Science.gov

Sample records for absolute distance measurements

  1. Absolute Distance Measurement with the MSTAR Sensor

    NASA Technical Reports Server (NTRS)

    Lay, Oliver P.; Dubovitsky, Serge; Peters, Robert; Burger, Johan; Ahn, Seh-Won; Steier, William H.; Fetterman, Harrold R.; Chang, Yian

    2003-01-01

    The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. The sensor uses a single laser in conjunction with fast phase modulators and low frequency detectors. We describe the design of the system - the principle of operation, the metrology source, beamlaunching optics, and signal processing - and show results for target distances up to 1 meter. We then demonstrate how the system can be scaled to kilometer-scale distances.

  2. Absolute distance measurement based on multiple self-mixing interferometry

    NASA Astrophysics Data System (ADS)

    Duan, Zhiwei; Yu, Yangyang; Gao, Bingkun; Jiang, Chunlei

    2017-04-01

    To improve the precision of distance measurement using laser Self-Mixing Interferometry (SMI) and compute short distance, we propose a method of Multiple Self-Mixing Interferometry (MSMI) that is modulated with a triangular wave. The principle of this method has been described in this paper. Experiments at different distances and amplitudes of modulation current are based on the proposed method. Low-priced and easily operated experimental devices are built. Experimental results show that a resolution of 2.7 mm can be achieved for absolute distance ranging from 2.2 to 23 cm.

  3. Absolute distance measurement with an optical feedback interferometer.

    PubMed

    Gouaux, F; Servagent, N; Bosch, T

    1998-10-01

    An important use of the self-mixing effect inside a frequency-modulated single-mode laser diode is in laser velocimetry and range-finding applications. The optical beam reflected by a target and injected into the laser diode cavity modulated by a reshaped current is mixed with the light inside the cavity, causing variations of the optical output power. A theoretical analysis of this effect is proposed, based on the determination of the beat frequencies of the optical power variations, to improve the accuracy of laser distance measurement. A resolution of ?1.5 mm from 50 cm to 2 m is obtained when thermal effects are taken into account.

  4. High-precision absolute distance and vibration measurement with frequency scanned interferometry

    SciTech Connect

    Yang, H.-J.; Deibel, Jason; Nyberg, Sven; Riles, Keith

    2005-07-01

    We report high-precision absolute distance and vibration measurements performed with frequency scanned interferometry using a pair of single-mode optical fibers. Absolute distance was determined by counting the interference fringes produced while scanning the laser frequency. A high-finesse Fabry-Perot interferometer was used to determine frequency changes during scanning. Two multiple-distance-measurement analysis techniques were developed to improve distance precision and to extract the amplitude and frequency of vibrations. Under laboratory conditions, measurement precision of {approx}50 nm was achieved for absolute distances ranging from 0.1 to 0.7 m by use of the first multiple-distance-measurement technique. The second analysis technique has the capability to measure vibration frequencies ranging from 0.1 to 100 Hz with an amplitude as small as a few nanometers without a priori knowledge.

  5. High-precision absolute distance and vibration measurement with frequency scanned interferometry.

    PubMed

    Yang, Hai-Jun; Deibel, Jason; Nyberg, Sven; Riles, Keith

    2005-07-01

    We report high-precision absolute distance and vibration measurements performed with frequency scanned interferometry using a pair of single-mode optical fibers. Absolute distance was determined by counting the interference fringes produced while scanning the laser frequency. A high-finesse Fabry-Perot interferometer was used to determine frequency changes during scanning. Two multiple-distance-measurement analysis techniques were developed to improve distance precision and to extract the amplitude and frequency of vibrations. Under laboratory conditions, measurement precision of approximately 50 nm was achieved for absolute distances ranging from 0.1 to 0.7 m by use of the first multiple-distance-measurement technique. The second analysis technique has the capability to measure vibration frequencies ranging from 0.1 to 100 Hz with an amplitude as small as a few nanometers without a priori knowledge.

  6. The study of absolute distance measurement based on the self-mixing interference in laser diode

    NASA Astrophysics Data System (ADS)

    Wang, Ting-ting; Zhang, Chuang

    2009-07-01

    In this work, an absolute distance measurement method based on the self-mixing interference is presented. The principles of the method used three-mirror cavity equivalent model are studied in this paper, and the mathematical model is given. Wavelength modulation of the laser beam is obtained by saw-tooth modulating the infection current of the laser diode. Absolute distance of the external target is determined by Fourier analysis method. The frequency of signal from PD is linearly dependent on absolute distance, but also affected by temperature and fluctuation of current source. A dual-path method which uses the reference technique for absolute distance measurement has been proposed. The theoretical analysis shows that the method can eliminate errors resulting from distance-independent variations in the setup. Accuracy and stability can be improved. Simulated results show that a resolution of +/-0.2mm can be achieved for absolute distance ranging from 250mm to 500mm. In the same measurement range, the resolution we obtained is better than other absolute distance measurement system proposed base on self-mixing interference.

  7. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution.

    PubMed

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-11-01

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution.

  8. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    SciTech Connect

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-11-15

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution.

  9. Absolute distance measurement by chirped pulse interferometry using a femtosecond pulse laser.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Meng, Fei; Li, Jianshuang; Qu, Xinghua

    2015-11-30

    We propose here a method for absolute distance measurement by chirped pulse interferometry using frequency comb. The principle is introduced, and the distance can be measured via the shift of the widest fringe. The experimental results show an agreement within 26 μm in a range up to 65 m, corresponding to a relative precision of 4 × 10-7, compared with a reference distance meter.

  10. High-accuracy absolute distance measurement with a mode-resolved optical frequency comb

    NASA Astrophysics Data System (ADS)

    Voigt, Dirk; van den Berg, Steven A.; Lešundák, Adam; van Eldik, Sjoerd; Bhattacharya, Nandini

    2016-04-01

    Optical interferometry enables highly accurate non-contact displacement measurement. The optical phase ambiguity needs to be resolved for absolute distance ranging. In controlled laboratory conditions and for short distances it is possible to track a non-interrupted displacement from a reference position to a remote target. With large distances covered in field applications this may not be feasible, e.g. in structure monitoring, large scale industrial manufacturing or aerospace navigation and attitude control. We use an optical frequency comb source to explore absolute distance measurement by means of a combined spectral and multi-wavelength homodyne interferometry. This relaxes the absolute distance ambiguity to a few tens of centimeters, covered by simpler electronic distance meters, while maintaining highly accurate optical phase measuring capability. A virtually imaged phased array spectrometer records a spatially dispersed interferogram in a single exposure and allows for resolving the modes of our near infrared comb source with 1 GHz mode separation. This enables measurements with direct traceability of the atomic clock referenced comb source. We observed agreement within 500 nm in comparison with a commercial displacement interferometer for target distances up to 50 m. Furthermore, we report on current work toward applicability in less controlled conditions. A filter cavity decimates the comb source to an increased mode separation larger than 20 GHz. A simple grating spectrometer then allows to record mode-resolved interferograms.

  11. Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb.

    PubMed

    Wu, Xuejian; Wei, Haoyun; Zhang, Hongyuan; Ren, Libing; Li, Yan; Zhang, Jitao

    2013-04-01

    We present a frequency-sweeping heterodyne interferometer to measure an absolute distance based on a frequency-tunable diode laser calibrated by an optical frequency comb (OFC) and an interferometric phase measurement system. The laser frequency-sweeping process is calibrated by the OFC within a range of 200 GHz and an accuracy of 1.3 kHz, which brings about a precise temporal synthetic wavelength of 1.499 mm. The interferometric phase measurement system consisting of the analog signal processing circuit and the digital phase meter achieves a phase difference resolution better than 0.1 deg. As the laser frequency is sweeping, the absolute distance can be determined by measuring the phase difference variation of the interference signals. In the laboratory condition, our experimental scheme realizes micrometer accuracy over meter distance.

  12. Frequency-scanning interferometry for dynamic absolute distance measurement using Kalman filter.

    PubMed

    Tao, Long; Liu, Zhigang; Zhang, Weibo; Zhou, Yangli

    2014-12-15

    We propose a frequency-scanning interferometry using the Kalman filtering technique for dynamic absolute distance measurement. Frequency-scanning interferometry only uses a single tunable laser driven by a triangle waveform signal for forward and backward optical frequency scanning. The absolute distance and moving speed of a target can be estimated by the present input measurement of frequency-scanning interferometry and the previously calculated state based on the Kalman filter algorithm. This method not only compensates for movement errors in conventional frequency-scanning interferometry, but also achieves high-precision and low-complexity dynamic measurements. Experimental results of dynamic measurements under static state, vibration and one-dimensional movement are presented.

  13. Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Cao, Shiying; Xing, Shujian; Qu, Xinghua

    2014-05-05

    We propose an interferometric method that enables to measure a distance by the intensity measurement using the scanning of the interferometer reference arm and the recording of the interference fringes including the brightest fringe. With the consideration of the dispersion and absorption of the pulse laser in a dispersive and absorptive medium, we investigate the cross-correlation function between two femtosecond laser pulses in the time domain. We also introduce the measurement principle. We study the relationship between the position of the brightest fringe and the distance measured, which can contribute to the distance measurement. In the experiments, we measure distances using the method of the intensity detection while the reference arm of Michelson interferometer is scanned and the fringes including the brightest fringe is recorded. Firstly we measure a distance in a range of 10 µm. The experimental results show that the maximum deviation is 45 nm with the method of light intensity detection. Secondly, an interference system using three Michelson interferometers is developed, which combines the methods of light intensity detection and time-of-flight. This system can extend the non-ambiguity range of the method of light intensity detection. We can determine a distance uniquely with a larger non-ambiguity range. It is shown that this method and system can realize absolute distance measurement, and the measurement range is a few micrometers in the vicinity of Nl(pp), where N is an integer, and lpp is the pulse-to-pulse length.

  14. Many-wavelength interferometry with thousands of lasers for absolute distance measurement.

    PubMed

    van den Berg, S A; Persijn, S T; Kok, G J P; Zeitouny, M G; Bhattacharya, N

    2012-05-04

    We demonstrate a new technique for absolute distance measurement with a femtosecond frequency comb laser, based on unraveling the output of an interferometer to distinct comb modes with 1 GHz spacing. From the fringe patterns that are captured with a camera, a distance is derived by combining spectral and homodyne interferometry, exploiting about 9000 continuous wave lasers. This results in a measurement accuracy far within an optical fringe (λ/30), combined with a large range of nonambiguity (15 cm). Our technique merges multiwavelength interferometry and spectral interferometry, within a single scheme.

  15. Absolute distance measurement with correction of air refractive index by using two-color dispersive interferometry.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Li, Jianshuang; Qu, Xinghua

    2016-10-17

    Two-color interferometry is powerful for the correction of the air refractive index especially in the turbulent air over long distance, since the empirical equations could introduce considerable measurement uncertainty if the environmental parameters cannot be measured with sufficient precision. In this paper, we demonstrate a method for absolute distance measurement with high-accuracy correction of air refractive index using two-color dispersive interferometry. The distances corresponding to the two wavelengths can be measured via the spectrograms captured by a CCD camera pair in real time. In the long-term experiment of the correction of air refractive index, the experimental results show a standard deviation of 3.3 × 10-8 for 12-h continuous measurement without the precise knowledge of the environmental conditions, while the variation of the air refractive index is about 2 × 10-6. In the case of absolute distance measurement, the comparison with the fringe counting interferometer shows an agreement within 2.5 μm in 12 m range.

  16. Intensity evaluation using a femtosecond pulse laser for absolute distance measurement.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Li, Jianshuang; Cao, Shiying; Meng, Xiangsong; Qu, Xinghua

    2015-06-10

    In this paper, we propose a method of intensity evaluation based on different pulse models using a femtosecond pulse laser, which enables long-range absolute distance measurement with nanometer precision and large non-ambiguity range. The pulse cross-correlation is analyzed based on different pulse models, including Gaussian, Sech(2), and Lorenz. The DC intensity and the amplitude of the cross-correlation patterns are also demonstrated theoretically. In the experiments, we develop a new combined system and perform the distance measurements on an underground granite rail system. The DC intensity and amplitude of the interference fringes are measured and show a good agreement with the theory, and the distance to be determined can be up to 25 m using intensity evaluation, within 64 nm deviation compared with a He-Ne incremental interferometer, and corresponds to a relative precision of 2.7×10(-9).

  17. Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling.

    PubMed

    Zhang, Hongyuan; Wei, Haoyun; Wu, Xuejian; Yang, Honglei; Li, Yan

    2014-03-24

    A dual-comb nonlinear asynchronous optical sampling method is proposed to simplify determination of the time interval and extend the non-ambiguity range in absolute length measurements. Type II second harmonic generation facilitates curve fitting in determining the time interval between adjacent pulses. Meanwhile, the non-ambiguity range is extended by adjusting the repetition rate of the signal laser. The performance of the proposed method is compared with a heterodyne interferometer. Results show that the system achieves a maximum residual of 100.6 nm and an uncertainty of 1.48 μm in a 0.5 ms acquisition time. With longer acquisition time, the uncertainty can be reduced to 166.6 nm for 50 ms and 82.9 nm for 500 ms. Moreover, the extension of the non-ambiguity range is demonstrated by measuring an absolute distance beyond the inherent range determined by the fixed repetition rate.

  18. Calibration of Fourier domain short coherence interferometer for absolute distance measurements.

    PubMed

    Montonen, R; Kassamakov, I; Hæggström, E; Österberg, K

    2015-05-20

    We calibrated and determined the measurement uncertainty of a custom-made Fourier domain short coherence interferometer operated in laboratory conditions. We compared the optical thickness of two thickness standards and three coverslips determined with our interferometer to the geometric thickness determined by SEM. Using this calibration data, we derived a calibration function with a 95% confidence level system uncertainty of (5.9×10(-3)r+2.3)  μm, where r is the optical distance in μm, across the 240 μm optical measurement range. The confidence limit includes contributions from uncertainties in the optical thickness, geometric thickness, and refractive index measurements as well as uncertainties arising from cosine errors and thermal expansion. The results show feasibility for noncontacting absolute distance characterization with micrometer-level accuracy. This instrument is intended for verifying the alignment of the discs of an accelerating structure in the possible future compact linear collider.

  19. Superheterodyne configuration for two-wavelength interferometry applied to absolute distance measurement.

    PubMed

    Le Floch, Sébastien; Salvadé, Yves; Droz, Nathalie; Mitouassiwou, Rostand; Favre, Patrick

    2010-02-01

    We present a new superheterodyne technique for long-distance measurements by two-wavelength interferometry (TWI). While conventional systems use two acousto-optic modulators to generate two different heterodyne frequencies, here the two frequencies result from synchronized sweeps of optical and radio frequencies. A distributed feedback laser source is injected in an intensity modulator that is driven at the half-wave voltage mode. A radio-frequency signal is applied to this intensity modulator to generate two optical sidebands around the optical carrier. This applied radio frequency consists of a digital ramp between 13 and 15 GHz, with 1 ms duration and with an accuracy of better than 1 ppm. Simultaneously, the laser source is frequency modulated by a current modulation that is synchronized on the radio-frequency ramp as well as on a triangle waveform. These two frequency-swept optical signals at the output of the modulator illuminate a Michelson interferometer and create two distinct distance-dependent heterodyne frequencies on the photodetector. The superheterodyne signal is then detected and bandpass filtered to retrieve the absolute distance measurement. Experiments between 1 and 15 m confirm the validity of this new concept, leading to a distance accuracy of +/- 50 microm for a 1 ms acquisition time.

  20. Superheterodyne configuration for two-wavelength interferometry applied to absolute distance measurement

    SciTech Connect

    Le Floch, Sebastien; Salvade, Yves; Droz, Nathalie; Mitouassiwou, Rostand; Favre, Patrick

    2010-02-01

    We present a new superheterodyne technique for long-distance measurements by two-wavelength interferometry (TWI). While conventional systems use two acousto-optic modulators to generate two different heterodyne frequencies, here the two frequencies result from synchronized sweeps of optical and radio frequencies. A distributed feedback laser source is injected in an intensity modulator that is driven at the half-wave voltage mode. A radio-frequency signal is applied to this intensity modulator to generate two optical sidebands around the optical carrier. This applied radio frequency consists of a digital ramp between 13 and 15 GHz, with 1 ms duration and with an accuracy of better than 1 ppm. Simultaneously, the laser source is frequency modulated by a current modulation that is synchronized on the radio-frequency ramp as well as on a triangle waveform. These two frequency-swept optical signals at the output of the modulator illuminate a Michelson interferometer and create two distinct distance-dependent heterodyne frequencies on the photodetector. The superheterodyne signal is then detected and bandpass filtered to retrieve the absolute distance measurement. Experiments between 1 and 15 m confirm the validity of this new concept, leading to a distance accuracy of {+-} 50 {mu}m for a 1 ms acquisition time.

  1. Absolute distance measurement with micrometer accuracy using a Michelson interferometer and the iterative synthetic wavelength principle.

    PubMed

    Alzahrani, Khaled; Burton, David; Lilley, Francis; Gdeisat, Munther; Bezombes, Frederic; Qudeisat, Mohammad

    2012-02-27

    We present a novel system that can measure absolute distances of up to 300 mm with an uncertainty of the order of one micrometer, within a timeframe of 40 seconds. The proposed system uses a Michelson interferometer, a tunable laser, a wavelength meter and a computer for analysis. The principle of synthetic wave creation is used in a novel way in that the system employs an initial low precision estimate of the distance, obtained using a triangulation, or time-of-flight, laser system, or similar, and then iterates through a sequence of progressively smaller synthetic wavelengths until it reaches micrometer uncertainties in the determination of the distance. A further novel feature of the system is its use of Fourier transform phase analysis techniques to achieve sub-wavelength accuracy. This method has the major advantages of being relatively simple to realize, offering demonstrated high relative precisions better than 5 × 10(-5). Finally, the fact that this device does not require a continuous line-of-sight to the target as is the case with other configurations offers significant advantages.

  2. Absolute thickness metrology with submicrometer accuracy using a low-coherence distance measuring interferometer.

    PubMed

    Zhao, Yang; Schmidt, Greg; Moore, Duncan T; Ellis, Jonathan D

    2015-09-01

    Absolute physical thickness across the sample aperture is critical in determining the index of a refraction profile from the optical path length profile for gradient index (GRIN) materials, which have a designed inhomogeneous refractive index. Motivated by this application, instrumentation was established to measure the absolute thickness of samples with nominally plane-parallel surfaces up to 50 mm thick. The current system is capable of measuring absolute thickness with 120 nm (1σ) repeatability and submicrometer expanded measurement uncertainty. Beside GRIN materials, this method is also capable of measuring other inhomogeneous and opaque materials.

  3. Multi-Segment Radius Measurement Using an Absolute Distance Meter Through a Null Assembly

    NASA Technical Reports Server (NTRS)

    Merle, Cormic; Wick, Eric; Hayden, Joseph

    2011-01-01

    This system was one of the test methods considered for measuring the radius of curvature of one or more of the 18 segmented mirrors that form the 6.5 m diameter primary mirror (PM) of the James Webb Space Telescope (JWST). The assembled telescope will be tested at cryogenic temperatures in a 17-m diameter by 27-m high vacuum chamber at the Johnson Space Center. This system uses a Leica Absolute Distance Meter (ADM), at a wavelength of 780 nm, combined with beam-steering and beam-shaping optics to make a differential distance measurement between a ring mirror on the reflective null assembly and individual PM segments. The ADM is located inside the same Pressure-Tight Enclosure (PTE) that houses the test interferometer. The PTE maintains the ADM and interferometer at ambient temperature and pressure so that they are not directly exposed to the telescope s harsh cryogenic and vacuum environment. This system takes advantage of the existing achromatic objective and reflective null assembly used by the test interferometer to direct four ADM beamlets to four PM segments through an optical path that is coincident with the interferometer beam. A mask, positioned on a linear slide, contains an array of 1.25 mm diameter circular subapertures that map to each of the 18 PM segments as well as six positions around the ring mirror. A down-collimated 4 mm ADM beam simultaneously covers 4 adjacent PM segment beamlets and one ring mirror beamlet. The radius, or spacing, of all 18 segments can be measured with the addition of two orthogonally-oriented scanning pentaprisms used to steer the ADM beam to any one of six different sub-aperture configurations at the plane of the ring mirror. The interferometer beam, at a wavelength of 687 nm, and the ADM beamlets, at a wavelength of 780 nm, pass through the objective and null so that the rays are normally incident on the parabolic PM surface. After reflecting off the PM, both the ADM and interferometer beams return to their respective

  4. White-light scanning fiber Michelson interferometer for absolute position-distance measurement.

    PubMed

    Li, T; Wang, A; Murphy, K; Claus, R

    1995-04-01

    A white-light fiber interferometer working in the spatial domain, using two fiber ends in a hollow tube as the sensing head and an electric magnetic actuator-mirror reflector as the path-compensation-measurement element, is presented. Analysis and preliminary experiments have demonstrated a repeatability of 0.5 microm (2sigma) for position-distance measurement, and the measurement uncertainty was estimated to be 1.5 microm (2sigma) over a distance range of 150 microm. Suggestions for further improving the measurement accuracy and response speed are also given.

  5. White-light scanning fiber Michelson interferometer for absolute position-distance measurement

    NASA Astrophysics Data System (ADS)

    Li, Tianchu; Wang, Anbo; Murphy, Kent; Claus, Richard

    1995-04-01

    A white-light fiber interferometer working in the spatial domain, using two fiber ends in a hollow tube as the sensing head and an electric magnetic actuator-mirror reflector as the path-compensation-measurement element, is presented. Analysis and preliminary experiments have demonstrated a repeatability of 0.5 mu m (2 sigma ) for position-distance measurement, and the measurement uncertainty was estimated to be 1.5 mu m (2 sigma ) over a distance range of 150 mu m. Suggestions for further improving the measurement accuracy and response speed are also given.

  6. Combining sub-Nyquist sampling and chirp decomposition for a high-precision and speed absolute distance measurement method.

    PubMed

    Liu, Guodong; Lu, Cheng; Liu, Bingguo; Chen, Fengdong; Gan, Yu

    2016-12-10

    A high-precision and speed absolute distance measurement based on swept-wavelength interferometry is reported. A powerful method combining sub-Nyquist sampling and chirp decomposition for dispersion mismatch compensation is proposed. A standard deviation of 0.72 μm is obtained for the measurement of a target located at 3.9 m, which is better than the traditional method. The measurement can be completed in 1.9 s when the frequency range is 4.26 THz, which is much better than chirp decomposition without sub-Nyquist sampling.

  7. Absolute distance measurement by multi-heterodyne interferometry using a frequency comb and a cavity-stabilized tunable laser.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Balling, Petr; Qu, Xinghua

    2016-05-20

    In this paper, we develop a multi-heterodyne system capable of absolute distance measurement using a frequency comb and a tunable diode laser locked to a Fabry-Perot cavity. In a series of subsequent measurements, numerous beat components can be obtained by downconverting the optical frequency into the RF region with multi-heterodyne interferometry. The distances can be measured via the mode phases with a series of synthetic wavelengths. The comparison with the reference interferometer shows an agreement within 1.5 μm for the averages of five measurements and 2.5 μm for the single measurement, which is at the 10-8 relative precision level.

  8. Method based on chirp decomposition for dispersion mismatch compensation in precision absolute distance measurement using swept-wavelength interferometry.

    PubMed

    Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Hu, Tao; Zhuang, Zhitao; Xu, Xinke; Gan, Yu

    2015-12-14

    We establish a theoretical model of dispersion mismatch in absolute distance measurements using swept-wavelength interferometry (SWI) and propose a novel dispersion mismatch compensation method called chirp decomposition. This method separates the dispersion coefficient and distance under test, which ensures dispersion mismatch compensation without introducing additional random errors. In the measurement of a target located at 3.9 m, a measurement resolution of 45.9 μm is obtained, which is close to the theoretical resolution, and a standard deviation of 0.74 μm is obtained, which is better than the traditional method. The measurement results are compared to a single-frequency laser interferometer. The target moves from 1 m to 3.7 m, and the measurement precision using the new method is less than 0.81 μm.

  9. Two-modality laser diode interferometer for high-accuracy measurement of long-range absolute distance

    NASA Astrophysics Data System (ADS)

    Wang, Bofan; Li, Zhongliang; Wang, Xiangzhao; Bu, Peng

    2010-08-01

    This paper presents a two-modality laser diode (LD) interferometer which combine as two-wavelength sinusoidal phase modulating (SPM) interferometer with a wavelength scanning interferometer (WSI) for measurement of distance over long range with high accuracy. Moreover, the intensity modulation due to power changes of LD is suppressed by appropriately choosing the modulation amplitude of injection current (IC) of LD. Triangle wave is used to modulate the IC of one LD with that of the other LD being constant at first. Thus the interferometer works as a wavelength scanning interferometer. An initial estimate of the distance can be obtained from the phase change of the interference signal. Then sinusoidal wave is used for modulating IC of both LDs to realize a two-wavelength SPM interferometer. However, the modulation of the IC of two LDs results in not only the wavelength modulation but also the intensity modulation. This intensity modulation will cause a measured phase error. To eliminate this error, SPM depths are appropriately chosen, therefore the distance to be measured can be accurately obtained with synthetic-wavelength algorithm. Experimental results indicate that an absolute distance measurement accuracy of 1μm can be achieved over the range of 40mm to 100mm.

  10. Auto-elimination of fiber optical path-length drift in a frequency scanning interferometer for absolute distance measurements

    NASA Astrophysics Data System (ADS)

    Tao, Long; Liu, Zhigang; Zhang, Weibo

    2015-09-01

    Because of its compact size and portability, optical fiber has been wildly used as optical paths in frequency-scanning interferometers for high-precision absolute distance measurements. However, since the fiber is sensitive to ambient temperature, its length and refractive index change with temperature, resulting in an optical path length drift that influences the repeatability of measurements. To improve the thermal stability of the measurement system, a novel frequency-scanning interferometer composed of two Michelson-type interferometers sharing a common fiber optical path is proposed. One interferometer defined as origin interferometer is used to monitor the drift of the measurement origin due to the optical path length drift of the optical fiber under on-site environment. The other interferometer defined as measurement interferometer is used to measure the distance to the target. Because the optical path length drift of the fiber appears in both interferometers, its influence can be eliminated by subtracting the optical path difference of the origin interferometer from the optical path difference of the measurement interferometer. A prototype interferometer was developed in our research, and experimental results demonstrate its robustness and stability. Under on-site environment, an accuracy about 4 μm was achieved for a distance of about 1 m.

  11. Dispersive white light combined with a frequency-modulated continuous-wave interferometer for high-resolution absolute measurements of distance.

    PubMed

    Rovati, L; Minoni, U; Docchio, F

    1997-06-15

    A nonincremental interferometer for the absolute measurement of distances is presented. The measuring technique is based on both dispersive white-light (DWL) interferometry and frequency-modulated continuous-wave (FMCW) interferometry. The proposed configuration integrates both techniques in the same interferometer by use of a single laser diode. This solution enables the results from the coarse measurements from the FMCW interferometer to be combined with the fine readouts from the DWL interferometer. Preliminary experimental results confirm the capability of the system to combine the advantages of the two techniques.

  12. Absolute distance sensing by two laser optical interferometry.

    PubMed

    Thurner, Klaus; Braun, Pierre-François; Karrai, Khaled

    2013-11-01

    We have developed a method for absolute distance sensing by two laser optical interferometry. A particularity of this technique is that a target distance is determined in absolute and is no longer limited to within an ambiguity range affecting usually multiple wavelength interferometers. We implemented the technique in a low-finesse Fabry-Pérot miniature fiber based interferometer. We used two diode lasers, both operating in the 1550 nm wavelength range. The wavelength difference is chosen to create a 25 μm long periodic beating interferometric pattern allowing a nanometer precise position measurement but limited to within an ambiguity range of 25 μm. The ambiguity is then eliminated by scanning one of the wavelengths over a small range (3.4 nm). We measured absolute distances in the sub-meter range and this with just few nanometer repeatability.

  13. Multi-channel absolute distance measurement system with sub ppm-accuracy and 20 m range using frequency scanning interferometry and gas absorption cells.

    PubMed

    Dale, John; Hughes, Ben; Lancaster, Andrew J; Lewis, Andrew J; Reichold, Armin J H; Warden, Matthew S

    2014-10-06

    We present an implementation of an absolute distance measurement system which uses frequency scanning interferometry (FSI). The technique, referred to as dynamic FSI, uses two frequency scanning lasers, a gas absorption cell and a reference interferometer to determine the unknown optical path length difference (OPD) of one or many measurement interferometers. The gas absorption cell is the length reference for the measurement system and is traceable to international standards through knowledge of the frequencies of its absorption features. The OPD of the measurement interferometers can vary during the measurement and the variation is measured at the sampling rate of the system (2.77 MHz in the system described here). The system is shown to measure distances from 0.2 m to 20 m with a combined relative uncertainty of 0.41 × 10⁻⁶ at the two sigma level (k = 2). It will be shown that within a scan the change in OPD of the measurement interferometer can be determined to a resolution of 40 nm.

  14. Absolute distance measurement method without a non-measurable range and directional ambiguity based on the spectral-domain interferometer using the optical comb of the femtosecond pulse laser

    NASA Astrophysics Data System (ADS)

    Park, J.; Jin, J.; Kim, J.-A.; Kim, J. W.

    2016-12-01

    With the help of the optical comb of a femtosecond pulse laser, a spectral-domain interferometer has been utilized for measuring absolute distances. Even if the technique can measure distances at a high speed and with good precision, it has two fundamental problems: non-measurable range and directional ambiguity. First, the non-measurable range arises due to the sampling limit of the interference spectra at very short distances or the integer multiple of a double non-ambiguity range. Second, the peak corresponding to the desired distance in the Fourier domain has a directional ambiguity owing to the repeated property of the optical comb. Therefore, due to these two fundamental problems, most previous works never measure the absolute distances by itself in a single operation. In this letter, an interferometric method for measuring arbitrary absolute distances based on a spectral-domain interferometer operating with two reference mirrors is proposed and demonstrated. The two reference mirrors generate two distinguishable signals, primary and secondary, with a predetermined offset, thus solving these fundamental problems clearly. More importantly, as a practical advantage, the simple layout of the proposed method makes it readily applicable to most previous studies.

  15. Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers.

    PubMed

    Liu, Tze-An; Newbury, Nathan R; Coddington, Ian

    2011-09-12

    We demonstrate a simplified dual-comb LIDAR setup for precision absolute ranging that can achieve a ranging precision of 2 μm in 140 μs acquisition time. With averaging, the precision drops below 1 μm at 0.8 ms and below 200 nm at 20 ms. The system can measure the distance to multiple targets with negligible dead zones and a ranging ambiguity of 1 meter. The system is much simpler than a previous coherent dual-comb LIDAR because the two combs are replaced by free-running, saturable-absorber-based femtosecond Er fiber lasers, rather than tightly phase-locked combs, with the entire time base provided by a single 10-digit frequency counter. Despite the simpler design, the system provides a factor of three improved performance over the previous coherent dual comb LIDAR system.

  16. Absolute measurement of length with nanometric resolution

    NASA Astrophysics Data System (ADS)

    Apostol, D.; Garoi, F.; Timcu, A.; Damian, V.; Logofatu, P. C.; Nascov, V.

    2005-08-01

    Laser interferometer displacement measuring transducers have a well-defined traceability route to the definition of the meter. The laser interferometer is de-facto length scale for applications in micro and nano technologies. However their physical unit -half lambda is too large for nanometric resolution. Fringe interpolation-usual technique to improve the resolution-lack of reproducibility could be avoided using the principles of absolute distance measurement. Absolute distance refers to the use of interferometric techniques for determining the position of an object without the necessity of measuring continuous displacements between points. The interference pattern as produced by the interference of two point-like coherent sources is fitted to a geometric model so as to determine the longitudinal location of the target by minimizing least square errors. The longitudinal coordinate of the target was measured with accuracy better than 1 nm, for a target position range of 0.4μm.

  17. Absolute Standards for Climate Measurements

    NASA Astrophysics Data System (ADS)

    Leckey, J.

    2016-10-01

    In a world of changing climate, political uncertainty, and ever-changing budgets, the benefit of measurements traceable to SI standards increases by the day. To truly resolve climate change trends on a decadal time scale, on-orbit measurements need to be referenced to something that is both absolute and unchanging. One such mission is the Climate Absolute Radiance and Refractivity Observatory (CLARREO) that will measure a variety of climate variables with an unprecedented accuracy to definitively quantify climate change. In the CLARREO mission, we will utilize phase change cells in which a material is melted to calibrate the temperature of a blackbody that can then be observed by a spectrometer. A material's melting point is an unchanging physical constant that, through a series of transfers, can ultimately calibrate a spectrometer on an absolute scale. CLARREO consists of two primary instruments: an infrared (IR) spectrometer and a reflected solar (RS) spectrometer. The mission will contain orbiting radiometers with sufficient accuracy to calibrate other space-based instrumentation and thus transferring the absolute traceability. The status of various mission options will be presented.

  18. Sub-nanometer periodic nonlinearity error in absolute distance interferometers.

    PubMed

    Yang, Hongxing; Huang, Kaiqi; Hu, Pengcheng; Zhu, Pengfei; Tan, Jiubin; Fan, Zhigang

    2015-05-01

    Periodic nonlinearity which can result in error in nanometer scale has become a main problem limiting the absolute distance measurement accuracy. In order to eliminate this error, a new integrated interferometer with non-polarizing beam splitter is developed. This leads to disappearing of the frequency and/or polarization mixing. Furthermore, a strict requirement on the laser source polarization is highly reduced. By combining retro-reflector and angel prism, reference and measuring beams can be spatially separated, and therefore, their optical paths are not overlapped. So, the main cause of the periodic nonlinearity error, i.e., the frequency and/or polarization mixing and leakage of beam, is eliminated. Experimental results indicate that the periodic phase error is kept within 0.0018°.

  19. Diode-laser-based high-precision absolute distance interferometer of 20 m range.

    PubMed

    Pollinger, Florian; Meiners-Hagen, Karl; Wedde, Martin; Abou-Zeid, Ahmed

    2009-11-10

    We present a hybrid absolute distance measurement method that is based on a combination of frequency sweeping, variable synthetic, and two-wavelength, fixed synthetic wavelength interferometry. Both experiments were realized by two external cavity diode lasers. The measurement uncertainty was experimentally and theoretically demonstrated to be smaller than 12 microm at a measurement distance of 20 m.

  20. Measurement of absolute gravity acceleration in Firenze

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2011-01-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  1. Disturbance-free distributed Bragg reflector laser-diode interferometer with a double sinusoidal phase-modulating technique for measurement of absolute distance.

    PubMed

    Suzuki, Takamasa; Ohizumi, Takao; Sekimoto, Tatsuhiko; Sasaki, Osami

    2004-08-10

    A new range-finding technique that uses both double sinusoidal phase modulation and quasi-two-wavelength interferometry is described. Two independent interference signals are generated with respect to two different wavelengths on a time-sharing basis. We clarify that external disturbances of these interference signals are eliminated by both feedback control and differential detection and that the feedback control does not affect the distance measurement. A single distributed Bragg reflector laser diode allows us to simplify the optical setup and to improve the measurement accuracy. After discussing a measurement range, we estimate a measurement error by making several measurements.

  2. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  3. Geodetic distance measuring apparatus

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.

