthya; Monge-Urrea, Adriana; Vadillo-Ortega, Felipe

    2010-02-01

    Dietary and lifestyle changes in Mexico have been linked to an increase in chronic diseases such as obesity and cardiovascular disease. Important dietary changes such as an increase in the consumption of energy-dense foods (high in oils, animal or processed fats, and sugars) have been recently reported. The objective of this study was to identify how key dietary energy sources correlated with other indexes of cardiovascular disease in a Mexican school-age population. From 2004 to 2006, a convenience sample (n=228) of 9- to 13-year-olds, 48.2% girls and 51.8% boys, from three public urban schools were included. Anthropometric, blood pressure, and dietary assessment (two multiple pass 24-hour recalls) were done. More than half of children did not meet the fruit and vegetable recommended intake. High-fat dairy foods (14% of total energy intake), refined carbohydrates (13.5%), red/processed meat (8.5%), added sugars/desserts (7%), corn tortilla (6.5%), and soft drinks/sweetened beverages (5%) were the highest dietary energy sources consumed. In a subgroup of children (n=185), a fasting blood sample was collected for biochemical analysis. A positive association was observed between glucose and diastolic blood pressure with the intake of soft drinks/sweetened beverages, insulin concentrations and the intake of white bread, and triglyceride concentrations with the intake of added fats. Unhealthful dietary energy sources are frequently consumed by these children. Culturally competent nutrition counseling should be offered to Mexican-American children and their families with a significant risk of cardiovascular disease. Efforts should be made to design and implement nutrition education and health promotion strategies in schools. PMID:20102853

  3. Inequalities, Absolute Value, and Logical Connectives.

    ERIC Educational Resources Information Center

    Parish, Charles R.

    1992-01-01

    Presents an approach to the concept of absolute value that alleviates students' problems with the traditional definition and the use of logical connectives in solving related problems. Uses a model that maps numbers from a horizontal number line to a vertical ray originating from the origin. Provides examples solving absolute value equations and…

  4. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  5. Monolithically integrated absolute frequency comb laser system

    DOEpatents

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  6. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  7. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  8. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  9. A pediatric correlational study of stride interval dynamics, energy expenditure and activity level.

    PubMed

    Ellis, Denine; Sejdic, Ervin; Zabjek, Karl; Chau, Tom

    2014-08-01

    The strength of time-dependent correlations known as stride interval (SI) dynamics has been proposed as an indicator of neurologically healthy gait. Most recently, it has been hypothesized that these dynamics may be necessary for gait efficiency although the supporting evidence to date is scant. The current study examines over-ground SI dynamics, and their relationship with the cost of walking and physical activity levels in neurologically healthy children aged nine to 15 years. Twenty participants completed a single experimental session consisting of three phases: 10 min resting, 15 min walking and 10 min recovery. The scaling exponent (α) was used to characterize SI dynamics while net energy cost was measured using a portable metabolic cart, and physical activity levels were determined based on a 7-day recall questionnaire. No significant linear relationships were found between a and the net energy cost measures (r < .07; p > .25) or between α and physical activity levels (r = .01, p = .62). However, there was a marked reduction in the variance of α as activity levels increased. Over-ground stride dynamics do not appear to directly reflect energy conservation of gait in neurologically healthy youth. However, the reduction in the variance of α with increasing physical activity suggests a potential exercise-moderated convergence toward a level of stride interval persistence for able-bodied youth reported in the literature. This latter finding warrants further investigation. PMID:24722770

  10. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  11. Correlation measurements in nuclear {beta}-decay using traps and polarized low energy beams

    SciTech Connect

    Naviliat-Cuncic, Oscar

    2013-05-06

    Precision measurements in nuclear {beta}-decay provide sensitive means to test discrete symmetries in the weak interaction and to determine some of the fundamental constants in semi-leptonic decays, like the coupling of the lightest quarks to charged weak bosons. The main motivation of such measurements is to find deviations from Standard Model predictions as possible indications of new physics. In this contribution I will focus on two topics related to precision measurements in nuclear {beta}-decay: i) the determination of the V{sub ud} element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix from nuclear mirror transitions and ii) the search for exotic scalar or tensor contributions from {beta}{nu} angular correlations. The purpose is to underline the role being played by experimental techniques based on the confinement of radioactive species with atom and ion traps as well as the plans to use low energy polarized beams.

  12. Prediction of (1)P Rydberg energy levels of beryllium based on calculations with explicitly correlated Gaussians.

    PubMed

    Bubin, Sergiy; Adamowicz, Ludwik

    2014-01-14

    Benchmark variational calculations are performed for the seven lowest 1s(2)2s np ((1)P), n = 2...8, states of the beryllium atom. The calculations explicitly include the effect of finite mass of (9)Be nucleus and account perturbatively for the mass-velocity, Darwin, and spin-spin relativistic corrections. The wave functions of the states are expanded in terms of all-electron explicitly correlated Gaussian functions. Basis sets of up to 12,500 optimized Gaussians are used. The maximum discrepancy between the calculated nonrelativistic and experimental energies of 1s(2)2s np ((1)P) →1s(2)2s(2) ((1)S) transition is about 12 cm(-1). The inclusion of the relativistic corrections reduces the discrepancy to bellow 0.8 cm(-1). PMID:24437871

  13. Review of HBT or Bose-Einstein correlations in high energy heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Csörgö, T.

    2006-11-01

    A brief review is given on the discovery and the first five decades of the Hanbury Brown - Twiss effect and its generalized applications in high energy nuclear and particle physics, that includes a meta-review. Interesting and inspiring new directions are also highlighted, including for example source imaging, lepton and photon interferometry, non-Gaussian shape analysis as well as many other new directions. Existing models are compared to two-particle correlation measurements and the so-called RHIC HBT puzzle is resolved. Evidence for a (directional) Hubble flow is presented and the conclusion is confirmed by a successful description of the pseudorapidity dependence of the elliptic flow as measured in Au+Au collisions by the PHOBOS Collaboration.

  14. Relationship between unbranched alkane dimer interaction energies using different theoretical methods and correlations with thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Rojas, Laura; Ruette, Fernando; Peraza, Alexander; Castellano, Olga; Soscún, Humberto

    2015-04-01

    Interaction energies (Eint) were evaluated for n-alkanes dimers (C1-C10) using DFT-D, different functionals, and several basis sets. In addition, calculations were also carried out with DFTB-LD and MM3 and OPLS-AA force fields. Results show linear correlations of Eint with respect to those obtained from literature at high levels of theory (MP2 and CCSD(T)). Relationships between Eint and experimental heats of vaporization (ΔHv) and critical temperatures (Tc) were obtained with MP2, DFT-D, MM and DFTB-LD. This leads to good extrapolations for hairpin-hexadecane using MM3 and DFTB-LD for ΔHv and Tc, respectively. Dispersion in DFT is discussed.

  15. Minimum average correlation energy (MACE) prefilter networks for automatic target recognition

    NASA Astrophysics Data System (ADS)

    Hobson, Gregory L.; Sims, S. Richard F.; Gader, Paul D.; Keller, James M.

    1994-07-01

    Minimum average correlation energy (MACE) filters have been shown to be an effective generalization of the synthetic discriminant function (SDF) approach to automatic target recognition. The MACE filter has the advantage of having a very low false alarm rate, but suffers from a diminished probability of detection. Several generalizations have recently been proposed to maintain the low false alarm rate while increasing the probability of detection. The mathematical formulation of the MACE filter can be decomposed into a linear `prefilter' followed by an SDF-like operation. It is the prefiltering portion of the MACE which accounts for the low false alarm rate. In this paper, we insert a nonlinearity in this process by replacing the SDF portion of the operation by a neural network and show that we can increase the probability of detection without sacrificing low false alarm rates. This approach is demonstrated on a standard multiaspect image set and compared to the MACE and its generalizations.

  16. Iterative method for the design of SLM realizable minimum average correlation energy (MACE) filters

    NASA Astrophysics Data System (ADS)

    Rajan, P. Karivaratha; Ramakrishnan, R.

    1995-03-01

    Design of optical pattern recognition filters taking into account the nonideal characteristics of the spatial light modulators on which the filters are implemented is an important research problem. In this paper, an iterative method is developed for the design of SLM constrained minimum average correlation energy (MACE) filters. The algorithm uses a relaxation algorithm in conjunction with Juday's minimum euclidean distance (MED) mapping technique in an iterative manner. The performance of the filter designed using this method was evaluated using computer simulations and the results are compared with a constrained MACE filter designed using a software based on a simulated annealing technique. The new software requires much less computer time than the simulated annealing based software providing comparable response. The time taken by the new algorithm is more than that for the MED mapped design; but, the new algorithm provides less deviation from the specified response for training images than the MED mapped design.

  17. Test of the peak energy- luminosity correlations of GRBs for their application in cosmology

    NASA Astrophysics Data System (ADS)

    Sawant, Disha

    In a few dozen seconds gamma ray bursts (GRBs) emit upto 10 (54) ergs in terms of an equivalent isotropical radiated energy "E _{iso}", so they can be observed with redshifts almost upto 10. Thus, these phenomena appear to be very promising tools to shed light on the expansion rate and the history of the universe. Here we review the use of the E _{p,i} - E _{iso} correlation of GRBs to measure the cosmological density parameter Omega _{M}. We show that the present data set of gamma ray bursts, coupled with the assumption that we live in a flat universe, can provide independent evidence, from other probes, that Omega _{M} ˜ 0.3. As the first step, we consider verifying the correltion depending on several considerable criteria (e.g. E _{p,i} - E _{iso}, E _{p,i} - L _{iso}, E _{p,i} - L _{peak}, etc.). The results of the comparisons will lead us to verify the reliability of the correlations for cosmographical purpose. This will eventually be utilized to constrain GRBs as standard candles for studying cosmology.

  18. Linear free energy correlations for fission product release from the Fukushima-Daiichi nuclear accident.

    PubMed

    Abrecht, David G; Schwantes, Jon M

    2015-03-01

    This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the initial source of the radionuclides to the environment to be from active reactors rather than the spent fuel pool. Linear correlations of the form In χ = −α ((ΔGrxn°(TC))/(RTC)) + β were obtained between the deposited concentrations, and the reduction potentials of the fission product oxide species using multiple reduction schemes to calculate ΔG°rxn (TC). These models allowed an estimate of the upper bound for the reactor temperatures of TC between 2015 and 2060 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, and 151Sm through atmospheric venting during the first month following the accident were obtained, indicating that large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores. PMID:25675358

  19. Linear Free Energy Correlations for Fission Product Release from the Fukushima-Daiichi Nuclear Accident

    SciTech Connect

    Abrecht, David G.; Schwantes, Jon M.

    2015-03-03

    This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes, et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the source of the radionuclides to be from active reactors rather than the spent fuel pool. Linear correlations of the form ln χ = -α (ΔGrxn°(TC))/(RTC)+β were obtained between the deposited concentration and the reduction potential of the fission product oxide species using multiple reduction schemes to calculate ΔG°rxn(TC). These models allowed an estimate of the upper bound for the reactor temperatures of TC between 2130 K and 2220 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, 151Sm through atmospheric venting and releases during the first month following the accident were performed, and indicate large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.

  20. Atomization energies from coupled-cluster calculations augmented with explicitly-correlated perturbation theory.

    SciTech Connect

    Klopper, W.; Ruscic, B.; Tew, D. P.; Bischoff, F. A.; Wolfsegger, S.; Chemical Sciences and Engineering Division; Univ. Karlsruhe

    2008-11-17

    The atomization energies of the 105 molecules in the test set of Bakowies [D. Bakowies, J. Chem. Phys. 127 (2007) 084105] have been computed with an estimated standard deviation (from the values compiled in the Active Thermochemical Tables) of {+-}0.1 kJ/mol per valence electron in the molecule. Equilibrium geometries and harmonic vibrational frequencies were calculated at the all-electron CCSD(T)/cc-pCVTZ level, that is, at the level of coupled-cluster theory with singles, doubles and non-iterative triples in a correlation-consistent polarized core-valence triple-zeta basis. Single-point energy calculations were performed at the all-electron CCSD(T) level in a correlation-consistent polarized core-valence quadruple-zeta basis (cc-pCVQZ), and several corrections were added: (i) a correction for the basis-set truncation error, obtained from second-order perturbation theory using Slater-type geminals (MP2-F12 theory), (ii) a correction for the effect of anharmonicity on the zero-point vibrational energy, (iii) a relativistic correction, (iv) a correction for the difference between the full CCSDT model (coupled-cluster theory with singles, doubles and triples) and the CCSD(T) approximation, and (v) a correction for connected quadruple excitations obtained from CCSDT(Q) calculations. The correction for the basis-set truncation error was obtained from MP2-F12 calculations by scaling the MP2 basis-set truncation error by an empirically optimized 'interference factor' of f{sub int} = 0.78. The reference values from the Active Thermochemical Tables for 73 molecules in the test set, the equilibrium geometries, the harmonic vibrational frequencies, and all of the energy corrections represent valuable data for performance assessments of additivity schemes that will be developed in the future, in which the basis-set truncation error will be calculated at the level of coupled-cluster theory using Slater-type geminals (CC-F12 theory). Such a scheme will be free of empirical

  1. Energy-independent total quantum transmission of electrons through nanodevices with correlated disorder

    NASA Astrophysics Data System (ADS)

    Novotny, M. A.

    2014-10-01

    In nanostructures with no appreciable scattering, electrons propagate ballistically, and hence have energy-independent total quantum transmission. For an incoming electron of energy E, the probability T (E) of transmission is obtained from the solution of the time-independent Schrödinger equation. Ballistic transport hence corresponds to T (E)=1. We show that there is a wide class of nanostructures with correlated disorder that have T (E)=1 for all propagating modes, even though they can have strong scattering. We call these nanostructures quantum dragons. An exact mathematical mapping for quantum transmission valid for a large class of atomic arrangements is presented within the single-band tight-binding model. Quantum transmission through a nanostructure is exactly mapped onto quantum transmission through a one-dimensional chain. The mapping is applied to carbon nanotubes in the armchair and zigzag configurations, Bethe lattices, conjoined Bethe lattices, Bethe lattices with hopping within each ring, and tubes formed from rectangular and orthorhombic lattices. The mapping shows that tuning tight-binding parameters to particular correlated values gives T (E)=1 for all the systems studied. A quantum dragon has the same electrical conductivity as a ballistic nanodevice, namely, in a four-terminal measurement the electrical resistance is zero, while in a two-terminal measurement for the single-channel case, the electrical conductivity is equal to the conductance quantum G0=2e2/h, where h is Planck's constant and e the electron charge. We find T (E)=1 is ubiquitous but occurs only on particular surfaces in the tight-binding parameter space.

  2. Correlation between persistent forms of zeaxanthin-dependent energy dissipation and thylakoid protein phosphorylation.

    PubMed

    Ebbert, V; Demmig-Adams, B; Adams, W W; Mueh, K E; Staehelin, L A

    2001-01-01

    High light stress induced not only a sustained form of xanthophyll cycle-dependent energy dissipation but also sustained thylakoid protein phosphorylation. The effect of protein phosphatase inhibitors (fluoride and molybdate ions) on recovery from a 1-h exposure to a high PFD was examined in leaf discs of Parthenocissus quinquefolia (Virginia creeper). Inhibition of protein dephosphorylation induced zeaxanthin retention and sustained energy dissipation (NPQ) upon return to low PFD for recovery, but had no significant effects on pigment and Chl fluorescence characteristics under high light exposure. In addition, whole plants of Monstera deliciosa and spinach grown at low to moderate PFDs were transferred to high PFDs, and thylakoid protein phosphorylation pattern (assessed with anti-phosphothreonine antibody) as well as pigment and Chl fluorescence characteristics were examined over several days. A correlation was obtained between dark-sustained D1/D2 phosphorylation and dark-sustained zeaxanthin retention and maintenance of PS II in a state primed for energy dissipation in both species. The degree of these dark-sustained phenomena was more pronounced in M. deliciosa compared with spinach. Moreover, M. deliciosa but not spinach plants showed unusual phosphorylation patterns of Lhcb proteins with pronounced dark-sustained Lhcb phosphorylation even under low PFD growth conditions. Subsequent to the transfer to a high PFD, dark-sustained Lhcb protein phosphorylation was further enhanced. Thus, phosphorylation patterns of D1/D2 and Lhcb proteins differed from each other as well as among plant species. The results presented here suggest an association between dark-sustained D1/D2 phosphorylation and sustained retention of zeaxanthin and energy dissipation (NPQ) in light-stressed, and particularly 'photoinhibited', leaves. Functional implications of these observations are discussed. PMID:16228317

  3. Forward-backward multiplicity correlations caused by centrality fluctuations in high-energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    He, Ronghua; Qian, Jing; Huo, Lei

    2016-04-01

    We consider that most of the long-range forward-backward multiplicity (FB) correlations in high energy A -A collisions are caused by the centrality fluctuation, and this phenomenon interferes with the measurement of the dynamical correlations greatly. We investigate the relationship between FB correlation strength and centrality by a Monte Carlo simulation and a derivation which are tested by A MultiPhases Transport (AMPT) model in Au+Au collisions at √{sNN}=200 GeV. We compare the FB correlation strengths of AMPT model with the results of the derivation at √{sNN} = 7.7 to 200 GeV. A comparison between the default AMPT model and string melting AMPT model with different partonic scattering sections is made. As a result, we consider that the FB correlation strengths may be dominated by the mixing of different centrality events, and the short-range correlation may be overwhelmed for the most central collisions.

  4. Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    SciTech Connect

    Abreu, P.; Aglietta, M.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; /Wisconsin U., Milwaukee /Lisbon, IST

    2010-06-01

    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuzmin energy threshold, 6 x 10{sup 19} eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1{sup o} from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38{sub -6}{sup +7})%, compared with 21% expected for isotropic cosmic rays. This is down from the early estimate of (69{sub -13}{sup +11})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.

  5. Environment degradation, economic growth and energy consumption nexus: A wavelet-windowed cross correlation approach

    NASA Astrophysics Data System (ADS)

    Jammazi, Rania; Aloui, Chaker

    2015-10-01

    This paper analyzes the interactive linkages between carbon dioxide (CO2) emissions, energy consumption (EC) and economic growth (EG) using a novel approach namely wavelet windowed cross correlation (WWCC) for six oil-exporting countries from the GCC (Gulf Cooperation Council) region over the period 1980-2012. Our empirical results show that there exists a bidirectional causal relationship between EC and EG. However, the results support the occurrence of unidirectional causality from EC to CO2 emissions without any feedback effects, and there exists a bidirectional causal relationship between EG and CO2 emissions for the region as a whole. The study suggests that environmental and energy policies should recognize the differences in the nexus between EC and EG in order to maintain sustainable EG in the GCC region. Our findings will be useful for GCC countries to better evaluate its situation in the future climate negotiations. The overall findings will help GCC countries assess its position better in future climate change negotiations.

  6. Explicitly correlated potential energy surface of H3+, including relativistic and adiabatic corrections.

    PubMed

    Kutzelnigg, Werner; Jaquet, Ralph

    2006-11-15

    After a short historical account of the theory of the H3+ ion, two ab initio methods are reviewed that allow the computation of the ground-state potential energy surface (PES) of H3+ in the Born-Oppenheimer (BO) approximation, with microhartree or even sub-microhartree accuracy, namely the R12 method and the method of explicitly correlated Gaussians. The BO-PES is improved by the inclusion of relativistic effects and adiabatic corrections. It is discussed how non-adiabatic effects on rotation and vibration can be simulated by corrections to the moving nuclear masses. The importance of the appropriate analytic fit to the computed points of the PES for the subsequent computation of the rovibronic spectrum is addressed. Some recent extensions of the computed PES in the energy region above the barrier to linearity are reviewed. This involves a large set of input geometries and the correct treatment of the dissociation asymptotics, including the coupling with the first excited singlet state. Some comments on this state as well as on the lowest triplet state of H3+ are made. The paper ends with a few remarks on the ion H5+. PMID:17015373

  7. Absolute optical instruments without spherical symmetry

    NASA Astrophysics Data System (ADS)

    Tyc, Tomáš; Dao, H. L.; Danner, Aaron J.

    2015-11-01

    Until now, the known set of absolute optical instruments has been limited to those containing high levels of symmetry. Here, we demonstrate a method of mathematically constructing refractive index profiles that result in asymmetric absolute optical instruments. The method is based on the analogy between geometrical optics and classical mechanics and employs Lagrangians that separate in Cartesian coordinates. In addition, our method can be used to construct the index profiles of most previously known absolute optical instruments, as well as infinitely many different ones.