    1980-12-01

    A geodetic distance measuring apparatus which compensates for the refractive index of the atmosphere is discussed. A mode locked laser system with a laser device and its peripheral components is utilized to derive two mutually phase locked optical wavelength signals and one phase locked microwave CW signal which respectively traverse the same distance measurement path. The optical signals are comprised of pulse type signals. Phase comparison of the two optical wavelength pulse signals is used to provide the dry air density while phase comparison of one of the optical wavelength pulse signals and the microwave CW signal issued to provide wet or water vapor density of the air. The distance to be measured corrected for the atmospheric dry air and water vapor densities in the measurement path is computed from these measurements. A time interval unit is included for measuring transit time of individual optical pulses for resolving the phase ambiguity needed with the phase measurements to give the true target distance.

  4. Geodetic distance measuring apparatus

    NASA Technical Reports Server (NTRS)

    Abshire, J. B. (Inventor)

    1983-01-01

    A mode locked laser system including a laser device and its peripheral components is utilized for deriving two mutually phase locked optical wavelength signals and one phase locked microwave CW signal which respectively traverse the same distance measurement path. Preferably the optical signals are comprised of pulse type signals. Phase comparison of the two optical wavelength pulse signals is used to provide a measure of the dry air density while phase comparison of one of the optical wavelength pulse signals and the microwave CW signal is used to provide a measure of the wet or water vapor density of the air. From these measurements is computed in means of the distance to be measured corrected for the atmospheric dry and water vapor densities in the measurement path.

  5. Evaluating linguistic distance measures

    NASA Astrophysics Data System (ADS)

    Wichmann, Søren; Holman, Eric W.; Bakker, Dik; Brown, Cecil H.

    2010-09-01

    In Ref. [13], Petroni and Serva discuss the use of Levenshtein distances (LD) between words referring to the same concepts as a tool for establishing overall distances among languages which can then subsequently be used to derive phylogenies. The authors modify the raw LD by dividing the LD by the length of the longer of the two words compared, to produce what could be called LDN (normalized LD). Other scholars [7,8] have used a further modification, where they divide the LDN by the average LDN among words not referring to the same concept. This produces what could be called LDND. The authors of Ref. [13] question whether LDND is a more adequate measure of distance than LDN. Here we show empirically that LDND is the better measure in the situation where the languages compared have not already been shown, by other, more traditional methods of comparative linguistics, to be related. If automated language classification is to be used as a tool independent of traditional methods then the further modification is necessary.

  6. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  7. System for absolute measurements by interferometric sensors

    NASA Astrophysics Data System (ADS)

    Norton, Douglas A.

    1993-03-01

    The most common problem of interferometric sensors is their inability to measure absolute path imbalance. Presented in this paper is a signal processing system that gives absolute, unambiguous reading of optical path difference for almost any style of interferometric sensor. Key components are a wide band (incoherent) optical source, a polychromator, and FFT electronics. Advantages include no moving parts in the signal processor, no active components at the sensor location, and the use of standard single mode fiber for sensor illumination and signal transmission. Actual absolute path imbalance of the interferometer is determined without using fringe counting or other inferential techniques. The polychromator extracts the interference information that occurs at each discrete wavelength within the spectral band of the optical source. The signal processing consists of analog and digital filtering, Fast Fourier analysis, and a peak detection and interpolation algorithm. This system was originally designed for use in a remote pressure sensing application that employed a totally passive fiber optic interferometer. A performance qualification was made using a Fabry-Perot interferometer and a commercially available laser interferometer to measure the reference displacement.

  8. Independent coding of absolute duration and distance magnitudes in the prefrontal cortex.

    PubMed

    Marcos, Encarni; Tsujimoto, Satoshi; Genovesio, Aldo

    2017-01-01

    The estimation of space and time can interfere with each other, and neuroimaging studies have shown overlapping activation in the parietal and prefrontal cortical areas. We used duration and distance discrimination tasks to determine whether space and time share resources in prefrontal cortex (PF) neurons. Monkeys were required to report which of two stimuli, a red circle or blue square, presented sequentially, were longer and farther, respectively, in the duration and distance tasks. In a previous study, we showed that relative duration and distance are coded by different populations of neurons and that the only common representation is related to goal coding. Here, we examined the coding of absolute duration and distance. Our results support a model of independent coding of absolute duration and distance metrics by demonstrating that not only relative magnitude but also absolute magnitude are independently coded in the PF.

  9. Absolute measurement of the extreme UV solar flux

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Ogawa, H. S.; Judge, D. L.; Phillips, E.

    1984-01-01

    A windowless rare-gas ionization chamber has been developed to measure the absolute value of the solar extreme UV flux in the 50-575-A region. Successful results were obtained on a solar-pointing sounding rocket. The ionization chamber, operated in total absorption, is an inherently stable absolute detector of ionizing UV radiation and was designed to be independent of effects from secondary ionization and gas effusion. The net error of the measurement is + or - 7.3 percent, which is primarily due to residual outgassing in the instrument, other errors such as multiple ionization, photoelectron collection, and extrapolation to the zero atmospheric optical depth being small in comparison. For the day of the flight, Aug. 10, 1982, the solar irradiance (50-575 A), normalized to unit solar distance, was found to be 5.71 + or - 0.42 x 10 to the 10th photons per sq cm sec.

  10. Method and apparatus for making absolute range measurements

    DOEpatents

    Earl, Dennis D [Knoxville, TN; Allison, Stephen W [Knoxville, TN; Cates, Michael R [Oak Ridge, TN; Sanders, Alvin J [Knoxville, TN

    2002-09-24

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through a screen at least partially opaque at the wavelength. The screen has an aperture sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector spaced some distance from the screen. The detector detects the central intensity of the beam as well as a set of intensities displaced from a center of the aperture. The distance from the source to the target can then be calculated based upon the known wavelength, aperture radius, and beam intensity.

  11. Global-Scale Location and Distance Estimates: Common Representations and Strategies in Absolute and Relative Judgments

    ERIC Educational Resources Information Center

    Friedman, Alinda; Montello, Daniel R.

    2006-01-01

    The authors examined whether absolute and relative judgments about global-scale locations and distances were generated from common representations. At the end of a 10-week class on the regional geography of the United States, participants estimated the latitudes of 16 North American cities and all possible pairwise distances between them. Although…

  12. In vivo absorption spectroscopy for absolute measurement.

    PubMed

    Furukawa, Hiromitsu; Fukuda, Takashi

    2012-10-01

    In in vivo spectroscopy, there are differences between individual subjects in parameters such as tissue scattering and sample concentration. We propose a method that can provide the absolute value of a particular substance concentration, independent of these individual differences. Thus, it is not necessary to use the typical statistical calibration curve, which assumes an average level of scattering and an averaged concentration over individual subjects. This method is expected to greatly reduce the difficulties encountered during in vivo measurements. As an example, for in vivo absorption spectroscopy, the method was applied to the reflectance measurement in retinal vessels to monitor their oxygen saturation levels. This method was then validated by applying it to the tissue phantom under a variety of absorbance values and scattering efficiencies.

  13. Measured and modelled absolute gravity in Greenland

    NASA Astrophysics Data System (ADS)

    Nielsen, E.; Forsberg, R.; Strykowski, G.

    2012-12-01

    Present day changes in the ice volume in glaciated areas like Greenland will change the load on the Earth and to this change the lithosphere will respond elastically. The Earth also responds to changes in the ice volume over a millennial time scale. This response is due to the viscous properties of the mantle and is known as Glaical Isostatic Adjustment (GIA). Both signals are present in GPS and absolute gravity (AG) measurements and they will give an uncertainty in mass balance estimates calculated from these data types. It is possible to separate the two signals if both gravity and Global Positioning System (GPS) time series are available. DTU Space acquired an A10 absolute gravimeter in 2008. One purpose of this instrument is to establish AG time series in Greenland and the first measurements were conducted in 2009. Since then are 18 different Greenland GPS Network (GNET) stations visited and six of these are visited more then once. The gravity signal consists of three signals; the elastic signal, the viscous signal and the direct attraction from the ice masses. All of these signals can be modelled using various techniques. The viscous signal is modelled by solving the Sea Level Equation with an appropriate ice history and Earth model. The free code SELEN is used for this. The elastic signal is modelled as a convolution of the elastic Greens function for gravity and a model of present day ice mass changes. The direct attraction is the same as the Newtonian attraction and is calculated as this. Here we will present the preliminary results of the AG measurements in Greenland. We will also present modelled estimates of the direct attraction, the elastic and the viscous signals.

  14. Distance and absolute magnitudes of the brightest stars in the dwarf galaxy Sextans A

    NASA Technical Reports Server (NTRS)

    Sandage, A.; Carlson, G.

    1982-01-01

    In an attempt to improve present bright star calibration, data were gathered for the brightest red and blue stars and the Cepheids in the Im V dwarf galaxy, Sextans A. On the basis of a magnitude sequence measured to V and B values of about 22 and 23, respectively, the mean magnitudes of the three brightest blue stars are V=17.98 and B=17.88. The three brightest red supergiants have V=18.09 and B=20.14. The periods and magnitudes measured for five Cepheids yield an apparent blue distance modulus of 25.67 + or - 0.2, via the P-L relation, and the mean absolute magnitudes of V=-7.56 and B=-5.53 for the red supergiants provide additional calibration of the brightest red stars as distance indicators. If Sextans A were placed at the distance of the Virgo cluster, it would appear to have a surface brightness of 23.5 mag/sq arcec. This, together with the large angular diameter, would make such a galaxy easily discoverable in the Virgo cluster by means of ground-based surveys.

  15. Extracting infrared absolute reflectance from relative reflectance measurements.

    PubMed

    Berets, Susan L; Milosevic, Milan

    2012-06-01

    Absolute reflectance measurements are valuable to the optics industry for development of new materials and optical coatings. Yet, absolute reflectance measurements are notoriously difficult to make. In this paper, we investigate the feasibility of extracting the absolute reflectance from a relative reflectance measurement using a reference material with known refractive index.

  16. Optical distance measuring instrument

    NASA Technical Reports Server (NTRS)

    Abshire, J. B. (Inventor)

    1986-01-01

    An optical instrument, such as a stability monitor or a target range finder, uses an unstabilized laser to project a composite optical signal of coherent light having two naturally occurring longitudinal mode components. A beamsplitter divides the signal into a reference beam which is directed toward one photodetector and a transmitted beam which illuminates and is reflected from a distant target onto a second photodetector optically isolated from the first photodetector. Both photodetectors are operated on the square law principle to provide electrical signals modulated at a frequency equal to the separation between the frequencies of the two longitudinal mode components of the optical signal projected by the laser. Slight movement of the target may be detected and measured by electrically monitoring the phase difference between the two signals provided by the photodetectors and the range of the target measured with the aid of a microprocessor by changing the separation between the longitudinal modes by shifting the length of the resonator cavity in an iterative series of increments.

  17. Elevation correction factor for absolute pressure measurements

    NASA Technical Reports Server (NTRS)

    Panek, Joseph W.; Sorrells, Mark R.

    1996-01-01

    With the arrival of highly accurate multi-port pressure measurement systems, conditions that previously did not affect overall system accuracy must now be scrutinized closely. Errors caused by elevation differences between pressure sensing elements and model pressure taps can be quantified and corrected. With multi-port pressure measurement systems, the sensing elements are connected to pressure taps that may be many feet away. The measurement system may be at a different elevation than the pressure taps due to laboratory space or test article constraints. This difference produces a pressure gradient that is inversely proportional to height within the interface tube. The pressure at the bottom of the tube will be higher than the pressure at the top due to the weight of the tube's column of air. Tubes with higher pressures will exhibit larger absolute errors due to the higher air density. The above effect is well documented but has generally been taken into account with large elevations only. With error analysis techniques, the loss in accuracy from elevation can be easily quantified. Correction factors can be applied to maintain the high accuracies of new pressure measurement systems.

  18. Absolute flux measurements for swift atoms

    NASA Technical Reports Server (NTRS)

    Fink, M.; Kohl, D. A.; Keto, J. W.; Antoniewicz, P.

    1987-01-01

    While a torsion balance in vacuum can easily measure the momentum transfer from a gas beam impinging on a surface attached to the balance, this measurement depends on the accommodation coefficients of the atoms with the surface and the distribution of the recoil. A torsion balance is described for making absolute flux measurements independent of recoil effects. The torsion balance is a conventional taut suspension wire design and the Young modulus of the wire determines the relationship between the displacement and the applied torque. A compensating magnetic field is applied to maintain zero displacement and provide critical damping. The unique feature is to couple the impinging gas beam to the torsion balance via a Wood's horn, i.e., a thin wall tube with a gradual 90 deg bend. Just as light is trapped in a Wood's horn by specular reflection from the curved surfaces, the gas beam diffuses through the tube. Instead of trapping the beam, the end of the tube is open so that the atoms exit the tube at 90 deg to their original direction. Therefore, all of the forward momentum of the gas beam is transferred to the torsion balance independent of the angle of reflection from the surfaces inside the tube.

  19. A NEW METHOD FOR MEASURING EXTRAGALACTIC DISTANCES

    SciTech Connect

    Yoshii, Yuzuru; Minezaki, Takeo; Kobayashi, Yukiyasu; Koshida, Shintaro; Peterson, Bruce A.

    2014-03-20

    We have pioneered a new method for the measurement of extragalactic distances. This method uses the time lag between variations in the short wavelength and long wavelength light from an active galactic nucleus (AGN), based on a quantitative physical model of dust reverberation that relates the time lag to the absolute luminosity of the AGN. We use the large homogeneous data set from intensive monitoring observations in optical and near-infrared wavelength bands with the dedicated 2 m MAGNUM telescope to obtain the distances to 17 AGNs in the redshift range z = 0.0024 to z = 0.0353. These distance measurements are compared with distances measured using Cepheid variable stars, and are used to infer that H {sub 0} = 73 ± 3 (random) km s{sup –1} Mpc{sup –1}. The systematic error in H {sub 0} is examined, and the uncertainty in the size distribution of dust grains is the largest source of the systematic error, which is much reduced for a sample of AGNs for which their parameter values in the model of dust reverberation are individually measured. This AGN time lag method can be used beyond 30 Mpc, the farthest distance reached by extragalactic Cepheids, and can be extended to high-redshift quasi-stellar objects.

  20. On measuring the absolute scale of baryon acoustic oscillations

    NASA Astrophysics Data System (ADS)

    Sutherland, Will

    2012-10-01

    The baryon acoustic oscillation (BAO) feature in the distribution of galaxies provides a fundamental standard ruler which is widely used to constrain cosmological parameters. In most analyses, the comoving length of the ruler is inferred from a combination of cosmic microwave background (CMB) observations and theory. However, this inferred length may be biased by various non-standard effects in early universe physics; this can lead to biased inferences of cosmological parameters such as H0, Ωm and w, so it would be valuable to measure the absolute BAO length by combining a galaxy redshift survey and a suitable direct low-z distance measurement. One obstacle is that low-redshift BAO surveys mainly constrain the ratio rS/DV(z), where DV is a dilation scale which is not directly observable by standard candles. Here, we find a new approximation DV(z)≃34DL(43z)(1+43z)-1(1-0.02455 z3+0.0105 z4) which connects DV to the standard luminosity distance DL at a somewhat higher redshift; this is shown to be very accurate (relative error <0.2 per cent) for all Wilkinson Microwave Anisotropy Probe compatible Friedmann models at z < 0.4, with very weak dependence on cosmological parameters H0, Ωm, Ωk, w. This provides a route to measure the absolute BAO length using only observations at z ≲ 0.3, including Type Ia supernovae, and potentially future H0-free physical distance indicators such as gravitational lenses or gravitational wave standard sirens. This would provide a zero-parameter check of the standard cosmology at 103 ≲ z ≲ 105, and can constrain the number of relativistic species Neff with fewer degeneracies than the CMB.

  1. New Techniques for Absolute Gravity Measurements.

    DTIC Science & Technology

    1983-01-07

    Hammond, J.A. (1978) Bollettino Di Geofisica Teorica ed Applicata Vol. XX. 8. Hammond, J. A., and Iliff, R. L. (1979) The AFGL absolute gravity system...International Gravimetric Bureau, No. L:I-43. 7. Hammond. J.A. (1978) Bollettino Di Geofisica Teorica ed Applicata Vol. XX. 8. Hammond, J.A., and

  2. DEER Distance Measurements on Proteins

    NASA Astrophysics Data System (ADS)

    Jeschke, Gunnar

    2012-05-01

    Distance distributions between paramagnetic centers in the range of 1.8 to 6 nm in membrane proteins and up to 10 nm in deuterated soluble proteins can be measured by the DEER technique. The number of paramagnetic centers and their relative orientation can be characterized. DEER does not require crystallization and is not limited with respect to the size of the protein or protein complex. Diamagnetic proteins are accessible by site-directed spin labeling. To characterize structure or structural changes, experimental protocols were optimized and techniques for artifact suppression were introduced. Data analysis programs were developed, and it was realized that interpretation of the distance distributions must take into account the conformational distribution of spin labels. First methods have appeared for deriving structural models from a small number of distance constraints. The present scope and limitations of the technique are illustrated.

  3. Lunar eclipse photometry: absolute luminance measurements and modeling.

    PubMed

    Hernitschek, Nina; Schmidt, Elmar; Vollmer, Michael

    2008-12-01

    The Moon's time-dependent luminance was determined during the 9 February 1990 and 3 March 2007 total lunar eclipses by using calibrated, industry standard photometers. After the results were corrected to unit air mass and to standard distances for both Moon and Sun, an absolute calibration was accomplished by using the Sun's known luminance and a pre-eclipse lunar albedo of approximately 13.5%. The measured minimum level of brightness in the total phase of both eclipses was relatively high, namely -3.32 m(vis) and -1.7 m(vis), which hints at the absence of pronounced stratospheric aerosol. The light curves were modeled in such a way as to let the Moon move through an artificial Earth shadow composed of a multitude of disk and ring zones, containing a relative luminance data set from an atmospheric radiative transfer calculation.

  4. SISAM interferometer for distance measurements.

    PubMed

    Verrier, I; Brun, G; Goure, J P

    1997-09-01

    We measure short distances with a spectromètre interférentiel à sélection par l'amplitude de la modulation (SISAM) (interferential spectrometer by selection of amplitude modulation) interferometer that correlates optical fields. We present the method and the resolution of the system. A test with a Michelson interferometer shows SISAM's ability to detect phase change in one arm of the Michelson interferometer.

  5. Absolute measurements of fast neutrons using yttrium.

    PubMed

    Roshan, M V; Springham, S V; Rawat, R S; Lee, P; Krishnan, M

    2010-08-01

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be f(n) approximately 4.1x10(-4) with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 10(8) neutrons per discharge.

  6. Absolute Measurements of Optical Oscillator Strengths of Xe

    NASA Astrophysics Data System (ADS)

    Gibson, N. D.

    1998-05-01

    The dramatically increased interest in Xe as a discharge medium for the efficient generation of UV radiation, and Xe use in high technology applications such as flat panel displays for laptop computer screens and home TV and theater applications, has created the need for significantly more accurate oscillator strength data. Modeling of plasma processing systems and lighting discharges critically depends on accurate, precise atomic data. We are measuring the optical oscillator strengths of several Xe resonance lines. These measurements use a 900 eV collimated electron beam to excite the Xe atoms. In the method of self absorption used here, the transmission of the emitted radiation is measured as a function of the gas density. The measured oscillator strengths are proportional to the distance between the electron beam and the fixed aperture of the spectrometer-detector system. Since the theoretical form of the transmission function is well understood, there are few systematic errors. Absolute errors as low as 3-4% can be obtained.

  7. Distance Measurement Solves Astrophysical Mysteries

    NASA Astrophysics Data System (ADS)

    2003-08-01

    Location, location, and location. The old real-estate adage about what's really important proved applicable to astrophysics as astronomers used the sharp radio "vision" of the National Science Foundation's Very Long Baseline Array (VLBA) to pinpoint the distance to a pulsar. Their accurate distance measurement then resolved a dispute over the pulsar's birthplace, allowed the astronomers to determine the size of its neutron star and possibly solve a mystery about cosmic rays. "Getting an accurate distance to this pulsar gave us a real bonanza," said Walter Brisken, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Monogem Ring The Monogem Ring, in X-Ray Image by ROSAT satellite CREDIT: Max-Planck Institute, American Astronomical Society (Click on Image for Larger Version) The pulsar, called PSR B0656+14, is in the constellation Gemini, and appears to be near the center of a circular supernova remnant that straddles Gemini and its neighboring constellation, Monoceros, and is thus called the Monogem Ring. Since pulsars are superdense, spinning neutron stars left over when a massive star explodes as a supernova, it was logical to assume that the Monogem Ring, the shell of debris from a supernova explosion, was the remnant of the blast that created the pulsar. However, astronomers using indirect methods of determining the distance to the pulsar had concluded that it was nearly 2500 light-years from Earth. On the other hand, the supernova remnant was determined to be only about 1000 light-years from Earth. It seemed unlikely that the two were related, but instead appeared nearby in the sky purely by a chance juxtaposition. Brisken and his colleagues used the VLBA to make precise measurements of the sky position of PSR B0656+14 from 2000 to 2002. They were able to detect the slight offset in the object's apparent position when viewed from opposite sides of Earth's orbit around the Sun. This effect, called parallax, provides a direct measurement of

  8. Measuring the absolute magnetic field using high-Tc SQUID

    NASA Astrophysics Data System (ADS)

    He, D. F.; Itozaki, H.

    2006-06-01

    SQUID normally can only measure the change of magnetic field instead of the absolute value of magnetic field. Using a compensation method, a mobile SQUID, which could keep locked when moving in the earth's magnetic field, was developed. Using the mobile SQUID, it was possible to measure the absolute magnetic field. The absolute value of magnetic field could be calculated from the change of the compensation output when changing the direction of the SQUID in a magnetic field. Using this method and the mobile SQUID, we successfully measured the earth's magnetic field in our laboratory.

  9. Absolute quantum yield measurement of powder samples.

    PubMed

    Moreno, Luis A

    2012-05-12

    Measurement of fluorescence quantum yield has become an important tool in the search for new solutions in the development, evaluation, quality control and research of illumination, AV equipment, organic EL material, films, filters and fluorescent probes for bio-industry. Quantum yield is calculated as the ratio of the number of photons absorbed, to the number of photons emitted by a material. The higher the quantum yield, the better the efficiency of the fluorescent material. For the measurements featured in this video, we will use the Hitachi F-7000 fluorescence spectrophotometer equipped with the Quantum Yield measuring accessory and Report Generator program. All the information provided applies to this system. Measurement of quantum yield in powder samples is performed following these steps: 1. Generation of instrument correction factors for the excitation and emission monochromators. This is an important requirement for the correct measurement of quantum yield. It has been performed in advance for the full measurement range of the instrument and will not be shown in this video due to time limitations. 2. Measurement of integrating sphere correction factors. The purpose of this step is to take into consideration reflectivity characteristics of the integrating sphere used for the measurements. 3. Reference and Sample measurement using direct excitation and indirect excitation. 4. Quantum Yield calculation using Direct and Indirect excitation. Direct excitation is when the sample is facing directly the excitation beam, which would be the normal measurement setup. However, because we use an integrating sphere, a portion of the emitted photons resulting from the sample fluorescence are reflected by the integrating sphere and will re-excite the sample, so we need to take into consideration indirect excitation. This is accomplished by measuring the sample placed in the port facing the emission monochromator, calculating indirect quantum yield and correcting the direct

  10. Absolute density measurements in the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Rapp, M.; Gumbel, J.; Lübken, F.-J.

    2001-05-01

    In the last ten years a total of 25 sounding rockets employing ionization gauges have been launched at high latitudes ( ~ 70° N) to measure total atmospheric density and its small scale fluctuations in an altitude range between 70 and 110 km. While the determination of small scale fluctuations is unambiguous, the total density analysis has been complicated in the past by aerodynamical disturbances leading to densities inside the sensor which are enhanced compared to atmospheric values. Here, we present the results of both Monte Carlo simulations and wind tunnel measurements to quantify this aerodynamical effect. The comparison of the resulting ‘ram-factor’ profiles with empirically determined density ratios of ionization gauge measurements and falling sphere measurements provides excellent agreement. This demonstrates both the need, but also the possibility, to correct aerodynamical influences on measurements from sounding rockets. We have determined a total of 20 density profiles of the mesosphere-lower-thermosphere (MLT) region. Grouping these profiles according to season, a listing of mean density profiles is included in the paper. A comparison with density profiles taken from the reference atmospheres CIRA86 and MSIS90 results in differences of up to 40%. This reflects that current reference atmospheres are a significant potential error source for the determination of mixing ratios of, for example, trace gas constituents in the MLT region.

  11. Time delay and distance measurement

    NASA Technical Reports Server (NTRS)

    Abshire, James B. (Inventor); Sun, Xiaoli (Inventor)

    2011-01-01

    A method for measuring time delay and distance may include providing an electromagnetic radiation carrier frequency and modulating one or more of amplitude, phase, frequency, polarization, and pointing angle of the carrier frequency with a return to zero (RZ) pseudo random noise (PN) code. The RZ PN code may have a constant bit period and a pulse duration that is less than the bit period. A receiver may detect the electromagnetic radiation and calculate the scattering profile versus time (or range) by computing a cross correlation function between the recorded received signal and a three-state RZ PN code kernel in the receiver. The method also may be used for pulse delay time (i.e., PPM) communications.

  12. Absolute Abundance Measurements in Solar Flares

    NASA Astrophysics Data System (ADS)

    Warren, Harry

    2014-06-01

    We present measurements of elemental abundances in solar flares with EVE/SDO and EIS/Hinode. EVE observes both high temperature Fe emission lines Fe XV-XXIV and continuum emission from thermal bremsstrahlung that is proportional to the abundance of H. By comparing the relative intensities of line and continuum emission it is possible to determine the enrichment of the flare plasma relative to the composition of the photosphere. This is the first ionization potential or FIP bias (F). Since thermal bremsstrahlung at EUV wavelengths is relatively insensitive to the electron temperature it is important to account for the distribution of electron temperatures in the emitting plasma. We accomplish this by using the observed spectra to infer the differential emission measure distribution and FIP bias simultaneously. In each of the 21 flares that we analyze we find that the observed composition is close to photospheric. The mean FIP bias in our sample is F=1.17+-0.22. Furthermore, we have compared the EVE measurements with corresponding flare observations of intermediate temperature S, Ar, Ca, and Fe emission lines taken with EIS. Our initial calculations also indicate a photospheric composition for these observations. This analysis suggests that the bulk of the plasma evaporated during a flare comes from deep in the chromosphere, below the region where elemental fractionation in the non-flaring corona occurs.

  13. Measurements of Absolute Abundances in Solar Flares

    NASA Astrophysics Data System (ADS)

    Warren, Harry P.

    2014-05-01

    We present measurements of elemental abundances in solar flares with the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory. EVE observes both high temperature Fe emission lines (Fe XV-Fe XXIV) and continuum emission from thermal bremsstrahlung that is proportional to the abundance of H. By comparing the relative intensities of line and continuum emission it is possible to determine the enrichment of the flare plasma relative to the composition of the photosphere. This is the first ionization potential or FIP bias (f). Since thermal bremsstrahlung at EUV wavelengths is relatively insensitive to the electron temperature, it is important to account for the distribution of electron temperatures in the emitting plasma. We accomplish this by using the observed spectra to infer the differential emission measure distribution and FIP bias simultaneously. In each of the 21 flares that we analyze we find that the observed composition is close to photospheric. The mean FIP bias in our sample is f = 1.17 ± 0.22. This analysis suggests that the bulk of the plasma evaporated during a flare comes from deep in the chromosphere, below the region where elemental fractionation occurs.

  14. MEASUREMENTS OF ABSOLUTE ABUNDANCES IN SOLAR FLARES

    SciTech Connect

    Warren, Harry P.

    2014-05-01

    We present measurements of elemental abundances in solar flares with the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory. EVE observes both high temperature Fe emission lines (Fe XV-Fe XXIV) and continuum emission from thermal bremsstrahlung that is proportional to the abundance of H. By comparing the relative intensities of line and continuum emission it is possible to determine the enrichment of the flare plasma relative to the composition of the photosphere. This is the first ionization potential or FIP bias (f). Since thermal bremsstrahlung at EUV wavelengths is relatively insensitive to the electron temperature, it is important to account for the distribution of electron temperatures in the emitting plasma. We accomplish this by using the observed spectra to infer the differential emission measure distribution and FIP bias simultaneously. In each of the 21 flares that we analyze we find that the observed composition is close to photospheric. The mean FIP bias in our sample is f = 1.17 ± 0.22. This analysis suggests that the bulk of the plasma evaporated during a flare comes from deep in the chromosphere, below the region where elemental fractionation occurs.

  15. Absolute measurement of the photodisintegration of deuterium

    SciTech Connect

    Knott, J.E.

    1988-01-01

    This experiment measured the differential cross section for deuteron photodisintegration between photon energies of 63 and 71 MeV. The photon beam was produced by the bremsstrahlung of an 88.4 MeV CW electron beam, from the University of Illinois Nuclear Physics Laboratory electron microtron, in a 1.4 {times} 10{sup {minus}3} radiation length aluminum converter. The photon energy was determined to .25 MeV by the technique of bremsstrahlung tagging. The deuterium target gas, at atmospheric pressure, was contained in a thin walled cylinder 2.4 m long. The protons from deuteron photo-disintegration were detected in the LArge Solid Angle detector, which was built for this experiment. The LASA detector consists of three concentric, cylindrical MWPC chambers surrounded by segmented plastic scintillators. The target cylinder is on the axis of the chamber. Particles were collected from 20{degrees} to 160{degrees}, the angle determined by the charge division technique in the wire chamber. The de/dx measurements in the wire chamber and the scintillators allowed the separation of protons from electrons. The differential cross sections have been fit by Legendre polynomials. These results are in reasonable agreement with previous experiments and theoretical calculations.

  16. Absolute Ages and Distances of 22 GCs Using Monte Carlo Main-sequence Fitting

    NASA Astrophysics Data System (ADS)

    O'Malley, Erin M.; Gilligan, Christina; Chaboyer, Brian

    2017-04-01

    The recent Gaia Data Release 1 of stellar parallaxes provides ample opportunity to find metal-poor main-sequence stars with precise parallaxes. We select 21 such stars with parallax uncertainties better than σ π /π ≤ 0.10 and accurate abundance determinations suitable for testing metal-poor stellar evolution models and determining the distance to Galactic globular clusters (GCs). A Monte Carlo analysis was used, taking into account uncertainties in the model construction parameters, to generate stellar models and isochrones to fit to the calibration stars. The isochrones that fit the calibration stars best were then used to determine the distances and ages of 22 GCs with metallicities ranging from ‑2.4 dex to ‑0.7 dex. We find distances with an average uncertainty of 0.15 mag and absolute ages ranging from 10.8 to 13.6 Gyr with an average uncertainty of 1.6 Gyr. Using literature proper motion data, we calculate orbits for the clusters, finding six that reside within the Galactic disk/bulge, while the rest are considered halo clusters. We find no strong evidence for a relationship between age and Galactocentric distance, but we do find a decreasing age–[Fe/H] relation.

  17. ATLAS ALFA—measuring absolute luminosity with scintillating fibres

    NASA Astrophysics Data System (ADS)

    Franz, S.; Barrillon, P.

    2009-10-01

    ALFA is a high-precision scintillating fibre tracking detector under construction for the absolute determination of the LHC luminosity at the ATLAS interaction point. This detector, mounted in so-called Roman Pots, will track protons elastically scattered under μrad angles at IP1.In total there are four pairs of vertically arranged detector modules which approach the LHC beam axis to mm distance. Each detector module consists of ten layers of two times 64 scintillating fibres each (U and V planes). The fibres are coupled to 64 channels Multi-Anodes PhotoMultipliers Tubes read out by compact front-end electronics. Each detector module is complemented by so-called overlap detectors: Three layers of two times 30 scintillating fibres which will be used to measure the relative positioning of two vertically arranged main detectors. The total number of channels is about 15000. Conventional plastic scintillator tiles are mounted in front of the fibre detectors and will serve as trigger counter. The extremely restricted space inside the pots makes the coupling to the read out devices very challenging. Several technologies have been tested in a beam at DESY and a cosmic-ray setup at CERN. A possible upgrade of the photo detection could consist in the replacement of the PMT by Geiger-mode avalanche photodiodes. Preliminary tests are being performed comparing the performance of these devices with the ones of the PMTs.

  18. Suppression of Systematic Errors of Electronic Distance Meters for Measurement of Short Distances.

    PubMed

    Braun, Jaroslav; Štroner, Martin; Urban, Rudolf; Dvoček, Filip

    2015-08-06

    In modern industrial geodesy, high demands are placed on the final accuracy, with expectations currently falling below 1 mm. The measurement methodology and surveying instruments used have to be adjusted to meet these stringent requirements, especially the total stations as the most often used instruments. A standard deviation of the measured distance is the accuracy parameter, commonly between 1 and 2 mm. This parameter is often discussed in conjunction with the determination of the real accuracy of measurements at very short distances (5-50 m) because it is generally known that this accuracy cannot be increased by simply repeating the measurement because a considerable part of the error is systematic. This article describes the detailed testing of electronic distance meters to determine the absolute size of their systematic errors, their stability over time, their repeatability and the real accuracy of their distance measurement. Twenty instruments (total stations) have been tested, and more than 60,000 distances in total were measured to determine the accuracy and precision parameters of the distance meters. Based on the experiments' results, calibration procedures were designed, including a special correction function for each instrument, whose usage reduces the standard deviation of the measurement of distance by at least 50%.

  19. Suppression of Systematic Errors of Electronic Distance Meters for Measurement of Short Distances

    PubMed Central

    Braun, Jaroslav; Štroner, Martin; Urban, Rudolf; Dvořáček, Filip

    2015-01-01

    In modern industrial geodesy, high demands are placed on the final accuracy, with expectations currently falling below 1 mm. The measurement methodology and surveying instruments used have to be adjusted to meet these stringent requirements, especially the total stations as the most often used instruments. A standard deviation of the measured distance is the accuracy parameter, commonly between 1 and 2 mm. This parameter is often discussed in conjunction with the determination of the real accuracy of measurements at very short distances (5–50 m) because it is generally known that this accuracy cannot be increased by simply repeating the measurement because a considerable part of the error is systematic. This article describes the detailed testing of electronic distance meters to determine the absolute size of their systematic errors, their stability over time, their repeatability and the real accuracy of their distance measurement. Twenty instruments (total stations) have been tested, and more than 60,000 distances in total were measured to determine the accuracy and precision parameters of the distance meters. Based on the experiments’ results, calibration procedures were designed, including a special correction function for each instrument, whose usage reduces the standard deviation of the measurement of distance by at least 50%. PMID:26258777

  20. Self-mixing laser sensor for short-distances measurement

    NASA Astrophysics Data System (ADS)

    Norgia, Michele; Kun, Li; Palludo, Alessandro; Cavedo, Federico; Pesatori, Alessandro

    2016-06-01

    This work describes the development of a laser instrument for measuring very-short distances with a minimum sensor size. The absolute distance measurement is obtained through a modulated self-mixing interferometer, realized with a lens-less red VCSEL laser. In a range between 2 mm and 5 mm the sensor shows a resolution of 10 µm at 6.6 kHz of acquisition rate. The sensor size is limited to the laser chip and the contacts; therefore, it is applicable also in very demanding applications, such as the diameter measurement of a hole.

  1. Absolute photon-flux measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Haddad, G. N.

    1974-01-01

    Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.