  8. Renormalized second-order perturbation theory for the electron correlation energy: Concept, implementation, and benchmarks

    NASA Astrophysics Data System (ADS)

    Ren, Xinguo; Rinke, Patrick; Scuseria, Gustavo E.; Scheffler, Matthias

    2013-07-01

    We present a renormalized second-order perturbation theory (rPT2), based on a Kohn-Sham (KS) reference state, for the electron correlation energy that includes the random-phase approximation (RPA), second-order screened exchange (SOSEX), and renormalized single excitations (rSE). These three terms all involve a summation of certain types of diagrams to infinite order, and can be viewed as ``renormalization'' of the second-order direct, exchange, and single-excitation (SE) terms of Rayleigh-Schrödinger perturbation theory based on a KS reference. In this work, we establish the concept of rPT2 and present the numerical details of our SOSEX and rSE implementations. A preliminary version of rPT2, in which the renormalized SE (rSE) contribution was treated approximately, has already been benchmarked for molecular atomization energies and chemical reaction barrier heights and shows a well-balanced performance [J. Paier , New J. Phys.1367-263010.1088/1367-2630/14/4/043002 14, 043002 (2012)]. In this work, we present a refined version of rPT2, in which we evaluate the rSE series of diagrams rigorously. We then extend the benchmark studies to noncovalent interactions, including the rare-gas dimers, and the S22 and S66 test sets, as well as the cohesive energy of small copper clusters, and the equilibrium geometry of 10 diatomic molecules. Despite some remaining shortcomings, we conclude that rPT2 gives an overall satisfactory performance across different electronic situations, and is a promising step towards a generally applicable electronic-structure approach.

  9. Precise all-electron dynamical response functions: Application to COHSEX and the RPA correlation energy

    NASA Astrophysics Data System (ADS)

    Betzinger, Markus; Friedrich, Christoph; Görling, Andreas; Blügel, Stefan

    2015-12-01

    We present a methodology to calculate frequency and momentum dependent all-electron response functions determined within Kohn-Sham density functional theory. It overcomes the main obstacle in calculating response functions in practice, which is the slow convergence with respect to the number of unoccupied states and the basis-set size. In this approach, the usual sum-over-states expression of perturbation theory is complemented by the response of the orbital basis functions, explicitly constructed by radial integrations of frequency-dependent Sternheimer equations. To an essential extent an infinite number of unoccupied states are included in this way. Furthermore, the response of the core electrons is treated virtually exactly, which is out of reach otherwise. The method is an extension of the recently introduced incomplete-basis-set correction (IBC) [Betzinger et al., Phys. Rev. B 85, 245124 (2012), 10.1103/PhysRevB.85.245124; Phys. Rev. B 88, 075130 (2013), 10.1103/PhysRevB.88.075130] to the frequency and momentum domain. We have implemented the generalized IBC within the all-electron full-potential linearized augmented-plane-wave method and demonstrate for rocksalt BaO the improved convergence of the dynamical Kohn-Sham polarizability. We apply this technique to compute (a) quasiparticle energies employing the COHSEX approximation for the self-energy of many-body perturbation theory and (b) all-electron RPA correlation energies. It is shown that the favorable convergence of the polarizability is passed over to the COHSEX and RPA calculation.

  10. Four Years of Absolute Gravity in the Taiwan Orogen (AGTO)

    NASA Astrophysics Data System (ADS)

    Mouyen, M.; Masson, F.; Hwang, C.; Cheng, C.; Le Moigne, N.; Lee, C.; Kao, R.; Hsieh, N.

    2009-12-01

    AGTO is a scientific project between Taiwanese and French institutes which aim is to improve tectonic knowledge of Taiwan primarily using absolute gravity measurements and permanent GPS stations. Both tools are indeed useful to study vertical movements and mass transfers involved in mountain building, a major process in Taiwan located at the convergent margin between Philippine Sea plate and Eurasian plate. This convergence results in two subductions north and south of Taiwan (Ryukyu and Manilla trenches, respectively), while the center is experiencing collision. These processes make Taiwan very active tectonically, as illustrated by numerous large earthquakes and rapid uplift of the Central Range. High slopes of Taiwan mountains and heavy rains brought by typhoons together lead to high landslides and mudflows risks. Practically, absolute gravity measurements have been yearly repeated since 2006 along a transect across south Taiwan, from Penghu to Lutao island, using FG5 absolute gravimeters. This transect contains ten sites for absolute measurements and has been densified in 2008 by incorporating 45 sites for relative gravity measurements with CG5 gravimeters. At the end of 2009, the relative gravity network will be densified again in its eastern part, i.e. in the Longitudinal Valley and the Central Range. A fourth set of absolute gravity measurements will also be performed at the same period. Most of the absolute sites have been measured with a good accuracy, about 1 or 2 μGal. Only the site located in Tainan University has higher standard deviation, due to the city noise. The stronger change in gravity reaches -7 μGal a -1 west of the Longitudinal Valley and might be explained by tectonic movement along a fault. A large decrease of -5 μGal a-1 is also measured in Tainan city and could be correlated with uplift of this region, also denoted by InSAR, leveling and GPS. Changes occurring in the Central Range are more difficult to interpret due to the small

  11. Absolute Timing of the Crab Pulsar with RXTE

    NASA Technical Reports Server (NTRS)

    Rots, Arnold H.; Jahoda, Keith; Lyne, Andrew G.

    2004-01-01

    We have monitored the phase of the main X-ray pulse of the Crab pulsar with the Rossi X-ray Timing Explorer (RXTE) for almost eight years, since the start of the mission in January 1996. The absolute time of RXTE's clock is sufficiently accurate to allow this phase to be compared directly with the radio profile. Our monitoring observations of the pulsar took place bi-weekly (during the periods when it was at least 30 degrees from the Sun) and we correlated the data with radio timing ephemerides derived from observations made at Jodrell Bank. We have determined the phase of the X-ray main pulse for each observation with a typical error in the individual data points of 50 microseconds. The total ensemble is consistent with a phase that is constant over the monitoring period, with the X-ray pulse leading the radio pulse by 0.01025 plus or minus 0.00120 period in phase, or 344 plus or minus 40 microseconds in time. The error estimate is dominated by a systematic error of 40 microseconds, most likely constant, arising from uncertainties in the instrumental calibration of the radio data. The statistical error is 0.00015 period, or 5 microseconds. The separation of the main pulse and interpulse appears to be unchanging at time scales of a year or less, with an average value of 0.4001 plus or minus 0.0002 period. There is no apparent variation in these values with energy over the 2-30 keV range. The lag between the radio and X-ray pulses ma be constant in phase (i.e., rotational in nature) or constant in time (i.e., due to a pathlength difference). We are not (yet) able to distinguish between these two interpretations.

  12. THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET

    SciTech Connect

    Brown, Peter J.; Roming, Peter W. A.; Ciardullo, Robin; Gronwall, Caryl; Hoversten, Erik A.; Pritchard, Tyler; Milne, Peter; Bufano, Filomena; Mazzali, Paolo; Elias-Rosa, Nancy; Filippenko, Alexei V.; Li Weidong; Foley, Ryan J.; Hicken, Malcolm; Kirshner, Robert P.; Gehrels, Neil; Holland, Stephen T.; Immler, Stefan; Phillips, Mark M.; Still, Martin

    2010-10-01

    We examine the absolute magnitudes and light-curve shapes of 14 nearby (redshift z = 0.004-0.027) Type Ia supernovae (SNe Ia) observed in the ultraviolet (UV) with the Swift Ultraviolet/Optical Telescope. Colors and absolute magnitudes are calculated using both a standard Milky Way extinction law and one for the Large Magellanic Cloud that has been modified by circumstellar scattering. We find very different behavior in the near-UV filters (uvw1{sub rc} covering {approx}2600-3300 A after removing optical light, and u {approx} 3000-4000 A) compared to a mid-UV filter (uvm2 {approx}2000-2400 A). The uvw1{sub rc} - b colors show a scatter of {approx}0.3 mag while uvm2-b scatters by nearly 0.9 mag. Similarly, while the scatter in colors between neighboring filters is small in the optical and somewhat larger in the near-UV, the large scatter in the uvm2 - uvw1 colors implies significantly larger spectral variability below 2600 A. We find that in the near-UV the absolute magnitudes at peak brightness of normal SNe Ia in our sample are correlated with the optical decay rate with a scatter of 0.4 mag, comparable to that found for the optical in our sample. However, in the mid-UV the scatter is larger, {approx}1 mag, possibly indicating differences in metallicity. We find no strong correlation between either the UV light-curve shapes or the UV colors and the UV absolute magnitudes. With larger samples, the UV luminosity might be useful as an additional constraint to help determine distance, extinction, and metallicity in order to improve the utility of SNe Ia as standardized candles.

  13. Absolute Radiometric Calibration of KOMPSAT-3A

    NASA Astrophysics Data System (ADS)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  14. The Electromotive Series and Other Non-Absolute Scales

    NASA Astrophysics Data System (ADS)

    Peckham, Gavin D.

    1998-01-01

    This article describes an analogy which may be used to illustrate the principles that underlie the establishment of non-absolute scales of measurements that are evaluated relative to a chosen reference point. The analogy is interwoven with the establishment of the electromotive series, but may be extended to other parameters such as the Celsius and Fahrenheit temperature scales, potential energies, formation and reaction enthalpies, etc.

  15. Absolute magnitudes of trans-neptunian objects

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Alvarez-candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Morales, N.; Santos-Sanz, P.; Thirouin, A.

    2015-10-01

    Accurate measurements of diameters of trans- Neptunian objects are extremely complicated to obtain. Radiomatric techniques applied to thermal measurements can provide good results, but precise absolute magnitudes are needed to constrain diameters and albedos. Our objective is to measure accurate absolute magnitudes for a sample of trans- Neptunian objects, many of which have been observed, and modelled, by the "TNOs are cool" team, one of Herschel Space Observatory key projects grantes with ~ 400 hours of observing time. We observed 56 objects in filters V and R, if possible. These data, along with data available in the literature, was used to obtain phase curves and to measure absolute magnitudes by assuming a linear trend of the phase curves and considering magnitude variability due to rotational light-curve. In total we obtained 234 new magnitudes for the 56 objects, 6 of them with no reported previous measurements. Including the data from the literature we report a total of 109 absolute magnitudes.

  16. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  17. The Pairwise Correlated Generalized Valence Bond Model of Electronic Structure I; The Estimation of Pair Energies from Orbital Overlaps

    PubMed Central

    Petersson, G. A.

    1974-01-01

    A new method for the accurate a priori calculation of atomic and molecular energies is proposed. The new method agrees with experiment to within less than 1 kcal/mole in all cases examined thus far, and is applicable to excited states and to transition states for chemical reactions. Since the new method corrects the results of generalized valence bond calculations for the effects of electron pair correlations, we call the new method the pairwise correlated generalized valence bond method. PMID:16592172

  18. Correlation between peak energy and Fourier power density spectrum slope in gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Dichiara, S.; Guidorzi, C.; Amati, L.; Frontera, F.; Margutti, R.

    2016-05-01

    Context. The origin of the gamma-ray burst (GRB) prompt emission still defies explanation, in spite of recent progress made, for example, on the occasional presence of a thermal component in the spectrum along with the ubiquitous non-thermal component that is modelled with a Band function. The combination of finite duration and aperiodic modulations make GRBs hard to characterise temporally. Although correlations between GRB luminosity and spectral hardness on one side and time variability on the other side have long been known, the loose and often arbitrary definition of the latter makes the interpretation uncertain. Aims: We characterise the temporal variability in an objective way and search for a connection with rest-frame spectral properties for a number of well-observed GRBs. Methods: We studied the individual power density spectra (PDS) of 123 long GRBs with measured redshift, rest-frame peak energy Ep,i of the time-averaged ν Fν spectrum, and well-constrained PDS slope α detected with Swift, Fermi and past spacecraft. The PDS were modelled with a power law either with or without a break adopting a Bayesian Markov chain Monte Carlo technique. Results: We find a highly significant Ep,i-α anti-correlation. The null hypothesis probability is ~10-9. Conclusions: In the framework of the internal shock synchrotron model, the Ep,i-α anti-correlation can hardly be reconciled with the predicted Ep,i ∝ Γ-2, unless either variable microphysical parameters of the shocks or continual electron acceleration are assumed. Alternatively, in the context of models based on magnetic reconnection, the PDS slope and Ep,i are linked to the ejecta magnetisation at the dissipation site, so that more magnetised outflows would produce more variable GRB light curves at short timescales (≲1 s), shallower PDS, and higher values of Ep,i. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  19. Correlation between peak energy and Fourier power density spectrum slope in gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Dichiara, S.; Guidorzi, C.; Amati, L.; Frontera, F.; Margutti, R.

    2016-04-01

    Context. The origin of the gamma-ray burst (GRB) prompt emission still defies explanation, in spite of recent progress made, for example, on the occasional presence of a thermal component in the spectrum along with the ubiquitous non-thermal component that is modelled with a Band function. The combination of finite duration and aperiodic modulations make GRBs hard to characterise temporally. Although correlations between GRB luminosity and spectral hardness on one side and time variability on the other side have long been known, the loose and often arbitrary definition of the latter makes the interpretation uncertain. Aims: We characterise the temporal variability in an objective way and search for a connection with rest-frame spectral properties for a number of well-observed GRBs. Methods: We studied the individual power density spectra (PDS) of 123 long GRBs with measured redshift, rest-frame peak energy Ep,i of the time-averaged ν Fν spectrum, and well-constrained PDS slope α detected with Swift, Fermi and past spacecraft. The PDS were modelled with a power law either with or without a break adopting a Bayesian Markov chain Monte Carlo technique. Results: We find a highly significant Ep,i-α anti-correlation. The null hypothesis probability is ~10-9. Conclusions: In the framework of the internal shock synchrotron model, the Ep,i-α anti-correlation can hardly be reconciled with the predicted Ep,i ∝ Γ-2, unless either variable microphysical parameters of the shocks or continual electron acceleration are assumed. Alternatively, in the context of models based on magnetic reconnection, the PDS slope and Ep,i are linked to the ejecta magnetisation at the dissipation site, so that more magnetised outflows would produce more variable GRB light curves at short timescales (≲1 s), shallower PDS, and higher values of Ep,i. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  20. Correlation Energy of the Homogeneous Electron Gas from Adiabatic Connection Fluctuation-Dissipation Theory including Exact Exchange kernel

    NASA Astrophysics Data System (ADS)

    Colonna, Nicola; de Gironcoli, Stefano

    2014-03-01

    We have developed an expression for the electronic correlation energy via the Adiabatic Connection Fluctuation-Dissipation Theorem (ACFDT) going beyond the Random-Phase Approximation (RPA) by including exact exchange contribution to the kernel (RPAx). Our derivation is valid and efficient for general systems. It is based on an eigenvalue decomposition of the time dependent response function of the Many Body system in the limit of vanishing coupling constant, evaluated by Density Functional Perturbation Theory. We tested the accuracy of this approximation on the homogeneous electron gas. Within RPAx, the correlation energy of the homogeneous electron gas improves significantly with respect to the RPA results up to densities of the order of rs ~ 10 . However, beyond this value, the RPAx response function becomes pathological and the approximation breaks down. We have also evaluated the dependence of the correlation energy on the spin magnetization of the system. Both RPA an RPAx are in excellent agreement with accurate Quantum Monte Carlo results.

  1. A comparison of short-term measurements of lake evaporation using eddy correlation and energy budget methods

    USGS Publications Warehouse

    Stannard, D.I.; Rosenberry, D.O.

    1991-01-01

    Concurrent short-term measurements of evaporation from a shallow lake, using eddy correlation and energy budget methods, indicate that sensible and latent heat flux between lake and atmosphere, and energy storage in the lake, may vary considerably across the lake. Measuring net radiation with a net radiometer on the lake appeared to be more accurate than measuring incoming radiation nearby and modeling outgoing radiation. Short-term agreement between the two evaporation measurements was obtained by using an energy storage term that was weighted to account for the area-of-influence of the eddy correlation sensors. Relatively short bursts of evaporation were indicated by the eddy correlation sensors shortly after midnight on two of three occasions. ?? 1991.

  2. Multi-particle correlation observables in high energy nucleus-nucleus collisions

    SciTech Connect

    Stock, R.

    1981-01-01

    Global features of exclusively measured events, including number correlations and vector correlations, and hybrid analysis of measurements of one or two specific fragments like spectator nuclei, high transverse momentum particles, polarization of one particle, etc., are considered. (GHT)

  3. Ion Beam Analysis Of Silicon-Based Surfaces And Correlation With Surface Energy Measurements

    NASA Astrophysics Data System (ADS)

    Xing, Qian; Herbots, N.; Hart, M.; Bradley, J. D.; Wilkens, B. J.; Sell, D. A.; Sell, Clive H.; Kwong, Henry Mark; Culbertson, R. J.; Whaley, S. D.

    2011-06-01

    The water affinity of Si-based surfaces is quantified by contact angle measurement and surface free energy to explain hydrophobic or hydrophilic behavior of silicone, silicates, and silicon surfaces. Surface defects such as dangling bonds, surface free energy including Lewis acid-base and Lifshitz-van der Waals components are discussed. Water nucleation and condensation is further explained by surface topography. Tapping mode atomic force microscopy (TMAFM) provides statistical analysis of the topography of these Si-based surfaces. The correlation of the above two characteristics describes the behavior of water condensation at Si-based surfaces. Surface root mean square roughness increasing from several Å to several nm is found to provide nucleation sites that expedite water condensation visibly for silica and silicone. Hydrophilic surfaces have a condensation pattern that forms puddles of water while hydrophobic surfaces form water beads. Polymer adsorption on these surfaces alters the water affinity as well as the surface topography, and therefore controls condensation on Si-based surfaces including silicone intraocular lens (IOL). The polymer film is characterized by Rutherford backscattering spectrometry (RBS) in conjunction with 4.265 MeV 12C(α, α)12C, 3.045 MeV 16O(α,α)16O nuclear resonance scattering (NRS), and 2.8 MeV elastic recoil detection (ERD) of hydrogen for high resolution composition and areal density measurements. The areal density of hydroxypropyl methylcellulose (HPMC) film ranges from 1018 atom/cm2 to 1019 atom/cm2 gives the silica or silicone surface a roughness of several Å and a wavelength of 0.16±0.02 μm, and prevents fogging by forming a complete wetting layer during water condensation.

  4. Energy fluctuation of a finite number of interacting bosons: A correlated many-body approach

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Satadal; Lekala, M. L.; Chakrabarti, Barnali; Rampho, G. J.

    2016-03-01

    We calculate the energy fluctuation of a truly finite number of interacting bosons and study the role of interaction. Although the ideal Bose gas in thermodynamic limit is an exactly solvable problem and analytic expression of various fluctuation measures exists, the experimental Bose-Einstein condensation (BEC) is a nontrivial many-body problem. We employ a two-body correlated basis function and utilize the realistic van der Waals interaction. We calculate the energy fluctuation (△E2) of the interacting trapped bosons and plot △E/2 kB2T2 as a function of T/Tc. In the classical limit △E2 is related to the specific heat per particle cv through the relation △E2=kBT2cv . We have obtained a distinct hump in △E/2 kB2T2 around the condensation point for three-dimesional harmonically trapped Bose gas when the particle number N ≃5000 and above which corresponds to the second-order phase transition. However for finite-size interacting bosons (N ≃ a few hundred) the hump is not sharp, and the maximum in △E/2 kB2T2 can be interpreted as a smooth increase in the scaled fluctuation below Tc and then a decrease above Tc. To illustrate the justification we also calculate cv, which exhibits the same feature, which leads to the conjecture that for finite-sized interacting bosons phase transition is ruled out.

  5. Ion Beam Analysis Of Silicon-Based Surfaces And Correlation With Surface Energy Measurements

    SciTech Connect

    Xing Qian; Herbots, N.; Hart, M.; Bradley, J. D.; Wilkens, B. J.; Sell, D. A.; Culbertson, R. J.; Whaley, S. D.; Sell, Clive H.; Kwong, Henry Mark Jr.

    2011-06-01

    The water affinity of Si-based surfaces is quantified by contact angle measurement and surface free energy to explain hydrophobic or hydrophilic behavior of silicone, silicates, and silicon surfaces. Surface defects such as dangling bonds, surface free energy including Lewis acid-base and Lifshitz-van der Waals components are discussed. Water nucleation and condensation is further explained by surface topography. Tapping mode atomic force microscopy (TMAFM) provides statistical analysis of the topography of these Si-based surfaces. The correlation of the above two characteristics describes the behavior of water condensation at Si-based surfaces. Surface root mean square roughness increasing from several A ring to several nm is found to provide nucleation sites that expedite water condensation visibly for silica and silicone. Hydrophilic surfaces have a condensation pattern that forms puddles of water while hydrophobic surfaces form water beads. Polymer adsorption on these surfaces alters the water affinity as well as the surface topography, and therefore controls condensation on Si-based surfaces including silicone intraocular lens (IOL). The polymer film is characterized by Rutherford backscattering spectrometry (RBS) in conjunction with 4.265 MeV {sup 12}C({alpha}, {alpha}){sup 12}C, 3.045 MeV {sup 16}O({alpha},{alpha}){sup 16}O nuclear resonance scattering (NRS), and 2.8 MeV elastic recoil detection (ERD) of hydrogen for high resolution composition and areal density measurements. The areal density of hydroxypropyl methylcellulose (HPMC) film ranges from 10{sup 18} atom/cm{sup 2} to 10{sup 19} atom/cm{sup 2} gives the silica or silicone surface a roughness of several A ring and a wavelength of 0.16{+-}0.02 {mu}m, and prevents fogging by forming a complete wetting layer during water condensation.