  2. Double threshold ultrasonic distance measurement technique and its application

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Chen, Qiang; Wu, Jiangtao

    2014-04-01

    The double threshold method realized by hardware circuits and high performance timing chip TDC-GP21 was successfully adapted to solve the key problem of ultrasonic distance measurement, the accurate time-of-flight (TOF) measurement of ultrasonic wave. Compared with other techniques of TOF measurement, the double threshold method presented in this work can suppress noise in the received signal, and achieve a time resolution of around 22 ps and real-time. This method is easy to realize and pertains the advantage of low cost. To compensate temperature and pressure deviations, a temperature measurement module of 10 mK in precision as well as a pressure measurement module of 0.01% in accuracy was developed. The system designed in this work can be exactly used as a two paths ultrasonic gas flowmeter without any adjustment of the hardware circuit. The double threshold method was further corroborated using experiment results of both the ultrasonic distance measurement and ultrasonic gas flow measurement. In distance measurement, the maximum absolute deviation and the maximum relative error are 0.69 mm and 0.28%, respectively, for a target distance range of 100-600 mm. In flow measurement, the maximum absolute deviation and the worst repeatability are 1.16% and 0.65% for a flow in the range of 50-700 m3/h.

  3. Double threshold ultrasonic distance measurement technique and its application.

    PubMed

    Li, Weihua; Chen, Qiang; Wu, Jiangtao

    2014-04-01

    The double threshold method realized by hardware circuits and high performance timing chip TDC-GP21 was successfully adapted to solve the key problem of ultrasonic distance measurement, the accurate time-of-flight (TOF) measurement of ultrasonic wave. Compared with other techniques of TOF measurement, the double threshold method presented in this work can suppress noise in the received signal, and achieve a time resolution of around 22 ps and real-time. This method is easy to realize and pertains the advantage of low cost. To compensate temperature and pressure deviations, a temperature measurement module of 10 mK in precision as well as a pressure measurement module of 0.01% in accuracy was developed. The system designed in this work can be exactly used as a two paths ultrasonic gas flowmeter without any adjustment of the hardware circuit. The double threshold method was further corroborated using experiment results of both the ultrasonic distance measurement and ultrasonic gas flow measurement. In distance measurement, the maximum absolute deviation and the maximum relative error are 0.69 mm and 0.28%, respectively, for a target distance range of 100-600 mm. In flow measurement, the maximum absolute deviation and the worst repeatability are 1.16% and 0.65% for a flow in the range of 50-700 m(3)/h.

  4. Mathematical Model for Absolute Magnetic Measuring Systems in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Fügenschuh, Armin; Fügenschuh, Marzena; Ludszuweit, Marina; Mojsic, Aleksandar; Sokół, Joanna

    2015-09-01

    Scales for measuring systems are either based on incremental or absolute measuring methods. Incremental scales need to initialize a measurement cycle at a reference point. From there, the position is computed by counting increments of a periodic graduation. Absolute methods do not need reference points, since the position can be read directly from the scale. The positions on the complete scales are encoded using two incremental tracks with different graduation. We present a new method for absolute measuring using only one track for position encoding up to micrometre range. Instead of the common perpendicular magnetic areas, we use a pattern of trapezoidal magnetic areas, to store more complex information. For positioning, we use the magnetic field where every position is characterized by a set of values measured by a hall sensor array. We implement a method for reconstruction of absolute positions from the set of unique measured values. We compare two patterns with respect to uniqueness, accuracy, stability and robustness of positioning. We discuss how stability and robustness are influenced by different errors during the measurement in real applications and how those errors can be compensated.

  5. Measurements of the reactor neutron power in absolute units

    SciTech Connect

    Lebedev, G. V.

    2015-12-15

    The neutron power of the reactor of the Yenisei space nuclear power plant is measured in absolute units using the modernized method of correlation analysis during the ground-based tests of the Yenisei prototypes. Results of the experiments are given. The desired result is obtained in a series of experiments carried out at the stage of the plant preparation for tests. The acceptability of experimental data is confirmed by the results of measuring the reactor neutron power in absolute units at the nominal level by the thermal balance during the life cycle tests of the ground prototypes.

  6. Absolute gain measurement by the image method under mismatched condition

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Baddour, Maurice F.

    1987-01-01

    Purcell's image method for measuring the absolute gain of an antenna is particularly attractive for small test antennas. The method is simple to use and utilizes only one antenna with a reflecting plane to provide an image for the receiving antenna. However, the method provides accurate results only if the antenna is matched to its waveguide. In this paper, a waveguide junction analysis is developed to determine the gain of an antenna under mismatched condition. Absolute gain measurements for two standard gain horn antennas have been carried out. Experimental results agree closely with published data.

  7. An amplitude modulated laser system for distance and displacement measurement

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.; Heyman, Joseph S.; Holben, Milford S., Jr.

    1986-01-01

    A laser distance and displacement measurement system is being developed to monitor small displacements in large space structures for strain analysis and structural control. The reflected laser beam is focused on a detector and the detected signal is mixed with the reference. Small displacements are indicated by a change in modulation frequency which is adjusted to maintain quadrature between the received signal and the reference signal from the voltage-controlled oscillator in a phase-locked loop. Measurement of absolute distance is accomplished by sweeping the modulation frequency from a quadrature lock point to an adjacent lock point.

  8. Measuring Distances Using Digital Cameras

    ERIC Educational Resources Information Center

    Kendal, Dave

    2007-01-01

    This paper presents a generic method of calculating accurate horizontal and vertical object distances from digital images taken with any digital camera and lens combination, where the object plane is parallel to the image plane or tilted in the vertical plane. This method was developed for a project investigating the size, density and spatial…

  9. Absolute Measurements Of Methane On Mars: The Current Status.

    NASA Astrophysics Data System (ADS)

    Mumma, Michael J.; Villanueva, G. L.; Novak, R. E.; Hewagama, T.; Bonev, B. P.; DiSanti, M. A.; Smith, M. D.

    2008-09-01

    Our study of methane on Mars now extends over three Mars years, sampling a wide range of seasons with significant spatial coverage. Three spectrometer-telescope combinations were used. With the spectrometer slit oriented North-South on the planet, we obtain simultaneous spectra at latitudes along the central meridian. Successive longitudes are sampled as the planet rotates, and the combination then permits partial mapping of the planet. We earlier reported differential detections of methane and water on Mars. Here, we present absolute extractions of methane, based on improved analytical procedures developed since 2005. We now identify and correct instrumental effects such as variations in resolving power along the slit, second-order optical fringe removal, and correction of (minor) internal scattered light. We synthesize the fully-resolved terrestrial transmittance spectrum, convolve it to the instrumental resolution, and subtract it from the measured Mars-Earth spectrum. Fraunhofer lines are removed from the residual Mars spectra along with spectral lines of water and of (newly identified by us) carbon dioxide isotopomers. The residuals are then inspected for signatures of methane and other possible trace constituents such as HDO and H2O (Villanueva et al., this Conference). On certain dates, the residual spectra display spectral lines at the Doppler-shifted positions expected for methane on Mars. The positive indications favor certain seasons (e.g., Ls = 121° & 155°) and locations. Mixing ratios derived from those residuals (up to 60 ppb) greatly exceed upper limits obtained at other seasons (e.g., < 3ppb at Ls = 17°) these variations could be consistent with episodic release. The CH4 spatial extent requires transport over large distances (coupled with eddy diffusion), and destruction lifetimes of order one year. Details will be presented and implications will be discussed. This work was supported by NASA's Astrobiology, Planetary Astronomy, and Postdoctoral

  10. Measuring Cosmic Distances with Stellar Heart Beats

    NASA Astrophysics Data System (ADS)

    2004-10-01

    .5 days, a fairly wide interval and an important advantage to properly calibrate the Period-Luminosity relation. The distances to four of the stars (Eta Aql, W Sgr, Beta Dor and L Car) were derived using the interferometric Baade-Wesselink method, as their pulsation is detected by the VLTI. ESO PR Photo 30c/04 shows the angular diameter measurements and the fitted radius curve of L Car (P = 35.5 days); this measures its distance with a relative precision better than 5%. For the remaining three objects of the sample (X Sgr, Zeta Gem and Y Oph), a hybrid method was applied to derive their distances, based on their average angular diameter and pre-existing estimations of their linear diameters. The new calibration ESO PR Photo 30d/04 ESO PR Photo 30d/04 Title [Preview - JPEG: 400 x 365 pix - 80k] [Normal - JPEG: 800 x 730 pix - 168k] Caption: ESO PR Photo 30d/04 represents the Period-Luminosity relation in the V band, as deduced from the interferometric observations of Cepheids and the HST parallax measurement of Delta Cep. The green line is the fitted P-L relation, assuming the slope from previous authors (Gieren et al.; 1998, ApJ, 496, 17). The agreement between the model and the measurements is excellent, in particular for the high-precision measurements of Delta Cep and L Car. Combining the distances measured by this programme with the apparent magnitudes of the stars, the astronomers determined the absolute magnitude (intrinsic brightness) of these stars and arrived at a very precise calibration of the zero-point of the Period-Luminosity relation (assuming the slope from previous work). It turned out that this new and independently derived value of the zero-point is exactly the same as the one obtained during previous work based on a large number of relatively low-precision Cepheid distance measurements by the ESA Hipparcos astrometric satellite. The agreement between these two independent, geometrical calibrations is remarkable and greatly increases the confidence in

  11. Distance and Cable Length Measurement System

    PubMed Central

    Hernández, Sergio Elias; Acosta, Leopoldo; Toledo, Jonay

    2009-01-01

    A simple, economic and successful design for distance and cable length detection is presented. The measurement system is based on the continuous repetition of a pulse that endlessly travels along the distance to be detected. There is a pulse repeater at both ends of the distance or cable to be measured. The endless repetition of the pulse generates a frequency that varies almost inversely with the distance to be measured. The resolution and distance or cable length range could be adjusted by varying the repetition time delay introduced at both ends and the measurement time. With this design a distance can be measured with centimeter resolution using electronic system with microsecond resolution, simplifying classical time of flight designs which require electronics with picosecond resolution. This design was also applied to position measurement. PMID:22303169

  12. Urey: to measure the absolute age of Mars

    NASA Technical Reports Server (NTRS)

    Randolph, J. E.; Plescia, J.; Bar-Cohen, Y.; Bartlett, P.; Bickler, D.; Carlson, R.; Carr, G.; Fong, M.; Gronroos, H.; Guske, P. J.; Herring, M.; Javadi, H.; Johnson, D. W.; Larson, T.; Malaviarachchi, K.; Sherrit, S.; Stride, S.; Trebi-Ollennu, A.; Warwick, R.

    2003-01-01

    UREY, a proposed NASA Mars Scout mission will, for the first time, measure the absolute age of an identified igneous rock formation on Mars. By extension to relatively older and younger rock formations dated by remote sensing, these results will enable a new and better understanding of Martian geologic history.

  13. ON PULSAR DISTANCE MEASUREMENTS AND THEIR UNCERTAINTIES

    SciTech Connect

    Verbiest, J. P. W.; Lee, K. J.; Weisberg, J. M.; Chael, A. A.; Lorimer, D. R.

    2012-08-10

    Accurate distances to pulsars can be used for a variety of studies of the Galaxy and its electron content. However, most distance measures to pulsars have been derived from the absorption (or lack thereof) of pulsar emission by Galactic H I gas, which typically implies that only upper or lower limits on the pulsar distance are available. We present a critical analysis of all measured H I distance limits to pulsars and other neutron stars, and translate these limits into actual distance estimates through a likelihood analysis that simultaneously corrects for statistical biases. We also apply this analysis to parallax measurements of pulsars in order to obtain accurate distance estimates and find that the parallax and H I distance measurements are biased in different ways, because of differences in the sampled populations. Parallax measurements typically underestimate a pulsar's distance because of the limited distance to which this technique works and the consequential strong effect of the Galactic pulsar distribution (i.e., the original Lutz-Kelker bias), in H I distance limits, however, the luminosity bias dominates the Lutz-Kelker effect, leading to overestimated distances because the bright pulsars on which this technique is applicable are more likely to be nearby given their brightness.

  14. Absolute concentration measurements inside a jet plume using video digitization

    NASA Astrophysics Data System (ADS)

    Vauquelin, O.

    An experimental system based on digitized video image analysis is used to measure the local value of the concentration inside a plume. Experiments are carried out in a wind-tunnel for a smoke-seeded turbulent jet plume illuminated with a laser beam. Each test is filmed, subsequently video images are digitized and analysed in order to determine the smoke absolute concentration corresponding to each pixel gray level. This non-intrusive measurement technique is first calibrated and different laws connecting gray level to concentration are established. As a first application, concentration measurements are made inside a turbulent jet plume and compared with measurements conducted using a classic gas analysis method. We finally present and discuss the possibilities offered for the measurements of absolute concentration fluctuations.

  15. ELLIPSOIDAL VARIABLE V1197 ORIONIS: ABSOLUTE LIGHT-VELOCITY ANALYSIS FOR KNOWN DISTANCE

    SciTech Connect

    Wilson, R. E.; Chochol, D.; KomzIk, R.; Van Hamme, W.; Pribulla, T.; Volkov, I.

    2009-09-01

    V1197 Orionis light curves from a long-term observing program for red giant binaries show ellipsoidal variation of small amplitude in the V and R{sub C} bands, although not clearly in U and B. Eclipses are not detected. All four bands show large irregular intrinsic variations, including fleeting quasi-periodicities identified by power spectra, that degrade analysis and may be caused by dynamical tides generated by orbital eccentricity. To deal with the absence of eclipses and consequent lack of astrophysical and geometrical information, direct use is made of the Hipparcos parallax distance while the V and R{sub C} light curves and (older) radial velocity curves are analyzed simultaneously in terms of absolute flux. The red giant's temperature is estimated from new spectra. This type of analysis, called Inverse Distance Estimation for brevity, is new and can also be applied to other ellipsoidal variables. Advantages gained by utilization of definite distance and temperature are discussed in regard to how radius, fractional lobe filling, and mass ratio information are expressed in the observations. The advantages were tested in solutions of noisy synthetic data. Also discussed and tested by simulations are ideas on the optimal number of light curves to be solved simultaneously under various conditions. The dim companion has not been observed or discussed in the literature but most solutions find its mass to be well below that of the red giant. Solutions show red giant masses that are too low for evolution to the red giant stage within the age of the Galaxy, although that result is probably an artifact of the intrinsic brightness fluctuations.

  16. Ellipsoidal Variable V1197 Orionis: Absolute Light-Velocity Analysis for Known Distance

    NASA Astrophysics Data System (ADS)

    Wilson, R. E.; Chochol, D.; Komžík, R.; Van Hamme, W.; Pribulla, T.; Volkov, I.

    2009-09-01

    V1197 Orionis light curves from a long-term observing program for red giant binaries show ellipsoidal variation of small amplitude in the V and RC bands, although not clearly in U and B. Eclipses are not detected. All four bands show large irregular intrinsic variations, including fleeting quasi-periodicities identified by power spectra, that degrade analysis and may be caused by dynamical tides generated by orbital eccentricity. To deal with the absence of eclipses and consequent lack of astrophysical and geometrical information, direct use is made of the Hipparcos parallax distance while the V and RC light curves and (older) radial velocity curves are analyzed simultaneously in terms of absolute flux. The red giant's temperature is estimated from new spectra. This type of analysis, called Inverse Distance Estimation for brevity, is new and can also be applied to other ellipsoidal variables. Advantages gained by utilization of definite distance and temperature are discussed in regard to how radius, fractional lobe filling, and mass ratio information are expressed in the observations. The advantages were tested in solutions of noisy synthetic data. Also discussed and tested by simulations are ideas on the optimal number of light curves to be solved simultaneously under various conditions. The dim companion has not been observed or discussed in the literature but most solutions find its mass to be well below that of the red giant. Solutions show red giant masses that are too low for evolution to the red giant stage within the age of the Galaxy, although that result is probably an artifact of the intrinsic brightness fluctuations.

  17. A Distance and Angle Similarity Measure Method.

    ERIC Educational Resources Information Center

    Zhang, Jin; Korfhage, Robert R.

    1999-01-01

    Discusses similarity measures that are used in information retrieval to improve precision and recall ratios and presents a combined vector-based distance and angle measure to make similarity measurement more scientific and accurate. Suggests directions for future research. (LRW)

  18. Optical distance measurement device and method thereof

    DOEpatents

    Bowers, Mark W.

    2003-05-27

    A system and method of efficiently obtaining distance measurements of a target. A modulated optical beam may be used to determine the distance to the target. A first beam splitter may be used to split the optical beam and a second beam splitter may be used to recombine a reference beam with a return ranging beam. An optical mixing detector may be used in a receiver to efficiently detect distance measurement information.

  19. Measuring Distances to Remote Galaxies and Quasars.

    ERIC Educational Resources Information Center

    McCarthy, Patrick J.

    1988-01-01

    Describes the use of spectroscopy and the redshift to measure how far an object is by measuring how fast it is receding from earth. Lists the most distant quasars yet found. Tables include "Redshift vs. Distance" and "Distances to Celestial Objects for Various Cosmologies." (CW)

  20. Lens transmission measurement for an absolute radiation thermometer

    SciTech Connect

    Hao, X.; Yuan, Z.; Lu, X.

    2013-09-11

    The lens transmission for the National Institute of Metrology of China absolute radiation thermometer is measured by a hybrid method. The results of the lens transmission measurements are 99.002% and 86.792% for filter radiometers with center wavelengths 633 nm and 900 nm, respectively. These results, after correcting for diffraction factors and the size-of-source effect when the lens is incorporated within the radiometer, can be used for measurement of thermodynamic temperature. The expanded uncertainty of the lens transmission measurement system has been evaluated. It is 1.3×10{sup −3} at 633 nm and 900 nm, respectively.

  1. Absolute gravity acceleration measurement in atomic sensor laboratories

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2012-03-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the Florence University (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the measurement of forces with high spatial resolution are in progress. Both experiments require an independent knowledge on the local value of g. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are ( 980 492 160.6 ± 4.0) μGal and ( 980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  2. Absolute length measurement using manually decided stereo correspondence for endoscopy

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Koishi, T.; Nakaguchi, T.; Tsumura, N.; Miyake, Y.

    2009-02-01

    In recent years, various kinds of endoscope have been developed and widely used to endoscopic biopsy, endoscopic operation and endoscopy. The size of the inflammatory part is important to determine a method of medical treatment. However, it is not easy to measure absolute size of inflammatory part such as ulcer, cancer and polyp from the endoscopic image. Therefore, it is required measuring the size of those part in endoscopy. In this paper, we propose a new method to measure the absolute length in a straight line between arbitrary two points based on the photogrammetry using endoscope with magnetic tracking sensor which gives camera position and angle. In this method, the stereo-corresponding points between two endoscopic images are determined by the endoscopist without any apparatus of projection and calculation to find the stereo correspondences, then the absolute length can be calculated on the basis of the photogrammetry. The evaluation experiment using a checkerboard showed that the errors of the measurements are less than 2% of the target length when the baseline is sufficiently-long.

  3. Measurement of the absolute solar UV irradiance and variability

    NASA Technical Reports Server (NTRS)

    Mentall, James E.

    1990-01-01

    Radiation in the wavelength interval 150-350 nm initiates chemical reactions in the lower mesosphere and the stratosphere through the photodissociation of ambient molecular species. This experiment measures the total solar irradiance, above the Earth's atmosphere, in this wavelength interval, using three spectrometers. Measurements are made from rockets on a once-a-year basis and are used with satellite observations to determine both the absolute irradiance and the long term variability of the sun in the UV. A fourth spectrometer is being added to the payload to measure the emission in the hydrogen Lyman-alpha emission at 121.67 nm.

  4. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  5. Long distance measurement using optical sampling by cavity tuning.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Balling, Petr; Li, Jianshuang; Qu, Xinghua

    2016-05-15

    We experimentally demonstrate a method enabling absolute distance measurement based on optical sampling by cavity tuning. The cross-correlation patterns can be obtained by sweeping the repetition frequency of the frequency comb. The 114 m long fiber delay line, working as the reference arm, is actively stabilized by using a feedback servo loop with 10-10 level stability. The unknown distance can be measured via the instantaneous repetition frequency corresponding to the peak of the fringe packet. We compare the present technique with the reference incremental interferometer, and the experimental results show an agreement within 3 μm over 60 m distance, corresponding to 10-8 level in relative.

  6. Oblique-incidence sounder measurements with absolute propagation delay timing

    SciTech Connect

    Daehler, M.

    1990-05-03

    Timing from the Global Position Satellite (GPS) system has been applied to HF oblique incidence sounder measurements to produce ionograms whose propagation delay time scale is absolutely calibrated. Such a calibration is useful for interpreting ionograms in terms of the electron density true-height profile for the ionosphere responsible for the propagation. Use of the time variations in the shape of the electron density profile, in conjunction with an HF propagation model, is expected to provide better near-term (1-24 hour) HF propagation forecasts than are available from current updating systems, which use only the MUF. Such a capability may provide the basis for HF frequency management techniques which are more efficient than current methods. Absolute timing and other techniques applicable to automatic extraction of the electron-density profile from an ionogram will be discussed.

  7. Laser triangulation: fundamental uncertainty in distance measurement.

    PubMed

    Dorsch, R G; Häusler, G; Herrmann, J M

    1994-03-01

    We discuss the uncertainty limit in distance sensing by laser triangulation. The uncertainty in distance measurement of laser triangulation sensors and other coherent sensors is limited by speckle noise. Speckle arises because of the coherent illumination in combination with rough surfaces. A minimum limit on the distance uncertainty is derived through speckle statistics. This uncertainty is a function of wavelength, observation aperture, and speckle contrast in the spot image. Surprisingly, it is the same distance uncertainty that we obtained from a single-photon experiment and from Heisenberg's uncertainty principle. Experiments confirm the theory. An uncertainty principle connecting lateral resolution and distance uncertainty is introduced. Design criteria for a sensor with minimum distanc uncertainty are determined: small temporal coherence, small spatial coherence, a large observation aperture.

  8. Strategy for the absolute neutron emission measurement on ITER.

    PubMed

    Sasao, M; Bertalot, L; Ishikawa, M; Popovichev, S

    2010-10-01

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10(10) n/s (neutron/second) for DT and 10(8) n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  9. Game theory and evolution: finite size and absolute fitness measures.

    PubMed

    Demetrius, L; Gundlach, V M

    2000-11-01

    This article is concerned with the characterization and existence of evolutionarily stable strategies (ESS) in Games against Nature, a class of models described by finite size populations and absolute fitness measures. We address these problems in terms of a new formalism which revolves around the concept evolutionary entropy, a measure of the diversity of options associated with a strategy pure - strategies have zero entropy, mixed strategies positive entropy. We invoke this formalism to show that ESS are characterized by extremal states of entropy. We illustrate this characterization of ESS by an analysis of the evolution of the sex ratio and the evolution of seed size.

  10. Attenuated retroreflectors for electronic distance measurement

    NASA Astrophysics Data System (ADS)

    Parker, David H.; Goldman, Michael A.; Radcliff, Bill; Shelton, John W.

    Methods are described for attenuating solid glass and hollow retroreflectors, without introducing optical path length modifications, for electronic distance measurement. Construction of a prototype novel-design hollow retroreflector is described.

  11. Optical Distance Measurement Device And Method Thereof

    DOEpatents

    Bowers, Mark W.

    2004-06-15

    A system and method of efficiently obtaining distance measurements of a target by scanning the target. An optical beam is provided by a light source and modulated by a frequency source. The modulated optical beam is transmitted to an acousto-optical deflector capable of changing the angle of the optical beam in a predetermined manner to produce an output for scanning the target. In operation, reflected or diffused light from the target may be received by a detector and transmitted to a controller configured to calculate the distance to the target as well as the measurement uncertainty in calculating the distance to the target.

  12. A cognitively grounded measure of pronunciation distance.

    PubMed

    Wieling, Martijn; Nerbonne, John; Bloem, Jelke; Gooskens, Charlotte; Heeringa, Wilbert; Baayen, R Harald

    2014-01-01

    In this study we develop pronunciation distances based on naive discriminative learning (NDL). Measures of pronunciation distance are used in several subfields of linguistics, including psycholinguistics, dialectology and typology. In contrast to the commonly used Levenshtein algorithm, NDL is grounded in cognitive theory of competitive reinforcement learning and is able to generate asymmetrical pronunciation distances. In a first study, we validated the NDL-based pronunciation distances by comparing them to a large set of native-likeness ratings given by native American English speakers when presented with accented English speech. In a second study, the NDL-based pronunciation distances were validated on the basis of perceptual dialect distances of Norwegian speakers. Results indicated that the NDL-based pronunciation distances matched perceptual distances reasonably well with correlations ranging between 0.7 and 0.8. While the correlations were comparable to those obtained using the Levenshtein distance, the NDL-based approach is more flexible as it is also able to incorporate acoustic information other than sound segments.

  13. A Cognitively Grounded Measure of Pronunciation Distance

    PubMed Central

    Wieling, Martijn; Nerbonne, John; Bloem, Jelke; Gooskens, Charlotte; Heeringa, Wilbert; Baayen, R. Harald

    2014-01-01

    In this study we develop pronunciation distances based on naive discriminative learning (NDL). Measures of pronunciation distance are used in several subfields of linguistics, including psycholinguistics, dialectology and typology. In contrast to the commonly used Levenshtein algorithm, NDL is grounded in cognitive theory of competitive reinforcement learning and is able to generate asymmetrical pronunciation distances. In a first study, we validated the NDL-based pronunciation distances by comparing them to a large set of native-likeness ratings given by native American English speakers when presented with accented English speech. In a second study, the NDL-based pronunciation distances were validated on the basis of perceptual dialect distances of Norwegian speakers. Results indicated that the NDL-based pronunciation distances matched perceptual distances reasonably well with correlations ranging between 0.7 and 0.8. While the correlations were comparable to those obtained using the Levenshtein distance, the NDL-based approach is more flexible as it is also able to incorporate acoustic information other than sound segments. PMID:24416119

  14. Absolute Radiation Measurements in Earth and Mars Entry Conditions

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.

    2014-01-01

    This paper reports on the measurement of radiative heating for shock heated flows which simulate conditions for Mars and Earth entries. Radiation measurements are made in NASA Ames' Electric Arc Shock Tube at velocities from 3-15 km/s in mixtures of N2/O2 and CO2/N2/Ar. The technique and limitations of the measurement are summarized in some detail. The absolute measurements will be discussed in regards to spectral features, radiative magnitude and spatiotemporal trends. Via analysis of spectra it is possible to extract properties such as electron density, and rotational, vibrational and electronic temperatures. Relaxation behind the shock is analyzed to determine how these properties relax to equilibrium and are used to validate and refine kinetic models. It is found that, for some conditions, some of these values diverge from non-equilibrium indicating a lack of similarity between the shock tube and free flight conditions. Possible reasons for this are discussed.

  15. An absolute scale for measuring the utility of money

    NASA Astrophysics Data System (ADS)

    Thomas, P. J.

    2010-07-01

    Measurement of the utility of money is essential in the insurance industry, for prioritising public spending schemes and for the evaluation of decisions on protection systems in high-hazard industries. Up to this time, however, there has been no universally agreed measure for the utility of money, with many utility functions being in common use. In this paper, we shall derive a single family of utility functions, which have risk-aversion as the only free parameter. The fact that they return a utility of zero at their low, reference datum, either the utility of no money or of one unit of money, irrespective of the value of risk-aversion used, qualifies them to be regarded as absolute scales for the utility of money. Evidence of validation for the concept will be offered based on inferential measurements of risk-aversion, using diverse measurement data.

  16. Absolute efficiency measurements with the 10B based Jalousie detector

    NASA Astrophysics Data System (ADS)

    Modzel, G.; Henske, M.; Houben, A.; Klein, M.; Köhli, M.; Lennert, P.; Meven, M.; Schmidt, C. J.; Schmidt, U.; Schweika, W.

    2014-04-01

    The 10B based Jalousie detector is a replacement for 3He counter tubes, which are nowadays less affordable for large area detectors due to the 3He crisis. In this paper we investigate and verify the performance of the new 10B based detector concept and its adoption for the POWTEX diffractometer, which is designed for the detection of thermal neutrons with predicted detection efficiencies of 75-50% for neutron energies of 10-100 meV, respectively. The predicted detection efficiency has been verified by absolute measurements using neutrons with a wavelength of 1.17 Å (59 meV).

  17. Absolute measurement of hadronic branching fractions of the Ds+ meson.

    PubMed

    Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; Lopez, A; Mendez, H; Ramirez, J; Ge, J Y; Miller, D H; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Rademacker, J; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L

    2008-04-25

    The branching fractions of D(s)(+/-) meson decays serve to normalize many measurements of processes involving charm quarks. Using 298 pb(-1) of e(+)e(-) collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for eight D(s)(+/-) decays with a double tag technique. In particular we determine the branching fraction B(D(s)(+)-->K(-)K(+}pi(+))=(5.50+/-0.23+/-0.16)%, where the uncertainties are statistical and systematic, respectively. We also provide partial branching fractions for kinematic subsets of the K(-)K(+)pi(+) decay mode.

  18. 3D measurement of absolute radiation dose in grid therapy

    NASA Astrophysics Data System (ADS)

    Trapp, J. V.; Warrington, A. P.; Partridge, M.; Philps, A.; Leach, M. O.; Webb, S.

    2004-01-01

    Spatially fractionated radiotherapy through a grid is a concept which has a long history and was routinely used in orthovoltage radiation therapy in the middle of last century to minimize damage to the skin and subcutaneous tissue. With the advent of megavoltage radiotherapy and its skin sparing effects the use of grids in radiotherapy declined in the 1970s. However there has recently been a revival of the technique for use in palliative treatments with a single fraction of 10 to 20 Gy. In this work the absolute 3D dose distribution in a grid irradiation is measured for photons using a combination of film and gel dosimetry.

  19. Close-range photogrammetry with light field camera: from disparity map to absolute distance.

    PubMed

    Yang, Peng; Wang, Zhaomin; Yan, Yizhen; Qu, Weijuan; Zhao, Hongying; Asundi, Anand; Yan, Lei

    2016-09-20

    A new approach to measure the 3D profile of a texture object is proposed utilizing light field imaging, in which three key steps are required: a disparity map is first obtained by detecting the slopes in the epipolar plane image with the multilabel technique; the intrinsic parameters of the light field camera are then extracted by camera calibration; at last, the relationship between disparity values and real distances is built up by depth calibration. In the last step, a linear calibration method is proposed to achieve accurate results. Furthermore, the depth error is also investigated and compensated for by reusing the checkerboard pattern. The experimental results are in good agreement with the 3D models, and also indicate that the light field imaging is a promising 3D measurement technique.

  20. A new single-station wMPS measurement method with distance measurement

    NASA Astrophysics Data System (ADS)

    Xie, Yu; Lin, Jiarui; Yang, Linghui; Guo, Yin; Zhao, Ziyue

    2015-10-01

    Multi-task and real-time measurement of relative displacement is widely needed in the present industrial field. Existing measuring methods require complex preparation and data processing, or are unable meet the requirement of automation, multi-task and real-time. The instruments used to measure absolute coordinates are inefficiency because of the measured target is relative displacement. A new single-station wMPS (Workspace Measuring Position System) measurement method combined distance measurement is presented in this paper. It learns from measuring principle of total station, measures angle based on rotating scanning laser plane measuring method, and measures distance based on optoelectronic scanning multi-angle intersection location principle, uses the angle-length resection measuring method, builds a new mathematical model to measure the relative displacement of the target. The result of experiment proves that it increases measuring efficiency and achieves multi-task and real-time measurement of relative displacement.

  1. Full field imaging based instantaneous hyperspectral absolute refractive index measurement

    SciTech Connect

    Baba, Justin S; Boudreaux, Philip R

    2012-01-01

    Multispectral refractometers typically measure refractive index (RI) at discrete monochromatic wavelengths via a serial process. We report on the demonstration of a white light full field imaging based refractometer capable of instantaneous multispectral measurement of absolute RI of clear liquid/gel samples across the entire visible light spectrum. The broad optical bandwidth refractometer is capable of hyperspectral measurement of RI in the range 1.30 1.70 between 400nm 700nm with a maximum error of 0.0036 units (0.24% of actual) at 414nm for a = 1.50 sample. We present system design and calibration method details as well as results from a system validation sample.

  2. Absolute stress measurements at the rangely anticline, Northwestern Colorado

    USGS Publications Warehouse

    de la Cruz, R. V.; Raleigh, C.B.

    1972-01-01

    Five different methods of measuring absolute state of stress in rocks in situ were used at sites near Rangely, Colorado, and the results compared. For near-surface measurements, overcoring of the borehole-deformation gage is the most convenient and rapid means of obtaining reliable values for the magnitude and direction of the state of stress in rocks in situ. The magnitudes and directions of the principal stresses are compared to the geologic features of the different areas of measurement. The in situ stresses are consistent in orientation with the stress direction inferred from the earthquake focal-plane solutions and existing joint patterns but inconsistent with stress directions likely to have produced the Rangely anticline. ?? 1972.

  3. Absolute Measurements of Radiation Damage in Nanometer Thick Films

    PubMed Central

    Alizadeh, Elahe; Sanche, Léon

    2013-01-01

    We address the problem of absolute measurements of radiation damage in films of nanometer thicknesses. Thin films of DNA (~ 2–160nm) are deposited onto glass substrates and irradiated with varying doses of 1.5 keV X-rays under dry N2 at atmospheric pressure and room temperature. For each different thickness, the damage is assessed by measuring the loss of the supercoiled configuration as a function of incident photon fluence. From the exposure curves, the G-values are deduced, assuming that X-ray photons interacting with DNA, deposit all of their energy in the film. The results show that the G-value (i.e., damage per unit of deposited energy) increases with film thickness and reaches a plateau at 30±5 nm. This thickness dependence provides a correction factor to estimate the actual G-value for films with thicknesses below 30nm thickness. Thus, the absolute values of damage can be compared with that of films of any thickness under different experimental conditions. PMID:22562941

  4. Absolute rotation detection by Coriolis force measurement using optomechanics

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar; Li, Yong

    2016-10-01

    In this article, we present an application of the optomechanical cavities for absolute rotation detection. Two optomechanical cavities, one in each arm, are placed in a Michelson interferometer. The interferometer is placed on a rotating table and is moved with a uniform velocity of \\dot{\\bar{y}} with respect to the rotating table. The Coriolis force acting on the interferometer changes the length of the optomechanical cavity in one arm, while the length of the optomechanical cavity in the other arm is not changed. The phase shift corresponding to the change in the optomechanical cavity length is measured at the interferometer output to estimate the angular velocity of the absolute rotation. An analytic expression for the minimum detectable rotation rate corresponding to the standard quantum limit of measurable Coriolis force in the interferometer is derived. Squeezing technique is discussed to improve the rotation detection sensitivity by a factor of \\sqrt{{γ }m/{ω }m} at 0 K temperature, where {γ }m and {ω }m are the damping rate and angular frequency of the mechanical oscillator. The temperature dependence of the rotation detection sensitivity is studied.

  5. The orbit of Phi Cygni measured with long-baseline optical interferometry - Component masses and absolute magnitudes

    NASA Technical Reports Server (NTRS)

    Armstrong, J. T.; Hummel, C. A.; Quirrenbach, A.; Buscher, D. F.; Mozurkewich, D.; Vivekanand, M.; Simon, R. S.; Denison, C. S.; Johnston, K. J.; Pan, X.-P.

    1992-01-01

    The orbit of the double-lined spectroscopic binary Phi Cygni, the distance to the system, and the masses and absolute magnitudes of its components are presented via measurements with the Mar III Optical Interferometer. On the basis of a reexamination of the spectroscopic data of Rach & Herbig (1961), the values and uncertainties are adopted for the period and the projected semimajor axes from the present fit to the spectroscopic data and the values of the remaining elements from the present fit to the Mark III data. The elements of the true orbit are derived, and the masses and absolute magnitudes of the components, and the distance to the system are calculated.

  6. Deconstructing European Poverty Measures: What Relative and Absolute Scales Measure

    ERIC Educational Resources Information Center

    Burkhauser, Richard V.

    2009-01-01

    Forster and d'Ercole (2009) outline the dominant method of conceptualization and operationalization of European poverty measures that informed the EU in its development of the questionnaire for the European Union--Survey of Income and Living Conditions (EU-SILC). They do so in the context of their explanation of how the Organization for Economic…

  7. Absolute and relative reliability of lumbar interspinous process ultrasound imaging measurements

    PubMed Central

    Tozawa, Ryosuke; Katoh, Munenori; Aramaki, Hidefumi; Kawasaki, Tsubasa; Nishikawa, Yuichi; Kumamoto, Tsuneo; Fujinawa, Osamu

    2016-01-01

    [Purpose] The intra- and inter-examiner reliabilities of lumbar interspinous process distances measured by ultrasound imaging were examined. [Subjects and Methods] The subjects were 10 males who had no history of orthopedic diseases or dysfunctions. Ten lumbar interspinous images from 360 images captured from 10 subjects were selected. The 10 images were measured by nine examiners. The lumbar interspinous process distance measurements were performed five times by each examiner. In addition, four of the nine examiners measured the distances again after 4 days for test-retest analysis. In statistical analysis, the intraclass correlation coefficient was used to investigate relative reliability, and Bland-Altman analysis was used to investigate absolute reliability. [Results] The intraclass correlation coefficients (1, 1) for intra-examiner reliability ranged from 0.985 to 0.998. For inter-rater reliability, the intraclass correlation coefficient (2, 1) was 0.969. The intraclass correlation coefficients (1, 2) for test-retest reliability ranged from 0.991 to 0.999. The Bland-Altman analysis results indicated no systematic error. [Conclusion] The results indicate that ultrasound measurements of interspinous process distance are highly reliable even when measured only once by a single person. PMID:27630399

  8. Superfast 3D absolute shape measurement using five binary patterns

    NASA Astrophysics Data System (ADS)

    Hyun, Jae-Sang; Zhang, Song

    2017-03-01

    This paper presents a method that recovers high-quality 3D absolute coordinates point by point with only five binary patterns. Specifically, three dense binary dithered patterns are used to compute the wrapped phase; and the average intensity is combined with two additional binary patterns to determine fringe order pixel by pixel in phase domain. The wrapped phase is temporarily unwrapped point by point by referring to the fringe order. We further developed a computational framework to reduce random noise impact due to dithering, defocusing and random noise. Since only five binary fringe patterns are required to recover one 3D frame, extremely high speed 3D shape measurement can be achieved. For example, we developed a system that captures 2D images at 3333 Hz, and thus performs 3D shape measurement at 667 Hz.

  9. A Distance Measure for Genome Phylogenetic Analysis

    NASA Astrophysics Data System (ADS)

    Cao, Minh Duc; Allison, Lloyd; Dix, Trevor

    Phylogenetic analyses of species based on single genes or parts of the genomes are often inconsistent because of factors such as variable rates of evolution and horizontal gene transfer. The availability of more and more sequenced genomes allows phylogeny construction from complete genomes that is less sensitive to such inconsistency. For such long sequences, construction methods like maximum parsimony and maximum likelihood are often not possible due to their intensive computational requirement. Another class of tree construction methods, namely distance-based methods, require a measure of distances between any two genomes. Some measures such as evolutionary edit distance of gene order and gene content are computational expensive or do not perform well when the gene content of the organisms are similar. This study presents an information theoretic measure of genetic distances between genomes based on the biological compression algorithm expert model. We demonstrate that our distance measure can be applied to reconstruct the consensus phylogenetic tree of a number of Plasmodium parasites from their genomes, the statistical bias of which would mislead conventional analysis methods. Our approach is also used to successfully construct a plausible evolutionary tree for the γ-Proteobacteria group whose genomes are known to contain many horizontally transferred genes.

  10. Absolute poverty measures for the developing world, 1981-2004.

    PubMed

    Chen, Shaohua; Ravallion, Martin

    2007-10-23

    We report new estimates of measures of absolute poverty for the developing world for the period 1981-2004. A clear trend decline in the percentage of people who are absolutely poor is evident, although with uneven progress across regions. We find more mixed success in reducing the total number of poor. Indeed, the developing world outside China has seen little or no sustained progress in reducing the number of poor, with rising poverty counts in some regions, notably sub-Saharan Africa. There are encouraging signs of progress in all regions after 2000, although it is too early to say whether this is a new trend. We also summarize results from estimating a new series incorporating an allowance for the higher cost of living facing poor people in urban areas. This reveals a marked urbanization of poverty in the developing world, which is stronger in some regions than others, although it remains that three-quarters of the poor live in rural areas.

  11. Absolute Seebeck Coefficient Measurements of Thermoelectric Thin Films

    NASA Astrophysics Data System (ADS)

    Mason, Sarah; Avery, Azure; Basset, Dain; Zink, Barry

    2014-03-01

    Significant advancements in thermoelectric device efficiencies are possible through size reduction to the nanoscale. Quantities that determine a material's efficiency, such as thermopower, or Seebeck coefficient, S, are influenced by the measurement apparatus, so that measuring a thermally generated voltage gives, dV/dT =Ssample -Slead . If accurate values of, Slead, are available, simple subtraction provides Ssample. This is rarely the case in measurements using micromachined devices, with leads exclusively made from thin film materials that do not have well known bulk-like thermopower values. We have developed a technique to directly measure S as a function of T using a micromachined thermal isolation platform consisting of a suspended, patterned SiN membrane. By measuring a series of thicknesses of metallic films up to the infinitely thick thin film limit, in which the thermopower is no longer increasing with thickness, but still not at bulk values, we are able to show the contribution of the leads needed to measure this property. Having a thorough understanding of the background contribution we are able to determine the absolute thermopower of a wide variety of thin films, as well as their thermal and electrical conductivities, on the same sample.

  12. Measurement of absolute hadronic branching fractions of D mesons

    NASA Astrophysics Data System (ADS)

    Shi, Xin

    Using 818 pb-1 of e +e- collisions recorded at the psi(3770) resonance with the CLEO-c detector at CESR, we determine absolute hadronic branching fractions of charged and neutral D mesons using a double tag technique. Among measurements for three D 0 and six D+ modes, we obtain reference branching fractions B (D0 → K -pi+) = (3.906 +/- 0.021 +/- 0.062)% and B (D+ → K -pi+pi+) = (9.157 +/- 0.059 +/- 0.125)%, where the first uncertainty is statistical, the second is systematic errors. Using an independent determination of the integrated luminosity, we also extract the cross sections sigma(e +e- → D 0D¯0) = (3.650 +/- 0.017 +/- 0.083) nb and sigma(e+ e- → D+ D-) = (2.920 +/- 0.018 +/- 0.062) nb at a center of mass energy, Ecm = 3774 +/- 1 MeV.

  13. Absolute blood velocity measured with a modified fundus camera

    NASA Astrophysics Data System (ADS)

    Duncan, Donald D.; Lemaillet, Paul; Ibrahim, Mohamed; Nguyen, Quan Dong; Hiller, Matthias; Ramella-Roman, Jessica

    2010-09-01

    We present a new method for the quantitative estimation of blood flow velocity, based on the use of the Radon transform. The specific application is for measurement of blood flow velocity in the retina. Our modified fundus camera uses illumination from a green LED and captures imagery with a high-speed CCD camera. The basic theory is presented, and typical results are shown for an in vitro flow model using blood in a capillary tube. Subsequently, representative results are shown for representative fundus imagery. This approach provides absolute velocity and flow direction along the vessel centerline or any lateral displacement therefrom. We also provide an error analysis allowing estimation of confidence intervals for the estimated velocity.

  14. Absolute measurement of undulator radiation in the extreme ultraviolet

    NASA Astrophysics Data System (ADS)

    Maezawa, H.; Mitani, S.; Suzuki, Y.; Kanamori, H.; Tamamushi, S.; Mikuni, A.; Kitamura, H.; Sasaki, T.

    1983-04-01

    The spectral brightness of undulator radiation emitted by the model PMU-1 incorporated in the SOR-RING, the dedicated synchrotron radiation source in Tokyo, has been studied in the extreme ultraviolet region from 21.6 to 72.9 eV as a function of the electron energy γ, the field parameter K, and the angle of observation ϴ in the absolute scale. A series of measurements covering the first and the second harmonic component of undulator radiation was compared with the fundamental formula λ n= {λ 0}/{2nγ 2}( {1+K 2}/{2}+γϴ 2 and the effects of finite emittance were studied. The brightness at the first peak was smaller than the theoretical value, while an enhanced second harmonic component was observed.

  15. Length measurement in absolute scale via low-dispersion optical cavity

    NASA Astrophysics Data System (ADS)

    Pravdova, Lenka; Lesundak, Adam; Smid, Radek; Hrabina, Jan; Rerucha, Simon; Cip, Ondrej

    2016-12-01

    We report on the length measuring instrument with the absolute scale that was based on the combination of an optical frequency comb and a passive optical cavity. The time spacing of short femtosecond pulses, generated by the optical frequency comb, is optically phase locked onto the cavity free spectral range with a derivative spectroscopy technique so that the value of the repetition frequency of the femtosecond laser is tied to and determines the measured displacement. The instantaneous value of the femtosecond pulse train frequency is counted by a frequency counter. This counted value corresponds to the length given by the spacing between the two mirrors of the passive cavity. The phase lock between the femtosecond pulsed beam and the passive cavity is possible due to the low-dispersion of the cavity mirrors, where the silver coating on the mirrors was used to provide the low dispersion for the broadband radiation of the comb. Every reflection on the output mirror feeds a portion of the beam back to the cavity so that the output beam is a result of multiple interfering components. The parameters of the output beam are given not only by the parameters of the mirrors but mainly by the absolute distance between the mirror surfaces. Thus, one cavity mirror can be considered as the reference starting point of the distance to be measured and the other mirror is the measuring probe surveying the unknown distance. The measuring mirror of the experimental setup of the low-dispersion cavity is mounted on a piezoelectric actuator which provides small changes in the cavity length we used to test the length measurement method. For the verification of the measurement accuracy a reference incremental interferometer was integrated into our system so that the displacement of the piezoelectric actuator could be obtained with both measuring methods simultaneously.

  16. Absolute measures of the completeness of the fossil record

    NASA Technical Reports Server (NTRS)

    Foote, M.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1999-01-01

    Measuring the completeness of the fossil record is essential to understanding evolution over long timescales, particularly when comparing evolutionary patterns among biological groups with different preservational properties. Completeness measures have been presented for various groups based on gaps in the stratigraphic ranges of fossil taxa and on hypothetical lineages implied by estimated evolutionary trees. Here we present and compare quantitative, widely applicable absolute measures of completeness at two taxonomic levels for a broader sample of higher taxa of marine animals than has previously been available. We provide an estimate of the probability of genus preservation per stratigraphic interval, and determine the proportion of living families with some fossil record. The two completeness measures use very different data and calculations. The probability of genus preservation depends almost entirely on the Palaeozoic and Mesozoic records, whereas the proportion of living families with a fossil record is influenced largely by Cenozoic data. These measurements are nonetheless highly correlated, with outliers quite explicable, and we find that completeness is rather high for many animal groups.

  17. Absolute Thermal SST Measurements over the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Good, W. S.; Warden, R.; Kaptchen, P. F.; Finch, T.; Emery, W. J.

    2010-12-01

    Climate monitoring and natural disaster rapid assessment require baseline measurements that can be tracked over time to distinguish anthropogenic versus natural changes to the Earth system. Disasters like the Deepwater Horizon Oil Spill require constant monitoring to assess the potential environmental and economic impacts. Absolute calibration and validation of Earth-observing sensors is needed to allow for comparison of temporally separated data sets and provide accurate information to policy makers. The Ball Experimental Sea Surface Temperature (BESST) radiometer was designed and built by Ball Aerospace to provide a well calibrated measure of sea surface temperature (SST) from an unmanned aerial system (UAS). Currently, emissive skin SST observed by satellite infrared radiometers is validated by shipborne instruments that are expensive to deploy and can only take a few data samples along the ship track to overlap within a single satellite pixel. Implementation on a UAS will allow BESST to map the full footprint of a satellite pixel and perform averaging to remove any local variability due to the difference in footprint size of the instruments. It also enables the capability to study this sub-pixel variability to determine if smaller scale effects need to be accounted for in models to improve forecasting of ocean events. In addition to satellite sensor validation, BESST can distinguish meter scale variations in SST which could be used to remotely monitor and assess thermal pollution in rivers and coastal areas as well as study diurnal and seasonal changes to bodies of water that impact the ocean ecosystem. BESST was recently deployed on a conventional Twin Otter airplane for measurements over the Gulf of Mexico to access the thermal properties of the ocean surface being affected by the oil spill. Results of these measurements will be presented along with ancillary sensor data used to eliminate false signals including UV and Synthetic Aperture Radar (SAR

  18. Interference peak detection based on FPGA for real-time absolute distance ranging with dual-comb lasers

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Dong, Hao; Zhou, Qian; Xu, Mingfei; Li, Xinghui; Wu, Guanhao

    2015-08-01

    Absolute distance measurement using dual femtosecond comb lasers can achieve higher accuracy and faster measurement speed, which makes it more and more attractive. The data processing flow consists of four steps: interference peak detection, fast Fourier transform (FFT), phase fitting and compensation of index of refraction. A realtime data processing system based on Field-Programmable Gate Array (FPGA) for dual-comb ranging has been newly developed. The design and implementation of the interference peak detection algorithm by FPGA and Verilog language is introduced in this paper, which is viewed as the most complicated part and an important guarantee for system precision and reliability. An adaptive sliding window for scanning is used to detect peaks. In the process of detection, the algorithm stores 16 sample data as a detection unit and calculates the average of each unit. The average result is used to determine the vertical center height of the sliding window. The algorithm estimates the noise intensity of each detection unit, and then calculates the average of the noise strength of successive 128 units. The noise average is used to calculate the signal to noise ratio of the current working environment, which is used to adjust the height of the sliding window. This adaptive sliding window helps to eliminate fake peaks caused by noise. The whole design is based on the way of pipeline, which can improves the real-time throughput of the overall peak detection module. Its execution speed is up to 140MHz in the FPGA, and the peak can be detected in 16 clock cycle when it appears.

  19. Distance measurement using frequency scanning interferometry with mode-hoped laser

    NASA Astrophysics Data System (ADS)

    Medhat, M.; Sobee, M.; Hussein, H. M.; Terra, O.

    2016-06-01

    In this paper, frequency scanning interferometry is implemented to measure distances up to 5 m absolutely. The setup consists of a Michelson interferometer, an external cavity tunable diode laser, and an ultra-low expansion (ULE) Fabry-Pérot (FP) cavity to measure the frequency scanning range. The distance is measured by acquiring simultaneously the interference fringes from, the Michelson and the FP interferometers, while scanning the laser frequency. An online fringe processing technique is developed to calculate the distance from the fringe ratio while removing the parts result from the laser mode-hops without significantly affecting the measurement accuracy. This fringe processing method enables accurate distance measurements up to 5 m with measurements repeatability ±3.9×10-6 L. An accurate translation stage is used to find the FP cavity free-spectral-range and therefore allow accurate measurement. Finally, the setup is applied for the short distance calibration of a laser distance meter (LDM).

  20. Absolute activity measurement of radon gas at IRA-METAS

    NASA Astrophysics Data System (ADS)

    Spring, Philippe; Nedjadi, Youcef; Bailat, Claude; Triscone, Gilles; Bochud, François

    2006-12-01

    This paper describes the system of the Swiss national metrological institute (IRA-METAS) for the absolute standardisation of radon gas. This method relies on condensing radon under vacuum conditions within a specified cold area using a cryogenerator, and detecting its alpha particles with an ion-implanted silicon detector, through a very accurately defined solid angle. The accuracy of this defined solid angle standardisation technique was corroborated by another primary measurement method involving 4 πγ NaI(Tl) integral counting and Monte Carlo efficiency calculations. The 222Rn standard submitted by IRA-METAS to the Système International de Référence (SIR) at the Bureau International des Poids et Mesures (BIPM) has also been found to be consistent with an analogous standard submitted by the German national metrological institute (PTB). IRA-METAS is able to deliver radon standards, with activities ranging from a few kBq to 350 kBq, in NIST-Type ampoules, and glass or steel containers usable for calibrating radon-measuring instruments.

  1. Embedded north-seeker for automatic absolute magnetic DI measurements

    NASA Astrophysics Data System (ADS)

    Gonsette, Alexandre; Rasson, Jean

    2014-05-01

    In magnetic observatory Earth magnetic field is recorded with a resolution of 0.1nT for 1min sampling (new standards impose 1pT for 1s sampling). The method universally adopted for measuring it is a combination of three instruments. Vectorial magnetometer (variometer) records variations of the three components around a reference value or a baseline. A proton or an overhauser magnetometer is an absolute instrument able to measure the modulus of the field and used to determine the F component baseline of the variometer. The declination and inclination baselines require a manual procedure to be computed. An operator manipulates a non-magnetic theodolite (also called a DIFlux) to measure the D and I angles in different configurations with a resolution of a few arcsec. The AutoDIF is a non-magnetic automatic DIFlux using the same protocol as the manual procedure. The declination defined according to the true north is determined by means of a target pointing system. Even if the technique is fast and accurate, it becomes problematic in case of unmanned deployment. In particular the area between the target and the DIFlux is out of control. Snow storm, fog, vegetation or condensation on windows are examples of perturbation preventing for finding the target. It is obvious in case of (future) seafloor observatories. A FOG based north-seeker has been implemented and mounted on the AutoDIF. The first results using a low cost gyro don't meet the Intermagnet specifications yet but are however hopeful. A 0.1° standard deviation has been reached and statistically reduced to 0.01° after less than two days in laboratory. The magnetic disturbance of the sensor is taken into account and compensated by the measurement protocol.

  2. Accuracy of distance measurements in biplane angiography

    NASA Astrophysics Data System (ADS)

    Toennies, Klaus D.; Oishi, Satoru; Koster, David; Schroth, Gerhard

    1997-05-01

    Distance measurements of the vascular system of the brain can be derived from biplanar digital subtraction angiography (2p-DSA). The measurements are used for planning of minimal invasive surgical procedures. Our 90 degree-fixed-angle G- ring angiography system has the potential of acquiring pairs of such images with high geometric accuracy. The sizes of vessels and aneurysms are estimated applying a fast and accurate extraction method in order to select an appropriate surgical strategy. Distance computation from 2p-DSA is carried out in three steps. First, the boundary of the structure to be measured is detected based on zero-crossings and closeness to user-specified end points. Subsequently, the 3D location of the center of the structure is computed from the centers of gravity of its two projections. This location is used to reverse the magnification factor caused by the cone-shaped projection of the x-rays. Since exact measurements of possibly very small structures are crucial to the usefulness in surgical planning, we identified mechanical and computational influences on the geometry which may have an impact on the measurement accuracy. A study with phantoms is presented distinguishing between the different effects and enabling the computation of an optimal overall exactness. Comparing this optimum with results of distance measurements on phantoms whose exact size and shape is known, we found, that the measurement error for structures of size of 20 mm was less than 0.05 mm on average and 0.50 mm at maximum. The maximum achievable accuracy of 0.15 mm was in most cases exceeded by less than 0.15 mm. This accuracy surpasses by far the requirements for the above mentioned surgery application. The mechanic accuracy of the fixed-angle biplanar system meets the requirements for computing a 3D reconstruction of the small vessels of the brain. It also indicates, that simple measurements will be possible on systems being less accurate.

  3. Method and apparatus for measuring distance

    NASA Technical Reports Server (NTRS)

    Lichtenberg, Christopher L. (Inventor); Shores, Paul W. (Inventor); Kobayashi, Herbert S. (Inventor)

    1988-01-01

    The invention employs a continuous wave radar technique and apparatus which can be used as a distance measuring system in the presence of background clutter by utilizing small passive transponders. A first continuous electromagnetic wave signal S sub 1 at a first frequency f sub 1 is transmitted from a first location. A transponder carried by a target object positioned at a second (remote) location receives the transmitted signal, phase-coherently divides the f sub 1 frequency and its phase, and re-transmits the transmitted signal as a second continuous electromagnetic wave signal S sub 2 at a lower frequency f sub 2 which is a subharmonic of f sub 1. The re-transmitted signal is received at the first location where a measurement of the phase difference is made between the signals S sub 1 and S sub 2, such measuremnt being indicative of the distance between the first and second locations.

  4. a Portable Apparatus for Absolute Measurements of the Earth's Gravity.

    NASA Astrophysics Data System (ADS)

    Zumberge, Mark Andrew

    We have developed a new, portable apparatus for making absolute measurements of the acceleration due to the earth's gravity. We use the method of interferometrically determining the acceleration of a freely falling corner -cube prism. The falling object is surrounded by a chamber which is driven vertically inside a fixed vacuum chamber. This falling chamber is servoed to track the falling corner -cube to shield it from drag due to background gas. In addition, the drag-free falling chamber removes the need for a magnetic release, shields the falling object from electrostatic forces, and provides a means of both gently arresting the falling object and quickly returning it to its start position, to allow rapid acquisition of data. A synthesized long period isolation device reduces the noise due to seismic oscillations. A new type of Zeeman laser is used as the light source in the interferometer, and is compared with the wavelength of an iodine stabilized laser. The times of occurrence of 45 interference fringes are measured to within 0.2 nsec over a 20 cm drop and are fit to a quadratic by an on-line minicomputer. 150 drops can be made in ten minutes resulting in a value of g having a precision of 3 to 6 parts in 10('9). Systematic errors have been determined to be less than 5 parts in 10('9) through extensive tests. Three months of gravity data have been obtained with a reproducibility ranging from 5 to 10 parts in 10('9). The apparatus has been designed to be easily portable. Field measurements are planned for the immediate future. An accuracy of 6 parts in 10('9) corresponds to a height sensitivity of 2 cm. Vertical motions in the earth's crust and tectonic density changes that may precede earthquakes are to be investigated using this apparatus.

  5. Preliminary OARE absolute acceleration measurements on STS-50

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James

    1993-01-01

    On-orbit Orbital Acceleration Research Experiment (OARE) data on STS-50 was examined in detail during a 2-day time period. Absolute acceleration levels were derived at the OARE location, the orbiter center-of-gravity, and at the STS-50 spacelab Crystal Growth Facility. The tri-axial OARE raw acceleration measurements (i.e., telemetered data) during the interval were filtered using a sliding trimmed mean filter in order to remove large acceleration spikes (e.g., thrusters) and reduce the noise. Twelve OARE measured biases in each acceleration channel during the 2-day interval were analyzed and applied to the filtered data. Similarly, the in situ measured x-axis scale factors in the sensor's most sensitive range were also analyzed and applied to the data. Due to equipment problem(s) on this flight, both y- and z- axis sensitive range scale factors were determined in a separate process (using the OARE maneuver data) and subsequently applied to the data. All known significant low-frequency corrections at the OARE location (i.e., both vertical and horizontal gravity-gradient, and rotational effects) were removed from the filtered data in order to produce the acceleration components at the orbiter's center-of-gravity, which are the aerodynamic signals along each body axes. Results indicate that there is a force of unknown origin being applied to the Orbiter in addition to the aerodynamic forces. The OARE instrument and all known gravitational and electromagnetic forces were reexamined, but none produce the observed effect. Thus, it is tentatively concluded that the Orbiter is creating the environment observed.

  6. Measures of lexical distance between languages

    NASA Astrophysics Data System (ADS)

    Petroni, Filippo; Serva, Maurizio

    2010-06-01

    The idea of measuring distance between languages seems to have its roots in the work of the French explorer Dumont D’Urville (1832) [13]. He collected comparative word lists for various languages during his voyages aboard the Astrolabe from 1826 to 1829 and, in his work concerning the geographical division of the Pacific, he proposed a method for measuring the degree of relation among languages. The method used by modern glottochronology, developed by Morris Swadesh in the 1950s, measures distances from the percentage of shared cognates, which are words with a common historical origin. Recently, we proposed a new automated method which uses the normalized Levenshtein distances among words with the same meaning and averages on the words contained in a list. Recently another group of scholars, Bakker et al. (2009) [8] and Holman et al. (2008) [9], proposed a refined version of our definition including a second normalization. In this paper we compare the information content of our definition with the refined version in order to decide which of the two can be applied with greater success to resolve relationships among languages.

  7. Interpretation of the Arcade 2 Absolute Sky Brightness Measurement

    NASA Technical Reports Server (NTRS)

    Seiffert, M.; Fixsen, D. J.; Kogut, A.; Levin, S. M.; Limon, M.; Lubin, P. M.; Mirel, P.; Singal, J.; Villela, T.; Wollack, E.; Wuensche, C. A.

    2011-01-01

    We use absolutely calibrated data between 3 and 90 GHz from the 2006 balloon flight of the ARCADE 2 instrument, along with previous measurements at other frequencies to constrain models of extragalactic emission. Such emission is a combination of the cosmic microwave background (CMB) monopole, Galactic foreground emission, the integrated contribution of radio emission from external galaxies, any spectral distortions present in the CMB, and any other extragalactic source. After removal of estimates of foreground emission from our own Galaxy, and an estimated contribution of external galaxies, we present fits to a combination of the flat-spectrum CMB and potential spectral distortions in the CMB. We find 217 upper limits to CMB spectral distortions of u < 6x10(exp -4) and [Y(sub ff)] < 1x10(exp -4). We also find a significant detection of a residual signal beyond that, which can be explained by the CMB plus the integrated radio emission from galaxies estimated from existing surveys. This residual signal may be due to an underestimated galactic foreground contribution, an unaccounted for contribution of a background of radio sources, or some combination of both. The residual signal is consistent with emission in the form of a power law with amplitUde 18.4 +/- 2.1 K at 0.31 GHz and a spectral index of -2.57 +/- 0.05.

  8. Metrics for measuring distances in configuration spaces

    SciTech Connect

    Sadeghi, Ali Ghasemi, S. Alireza; Schaefer, Bastian; Mohr, Stephan; Goedecker, Stefan; Lill, Markus A.

    2013-11-14

    In order to characterize molecular structures we introduce configurational fingerprint vectors which are counterparts of quantities used experimentally to identify structures. The Euclidean distance between the configurational fingerprint vectors satisfies the properties of a metric and can therefore safely be used to measure dissimilarities between configurations in the high dimensional configuration space. In particular we show that these metrics are a perfect and computationally cheap replacement for the root-mean-square distance (RMSD) when one has to decide whether two noise contaminated configurations are identical or not. We introduce a Monte Carlo approach to obtain the global minimum of the RMSD between configurations, which is obtained from a global minimization over all translations, rotations, and permutations of atomic indices.

  9. Optoelectronic System Measures Distances to Multiple Targets

    NASA Technical Reports Server (NTRS)

    Liebe, Carl Christian; Abramovici, Alexander; Bartman, Randall; Chapsky, Jacob; Schmalz, John; Coste, Keith; Litty, Edward; Lam, Raymond; Jerebets, Sergei

    2007-01-01

    An optoelectronic metrology apparatus now at the laboratory-prototype stage of development is intended to repeatedly determine distances of as much as several hundred meters, at submillimeter accuracy, to multiple targets in rapid succession. The underlying concept of optoelectronic apparatuses that can measure distances to targets is not new; such apparatuses are commonly used in general surveying and machining. However, until now such apparatuses have been, variously, constrained to (1) a single target or (2) multiple targets with a low update rate and a requirement for some a priori knowledge of target geometry. When fully developed, the present apparatus would enable measurement of distances to more than 50 targets at an update rate greater than 10 Hz, without a requirement for a priori knowledge of target geometry. The apparatus (see figure) includes a laser ranging unit (LRU) that includes an electronic camera (photo receiver), the field of view of which contains all relevant targets. Each target, mounted at a fiducial position on an object of interest, consists of a small lens at the output end of an optical fiber that extends from the object of interest back to the LRU. For each target and its optical fiber, there is a dedicated laser that is used to illuminate the target via the optical fiber. The targets are illuminated, one at a time, with laser light that is modulated at a frequency of 10.01 MHz. The modulated laser light is emitted by the target, from where it returns to the camera (photodetector), where it is detected. Both the outgoing and incoming 10.01-MHz laser signals are mixed with a 10-MHz local-oscillator to obtain beat notes at 10 kHz, and the difference between the phases of the beat notes is measured by a phase meter. This phase difference serves as a measure of the total length of the path traveled by light going out through the optical fiber and returning to the camera (photodetector) through free space. Because the portion of the path

  10. Large-Scale Measurement of Absolute Protein Glycosylation Stoichiometry.

    PubMed

    Sun, Shisheng; Zhang, Hui

    2015-07-07

    Protein glycosylation is one of the most important protein modifications. Glycosylation site occupancy alteration has been implicated in human diseases and cancers. However, current glycoproteomic methods focus on the identification and quantification of glycosylated peptides and glycosylation sites but not glycosylation occupancy or glycoform stoichiometry. Here we describe a method for large-scale determination of the absolute glycosylation stoichiometry using three independent relative ratios. Using this method, we determined 117 absolute N-glycosylation occupancies in OVCAR-3 cells. Finally, we investigated the possible functions and the determinants for partial glycosylation.

  11. Distance measurements in cardiac troponin C.

    PubMed

    Wang, C L; Leavis, P C

    1990-01-01

    Intramolecular distance measurements were made in cardiac troponin C (cTnC) by fluorescence energy transfer using Eu3+ or Tb3+ as energy donors and Nd3+ or an organic chromophore as acceptors. The laser-induced luminescence of bound Eu3+ is quenched in Eu1Nd1cTnC with a lifetime of 0.328 ms, compared with 0.43 ms for Eu2cTnC. The enhanced decay corresponds to an energy transfer efficiency of 0.25, or a distance of 1.1 nm between the two high affinity sites. We have also labeled cTnC with 4-dimethylaminophenylazophenyl-4'-maleimide (DAB-Mal) at the two cysteine residues (Cys-35 and Cys-84). Energy transfer measurements were carried out between Tb3+ bound to the high affinity sites and the labels attached to the domain containing the low affinity site. Upon uv irradiation at pH 6.7, Tb1cTnCDAB emits tyrosine-sensitized Tb3+ luminescence that decays bioexponentially with lifetimes of 1.29 and 0.76 ms. The shorter lifetime is ascribed to energy transfer from Tb3+ to the DAB labels, yielding an average distance of 3.4 nm between the donor and the acceptors. At pH 5.0, however, the luminescence decays exclusively with a single lifetime of 1.31 ms, suggesting that under these conditions all Tb3+ ions are more than 5.2 nm away from the label. Thus cTnC, like skeletal TnC, undergoes a pH-dependent conformational transition which converts an elongated structure at lower pH's to a rather compact conformation in a more physiological medium.

  12. Absolute Retinal Blood Flow Measurement With a Dual-Beam Doppler Optical Coherence Tomography

    PubMed Central

    Dai, Cuixia; Liu, Xiaojing; Zhang, Hao F.; Puliafito, Carmen A.; Jiao, Shuliang

    2013-01-01

    Purpose. To test the capability of a novel dual-beam Doppler optical coherence tomography (OCT) technique for simultaneous in vivo measurement of the Doppler angle and, thus, the absolute retinal blood velocity and the retinal flow rate, without the influence of motion artifacts. Methods. A novel dual-beam Doppler spectral domain OCT (SD-OCT) was developed. The two probing beams are separated with a controllable distance along an arbitrary direction, both of which are controlled by two independent 2D optical scanners. Two sets of optical Doppler tomography (ODT) images are acquired simultaneously. The Doppler angle of each blood vessel segment is calculated from the relative coordinates of the centers of the blood vessel in the two corresponding ODT images. The absolute blood flow velocity and the volumetric blood flow rate can then be calculated. To measure the total retinal blood flow, we used a circular scan pattern centered at the optic disc to obtain two sets of concentric OCT/ODT images simultaneously. Results. We imaged two normal human subjects at ages of 48 and 34 years. The total retinal blood flow rates of the two human subjects were calculated to be 47.01 μL/min (older subject) and 51.37 μL/min (younger subject), respectively. Results showed that the performance of this imaging system is immune to eye movement, since the two sets of ODT images were acquired simultaneously. Conclusions. The dual-beam OCT/ODT system is successful in measuring the absolute retinal blood velocity and the volumetric flow rate. The advantage of the technique is that the two sets of ODT images used for the calculation are acquired simultaneously, which eliminates the influence of eye motion and ensures the accuracy of the calculated hemodynamic parameters. PMID:24222303

  13. Radio Astronomers Set New Standard for Accurate Cosmic Distance Measurement

    NASA Astrophysics Data System (ADS)

    1999-06-01

    estimate of the age of the universe. In order to do this, you need an unambiguous, absolute distance to another galaxy. We are pleased that the NSF's VLBA has for the first time determined such a distance, and thus provided the calibration standard astronomers have always sought in their quest for accurate distances beyond the Milky Way," said Morris Aizenman, Executive Officer of the National Science Foundation's (NSF) Division of Astronomical Sciences. "For astronomers, this measurement is the golden meter stick in the glass case," Aizenman added. The international team of astronomers used the VLBA to measure directly the motion of gas orbiting what is generally agreed to be a supermassive black hole at the heart of NGC 4258. The orbiting gas forms a warped disk, nearly two light-years in diameter, surrounding the black hole. The gas in the disk includes water vapor, which, in parts of the disk, acts as a natural amplifier of microwave radio emission. The regions that amplify radio emission are called masers, and work in a manner similar to the way a laser amplifies light emission. Determining the distance to NGC 4258 required measuring motions of extremely small shifts in position of these masers as they rotate around the black hole. This is equivalent to measuring an angle one ten-thousandth the width of a human hair held at arm's length. "The VLBA is the only instrument in the world that could do this," said Moran. "This work is the culmination of a 20-year effort at the Harvard Smithsonian Center for Astrophysics to measure distances to cosmic masers," said Irwin Shapiro, Director of that institution. Collection of the data for the NGC 4258 project was begun in 1994 and was part of Herrnstein's Ph.D dissertation at Harvard University. Previous observations with the VLBA allowed the scientists to measure the speed at which the gas is orbiting the black hole, some 39 million times more massive than the Sun. They did this by observing the amount of change in the

  14. Nearest Neighbor Classification Using a Density Sensitive Distance Measurement

    DTIC Science & Technology

    2009-09-01

    both the proposed density sensitive distance measurement and Euclidean distance are compared on the Wisconsin Diagnostic Breast Cancer dataset and...proposed density sensitive distance measurement and Euclidean distance are compared on the Wisconsin Diagnostic Breast Cancer dataset and the MNIST...35 1. The Wisconsin Diagnostic Breast Cancer (WDBC) Dataset..........35 2. The

  15. Reflectometer distance measurement between parallel conductive plates

    NASA Technical Reports Server (NTRS)

    Hearn, Chase P.; Neece, Robert T.