  6. Communication: Two-component ring-coupled-cluster computation of the correlation energy in the random-phase approximation

    SciTech Connect

    Krause, Katharina; Klopper, Wim

    2013-11-21

    Within the framework of density-functional theory, the correlation energy is computed in the random-phase approximation (RPA) using spinors obtained from a two-component relativistic Kohn–Sham calculation accounting for spin–orbit interactions. Ring-coupled-cluster equations are solved to obtain the two-component RPA correlation energy. Results are presented for the hydrides of the halogens Br, I, and At as well as of the coinage metals Cu, Ag, and Au, based on two-component relativistic exact-decoupling Kohn–Sham calculations.

  7. Analysis of Correlations between Energy and Residue Fluctuations in Native Proteins and Determination of Specific Sites for Binding

    NASA Astrophysics Data System (ADS)

    Haliloglu, Turkan; Erman, Burak

    2009-02-01

    The Gaussian network model is used to derive the correlations between energy and residue fluctuations in native proteins. Residues are identified that respond strongly to energy fluctuations and that display correlations with the remaining residues of the protein at the highest modes. We postulate that these residues are located at specific sites for drug binding. We test the validity of this postulate on a data set of 33 structurally distinct proteins in the unbound state. Detailed results are presented for drug binding to the HIV protease.

  8. Communication: Two-component ring-coupled-cluster computation of the correlation energy in the random-phase approximation

    NASA Astrophysics Data System (ADS)

    Krause, Katharina; Klopper, Wim

    2013-11-01

    Within the framework of density-functional theory, the correlation energy is computed in the random-phase approximation (RPA) using spinors obtained from a two-component relativistic Kohn-Sham calculation accounting for spin-orbit interactions. Ring-coupled-cluster equations are solved to obtain the two-component RPA correlation energy. Results are presented for the hydrides of the halogens Br, I, and At as well as of the coinage metals Cu, Ag, and Au, based on two-component relativistic exact-decoupling Kohn-Sham calculations.

  9. Probing Collins conjecture with correlation energies and entanglement entropies for the ground state of the helium isoelectronic sequence

    NASA Astrophysics Data System (ADS)

    Ho, Yew Kam; Lin, Yen-Chang

    2016-05-01

    Correlation energy of a quantum system is defined as the difference between its exact energy Eex, and its Hartree-Fock energy EHF. In a recent related development, entanglement measures can be quantified with von Neumann entropy SvN(ρ) = - Tr(ρlog2 ρ) or linear entropy SL(ρ) = 1 - Tr(ρ2) , where ρ is the one-particle reduced density matrix, and Tr(ρ2) is defined as the purity of state. In the present work we calculate SL and SvN for the ground 1s21 S states in helium-like ions for Z = 2 to 15, using configuration interaction (CI) with B-Spline basis up to about 6000 terms to construct the wave functions, and with which density matrix, linear and von Neumann entropies are calculated. We have found close relationship between the reduced correlation energy, defined as Ecorr = (ECI- EHF) /ECI (with ECI being our calculated energy), and SL or SvN. Our results support Collins conjecture that there is a linear relationship between correlation energy and entanglement entropy, i.e., Ecorr = CS, where C is called Collins constant. Using the calculated ground state energies for Z = 2 to Z = 15, and the entanglement measured with linear entropy SL for such states, C is determined as 0.90716. At the meeting, we will present result for Collins constant determined from von Neumann entropy, and details of our calculations. This work was supported by the MOST in Taiwan.

  10. Absolute spectrum and charge ratio of cosmic ray muons in the energy region from 0.2 GeV to 100 GeV at 600 m above sea level

    NASA Technical Reports Server (NTRS)

    De Pascale, M. P.; Morselli, A.; Picozza, P.; Golden, R. L.; Grimani, C.; Kimbell, B. L.; Stephens, S. A.; Stochaj, S. J.; Webber, W. R.; Basini, G.

    1993-01-01

    We have determined the momentum spectrum and charge ratio of muons in the region from 250 MeV/c to 100 GeV/c using a superconducting magnetic spectrometer. The absolute differential spectrum of muons obtained in this experiment at 600 m above sea level is in good agreement with the previous measurements at sea level. The differential spectrum can be represented by a power law with a varying index, which is consistent with zero below 450 MeV/c and steepens to a value of -2.7 +/- 0.1 between 20 and 100 GeV/c. The integral f1ux of muons measured in this experiment span a very large range of momentum and is in excellent agreement with the earlier results. The positive to negative muon ratio appears to be constant in the entire momentum range covered in this experiment within the errors and the mean value is 1.220 +/- 0.044. The absolute momentum spectrum and the charge ratio measured in this experiment are also consistent with the theoretical expectations. This is the only experiment which covers a wide range of nearly three decades in momentum from a very low momentum.

  11. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed. PMID:19831037

  12. Absolute calibration for a broad range single shot electron spectrometer

    SciTech Connect

    Glinec, Y.; Faure, J.; Guemnie-Tafo, A.; Malka, V.; Monard, H.; Larbre, J. P.; De Waele, V.; Marignier, J. L.; Mostafavi, M.

    2006-10-15

    This article gives a detailed description of a single shot electron spectrometer which was used to characterize electron beams produced by laser-plasma interaction. Contrary to conventional electron sources, electron beams from laser-plasma accelerators can produce a broad range of energies. Therefore, diagnosing these electron spectra requires specific attention and experimental development. Here, we provide an absolute calibration of the Lanex Kodak Fine screen on a laser-triggered radio frequency picosecond electron accelerator. The efficiency of scintillating screens irradiated by electron beams has never been investigated so far. This absolute calibration is then compared to charge measurements from an integrating current transformer for quasimonoenergetic electron spectra from laser-plasma interaction.

  13. From Hubble's Next Generation Spectral Library (NGSL) to Absolute Fluxes

    NASA Astrophysics Data System (ADS)

    Heap, S. R.; Lindler, D.

    2016-05-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R˜1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18–1.03 μ. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsl/. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We have therefore developed an observing procedure, data-reduction procedure, and correction algorithms that should yield fluxes with uncertainties less than 1%.

  14. Absolute calibration for a broad range single shot electron spectrometer

    NASA Astrophysics Data System (ADS)

    Glinec, Y.; Faure, J.; Guemnie-Tafo, A.; Malka, V.; Monard, H.; Larbre, J. P.; De Waele, V.; Marignier, J. L.; Mostafavi, M.

    2006-10-01

    This article gives a detailed description of a single shot electron spectrometer which was used to characterize electron beams produced by laser-plasma interaction. Contrary to conventional electron sources, electron beams from laser-plasma accelerators can produce a broad range of energies. Therefore, diagnosing these electron spectra requires specific attention and experimental development. Here, we provide an absolute calibration of the Lanex Kodak Fine screen on a laser-triggered radio frequency picosecond electron accelerator. The efficiency of scintillating screens irradiated by electron beams has never been investigated so far. This absolute calibration is then compared to charge measurements from an integrating current transformer for quasimonoenergetic electron spectra from laser-plasma interaction.

  15. Soft computing analysis of the possible correlation between temporal and energy release patterns in seismic activity

    NASA Astrophysics Data System (ADS)

    Konstantaras, Anthony; Katsifarakis, Emmanouil; Artzouxaltzis, Xristos; Makris, John; Vallianatos, Filippos; Varley, Martin

    2010-05-01

    This paper is a preliminary investigation of the possible correlation of temporal and energy release patterns of seismic activity involving the preparation processes of consecutive sizeable seismic events [1,2]. The background idea is that during periods of low-level seismic activity, stress processes in the crust accumulate energy at the seismogenic area whilst larger seismic events act as a decongesting mechanism releasing considerable energy [3,4]. A dynamic algorithm is being developed aiming to identify and cluster pre- and post- seismic events to the main earthquake following on research carried out by Zubkov [5] and Dobrovolsky [6,7]. This clustering technique along with energy release equations dependent on Richter's scale [8,9] allow for an estimate to be drawn regarding the amount of the energy being released by the seismic sequence. The above approach is being implemented as a monitoring tool to investigate the behaviour of the underlying energy management system by introducing this information to various neural [10,11] and soft computing models [1,12,13,14]. The incorporation of intelligent systems aims towards the detection and simulation of the possible relationship between energy release patterns and time-intervals among consecutive sizeable earthquakes [1,15]. Anticipated successful training of the imported intelligent systems may result in a real-time, on-line processing methodology [1,16] capable to dynamically approximate the time-interval between the latest and the next forthcoming sizeable seismic event by monitoring the energy release process in a specific seismogenic area. Indexing terms: pattern recognition, long-term earthquake precursors, neural networks, soft computing, earthquake occurrence intervals References [1] Konstantaras A., Vallianatos F., Varley M.R. and Makris J. P.: ‘Soft computing modelling of seismicity in the southern Hellenic arc', IEEE Geoscience and Remote Sensing Letters, vol. 5 (3), pp. 323-327, 2008 [2] Eneva M. and

  16. Soft computing analysis of the possible correlation between temporal and energy release patterns in seismic activity

    NASA Astrophysics Data System (ADS)

    Konstantaras, Anthony; Katsifarakis, Emmanouil; Artzouxaltzis, Xristos; Makris, John; Vallianatos, Filippos; Varley, Martin

    2010-05-01

    This paper is a preliminary investigation of the possible correlation of temporal and energy release patterns of seismic activity involving the preparation processes of consecutive sizeable seismic events [1,2]. The background idea is that during periods of low-level seismic activity, stress processes in the crust accumulate energy at the seismogenic area whilst larger seismic events act as a decongesting mechanism releasing considerable energy [3,4]. A dynamic algorithm is being developed aiming to identify and cluster pre- and post- seismic events to the main earthquake following on research carried out by Zubkov [5] and Dobrovolsky [6,7]. This clustering technique along with energy release equations dependent on Richter's scale [8,9] allow for an estimate to be drawn regarding the amount of the energy being released by the seismic sequence. The above approach is being implemented as a monitoring tool to investigate the behaviour of the underlying energy management system by introducing this information to various neural [10,11] and soft computing models [1,12,13,14]. The incorporation of intelligent systems aims towards the detection and simulation of the possible relationship between energy release patterns and time-intervals among consecutive sizeable earthquakes [1,15]. Anticipated successful training of the imported intelligent systems may result in a real-time, on-line processing methodology [1,16] capable to dynamically approximate the time-interval between the latest and the next forthcoming sizeable seismic event by monitoring the energy release process in a specific seismogenic area. Indexing terms: pattern recognition, long-term earthquake precursors, neural networks, soft computing, earthquake occurrence intervals References [1] Konstantaras A., Vallianatos F., Varley M.R. and Makris J. P.: ‘Soft computing modelling of seismicity in the southern Hellenic arc', IEEE Geoscience and Remote Sensing Letters, vol. 5 (3), pp. 323-327, 2008 [2] Eneva M. and

  17. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  18. Absolute far-ultraviolet spectrophotometry of hot subluminous stars from Voyager

    SciTech Connect

    Holberg, J.B.; Ali, B.; Carone, T.E.; Polidan, R.S. NASA, Goddard Space Flight Center, Greenbelt, MD )

    1991-07-01

    Observations, obtained with the Voyager ultraviolet spectrometers, are presented of absolute fluxes for two well-known hot subluminous stars: BD + 28 deg 4211, an sdO, and G191 - B2B, a hot DA white dwarf. Complete absolute energy distributions for these two stars, from the Lyman limit at 912 A to 1 micron, are given. For BD + 28 deg 4211, a single power law closely represents the entire observed energy distribution. For G191 - B2B, a pure hydrogen model atmosphere provides an excellent match to the entire absolute energy distribution. Voyager absolute fluxes are discussed in relation to those reported from various sounding rocket experiments, including a recent rocket observation of BD + 28 deg 4211. 43 refs.

  19. Evidence of multipion dynamical correlation in pion-nucleus interactions at GeV energy

    SciTech Connect

    Gosh, D.; Lahiri, M.; Sen, S.; Deb, A.; Das, S.

    1994-06-01

    This paper presents new data on multiparticle dynamical correlations among produced particles in hadron-nucleus interactions using normalized semi-inclusive rapidity gap correlation function. The experimental data, obtained from {pi}{sup {minus}}-Ag/Br interaction at 350 GeV/c and 200 GeV/c, are compared with the Monte-Carlo simulated values assuming an independent emission, to search for the presence of true dynamical correlations. The result shows the presence of dynamical correlations in small as well as in large gap lengths. 13 refs., 4 figs.

  20. Absolute isotopic abundances of TI in meteorites

    NASA Astrophysics Data System (ADS)

    Niederer, F. R.; Papanastassiou, D. A.; Wasserburg, G. J.

    1985-03-01

    The absolute isotope abundance of Ti has been determined in Ca-Al-rich inclusions from the Allende and Leoville meteorites and in samples of whole meteorites. The absolute Ti isotope abundances differ by a significant mass dependent isotope fractionation transformation from the previously reported abundances, which were normalized for fractionation using 46Ti/48Ti. Therefore, the absolute compositions define distinct nucleosynthetic components from those previously identified or reflect the existence of significant mass dependent isotope fractionation in nature. The authors provide a general formalism for determining the possible isotope compositions of the exotic Ti from the measured composition, for different values of isotope fractionation in nature and for different mixing ratios of the exotic and normal components.

  1. Molecular iodine absolute frequencies. Final report

    SciTech Connect

    Sansonetti, C.J.

    1990-06-25

    Fifty specified lines of {sup 127}I{sub 2} were studied by Doppler-free frequency modulation spectroscopy. For each line the classification of the molecular transition was determined, hyperfine components were identified, and one well-resolved component was selected for precise determination of its absolute frequency. In 3 cases, a nearby alternate line was selected for measurement because no well-resolved component was found for the specified line. Absolute frequency determinations were made with an estimated uncertainty of 1.1 MHz by locking a dye laser to the selected hyperfine component and measuring its wave number with a high-precision Fabry-Perot wavemeter. For each line results of the absolute measurement, the line classification, and a Doppler-free spectrum are given.

  2. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record PMID:26478959

  3. Absolute calibration in vivo measurement systems

    SciTech Connect

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs.

  4. Absolute cross section for recoil detection of deuterium

    NASA Astrophysics Data System (ADS)

    Besenbacher, F.; Stensgaard, I.; Vase, P.

    1986-04-01

    The D( 4He, D) 4He cross section used for recoil detection of deuterium (D) has been calibrated on an absolute scale against the cross section of the D( 3He, α)p nuclear reaction which is often used for D profiling. For 4He energies ranging from 0.8 to ~1.8 MeV. the D( 4He, D) 4He cross section varies only slightly with incident energy and recoil angle θ (for 0° ⩽ 8 ⩽ 35°) and has a value of ~ 500 mb/sr which is significantly higher than the ~ 65 mb/sr c.m.s. cross section of the D( 3He, α)p nuclear reaction. For 4He energies ranging from ~ 1.9 to ~ 2.3 MeV, the D( 4He,D) 4He cross section exhibits a fairly narrow resonance peak (fwhm ~ 70 keV), with a maximum value (for θ = 0°) of ~ 8.5 b/sr, corresponding to a 4He energy of ~ 2130 keV. The large values of the cross section in connection with the described energy dependence makes the use of forward-recoil detection of D attractive for many purposes, e.g., D Jepth profiling (with an extreme gain in sensitivity), absolute concentration or coverage measurements, and lattice-location experiments by transmission channeling.

  5. Energy system contribution in a maximal incremental test: correlations with pacing and overall performance in a 10-km running trial

    PubMed Central

    Damasceno, M.V.; Pasqua, L.A.; Lima-Silva, A.E.; Bertuzzi, R.

    2015-01-01

    This study aimed to verify the association between the contribution of energy systems during an incremental exercise test (IET), pacing, and performance during a 10-km running time trial. Thirteen male recreational runners completed an incremental exercise test on a treadmill to determine the respiratory compensation point (RCP), maximal oxygen uptake (V˙O2max), peak treadmill speed (PTS), and energy systems contribution; and a 10-km running time trial (T10-km) to determine endurance performance. The fractions of the aerobic (WAER) and glycolytic (WGLYCOL) contributions were calculated for each stage based on the oxygen uptake and the oxygen energy equivalents derived by blood lactate accumulation, respectively. Total metabolic demand (WTOTAL) was the sum of these two energy systems. Endurance performance during the T10-km was moderately correlated with RCP, V˙O2maxand PTS (P<@0.05), and moderate-to-highly correlated with WAER, WGLYCOL, and WTOTAL (P<0.05). In addition, WAER, WGLYCOL, and WTOTAL were also significantly correlated with running speed in the middle (P<0.01) and final (P<0.01) sections of the T10-km. These findings suggest that the assessment of energy contribution during IET is potentially useful as an alternative variable in the evaluation of endurance runners, especially because of its relationship with specific parts of a long-distance race. PMID:26397970

  6. Energy system contribution in a maximal incremental test: correlations with pacing and overall performance in a 10-km running trial.

    PubMed

    Damasceno, M V; Pasqua, L A; Lima-Silva, A E; Bertuzzi, R

    2015-11-01

    This study aimed to verify the association between the contribution of energy systems during an incremental exercise test (IET), pacing, and performance during a 10-km running time trial. Thirteen male recreational runners completed an incremental exercise test on a treadmill to determine the respiratory compensation point (RCP), maximal oxygen uptake (V˙O2max), peak treadmill speed (PTS), and energy systems contribution; and a 10-km running time trial (T10-km) to determine endurance performance. The fractions of the aerobic (WAER) and glycolytic (WGLYCOL) contributions were calculated for each stage based on the oxygen uptake and the oxygen energy equivalents derived by blood lactate accumulation, respectively. Total metabolic demand (WTOTAL) was the sum of these two energy systems. Endurance performance during the T10-km was moderately correlated with RCP, V˙O2max and PTS (P<@0.05), and moderate-to-highly correlated with WAER, WGLYCOL, and WTOTAL (P<0.05). In addition, WAER, WGLYCOL, and WTOTAL were also significantly correlated with running speed in the middle (P<0.01) and final (P<0.01) sections of the T10-km. These findings suggest that the assessment of energy contribution during IET is potentially useful as an alternative variable in the evaluation of endurance runners, especially because of its relationship with specific parts of a long-distance race. PMID:26397970

  7. A jet model for Galactic black-hole X-ray sources: The correlation between cutoff energy and phase lag

    NASA Astrophysics Data System (ADS)

    Reig, P.; Kylafis, N. D.

    2015-12-01

    Context. Galactic black-hole X-ray binaries emit a compact, optically thick, mildy relativistic radio jet when they are in the hard and hard-intermediate states, that is, typically at the beginning and the end of an X-ray outburst. In a series of papers, we have developed a jet model and have shown through Monte Carlo simulations that our model can explain many observational results. Aims: In this work, we investigate one more constraining relationship between the cutoff energy and the phase lag during the early stages of an X-ray outburst of the black-hole X-ray binary GX 339-4: the cutoff energy decreases while the phase lag increases during the brightening of the hard state. Methods: We performed Monte Carlo simulations of the Compton upscattering of soft accretion-disk photons in the jet and computed the phase lag between soft and hard photons and the cutoff energy of the resulting high-energy power law. Results: We demonstrate that our jet model naturally explains the above correlation, with a minor modification consisting of introducing an acceleration zone at the base of the jet. Conclusions: The observed correlation between the cutoff energy and the phase lag in the black-hole binary GX 339-4 suggests that the lags are produced by the hard component. Here we show that this correlation arises naturally if Comptonization in the jet produces these two quantities.