    1995-01-01

    This report presents an analytic and experimental investigation of the measurement problem in which a reflectometer is used to determine the distance to a target that is a highly conductive surface parallel to the reflectometer antenna ground plane. These parallel surfaces constitute a waveguide (WG) which can contribute parasitic perturbations that seriously degrade the accuracy of the measurements. Two distinct parallel-plate-waveguide (PPWG) phenomena are described, and their effects on both frequency and time-domain reflectometers are considered. The time-domain processing approach was found to be superior to a representative frequency-domain phase-measurement approach because of less susceptibility to perturbations produced by edge reflections and immunity to phase capture. Experimental results are presented which show that a simple radiating system modification can suppress parallel-plate (PP) propagation. The addition of a thin layer of lossy mu-metal 'magnetic absorber' to the antenna ground plane allowed a measurement accuracy of 0.025 cm (0.01 in.) when a vector network analyzer (VNA) is used as a time-domain reflectometer.

  16. Absolute Gravity Measurements with the FG5#215 in Czech Republic, Slovakia and Hungary

    NASA Astrophysics Data System (ADS)

    Pálinkás, V.; Kostelecký, J.; Lederer, M.

    2009-04-01

    Since 2001, the absolute gravimeter FG5#215 has been used for modernization of national gravity networks in Czech Republic, Slovakia and Hungary. Altogether 37 absolute sites were measured at least once. In case of 29 sites, the absolute gravity has been determined prior to the FG5#215 by other accurate absolute meters (FG5 or JILA-g). Differences between gravity results, which reach up to 25 microgal, are caused by random and systematic errors of measurements, variations of environmental effects (mainly hydrological effects) and by geodynamics. The set of achieved differences is analyzed for potential hydrological effects based on global hydrology models and systematic errors of instrumental origin. Systematic instrumental errors are evaluated in context with accomplished international comparison measurements of absolute gravimeters in Sèvres and Walferdange organized by the Bureau International des Poids et Measures and European Center for Geodynamics and Seismology, respectively.

  17. Absolute Measurement of Tilts via Fourier Analysis of Interferograms

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.

    2004-01-01

    The Fourier method of interferogram analysis requires the introduction of a constant tilt into the interferogram to serve as a carrier signal for information on the figure of the surface under test. This tilt is usually removed in the first steps of analysis and ignored thereafter. However, in the problem of aligning optical components and systems, knowledge of part orientation is crucial to proper instrument performance. This paper outlines an algorithm which uses the normally ignored carrier signal in Fourier analysis to compute an absolute tilt (orientation) of the test surface. We also provide a brief outline of how this technique, incorporated in a rotating Twyman-Green interferometer, can be used in alignment and metrology of optical systems.

  18. Absolute Measurement of Tilts via Fourier Analysis of Interferograms

    NASA Technical Reports Server (NTRS)

    Toland, Ronald W.

    2004-01-01

    The Fourier method of interferogram analysis requires the introduction of a constant tilt into the inteferogram to serve as a 'carrier signal' for information on the figure of the surface under test. This tilt is usually removed in the first steps of analysis and ignored thereafter. However, in the problem of aligning optical components and systems, knowledge of part orientation is crucial to proper instrument performance. This paper outlines an algorithm which uses the normally ignored carrier signal in Fourier analysis to compute an absolute tilt (orientation) of the test surface. We also provide a brief outline of how this technique, incorporated in a rotating Twyman-Green interferometer, can be used in alignment and metrology of optical systems.

  19. Method of excess fractions with application to absolute distance metrology: wavelength selection and the effects of common error sources.

    PubMed

    Falaggis, Konstantinos; Towers, David P; Towers, Catherine E

    2012-09-20

    Multiwavelength interferometry (MWI) is a well established technique in the field of optical metrology. Previously, we have reported a theoretical analysis of the method of excess fractions that describes the mutual dependence of unambiguous measurement range, reliability, and the measurement wavelengths. In this paper wavelength, selection strategies are introduced that are built on the theoretical description and maximize the reliability in the calculated fringe order for a given measurement range, number of wavelengths, and level of phase noise. Practical implementation issues for an MWI interferometer are analyzed theoretically. It is shown that dispersion compensation is best implemented by use of reference measurements around absolute zero in the interferometer. Furthermore, the effects of wavelength uncertainty allow the ultimate performance of an MWI interferometer to be estimated.

  20. Linguistic Distance: A Quantitative Measure of the Distance between English and Other Languages

    ERIC Educational Resources Information Center

    Chiswick, Barry R.; Miller, Paul W.

    2005-01-01

    This paper develops a scalar or quantitative measure of the "distance" between English and a myriad of other (non-native American) languages. This measure is based on the difficulty Americans have learning other languages. The linguistic distance measure is then used in an analysis of the determinants of English language proficiency…

  1. 23 CFR 750.103 - Measurements of distance.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Measurements of distance. 750.103 Section 750.103 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RIGHT-OF-WAY AND ENVIRONMENT HIGHWAY... System Under the 1958 Bonus Program § 750.103 Measurements of distance. (a) Distance from the edge of...

  2. 14 CFR 420.70 - Separation distance measurement requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Separation distance measurement... Licensee § 420.70 Separation distance measurement requirements. (a) This section applies to all... each separation distance along straight lines. For large intervening topographical features such...

  3. 14 CFR 420.70 - Separation distance measurement requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Separation distance measurement... Licensee § 420.70 Separation distance measurement requirements. (a) This section applies to all... each separation distance along straight lines. For large intervening topographical features such...

  4. IMPROVING COSMOLOGICAL DISTANCE MEASUREMENTS USING TWIN TYPE IA SUPERNOVAE

    SciTech Connect

    Fakhouri, H. K.; Boone, K.; Aldering, G.; Aragon, C.; Bailey, S.; Fagrelius, P.; Antilogus, P.; Bongard, S.; Fleury, M.; Baltay, C.; Barbary, K.; Baugh, D.; Chen, J.; Buton, C.; Chotard, N.; Copin, Y.; Feindt, U.; Fouchez, D. [Centre de Physique des Particules de Marseille, Aix-Marseille Université, CNRS Gangler, E. [Clermont Université, Université Blaise Pascal, CNRS Collaboration: Nearby Supernova Factory; and others

    2015-12-10

    We introduce a method for identifying “twin” Type Ia supernovae (SNe Ia) and using them to improve distance measurements. This novel approach to SN Ia standardization is made possible by spectrophotometric time series observations from the Nearby Supernova Factory (SNfactory). We begin with a well-measured set of SNe, find pairs whose spectra match well across the entire optical window, and then test whether this leads to a smaller dispersion in their absolute brightnesses. This analysis is completed in a blinded fashion, ensuring that decisions made in implementing the method do not inadvertently bias the result. We find that pairs of SNe with more closely matched spectra indeed have reduced brightness dispersion. We are able to standardize this initial set of SNfactory SNe to 0.083 ± 0.012 mag, implying a dispersion of 0.072 ± 0.010 mag in the absence of peculiar velocities. We estimate that with larger numbers of comparison SNe, e.g., using the final SNfactory spectrophotometric data set as a reference, this method will be capable of standardizing high-redshift SNe to within 0.06–0.07 mag. These results imply that at least 3/4 of the variance in Hubble residuals in current SN cosmology analyses is due to previously unaccounted-for astrophysical differences among the SNe.

  5. Absolute beam emittance measurements at RHIC using ionization profile monitors

    SciTech Connect

    Minty, M.; Connolly, R; Liu, C.; Summers, T.; Tepikian, S.

    2014-08-15

    In the past, comparisons between emittance measurements obtained using ionization profile monitors, Vernier scans (using as input the measured rates from the zero degree counters, or ZDCs), the polarimeters and the Schottky detectors evidenced significant variations of up to 100%. In this report we present studies of the RHIC ionization profile monitors (IPMs). After identifying and correcting for two systematic instrumental errors in the beam size measurements, we present experimental results showing that the remaining dominant error in beam emittance measurements at RHIC using the IPMs was imprecise knowledge of the local beta functions. After removal of the systematic errors and implementation of measured beta functions, precise emittance measurements result. Also, consistency between the emittances measured by the IPMs and those derived from the ZDCs was demonstrated.

  6. Laser fresnel distance measuring system and method

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W. (Inventor); Lehner, David L. (Inventor); Smalley, Larry L. (Inventor); Smith, legal representative, Molly C. (Inventor); Sanders, Alvin J. (Inventor); Earl, Dennis Duncan (Inventor); Allison, Stephen W. (Inventor); Smith, Kelly L. (Inventor)

    2008-01-01

    A method and system for determining range to a target are provided. A beam of electromagnetic energy is transmitted through an aperture in an opaque screen such that a portion of the beam passes through the aperture to generate a region of diffraction that varies as a function of distance from the aperture. An imaging system is focused on a target plane in the region of diffraction with the generated image being compared to known diffraction patterns. Each known diffraction pattern has a unique value associated therewith that is indicative of a distance from the aperture. A match between the generated image and at least one of the known diffraction patterns is indicative of a distance between the aperture and target plane.

  7. Absolute bunch length measurement using coherent diffraction radiation.

    PubMed

    Veronese, Marco; Appio, Roberto; Craievich, Paolo; Penco, Giuseppe

    2013-02-15

    The longitudinal electron beam properties are of crucial importance for many types of frontier accelerators, from storage rings to free electron lasers and energy recovery linacs. For the online control of the machine and its stable operation, nondestructive shot by shot bunch length measurements are needed. Among the various instrumentations proposed and installed in accelerators worldwide, the ones based on the measurement of the coherent radiation power represent the simplest and the more robust tools for operational control. The major limitation of these systems is that they usually can provide only relative bunch length estimation. In this Letter we present a novel experimental methodology to self-calibrate a simple equipment based on diffraction radiation from a gap providing a measurement of the second order moment of the longitudinal distribution. We present the theoretical basis of the proposed approach and validate it through a detailed campaign of measurements.

  8. Absolute viscosity measured using instrumented parallel plate system

    NASA Technical Reports Server (NTRS)

    Broyles, H. H.

    1967-01-01

    An automatic system measures the true average shear viscosity of liquids and viscoelastic materials, using the parallel plate method and automatically displays the results on a graphic record. This eliminates apparatus setup and extensive calculations.

  9. Measuring Astronomical Distances with Linear Programming

    ERIC Educational Resources Information Center

    Narain, Akshar

    2015-01-01

    A few years ago it was suggested that the distance to celestial bodies could be computed by tracking their position over about 24 hours and then solving a regression problem. One only needed to use inexpensive telescopes, cameras, and astrometry tools, and the experiment could be done from one's backyard. However, it is not obvious to an amateur…

  10. A method to estimate the absolute ultrasonic nonlinearity parameter from relative measurements.

    PubMed

    Kim, Jongbeom; Song, Dong-Gi; Jhang, Kyung-Young

    2017-02-17

    The ultrasonic nonlinearity parameter, β, is determined from the displacement amplitude of the second-order harmonic frequency component generated during the propagation of ultrasonic waves through a material. This parameter is generally referred to as the absolute parameter. Meanwhile, it is difficult to measure the small displacement amplitude of the second-order harmonic component; therefore, most studies measure the relative parameter determined from the detected signal amplitude. However, for quantitative assessment of material degradation, the absolute parameter is still required. This study proposes a method to estimate the absolute parameter for damaged material by measuring the relative parameter. This method is based on the fact that the fractional ratio of the relative parameters between different materials is identical to that of the absolute parameters after compensation for material dependent differences such as the wavenumber and detection-sensitivity. In order to experimentally verify the method, the relative parameters of heat-treated Al6061-T6 alloy specimens with different aging times were measured to compare with absolute parameters directly measured by piezo-electric detection. The results show that the fluctuations of both parameters with respect to aging time were very similar to each other, and that the absolute parameters estimated by the proposed method were in good agreement with those measured directly.

  11. Mode-resolved frequency comb interferometry for high-accuracy long distance measurement

    PubMed Central

    van den Berg, Steven. A.; van Eldik, Sjoerd; Bhattacharya, Nandini

    2015-01-01

    Optical frequency combs have developed into powerful tools for distance metrology. In this paper we demonstrate absolute long distance measurement using a single femtosecond frequency comb laser as a multi-wavelength source. By applying a high-resolution spectrometer based on a virtually imaged phased array, the frequency comb modes are resolved spectrally to the level of an individual mode. Having the frequency comb stabilized against an atomic clock, thousands of accurately known wavelengths are available for interferometry. From the spectrally resolved output of a Michelson interferometer a distance is derived. The presented measurement method combines spectral interferometry, white light interferometry and multi-wavelength interferometry in a single scheme. Comparison with a fringe counting laser interferometer shows an agreement within <10−8 for a distance of 50 m. PMID:26419282

  12. Mode-resolved frequency comb interferometry for high-accuracy long distance measurement.

    PubMed

    van den Berg, Steven A; van Eldik, Sjoerd; Bhattacharya, Nandini

    2015-09-30

    Optical frequency combs have developed into powerful tools for distance metrology. In this paper we demonstrate absolute long distance measurement using a single femtosecond frequency comb laser as a multi-wavelength source. By applying a high-resolution spectrometer based on a virtually imaged phased array, the frequency comb modes are resolved spectrally to the level of an individual mode. Having the frequency comb stabilized against an atomic clock, thousands of accurately known wavelengths are available for interferometry. From the spectrally resolved output of a Michelson interferometer a distance is derived. The presented measurement method combines spectral interferometry, white light interferometry and multi-wavelength interferometry in a single scheme. Comparison with a fringe counting laser interferometer shows an agreement within <10(-8) for a distance of 50 m.

  13. Absolute electron density measurements in the equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Baker, K. D.; Howlett, L. C.; Rao, N. B.; Ulwick, J. C.; Labelle, J.

    1985-01-01

    Accurate measurement of the electron density profile and its variations is crucial to further progress in understanding the physics of the disturbed equatorial ionosphere. To accomplish this, a plasma frequency probe was included in the payload complement of two rockets flown during the Condor rocket campaign conducted from Peru in March 1983. This paper presents density profiles of the disturbed equatorial ionosphere from a night-time flight in which spread-F conditions were present and from a day-time flight during strong electrojet conditions. Results from both flights are in excellent agreement with simultaneous radar data in that the regions of highly disturbed plasma coincide with the radar signatures. The spread-F rocket penetrated a topside depletion during both the upleg and downleg. The electrojet measurements showed a profile peaking at 1.3 x 10 to the 5th per cu cm at 106 km, with large scale fluctuations having amplitudes of roughly 10 percent seen only in the upward gradient in electron density. This is in agreement with plasma instability theory. It is further shown that simultaneous measurements by fixed-bias Langmuir probes, when normalized at a single point to the altitude profile of electron density, are inadequate to correctly parameterize the observed enhancements and depletions.

  14. Thorough subcells diagnosis in a multi-junction solar cell via absolute electroluminescence-efficiency measurements.

    PubMed

    Chen, Shaoqiang; Zhu, Lin; Yoshita, Masahiro; Mochizuki, Toshimitsu; Kim, Changsu; Akiyama, Hidefumi; Imaizumi, Mitsuru; Kanemitsu, Yoshihiko

    2015-01-16

    World-wide studies on multi-junction (tandem) solar cells have led to record-breaking improvements in conversion efficiencies year after year. To obtain detailed and proper feedback for solar-cell design and fabrication, it is necessary to establish standard methods for diagnosing subcells in fabricated tandem devices. Here, we propose a potential standard method to quantify the detailed subcell properties of multi-junction solar cells based on absolute measurements of electroluminescence (EL) external quantum efficiency in addition to the conventional solar-cell external-quantum-efficiency measurements. We demonstrate that the absolute-EL-quantum-efficiency measurements provide I-V relations of individual subcells without the need for referencing measured I-V data, which is in stark contrast to previous works. Moreover, our measurements quantify the absolute rates of junction loss, non-radiative loss, radiative loss, and luminescence coupling in the subcells, which constitute the "balance sheets" of tandem solar cells.

  15. Ultrasonic system for accurate distance measurement in the air.

    PubMed

    Licznerski, Tomasz J; Jaroński, Jarosław; Kosz, Dariusz

    2011-12-01

    This paper presents a system that accurately measures the distance travelled by ultrasound waves through the air. The simple design of the system and its obtained accuracy provide a tool for non-contact distance measurements required in the laser's optical system that investigates the surface of the eyeball.

  16. A Distance Measure for Automatic Document Classification by Sequential Analysis.

    ERIC Educational Resources Information Center

    Kar, Gautam; White, Lee J.

    1978-01-01

    Investigates the feasibility of using a distance measure for automatic sequential document classification. This property of the distance measure is used to design a sequential classification algorithm which classifies key words and analyzes them separately in order to assign primary and secondary classes to a document. (VT)

  17. Femtosecond frequency comb based distance measurement in air.

    PubMed

    Balling, Petr; Kren, Petr; Masika, Pavel; van den Berg, S A

    2009-05-25

    Interferometric measurement of distance using a femtosecond frequency comb is demonstrated and compared with a counting interferometer displacement measurement. A numerical model of pulse propagation in air is developed and the results are compared with experimental data for short distances. The relative agreement for distance measurement in known laboratory conditions is better than 10(-7). According to the model, similar precision seems feasible even for long-distance measurement in air if conditions are sufficiently known. It is demonstrated that the relative width of the interferogram envelope even decreases with the measured length, and a fringe contrast higher than 90% could be obtained for kilometer distances in air, if optimal spectral width for that length and wavelength is used. The possibility of comb radiation delivery to the interferometer by an optical fiber is shown by model and experiment, which is important from a practical point of view.

  18. Optical scanning extrinsic Fabry-Perot interferometer for absolute microdisplacement measurement.

    PubMed

    Li, T; May, R G; Wang, A; Claus, R O

    1997-12-01

    We report an optical-scanning, dual-fiber, extrinsic Fabry-Perot interferometer system for absolute measurement of microdisplacement. The system involves two air-gapped Fabry-Perot cavities, formed by fiber end faces, functioning as sensing and reference elements. Taking the scanning wavelength as an interconverter to compare the gap length of the sensing head with the reference-cavity length yields the absolute measurement of the sensing-cavity length. The measurement is independent of the wavelength-scanning accuracy, and the reference-cavity length can be self-calibrated simply by one's changing the sensing-head length by an accurate value.

  19. Comparative evaluation of ultrasound scanner accuracy in distance measurement

    NASA Astrophysics Data System (ADS)

    Branca, F. P.; Sciuto, S. A.; Scorza, A.

    2012-10-01

    The aim of the present study is to develop and compare two different automatic methods for accuracy evaluation in ultrasound phantom measurements on B-mode images: both of them give as a result the relative error e between measured distances, performed by 14 brand new ultrasound medical scanners, and nominal distances, among nylon wires embedded in a reference test object. The first method is based on a least squares estimation, while the second one applies the mean value of the same distance evaluated at different locations in ultrasound image (same distance method). Results for both of them are proposed and explained.

  20. Electrical Noise and the Measurement of Absolute Temperature, Boltzmann's Constant and Avogadro's Number.

    ERIC Educational Resources Information Center

    Ericson, T. J.

    1988-01-01

    Describes an apparatus capable of measuring absolute temperatures of a tungsten filament bulb up to normal running temperature and measuring Botzmann's constant to an accuracy of a few percent. Shows that electrical noise techniques are convenient to demonstrate how the concept of temperature is related to the micro- and macroscopic world. (CW)

  1. Measurement of absolute E2 transition strengths in 176W: Signatures for a rapid shape change

    NASA Astrophysics Data System (ADS)

    Fransen, Ch.; Dewald, A.; Friessner, G.; Hackstein, M.; Jolie, J.; Möller, O.; Pissulla, T.; Rother, W.; Zell, K.-O.

    2011-10-01

    The X(5) symmetry describes nuclei at the critical point of the shape phase transition from axially deformed rotor nuclei to spherical vibrators. 150Nd, 152Sm, and 154Gd were the first nuclei where the predicted charateristics of the X(5) symmetry were observed. Later it was shown that also 176,178,180Os can be successfully described with the X(5) symmetry. In the close vicinity of shape phase transitions one expects strongly changing nuclear shapes. In the X(5) region around A = 150 this was observed for nuclei with different neutron numbers, whereas in the X(5) region around A = 180 this is to be expected for different proton numbers. The aim of the work presented here is the confirmation of a rapid shape change for nuclei close to 178Os. Besides the knowledge on the level scheme of the nuclei of interest, especially absolute E2 transition strengths are crucial for the interpretation of nuclear structure. Prolate deformation is expected for 176W. Thus we performed a recoil distance Doppler shift (RDDS) measurement on 176W to measure E2 transition strengths from level lifetimes. The experiment was performed at the Cologne FN TANDEM accelerator with the Cologne coincidence plunger with the reaction 169Dy(16O,4n)176W and a beam energy of 80 MeV. We will present our experimental results and relate them to data on the neighboring nuclei 178Os and 182Pt. The results will be discussed in the framework of nuclear shape transitions in this mass region and compared to calculations with both the Interacting Boson Model (IBM) and the GCM.

  2. First Absolutely Calibrated Localized Measurements of Ion Velocity in the MST in Locked and Rotating Plasmas

    NASA Astrophysics Data System (ADS)

    Baltzer, M.; Craig, D.; den Hartog, D. J.; Nornberg, M. D.; Munaretto, S.

    2015-11-01

    An Ion Doppler Spectrometer (IDS) is used on MST for high time-resolution passive and active measurements of impurity ion emission. Absolutely calibrated measurements of flow are difficult because the spectrometer records data within 0.3 nm of the C+5 line of interest, and commercial calibration lamps do not produce lines in this narrow range . A novel optical system was designed to absolutely calibrate the IDS. The device uses an UV LED to produce a broad emission curve in the desired region. A Fabry-Perot etalon filters this light, cutting transmittance peaks into the pattern of the LED emission. An optical train of fused silica lenses focuses the light into the IDS with f/4. A holographic diffuser blurs the light cone to increase homogeneity. Using this light source, the absolute Doppler shift of ion emissions can be measured in MST plasmas. In combination with charge exchange recombination spectroscopy, localized ion velocities can now be measured. Previously, a time-averaged measurement along the chord bisecting the poloidal plane was used to calibrate the IDS; the quality of these central chord calibrations can be characterized with our absolute calibration. Calibration errors may also be quantified and minimized by optimizing the curve-fitting process. Preliminary measurements of toroidal velocity in locked and rotating plasmas will be shown. This work has been supported by the US DOE.

  3. Measuring Long-Distance Romantic Relationships: A Validity Study

    ERIC Educational Resources Information Center

    Pistole, M. Carole; Roberts, Amber

    2011-01-01

    This study investigated aspects of construct validity for the scores of a new long-distance romantic relationship measure. A single-factor structure of the long-distance romantic relationship index emerged, with convergent and discriminant evidence of external validity, high internal consistency reliability, and applied utility of the scores.…

  4. Simplified calculation of distance measure in DP algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Tao; Ren, Xian-yi; Lu, Yu-ming

    2014-01-01

    Distance measure of point to segment is one of the determinants which affect the efficiency of DP (Douglas-Peucker) polyline simplification algorithm. Zone-divided distance measure instead of only perpendicular distance is proposed by Dan Sunday [1] to improve the deficiency of the original DP algorithm. A new efficiency zone-divided distance measure method is proposed in this paper. Firstly, a rotating coordinate is established based on the two endpoints of curve. Secondly, the new coordinate value in the rotating coordinate is computed for each point. Finally, the new coordinate values are used to divide points into three zones and to calculate distance, Manhattan distance is adopted in zone I and III, perpendicular distance in zone II. Compared with Dan Sunday's method, the proposed method can take full advantage of the computation result of previous point. The calculation amount basically keeps for points in zone I and III, and the calculation amount reduces significantly for points in zone II which own highest proportion. Experimental results show that the proposed distance measure method can improve the efficiency of original DP algorithm.

  5. Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue

    NASA Astrophysics Data System (ADS)

    Kienle, Alwin; Lilge, Lothar; Patterson, Michael S.; Hibst, Raimund; Steiner, Rudolf; Wilson, Brian C.

    1996-05-01

    The absorption and transport scattering coefficients of biological tissues determine the radial dependence of the diffuse reflectance that is due to a point source. A system is described for making remote measurements of spatially resolved absolute diffuse reflectance and hence noninvasive, noncontact estimates of the tissue optical properties. The system incorporated a laser source and a CCD camera. Deflection of the incident beam into the camera allowed characterization of the source for absolute reflectance measurements. It is shown that an often used solution of the diffusion equation cannot be applied for these measurements. Instead, a neural network, trained on the results of Monte Carlo simulations, was used to estimate the absorption and scattering coefficients from the reflectance data. Tests on tissue-simulating phantoms with transport scattering coefficients between 0.5 and 2.0 mm-1 and absorption coefficients between 0.002 and 0.1 mm -1 showed the rms errors of this technique to be 2.6% for the transport scattering coefficient and 14% for the absorption coefficients. The optical properties of bovine muscle, adipose, and liver tissue, as well as chicken muscle (breast), were also measured ex vivo at 633 and 751 nm. For muscle tissue it was found that the Monte Carlo simulation did not agree with experimental measurements of reflectance at distances less than 2 mm from the incident beam. Carlo, neural network.

  6. Measuring Distance of Fuzzy Numbers by Trapezoidal Fuzzy Numbers

    NASA Astrophysics Data System (ADS)

    Hajjari, Tayebeh

    2010-11-01

    Fuzzy numbers and more generally linguistic values are approximate assessments, given by experts and accepted by decision-makers when obtaining value that is more accurate is impossible or unnecessary. Distance between two fuzzy numbers plays an important role in linguistic decision-making. It is reasonable to define a fuzzy distance between fuzzy objects. To achieve this aim, the researcher presents a new distance measure for fuzzy numbers by means of improved centroid distance method. The metric properties are also studied. The advantage is the calculation of the proposed method is far simple than previous approaches.

  7. Distance, Growth Factor, and Dark Energy Constraints from Photometric Baryon Acoustic Oscillation and Weak Lensing Measurements

    NASA Astrophysics Data System (ADS)

    Zhan, Hu; Knox, Lloyd; Tyson, J. Anthony

    2009-01-01

    Baryon acoustic oscillations (BAOs) and weak lensing (WL) are complementary probes of cosmology. We explore the distance and growth factor measurements from photometric BAO and WL techniques, and investigate the roles of the distance and growth factor in constraining dark energy. We find for WL that the growth factor has a great impact on dark energy constraints, but is much less powerful than the distance. Dark energy constraints from WL are concentrated in considerably fewer distance eigenmodes than those from BAO, with the largest contributions from modes that are sensitive to the absolute distance. Both techniques have some well-determined distance eigenmodes that are not very sensitive to the dark energy equation-of-state parameters w0 and wa, suggesting that they can accommodate additional parameters for dark energy and for the control of systematic uncertainties. A joint analysis of BAO and WL is far more powerful than either technique alone, and the resulting constraints on the distance and growth factor will be useful for distinguishing dark energy and modified gravity models. The Large Synoptic Survey Telescope (LSST) will yield both WL and angular BAO over a sample of several billion galaxies. Joint LSST BAO and WL can yield 0.5% level precision on ten comoving distances evenly spaced in log(1 + z) between redshift 0.3 and 3 with cosmic microwave background priors from Planck. In addition, since the angular diameter distance, which directly affects the observables, is linked to the comoving distance solely by the curvature radius in the Friedmann-Robertson-Walker metric solution, the LSST can achieve a pure metric constraint of 0.017 on the mean curvature parameter Ω k of the universe simultaneously with the constraints on the comoving distances.

  8. Re-creating Gauss's method for non-electrical absolute measurements of magnetic fields and moments

    NASA Astrophysics Data System (ADS)

    Van Baak, D. A.

    2013-10-01

    In 1832, Gauss made the first absolute measurements of magnetic fields and of magnetic moments in experiments that are straightforward and instructive to replicate. We show, using rare-earth permanent magnets and a variation of Gauss's technique, that the horizontal component of the ambient geomagnetic field, as well as the size of the magnetic moments of such magnets, can be found. The method shows the connection between the SI and cgs emu unit systems for these quantities and permits an absolute realization of the Ampere with considerable precision.

  9. Absolute cross-section measurements for ionization of He Rydberg atoms in collisions with K

    NASA Astrophysics Data System (ADS)

    Deng, F.; Renwick, S.; Martínez, H.; Morgan, T. J.

    1995-11-01

    Absolute cross sections for ionization of 1.5-10.0 keV/amu Rydberg helium atoms in principal quantum states 12<=n<=15 due to collisions with potassium have been measured. The data are compared with the free-electron cross section at equal velocity. Our results for the collisional ionization cross sections (σi) agree both in shape and absolute magnitude with the data available for the total electron-scattering cross sections (σe) and support recent theoretical models for ionization of Rydberg atoms with neutral perturbers.

  10. Superharp: A wire scanner with absolute position readout for beam energy measurement at CEBAF

    SciTech Connect

    Yan, C.

    1994-09-07

    Superharp is an upgrade CEBAF wire scanner with absolute position readout from shaft encoder. As high precision absolute beam position probe ({Delta}x {approximately} 10{mu}m), three pairs of superharps are installed at the entrance, the mid-point, and the exit of Hall C arc beamline in beam switch yard, which will be tuned in dispersive mode as energy spectrometer performing 10{sup {minus}3} beam energy measurement. With dual sensor system: the direct current pickup and the bremsstrahlung detection electronics, beam profile can be obtained by superharp at wide beam current range from 1 {mu}A to 100 {mu}A.

  11. Long distance measurement with femtosecond pulses using a dispersive interferometer.

    PubMed

    Cui, M; Zeitouny, M G; Bhattacharya, N; van den Berg, S A; Urbach, H P

    2011-03-28

    We experimentally demonstrate long distance measurements with a femtosecond frequency comb laser using dispersive interferometry. The distance is derived from the unwrapped spectral phase of the dispersed interferometer output and the repetition frequency of the laser. For an interferometer length of 50 m this approach has been compared to an independent phase counting laser interferometer. The obtained mutual agreement is better than 1.5 μm (3×10(-8)), with a statistical averaging of less than 200 nm. Our experiments demonstrate that dispersive interferometry with a frequency comb laser is a powerful method for accurate and non-incremental measurement of long distances.

  12. Distance measurement based on pixel variation of CCD images.

    PubMed

    Hsu, Chen-Chien; Lu, Ming-Chih; Wang, Wei-Yen; Lu, Yin-Yu

    2009-10-01

    This paper presents a distance measurement method based on pixel number variation of CCD images by referencing to two arbitrarily designated points in the image frames. By establishing a relationship between the displacement of the camera movement along the photographing direction and the difference in pixel count between reference points in the images, the distance from an object can be calculated via the proposed method. To integrate the measuring functions into digital cameras, a circuit design implementing the proposed measuring system in selecting reference points, measuring distance, and displaying measurement results on CCD panel of the digital camera is proposed in this paper. In comparison to pattern recognition or image analysis methods, the proposed measuring approach is simple and straightforward for practical implementation into digital cameras. To validate the performance of the proposed method, measurement results using the proposed method and ultrasonic rangefinders are also presented in this paper.

  13. High Accuracy, Absolute, Cryogenic Refractive Index Measurements of Infrared Lens Materials for JWST NIRCam using CHARMS

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas; Frey, Bradley

    2005-01-01

    The current refractive optical design of the James Webb Space Telescope (JWST) Near Infrared Camera (NIRCam) uses three infrared materials in its lenses: LiF, BaF2, and ZnSe. In order to provide the instrument s optical designers with accurate, heretofore unavailable data for absolute refractive index based on actual cryogenic measurements, two prismatic samples of each material were measured using the cryogenic, high accuracy, refraction measuring system (CHARMS) at NASA GSFC, densely covering the temperature range from 15 to 320 K and wavelength range from 0.4 to 5.6 microns. Measurement methods are discussed and graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient for these three materials are presented along with estimates of uncertainty. Coefficients for second order polynomial fits of measured index to temperature are provided for many wavelengths to allow accurate interpolation of index to other wavelengths and temperatures.

  14. Fully distributed absolute blood flow velocity measurement for middle cerebral arteries using Doppler optical coherence tomography

    PubMed Central

    Qi, Li; Zhu, Jiang; Hancock, Aneeka M.; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D.; Chen, Zhongping

    2016-01-01

    Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it is related to vessel geometry. In this paper, we present a volumetric vessel reconstruction approach that is capable of measuring the absolute BFV distributed along the entire middle cerebral artery (MCA) within a large field-of-view. The Doppler angle at each point of the MCA, representing the vessel geometry, is derived analytically by localizing the artery from pure DOCT images through vessel segmentation and skeletonization. Our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches. Experiments on rodents using swept-source optical coherence tomography showed that our approach was able to reveal the consequences of permanent MCA occlusion with absolute BFV measurement. PMID:26977365

  15. Demonstrating the Error Budget for the Climate Absolute Radiance and Refractivity Observatory Through Solar Irradiance Measurements

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2016-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe highaccuracy, long-term climate change trends and to use decadal change observations as a method to determine the accuracy of climate change. A CLARREO objective is to improve the accuracy of SI-traceable, absolute calibration at infrared and reflected solar wavelengths to reach on-orbit accuracies required to allow climate change observations to survive data gaps and observe climate change at the limit of natural variability. Such an effort will also demonstrate National Institute of Standards and Technology (NIST) approaches for use in future spaceborne instruments. The current work describes the results of laboratory and field measurements with the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. SOLARIS allows testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. Results of laboratory calibration measurements are provided to demonstrate key assumptions about instrument behavior that are needed to achieve CLARREO's climate measurement requirements. Absolute radiometric response is determined using laser-based calibration sources and applied to direct solar views for comparison with accepted solar irradiance models to demonstrate accuracy values giving confidence in the error budget for the CLARREO reflectance retrieval.

  16. Index of Refraction Measurements Using a Laser Distance Meter

    ERIC Educational Resources Information Center

    Ochoa, Romulo; Fiorillo, Richard; Ochoa, Cris

    2014-01-01

    We present a simple method to determine the refractive indices of transparent media using a laser distance meter. Indices of refraction have been obtained by measuring the speed of light in materials. Some speed of light techniques use time-of-flight measurements in which pulses are emitted by lasers and the time interval is measured for the pulse…

  17. Comparative Evaluation of a Videotaped Measure of Interpersonal Distance.

    ERIC Educational Resources Information Center

    Walkey, Frank H.; Gilmour, D. Ross

    1979-01-01

    Compared scores of university students on a new videotaped measure of interpersonal distance (IPD) with their scores on four other IPD measures on which psychometric data have been published. The videotaped measure was superior to other techniques as it overcame methodological problems while remaining reliable, valid, and practical. (Author)

  18. Locally centred Mahalanobis distance: a new distance measure with salient features towards outlier detection.

    PubMed

    Todeschini, Roberto; Ballabio, Davide; Consonni, Viviana; Sahigara, Faizan; Filzmoser, Peter

    2013-07-17

    Outlier detection is a prerequisite to identify the presence of aberrant samples in a given set of data. The identification of such diverse data samples is significant particularly for multivariate data analysis where increasing data dimensionality can easily hinder the data exploration and such outliers often go undetected. This paper is aimed to introduce a novel Mahalanobis distance measure (namely, a pseudo-distance) termed as locally centred Mahalanobis distance, derived by centering the covariance matrix at each data sample rather than at the data centroid as in the classical covariance matrix. Two parameters, called as Remoteness and Isolation degree, were derived from the resulting pairwise distance matrix and their salient features facilitated a better identification of atypical samples isolated from the rest of the data, thus reflecting their potential application towards outlier detection. The Isolation degree demonstrated to be able to detect a new kind of outliers, that is, isolated samples within the data domain, thus resulting in a useful diagnostic tool to evaluate the reliability of predictions obtained by local models (e.g. k-NN models). To better understand the role of Remoteness and Isolation degree in identification of such aberrant data samples, some simulated and published data sets from literature were considered as case studies and the results were compared with those obtained by using Euclidean distance and classical Mahalanobis distance.

  19. Introducing an Absolute Cavity Pyrgeometer for Improving the Atmospheric Longwave Irradiance Measurement (Presentation)

    SciTech Connect

    Reda, I.; Hansen, L.; Zeng, J.

    2012-08-01

    Advancing climate change research requires accurate and traceable measurement of the atmospheric longwave irradiance. Current measurement capabilities are limited to an estimated uncertainty of larger than +/- 4 W/m2 using the interim World Infrared Standard Group (WISG). WISG is traceable to the Systeme international d'unites (SI) through blackbody calibrations. An Absolute Cavity Pyrgeometer (ACP) is being developed to measure absolute outdoor longwave irradiance with traceability to SI using the temperature scale (ITS-90) and the sky as the reference source, instead of a blackbody. The ACP was designed by NREL and optically characterized by the National Institute of Standards and Technology (NIST). Under clear-sky and stable conditions, the responsivity of the ACP is determined by lowering the temperature of the cavity and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The absolute atmospheric longwave irradiance is then calculated with an uncertainty of +/- 3.96 W/m2 with traceability to SI. The measured irradiance by the ACP was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the WISG. A total of 408 readings was collected over three different clear nights. The calculated irradiance measured by the ACP was 1.5 W/m2 lower than that measured by the two pyrgeometers that are traceable to WISG. Further development and characterization of the ACP might contribute to the effort of improving the uncertainty and traceability of WISG to SI.

  20. Hilbertian sine as an absolute measure of Bayesian inference in ISR, homeland security, medicine, and defense

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Wang, Wenjian; Hodelin, Juan; Forrester, Thomas; Romanov, Volodymyr; Kostrzewski, Andrew

    2016-05-01

    In this paper, Bayesian Binary Sensing (BBS) is discussed as an effective tool for Bayesian Inference (BI) evaluation in interdisciplinary areas such as ISR (and, C3I), Homeland Security, QC, medicine, defense, and many others. In particular, Hilbertian Sine (HS) as an absolute measure of BI, is introduced, while avoiding relativity of decision threshold identification, as in the case of traditional measures of BI, related to false positives and false negatives.

  1. Electron cyclotron emission measurements on JET: Michelson interferometer, new absolute calibration, and determination of electron temperature.

    PubMed

    Schmuck, S; Fessey, J; Gerbaud, T; Alper, B; Beurskens, M N A; de la Luna, E; Sirinelli, A; Zerbini, M

    2012-12-01

    At the fusion experiment JET, a Michelson interferometer is used to measure the spectrum of the electron cyclotron emission in the spectral range 70-500 GHz. The interferometer is absolutely calibrated using the hot/cold technique and, in consequence, the spatial profile of the plasma electron temperature is determined from the measurements. The current state of the interferometer hardware, the calibration setup, and the analysis technique for calibration and plasma operation are described. A new, full-system, absolute calibration employing continuous data acquisition has been performed recently and the calibration method and results are presented. The noise level in the measurement is very low and as a result the electron cyclotron emission spectrum and thus the spatial profile of the electron temperature are determined to within ±5% and in the most relevant region to within ±2%. The new calibration shows that the absolute response of the system has decreased by about 15% compared to that measured previously and possible reasons for this change are presented. Temperature profiles measured with the Michelson interferometer are compared with profiles measured independently using Thomson scattering diagnostics, which have also been recently refurbished and recalibrated, and agreement within experimental uncertainties is obtained.

  2. Absolute terahertz power measurement of a time-domain spectroscopy system.

    PubMed

    Globisch, Björn; Dietz, Roman J B; Göbel, Thorsten; Schell, Martin; Bohmeyer, Werner; Müller, Ralf; Steiger, Andreas

    2015-08-01

    We report on, to the best of our knowledge, the first absolute terahertz (THz) power measurement of a photoconductive emitter developed for time-domain spectroscopy (TDS). The broadband THz radiation emitted by a photoconductor optimized for the excitation with 1550-nm femtosecond pulses was measured by an ultrathin pyroelectric thin-film (UPTF) detector. We show that this detector has a spectrally flat transmission between 100 GHz and 5 THz due to special conductive electrodes on both sides of the UPTF. Its flat responsivity allows the calibration with a standard detector that is traceable to the International System of Units (SI) at the THz detector calibration facility of PTB. Absolute THz power in the range from below 1 μW to above 0.1 mW was measured.

  3. Determination of collagen fibril size via absolute measurements of second-harmonic generation signals.

    PubMed

    Bancelin, Stéphane; Aimé, Carole; Gusachenko, Ivan; Kowalczuk, Laura; Latour, Gaël; Coradin, Thibaud; Schanne-Klein, Marie-Claire

    2014-09-16

    The quantification of collagen fibril size is a major issue for the investigation of pathological disorders associated with structural defects of the extracellular matrix. Second-harmonic generation microscopy is a powerful technique to characterize the macromolecular organization of collagen in unstained biological tissues. Nevertheless, due to the complex coherent building of this nonlinear optical signal, it has never been used to measure fibril diameter so far. Here we report absolute measurements of second-harmonic signals from isolated fibrils down to 30 nm diameter, via implementation of correlative second-harmonic-electron microscopy. Moreover, using analytical and numerical calculations, we demonstrate that the high sensitivity of this technique originates from the parallel alignment of collagen triple helices within fibrils and the subsequent constructive interferences of second-harmonic radiations. Finally, we use these absolute measurements as a calibration for ex vivo quantification of fibril diameter in the Descemet's membrane of a diabetic rat cornea.

  4. Absolute frequency measurement at 10-16 level based on the international atomic time

    NASA Astrophysics Data System (ADS)

    Hachisu, H.; Fujieda, M.; Kumagai, M.; Ido, T.

    2016-06-01

    Referring to International Atomic Time (TAI), we measured the absolute frequency of the 87Sr lattice clock with its uncertainty of 1.1 x 10-15. Unless an optical clock is continuously operated for the five days of the TAI grid, it is required to evaluate dead time uncertainty in order to use the available five-day average of the local frequency reference. We homogeneously distributed intermittent measurements over the five-day grid of TAI, by which the dead time uncertainty was reduced to low 10-16 level. Three campaigns of the five (or four)-day consecutive measurements have resulted in the absolute frequency of the 87Sr clock transition of 429 228 004 229 872.85 (47) Hz, where the systematic uncertainty of the 87Sr optical frequency standard amounts to 8.6 x 10-17.

  5. A novel absolute measurement for the low-frequency figure correction of aspheric surfaces

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Cheng; Chang, Shenq-Tsong; Ho, Cheng-Fang; Kuo, Ching-Hsiang; Chung, Chien-Kai; Hsu, Wei-Yao; Tseng, Shih-Feng; Sung, Cheng-Kuo

    2015-07-01

    This study proposes an absolute measurement method with a computer-generated hologram (CGHs) to assist the identification of manufacturing form error, and gravity and mounting resulted distortions for a 300 mm aspherical mirror. This method adopts the frequency of peaks and valleys of each Zernike coefficient grabbed by the measurement with various orientations of the mirror in horizontal optical-axis configuration. In addition, the rotational-symmetric aberration (spherical aberration) is calibrated with random ball test method. According to the measured absolute surface figure, a high accuracy aspherical surface with peak to valley (P-V) value of 1/8 wave @ 632.8 nm was fabricated after surface figure correction with the reconstructed error map.

  6. Determination of collagen fibril size via absolute measurements of second-harmonic generation signals

    NASA Astrophysics Data System (ADS)

    Bancelin, Stéphane; Aimé, Carole; Gusachenko, Ivan; Kowalczuk, Laura; Latour, Gaël; Coradin, Thibaud; Schanne-Klein, Marie-Claire

    2014-09-01

    The quantification of collagen fibril size is a major issue for the investigation of pathological disorders associated with structural defects of the extracellular matrix. Second-harmonic generation microscopy is a powerful technique to characterize the macromolecular organization of collagen in unstained biological tissues. Nevertheless, due to the complex coherent building of this nonlinear optical signal, it has never been used to measure fibril diameter so far. Here we report absolute measurements of second-harmonic signals from isolated fibrils down to 30 nm diameter, via implementation of correlative second-harmonic-electron microscopy. Moreover, using analytical and numerical calculations, we demonstrate that the high sensitivity of this technique originates from the parallel alignment of collagen triple helices within fibrils and the subsequent constructive interferences of second-harmonic radiations. Finally, we use these absolute measurements as a calibration for ex vivo quantification of fibril diameter in the Descemet’s membrane of a diabetic rat cornea.

  7. Measuring the absolute DT neutron yield using the Magnetic Recoil Spectrometer at OMEGA and the NIF

    SciTech Connect

    Mackinnon, A; Casey, D; Frenje, J A; Johnson, M G; Seguin, F H; Li, C K; Petrasso, R D; Glebov, V Y; Katz, J; Knauer, J; Meyerhofer, D; Sangster, T; Bionta, R; Bleuel, D; Hachett, S P; Hartouni, E; Lepape, S; Mckernan, M; Moran, M; Yeamans, C

    2012-05-03

    A Magnetic Recoil Spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion (ICF) implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  8. Sensitive and absolute absorption measurements in optical materials and coatings by laser-induced deflection technique

    NASA Astrophysics Data System (ADS)

    Mühlig, Christian; Bublitz, Simon

    2012-12-01

    The laser-induced deflection (LID) technique, a photo-thermal deflection setup with transversal pump-probe-beam arrangement, is applied for sensitive and absolute absorption measurements of optical materials and coatings. Different LID concepts for bulk and transparent coating absorption measurements, respectively, are explained, focusing on providing accurate absorption data with only one measurement and one sample. Furthermore, a new sandwich concept is introduced that allows transferring the LID technique to very small sample geometries and to significantly increase the sensitivity for materials with weak photo-thermal responses. For each of the different concepts, a representative application example is given. Particular emphasis is placed on the importance of the calibration procedure for providing absolute absorption data. The validity of an electrical calibration procedure for the LID setup is proven using specially engineered surface absorbing samples. The electrical calibration procedure is then applied to evaluate two other approaches that use either doped samples or highly absorptive reference samples.

  9. Subnanometer absolute displacement measurement using a frequency comb referenced dual resonance tracking Fabry-Perot interferometer.

    PubMed

    Zhu, Minhao; Wei, Haoyun; Zhao, Shijie; Wu, Xuejian; Li, Yan

    2015-05-10

    Fabry-Perot (F-P) interferometry is a traceable high-resolution method for displacement metrology that has no nonlinearity. Compared with the single resonance tracking F-P interferometry, the dual resonance tracking (DRT) F-P interferometer system is able to realize tens of millimeters measurement range while maintaining the intrinsic high resolution. A DRT F-P system is thus developed for absolute displacement measurement in metrology applications. Two external cavity diode lasers (ECDLs) are simultaneously locked to two resonances of a high-finesse F-P cavity using the Pound-Drever-Hall locking scheme. The absolute optical frequencies of the locked ECDLs are measured using a reference diode laser, with the frequency stabilized and controlled by an optical frequency comb. The absolute cavity resonance order numbers are investigated. The measurement range is experimentally tested to achieve 20 mm, while the resolution reaches ~10 pm level, mainly limited by the mechanical stability of the F-P cavity. Compared with the measurement results from a self-developed displacement-angle heterodyne interferometer, the displacement residuals are within 10 nm in the range of 20 mm. This high-resolution interferometer may become a candidate for length metrology such as in Watt balance or Joule balance projects.

  10. Thorough subcells diagnosis in a multi-junction solar cell via absolute electroluminescence-efficiency measurements

    PubMed Central

    Chen, Shaoqiang; Zhu, Lin; Yoshita, Masahiro; Mochizuki, Toshimitsu; Kim, Changsu; Akiyama, Hidefumi; Imaizumi, Mitsuru; Kanemitsu, Yoshihiko

    2015-01-01

    World-wide studies on multi-junction (tandem) solar cells have led to record-breaking improvements in conversion efficiencies year after year. To obtain detailed and proper feedback for solar-cell design and fabrication, it is necessary to establish standard methods for diagnosing subcells in fabricated tandem devices. Here, we propose a potential standard method to quantify the detailed subcell properties of multi-junction solar cells based on absolute measurements of electroluminescence (EL) external quantum efficiency in addition to the conventional solar-cell external-quantum-efficiency measurements. We demonstrate that the absolute-EL-quantum-efficiency measurements provide I–V relations of individual subcells without the need for referencing measured I–V data, which is in stark contrast to previous works. Moreover, our measurements quantify the absolute rates of junction loss, non-radiative loss, radiative loss, and luminescence coupling in the subcells, which constitute the “balance sheets” of tandem solar cells. PMID:25592484

  11. Introducing an Absolute Cavity Pyrgeometer (ACP) for Improving the Atmospheric Longwave Irradiance Measurement (Poster)

    SciTech Connect

    Reda, I.; Stoffel, T.

    2012-03-01

    Advancing climate change research requires accurate and traceable measurement of the atmospheric longwave irradiance. Current measurement capabilities are limited to an estimated uncertainty of larger than +/- 4 W/m2 using the interim World Infrared Standard Group (WISG). WISG is traceable to the Systeme international d'unites (SI) through blackbody calibrations. An Absolute Cavity Pyrgeometer (ACP) is being developed to measure absolute outdoor longwave irradiance with traceability to SI using the temperature scale (ITS-90) and the sky as the reference source, instead of a blackbody. The ACP was designed by NREL and optically characterized by the National Institute of Standards and Technology (NIST). Under clear-sky and stable conditions, the responsivity of the ACP is determined by lowering the temperature of the cavity and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The absolute atmospheric longwave irradiance is then calculated with an uncertainty of +/- 3.96 W/m2 with traceability to SI. The measured irradiance by the ACP was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the WISG.

  12. Temperature-dependent Absolute Refractive Index Measurements of Synthetic Fused Silica

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Frey, Bradley J.

    2006-01-01

    Using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have measured the absolute refractive index of five specimens taken from a very large boule of Corning 7980 fused silica from temperatures ranging from 30 to 310 K at wavelengths from 0.4 to 2.6 microns with an absolute uncertainty of plus or minus 1 x 10 (exp -5). Statistical variations in derived values of the thermo-optic coefficient (dn/dT) are at the plus or minus 2 x 10 (exp -8)/K level. Graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient are presented for selected wavelengths and temperatures along with estimates of uncertainty in index. Coefficients for temperature-dependent Sellmeier fits of measured refractive index are also presented to allow accurate interpolation of index to other wavelengths and temperatures. We compare our results to those from an independent investigation (which used an interferometric technique for measuring index changes as a function of temperature) whose samples were prepared from the same slugs of material from which our prisms were prepared in support of the Kepler mission. We also compare our results with sparse cryogenic index data from measurements of this material from the literature.

  13. Realistic cosmological measurement of distances in the Friedmann universe

    NASA Astrophysics Data System (ADS)

    Nikolaev, Aleksei; Chervon, Sergey

    2016-01-01

    We consider application of our development of Zeldovich’s ideas, presented in Ref. 1, for measurement of the cosmological angular diameter distance (ADD) in the Friedmann Universe. To make a comparison with ΛCDM we analyze ADD measurement in ϕCDM model responsible for the later inflation (present accelerated expansion of the Universe). We also analyze a small deviation from equality in the distance duality relation induced by the fullness (by matter) of the cone of light rays (CLR) which is used for the ADD measurement method.

  14. System for absolute measurement of electrolytic conductivity in aqueous solutions based on van der Pauw's theory

    NASA Astrophysics Data System (ADS)

    Zhang, Bing; Lin, Zhen; Zhang, Xiao; Yu, Xiang; Wei, Jiali; Wang, Xiaoping

    2014-05-01

    Based on an innovative application of van der Pauw's theory, a system was developed for the absolute measurement of electrolytic conductivity in aqueous solutions. An electrolytic conductivity meter was designed that uses a four-electrode system with an axial-radial two-dimensional adjustment structure coupled to an ac voltage excitation source and signal collecting circuit. The measurement accuracy, resolution and repeatability of the measurement system were examined through a series of experiments. Moreover, the measurement system and a high-precision electrolytic conductivity meter were compared using some actual water samples.

  15. Laser induced deflection technique for absolute thin film absorption measurement: optimized concepts and experimental results

    SciTech Connect

    Muehlig, Christian; Kufert, Siegfried; Bublitz, Simon; Speck, Uwe

    2011-03-20

    Using experimental results and numerical simulations, two measuring concepts of the laser induced deflection (LID) technique are introduced and optimized for absolute thin film absorption measurements from deep ultraviolet to IR wavelengths. For transparent optical coatings, a particular probe beam deflection direction allows the absorption measurement with virtually no influence of the substrate absorption, yielding improved accuracy compared to the common techniques of separating bulk and coating absorption. For high-reflection coatings, where substrate absorption contributions are negligible, a different probe beam deflection is chosen to achieve a better signal-to-noise ratio. Various experimental results for the two different measurement concepts are presented.

  16. A novel absolute displacement measurement technology based on wavenumber resolved low coherence interferometry

    NASA Astrophysics Data System (ADS)

    Zhao, Keqiang; Xie, Fang; Ma, Sen; Wang, Yunzhi; Chen, Liang

    2015-12-01

    This paper proposed a novel absolute displacement measurement technology which is based on the wavenumber spectrum of low coherence interferometry. The signal from a Michelson interferometer, which is derived from a broadband light source, is dispersed by a bulk dispersing grating. The interferometric signal of each wavelength is detected by a linear array charge coupled device (CCD). By transforming the wavelength spectrum of the signal into wavenumber spectrum, absolute displacement can be measured precisely by measuring the wavenumber difference between two neighboring peaks of the wavenumber spectrum. Unlike the normal low coherence interferometric measurement systems (LCIMS) which have to scan the optical path difference (OPD) of the interferometer in order to demodulate the measurand, there is no need of scanning action during the measurement procedure, which not only simplifies the measurement system but also improves the measurement speed greatly. A fiber Bragg grating (FBG) is employed to produce a feedback signal which is used to stabilize the Michelson interferometer so as to obtain high measurement precision. A step height with the calibrated value of 50 μm that is configurated with two gauge blocks is measured by the system. The measurement resolution is 6.03 nm and the standard deviation of 10 times measurement results is 6.8 nm.

  17. Absolute frequency measurement of rubidium 5S-7S two-photon transitions.

    PubMed

    Morzyński, Piotr; Wcisło, Piotr; Ablewski, Piotr; Gartman, Rafał; Gawlik, Wojciech; Masłowski, Piotr; Nagórny, Bartłomiej; Ozimek, Filip; Radzewicz, Czesław; Witkowski, Marcin; Ciuryło, Roman; Zawada, Michał

    2013-11-15

    We report the absolute frequency measurements of rubidium 5S-7S two-photon transitions with a cw laser digitally locked to an atomic transition and referenced to an optical frequency comb. The narrow, two-photon transition, 5S-7S (760 nm), insensitive to first-order in a magnetic field, is a promising candidate for frequency reference. The performed tests yielded more accurate transition frequencies than previously reported.

  18. Development of explicit diffraction corrections for absolute measurements of acoustic nonlinearity parameters in the quasilinear regime.

    PubMed

    Jeong, Hyunjo; Zhang, Shuzeng; Cho, Sungjong; Li, Xiongbing

    2016-08-01

    In absolute measurements of acoustic nonlinearity parameters, amplitudes of harmonics must be corrected for diffraction effects. In this study, we develop explicit multi-Gaussian beam (MGB) model-based diffraction corrections for the first three harmonics in weakly nonlinear, axisymmetric sound beams. The effects of making diffraction corrections on nonlinearity parameter estimation are investigated by defining "total diffraction correction (TDC)". The results demonstrate that TDC cannot be neglected even for harmonic generation experiments in the nearfield region.

  19. Measurement of absolute displacement by a double-modulation technique based on a Michelson interferometer.

    PubMed

    Chang, L W; Chien, P Y; Lee, C T

    1999-05-01

    A novel method is presented for of measuring absolute displacement with a synthesized wavelength interferometer. The optical phase of the interferometer is simultaneously modulated with a frequency-modulated laser diode and optical path-length difference. The error signal originating from the intensity modulation of the source is eliminated by a signal processing circuit. In addition, a lock-in technique is used to demodulate the envelope of the interferometric signal. The displacement signal is derived by the self-mixing technique.

  20. A new absolute reference for atmospheric longwave irradiance measurements with traceability to SI units

    NASA Astrophysics Data System (ADS)

    Gröbner, J.; Reda, I.; Wacker, S.; Nyeki, S.; Behrens, K.; Gorman, J.

    2014-06-01

    Two independently designed and calibrated absolute radiometers measuring downwelling longwave irradiance were compared during two field campaigns in February and October 2013 at Physikalisch Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC). One absolute cavity pyrgeometer (ACP) developed by NREL and up to four Integrating Sphere Infrared Radiometers (IRIS) developed by PMOD/WRC took part in these intercomparisons. The internal consistency of the IRIS radiometers and the agreement with the ACP were within ±1 W m-2, providing traceability of atmospheric longwave irradiance to the international system of units with unprecedented accuracy. Measurements performed during the two field campaigns and over the past 4 years have shown that the World Infrared Standard Group (WISG) of pyrgeometers is underestimating clear-sky atmospheric longwave irradiance by 2 to 6 W m-2, depending on the amount of integrated water vapor (IWV). This behavior is an instrument-dependent feature and requires an individual sensitivity calibration of each pyrgeometer with respect to an absolute reference such as IRIS or ACP. For IWV larger than 10 mm, an average sensitivity correction of +6.5% should be applied to the WISG in order to be consistent with the longwave reference represented by the ACP and IRIS radiometers. A concerted effort at international level will need to be implemented in order to correct measurements of atmospheric downwelling longwave irradiance traceable to the WISG.

  1. Sounding rocket measurement of the absolute solar EUV flux utilizing a silicon photodiode

    SciTech Connect

    Ogawa, H.S.; McMullin, D.; Judge, D.L. ); Canfield, L.R. )

    1990-04-01

    A newly developed stable and high quantum efficiency silicon photodiode was used to obtain an accurate measurement of the integrated absolute magnitude of the solar extreme ultraviolet photon flux in the spectral region between 50 and 800 {angstrom}. The detector was flown aboard a solar point sounding rocket launched from White Sands Missile Range in New Mexico on October 24, 1988. The adjusted daily 10.7-cm solar radio flux and sunspot number were 168.4 and 121, respectively. The unattenuated absolute value of the solar EUV flux at 1 AU in the specified wavelength region was 6.81 {times} 10{sup 10} photons cm{sup {minus}2} s{sup {minus}1}. Based on a nominal probable error of 7% for National Institute of Standards and Technology detector efficiency measurements in the 50- to 500-{angstrom} region (5% on longer wavelength measurements between 500 and 1216 {angstrom}), and based on experimental errors associated with their rocket instrumentation and analysis, a conservative total error estimate of {approximately}14% is assigned to the absolute integral solar flux obtained.

  2. Absolute reliability of shoulder joint horizontal adductor muscle strength measurements using a handheld dynamometer.

    PubMed

    Hirano, Masahiro; Katoh, Munenori

    2015-07-01

    [Purpose] The aim of this study was to verify the absolute reliability of shoulder joint horizontal adductor muscle strength measurements using a handheld dynamometer (HHD). [Subjects and Methods] The subjects were 33 healthy college students. The measurements were made three times with the HHD fixed using a belt (BFHHD) or with the examiner's hand (conventional method; HFHHD). The absolute reliability of measurements was verified using Bland-Altman analysis, both in the all subjects group and a group of subjects showing measurements less than a fixed limit of 30 kgf. [Results] In the <30 kgf group, a systematic bias was not observed, and BFHHD values were greater than HFHHD values. BFHHD values in the all subjects group showed a systematic bias; the 3rd measurement value was less than the maximum value obtained during the 1st and 2nd measurements. [Conclusion] For obtaining an acceptable value during clinical measurements of horizontal adductor muscle strength, single measurements obtained using an HFHHD in the case of a <30 kgf group and the maximum value of two measurements obtained using a BFHHD are reliable.

  3. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser.

    PubMed

    Minoshima, K; Matsumoto, H

    2000-10-20

    A high-accuracy optical distance meter with a mode-locked femtosecond laser is proposed for distance measurements in a 310-m-long optical tunnel. We measured the phase shift of the optical beat component between longitudinal modes of a mode-locked laser. A high resolution of 50 microm at 240-m distance was obtained without cyclic error correction. The group refractive index of air is automatically extracted to an accuracy of 6 parts per million (ppm) by two-color measurement with the pulses of fundamental and second-harmonic wavelengths. Finally, an absolute mechanical distance of 240 m was obtained to within 8-ppm accuracy by use of a series of beat frequencies with the advantage of a wide range of intermode frequency, together with the results of the two-color measurement.

  4. A New Measurement of the Absolute Spectral Reflectance of the Moon

    NASA Technical Reports Server (NTRS)

    Lawrence, S. J.; Lau, E.; Steutel, D.; Stopar, J. D.; Wilcox, B. B.; Lucey, P. G.

    2003-01-01

    The spectral reflectance of the Moon is an important property for studies of lunar geology, quantitative physical modeling of the moon, and in-flight calibration of spacecraft sensors. Previous studies have claimed that telescopic absolute reflectance values for the Moon are greater than laboratory reflectance measurements by a factor of two. In order to confirm these results, we performed ground-based observations of the lunar surface using a visible/near-infrared spectroradiometer and compared the measured lunar surface radiance to solar radiance corrected for atmospheric scattering and absorption. These data were compared to previously obtained laboratory reflectance measurements from Apollo soil samples.

  5. Position error correction in absolute surface measurement based on a multi-angle averaging method

    NASA Astrophysics Data System (ADS)

    Wang, Weibo; Wu, Biwei; Liu, Pengfei; Liu, Jian; Tan, Jiubin

    2017-04-01

    We present a method for position error correction in absolute surface measurement based on a multi-angle averaging method. Differences in shear rotation measurements at overlapping areas can be used to estimate the unknown relative position errors of the measurements. The model and the solving of the estimation algorithm have been discussed in detail. The estimation algorithm adopts a least-squares technique to eliminate azimuthal errors caused by rotation inaccuracy. The cost functions can be minimized to determine the true values of the unknowns of Zernike polynomial coefficients and rotation angle. Experimental results show the validity of the method proposed.

  6. Measurement of the lithium 10p fine structure interval and absolute energy

    SciTech Connect

    Oxley, Paul; Collins, Patrick

    2010-02-15

    We report a measurement of the fine structure interval of the {sup 7}Li 10p atomic state with a precision significantly better than previous measurements of fine structure intervals of Rydberg {sup 7}Li p states. Our result of 74.97(74) MHz provides an experimental value for the only n=10 fine structure interval which is yet to be calculated. We also report a measurement of the absolute energy of the 10p state and its quantum defect, which are, respectively, 42379.498(23)cm{sup -1} and 0.04694(10). These results are in good agreement with recent calculations.

  7. Absolute Measurement of Electron Cloud Density in aPositively-Charged Particle Beam

    SciTech Connect

    Kireeff Covo, Michel; Molvik, Arthur W.; Friedman, Alex; Vay,Jean-Luc; Seidl, Peter A.; Logan, Grant; Baca, David; Vujic, Jasmina L.

    2006-04-27

    Clouds of stray electrons are ubiquitous in particle accelerators and frequently limit the performance of storage rings. Earlier measurements of electron energy distribution and flux to the walls provided only a relative electron cloud density. We have measured electron accumulation using ions expelled by the beam. The ion energy distribution maps the depressed beam potential and gives the dynamic cloud density. Clearing electrode current reveals the static background cloud density, allowing the first absolute measurement of the time-dependent electron cloud density during the beam pulse.

  8. Absolute Measurement of Electron Cloud Density in a Positively-Charged Particle Beam

    SciTech Connect

    Covo, M K; Molvik, A W; Friedman, A; Vay, J; Seidl, P A; Logan, B G; Baca, D; Vujic, J L

    2006-05-18

    Clouds of stray electrons are ubiquitous in particle accelerators and frequently limit the performance of storage rings. Earlier measurements of electron energy distribution and flux to the walls provided only a relative electron cloud density. We have measured electron accumulation using ions expelled by the beam. The ion energy distribution maps the depressed beam potential and gives the dynamic cloud density. Clearing electrode current reveals the static background cloud density, allowing the first absolute measurement of the time-dependent electron cloud density during the beam pulse.

  9. Absolute measurement of electron-cloud density in a positively charged particle beam.

    PubMed

    Kireeff Covo, Michel; Molvik, Arthur W; Friedman, Alex; Vay, Jean-Luc; Seidl, Peter A; Logan, Grant; Baca, David; Vujic, Jasmina L

    2006-08-04

    Clouds of stray electrons are ubiquitous in particle accelerators and frequently limit the performance of storage rings. Earlier measurements of electron energy distribution and flux to the walls provided only a relative electron-cloud density. We have measured electron accumulation using ions expelled by the beam. The ion energy distribution maps the depressed beam potential and gives the dynamic cloud density. Clearing electrode current reveals the static background cloud density, allowing the first absolute measurement of the time-dependent electron-cloud density during the beam pulse.

  10. Measuring the distance-redshift relation with the cross-correlation of gravitational wave standard sirens and galaxies

    NASA Astrophysics Data System (ADS)

    Oguri, Masamune

    2016-04-01

    Gravitational waves from inspiraling compact binaries are known to be an excellent absolute distance indicator, yet it is unclear whether electromagnetic counterparts of these events are securely identified for measuring their redshifts, especially in the case of black hole-black hole mergers such as the one recently observed with the Advanced LIGO. We propose to use the cross-correlation between spatial distributions of gravitational wave sources and galaxies with known redshifts as an alternative means of constraining the distance-redshift relation from gravitational waves. In our analysis, we explicitly include the modulation of the distribution of gravitational wave sources due to weak gravitational lensing. We show that the cross-correlation analysis in next-generation observations will be able to tightly constrain the relation between the absolute distance and the redshift and therefore constrain the Hubble constant as well as dark energy parameters.

  11. Short-distance walking speed and timed walking distance: redundant measures for clinical trials?

    PubMed

    Dobkin, Bruce H

    2006-02-28

    The velocity of a 15-meter walk and walking endurance (distance covered in 6 minutes) are considered distinct outcomes in clinical trials of stroke rehabilitation. Comfortable velocities used for each task in 24 subjects with chronic hemiparesis were not significantly different, however. Although speed and endurance did not reflect different domains of efficacy in outpatients whose usual speed was >0.5 m/s, the fastest feasible 15-meter velocity augmented these measures.

  12. Absolute pulse energy measurements of soft x-rays at the Linac Coherent Light Source.

    PubMed

    Tiedtke, K; Sorokin, A A; Jastrow, U; Juranić, P; Kreis, S; Gerken, N; Richter, M; Arp, U; Feng, Y; Nordlund, D; Soufli, R; Fernández-Perea, M; Juha, L; Heimann, P; Nagler, B; Lee, H J; Mack, S; Cammarata, M; Krupin, O; Messerschmidt, M; Holmes, M; Rowen, M; Schlotter, W; Moeller, S; Turner, J J

    2014-09-08

    This paper reports novel measurements of x-ray optical radiation on an absolute scale from the intense and ultra-short radiation generated in the soft x-ray regime of a free electron laser. We give a brief description of the detection principle for radiation measurements which was specifically adapted for this photon energy range. We present data characterizing the soft x-ray instrument at the Linac Coherent Light Source (LCLS) with respect to the radiant power output and transmission by using an absolute detector temporarily placed at the downstream end of the instrument. This provides an estimation of the reflectivity of all x-ray optical elements in the beamline and provides the absolute photon number per bandwidth per pulse. This parameter is important for many experiments that need to understand the trade-offs between high energy resolution and high flux, such as experiments focused on studying materials via resonant processes. Furthermore, the results are compared with the LCLS diagnostic gas detectors to test the limits of linearity, and observations are reported on radiation contamination from spontaneous undulator radiation and higher harmonic content.

  13. Experimental feasibility of the airborne measurement of absolute oil fluorescence spectral conversion efficiency

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1983-01-01

    Airborne lidar oil spill experiments carried out to determine the practicability of the AOFSCE (absolute oil fluorescence spectral conversion efficiency) computational model are described. The results reveal that the model is suitable over a considerable range of oil film thicknesses provided the fluorescence efficiency of the oil does not approach the minimum detection sensitivity limitations of the lidar system. Separate airborne lidar experiments to demonstrate measurement of the water column Raman conversion efficiency are also conducted to ascertain the ultimate feasibility of converting such relative oil fluorescence to absolute values. Whereas the AOFSCE model is seen as highly promising, further airborne water column Raman conversion efficiency experiments with improved temporal or depth-resolved waveform calibration and software deconvolution techniques are thought necessary for a final determination of suitability.

  14. Developing absolute shock wave equation of state measurements on the NIF

    NASA Astrophysics Data System (ADS)

    Celliers, Peter; Fratanduono, D. E.; Lazicki, A.; London, R. A.; Brygoo, S.; Swift, D. C.; Coppari, F.; Millot, M.; Peterson, J. L.; Meezan, N. B.; Fernandez-Panella, A.; Erskine, D. J.; Ali, S.; Collins, G. W.

    2016-10-01

    The National Ignition Facility provides an unprecedented capability to generate ultra-high pressure planar shock waves (around 10 TPa) in solid samples. We are currently fielding impedance match equation of state (EOS) experiments to determine the shock Hugoniot of various samples relative to EOS standards, such as aluminum and quartz. However, the equations of state of the standards at multi-TPa shock pressures are not yet well-established. Absolute techniques are needed to provide the data needed to establish the Hugoniots of the standards, and also to measure the state of a sample directly. We are pursuing several approaches using absolute techniques. These approaches will be discussed. This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract DE-AC52-07NA27344.

  15. Measurements of absolute concentrations of NADH in cells using the phasor FLIM method.

    PubMed

    Ma, Ning; Digman, Michelle A; Malacrida, Leonel; Gratton, Enrico

    2016-07-01

    We propose a graphical method using the phasor representation of the fluorescence decay to derive the absolute concentration of NADH in cells. The method requires the measurement of a solution of NADH at a known concentration. The phasor representation of the fluorescence decay accounts for the differences in quantum yield of the free and bound form of NADH, pixel by pixel of an image. The concentration of NADH in every pixel in a cell is obtained after adding to each pixel in the phasor plot a given amount of unmodulated light which causes a shift of the phasor towards the origin by an amount that depends on the intensity at the pixel and the fluorescence lifetime at the pixel. The absolute concentration of NADH is obtained by comparison of the shift obtained at each pixel of an image with the shift of the calibrated solution.