  8. The Effect of Core Correlation on the MP2 Hydration Free Energies of Li(+), Na(+), and K(.).

    PubMed

    Li, Jicun; Wang, Feng

    2016-09-01

    Simple nonpolarizable molecular mechanics potentials were developed for Li(+), Na(+), and K(+) with the adaptive force matching (AFM) method using the second order Møller-Plesset perturbation theory (MP2) with the frozen core approximation as reference. The effects of different choices of core orbitals and basis sets in the MP2 calculations were investigated for Na(+) and Li(+). For Na(+), correlating the 2s2p electrons in MP2 changes its hydration free energy by 18 kJ/mol, which is surprisingly large, constituting to about 5% of the intrinsic hydration free energy of the ion. Whereas correlating the 2s2p electrons with the aug-cc-pCVTZ basis set leads to the best agreement with experiments, with the aug-cc-pVTZ basis set, a better hydration free energy will be obtained if the 2s2p are kept as frozen core orbitals. Even with nonpolarizable energy expressions, the AFM derived ion potentials predict the experimental hydration free energies of the various salts within 2% of experimental values, suggesting the robustness of the fitting procedure. However, the 2% agreement can only be achieved if the core correlation is modeled appropriately in the MP2 reference calculations. PMID:27464064

  9. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    PubMed

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed. PMID:26022836

  10. Alternative separation of exchange and correlation energies in multi-configuration range-separated density-functional theory

    NASA Astrophysics Data System (ADS)

    Stoyanova, Alexandrina; Teale, Andrew M.; Toulouse, Julien; Helgaker, Trygve; Fromager, Emmanuel

    2013-10-01

    The alternative separation of exchange and correlation energies proposed by Toulouse et al. [Theor. Chem. Acc. 114, 305 (2005)] is explored in the context of multi-configuration range-separated density-functional theory. The new decomposition of the short-range exchange-correlation energy relies on the auxiliary long-range interacting wavefunction rather than the Kohn-Sham (KS) determinant. The advantage, relative to the traditional KS decomposition, is that the wavefunction part of the energy is now computed with the regular (fully interacting) Hamiltonian. One potential drawback is that, because of double counting, the wavefunction used to compute the energy cannot be obtained by minimizing the energy expression with respect to the wavefunction parameters. The problem is overcome by using short-range optimized effective potentials (OEPs). The resulting combination of OEP techniques with wavefunction theory has been investigated in this work, at the Hartree-Fock (HF) and multi-configuration self-consistent-field (MCSCF) levels. In the HF case, an analytical expression for the energy gradient has been derived and implemented. Calculations have been performed within the short-range local density approximation on H2, N2, Li2, and H2O. Significant improvements in binding energies are obtained with the new decomposition of the short-range energy. The importance of optimizing the short-range OEP at the MCSCF level when static correlation becomes significant has also been demonstrated for H2, using a finite-difference gradient. The implementation of the analytical gradient for MCSCF wavefunctions is currently in progress.

  11. Alternative separation of exchange and correlation energies in multi-configuration range-separated density-functional theory.

    PubMed

    Stoyanova, Alexandrina; Teale, Andrew M; Toulouse, Julien; Helgaker, Trygve; Fromager, Emmanuel

    2013-10-01

    The alternative separation of exchange and correlation energies proposed by Toulouse et al. [Theor. Chem. Acc. 114, 305 (2005)] is explored in the context of multi-configuration range-separated density-functional theory. The new decomposition of the short-range exchange-correlation energy relies on the auxiliary long-range interacting wavefunction rather than the Kohn-Sham (KS) determinant. The advantage, relative to the traditional KS decomposition, is that the wavefunction part of the energy is now computed with the regular (fully interacting) Hamiltonian. One potential drawback is that, because of double counting, the wavefunction used to compute the energy cannot be obtained by minimizing the energy expression with respect to the wavefunction parameters. The problem is overcome by using short-range optimized effective potentials (OEPs). The resulting combination of OEP techniques with wavefunction theory has been investigated in this work, at the Hartree-Fock (HF) and multi-configuration self-consistent-field (MCSCF) levels. In the HF case, an analytical expression for the energy gradient has been derived and implemented. Calculations have been performed within the short-range local density approximation on H2, N2, Li2, and H2O. Significant improvements in binding energies are obtained with the new decomposition of the short-range energy. The importance of optimizing the short-range OEP at the MCSCF level when static correlation becomes significant has also been demonstrated for H2, using a finite-difference gradient. The implementation of the analytical gradient for MCSCF wavefunctions is currently in progress. PMID:24116558

  12. Limited rotation-invariant pattern recognition using optical wavelet circular harmonic function minimum average correlation energy (MACE) filter

    NASA Astrophysics Data System (ADS)

    Lee, Ha-Woon; Kim, Jeong-Woo; Kim, Cheol S.; Kim, Soo-Joong

    1995-04-01

    The optical wavelet circular harmonic function minimum average correlation energy (WCHF- MACE) filter is proposed. The proposed WCHF-MACE filter uses the wavelet transformed image by Mexican-hat wavelet function for circular harmonic function and the multiple harmonic components of circular harmonic function are used for MACE filter synthesis. The proposed filter has good discrimination compared with the conventional circular harmonic function filter and conventional circular harmonic MACE filter about the limited rotated images. And the filter is made of the type of optical wavelet matched filter (WMF), so that the proposed filter can use the conventional 4f correlator.

  13. Measurement of Absolute Carbon Isotope Ratios: Mechanisms and Implications

    NASA Astrophysics Data System (ADS)

    Vogel, J. S.; Giacomo, J. A.; Dueker, S. R.

    2012-12-01

    An accelerator mass spectrometer (AMS) produced absolute isotope ratio measurements for 14C/13C as tested against >500 samples of NIST SRM-4990-C (OxII 14C standard) to an accuracy of 2.2±0.6‰ over a period of one year with measurements made to 1% counting statistics. The spectrometer is not maximized for 13C/12C, but measured ∂13C to 0.4±0.1‰ accuracy, with known methods for improvement. An AMS produces elemental anions from a sputter ion source and includes a charge-changing collision in a gas cell to isolate the rare 14C from the common isotopes and molecular isobars. Both these physical processes have been modeled to determine the parameters providing such absolute measures. Neutral resonant ionization in a cesium plasma produces mass-independent ionization, while velocity dependent charge-state distributions in gas collisions produce relative ion beam intensities that are linear in mass at specific collision energies. The mechanisms are not specific to carbon isotopes, but stand alone absolute IRMS (AIR-MS) instruments have not yet been made. Aside from the obvious applications in metrology, AIR-MS is particularly valuable in coupled separatory MS because no internal or external standards are required. Sample definition processes can be compared, even if no exact standard reference sample exists. Isotope dilution measurements do not require standards matching the dilution end-points and can be made over an extended, even extrapolated, range.

  14. Absolute Timing Calibration of the USA Experiment Using Pulsar Observations

    NASA Astrophysics Data System (ADS)

    Ray, P. S.; Wood, K. S.; Wolff, M. T.; Lovellette, M. N.; Sheikh, S.; Moon, D.-S.; Eikenberry, S. S.; Roberts, M.; Lyne, A.; Jordon, C.; Bloom, E. D.; Tournear, D.; Saz Parkinson, P.; Reilly, K.

    2003-03-01

    We update the status of the absolute time calibration of the USA Experiment as determined by observations of X-ray emitting rotation-powered pulsars. The brightest such source is the Crab Pulsar and we have obtained observations of the Crab at radio, IR, optical, and X-ray wavelengths. We directly compare arrival time determinations for 2--10 keV X-ray observations made contemporaneously with the PCA on the Rossi X-ray Timing Explorer and the USA Experiment on ARGOS. These two X-ray measurements employ very different means of measuring time and satellite position and thus have different systematic error budgets. The comparison with other wavelengths requires additional steps such as dispersion measure corrections and a precise definition of the ``peak'' of the light curve since the light curve shape varies with observing wavelength. We will describe each of these effects and quantify the magnitude of the systematic error that each may contribute. We will also include time comparison results for other pulsars, such as PSR B1509-58 and PSR B1821-24. Once the absolute time calibrations are well understood, comparing absolute arrival times at multiple energies can provide clues to the magnetospheric structure and emission region geometry. Basic research on X-ray Astronomy at NRL is funded by NRL/ONR.

  15. Absolute partial photoionization cross sections of ozone.

    SciTech Connect

    Berkowitz, J.; Chemistry

    2008-04-01

    Despite the current concerns about ozone, absolute partial photoionization cross sections for this molecule in the vacuum ultraviolet (valence) region have been unavailable. By eclectic re-evaluation of old/new data and plausible assumptions, such cross sections have been assembled to fill this void.

  16. Solving Absolute Value Equations Algebraically and Geometrically

    ERIC Educational Resources Information Center

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  17. Teaching Absolute Value Inequalities to Mature Students

    ERIC Educational Resources Information Center

    Sierpinska, Anna; Bobos, Georgeana; Pruncut, Andreea

    2011-01-01

    This paper gives an account of a teaching experiment on absolute value inequalities, whose aim was to identify characteristics of an approach that would realize the potential of the topic to develop theoretical thinking in students enrolled in prerequisite mathematics courses at a large, urban North American university. The potential is…

  18. Increasing Capacity: Practice Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Dodds, Pennie; Donkin, Christopher; Brown, Scott D.; Heathcote, Andrew

    2011-01-01

    In most of the long history of the study of absolute identification--since Miller's (1956) seminal article--a severe limit on performance has been observed, and this limit has resisted improvement even by extensive practice. In a startling result, Rouder, Morey, Cowan, and Pfaltz (2004) found substantially improved performance with practice in the…

  19. On Relative and Absolute Conviction in Mathematics

    ERIC Educational Resources Information Center

    Weber, Keith; Mejia-Ramos, Juan Pablo

    2015-01-01

    Conviction is a central construct in mathematics education research on justification and proof. In this paper, we claim that it is important to distinguish between absolute conviction and relative conviction. We argue that researchers in mathematics education frequently have not done so and this has lead to researchers making unwarranted claims…

  20. Absolute Points for Multiple Assignment Problems

    ERIC Educational Resources Information Center

    Adlakha, V.; Kowalski, K.

    2006-01-01

    An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…

  1. Nonequilibrium equalities in absolutely irreversible processes

    NASA Astrophysics Data System (ADS)

    Murashita, Yuto; Funo, Ken; Ueda, Masahito

    2015-03-01

    Nonequilibrium equalities have attracted considerable attention in the context of statistical mechanics and information thermodynamics. Integral nonequilibrium equalities reveal an ensemble property of the entropy production σ as = 1 . Although nonequilibrium equalities apply to rather general nonequilibrium situations, they break down in absolutely irreversible processes, where the forward-path probability vanishes and the entropy production diverges. We identify the mathematical origins of this inapplicability as the singularity of probability measure. As a result, we generalize conventional integral nonequilibrium equalities to absolutely irreversible processes as = 1 -λS , where λS is the probability of the singular part defined based on Lebesgue's decomposition theorem. The acquired equality contains two physical quantities related to irreversibility: σ characterizing ordinary irreversibility and λS describing absolute irreversibility. An inequality derived from the obtained equality demonstrates the absolute irreversibility leads to the fundamental lower bound on the entropy production. We demonstrate the validity of the obtained equality for a simple model.

  2. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  3. Precision absolute positional measurement of laser beams.

    PubMed

    Fitzsimons, Ewan D; Bogenstahl, Johanna; Hough, James; Killow, Christian J; Perreur-Lloyd, Michael; Robertson, David I; Ward, Henry

    2013-04-20

    We describe an instrument which, coupled with a suitable coordinate measuring machine, facilitates the absolute measurement within the machine frame of the propagation direction of a millimeter-scale laser beam to an accuracy of around ±4 μm in position and ±20 μrad in angle. PMID:23669658

  4. Beyond mean-field ground-state energies and correlation properties of a trapped Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Sofianos, S. A.; Das, T. K.; Chakrabarti, B.; Lekala, M. L.; Adam, R. M.; Rampho, G. J.

    2013-01-01

    A two-body correlated basis set is used to develop a many-body theory which is valid for any number of bosons in the trap. The formalism incorporates the van der Waals interaction and two-body correlations in an exact way. The theory has successfully been applied to Bose-Einstein condensates—dilute weakly interacting and also dilute but having a large scattering length. Even in the extreme dilute condition, we observe the breakdown of the shape-independent approximation and the interatomic correlation plays an important role in the large particle-number limit. This correlated many-body calculation can handle, within the two-body correlation approximation, the entire range of atom number of experimentally achieved condensates. Next we successfully push the basis function for large scattering lengths where the mean-field results are manifestly bad. The sharp increase in correlation energy clearly shows the beyond-mean-field effect. We also calculate one-particle densities for various scattering lengths and particle numbers. Our many-body calculation exhibits the finite-size effect in the one-body density.

  5. Picosecond Bunch length and Energy-z correlation measurements at SLAC's A-Line and End Station A

    SciTech Connect

    Molloy, Stephen; Emma, P.; Frisch, J.C.; Iverson, R.H.; Ross, M.; McCormick, D.J.; Ross, Marc C.; Walston, S.; Blackmore, V.; /Oxford U.

    2007-06-27

    We report on measurements of picosecond bunch lengths and the energy-z correlation of the bunch with a high energy electron test beam to the A-line and End Station A (ESA) facilities at SLAC. The bunch length and the energy-z correlation of the bunch are measured at the end of the linac using a synchrotron light monitor diagnostic at a high dispersion point in the A-line and a transverse RF deflecting cavity at the end of the linac. Measurements of the bunch length in ESA were made using high frequency diodes (up to 100 GHz) and pyroelectric detectors at a ceramic gap in the beamline. Modeling of the beam's longitudinal phase space through the linac and A-line to ESA is done using the 2-dimensional tracking program LiTrack, and LiTrack simulation results are compared with data. High frequency diode and pyroelectric detectors are planned to be used as part of a bunch length feedback system for the LCLS FEL at SLAC. The LCLS also plans precise bunch length and energy-z correlation measurements using transverse RF deflecting cavities.

  6. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy

    SciTech Connect

    Sheng, WC; Zhuang, ZB; Gao, MR; Zheng, J; Chen, JGG; Yan, YS

    2015-01-08

    The hydrogen oxidation/evolution reactions are two of the most fundamental reactions in distributed renewable electrochemical energy conversion and storage systems. The identification of the reaction descriptor is therefore of critical importance for the rational catalyst design and development. Here we report the correlation between hydrogen oxidation/evolution activity and experimentally measured hydrogen binding energy for polycrystalline platinum examined in several buffer solutions in a wide range of electrolyte pH from 0 to 13. The hydrogen oxidation/evolution activity obtained using the rotating disk electrode method is found to decrease with the pH, while the hydrogen binding energy, obtained from cyclic voltammograms, linearly increases with the pH. Correlating the hydrogen oxidation/evolution activity to the hydrogen binding energy renders a monotonic decreasing hydrogen oxidation/evolution activity with the hydrogen binding energy, strongly supporting the hypothesis that hydrogen binding energy is the sole reaction descriptor for the hydrogen oxidation/evolution activity on monometallic platinum.

  7. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy

    NASA Astrophysics Data System (ADS)

    Sheng, Wenchao; Zhuang, Zhongbin; Gao, Minrui; Zheng, Jie; Chen, Jingguang G.; Yan, Yushan

    2015-01-01

    The hydrogen oxidation/evolution reactions are two of the most fundamental reactions in distributed renewable electrochemical energy conversion and storage systems. The identification of the reaction descriptor is therefore of critical importance for the rational catalyst design and development. Here we report the correlation between hydrogen oxidation/evolution activity and experimentally measured hydrogen binding energy for polycrystalline platinum examined in several buffer solutions in a wide range of electrolyte pH from 0 to 13. The hydrogen oxidation/evolution activity obtained using the rotating disk electrode method is found to decrease with the pH, while the hydrogen binding energy, obtained from cyclic voltammograms, linearly increases with the pH. Correlating the hydrogen oxidation/evolution activity to the hydrogen binding energy renders a monotonic decreasing hydrogen oxidation/evolution activity with the hydrogen binding energy, strongly supporting the hypothesis that hydrogen binding energy is the sole reaction descriptor for the hydrogen oxidation/evolution activity on monometallic platinum.

  8. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy.

    PubMed

    Sheng, Wenchao; Zhuang, Zhongbin; Gao, Minrui; Zheng, Jie; Chen, Jingguang G; Yan, Yushan

    2015-01-01

    The hydrogen oxidation/evolution reactions are two of the most fundamental reactions in distributed renewable electrochemical energy conversion and storage systems. The identification of the reaction descriptor is therefore of critical importance for the rational catalyst design and development. Here we report the correlation between hydrogen oxidation/evolution activity and experimentally measured hydrogen binding energy for polycrystalline platinum examined in several buffer solutions in a wide range of electrolyte pH from 0 to 13. The hydrogen oxidation/evolution activity obtained using the rotating disk electrode method is found to decrease with the pH, while the hydrogen binding energy, obtained from cyclic voltammograms, linearly increases with the pH. Correlating the hydrogen oxidation/evolution activity to the hydrogen binding energy renders a monotonic decreasing hydrogen oxidation/evolution activity with the hydrogen binding energy, strongly supporting the hypothesis that hydrogen binding energy is the sole reaction descriptor for the hydrogen oxidation/evolution activity on monometallic platinum. PMID:25569511

  9. Effect of Strong Correlations on the High Energy Anomaly in Hole- and Electron-Doped High-Tc Superconductors

    SciTech Connect

    Moritz, B.; Schmitt, F.; Meevasana, W.; Johnston, S.; Motoyama, E.M.; Greven, M.; Lu, D.H.; Kim, C.; Scalettar, R.T.; Shen, Z.-X.; Devereaux, T.P.; /SLAC, SIMES

    2010-02-15

    Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the byproduct of matrix element effects, but rather represents a cross-over from a quasi-particle band at low binding energies near the Fermi level to valence bands at higher binding energy, assumed to be of strong oxygen character, in both hole- and electron-doped cuprates. While photoemission matrix elements clearly play a role in changing the aesthetic appearance of the band dispersion, i.e. the 'waterfall'-like behavior, they provide an inadequate description for the physics that underlies the strong band renormalization giving rise to the HEA. Model calculations of the single-band Hubbard Hamiltonian showcase the role played by correlations in the formation of the HEA and uncover significant differences in the HEA energy scale for hole- and electron-doped cuprates. In addition, this approach properly captures the transfer of spectral weight accompanying both hole and electron doping in a correlated material and provides a unifying description of the HEA across both sides of the cuprate phase diagram.

  10. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing.

    PubMed

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-01-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs. PMID:27032688

  11. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing

    PubMed Central

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C.; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-01-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs. PMID:27032688

  12. Improved dark energy detection through the polarization-assisted cross correlation of the cosmic microwave background with radio sources

    SciTech Connect

    Liu, Guo-Chin; Ng, Kin-Wang; Pen, Ue-Li

    2011-03-15

    Integrated Sachs-Wolfe (ISW) effect can be estimated by cross-correlating the cosmic microwave background (CMB) sky with tracers of the local matter distribution. At late cosmic time, the dark energy-induced decay of gravitation potential generates a cross correlation signal on large angular scales. The dominant noise is the intrinsic CMB anisotropies from the inflationary epoch. In this paper we use CMB polarization to reduce this intrinsic noise. We cross-correlate the microwave sky observed by Wilkinson Microwave Anisotropy Probe (WMAP) with the radio source catalog compiled by NRAO VLA Sky Survey (NVSS) to study the efficiency of the noise suppression. We find that the error bars are reduced by about 4 to 14% and the statistical power in the signal is improved.

  13. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing

    NASA Astrophysics Data System (ADS)

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C.; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-04-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs.

  14. Quest for band renormalization and self-energy in correlated f-electron systems

    SciTech Connect

    Durakiewicx, Tomasz

    2009-01-01

    Coexisting energy scales are observed in f-electron materials. Information about some of the low-energy scales is imprinted in the electron self-energy which can be measured by angle-resolved photoemission (ARPES). Such measurements in d-electron materials over the last decade were based on high energy- and momentum-resolution ARPES techniques used to extract the self-energy information from measured spectra. Simultaneously, many-body theoretical approaches have been developed to find a link between self-energy and many-body interactions. Here we show the transcription of such methods from d-electrons to f-electrons by presenting the first example of low energy scales in f-electron material USb{sub 2}, measured with synchrotron-based ARPES. Proposed approach will help in answering the fundamental questions about the complex nature of the heavy fermion state.

  15. Statistical-noise reduction in correlation analysis of high-energy nuclear collisions with event-mixing

    NASA Astrophysics Data System (ADS)

    Ray, R. L.; Bhattarai, P.

    2016-06-01

    The error propagation and statistical-noise reduction method of Reid and Trainor for two-point correlation applications in high-energy collisions is extended to include particle-pair references constructed by mixing two particles from all event-pair combinations within event subsets of arbitrary size. The Reid-Trainor method is also applied to other particle-pair mixing algorithms commonly used in correlation analysis of particle production from high-energy nuclear collisions. The statistical-noise reduction, inherent in the Reid-Trainor event-mixing procedure, is shown to occur for these other event-mixing algorithms as well. Monte Carlo simulation results are presented which verify the predicted degree of noise reduction. In each case the final errors are determined by the bin-wise particle-pair number, rather than by the bin-wise single-particle count.

  16. Accurate potential energy curve of the LiH{sup +} molecule calculated with explicitly correlated Gaussian functions

    SciTech Connect

    Tung, Wei-Cheng; Adamowicz, Ludwik

    2014-03-28

    Very accurate calculations of the ground-state potential energy curve (PEC) of the LiH{sup +} ion performed with all-electron explicitly correlated Gaussian functions with shifted centers are presented. The variational method is employed. The calculations involve optimization of nonlinear exponential parameters of the Gaussians performed with the aid of the analytical first derivatives of the energy determined with respect to the parameters. The diagonal adiabatic correction is also calculated for each PEC point. The PEC is then used to calculate the vibrational energies of the system. In that calculation, the non-adiabatic effects are accounted for by using an effective vibrational mass obtained by the minimization of the difference between the vibrational energies obtained from the calculations where the Born-Oppenheimer approximation was not assumed and the results of the present calculations.

  17. Inclusion of electron correlation for the target wave function in low- to intermediate-energy e-N2 scattering

    NASA Technical Reports Server (NTRS)

    Weatherford, C. A.; Brown, F. B.; Temkin, A.

    1987-01-01

    In a recent calculation, an exact exchange method was developed for use in the partial-differential-equation approach to electron-molecule scattering and was applied to e-N2 scattering in the fixed-nuclei approximation with an adiabatic polarization potential at low energies (0-10 eV). Integrated elastic cross sections were calculated and found to be lower than experiment at energies both below and above the Pi(g) resonance. It was speculated at that time that improved experimental agreement could be obtained if a correlated target representation were used in place of the uncorrelated one. The present paper implements this suggestion and demonstrates the improved agreement. These calculations are also extended to higher energies (0-30 eV) so asd to include the Sigma(u) resonance. Some discrepancies among the experiments and between experiment and the various calculations at very low energy are noted.

  18. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  19. A preliminary evaluation of the correlation between regional energy phosphates and resting state functional connectivity in depression

    PubMed Central

    Zuo, Chun S.; Lin, Pan; Vitaliano, Gordana; Wang, Kristina; Villafuerte, Rosemond; Lukas, Scott E.

    2015-01-01

    Impaired brain energy metabolism is among the leading hypotheses in the pathogenesis of affective disorders and linking energy phosphates with states of tissue-function activity is a novel and non-invasive approach to differentiate healthy from unhealthy states. Resting state functional MRI (fMRI) has been established as an important tool for mapping cerebral regional activity and phosphorous chemical shift imaging (31P CSI) has been applied to measure levels of energy phosphates and phospholipids non-invasively in order to gain insight into the possible etiology of affective disorders. This is an initial attempt to identify the existence of a correlation between regional energy phosphates and connectivity at nodes of the posterior default mode network (DMN). Resting state fMRI in conjunction with 31P 2D CSI was applied to 11 healthy controls and 11 depressed patients at 3 T. We found that differences between the two groups exist in correlation of lateral posterior parietal cortex functional connectivity and regional Pi/PCr. Results of this study indicate that resting-state-fMRI-guided 31P CSI can provide new insight into depression via regional energy phosphates and functional connectivity. PMID:26594618

  20. Inclusion of correlations in the empherical selection of intranuclear cascade nucleons from high energy hadron-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Alsmiller, F. S.; Alsmiller, R. G.

    1989-06-01

    The very high energy (5 GeV to 20 Tev) hadron-nucleus differential particle production model found in the Monte Carlo transport code FLUKA87 has been adapted for inclusion in the transport code HETC88. The empirical selection of intranuclear cascade nucleons has been modified to provide simple correlations with the randomly selected number of hadron-nucleon collisions. A standard method of calculating the extension energy of the compound nucleus preceding an added evaporation step by assuming the particles are produced in a one-dimensional nuclear well is applied. This method, coupled with the above correlations, lead to improved correlations of the excitation energy with the A and Z of the compound nucleus, and then to greatly improved distributions of the residual nuclei following evaporation. The frequency distribution of low enegy ( β < 0.7) charged particles show good agreement with experiment for 200 GeV protons incident on emulsions. Average multiplicities of showe and grey particles after evaporation for protons and pions incident on several elements are also compared with experiment.

  1. Correlation Energy of 3D Spin-Polarized Electron Gas: A Single Interpolation Between High- and Low-Density Limits

    NASA Astrophysics Data System (ADS)

    Sun, Jianwei; Perdew, John; Seidl, Michael

    2008-03-01

    We present an analytic model for the correlation energy per electron ec(rs,ζ) in the three-dimensional (3D) uniform electron gas, covering the full range 0<=rs<∞ and 0<=ζ<=1 of the density parameter rs and the relative spin polarization ζ. An interpolation is made between the exactly known high-density (rs->0) and low-density (rs->∞) limits, using a formula which (unlike previous ones) has the right analytic structures in both limits. We find that there is almost enough information available from these limits to determine the correlation energy over the full range. By minimal fitting to numerical quantum Monte Carlo data, we predict the value of b1(ζ) at ζ=0 close to the theoretical value [1], where b1(ζ) is the coefficient of the rsterm in the high-density expansion. The model finds correlation energies for the unpolarized (ζ=0) and fully polarized (ζ=1) cases in excellent agreement with Monte Carlo data. [1] T. Endo, M. Horiuchi, Y. Takada and H. Yasuhara, Phys. Rev. B 59, 7367 (1999)

  2. Three-hadron angular correlations in high-energy proton-proton and nucleus-nucleus collisions from perturbative QCD

    SciTech Connect

    Ayala, Alejandro; Ortiz, Antonio; Paic, Guy; Jalilian-Marian, Jamal; Magnin, J.; Tejeda-Yeomans, Maria Elena

    2011-08-15

    We study three-hadron azimuthal angular correlations in high-energy proton-proton and central nucleus-nucleus collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider at midrapidity. We use the leading-order parton matrix elements for 2{yields}3 processes and include the effect of parton energy loss in the quark-gluon plasma using the modified fragmentation function approach. For the case when the produced hadrons have either the same or not too different momenta, we observe two away-side peaks at 2{pi}/3 and 4{pi}/3. We consider the dependence of the angular correlations on energy loss parameters that have been used in studies of single inclusive hadron production at RHIC. Our results on the angular dependence of the cross section agree well with preliminary data by the PHENIX Collaboration. We comment on the possible contribution of 2{yields}3 processes to dihadron angular correlations and how a comparison of the two processes may help characterize the plasma further.

  3. Motion and energy dissipation of secondary electrons, positrons and hadrons correlated with terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Koehn, Christoph; Ebert, Ute

    2015-04-01

    Thunderstorms can emit high-energy particles, photons with energies of up to at least 40 MeV, leptons (electrons, positrons) and hadrons (neutrons and protons) with energies of tens of MeV. Some of these events have been correlated with negative lightning leaders propagating upwards in the cloud. For particular lightning events we show that photons, leptons and hadrons can reach ground altitude as well as satellite altitude, and we present the number as well as the spatial and energy distribution of photons, leptons and hadrons. We have reviewed the latest literature on cross sections for collisions of photons, leptons and hadrons with air molecules and have implemented them in our Monte Carlo code. We initialize a photon beam with the characteristic energy distribution of a TGF at thunderstorm altitude and we use the Monte Carlo model to trace these photons; we include the production of secondary electrons through photoionization, Compton scattering and pair production, the production of positrons through pair production as well as the production of neutrons and protons through photonuclear processes. Subsequently we calculate the motion and energy dissipation of these leptons and hadrons with the feedback of electrons and positrons producing new photons through Bremsstrahlung and through positron annihilation at shell electrons. Additionally we provide analytic estimates for the energy losses of photons, leptons and hadrons in the energy range between 0.03 eV and 100 MeV based on the relevant cross sections. We provide the spectral analysis of how many photons, leptons and hadrons will reach ground or satellite altitude and what their energies are, depending on the initial photon energy. This is of particular interest because of campaigns measuring fluxes of all these species at 0 and 500 km altitude without knowing the actual energies of initial electrons converting into photons within a thundercloud.

  4. Absolute and relative dosimetry for ELIMED

    SciTech Connect

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F.; Carpinelli, M.; Presti, D. Lo; Raffaele, L.; Tramontana, A.; Cirio, R.; Sacchi, R.; Monaco, V.; Marchetto, F.; Giordanengo, S.

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  5. Probing absolute spin polarization at the nanoscale.

    PubMed

    Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus

    2014-12-10

    Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum. PMID:25423049

  6. Absolute-magnitude distributions of supernovae

    SciTech Connect

    Richardson, Dean; Wright, John; Jenkins III, Robert L.; Maddox, Larry

    2014-05-01

    The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.

  7. Absolute radiometry and the solar constant

    NASA Technical Reports Server (NTRS)

    Willson, R. C.

    1974-01-01

    A series of active cavity radiometers (ACRs) are described which have been developed as standard detectors for the accurate measurement of irradiance in absolute units. It is noted that the ACR is an electrical substitution calorimeter, is designed for automatic remote operation in any environment, and can make irradiance measurements in the range from low-level IR fluxes up to 30 solar constants with small absolute uncertainty. The instrument operates in a differential mode by chopping the radiant flux to be measured at a slow rate, and irradiance is determined from two electrical power measurements together with the instrumental constant. Results are reported for measurements of the solar constant with two types of ACRs. The more accurate measurement yielded a value of 136.6 plus or minus 0.7 mW/sq cm (1.958 plus or minus 0.010 cal/sq cm per min).

  8. Asteroid absolute magnitudes and slope parameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  9. Absolute calibration of TFTR helium proportional counters

    SciTech Connect

    Strachan, J.D.; Diesso, M.; Jassby, D.; Johnson, L.; McCauley, S.; Munsat, T.; Roquemore, A.L.; Barnes, C.W. |; Loughlin, M. |

    1995-06-01

    The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments.

  10. Absolute enantioselective separation: optical activity ex machina.

    PubMed

    Bielski, Roman; Tencer, Michal

    2005-11-01

    The paper describes methodology of using three independent macroscopic factors affecting molecular orientation to accomplish separation of a racemic mixture without the presence of any other chiral compounds, i. e., absolute enantioselective separation (AES) which is an extension of a concept of applying these factors to absolute asymmetric synthesis. The three factors may be applied simultaneously or, if their effects can be retained, consecutively. The resulting three mutually orthogonal or near orthogonal directors constitute a true chiral influence and their scalar triple product is the measure of the chirality of the system. AES can be executed in a chromatography-like microfluidic process in the presence of an electric field. It may be carried out on a chemically modified flat surface, a monolithic polymer column made of a mesoporous material, each having imparted directional properties. Separation parameters were estimated for these media and possible implications for the natural homochirality are discussed. PMID:16342798

  11. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  12. Silicon Absolute X-Ray Detectors

    SciTech Connect

    Seely, John F.; Korde, Raj; Sprunck, Jacob; Medjoubi, Kadda; Hustache, Stephanie

    2010-06-23

    The responsivity of silicon photodiodes having no loss in the entrance window, measured using synchrotron radiation in the 1.75 to 60 keV range, was compared to the responsivity calculated using the silicon thickness measured using near-infrared light. The measured and calculated responsivities agree with an average difference of 1.3%. This enables their use as absolute x-ray detectors.

  13. Blood pressure targets and absolute cardiovascular risk.

    PubMed

    Odutayo, Ayodele; Rahimi, Kazem; Hsiao, Allan J; Emdin, Connor A

    2015-08-01

    In the Eighth Joint National Committee guideline on hypertension, the threshold for the initiation of blood pressure-lowering treatment for elderly adults (≥60 years) without chronic kidney disease or diabetes mellitus was raised from 140/90 mm Hg to 150/90 mm Hg. However, the committee was not unanimous in this decision, particularly because a large proportion of adults ≥60 years may be at high cardiovascular risk. On the basis of Eighth Joint National Committee guideline, we sought to determine the absolute 10-year risk of cardiovascular disease among these adults through analyzing the National Health and Nutrition Examination Survey (2005-2012). The primary outcome measure was the proportion of adults who were at ≥20% predicted absolute cardiovascular risk and above goals for the Seventh Joint National Committee guideline but reclassified as at target under the Eighth Joint National Committee guideline (reclassified). The Framingham General Cardiovascular Disease Risk Score was used. From 2005 to 2012, the surveys included 12 963 adults aged 30 to 74 years with blood pressure measurements, of which 914 were reclassified based on the guideline. Among individuals reclassified as not in need of additional treatment, the proportion of adults 60 to 74 years without chronic kidney disease or diabetes mellitus at ≥20% absolute risk was 44.8%. This corresponds to 0.8 million adults. The proportion at high cardiovascular risk remained sizable among adults who were not receiving blood pressure-lowering treatment. Taken together, a sizable proportion of reclassified adults 60 to 74 years without chronic kidney disease or diabetes mellitus was at ≥20% absolute cardiovascular risk. PMID:26056340

  14. Relative errors can cue absolute visuomotor mappings.

    PubMed

    van Dam, Loes C J; Ernst, Marc O

    2015-12-01

    When repeatedly switching between two visuomotor mappings, e.g. in a reaching or pointing task, adaptation tends to speed up over time. That is, when the error in the feedback corresponds to a mapping switch, fast adaptation occurs. Yet, what is learned, the relative error or the absolute mappings? When switching between mappings, errors with a size corresponding to the relative difference between the mappings will occur more often than other large errors. Thus, we could learn to correct more for errors with this familiar size (Error Learning). On the other hand, it has been shown that the human visuomotor system can store several absolute visuomotor mappings (Mapping Learning) and can use associated contextual cues to retrieve them. Thus, when contextual information is present, no error feedback is needed to switch between mappings. Using a rapid pointing task, we investigated how these two types of learning may each contribute when repeatedly switching between mappings in the absence of task-irrelevant contextual cues. After training, we examined how participants changed their behaviour when a single error probe indicated either the often-experienced error (Error Learning) or one of the previously experienced absolute mappings (Mapping Learning). Results were consistent with Mapping Learning despite the relative nature of the error information in the feedback. This shows that errors in the feedback can have a double role in visuomotor behaviour: they drive the general adaptation process by making corrections possible on subsequent movements, as well as serve as contextual cues that can signal a learned absolute mapping. PMID:26280315

  15. Absolute distance measurements by variable wavelength interferometry

    NASA Astrophysics Data System (ADS)

    Bien, F.; Camac, M.; Caulfield, H. J.; Ezekiel, S.

    1981-02-01

    This paper describes a laser interferometer which provides absolute distance measurements using tunable lasers. An active feedback loop system, in which the laser frequency is locked to the optical path length difference of the interferometer, is used to tune the laser wavelengths. If the two wavelengths are very close, electronic frequency counters can be used to measure the beat frequency between the two laser frequencies and thus to determine the optical path difference between the two legs of the interferometer.

  16. Correlates of Concurrent Energy Drink and Alcohol Use among Socially Active Adults

    PubMed Central

    Wells, Brooke E.; Kelly, Brian C.; Pawson, Mark; LeClair, Amy; Parsons, Jeffrey T.; Golub, Sarit A.

    2013-01-01

    Background Research indicates that energy drink consumption and the combined use of energy drinks and alcohol are popular among young adults, although this research has typically focused on college students. Because of the potential for harms associated with this combination, it is critical to understand use among adults in nightlife scenes who may be most at risk for harms associated with combined energy drink and alcohol consumption. Objectives By focusing our sample on individuals in a range of nightlife scenes, we aim to gain a deeper understanding of the demographic factors associated with energy drink use and combined energy drink and alcohol consumption to benefit the targeting of intervention and prevention efforts beyond college campuses. Methods Using a field-based survey in New York City to survey adults active in various nightlife scenes, this study reports on the survey results of 1476 venue patrons at venues in five nightlife scenes in addition to college bar scenes Results Men, younger individuals, Latinos, and sexual minority individuals reported higher prevalence of recent energy drink consumption. Younger individuals, men, and those recruited in gay venues reported higher prevalence of combining alcohol and energy drinks. Conclusion These findings provide information useful to target education and prevention efforts. They also suggest the need for additional research to understand differences in motivations for use and in the behavioral and alcohol-related outcomes associated with consuming energy drinks and combining them with alcohol. PMID:23030475

  17. Accurate double many-body expansion potential energy surface of HS2A2A‧) by scaling the external correlation

    NASA Astrophysics Data System (ADS)

    Lu-Lu, Zhang; Yu-Zhi, Song; Shou-Bao, Gao; Yuan, Zhang; Qing-Tian, Meng

    2016-05-01

    A globally accurate single-sheeted double many-body expansion potential energy surface is reported for the first excited state of HS2 by fitting the accurate ab initio energies, which are calculated at the multireference configuration interaction level with the aug-cc-pVQZ basis set. By using the double many-body expansion-scaled external correlation method, such calculated ab initio energies are then slightly corrected by scaling their dynamical correlation. A grid of 2767 ab initio energies is used in the least-square fitting procedure with the total root-mean square deviation being 1.406 kcal·mol‑1. The topographical features of the HS2(A2A‧) global potential energy surface are examined in detail. The attributes of the stationary points are presented and compared with the corresponding ab initio results as well as experimental and other theoretical data, showing good agreement. The resulting potential energy surface of HS2(A2A‧) can be used as a building block for constructing the global potential energy surfaces of larger S/H molecular systems and recommended for dynamic studies on the title molecular system. Project supported by the National Natural Science Foundation of China (Grant No. 11304185), the Taishan Scholar Project of Shandong Province, China, the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014AM022), the Shandong Province Higher Educational Science and Technology Program, China (Grant No. J15LJ03), the China Postdoctoral Science Foundation (Grant No. 2014M561957), and the Post-doctoral Innovation Project of Shandong Province, China (Grant No. 201402013).

  18. The correlation of x-ray emission with pinch energy in a 1.5 kJ plasma focus

    NASA Astrophysics Data System (ADS)

    Hussain, S. S.; Ahmad, S.; Lee, S.; Zakaullah, M.

    2007-08-01

    Correlation of x-ray emission with pinch energy from a 1.5 kJ Mather-type plasma focus device for Ag and Sn inserts at the Cu tapered anode tip is reported. The space and time resolved x-ray emission characteristics are investigated by using a simple pinhole camera with appropriate filters and a multichannel pin-diode spectrometer. High voltage probe and Rogowski coil signals are used to estimate the pinch energy. At optimum conditions, the maximum x-ray yield in 4π-geometry is found to be 9 and 8 J/shot with efficiency of 0.6% and 0.5% for Sn and Ag inserted anodes. This is despite the fact that input energy converted to pinch energy is lower at 8% for Sn insert compared with 15% for the Ag insert. An increase in x-ray yield with an increase in pinch energy is observed for Sn as well as Ag. Pinhole images reveal that x-rays of energy less than 5 keV are emitted from the focus region and the high-energy x-rays are emanated from the anode tip.

  19. Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au+Au Collisions at RHIC.