  16. Measurements of absolute concentrations of NADH in cells using the phasor FLIM method

    PubMed Central

    Ma, Ning; Digman, Michelle A.; Malacrida, Leonel; Gratton, Enrico

    2016-01-01

    We propose a graphical method using the phasor representation of the fluorescence decay to derive the absolute concentration of NADH in cells. The method requires the measurement of a solution of NADH at a known concentration. The phasor representation of the fluorescence decay accounts for the differences in quantum yield of the free and bound form of NADH, pixel by pixel of an image. The concentration of NADH in every pixel in a cell is obtained after adding to each pixel in the phasor plot a given amount of unmodulated light which causes a shift of the phasor towards the origin by an amount that depends on the intensity at the pixel and the fluorescence lifetime at the pixel. The absolute concentration of NADH is obtained by comparison of the shift obtained at each pixel of an image with the shift of the calibrated solution. PMID:27446681

  17. Absolute sensitivity calibration of an extreme ultraviolet spectrometer for tokamak measurements

    NASA Astrophysics Data System (ADS)

    Guirlet, R.; Schwob, J. L.; Meyer, O.; Vartanian, S.

    2017-01-01

    An extreme ultraviolet spectrometer installed on the Tore Supra tokamak has been calibrated in absolute units of brightness in the range 10-340 Å. This has been performed by means of a combination of techniques. The range 10-113 Å was absolutely calibrated by using an ultrasoft-X ray source emitting six spectral lines in this range. The calibration transfer to the range 113-182 Å was performed using the spectral line intensity branching ratio method. The range 182-340 Å was calibrated thanks to radiative-collisional modelling of spectral line intensity ratios. The maximum sensitivity of the spectrometer was found to lie around 100 Å. Around this wavelength, the sensitivity is fairly flat in a 80 Å wide interval. The spatial variations of sensitivity along the detector assembly were also measured. The observed trend is related to the quantum efficiency decrease as the angle of the incoming photon trajectories becomes more grazing.

  18. Measurement of local chromatin compaction by spectral precision distance microscopy

    NASA Astrophysics Data System (ADS)

    Rauch, Joachim; Hausmann, Michael; Solovei, Irina; Horsthemke, Bernhard; Cremer, Thomas; Cremer, Christoph G.

    2000-12-01

    Fluorescence in situ hybridization (FISH) offers an appropriate technique to specifically label any given chromatin region by multi spectrally labeled, specific DNA probes. Using confocal laser scanning microscopy, quantitative measurements on the spatial distribution of labeling sites can be performed in 3D conserved cell nuclei. Recently, 'Spectral Precision Distance Microscopy' has been developed that allows 3D distance measurements between point-like fluorescence objects of different spectral signatures far beyond the diffraction limited resolution. In a well characterized and sequenced DNA region, the Prader- Willi/Angelman region q11-13 on chromosome 15, geometric distances between the fluorescence intensity bary centers of four different 'point-like' labeling sites were measured. More than 300 cell nuclei were evaluated with a 3D resolution equivalent better than 100 nm. The geometric bary center distances in nanometers were compared with the genomic bary center distance in kilobases (kb). A direct correlation, for instance linear correlation between geometric and genomic distances was not observed. From the measured values, a local compaction factor for the high order chromatin folding in the analyzed genome region was calculated. Along the 1000 kb chromatin segment analyzed, which spans nearly the compete Prader-Willi/Angelman region, different compaction factors were found. The compaction factor 40 typical for a straight 30 nm chromatin fiber was not observed. This shows that chromatin folding and compaction in intact nuclei may be more complex. With SPDM, however, a microscopical technique is available that can sensitively analyze chromatin organization in the 100 nm range in 3D conserved cell nuclei.

  19. Absolute silicon molar mass measurements, the Avogadro constant and the redefinition of the kilogram

    NASA Astrophysics Data System (ADS)

    Vocke, R. D., Jr.; Rabb, S. A.; Turk, G. C.

    2014-10-01

    The results of an absolute silicon molar mass determination of two independent sets of samples from the highly 28Si-enriched crystal (AVO28) produced by the International Avogadro Coordination are presented and compared with results published by the Physikalisch-Technische Bundesanstalt (PTB, Germany), the National Research Council (NRC, Canada) and the National Metrology Institute of Japan (NMIJ, Japan). This study developed and describes significant changes to the published protocols for producing absolute silicon isotope ratios. The measurements were made at very high resolution on a multi-collector inductively coupled plasma mass spectrometer using tetramethylammonium hydroxide (TMAH) to dissolve and dilute all samples. The various changes in the measurement protocol and the use of TMAH resulted in significant improvements to the silicon isotope ratio precision over previously reported measurements and in particular, the robustness of the 29Si/30Si ratio of the AVO28 material. These new results suggest that a limited isotopic variability is present in the AVO28 material. The presence of this variability is at present singular and therefore its significance is not well understood. Fortunately, its magnitude is small enough so as to have an insignificant effect on the overall uncertainty of an Avogadro constant derived from the average molar mass of all four AVO28 silicon samples measured in this study. The NIST results confirm the AVO28 molar mass values reported by PTB and NMIJ and confirm that the virtual element-isotope dilution mass spectrometry approach to calibrated absolute isotope ratio measurements developed by PTB is capable of very high precision as well as accuracy. The Avogadro constant NA and derived Planck constant h based on these measurements, together with their associated standard uncertainties, are 6.02214076(19) × 1023 mol-1 and 6.62607017(21) × 10-34 Js, respectively.

  20. Absolute X-ray emission cross section measurements of Fe K transitions

    NASA Astrophysics Data System (ADS)

    Hell, Natalie; Brown, Gregory V.; Beiersdorfer, Peter; Boyce, Kevin R.; Grinberg, Victoria; Kelley, Richard L.; Kilbourne, Caroline; Leutenegger, Maurice A.; Porter, Frederick Scott; Wilms, Jörn

    2016-06-01

    We have measured the absolute X-ray emission cross sections of K-shell transitions in highly charged L- and K-shell Fe ions using the LLNL EBIT-I electron beam ion trap and the NASA GSFC EBIT Calorimeter Spectrometer (ECS). The cross sections are determined by using the ECS to simultaneously record the spectrum of the bound-bound K-shell transitions and the emission from radiative recombination from trapped Fe ions. The measured spectrum is then brought to an absolute scale by normalizing the measured flux in the radiative recombination features to their theoretical cross sections, which are well known. Once the spectrum is brought to an absolute scale, the cross sections of the K-shell transitions are determined. These measurements are made possible by the ECS, which consists of a 32 channel array, with 14 channels optimized for detecting high energy photons (hν > 10 keV) and 18 channels optimized for detecting low energy photons (hν < 10 keV). The ECS has a large collection area, relatively high energy resolution, and a large bandpass; all properties necessary for this measurement technique to be successful. These data will be used to benchmark cross sections in the atomic reference data bases underlying the plasma modeling codes used to analyze astrophysical spectra, especially those measured by the Soft X-ray Spectrometer calorimeter instrument recently launched on the Hitomi X-ray Observatory.This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and supported by NASA grants to LLNL and NASA/GSFC and by ESA under contract No. 4000114313/15/NL/CB.

  1. Measuring Distance Learning Performance with Data Envelopment Analysis

    ERIC Educational Resources Information Center

    Xiaoming, Yang; Shieh, Chich-Jen; Wu, Wu-Chung

    2014-01-01

    In the modern society with changeable information technology learning and applications, students could acquire information application knowledge, which is not worse than those taught by teachers in classrooms, through the Internet, distance conference, and e-learning. Traditional instruction therefore is facing great challenges. When measuring the…

  2. Accuracy, Precision, Sensitivity, and Specificity of Noninvasive ICP Absolute Value Measurements.

    PubMed

    Krakauskaite, Solventa; Petkus, Vytautas; Bartusis, Laimonas; Zakelis, Rolandas; Chomskis, Romanas; Preiksaitis, Aidanas; Ragauskas, Arminas; Matijosaitis, Vaidas; Petrikonis, Kestutis; Rastenyte, Daiva

    2016-01-01

    An innovative absolute intracranial pressure (ICP) value measurement method has been validated by multicenter comparative clinical studies. The method is based on two-depth transcranial Doppler (TCD) technology and uses intracranial and extracranial segments of the ophthalmic artery as pressure sensors. The ophthalmic artery is used as a natural pair of "scales" that compares ICP with controlled pressure Pe, which is externally applied to the orbit. To balance the scales, ICP = Pe a special two-depth TCD device was used as a pressure balance indicator. The proposed method is the only noninvasive ICP measurement method that does not need patient-specific calibration.

  3. Measurement of the absolute hohlraum wall albedo under ignition foot drive conditions

    SciTech Connect

    Suter, L J; Wallace, R J; Hammel, B A; Weber, F A; Landen, O L; Campbell, K M; DeWald, E L; Glenzer, S H; Rosen, M D; Jones, O S; Turner, R E; Kauffmann, R L; Hammer, J H

    2003-11-25

    We present the first measurements of the absolute albedos of hohlraums made from gold or from high-Z mixtures. The measurements are performed over the range of radiation temperatures (70-100 eV) expected during the foot of an indirect-drive temporally-shaped ignition laser pulse, where accurate knowledge of the wall albedo (i.e. soft x-ray wall re-emission) is most critical for determining capsule radiation symmetry. We find that the gold albedo agrees well with calculations using the super transition array opacity model, potentially providing additional margin for ICF ignition.

  4. Near Absolute Equation of State Measurements of CH using Velocimetry and Radiography

    NASA Astrophysics Data System (ADS)

    Fratanduono, Dayne; Celliers, Peter; Lazicki, Amy; Hawreliak, Jim; Collins, Gilbert

    2014-03-01

    The OMEGA EP laser was used to conduct absolute near equation of state measurement along the principal Hugoniot of CH to 6 Mbar. A 6 ns long, 3700 J laser pulse in direct drive was used to launch a cylindrical shock in a multi-layered aluminum/CH target which was imaged using a Fe backlighter. The technique presented here incorporated VISAR shock velocity measurements with shock compression measured using side-on radiography to determine the Hugoniot. Experimental uncertainties of less than 10% in density were obtained in these experiments. The measured Hugoniot values of this study are consistent with previous measurements that were impedance matched to quartz (Barrios et al. PoP 2010). These experiments were conducted, as proof of principle, for future absolute EOS measurements on the NIF. Future experimental work will be discussed. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. First absolutely calibrated on-axis ion flow measurements in MST

    NASA Astrophysics Data System (ADS)

    Schott, B.; Baltzer, M.; Craig, D.; den Hartog, D. J.; Nishizawa, T.; Nornberg, M. D.

    2016-10-01

    Improvements in absolute calibration techniques allow for the first direct measurements of the flow profile in the core of MST. We use both active charge exchange recombination spectroscopy and passive emission near 343 nm to measure ion temperature and flow. It is generally assumed that O VI is the brightest passive emission source. However, we show that there are cases, such as high temperature, pulsed poloidal current drive (PPCD) plasmas where the passive emission is dominated by C VI. Differences in the fine structure for O VI and C VI result in a systematic velocity error of about 12 km/s if the wrong model is assumed. Active measurements, however, are relatively insensitive to background model choice. The dominant source of error in active velocity measurements remains the systematic errors in calibration. The first absolutely calibrated, localized toroidal velocity measurements were obtained using an updated calibration technique. During PPCD, the on-axis ion flow is up to 40 km/s larger than both the n = 6 mode velocity and the line-averaged ion velocity. These measurements provide the first direct look at the flow profile in the core of MST. This work has been supported by the US DOE and the Wheaton College summer research program.

  6. Measuring angular diameter distances of strong gravitational lenses

    NASA Astrophysics Data System (ADS)

    Jee, I.; Komatsu, E.; Suyu, S. H.

    2015-11-01

    The distance-redshift relation plays a fundamental role in constraining cosmological models. In this paper, we show that measurements of positions and time delays of strongly lensed images of a background galaxy, as well as those of the velocity dispersion and mass profile of a lens galaxy, can be combined to extract the angular diameter distance of the lens galaxy. Physically, as the velocity dispersion and the time delay give a gravitational potential (GM/r) and a mass (GM) of the lens, respectively, dividing them gives a physical size (r) of the lens. Comparing the physical size with the image positions of a lensed galaxy gives the angular diameter distance to the lens. A mismatch between the exact locations at which these measurements are made can be corrected by measuring a local slope of the mass profile. We expand on the original idea put forward by Paraficz and Hjorth, who analyzed singular isothermal lenses, by allowing for an arbitrary slope of a power-law spherical mass density profile, an external convergence, and an anisotropic velocity dispersion. We find that the effect of external convergence cancels out when dividing the time delays and velocity dispersion measurements. We derive a formula for the uncertainty in the angular diameter distance in terms of the uncertainties in the observables. As an application, we use two existing strong lens systems, B1608+656 (zL=0.6304) and RXJ1131-1231 (zL=0.295), to show that the uncertainty in the inferred angular diameter distances is dominated by that in the velocity dispersion, σ2, and its anisotropy. We find that the current data on these systems should yield about 16% uncertainty in DA per object. This improves to 13% when we measure σ2 at the so-called sweet-spot radius. Achieving 7% is possible if we can determine σ2 with 5% precision.

  7. Measuring angular diameter distances of strong gravitational lenses

    SciTech Connect

    Jee, I.; Komatsu, E.; Suyu, S.H. E-mail: komatsu@mpa-garching.mpg.de

    2015-11-01

    The distance-redshift relation plays a fundamental role in constraining cosmological models. In this paper, we show that measurements of positions and time delays of strongly lensed images of a background galaxy, as well as those of the velocity dispersion and mass profile of a lens galaxy, can be combined to extract the angular diameter distance of the lens galaxy. Physically, as the velocity dispersion and the time delay give a gravitational potential (GM/r) and a mass (GM) of the lens, respectively, dividing them gives a physical size (r) of the lens. Comparing the physical size with the image positions of a lensed galaxy gives the angular diameter distance to the lens. A mismatch between the exact locations at which these measurements are made can be corrected by measuring a local slope of the mass profile. We expand on the original idea put forward by Paraficz and Hjorth, who analyzed singular isothermal lenses, by allowing for an arbitrary slope of a power-law spherical mass density profile, an external convergence, and an anisotropic velocity dispersion. We find that the effect of external convergence cancels out when dividing the time delays and velocity dispersion measurements. We derive a formula for the uncertainty in the angular diameter distance in terms of the uncertainties in the observables. As an application, we use two existing strong lens systems, B1608+656 (z{sub L}=0.6304) and RXJ1131−1231 (z{sub L}=0.295), to show that the uncertainty in the inferred angular diameter distances is dominated by that in the velocity dispersion, σ{sup 2}, and its anisotropy. We find that the current data on these systems should yield about 16% uncertainty in D{sub A} per object. This improves to 13% when we measure σ{sup 2} at the so-called sweet-spot radius. Achieving 7% is possible if we can determine σ{sup 2} with 5% precision.

  8. Absolute Position of Targets Measured Through a Chamber Window Using Lidar Metrology Systems

    NASA Technical Reports Server (NTRS)

    Kubalak, David; Hadjimichael, Theodore; Ohl, Raymond; Slotwinski, Anthony; Telfer, Randal; Hayden, Joseph

    2012-01-01

    Lidar is a useful tool for taking metrology measurements without the need for physical contact with the parts under test. Lidar instruments are aimed at a target using azimuth and elevation stages, then focus a beam of coherent, frequency modulated laser energy onto the target, such as the surface of a mechanical structure. Energy from the reflected beam is mixed with an optical reference signal that travels in a fiber path internal to the instrument, and the range to the target is calculated based on the difference in the frequency of the returned and reference signals. In cases when the parts are in extreme environments, additional steps need to be taken to separate the operator and lidar from that environment. A model has been developed that accurately reduces the lidar data to an absolute position and accounts for the three media in the testbed air, fused silica, and vacuum but the approach can be adapted for any environment or material. The accuracy of laser metrology measurements depends upon knowing the parameters of the media through which the measurement beam travels. Under normal conditions, this means knowledge of the temperature, pressure, and humidity of the air in the measurement volume. In the past, chamber windows have been used to separate the measuring device from the extreme environment within the chamber and still permit optical measurement, but, so far, only relative changes have been diagnosed. The ability to make accurate measurements through a window presents a challenge as there are a number of factors to consider. In the case of the lidar, the window will increase the time-of-flight of the laser beam causing a ranging error, and refract the direction of the beam causing angular positioning errors. In addition, differences in pressure, temperature, and humidity on each side of the window will cause slight atmospheric index changes and induce deformation and a refractive index gradient within the window. Also, since the window is a

  9. Gd(III)-Gd(III) EPR distance measurements--the range of accessible distances and the impact of zero field splitting.

    PubMed

    Dalaloyan, Arina; Qi, Mian; Ruthstein, Sharon; Vega, Shimon; Godt, Adelheid; Feintuch, Akiva; Goldfarb, Daniella

    2015-07-28

    Gd(III) complexes have emerged as spin labels for distance determination in biomolecules through double-electron-electron resonance (DEER) measurements at high fields. For data analysis, the standard approach developed for a pair of weakly coupled spins with S = 1/2 was applied, ignoring the actual properties of Gd(III) ions, i.e. S = 7/2 and ZFS (zero field splitting) ≠ 0. The present study reports on a careful investigation on the consequences of this approach, together with the range of distances accessible by DEER with Gd(III) complexes as spin labels. The experiments were performed on a series of specifically designed and synthesized Gd-rulers (Gd-PyMTA-spacer-Gd-PyMTA) covering Gd-Gd distances of 2-8 nm. These were dissolved in D2O-glycerol-d8 (0.03-0.10 mM solutions) which is the solvent used for the corresponding experiments on biomolecules. Q- and W-band DEER measurements, followed by data analysis using the standard data analysis approach, used for S = 1/2 pairs gave the distance-distribution curves, of which the absolute maxima agreed very well with the expected distances. However, in the case of the short distances of 2.1 and 2.9 nm, the distance distributions revealed additional peaks. These are a consequence of neglecting the pseudo-secular term in the dipolar Hamiltonian during the data analysis, as is outlined in a theoretical treatment. At distances of 3.4 nm and above, disregarding the pseudo-secular term leads to a broadening of a maximum of 0.4 nm of the distance-distribution curves at half height. Overall, the distances of up to 8.3 nm were determined, and the long evolution time of 16 μs at 10 K indicates that a distance of up to 9.4 nm can be accessed. A large distribution of the ZFS parameter, D, as is found for most Gd(III) complexes in a frozen solution, is crucial for the application of Gd(III) complexes as spin labels for distance determination via Gd(III)-Gd(III) DEER, especially for short distances. The larger ZFS of Gd-PyMTA, in

  10. Subsurface Supergranular Vertical Flows as Measured Using Large Distance Separations in Time-Distance Helioseismology

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas L., Jr.; Hanasoge, S. M.

    2012-01-01

    As large-distance rays (say, 10 - 24deg) approach the solar surface approximately vertically, travel times measured from surface pairs for these large separations are mostly sensitive to vertical flows, at least for shallow flows within a few Mm of the solar surface. All previous analyses of supergranulation have used smaller separations and have been hampered by the difficulty of separating the horizontal and vertical flow components. We find that the large-separation travel times associated with supergranulation cannot be studied using the standard phase-speed filters of time-distance helioseismology. These filters, whose use is based upon a refractive model of the perturbations, reduce the resultant travel time signal by at least an order of magnitude at some distances. More effective filters are derived. Modeling suggests that the center-annulus travel-time difference [outward-going time minus inward-going time] in the separation range delta= 10 - 24deg is insensitive to the horizontally diverging flow from the centers of the supergranules and should lead to a constant signal from the vertical flow. Our measurement of this quantity, 5.1+/-0.1 seconds, is constant over the distance range. This magnitude of the signal cannot be caused by the level of upflow at cell centers seen at the photosphere of 10 ms(exp-1) extended in depth. It requires the vertical flow to increase with depth. A simple Gaussian model of the increase with depth implies a peak upward flow of 240 ms(exp-1) at a depth of 2.3 Mm and a peak horizontal flow of 700 ms(exp-1) at a depth of 1.6 Mm.

  11. Subsurface Supergranular Vertical Flows as Measured Using Large Distance Separations in Time-Distance Helioseismology

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Hanasoge, S. M.

    2012-01-01

    As large-distance rays (say, 10-24 deg) approach the solar surface approximately vertically, travel times measured from surface pairs for these large separations are mostly sensitive to vertical flows, at least for shallow flows within a few Mm of the solar surface. All previous analyses of supergranulation have used smaller separations and have been hampered by the difficulty of separating the horizontal and vertical flow components. We find that the large separation travel times associated with upergranulation cannot be studied using the standard phase-speed filters of time-distance helioseismology. These filters, whose use is based upon a refractive model of the perturbations,reduce the resultant travel time signal by at least an order of magnitude at some distances. More effective filters are derived. Modeling suggests that the center-annulus travel time difference in the separation range 10-24 deg is insensitive to the horizontally diverging flow from the centers of the supergranules and should lead to a constant signal from the vertical flow. Our measurement of this quantity for the average supergranule, 5.1 s, is constant over the distance range. This magnitude of signal cannot be caused by the level of upflow at cell centers seen at the photosphere of 10 m/s extended in depth. It requires the vertical flow to increase with depth. A simple Gaussian model of the increase with depth implies a peak upward flow of 240 m/s at a depth of 2.3 Mm and a peak horizontal flow of 700 m/s at a depth of 1.6 Mm.

  12. An ultrasonic system for measurement of absolute myocardial thickness using a single transducer.

    PubMed

    Pitsillides, K F; Longhurst, J C

    1995-03-01

    We have developed an ultrasonic instrument that can measure absolute regional myocardial wall motion throughout the cardiac cycle using a single epicardial piezoelectric transducer. The methods in place currently that utilize ultrasound to measure myocardial wall thickness are the transit-time sonomicrometer (TTS) and, more recently, the Doppler echo displacement method. Both methods have inherent disadvantages. To address the need for an instrument that can measure absolute dimensions of myocardial wall at any depth, an ultrasonic single-crystal sonomicrometer (SCS) system was developed. This system can identify and track the boundary of the endocardial muscle-blood interface. With this instrument, it is possible to obtain, from a single epicardial transducer, measurement of myocardial wall motion that is calibrated in absolute dimensional units. The operating principles of the proposed myocardial dimension measurement system are as follows. A short duration ultrasonic burst having a frequency of 10 MHz is transmitted from the piezoelectric transducer. Reflected echoes are sampled at two distinct time intervals to generate reference and interface sample volumes. During steady state, the two sample volumes are adjusted so that the reference volume remains entirely within the myocardium, whereas half of the interface sampled volume is located within the myocardium. After amplification and filtering, the true root mean square values of both signals are compared and an error signal is generated. A closed-loop circuit uses the integrated error signal to continuously adjust the position of the two sample volumes. We have compared our system in vitro against a known signal and in vivo against the two-crystal TTS system during control, suppression (ischemia), and enhancement (isoproterenol) of myocardial function. Results were obtained in vitro for accuracy (> 99%), signal linearity (r = 0.99), and frequency response to heart rates > 450 beats/min, and in vivo data were

  13. Absolute Spatially- and Temporally-Resolved Optical Emission Measurements of rf Glow Discharges in Argon

    PubMed Central

    Djurović, S.; Roberts, J. R.; Sobolewski, M. A.; Olthoff, J. K.

    1993-01-01

    Spatially- and temporally-resolved measurements of optical emission intensities are presented from rf discharges in argon over a wide range of pressures (6.7 to 133 Pa) and applied rf voltages (75 to 200 V). Results of measurements of emission intensities are presented for both an atomic transition (Ar I, 750.4 nm) and an ionic transition (Ar II, 434.8 nm). The absolute scale of these optical emissions has been determined by comparison with the optical emission from a calibrated standard lamp. All measurements were made in a well-defined rf reactor. They provide detailed characterization of local time-resolved plasma conditions suitable for the comparison with results from other experiments and theoretical models. These measurements represent a new level of detail in diagnostic measurements of rf plasmas, and provide insight into the electron transport properties of rf discharges. PMID:28053464

  14. Intercomparison of the LBIR Absolute Cryogenic Radiometers to the NIST Optical Power Measurement Standard

    PubMed Central

    Fedchak, James A.; Carter, Adriaan C.; Datla, Raju

    2006-01-01

    The Low Background Infrared calibration (LBIR) facility at the National Institute of Standards and Technology (NIST) presently maintains four absolute cryogenic radiometers (ACRs) which serve as standard reference detectors for infrared calibrations performed by the facility. The primary standard for optical power measurements at NIST-Gaithersburg has been the High Accuracy Cryogenic Radiometer (HACR). Recently, an improved radiometer, the Primary Optical Watt Radiometer (POWR), has replaced the HACR as the primary standard. In this paper, we present the results of comparisons between the radiometric powers measured by the four ACRs presently maintained by the LBIR facility to that measured by the HACR and POWR. This was done by using a Si photodiode light-trapping detector as a secondary transfer standard to compare the primary national standards to the ACRs maintained by the LBIR facility. The technique used to compare an ACR to the trap detector is described in detail. The absolute optical power measurements are found to be within 0.1 % of the primary standard for all the ACRs examined in this study. PMID:27274936

  15. Absolute measurement of the 242Pu neutron-capture cross section

    DOE PAGES

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; ...

    2016-04-21

    Here, the absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n,γ) cross section was made over the incident neutron energy range from thermal to ≈ 6 keV, and the absolute scale of the (n,γ) cross section was set according to the known 239Pu(n,f) resonance at En,R = 7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the crossmore » section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈ 40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n,γ) cross section at the En,R = 2.68 eV resonance is within 2.4% of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30% lower than the evaluated data at En ≈ 1 keV and are approximately 2σ away from the previous measurement at En ≈ 20 keV.« less

  16. Ultrasound measurement of transcranial distance during head-down tilt

    NASA Technical Reports Server (NTRS)

    Torikoshi, S.; Wilson, M. H.; Ballard, R. E.; Watenpaugh, D. E.; Murthy, G.; Yost, W. T.; Cantrell, J. H.; Chang, D. S.; Hargens, A. R.

    1995-01-01

    Exposure to microgravity elevates blood pressure and flow in the head, which may increase intracranial volume (ICV) and intracranial pressure (ICP). Rhesus monkeys exposed to simulated microgravity in the form of 6 degree head-down tilt (HDT) experience elevated ICP. With humans, twenty-four hours of 6 degree HDT bed rest increases cerebral blood flow velocity relative to pre-HDT upright posture. Humans exposed to acute 6 degree HDT experiments increased ICP, measured with the tympanic membrane displacement (TMD) technique. Other studies suggest that increased ICP in humans and cats causes measurable cranial bone movement across the sagittal suture. Due to the slightly compliant nature of the cranium, elevation of the ICP will increase ICV and transcranial distance. Currently, several non-invasive approaches to monitor ICP are being investigated. Such techniques include TMD and modal analysis of the skull. TMD may not be reliable over a large range of ICP and neither method is capable of measuring the small changes in pressure. Ultrasound, however, may reliably measure small distance changes that accompany ICP fluctuations. The purpose of our study was to develop and evaluate an ultrasound technique to measure transcranial distance changes during HDT.

  17. Absolute Density Calibration Cell for Laser Induced Fluorescence Erosion Rate Measurements

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Stevens, Richard E.

    2001-01-01

    Flight qualification of ion thrusters typically requires testing on the order of 10,000 hours. Extensive knowledge of wear mechanisms and rates is necessary to establish design confidence prior to long duration tests. Consequently, real-time erosion rate measurements offer the potential both to reduce development costs and to enhance knowledge of the dependency of component wear on operating conditions. Several previous studies have used laser-induced fluorescence (LIF) to measure real-time, in situ erosion rates of ion thruster accelerator grids. Those studies provided only relative measurements of the erosion rate. In the present investigation, a molybdenum tube was resistively heated such that the evaporation rate yielded densities within the tube on the order of those expected from accelerator grid erosion. This work examines the suitability of the density cell as an absolute calibration source for LIF measurements, and the intrinsic error was evaluated.

  18. Absolute measurement of ultrasonic non-linearity parameter at contact interface

    NASA Astrophysics Data System (ADS)

    Yuan, Maodan; Lee, Taekgyu; Kang, To; Zhang, Jianhai; Song, Sung-Jin; Kim, Hak-Joon

    2015-10-01

    Non-linear interaction of waves with contact interfaces has been widely applied in non-destructive evaluation fields such as bonding quality evaluation, and the detection of closed microcracks and composite delamination. This paper proposes an absolute measurement of the ultrasonic non-linearity parameter using a piezoelectric detection method for two aluminum alloy blocks of different lengths. The results of a two-dimensional finite element method model verified by models for hard and soft contact interfaces, depending on the interface property, were compared with the measured non-linearity parameter. The measured values show good agreement with the modelled results, indicating good potential for measuring the non-linearity parameter at interfaces experimentally and numerically.

  19. Measurements of the absolute branching fractions of B+/- --> K+/-X(cc).

    PubMed

    Aubert, B; Barate, R; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Pappagallo, M; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Chevalier, N; Cottingham, W N; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Teodorescu, L; Blinov, A E; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Weinstein, A J R; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Minamora, J S; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q; Altenburg, D; Feltresi, E; Hauke, A; Spaan, B; Brandt, T; Brose, J; Dickopp, M; Klose, V; Lacker, H M; Nogowski, R; Otto, S; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Bernard, D; Bonneaud, G R; Grenier, P; Schrenk, S; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Won, E; Wu, J; Dubitzky, R S; Langenegger, U; Marks, J; Schenk, S; Uwer, U; Schott, G; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Gaillard, J R; Nash, J A; Nikolich, M B; Vazquez, W Panduro; Chai, X; Charles, M J; Mader, W F; Mallik, U; Mohapatra, A K; Ziegler, V; Cochran, J; Crawley, H B; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J; Arnaud, N; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Petersen, T C; Plaszczynski, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Parry, R J; Payne, D J; Schofield, K C; Touramanis, C; Cormack, C M; Di Lodovico, F; Menges, W; Sacco, R; Brown, C L; Cowan, G; Flaecher, H U; Green, M G; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Edgar, C L; Hodgkinson, M C; Kelly, M P; Lafferty, G D; Naisbit, M T; Williams, J C; Chen, C; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Kofler, R; Koptchev, V B; Li, X; Moore, T B; Saremi, S; Staengle, H; Willocq, S; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Viaud, B; Nicholson, H; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; Losecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Brau, J; Frey, R; Igonkina, O; Lu, M; Potter, C T; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; John, M J J; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Biasini, M; Covarelli, R; Pacetti, S; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Walsh, J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Marco, E Di; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Gioi, L Li; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Tehrani, F Safai; Voena, C; Schröder, H; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Gopal, G P; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Graziani, G; de Monchenault, G Hamel; Kozanecki, W; Legendre, M; London, G W; Mayer, B; Vasseur, G; Yèche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Wilson, J R; Yumiceva, F X; Abe, T; Allen, M T; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Ahmed, M; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bona, M; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Vitale, L; Martinez-Vidal, F; Panvini, R S; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihalyi, A; Pan, Y; Pierini, M; Prepost, R; Tan, P; Wu, S L; Yu, Z; Neal, H

    2006-02-10

    We study the two-body decays of B+/- mesons to K+/- and a charmonium state X(cc) in a sample of 210.5 fb(-1) of data from the BABAR experiment. We perform measurements of absolute branching fractions beta(B+/- --> K+/-X(cc)) using a missing mass technique, and report several new or improved results. In particular, the upper limit beta(B+/- --> K+/- X(3872)) < 3.2 x 10(-4) at 90% C.L. and the inferred lower limit beta(X(3872)J/psipi+ pi-) > 4.2% will help in understanding the nature of the recently discovered X(3872).

  20. Measurement of the absolute branching fraction of D0-->K-pi+.

    PubMed

    Aubert, B; Bona, M; Boutigny, D; Karyotakis, Y; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Eigen, G; Ofte, I; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lopes Pegna, D; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Tackmann, K; Wenzel, W A; Del Amo Sanchez, P; Hawkes, C M; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Schroeder, T; Steinke, M; Cottingham, W N; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Liu, F; Long, O; Shen, B C; Zhang, L; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Williams, D C; Wilson, M G; Winstrom, L O; Chen, E; Cheng, C H; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Gabareen, A M; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Lombardo, V; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Santoro, V; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Nikolich, M B; Panduro Vazquez, W; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Fisher, P H; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; McLachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Fabozzi, F; Lista, L; Monorchio, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; Losecco, J M; Benelli, G; Corwin, L A; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Ter-Antonyan, R; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gagliardi, N; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Hartfiel, B L; Leruste, Ph; Malclès, J; Ocariz, J; Perez, A; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Calderini, G; Carpinelli, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Biesiada, J; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Baracchini, E; Bellini, F; Cavoto, G; D'Orazio, A; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; Castelli, G; Franek, B; Olaiya, E O; Ricciardi, S; Roethel, W; Wilson, F F; Aleksan, R; Emery, S; Escalier, M; Gaidot, A; Ganzhur, S F; de Monchenault, G Hamel; Kozanecki, W; Legendre, M; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Wagner, A P; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Dasu, S; Flood, K T; Hollar, J J; Kutter, P E; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H

    2008-02-08

    We measure the absolute branching fraction for D(0)-->K(-)pi(+) using partial reconstruction of B(0)-->D(*+)Xl(-)nu(l) decays, in which only the charged lepton and the pion from the decay D(*+)-->D(0)pi(+) are used. Based on a data sample of 230 x 10(6) BB pairs collected at the Upsilon(4S) resonance with the BABAR detector at the PEP-II asymmetric-energy B factory at SLAC, we obtain B(D(0)-->K(-)pi(+)) = (4.007+/-0.037+/-0.072)%, where the first uncertainty is statistical and the second is systematic.

  1. Utilization of coincidence criteria in absolute length measurements by optical interferometry in vacuum and air

    NASA Astrophysics Data System (ADS)

    Schödel, R.

    2015-08-01

    Traceability of length measurements to the international system of units (SI) can be realized by using optical interferometry making use of well-known frequencies of monochromatic light sources mentioned in the Mise en Pratique for the realization of the metre. At some national metrology institutes, such as Physikalisch-Technische Bundesanstalt (PTB) in Germany, the absolute length of prismatic bodies (e.g. gauge blocks) is realized by so-called gauge-block interference comparators. At PTB, a number of such imaging phase-stepping interference comparators exist, including specialized vacuum interference comparators, each equipped with three highly stabilized laser light sources. The length of a material measure is expressed as a multiple of each wavelength. The large number of integer interference orders can be extracted by the method of exact fractions in which the coincidence of the lengths resulting from the different wavelengths is utilized as a criterion. The unambiguous extraction of the integer interference orders is an essential prerequisite for correct length measurements. This paper critically discusses coincidence criteria and their validity for three modes of absolute length measurements: 1) measurements under vacuum in which the wavelengths can be identified with the vacuum wavelengths, 2) measurements under air in which the air refractive index is obtained from environmental parameters using an empirical equation, and 3) measurements under air in which the air refractive index is obtained interferometrically by utilizing a vacuum cell placed along the measurement pathway. For case 3), which corresponds to PTB’s Kösters-Comparator for long gauge blocks, the unambiguous determination of integer interference orders related to the air refractive index could be improved by about a factor of ten when an ‘overall dispersion value,’ suggested in this paper, is used as coincidence criterion.

  2. Absolute Hugoniot measurements for CH foams in the 1.5-8 Mbar range

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Velikovich, A. L.; Schmitt, A. J.; Karasik, M.; Serlin, V.; Weaver, J. L.; Oh, J.; Obenschain, S. P.