    PubMed

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Aparin, A; Arkhipkin, D; Aschenauer, E C; Attri, A; Averichev, G S; Bai, X; Bairathi, V; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandenburg, J D; Brandin, A V; Bunzarov, I; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Chakaberia, I; Chaloupka, P; Chang, Z; Chatterjee, A; Chattopadhyay, S; Chen, J H; Chen, X; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, S; Gupta, A; Guryn, W; Hamad, A I; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Heppelmann, S; Hirsch, A; Hoffmann, G W; Horvat, S; Huang, T; Huang, X; Huang, B; Huang, H Z; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Jentsch, A; Jia, J; Jiang, K; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikoła, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kumar, L; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, X; Li, C; Li, X; Li, Y; Li, W; Lin, T; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, R; Ma, G L; Ma, Y G; Ma, L; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Matis, H S; McDonald, D; McKinzie, S; Meehan, K; Mei, J C; Minaev, N G; Mioduszewski, S; Mishra, D; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Niida, T; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V A; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Pile, P; Pluta, J; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, S; Raniwala, R; Ray, R L; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, A; Sharma, B; Sharma, M K; Shen, W Q; Shi, Z; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Singha, S; Skoby, M J; Smirnov, N; Smirnov, D; Solyst, W; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Summa, B; Sun, Z; Sun, X M; Sun, Y; Surrow, B; Svirida, D N; Tang, Z; Tang, A H; Tarnowsky, T; Tawfik, A; Thäder, J; Thomas, J H; Timmins, A R; Tlusty, D; Todoroki, T; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Varma, R; Vasiliev, A N; Vertesi, R; Videbæk, F; Vokal, S; Voloshin, S A; Vossen, A; Wang, F; Wang, G; Wang, J S; Wang, H; Wang, Y; Wang, Y; Webb, G; Webb, J C; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y; Xiao, Z G; Xie, W; Xie, G; Xin, K; Xu, Y F; Xu, Q H; Xu, N; Xu, H; Xu, Z; Xu, J; Yang, S; Yang, Y; Yang, Y; Yang, C; Yang, Y; Yang, Q; Ye, Z; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, X P; Zhang, Y; Zhang, J; Zhang, J; Zhang, S; Zhang, S; Zhang, Z; Zhang, J B; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M

    2016-03-18

    We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from sqrt[s_{NN}]=7.7 to 200 GeV. The third harmonic v_{3}^{2}{2}=⟨cos3(ϕ_{1}-ϕ_{2})⟩, where ϕ_{1}-ϕ_{2} is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs Δη=η_{1}-η_{2}. Nonzero v_{3}^{2}{2} is directly related to the previously observed large-Δη narrow-Δϕ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity quark gluon plasma phase. For sufficiently central collisions, v_{3}^{2}{2} persist down to an energy of 7.7 GeV, suggesting that quark gluon plasma may be created even in these low energy collisions. In peripheral collisions at these low energies, however, v_{3}^{2}{2} is consistent with zero. When scaled by the pseudorapidity density of charged-particle multiplicity per participating nucleon pair, v_{3}^{2}{2} for central collisions shows a minimum near sqrt[s_{NN}]=20  GeV. PMID:27035295

  20. A Correlated Study of the Response of a Satellite to Acoustic Radiation Using Statistical Energy Analysis and Acoustic Test Data

    SciTech Connect

    CAP,JEROME S.; TRACEY,BRIAN

    1999-11-15

    Aerospace payloads, such as satellites, are subjected to vibroacoustic excitation during launch. Sandia's MTI satellite has recently been certified to this environment using a combination of base input random vibration and reverberant acoustic noise. The initial choices for the acoustic and random vibration test specifications were obtained from the launch vehicle Interface Control Document (ICD). In order to tailor the random vibration levels for the laboratory certification testing, it was necessary to determine whether vibration energy was flowing across the launch vehicle interface from the satellite to the launch vehicle or the other direction. For frequencies below 120 Hz this issue was addressed using response limiting techniques based on results from the Coupled Loads Analysis (CLA). However, since the CLA Finite Element Analysis FEA model was only correlated for frequencies below 120 Hz, Statistical Energy Analysis (SEA) was considered to be a better choice for predicting the direction of the energy flow for frequencies above 120 Hz. The existing SEA model of the launch vehicle had been developed using the VibroAcoustic Payload Environment Prediction System (VAPEPS) computer code [1]. Therefore, the satellite would have to be modeled using VAPEPS as well. As is the case for any computational model, the confidence in its predictive capability increases if one can correlate a sample prediction against experimental data. Fortunately, Sandia had the ideal data set for correlating an SEA model of the MTI satellite--the measured response of a realistic assembly to a reverberant acoustic test that was performed during MTI's qualification test series. The first part of this paper will briefly describe the VAPEPS modeling effort and present the results of the correlation study for the VAPEPS model. The second part of this paper will present the results from a study that used a commercial SEA software package [2] to study the effects of in-plane modes and to

  1. Comparison of a new calculation of energy-energy correlations with e+e---> hadrons data at the Z0 resonance

    NASA Astrophysics Data System (ADS)

    Abe, K.; Abt, I.; Ahn, C. J.; Akagi, T.; Allen, N. J.; Ash, W. W.; Aston, D.; Baird, K. G.; Baltay, C.; Band, H. R.; Barakat, M. B.; Baranko, G.; Bardon, O.; Barklow, T.; Bazarko, A. O.; Ben-David, R.; Benvenuti, A. C.; Bienz, T.; Bilei, G. M.; Bisello, D.; Blaylock, G.; Bogart, J. R.; Bolton, T.; Bower, G. R.; Brau, J. E.; Breidenbach, M.; Bugg, W. M.; Burke, D.; Burnett, T. H.; Burrows, P. N.; Busza, W.; Calcaterra, A.; Caldwell, D. O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Church, E.; Cohn, H. O.; Coller, J. A.; Cook, V.; Cotton, R.; Cowan, R. F.; Coyne, D. G.; D'oliveira, A.; Damerell, C. J.; Daoudi, M.; de Sangro, R.; de Simone, P.; dell'orso, R.; Dima, M.; Du, P. Y.; Dubois, R.; Eisenstein, B. I.; Elia, R.; Falciai, D.; Fan, C.; Fero, M. J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hallewell, G. D.; Hart, E. L.; Hasegawa, Y.; Hedges, S.; Hertzbach, S. S.; Hildreth, M. D.; Huber, J.; Huffer, M. E.; Hughes, E. W.; Hwang, H.; Iwasaki, Y.; Jackson, D. J.; Jacques, P.; Jaros, J.; Johnson, A. S.; Johnson, J. R.; Johnson, R. A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Karliner, I.; Kawahara, H.; Kendall, H. W.; Kim, Y.; King, M. E.; King, R.; Kofler, R. R.; Krishna, N. M.; Kroeger, R. S.; Labs, J. F.; Langston, M.; Lath, A.; Lauber, J. A.; Leith, D. W.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H. L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T. W.; Maruyama, T.; Massetti, R.; Masuda, H.; Mazzucato, E.; McKemey, A. K.; Meadows, B. T.; Messner, R.; Mockett, P. M.; Moffeit, K. C.; Mours, B.; Müller, G.; Muller, D.; Nagamine, T.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L. S.; Panvini, R. S.; Park, H.; Pavel, T. J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K. T.; Plano, R. J.; Prepost, R.; Prescott, C. Y.; Punkar, G. D.; Quigley, J.; Ratcliff, B. N.; Reeves, T. W.; Rensing, P. E.; Rochester, L. S.; Rothberg, J. E.; Rowson, P. C.; Russell, J. J.; Saxton, O. H.; Schalk, T.; Schindler, R. H.; Schneekloth, U.; Schumm, B. A.; Seiden, A.; Sen, S.; Serbo, V. V.; Shaevitz, M. H.; Shank, J. T.; Shapiro, G.; Shapiro, S. L.; Sherden, D. J.; Simopoulos, C.; Sinev, N. B.; Smith, S. R.; Snyder, J. A.; Stamer, P.; Steiner, H.; Steiner, R.; Strauss, M. G.; Su, D.; Suekane, F.; Sugiyama, A.; Suzuki, S.; Swartz, M.; Szumilo, A.; Takahashi, T.; Taylor, F. E.; Torrence, E.; Turk, J. D.; Usher, T.; Va'vra, J.; Vannini, C.; Vella, E.; Venuti, J. P.; Verdier, R.; Verdini, P. G.; Wagner, S. R.; Waite, A. P.; Watts, S. J.; Weidemann, A. W.; Weiss, E.; Whitaker, J. S.; White, S. L.; Wickens, F. J.; Williams, D. A.; Williams, D. C.; Williams, S. H.; Willocq, S.; Wilson, R. J.; Wisniewski, W. J.; Woods, M.; Word, G. B.; Wyss, J.; Yamamoto, R. K.; Yamartino, J. M.; Yang, X.; Yellin, S. J.; Young, C. C.; Yuta, H.; Zapalac, G.; Zdarko, R. W.; Zeitlin, C.; Zhang, Z.; Zhou, J.

    1995-10-01

    We have compared a new QCD calculation by Clay and Ellis of energy-energy correlations (EEC's) and their asymmetry (AEEC's) in e+e- annihilation into hadrons with data collected by the SLD experiment at SLAC. From fits of the new calculation, complete at O(α2s), we obtained αs(M2Z)=0.1184+/-0.0031(expt)+/-0.0129(theory) (EEC) and αs(M2Z)=0.1120+/-0.0034(expt)+/-0.0036(theory) (AEEC). The EEC result is significantly lower than that obtained from comparable fits using the O(α2s) calculation of Kunszt and Nason.

  2. Determination of alpha/sub s/ from energy-energy correlations in e/sup +/e/sup -/ annihilation at 29 GeV

    SciTech Connect

    Wood, D.R.

    1987-10-01

    We have studied the energy-energy correlation in e/sup +/e/sup -/ annihilation into hadrons at ..sqrt..s = 29 GeV using the Mark II detector at PEP. We find to O(..cap alpha../sub s//sup 2/) that ..cap alpha../sub s/ = 0.158 +- .003 +- .008 if hadronization is described by string fragmentation. Independent fragmentation schemes give ..cap alpha../sub s/ = .10 - .14, and give poor agreement with the data. A leading-log shower fragmentation model is found to describe the data well.

  3. Energy Correlation among Three Photoelectrons Emitted in Core-Valence-Valence Triple Photoionization of Ne

    SciTech Connect

    Hikosaka, Y.; Soejima, K.; Lablanquie, P.; Penent, F.; Palaudoux, J.; Andric, L.; Shigemasa, E.; Suzuki, I. H.; Nakano, M.; Ito, K.

    2011-09-09

    The direct observation of triple photoionization involving one inner shell and two valence electrons is reported. The energy distribution of the three photoelectrons emitted from Ne is obtained using a very efficient multielectron coincidence method using the magnetic bottle electron spectroscopic technique. A predominance of the direct path to triple photoionization for the formation of Ne{sup 3+} in the 1s2s{sup 2}2p{sup 4} configuration is observed. It is demonstrated that the energy distribution evolves with photon energy and indicates a significant difference with triple photoionization involving only valence electrons.

  4. Energy Correlation among Three Photoelectrons Emitted in Core-Valence-Valence Triple Photoionization of Ne

    NASA Astrophysics Data System (ADS)

    Hikosaka, Y.; Lablanquie, P.; Penent, F.; Palaudoux, J.; Andric, L.; Soejima, K.; Shigemasa, E.; Suzuki, I. H.; Nakano, M.; Ito, K.

    2011-09-01

    The direct observation of triple photoionization involving one inner shell and two valence electrons is reported. The energy distribution of the three photoelectrons emitted from Ne is obtained using a very efficient multielectron coincidence method using the magnetic bottle electron spectroscopic technique. A predominance of the direct path to triple photoionization for the formation of Ne3+ in the 1s2s22p4 configuration is observed. It is demonstrated that the energy distribution evolves with photon energy and indicates a significant difference with triple photoionization involving only valence electrons.

  5. Energy correlation among three photoelectrons emitted in core-valence-valence triple photoionization of Ne.

    PubMed

    Hikosaka, Y; Lablanquie, P; Penent, F; Palaudoux, J; Andric, L; Soejima, K; Shigemasa, E; Suzuki, I H; Nakano, M; Ito, K

    2011-09-01

    The direct observation of triple photoionization involving one inner shell and two valence electrons is reported. The energy distribution of the three photoelectrons emitted from Ne is obtained using a very efficient multielectron coincidence method using the magnetic bottle electron spectroscopic technique. A predominance of the direct path to triple photoionization for the formation of Ne3+ in the 1s 2s2 2p4 configuration is observed. It is demonstrated that the energy distribution evolves with photon energy and indicates a significant difference with triple photoionization involving only valence electrons. PMID:22026663

  6. The broad away side of azimuthal correlations: 3 vs 2 final state particles in high energy nuclear collisions

    SciTech Connect

    Ayala, Alejandro; Ortiz, Antonio; Paic, Guy; Jalilian-Marian, Jamal; Magnin, Javier; Tejeda-Yeomans, Maria Elena

    2011-04-26

    In high energy heavy ion collisions at RHIC there are important aspects of the medium induced dynamics, that are still not well understood. In particular, there is a broadening and even a double hump structure of the away-side peak appearing in azimuthal correlation studies in Au+Au collisions which is absent in p+p collisions at the same energies. These features are already present but suppressed in p+p collisions: 2 to 3 parton processes produce such structures but are suppressed with respect to 2 to 2 processes. We argue that in A+A collisions the different geometry for the trajectories of 3 as opposed to 2 particles in the final state, together with the medium induced energy loss effects on the different cross sections, create a scenario that enhances processes with 3 particles in the final state, which gives on average this double hump structure.

  7. Two-particle correlations in high-energy collisions and the gluon four-point function

    SciTech Connect

    Dumitru, Adrian; Jalilian-Marian, Jamal

    2010-05-01

    We derive the rapidity evolution equation for the gluon four-point function in the dilute regime and at small x from the JIMWLK functional equation. We show that beyond leading order in N{sub c} the mean field (Gaussian) approximation where the four-point function is factorized into a product of two-point functions is violated. We calculate these factorization breaking terms and show that they contribute at leading order in N{sub c} to correlations of two produced gluons as a function of their relative rapidity and azimuthal angle, for generic (rather than back-to-back) angles. Such two-particle correlations have been studied experimentally at the BNL-RHIC collider and could be scrutinized also for pp (and, in the future, also AA) collisions at the CERN-LHC accelerator.

  8. Use of intensity quotients and differences in absolute structure refinement

    PubMed Central

    Parsons, Simon; Flack, Howard D.; Wagner, Trixie

    2013-01-01

    Several methods for absolute structure refinement were tested using single-crystal X-ray diffraction data collected using Cu Kα radiation for 23 crystals with no element heavier than oxygen: conventional refinement using an inversion twin model, estimation using intensity quotients in SHELXL2012, estimation using Bayesian methods in PLATON, estimation using restraints consisting of numerical intensity differences in CRYSTALS and estimation using differences and quotients in TOPAS-Academic where both quantities were coded in terms of other structural parameters and implemented as restraints. The conventional refinement approach yielded accurate values of the Flack parameter, but with standard uncertainties ranging from 0.15 to 0.77. The other methods also yielded accurate values of the Flack parameter, but with much higher precision. Absolute structure was established in all cases, even for a hydrocarbon. The procedures in which restraints are coded explicitly in terms of other structural parameters enable the Flack parameter to correlate with these other parameters, so that it is determined along with those parameters during refinement. PMID:23719469

  9. Use of intensity quotients and differences in absolute structure refinement.

    PubMed

    Parsons, Simon; Flack, Howard D; Wagner, Trixie

    2013-06-01

    Several methods for absolute structure refinement were tested using single-crystal X-ray diffraction data collected using Cu Kα radiation for 23 crystals with no element heavier than oxygen: conventional refinement using an inversion twin model, estimation using intensity quotients in SHELXL2012, estimation using Bayesian methods in PLATON, estimation using restraints consisting of numerical intensity differences in CRYSTALS and estimation using differences and quotients in TOPAS-Academic where both quantities were coded in terms of other structural parameters and implemented as restraints. The conventional refinement approach yielded accurate values of the Flack parameter, but with standard uncertainties ranging from 0.15 to 0.77. The other methods also yielded accurate values of the Flack parameter, but with much higher precision. Absolute structure was established in all cases, even for a hydrocarbon. The procedures in which restraints are coded explicitly in terms of other structural parameters enable the Flack parameter to correlate with these other parameters, so that it is determined along with those parameters during refinement. PMID:23719469

  10. Forward-Backward Multiplicity Correlations in Symmetric and Asymmetric High Energy Collisions

    NASA Astrophysics Data System (ADS)

    Ugoccioni, Roberto

    2003-07-01

    Forward-backward correlations are explored within the two-component clan model of multiparticle production. It is found that existing data are well described, and, in hh collisions, that clans must be allowed to leak particles from one hemisphere to the other. General formulae given for the symmetric case are then extended to the asymmetric one, which is relevant for pA and AB collisions.

  11. Correlation of high energy muons with primary composition in extensive air shower

    NASA Technical Reports Server (NTRS)

    Chou, C.; Higashi, S.; Hiraoka, N.; Ozaki, S.; Sato, T.; Suwada, T.; Takahasi, T.; Umeda, H.

    1985-01-01

    An experimental investigation of high energy muons above 200 GeV in extensive air showers has been made for studying high energy interaction and primary composition of cosmic rays of energies in the range 10 to the 14th power approx. 10 to the 15th power eV. The muon energies are estimated from the burst sizes initiated by the muons in the rock, which are measured by four layers of proportional counters, each of area 5 x 2.6 sq m, placed at 30 m.w.e. deep, Funasaka tunnel vertically below the air shower array. These results are compared with Monte Carlo simulations based on the scaling model and the fireball model for two primary compositions, all proton and mixed.

  12. Absolute Measurements of Radiation Damage in Nanometer Thick Films

    PubMed Central

    Alizadeh, Elahe; Sanche, Léon

    2013-01-01

    We address the problem of absolute measurements of radiation damage in films of nanometer thicknesses. Thin films of DNA (~ 2–160nm) are deposited onto glass substrates and irradiated with varying doses of 1.5 keV X-rays under dry N2 at atmospheric pressure and room temperature. For each different thickness, the damage is assessed by measuring the loss of the supercoiled configuration as a function of incident photon fluence. From the exposure curves, the G-values are deduced, assuming that X-ray photons interacting with DNA, deposit all of their energy in the film. The results show that the G-value (i.e., damage per unit of deposited energy) increases with film thickness and reaches a plateau at 30±5 nm. This thickness dependence provides a correction factor to estimate the actual G-value for films with thicknesses below 30nm thickness. Thus, the absolute values of damage can be compared with that of films of any thickness under different experimental conditions. PMID:22562941

  13. Long range rapidity correlations and jet production in high energy nuclear collisions

    SciTech Connect

    STAR Collaboration; Abelev, Betty

    2010-07-05

    The STAR Collaboration at RHIC presents a systematic study of high transverse momentum charged di-hadron correlations at small azimuthal pair separation {Delta}{phi}, in d+Au and central Au+Au collisions at {radical}s{sub NN} = 200 GeV. Significant correlated yield for pairs with large longitudinal separation {Delta}{eta} is observed in central Au+Au, in contrast to d+Au collisions. The associated yield distribution in {Delta}{eta} x {delta}{phi} can be decomposed into a narrow jet-like peak at small angular separation which has a similar shape to that found in d+Au collisions, and a component which is narrow in {Delta}{phi} and depends only weakly on {Delta}{eta}, the 'ridge'. Using two systematically independent analyses, finite ridge yield is found to persist for trigger p{sub t} > 6 GeV/c, indicating that it is correlated with jet production. The transverse momentum spectrum of hadrons comprising the ridge is found to be similar to that of bulk particle production in the measured range (2 < p{sub t} < 4 GeV/c).

  14. Long range rapidity correlations and jet production in high energy nuclear collisions

    NASA Astrophysics Data System (ADS)

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bnzarov, I.; Bombara, M.; Bonner, B. E.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Sánchez, M. Calderón De La Barca; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Clarke, R. F.; Codrington, M. J. M.; Corliss, R.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; de Silva, L. C.; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; de Souza, R. Derradi; Didenko, L.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E. J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Huang, H. Z.; Humanic, T. J.; Huo, L.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jena, C.; Jin, F.; Jones, C. L.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kauder, K.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu.; Kikola, D. P.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Konzer, J.; Kopytine, M.; Koralt, I.; Korsch, W.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; Lapointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Lee, J. H.; Leight, W.; Levine, M. J.; Li, C.; Li, N.; Li, Y.; Lin, G.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; Matulenko, Yu. A.; McDonald, D.; McShane, T. S.; Meschanin, A.; Milner, R.; Minaev, N. G.; Mioduszewski, S.; Mischke, A.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Pile, P.; Planinic, M.; Ploskon, M. A.; Pluta, J.; Plyku, D.; Poljak, N.; Poskanzer, A. M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Pujahari, P. R.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakai, S.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shi, X.-H.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T. J. M.; de Toledo, A. Szanto; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tlusty, D.; Tokarev, M.; Trainor, T. A.; Tram, V. N.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; van Nieuwenhuizen, G.; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Whitten, C., Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xie, W.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yang, Y.; Yepes, P.; Yip, K.; Yoo, I.-K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W. M.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zhu, X.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J. X.

    2009-12-01

    The STAR Collaboration at the Relativistic Heavy Ion Collider presents a systematic study of high-transverse-momentum charged-di-hadron correlations at small azimuthal pair separation Δϕ in d+Au and central Au+Au collisions at sNN=200 GeV. Significant correlated yield for pairs with large longitudinal separation Δη is observed in central Au+Au collisions, in contrast to d+Au collisions. The associated yield distribution in Δη×Δϕ can be decomposed into a narrow jet-like peak at small angular separation which has a similar shape to that found in d+Au collisions, and a component that is narrow in Δϕ and depends only weakly on Δη, the “ridge.” Using two systematically independent determinations of the background normalization and shape, finite ridge yield is found to persist for trigger pt>6 GeV/c, indicating that it is correlated with jet production. The transverse-momentum spectrum of hadrons comprising the ridge is found to be similar to that of bulk particle production in the measured range (2

  15. Testing of the coalescence mechanism in high energy heavy ion collisions using two-particle correlations with identified particle trigger

    NASA Astrophysics Data System (ADS)

    Choudhury, Subikash; Sarkar, Debojit; Chattopadhyay, Subhasis

    2016-05-01

    In central Au-Au collisions at top RHIC energy, two-particle correlation measurements with identified hadron trigger have shown attenuation of near-side proton triggered jetlike yield at intermediate transverse momentum (p T ),2

    correlations at LHC energy within the framework of a multiphase transport (AMPT) model that implements quark coalescence as a mode of hadronization. In this paper we have calculated the proton over pion ratio and the near side per trigger yield associated with pion and proton triggers at intermediate p T from the string melting (SM) version of AMPT. Results obtained are contrasted with the AMPT default (Def.) which does not include coalescence. Baryon enhancement was observed in AMPT SM at intermediate p T . Near-side jetlike correlated yield associated with baryon (proton) trigger in the momentum region where baryon generation is enhanced is found to be suppressed as compared to the corresponding yields for the meson (pion) trigger in most central Pb-Pb events. No such effect was found in the default version of AMPT.

  16. Correlation energy, structure factor, radial distribution function, and momentum distribution of the spin-polarized uniform electron gas

    NASA Astrophysics Data System (ADS)

    Ortiz, G.; Ballone, P.

    1994-07-01

    The properties of the three-dimensional uniform electron gas in the Fermi liquid regime are analyzed using variational Monte Carlo (VMC) and fixed-node diffusion Monte Carlo methods. Our study extends those of Ceperley [Phys. Rev. B 18, 3126 (1978)] and Ceperley and Alder [Phys. Rev. Lett. 45, 566 (1980)] to larger system sizes with improved statistics and, more importantly, to partial spin polarization. The density range 0.8<=rs<=10, which is the most relevant for density functional computations, is studied in detail. We analyze the size dependence of the simulation results and present an extended set of correlation energies extrapolated to the thermodynamic limit. Using the VMC method we analyze the spin dependence of the correlation energy, and we compare our results to several interpolation formulas used in density functional calculations. We summarize our results by a simple interpolation formula. In addition, we present results for the radial distribution function, the structure factor, the momentum distribution, and triplet correlation functions, and we discuss the comparison with many-body semianalytic theories.

  17. Absolute calibration of a charge-coupled device camera with twin beams

    SciTech Connect

    Meda, A.; Ruo-Berchera, I. Degiovanni, I. P.; Brida, G.; Rastello, M. L.; Genovese, M.

    2014-09-08

    We report on the absolute calibration of a Charge-Coupled Device (CCD) camera by exploiting quantum correlation. This method exploits a certain number of spatial pairwise quantum correlated modes produced by spontaneous parametric-down-conversion. We develop a measurement model accounting for all the uncertainty contributions, and we reach the relative uncertainty of 0.3% in low photon flux regime. This represents a significant step forward for the characterization of (scientific) CCDs used in mesoscopic light regime.

  18. Modeling of exclusive parton distributions and long-range rapidity correlations in proton-proton collisions at the LHC energies

    SciTech Connect

    Kovalenko, V. N.

    2013-10-15

    The soft part of proton-proton interaction is considered within a phenomenological model that involves the formation of color strings. Under the assumption that an elementary collision is associated with the interaction of two color dipoles, the total inelastic cross section and the multiplicity of charged particles are estimated in order to fix model parameters. Particular attention is given to modeling of exclusive parton distributions with allowance for the energy-conservation law and for fixing the center of mass, which are necessary for describing correlations. An algorithm that describes the fusion of strings in the transverse plane and which takes into account their finite rapidity width is developed. The influence of string-fusion effects on long-range correlations is found within this mechanism.

  19. State estimation and absolute image registration for geosynchronous satellites

    NASA Technical Reports Server (NTRS)

    Nankervis, R.; Koch, D. W.; Sielski, H.

    1980-01-01

    Spacecraft state estimation and the absolute registration of Earth images acquired by cameras onboard geosynchronous satellites are described. The basic data type of the procedure consists of line and element numbers of image points called landmarks whose geodetic coordinates, relative to United States Geodetic Survey topographic maps, are known. A conventional least squares process is used to estimate navigational parameters and camera pointing biases from observed minus computed landmark line and element numbers. These estimated parameters along with orbit and attitude dynamic models are used to register images, using an automated grey level correlation technique, inside the span represented by the landmark data. In addition, the dynamic models can be employed to register images outside of the data span in a near real time mode. An important application of this mode is in support of meteorological studies where rapid data reduction is required for the rapid tracking and predicting of dynamic phenomena.

  20. Spin-dependent energy distribution of B-hadrons from polarized top decays considering the azimuthal correlation rate

    NASA Astrophysics Data System (ADS)

    Moosavi Nejad, S. M.

    2016-04-01

    Basically, the energy distribution of bottom-flavored hadrons produced through polarized top quark decays t (↑) →W+ + b (→Xb), is governed by the unpolarized rate and the polar and the azimuthal correlation functions which are related to the density matrix elements of the decay t (↑) → bW+. Here we present, for the first time, the analytical expressions for the O (αs) radiative corrections to the differential azimuthal decay rates of the partonic process t (↑) → b +W+ in two helicity systems, which are needed to study the azimuthal distribution of the energy spectrum of the hadrons produced in polarized top decays. These spin-momentum correlations between the top quark spin and its decay product momenta will allow the detailed studies of the top decay mechanism. Our predictions of the hadron energy distributions also enable us to deepen our knowledge of the hadronization process and to test the universality and scaling violations of the bottom-flavored meson fragmentation functions.

  1. Ghrelin and its correlation with leptin, energy related metabolites and thyroidal hormones in dairy cows in transitional period.

    PubMed

    Nowroozi-Asl, A; Aarabi, N; Rowshan-Ghasrodashti, A

    2016-01-01

    The transition from late gestation to early lactation is a critical period in a dairy cow's life so that dairy cows undergo tremendous changes during this period. The aim of this study was to determine blood levels of ghrelin, leptin, glucose, β-ydroxybutyrate (BHB), non-esterified fatty acids (NEFA), triglycerides (TG), triiodothyronine (T3) and thyroxine (T4) in dairy Holstein cows (n=20) and their correlations during the transition period. Blood samples were collected weekly from 3 wk antepartum to 6 wk postpartum from 20 high-yielding Holstein-Friesian cows. Ghrelin and leptin of plasma and glucose, BHB, NEFA, TG, T3, T4 of serum were then measured. Early lactation cows showed significantly higher (p<0.05) values of ghrelin, BHB and NEFA, and lower levels of leptin, TG, T3 and T4 (p<0.05) compared to late dry cows. Serum concentrations of glucose did not differ significantly at any time (P>0.05). Plasma ghrelin concentrations showed positive correlations with the serum BHB and NEFA (p<0.01), while plasma ghrelin had negative correlations (p<0.01) with leptin, TG, T3 and T4. In addition, no significant correlation (p>0.05) was found between ghrelin and glucose. The results of the study showed that blood ghrelin, leptin, BHB and NEFA levels are sensitive indicators of the energy balance during the peri-partum period in dairy cows and glucose values may not be considered as a precise indicator of negative energy balance in dairy cows. PMID:27096804

  2. Correlation of γ-ray and high-energy cosmic ray fluxes from the giant lobes of Centaurus A

    SciTech Connect

    Fraija, N.

    2014-03-01

    The spectral energy distribution of giant lobes shows one main peak detected by the Wilkinson Microwave Anisotropy Probe at the low energy of 10{sup –5} eV and a faint γ-ray flux imaged by the Fermi Large Area Telescope at an energy of ≥100 MeV. On the other hand, the Pierre Auger Observatory associated some ultra-high-energy cosmic rays with the direction of Centaurus A and IceCube reported 28 neutrino-induced events in a TeV-PeV energy range, although none of them related with this direction. In this work, we describe the spectra for each of the lobes, the main peak with synchrotron radiation, and the high-energy emission with p-p interactions. After obtaining a good description of the main peak, we deduce the magnetic fields, electron densities, and the age of the lobes. Successfully describing the γ-ray emission by p-p interactions and considering thermal particles in the lobes with density in the range 10{sup –10}-10{sup –4} cm{sup –3} as targets, we calculate the number of ultra-high-energy cosmic rays. Although the γ-spectrum is well described with any density in the range, only when 10{sup –4} cm{sup –3} is considered are the expected number of events very similar to that observed by the Pierre Auger Observatory, otherwise we obtain an excessive luminosity. In addition, correlating the γ-ray and neutrino fluxes through p-p interactions, we calculate the number of high-energy neutrinos expected in IceCube. Our analysis indicates that neutrinos above 1 TeV cannot be produced in the lobes of Centaurus A, which is consistent with the results recently published by the IceCube Collaboration.

  3. Clock time is absolute and universal

    NASA Astrophysics Data System (ADS)

    Shen, Xinhang

    2015-09-01

    A critical error is found in the Special Theory of Relativity (STR): mixing up the concepts of the STR abstract time of a reference frame and the displayed time of a physical clock, which leads to use the properties of the abstract time to predict time dilation on physical clocks and all other physical processes. Actually, a clock can never directly measure the abstract time, but can only record the result of a physical process during a period of the abstract time such as the number of cycles of oscillation which is the multiplication of the abstract time and the frequency of oscillation. After Lorentz Transformation, the abstract time of a reference frame expands by a factor gamma, but the frequency of a clock decreases by the same factor gamma, and the resulting multiplication i.e. the displayed time of a moving clock remains unchanged. That is, the displayed time of any physical clock is an invariant of Lorentz Transformation. The Lorentz invariance of the displayed times of clocks can further prove within the framework of STR our earth based standard physical time is absolute, universal and independent of inertial reference frames as confirmed by both the physical fact of the universal synchronization of clocks on the GPS satellites and clocks on the earth, and the theoretical existence of the absolute and universal Galilean time in STR which has proved that time dilation and space contraction are pure illusions of STR. The existence of the absolute and universal time in STR has directly denied that the reference frame dependent abstract time of STR is the physical time, and therefore, STR is wrong and all its predictions can never happen in the physical world.

  4. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  5. The National Geodetic Survey absolute gravity program

    NASA Astrophysics Data System (ADS)

    Peter, George; Moose, Robert E.; Wessells, Claude W.

    1989-03-01

    The National Geodetic Survey absolute gravity program will utilize the high precision afforded by the JILAG-4 instrument to support geodetic and geophysical research, which involves studies of vertical motions, identification and modeling of other temporal variations, and establishment of reference values. The scientific rationale of these objectives is given, the procedures used to collect gravity and environmental data in the field are defined, and the steps necessary to correct and remove unwanted environmental effects are stated. In addition, site selection criteria, methods of concomitant environmental data collection and relative gravity observations, and schedule and logistics are discussed.

  6. An absolute radius scale for Saturn's rings

    NASA Technical Reports Server (NTRS)

    Nicholson, Philip D.; Cooke, Maren L.; Pelton, Emily

    1990-01-01

    Radio and stellar occultation observations of Saturn's rings made by the Voyager spacecraft are discussed. The data reveal systematic discrepancies of almost 10 km in some parts of the rings, limiting some of the investigations. A revised solution for Saturn's rotation pole has been proposed which removes the discrepancies between the stellar and radio occultation profiles. Corrections to previously published radii vary from -2 to -10 km for the radio occultation, and +5 to -6 km for the stellar occultation. An examination of spiral density waves in the outer A Ring supports that the revised absolute radii are in error by no more than 2 km.

  7. Characterization of the DARA solar absolute radiometer

    NASA Astrophysics Data System (ADS)

    Finsterle, W.; Suter, M.; Fehlmann, A.; Kopp, G.

    2011-12-01

    The Davos Absolute Radiometer (DARA) prototype is an Electrical Substitution Radiometer (ESR) which has been developed as a successor of the PMO6 type on future space missions and ground based TSI measurements. The DARA implements an improved thermal design of the cavity detector and heat sink assembly to minimize air-vacuum differences and to maximize thermal symmetry of measuring and compensating cavity. The DARA also employs an inverted viewing geometry to reduce internal stray light. We will report on the characterization and calibration experiments which were carried out at PMOD/WRC and LASP (TRF).

  8. Absolute calibration of the Auger fluorescence detectors

    SciTech Connect

    Bauleo, P.; Brack, J.; Garrard, L.; Harton, J.; Knapik, R.; Meyhandan, R.; Rovero, A.C.; Tamashiro, A.; Warner, D.

    2005-07-01

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the combined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.

  9. Absolute angular positioning in ultrahigh vacuum

    SciTech Connect

    Schief, H.; Marsico, V.; Kern, K.

    1996-05-01

    Commercially available angular resolvers, which are routinely used in machine tools and robotics, are modified and adapted to be used under ultrahigh-vacuum (UHV) conditions. They provide straightforward and reliable measurements of angular positions for any kind of UHV sample manipulators. The corresponding absolute reproducibility is on the order of 0.005{degree}, whereas the relative resolution is better than 0.001{degree}, as demonstrated by high-resolution helium-reflectivity measurements. The mechanical setup and possible applications are discussed. {copyright} {ital 1996 American Institute of Physics.}

  10. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  11. Absolute Priority for a Vehicle in VANET

    NASA Astrophysics Data System (ADS)

    Shirani, Rostam; Hendessi, Faramarz; Montazeri, Mohammad Ali; Sheikh Zefreh, Mohammad

    In today's world, traffic jams waste hundreds of hours of our life. This causes many researchers try to resolve the problem with the idea of Intelligent Transportation System. For some applications like a travelling ambulance, it is important to reduce delay even for a second. In this paper, we propose a completely infrastructure-less approach for finding shortest path and controlling traffic light to provide absolute priority for an emergency vehicle. We use the idea of vehicular ad-hoc networking to reduce the imposed travelling time. Then, we simulate our proposed protocol and compare it with a centrally controlled traffic light system.

  12. DNA Fragmentation and DSB correlation Induced in Human Fibroblasts by Accelerated 56Fe Ions of Differing Energies

    NASA Astrophysics Data System (ADS)

    Antonelli, F.; Belli, M.; Campa, A.; Dini, V.; Esposito, G.; Furusawa, Y.; Simone, G.; Sorrentino, E.; Tabocchini, M. A.

    HZE particles from space radiation raise an important protection concern during long-term astronauts travels Although these particles are less abundant than protons they are more effective in damaging biological systems It is thought that this is due to the frequent production of spatially correlated DNA damaged sites particularly double strand breaks DSB since this correlation can strongly affect the repair capability of the cells In this work we have studied the DNA fragmentation induced in human fibroblasts by accelerated 56 Fe ions of four different energies i e 115 MeV u 414 MeV u 1 GeV u and 5 GeV u and by gamma-rays used as reference radiation DNA fragmentation was studied in various size ranges varying from 1 to 5700 kbp using Pulsed or Constant Field Gel Electrophoresis The DSB yields have been derived from fragmentation in the overall range as well as in the two ranges 1-23 and 23-5700 kbp The overall DSB yield slightly increased with the ion energy maily due to the contribution of the 23-5700 kbp fragments while that of small fragments 1-23 kbp was almost constant Accordingly the relative biological effectiveness RBE for DSB induction increased with energy from about 1 3 at 115 MeV u to about 1 8 at about 5 GeV u i e less than the RBE for chromosome aberration and cell inactivation The degree of spatial correlation of DSB was evaluated through the departure from the randomness of the fragment distribution with a simple theoretical tool that we have recently introduced To this aim a parameter R was used

  13. The multiplicity and the spectra of secondaries correlated with the leading particle energy

    NASA Technical Reports Server (NTRS)

    Kruglov, N. A.; Proskuryakov, A. S.; Sarycheva, L. I.; Smirnova, L. N.

    1985-01-01

    The spectra of leading particles of different nature in pp-collisions at E sub 0 = 33 GeV are obtained. The multiplicities and the spectra of secondaries, mesons, gamma-quanta, lambda and lambda-hyperons and protons for different leading particle energy ranges are determined.

  14. Qualitative analysis of the magnetic data collected by the Embrace MagNet in comparison to absolute measurements made by Intermagnet in Vassouras-RJ

    NASA Astrophysics Data System (ADS)

    Chen, Sony Su; Moro, Juliano; Araujo Resende, Laysa Cristina; Denardini, Clezio Marcos

    2016-07-01

    The Embrace Magnetometer Network (Embrace MagNet) is a network of three-axis fluxgate magnetometers using single bars with high level of magnetic saturation, covered with two copper coils, one for the excitation and the second for sensing the external field. It is planned to cover most of the Easter Southern American longitudinal sector in order to fulfill the gap for magnetic measurement available on-line. The availability of fast internet, reliable energy supply and easy access were the key point for deciding the location of the magnetometer stations of the network. Up to now, the main characteristic of this network is the severe sensibility matching process among all the magnetometers composing it. Now, in order to validate the magnetic data collected by the elements of the Embrace MagNet in comparison to absolute measurements, we performed a study about the correlation between the data collected by the fluxgate magnetometer provided by Embrace MagNet and an absolute magnetometer installed by Intermagnet in the same observatory. For this study, we have used data collected in Vassouras-RJ, in Brazil, covering the period from June to December 2015. The analysis consist of: (a) selecting the 5 quietest days and the 5 most disturbed days of each month based on the Kp index; (b) deducing the local midnight value from the data collected by both instruments; (c) correlating the data collected by the variometer with the absolute measurement day-by-day; (d) grouping the results as Winter (June, July, and August), Equinox (September and October) and Summer (November and December); (e) obtaining the linear correlations factor for each group. The averaged correlation factors and the daily variations of the magnetic data are presented and discussed in terms of the magnetic activity and the season variation.

  15. Parameterised local spin density exchange-correlation energies and potentials for electronic structure calculations I. Zero temperature formalism

    NASA Astrophysics Data System (ADS)

    MacLaren, J. M.; Clougherty, D. P.; McHenry, M. E.; Donovan, M. M.

    1991-09-01

    Commonly used approximate forms for the exchange-correlation energy and potential within the local density approximation are summarised, and FORTRAN code is included for the evaluation of these various forms. Included are the following: Xα, Kohn-Sham-Gaspàr, Hedin-Lundqvist-Wilkins, Janak-Moruzzi-Williams, Von Barth-Hedin, Ceperley-Alder (Perdew-Zunger), and Ceperley-Alder (Vosko-Wilk-Nusair). Both the Vosko-Wilk-Nusair and the Von Barth-Hedin expressions for spin interpolation between paramagnetic and ferromagnetic limits are also provided.

  16. Self-consistent Calculation of the Quasi-particle Energy Spectrum of Sodium using the Correlated Hartree Fock Method

    NASA Astrophysics Data System (ADS)

    Ishihara, Takamitsu; Yamagami, Hiroshi; Yasuhara, Hiroshi

    2001-12-01

    Self-consistent band calculation of sodium is performed in the correlated Hartree Fock scheme proposed by Yasuhara and Takada [Phys. Rev. B 43 (1991) 7200], which contains information on the effective mass of the electron liquid in the form of a nonlocal spin-parallel potential, and the remaining information of the self-energy operator in the form of a local potential. The bandwidth of occupied states is somewhat increased under the influence of the non-local spin-parallel potential, compared with the free electron value. No significant difference can be found in the distortion of the Fermi surface between the present theory and the LDA.

  17. Determination of the absolute contours of optical flats

    NASA Technical Reports Server (NTRS)

    Primak, W.

    1969-01-01

    Emersons procedure is used to determine true absolute contours of optical flats. Absolute contours of standard flats are determined and a comparison is then made between standard and unknown flats. Contour differences are determined by deviation of Fizeau fringe.

  18. Results on hadronic events from the MAC detector at PEP. I. Direct photon production. II. Precision R measurement and energy-energy correlations

    SciTech Connect

    Heltsley, B.K.

    1984-07-01

    Direct photon production in hadronic events from e/sup +/e/sup -/ ..-->.. hadrons has been studied at ..sqrt..s=29 GeV using the MAC detector at PEP. Both the charge asymmetry in the final state jets and total yield have been used to determine values of quark charges, which are in good agreement with the predictions of the fractionally charged quark-parton model. Limits have been established for anomalous sources of direct photons. Measurements of the total cross section and energy-energy correlations for e/sup +/e/sup -/ ..-->.. hadrons at ..sqrt..s=29 GeV with the MAC detector are presented. Two complementary event selections for the precision R measurement are described, one accepting events over nearly the entire 4..pi.. solid angle (minimizing extrapolation to unseen phase space), and the other restricted to wide angles (reducing two-photon backgrounds). The two methods agree, yield R = 3.93 +- 0.10 (which includes the effects of higher order radiative corrections), and given ..cap alpha../sub s/ = 0.19 +- 0.07, independent of fragmentation. The asymmetry in the energy-energy correlation cross section yields different results for ..cap alpha../sub s/ in different models, 0.185 in the string model and from 0.105 to 0.140 for incoherent jet formation, depending on the gluon fragmentation and momentum conservation algorithms. The string fragmentation model provides a satisfactory description of the measured correlation cross section, whereas incoherent jet fragmentation does not. 35 references.

  19. Host-Guest Assembly of a Molecular Reporter with Chiral Cyanohydrins for Assignment of Absolute Stereochemistry.

    PubMed

    Gholami, Hadi; Anyika, Mercy; Zhang, Jun; Vasileiou, Chrysoula; Borhan, Babak

    2016-06-27

    The absolute stereochemistry of cyanohydrins, derived from ketones and aldehydes, is obtained routinely, in a microscale and derivatization-free manner, upon their complexation with Zn-MAPOL, a zincated porphyrin host with a binding pocket comprised of a biphenol core. The host-guest complex leads to observable exciton-coupled circular dichroism (ECCD), the sign of which is easily correlated to the absolute stereochemistry of the bound cyanohydrin. A working model, based on the ECCD signal of cyanohydrins with known configuration, is proposed. PMID:27258557

  20. Bose-Einstein correlations of pions in e/sup +/e/sup minus/ annihilation at 29 GeV center-of-mass energy

    SciTech Connect

    Avery, R.E.

    1989-01-13

    Measurements of two- and three-particle correlations between like-sign pions produced in e/sup +/e/sup minus/ annihilation at 29 GeV center-of-mass energy are presented. The analysis is based on data taken during the period 1982--1986 using the TPC/2..gamma.. detector at PEP. Two-particle correlations are studied as a function of Q, the momentum difference as measured in the rest frame of the pion pair, and as a function of q/sub 0/, the energy difference as measured in the lab frame. The Bose-Einstein enhancement is observed when Q is small even when the energy difference, q/sub 0/, is substantial. This observation provides evidence that the Bose-Einstein correlations are best described by a model that correctly accounts for the relativistic motion of the particle sources. Three-pion correlations are measured both by using a standard three-pion correlation function, and also by using a correlation function for which the correlations between the pairs of pions within the triplet have been subtracted. The observation of three-pion correlations after pair correlations have been subtracted supports the interpretation that the observed correlations are due to Bose-Einstein interference. 56 refs.

  1. Two charged particle and transverse energy correlations in Si+Pb collisions at 14.6{ital A} GeV/{ital c}

    SciTech Connect

    Barrette, J.; Bellwied, R.; Braun-Munzinger, P.; Cleland, W.E.; David, G.; Dee, J.; Dietzsch, O.; Greene, S.V.; Hall, J.R.; Hemmick, T.K.; Herrmann, N.; Hong, B.; Jayananda, K.; Kraus, D.; Kumar, B.S.; Lacasse, R.; Lissauer, D.; Llope, W.J.; Ludlam, T.; Majka, R.; Mark, S.K.; McCorkle, S.; Mitchell, J.T.; Muthuswamy, M.; O`Brien, E.; Pruneau, C.; Rotondo, F.S.; Sonnadara, U.; Stachel, J.; Takagui, E.M.; Takai, H.; Throwe, T.G.; Voloshin, S.; Waters, L.; Winter, C.; Wolfe, D.; Woody, C.L.; Xu, N.; Zhang, Y.; Zhang, Z.; Zou, C. ||||||

    1994-03-01

    We present the results of an analysis of two charged particle and transverse energy correlations in Si+Pb collisions at BNL AGS at 14.6 GeV/{ital c} per nucleon. The measured semi-inclusive normalized two particle pseudorapidity corrleation function exhibits short range correlations similar to the correlations observed in hadron-hadron and hadron-nucleus collisions at higher energies, although the observed correlations are smaller than the values scaled from {ital hp} and {ital hA} data. Estimates, provided by the observed correlations, of the intermittency indices as well as of the parameters of the cluster model are presented. Predictions using the FRITIOF event generator, which at this level of statistical accuracy show no pseudorapidity correlations, are not in agreement with our data. Azimuthal angle two particle correlations show nonzero back-to-back correlations in the central region (consistent with FRITIOF predictions) and are almost flat in the projectile fragmentation region. We also present results on the transverse energy azimuthal correlation function, which are similar to those from the two particle correlation function.

  2. Spin Correlation Parameter Cyy of p + 3He Elastic Backward Scattering at Intermediate Energy

    NASA Astrophysics Data System (ADS)

    Shimizu, Y.; Hatanaka, K.; Adachi, T.; Itoh, K. F. K.; Kawabata, T.; Kudoh, T.; Ohira, H. M. H.; Okamura, H.; Sagara, K.; Sasamoto, Y. S. Y.; Yoshida, Y. S. H. P.; Suda, K.; Tomiyama, Y. T. A. T. M.; Uesaka, M. U. T.; Wakasa, T.; Wakui, T.

    2005-08-01

    It is possible to use nucleon-nucleus scattering as a probe of the spin structure of nuclei, since target related observables are extremely sensitive to small spin-dependent parts of the target wave function. In addition, one can gain information about the nucleon-nucleus reaction mechanism, the spin dependence of the nucleon-nucleon interaction in the nuclear medium, and off-shell behavior of the nucleon-nucleon amplitudes. For 3He(p,3He)p elastic backward scattering (EBS), only a small amount of data exists for the differential cross-section and none exists for spin-dependent observables. We have developed a spin-exchange polarised 3He target and measured the spin correlation parameter Cyy at 200, 300, and 400 MeV.

  3. Spin Correlation Parameter Cyy of p + 3He Elastic Backward Scattering at Intermediate Energy

    NASA Astrophysics Data System (ADS)

    Shimizu, Y.; Hatanaka, K.; Kobushkin, A. P.; Adachi, T.; Fujita, K.; Itoh, K.; Kawabata, T.; Kudoh, T.; Matsubara, H.; Ohira, H.; Okamura, H.; Sagara, K.; Sakemi, Y.; Sasamoto, Y.; Shimbara, Y.; Yoshida, H. P.; Suda, K.; Tameshige, Y.; Tamii, A.; Tomiyama, M.; Uchida, M.; Uesaka, T.; Wakasa, T.; Wakui, T.

    2007-01-01

    It is possible to use nucleon-nucleus scattering as a probe of the spin structure of the nuclei since target related observables are extremely sensitive to spin dependent parts of the target wave function. In addition, one can gain information about the nucleon-nucleus reaction mechanism, the spin dependent nucleon-nucleon interaction in the nuclear medium, and off-shell behavior of the nucleon-nucleon amplitudes. For 3He(p,3He)p elastic backward scattering, only small amount of data points exist for the differential cross section and no data exist for spin dependent observables. We developed a spin exchange type polarized 3He target and measured the spin correlation parameter Cyy at 200, 300, and 400 MeV.

  4. Moessbauer studies of two-electron centers with negative correlation energy in crystalline and amorphous semiconductors

    SciTech Connect

    Bordovsky, G. A.; Nemov, S. A.; Marchenko, A. V.; Seregin, P. P.

    2012-01-15

    The results of the study of donor U{sup -}-centers of tin and germanium in lead chalcogenides by Moessbauer emission spectroscopy are discussed. The published data regarding the identification of amphoteric U{sup -}-centers of tin in glassy binary arsenic and germanium chalcogenides using Moessbauer emission spectroscopy, and in multicomponent chalcogenide glasses using Moessbauer absorption spectroscopy are considered. Published data concerning the identification of two-atom U{sup -}-centers of copper in lattices of semimetal copper oxides by Moessbauer emission spectroscopy are analyzed. The published data on the detection of spatial inhomogeneity of the Bose-Einstein condensate in superconducting semiconductors and semimetal compounds, and on the existence of the correlation between the electron density in lattice sites and the superconducting transition temperature are presented. The principal possibility of using Moessbauer U{sup -}-centers as a tool for studying the Bose-Einstein condensation of electron pairs during the superconducting phase transition in semiconductors and semimetals is considered.

  5. Standardization of the cumulative absolute velocity

    SciTech Connect

    O'Hara, T.F.; Jacobson, J.P. )

    1991-12-01

    EPRI NP-5930, A Criterion for Determining Exceedance of the Operating Basis Earthquake,'' was published in July 1988. As defined in that report, the Operating Basis Earthquake (OBE) is exceeded when both a response spectrum parameter and a second damage parameter, referred to as the Cumulative Absolute Velocity (CAV), are exceeded. In the review process of the above report, it was noted that the calculation of CAV could be confounded by time history records of long duration containing low (nondamaging) acceleration. Therefore, it is necessary to standardize the method of calculating CAV to account for record length. This standardized methodology allows consistent comparisons between future CAV calculations and the adjusted CAV threshold value based upon applying the standardized methodology to the data set presented in EPRI NP-5930. The recommended method to standardize the CAV calculation is to window its calculation on a second-by-second basis for a given time history. If the absolute acceleration exceeds 0.025g at any time during each one second interval, the earthquake records used in EPRI NP-5930 have been reanalyzed and the adjusted threshold of damage for CAV was found to be 0.16g-set.

  6. Transient absolute robustness in stochastic biochemical networks.

    PubMed

    Enciso, German A

    2016-08-01

    Absolute robustness allows biochemical networks to sustain a consistent steady-state output in the face of protein concentration variability from cell to cell. This property is structural and can be determined from the topology of the network alone regardless of rate parameters. An important question regarding these systems is the effect of discrete biochemical noise in the dynamical behaviour. In this paper, a variable freezing technique is developed to show that under mild hypotheses the corresponding stochastic system has a transiently robust behaviour. Specifically, after finite time the distribution of the output approximates a Poisson distribution, centred around the deterministic mean. The approximation becomes increasingly accurate, and it holds for increasingly long finite times, as the total protein concentrations grow to infinity. In particular, the stochastic system retains a transient, absolutely robust behaviour corresponding to the deterministic case. This result contrasts with the long-term dynamics of the stochastic system, which eventually must undergo an extinction event that eliminates robustness and is completely different from the deterministic dynamics. The transiently robust behaviour may be sufficient to carry out many forms of robust signal transduction and cellular decision-making in cellular organisms. PMID:27581485

  7. Absolute Electron Extraction Efficiency of Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter

    2016-03-01

    Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.

  8. Sentinel-2/MSI absolute calibration: first results

    NASA Astrophysics Data System (ADS)

    Lonjou, V.; Lachérade, S.; Fougnie, B.; Gamet, P.; Marcq, S.; Raynaud, J.-L.; Tremas, T.

    2015-10-01

    Sentinel-2 is an optical imaging mission devoted to the operational monitoring of land and coastal areas. It is developed in partnership between the European Commission and the European Space Agency. The Sentinel-2 mission is based on a satellites constellation deployed in polar sun-synchronous orbit. It will offer a unique combination of global coverage with a wide field of view (290km), a high revisit (5 days with two satellites), a high resolution (10m, 20m and 60m) and multi-spectral imagery (13 spectral bands in visible and shortwave infra-red domains). CNES is involved in the instrument commissioning in collaboration with ESA. This paper reviews all the techniques that will be used to insure an absolute calibration of the 13 spectral bands better than 5% (target 3%), and will present the first results if available. First, the nominal calibration technique, based on an on-board sun diffuser, is detailed. Then, we show how vicarious calibration methods based on acquisitions over natural targets (oceans, deserts, and Antarctica during winter) will be used to check and improve the accuracy of the absolute calibration coefficients. Finally, the verification scheme, exploiting photometer in-situ measurements over Lacrau plain, is described. A synthesis, including spectral coherence, inter-methods agreement and temporal evolution, will conclude the paper.

  9. Absolute Spectrophotometry of 237 Open Cluster Stars

    NASA Astrophysics Data System (ADS)

    Clampitt, L.; Burstein, D.

    1994-12-01

    We present absolute spectrophotometry of 237 stars in 7 nearby open clusters: Hyades, Pleiades, Alpha Persei, Praesepe, Coma Berenices, IC 4665, and M 39. The observations were taken using the Wampler single-channel scanner (Wampler 1966) on the Crossley 0.9m telescope at Lick Observatory from July 1973 through December 1974. 21 bandpasses spanning the spectral range 3500 Angstroms to 7780 Angstroms were observed for each star, with bandwiths ranging from 32Angstroms to 64 Angstroms. Data are standardized to the Hayes--Latham (1975) system. Our measurements are compared to filter colors on the Johnson BV, Stromgren ubvy, and Geneva U V B_1 B_2 V_1 G systems, as well as to spectrophotometry of a few stars published by Gunn, Stryker & Tinsley and in the Spectrophotometric Standards Catalog (Adelman; as distributed by the NSSDC). Both internal and external comparisons to the filter systems indicate a formal statistical accuracy per bandpass of 0.01 to 0.02 mag, with apparent larger ( ~ 0.03 mag) differences in absolute calibration between this data set and existing spectrophotometry. These data will comprise part of the spectrophotometry that will be used to calibrate the Beijing-Arizona-Taipei-Connecticut Color Survey of the Sky (see separate paper by Burstein et al. at this meeting).

  10. Correlation between surface chemistry and ion energy dependence of the etch yield in multicomponent oxides etching

    SciTech Connect

    Berube, P.-M.; Poirier, J.-S.; Margot, J.; Stafford, L.; Ndione, P. F.; Chaker, M.; Morandotti, R.

    2009-09-15

    The influence of surface chemistry in plasma etching of multicomponent oxides was investigated through measurements of the ion energy dependence of the etch yield. Using pulsed-laser-deposited Ca{sub x}Ba{sub (1-x)}Nb{sub 2}O{sub 6} (CBN) and SrTiO{sub 3} thin films as examples, it was found that the etching energy threshold shifts toward values larger or smaller than the sputtering threshold depending on whether or not ion-assisted chemical etching is the dominant etching pathway and whether surface chemistry is enhancing or inhibiting desorption of the film atoms. In the case of CBN films etched in an inductively coupled Cl{sub 2} plasma, it is found that the chlorine uptake is inhibiting the etching reaction, with the desorption of nonvolatile NbCl{sub 2} and BaCl{sub 2} compounds being the rate-limiting step.

  11. Correlation of Resonance Charge Exchange Cross-Section Data in the Low-Energy Range

    NASA Technical Reports Server (NTRS)

    Sheldon, John W.

    1962-01-01

    During the course of a literature survey concerning resonance charge exchange, an unusual degree of agreement was noted between an extrapolation of the data reported by Kushnir, Palyukh, and Sena and the data reported by Ziegler. The data of Kushnir et al. are for ion-atom relative energies from 10 to 1000 ev, while the data of Ziegler are for a relative energy of about 1 ev. Extrapolation of the data of Kushnir et al. was made in accordance with Holstein's theory, 3 which is a combination of time-dependent perturbation methods and classical orbit theory. The results of this theory may be discussed in terms of a critical impact parameter b(sub c).

  12. Calculation of energies of three-electron systems in a strong magnetic field using Explicitly Correlated Gaussian Basis

    NASA Astrophysics Data System (ADS)

    Salas, Jorge; Varga, Kalman

    2015-03-01

    Strong magnetic fields can significantly alter the properties of atoms and allow the formation of stable negative ions such as He-. We have calculated the energies of systems comprised of three electrons in the presence of strong magnetic fields by using the Stochastic Variational Method with deformed Explicitly Correlated Gaussian basis. This approach yields accurate values for three-electron systems and predicts that the He- ion in a strong magnetic field has stable states, within the non-relativistic framework, in the infinite nuclear mass approximation. The energy spectrum and the properties of three-electron systems as a function of the strength of the magnetic field show the effect of the rivalry between the Coulomb interaction and the magnetic confinement.

  13. Absolute differential and total cross sections for neutral fragments from dissociative collisions of triatomic hydrogen like ions on He

    NASA Astrophysics Data System (ADS)

    Yousif, F. B.; Fuentes, B. E.; Martínez, H.

    2010-12-01

    Neutral fragment products from dissociative collisions of triatomic hydrogen like ions incident on He atoms were studied. Absolute differential and total cross sections are reported here in the energy range of 1.00-5.00 keV and scattering angles between -5.0° and 5.0°. The differential cross sections show decreasing behaviour with a slight structure around 2.0°. The total cross sections for all triatomic molecular ions studied in this work are found to be comparable for the same velocity (E/M). The measured cross sections are between 0.7 × 10-17 cm2 and 0.9 × 10-16 cm2. The present results for the neutral total cross section correlate very well with previously measured total ions cross section for H+3, D+3 and HD+2 on He.

  14. Absolute photoionization cross-section of the methyl radical.

    SciTech Connect

    Taatjes, C. A.; Osborn, D. L.; Selby, T.; Meloni, G.; Fan, H.; Pratt, S. T.; Chemical Sciences and Engineering Division; SNL

    2008-01-01

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH{sub 3} photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; {sigma}{sub CH}(10.2 eV) = (5.7 {+-} 0.9) x 10{sup -18} cm{sup 2} and {sigma}{sub CH{sub 3}}(11.0 eV) = (6.0 {+-} 2.0) x 10{sup -18} cm{sup 2}. The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH{sub 3} and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.460 eV, (5.5 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.466 eV, and (4.9 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  15. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  16. Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.

    2008-01-01

    Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…

  17. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a...

  18. Increase in joint stability at the expense of energy efficiency correlates with force variability during a fatiguing task.

    PubMed

    Cashaback, Joshua G A; Cluff, Tyler

    2015-02-26

    Empirical evidence suggests that our nervous system considers many objectives when performing various tasks. With the progression of fatigue, researchers have noted increase in both joint moment variability and muscular cocontraction during isometric force production tasks. Muscular cocontraction increases joint stability, but is metabolically costly. Thus, our nervous system must select a compromise between joint stability and energy efficiency. Interestingly, the continuous increase in cocontraction with fatigue suggests there may be a shift in the relative weighting of these objectives. Here we test the notion of dynamic objective weightings. Using multi-objective optimization, we found a shift in objective weighting that favoured joint stability at the expense of energy efficiency during fatigue. This shift was highly correlated with muscular cocontraction (R(2)=0.78, p<0.001) and elbow moment variability in the time (R(2)=0.56, p<0.01) and frequency (R(2)=0.57, p<0.01) domains. By considering a dynamic objective weighting we obtained strong correlations with predicted and collected muscle activity (R(2)=0.94, p<0.001). PMID:25597814

  19. One-parameter optimization of a nonempirical meta-generalized-gradient-approximation for the exchange-correlation energy

    SciTech Connect

    Perdew, John P.; Ruzsinszky, Adrienn; Tao, Jianmin; Csonka, Gabor I.; Scuseria, Gustavo E.

    2007-10-15

    The meta-generalized-gradient-approximation (meta-GGA) for the exchange-correlation energy, as constructed by Tao, Perdew, Staroverov, and Scuseria (TPSS) [Phys. Rev. Lett. 91, 146401 (2003)], has achieved usefully consistent accuracy for diverse systems and is the most reliable nonempirical density functional (and the most reliable nonhybrid) in common use. We present here an optimized version of this TPSS functional obtained by empirically fitting a single free parameter that controls the approach of the exchange enhancement factor to its rapidly-varying-density limit, while preserving all the exact constraints that the original TPSS functional satisfies. We find that molecular atomization energies are significantly improved with the optimized version and are even better than those obtained with the best hybrid functionals employing a fraction of exact exchange (e.g., the TPSS hybrid), while energy barrier heights are slightly improved; jellium surface energies remain accurate and almost unchanged. The one-parameter freedom of the TPSS functional may be useful even beyond the meta-GGA level, since the TPSS approximation is a natural starting point for the higher-level hyper-GGA.

  20. Absolute perfusion measurements and associated iodinated contrast agent time course in brain metastasis: a study for contrast-enhanced radiotherapy

    PubMed Central

    Obeid, Layal; Deman, Pierre; Tessier, Alexandre; Balosso, Jacques; Estève, François; Adam, Jean- François

    2014-01-01

    Contrast-enhanced radiotherapy is an innovative treatment that combines the selective accumulation of heavy elements in tumors with stereotactic irradiations using medium energy X-rays. The radiation dose enhancement depends on the absolute amount of iodine reached in the tumor and its time course. Quantitative, postinfusion iodine biodistribution and associated brain perfusion parameters were studied in human brain metastasis as key parameters for treatment feasibility and quality. Twelve patients received an intravenous bolus of iodinated contrast agent (CA) (40 mL, 4 mL/s), followed by a steady-state infusion (160 mL, 0.5 mL/s) to ensure stable intratumoral amounts of iodine during the treatment. Absolute iodine concentrations and quantitative perfusion maps were derived from 40 multislice dynamic computed tomography (CT) images of the brain. The postinfusion mean intratumoral iodine concentration (over 30 minutes) reached 1.94±0.12 mg/mL. Reasonable correlations were obtained between these concentrations and the permeability surface area product and the cerebral blood volume. To our knowledge, this is the first quantitative study of CA biodistribution versus time in brain metastasis. The study shows that suitable and stable amounts of iodine can be reached for contrast-enhanced radiotherapy. Moreover, the associated perfusion measurements provide useful information for the patient recruitment and management processes. PMID:24447951