    2016-10-01

    We report the absolute Hugoniot measurements for dry CH foams at 10% of solid polystyrene density. The 400 μm thick, 500 μm wide planar foam slabs covered with a 10 μm solid plastic ablator were driven with 4 ns long Nike KrF laser pulses whose intensity was varied between 10 and 50 TW/cm2. The trajectories of the shock front and the ablative piston, as well as the rarefaction fan emerging after the shock breakout from the rear surface of the target were clearly observed using the side-on monochromatic x-ray imaging radiography. From these measurements the shock density compression ratio and the shock pressure are evaluated directly. The observed compression ratios varied between 4 and 8, and the corresponding shock pressures - between 1.5 and 8 Mbar. The data was simulated with the FASTRAD3D hydrocode, using standard models of inverse bremsstrahlung absorption, flux-limited thermal conduction, and multi-group radiation diffusion. The demonstrated diagnostics technique applied in a cryo experiment would make it possible to make the first absolute Hugoniot measurements for liquid deuterium or DT-wetted CH foams, which is relevant for designing the wetted-foam indirect-drive ignition targets for NIF. This work was supported by the US DOE/NNSA.

  3. High-resolution measurement of absolute {alpha}-decay widths in {sup 16}O

    SciTech Connect

    Wheldon, C.; Ashwood, N. I.; Barr, M.; Curtis, N.; Freer, M.; Kokalova, Tz.; Malcolm, J. D.; Spencer, S. J.; Ziman, V. A.; Faestermann, Th.; Kruecken, R.; Wirth, H.-F.; Hertenberger, R.; Lutter, R.; Bergmaier, A.

    2011-06-15

    By using a large-acceptance position-sensitive silicon detector array in coincidence with the high-resolution Munich Q3D spectrograph, unambiguous measurements have been made of the absolute {alpha}-particle decay widths from excited states in {sup 16}O* in the energy range 13.85 to 15.87 MeV. Carbon targets have been bombarded with 42-MeV {sup 6}Li beams to induce {sub 6}{sup 12}C({sub 3}{sup 6}Li, d){sub 8}{sup 16}O* reactions. The deuteron ejectiles were measured in the Q3D and the results gated by {sup 4}He+{sup 12}C breakup products detected in the silicon array, the efficiency of which was modeled using Monte Carlo simulations. By comparing total population and breakup-gated spectra, the following absolute {alpha}-decay widths have been measured with high resolution: {Gamma}{sub {alpha}}0/{Gamma}{sub tot} = 0.87{+-}0.11 (13.980 MeV), 1.04{+-}0.15 (14.302 MeV), 0.92{+-}0.10 (14.399 MeV), 0.59{+-}0.04 (14.815 MeV), 0.88{+-}0.18 (15.785 MeV), and {Gamma}{sub {alpha}}1/{Gamma}{sub tot}=1.14{+-}0.08 (14.660 MeV), 0.46{+-}0.06 (14.815 MeV).

  4. Dispersive white-light spectral interferometry with absolute phase retrieval to measure thin film.

    PubMed

    Hlubina, P; Ciprian, D; Lunácek, J; Lesnák, M

    2006-08-21

    We present a white-light spectral interferometric technique for measuring the absolute spectral optical path difference (OPD) between the beams in a slightly dispersive Michelson interferometer with a thin-film structure as a mirror. We record two spectral interferograms to obtain the spectral interference signal and retrieve from it the spectral phase, which includes the effect of a cube beam splitter and the phase change on reflection from the thin-film structure. Knowing the effective thickness and dispersion of the beam splitter made of BK7 optical glass, we use a simple procedure to determine both the absolute spectral phase difference and OPD. The spectral OPD is measured for a uniform SiO(2) thin film on a silicon wafer and is fitted to the theoretical spectral OPD to obtain the thin-film thickness. The theoretical spectral OPD is determined provided that the optical constants of the thin-film structure are known. We measure also the nonlinear-like spectral phase and fit it to the theoretical values in order to obtain the thin-film thickness.

  5. Improved determination of seafloor absolute magnetization from uneven, near-seafloor magnetic measurements and high-resolution bathymetry

    NASA Astrophysics Data System (ADS)

    Szitkar, F.; Dyment, J.; Choi, Y.; Fouquet, Y.

    2012-12-01

    Vector magnetometers installed on deep-sea submersibles offer a unique opportunity to achieve high resolution magnetic investigations at the scale of hundred to thousand meters. Once corrected for the vehicle induced and remanent magnetization, the measurements mostly reflect variations of the topography and the submersible path - i.e. the distance between the sources and the observation points. The interesting parameter, however, is the seafloor magnetization that can be interpreted in terms of geological processes. Here we present methods to compute absolute magnetization of the seafloor by taking advantage of the uneven track of the submersible. In these methods, synthetic anomalies are computed for a unit magnetization assuming the geometry of the experiment, i.e. the source and the submersible path. The absolute magnetization is determined by a comparison between the observed anomalies and the synthetic ones along sliding windows. The coherency between the two signals gives an estimation of the quality of the determination, and the phase provides information on the magnetic polarity, and therefore the age of volcanic features. Such a method has been developed by Honsho et al. (JGR, 2009) using deep-sea submersible data only, i.e. magnetic anomaly, depth and altitude of the submersible. The synthetic anomalies are computed using 2D forward modeling, i.e. assuming the structures to be infinite in the direction perpendicular to the submersible path. The method has been applied with success to linear profiles crossing elongated structures such as mid-ocean ridges, but may fail for structures departing from the 2D assumption. The adaptation of improving multibeam systems to autonomous underwater vehicles (AUVs) has opened the way to the collection of very high resolution bathymetric data (around 2m between each measurement). This development has triggered a new strategy to explore the seafloor using manned submersibles: an AUV is operated during night time to

  6. Rapid mapping of volumetric machine errors using distance measurements

    SciTech Connect

    Krulewich, D.A.

    1998-04-01

    This paper describes a relatively inexpensive, fast, and easy to execute approach to maping the volumetric errors of a machine tool, coordinate measuring machine, or robot. An error map is used to characterize a machine or to improve its accuracy by compensating for the systematic errors. The method consists of three steps: (1) models the relationship between volumetric error and the current state of the machine, (2) acquiring error data based on distance measurements throughout the work volume; and (3)fitting the error model using the nonlinear equation for the distance. The error model is formulated from the kinematic relationship among the six degrees of freedom of error an each moving axis. Expressing each parametric error as function of position each is combined to predict the error between the functional point and workpiece, also as a function of position. A series of distances between several fixed base locations and various functional points in the work volume is measured using a Laser Ball Bar (LBB). Each measured distance is a non-linear function dependent on the commanded location of the machine, the machine error, and the location of the base locations. Using the error model, the non-linear equation is solved producing a fit for the error model Also note that, given approximate distances between each pair of base locations, the exact base locations in the machine coordinate system determined during the non-linear filling procedure. Furthermore, with the use of 2048 more than three base locations, bias error in the measuring instrument can be removed The volumetric errors of three-axis commercial machining center have been mapped using this procedure. In this study, only errors associated with the nominal position of the machine were considered Other errors such as thermally induced and load induced errors were not considered although the mathematical model has the ability to account for these errors. Due to the proprietary nature of the projects we are

  7. Absolute group refractive index measurement of air by dispersive interferometry using frequency comb.

    PubMed

    Yang, L J; Zhang, H Y; Li, Y; Wei, H Y

    2015-12-28

    The absolute group refractive index of air at 1563 nm is measured by dispersive interferometry, and a combined uncertainty of 1.2 × 10(-8) is achieved. The group refractive index of air is calculated from the dispersive interferograms of the two beams passing through the inner and outer regions of a vacuum cell by fast-Fourier-transform. Experimental results show that the discrepancies between our method and modified Edlén equation are less than 3.43 × 10(-8) and 4.4 × 10(-8) for short-term and long-term experiments, respectively. The interferogram update rate is 15 ms, which makes it suitable for application of real-time monitoring. Furthermore, it is promising to improve the measurement uncertainty to 3.0 × 10(-9) by changing the material of the vacuum cell and measuring its length more accurately through optical interferometry.

  8. ABSOLUTE MEASUREMENT OF THE POLARIZATION OF HIGH ENERGY PROTON BEAMS AT RHIC

    SciTech Connect

    MAKDISI,Y.; BRAVAR, A. BUNCE, G. GILL, R.; HUANG, H.; ET AL.

    2007-06-25

    The spin physics program at the Relativistic Heavy Ion Collider (RHIC) requires knowledge of the beam polarization to better than 5%. Such a goal is made the more difficult by the lack of knowledge of the analyzing power of high energy nuclear physics processes. To overcome this, a polarized hydrogen jet target was constructed and installed at one intersection region in RHIC where it intersects both beams and utilizes the precise knowledge of the jet atomic hydrogen beam polarization to measure the analyzing power in proton-proton elastic scattering in the Nuclear Coulomb Interference (CNI) region at the prescribed RHIC proton beam energy. The reverse reaction is used to assess the absolute beam polarization. Simultaneous measurements taken with fast high statistics polarimeters that measure the p-Carbon elastic scattering process also in the CNI region use the jet results to calibrate the latter.

  9. Measurement of the absolute wavefront curvature radius in a heterodyne interferometer.

    PubMed

    Hechenblaikner, Gerald

    2010-09-01

    We present an analytical derivation of the coupling parameter relating the angle between two interfering beams in a heterodyne interferometer to the differential phase signals detected by a quadrant photodiode. This technique, also referred to as differential wavefront sensing, is commonly used in space-based gravitational wave detectors to determine the attitude of a test mass in one of the interferometer arms from the quadrant diode signals. Successive approximations to the analytical expression are made to simplify the investigation of parameter dependencies. Motivated by our findings, we propose what we believe to be a new measurement method to accurately determine the absolute wavefront curvature of a single measurement beam. We also investigate the change in the coupling parameter when the interferometer "test mirror" is moved from its nominal position, an effect which mediates the coupling of mirror displacement noise into differential phase measurements.

  10. Superharp — A wire scanner with absolute position readout for beam energy measurement at CEBAF

    NASA Astrophysics Data System (ADS)

    Yan, C.; Adderley, P.; Barker, D.; Beaufait, J.; Capek, K.; Carlini, R.; Dahlberg, J.; Feldl, E.; Jordan, K.; Kross, B.; Oren, W.; Wojcik, R.; VanDyke, J.

    1995-02-01

    The CEBAF superharp is an upgraded beam wire scanner which provides absolute beam position readout using a shaft encoder. Superharps allow for high precision measurements of the beam's profile and position ( Δx ˜ 10 μm). The Hall C endstation at CEBAF will use three pairs of superharps to perform beam energy measurements with 10 -3 accuracy. The three pairs are installed at the beginning, the mid-point and the end of the Hall C arc beamline. Using superharps in conjunction with a dual sensor system: the direct current pick-up and the bremsstrahlung detectors, beam profile measurements can be obtained over a wide beam current range of 1 ˜ 200 μA.

  11. Absolute single photoionization cross-section measurements of Rb2+ ions: experiment and theory

    NASA Astrophysics Data System (ADS)

    Macaluso, D. A.; Bogolub, K.; Johnson, A.; Aguilar, A.; Kilcoyne, A. L. D.; Bilodeau, R. C.; Bautista, M.; Kerlin, A. B.; Sterling, N. C.

    2016-12-01

    Absolute single photoionization cross-section measurements of Rb2+ ions were performed using synchrotron radiation and the photo-ion, merged-beams technique at the Advanced Light Source at Lawrence Berkeley National Laboratory. Measurements were made at a photon energy resolution of 13.5 ± 2.5 meV from 37.31 to 44.08 eV spanning the 2P{}3/2o ground state and 2P{}1/2o metastable state ionization thresholds. Multiple autoionizing resonance series arising from each initial state are identified using quantum defect theory. The measurements are compared to Breit-Pauli R-matrix calculations with excellent agreement between theory and experiment.

  12. Absolute measurement of the relativistic magnetic dipole transition energy in heliumlike argon.

    PubMed

    Amaro, Pedro; Schlesser, Sophie; Guerra, Mauro; Le Bigot, Eric-Olivier; Isac, Jean-Michel; Travers, Pascal; Santos, José Paulo; Szabo, Csilla I; Gumberidze, Alexandre; Indelicato, Paul

    2012-07-27

    The 1s2s (3)S(1)→1s(2) (1)S(0) relativistic magnetic dipole transition in heliumlike argon, emitted by the plasma of an electron-cyclotron resonance ion source, has been measured using a double-flat crystal x-ray spectrometer. Such a spectrometer, used for the first time on a highly charged ion transition, provides absolute (reference-free) measurements in the x-ray domain. We find a transition energy of 3104.1605(77) eV (2.5 ppm accuracy). This value is the most accurate, reference-free measurement done for such a transition and is in good agreement with recent QED predictions.

  13. Simple, distance-based measurement for paper analytical devices.

    PubMed

    Cate, David M; Dungchai, Wijitar; Cunningham, Josephine C; Volckens, John; Henry, Charles S

    2013-06-21

    Paper-based analytical devices (PADs) represent a growing class of elegant, yet inexpensive chemical sensor technologies designed for point-of-use applications. Most PADs, however, still utilize some form of instrumentation such as a camera for quantitative detection. We describe here a simple technique to render PAD measurements more quantitative and straightforward using the distance of colour development as a detection motif. The so-called distance-based detection enables PAD chemistries that are more portable and less resource intensive compared to classical approaches that rely on the use of peripheral equipment for quantitative measurement. We demonstrate the utility and broad applicability of this technique with measurements of glucose, nickel, and glutathione using three different detection chemistries: enzymatic reactions, metal complexation, and nanoparticle aggregation, respectively. The results show excellent quantitative agreement with certified standards in complex sample matrices. This work provides the first demonstration of distance-based PAD detection with broad application as a class of new, inexpensive sensor technologies designed for point-of-use applications.

  14. Absolute measurements of the uranium concentration in thick samples using fission-track detectors

    NASA Astrophysics Data System (ADS)

    Enkelmann, Eva; Jonckheere, Raymond; Ratschbacher, Lothar

    2005-04-01

    We propose an improved equation for calculating the uranium concentration in thick samples based on induced fission-track counts in an external detector that takes into consideration (1) the fission-fragment ranges in the sample and external detector, (2) the etchable track length and (3) the track counting efficiency in the external detector. The values of these parameters have been determined by calculation and experiment and are shown to have a significant effect on the calculated uranium concentrations. The new equation was tested by calculating the uranium concentrations in standard uranium glasses (CN-5; IRMM-540R) and apatite samples (Durango; horse tooth) in which the uranium content was also determined with independent methods (INAA; ENAA; TIMS). The results show that: (1) accurate measurements with the fission-track method are feasible within a broad range of uranium concentrations and (2) uranium determinations based on standards are only accurate if the standard and sample are made of the same material. Because the absolute fission-tack dating method is also based on accurate thermal neutron fluence measurements and similar correction factors for the track registration and counting efficiencies, this study provides a strong endorsement for the fact that absolute fission-track ages are accurate.

  15. Measurements Of Absolute Ca II H And K Flux In FGKM Stars

    NASA Astrophysics Data System (ADS)

    Marvin, Christopher; Reiners, A.; Anglada-Escudé, G.; Jeffers, S.; Boro-Saikia, S.

    2016-09-01

    M dwarfs are the most numerous stars in the universe, yet they still lack absolute chromospheric Ca II H and K (R'_HK) calibrations to effectively compare their activity with FGK stars. We scale high-S/N, high-resolution template spectra, obtained by co-adding multiple HARPS spectra of the same star, to PHOENIX stellar atmosphere models, and obtain chromospheric line measurements of Ca II H & K in physical units of 106 M dwarfs. We also derive new Mt. Wilson S-index to R'_HK conversions appropriate for cooler stars, ranging from 0.82 <= B-V <= 2.00. We establish a chromospheric activity database by combining archival data of FGK stars and using our technique to extend absolute chromospheric measurements to M dwarfs. Our results show that using model atmospheres provides a reliable way to scale uncalibrated spectra and also estimate photospheric flux for M dwarfs, but note that accurate stellar parameter determination is essential to compare chromospheric emission of different spectral types.

  16. Measurement of absolute arterial cerebral blood volume in human brain without using a contrast agent.

    PubMed

    Hua, Jun; Qin, Qin; Pekar, James J; van Zijl, Peter C M

    2011-12-01

    Arterial cerebral blood volume (CBV(a) ) is a vital indicator of tissue perfusion and vascular reactivity. We extended the recently developed inflow vascular-space-occupancy (iVASO) MRI technique, which uses spatially selective inversion to suppress the signal from blood flowing into a slice, with a control scan to measure absolute CBV(a) using cerebrospinal fluid (CSF) for signal normalization. Images were acquired at multiple blood nulling times to account for the heterogeneity of arterial transit times across the brain, from which both CBV(a) and arterial transit times were quantified. Arteriolar CBV(a) was determined separately by incorporating velocity-dependent bipolar crusher gradients. Gray matter (GM) CBV(a) values (n=11) were 2.04 ± 0.27 and 0.76 ± 0.17 ml blood/100 ml tissue without and with crusher gradients (b=1.8 s/mm(2) ), respectively. Arterial transit times were 671 ± 43 and 785 ± 69 ms, respectively. The arterial origin of the signal was validated by measuring its T(2) , which was within the arterial range. The proposed approach does not require exogenous contrast agent administration, and provides a non-invasive alternative to existing blood volume techniques for mapping absolute CBV(a) in studies of brain physiology and neurovascular diseases.

  17. Relative and absolute reliability of measures of linoleic acid-derived oxylipins in human plasma.

    PubMed

    Gouveia-Figueira, Sandra; Bosson, Jenny A; Unosson, Jon; Behndig, Annelie F; Nording, Malin L; Fowler, Christopher J

    2015-09-01

    Modern analytical techniques allow for the measurement of oxylipins derived from linoleic acid in biological samples. Most validatory work has concerned extraction techniques, repeated analysis of aliquots from the same biological sample, and the influence of external factors such as diet and heparin treatment upon their levels, whereas less is known about the relative and absolute reliability of measurements undertaken on different days. A cohort of nineteen healthy males were used, where samples were taken at the same time of day on two occasions, at least 7 days apart. Relative reliability was assessed using Lin's concordance correlation coefficients (CCC) and intraclass correlation coefficients (ICC). Absolute reliability was assessed by Bland-Altman analyses. Nine linoleic acid oxylipins were investigated. ICC and CCC values ranged from acceptable (0.56 [13-HODE]) to poor (near zero [9(10)- and 12(13)-EpOME]). Bland-Altman limits of agreement were in general quite wide, ranging from ±0.5 (12,13-DiHOME) to ±2 (9(10)-EpOME; log10 scale). It is concluded that relative reliability of linoleic acid-derived oxylipins varies between lipids with compounds such as the HODEs showing better relative reliability than compounds such as the EpOMEs. These differences should be kept in mind when designing and interpreting experiments correlating plasma levels of these lipids with factors such as age, body mass index, rating scales etc.

  18. Rapid Directional Change Degrades GPS Distance Measurement Validity during Intermittent Intensity Running

    PubMed Central

    Rawstorn, Jonathan C.; Maddison, Ralph; Ali, Ajmol; Foskett, Andrew; Gant, Nicholas

    2014-01-01

    Use of the Global Positioning System (GPS) for quantifying athletic performance is common in many team sports. The effect of running velocity on measurement validity is well established, but the influence of rapid directional change is not well understood in team sport applications. This effect was systematically evaluated using multidirectional and curvilinear adaptations of a validated soccer simulation protocol that maintained identical velocity profiles. Team sport athletes completed 90 min trials of the Loughborough Intermittent Shuttle-running Test movement pattern on curvilinear, and multidirectional shuttle running tracks while wearing a 5 Hz (with interpolated 15 Hz output) GPS device. Reference total distance (13 200 m) was systematically over- and underestimated during curvilinear (2.61±0.80%) and shuttle (−3.17±2.46%) trials, respectively. Within-epoch measurement uncertainty dispersion was widest during the shuttle trial, particularly during the jog and run phases. Relative measurement reliability was excellent during both trials (Curvilinear r = 1.00, slope = 1.03, ICC = 1.00; Shuttle r = 0.99, slope = 0.97, ICC = 0.99). Absolute measurement reliability was superior during the curvilinear trial (Curvilinear SEM = 0 m, CV = 2.16%, LOA ± 223 m; Shuttle SEM = 119 m, CV = 2.44%, LOA ± 453 m). Rapid directional change degrades the accuracy and absolute reliability of GPS distance measurement, and caution is recommended when using GPS to quantify rapid multidirectional movement patterns. PMID:24733158

  19. Absolute reliability of isokinetic knee flexion and extension measurements adopting a prone position.

    PubMed

    Ayala, F; De Ste Croix, M; Sainz de Baranda, P; Santonja, F

    2013-01-01

    The main purpose of this study was to determine the absolute and relative reliability of isokinetic peak torque (PT), angle of peak torque (APT), average power (PW) and total work (TW) for knee flexion and extension during concentric and eccentric actions measured in a prone position at 60, 180 and 240° s(-1). A total of 50 recreational athletes completed the study. PT, APT, PW and TW for concentric and eccentric knee extension and flexion were recorded at three different angular velocities (60, 180 and 240° s(-1)) on three different occasions with a 72- to 96-h rest interval between consecutive testing sessions. Absolute reliability was examined through typical percentage error (CV(TE)), percentage change in the mean (ChM) and relative reliability with intraclass correlations (ICC(3,1)). For both the knee extensor and flexor muscle groups, all strength data (except APT during knee flexion movements) demonstrated moderate absolute reliability (ChM < 3%; ICCs > 0·70; and CV(TE) < 20%) independent of the knee movement (flexion and extension), type of muscle action (concentric and eccentric) and angular velocity (60, 180 and 240° s(-1)). Therefore, the current study suggests that the CV(TE) values reported for PT (8-20%), APT (8-18%) (only during knee extension movements), PW (14-20%) and TW (12-28%) may be acceptable to detect the large changes usually observed after rehabilitation programmes, but not acceptable to examine the effect of preventative training programmes in healthy individuals.

  20. Microfabricated Collector-Generator Electrode Sensor for Measuring Absolute pH and Oxygen Concentrations.

    PubMed

    Dengler, Adam K; Wightman, R Mark; McCarty, Gregory S

    2015-10-20

    Fast-scan cyclic voltammetry (FSCV) has attracted attention for studying in vivo neurotransmission due to its subsecond temporal resolution, selectivity, and sensitivity. Traditional FSCV measurements use background subtraction to isolate changes in the local electrochemical environment, providing detailed information on fluctuations in the concentration of electroactive species. This background subtraction removes information about constant or slowly changing concentrations. However, determination of background concentrations is still important for understanding functioning brain tissue. For example, neural activity is known to consume oxygen and produce carbon dioxide which affects local levels of oxygen and pH. Here, we present a microfabricated microelectrode array which uses FSCV to detect the absolute levels of oxygen and pH in vitro. The sensor is a collector-generator electrode array with carbon microelectrodes spaced 5 μm apart. In this work, a periodic potential step is applied at the generator producing transient local changes in the electrochemical environment. The collector electrode continuously performs FSCV enabling these induced changes in concentration to be recorded with the sensitivity and selectivity of FSCV. A negative potential step applied at the generator produces a transient local pH shift at the collector. The generator-induced pH signal is detected using FSCV at the collector and correlated to absolute solution pH by postcalibration of the anodic peak position. In addition, in oxygenated solutions a negative potential step at the generator produces hydrogen peroxide by reducing oxygen. Hydrogen peroxide is detected with FSCV at the collector electrode, and the magnitude of the oxidative peak is proportional to absolute oxygen concentrations. Oxygen interference on the pH signal is minimal and can be accounted for with a postcalibration.

  1. Bias Properties of Extragalactic Distance Indicators. XI. Methods to Correct for Observational Selection Bias for RR Lyrae Absolute Magnitudes from Trigonometric Parallaxes Expected from the Full-Sky Astrometric Mapping Explorer Satellite

    NASA Astrophysics Data System (ADS)

    Sandage, Allan; Saha, A.

    2002-04-01

    A short history is given of the development of the correction for observation selection bias inherent in the calibration of absolute magnitudes using trigonometric parallaxes. The developments have been due to Eddington, Jeffreys, Trumpler & Weaver, Wallerstein, Ljunggren & Oja, West, Lutz & Kelker, after whom the bias is named, Turon Lacarrieu & Crézé, Hanson, Smith, and many others. As a tutorial to gain an intuitive understanding of several complicated trigonometric bias problems, we study a toy bias model of a parallax catalog that incorporates assumed parallax measuring errors of various severities. The two effects of bias errors on the derived absolute magnitudes are (1) the Lutz-Kelker correction itself, which depends on the relative parallax error δπ/π and the spatial distribution, and (2) a Malmquist-like ``incompleteness'' correction of opposite sign due to various apparent magnitude cutoffs as they are progressively imposed on the catalog. We calculate the bias properties using simulations involving 3×106 stars of fixed absolute magnitude using Mv=+0.6 to imitate RR Lyrae variables in the mean. These stars are spread over a spherical volume bounded by a radius 50,000 pc with different spatial density distributions. The bias is demonstrated by first using a fixed rms parallax uncertainty per star of 50 μas and then using a variable rms accuracy that ranges from 50 μas at apparent magnitude V=9 to 500 μas at V=15 according to the specifications for the Full-Sky Astrometric Mapping Explorer (FAME) satellite to be launched in 2004. The effects of imposing magnitude limits and limits on the ``observer's'' error, δπ/π, are displayed. We contrast the method of calculating mean absolute magnitude directly from the parallaxes where bias corrections are mandatory, with an inverse method using maximum likelihood that is free of the Lutz-Kelker bias, although a Malmquist bias is present. Simulations show the power of the inverse method. Nevertheless, we

  2. Measurements of absolute absorption cross sections of ozone in the 185- to 254-nm wavelength region and the temperature dependence

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Esmond, J. R.; Freeman, D. E.; Parkinson, W. H.

    1993-01-01

    Laboratory measurements of the relative absorption cross sections of ozone at temperatures 195, 228, and 295 K have been made throughout the 185 to 254 nm wavelength region. The absolute absorption cross sections at the same temperatures have been measured at several discrete wavelengths in the 185 to 250 nm region. The absolute cross sections of ozone have been used to put the relative cross sections on a firm absolute basis throughout the 185 to 255 nm region. These recalibrated cross sections are slightly lower than those of Molina and Molina (1986), but the differences are within a few percent and would not be significant in atmospheric applications.

  3. MSTAR: an absolute metrology sensor with sub-micron accuracy for space-based applications

    NASA Technical Reports Server (NTRS)

    Peters, Robert D.; Lay, Oliver P.; Dubovitsky, Serge; Burger, Johan P.; Jeganathan, Muthu

    2004-01-01

    The MSTAR sensor is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with subnanometer accuracy.

  4. Student Performance in Measuring Distance with Wavelengths in Various Settings

    NASA Astrophysics Data System (ADS)

    White, Gary

    2015-04-01

    When physics students are asked to measure the distance between two fixed locations using a pre-defined wavelength as a ruler, there is a surprising failure rate, at least partially due to the fact that the ``ruler'' to be used is not fixed in length (see ``Is a Simple Measurement Task a Roadblock to Student Understanding of Wave Phenomena?,'' by and references therein). I will show some data from introductory classes (algebra- and calculus-based) that replicate this result, and also show some interesting features when comparing a setting involving slinkies with a setting involving surface waves on water.

  5. Non-Gaussian Error Distributions of LMC Distance Moduli Measurements

    NASA Astrophysics Data System (ADS)

    Crandall, Sara; Ratra, Bharat

    2015-12-01

    We construct error distributions for a compilation of 232 Large Magellanic Cloud (LMC) distance moduli values from de Grijs et al. that give an LMC distance modulus of (m - M)0 = 18.49 ± 0.13 mag (median and 1σ symmetrized error). Central estimates found from weighted mean and median statistics are used to construct the error distributions. The weighted mean error distribution is non-Gaussian—flatter and broader than Gaussian—with more (less) probability in the tails (center) than is predicted by a Gaussian distribution; this could be the consequence of unaccounted-for systematic uncertainties. The median statistics error distribution, which does not make use of the individual measurement errors, is also non-Gaussian—more peaked than Gaussian—with less (more) probability in the tails (center) than is predicted by a Gaussian distribution; this could be the consequence of publication bias and/or the non-independence of the measurements. We also construct the error distributions of 247 SMC distance moduli values from de Grijs & Bono. We find a central estimate of {(m-M)}0=18.94+/- 0.14 mag (median and 1σ symmetrized error), and similar probabilities for the error distributions.

  6. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    DOE PAGES

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; ...

    2013-04-18

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, iontemperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describesmore » ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.« less

  7. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Séguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J.; Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A.; McKernan, M. A.; Moran, M.; Rygg, J. R.; Yeoman, M. F.; Zacharias, R.; Leeper, R. J.; Fletcher, K.; Farrell, M.; Jasion, D.; Kilkenny, J.; Paguio, R.

    2013-04-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  8. Absolute measurement of enhanced fluctuations in assemblies of biomolecules by ultrasonic techniques.

    PubMed Central

    Cerf, R

    1985-01-01

    By expressing the fluctuation-dissipation theorem explicitly, equations are obtained for the ultrasonic relaxation amplitudes that contain one single molecular parameter, i.e., the fluctuation, or the sum of fluctuations. The absolute measurement of this parameter is therefore possible. The equations apply to a two-state system, to a multistate system and to a linear Ising chain as well. In an aqueous medium, where molar volume changes are important, the ultrasonic relaxation amplitudes are proportional to the volume fluctuations. For assemblies of biomolecules that exhibit enhanced ultrasonic absorption on assembly it is possible to measure the increase on assembly of the sum of fluctuations. In view of application to tobacco mosaic virus protein aggregates, examples are given in which the fluctuations associated with two normal modes of relaxation are equally enhanced when the difference of conformational stability of the states is reduced. The corresponding observable changes of the ultrasonic spectra are described. PMID:4016196

  9. Absolute ultrasonic displacement amplitude measurements with a submersible electrostatic acoustic transducer

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cantrell, John H.

    1992-01-01

    An experimental technique for absolute measurement of ultrasonic wave particle displacement amplitudes in liquids is reported. The technique is capable of measurements over a frequency range of two decades with a sensitivity less than one angstrom. The technique utilizes a previously reported submersible electrostatic acoustic transducer (ESAT) featuring a conductive membrane stretched over a recessed electrode. An uncertainty analysis shows that the displacement amplitude of an ultrasonic plane wave incident on the ESAT can be experimentally determined to better than 2.3-4 percent, depending on frequency, in the frequency range of 0.5-15 MHz. Membranes with lower and more uniform areal densities can improve the accuracy and extend the operation to higher frequencies.

  10. Absolute measurement of aspheric lens with electrically tunable lens in digital holography

    NASA Astrophysics Data System (ADS)

    Wang, Zhaomin; Qu, Weijuan; Yang, Fang; Tian, Ailing; Asundi, Anand

    2017-01-01

    A novel method for testing aspheric lenses using digital holography with an electrically tunable lens (ETL) is proposed and experimentally verified. The ETL generates a tunable deformed wavefront which helps to decrease the high gradient of aspheric lenses. By decomposing the aspheric surface into two resolvable ones, its absolute phase can be determined using a double-exposure measurement. In this method, the wavefront generated by the ETL need not be identical to the aspheric surface as in conventional null interferometer system, but just sufficient to resolve the high gradient surface. On the other hand, the tunability of the ETL allows generation of wavefronts which can be used to test different aspheric lens. Furthermore, advantages of the ETL such as low cost, fast response, and compact configuration make the proposed method a promising technique for aspheric surface measurement.

  11. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF.

    PubMed

    Casey, D T; Frenje, J A; Johnson, M Gatu; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Magoon, J; Meyerhofer, D D; Sangster, T C; Shoup, M; Ulreich, J; Ashabranner, R C; Bionta, R M; Carpenter, A C; Felker, B; Khater, H Y; LePape, S; MacKinnon, A; McKernan, M A; Moran, M; Rygg, J R; Yeoman, M F; Zacharias, R; Leeper, R J; Fletcher, K; Farrell, M; Jasion, D; Kilkenny, J; Paguio, R

    2013-04-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  12. Absolute measurements of night-time electron density using ISR gyro lines

    NASA Astrophysics Data System (ADS)

    Bhatt, Asti; Kelley, Michael; Nicolls, Michael; Sulzer, Michael

    2012-07-01

    Gyro line in Incoherent Scatter Spectrum is the underused cousin of the more popular Plasma line. This is because it is very weak during the day and stronger during dawn and dusk hours. When the electron density is such that the electron plasma frequency drops below the electron gyro frequency, the gyro line frequency becomes proportional to the electron density. This is during a time when the plasma line is no longer detected, and we have no other means for getting precise measurements for absolute electron density. In this paper, we will present a linear equation for the gyro line frequency and measurements from the Arecibo radar in Puerto Rico, showing comparison with the plasma line data and derived electron density.

  13. Diagnostics principle of microwave cut-off probe for measuring absolute electron density

    SciTech Connect

    Jun, Hyun-Su

    2014-08-15

    A generalized diagnostics principle of microwave cut-off probe is presented with a full analytical solution. In previous studies on the microwave cut-off measurement of weakly ionized plasmas, the cut-off frequency ω{sub c} of a given electron density is assumed to be equal to the plasma frequency ω{sub p} and is predicted using electromagnetic simulation or electric circuit model analysis. However, for specific plasma conditions such as highly collisional plasma and a very narrow probe tip gap, it has been found that ω{sub c} and ω{sub p} are not equal. To resolve this problem, a generalized diagnostics principle is proposed by analytically solving the microwave cut-off condition Re[ε{sub r,eff}(ω = ω{sub c})] = 0. In addition, characteristics of the microwave cut-off condition are theoretically tested for correct measurement of the absolute electron density.

  14. Measurement of the absolute branching fraction for Λc+ → Λμ+νμ

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leithoff, H.; Leng, C.; Li, C.; Cheng, Li; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei.; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, Q. J.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Y. Y.; Liu, Z. A.; Liu, Z. Q.; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Muchnoi, N. Yu.; Muramatsu, H.; Musiol, P.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Yuehong, Xie; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.

    2017-04-01

    We report the first measurement of the absolute branching fraction for Λc+ → Λμ+νμ. This measurement is based on a sample of e+e- annihilation data produced at a center-of-mass energy √{ s} = 4.6 GeV, collected with the BESIII detector at the BEPCII storage rings. The sample corresponds to an integrated luminosity of 567 pb-1. The branching fraction is determined to be B (Λc+ → Λμ+νμ) = (3.49 ± 0.46 (stat) ± 0.27 (syst))%. In addition, we calculate the ratio B (Λc+ → Λμ+νμ) / B (Λc+ → Λe+νe) to be 0.96 ± 0.16 (stat) ± 0.04 (syst).

  15. Absolute measurements of the high-frequency magnetic dynamics in high-{Tc} superconductors

    SciTech Connect

    Hayden, S.M.; Aeppli, G.; Dai, P.; Mook, H.A.; Perring, T.G.; Cheong, S.W.; Fisk, Z.; Dogan, F.; Mason, T.E.

    1997-08-07

    The authors review recent measurements of the high-frequency dynamic magnetic susceptibility in the high-T{sub c} superconducting systems La{sub 2{minus}x}Sr{sub x}CuO{sub 4} and YBa{sub 2}Cu{sub 3}O{sub 6+x}. Experiments were performed using the chopper spectrometers HET and MARI at the ISIS spallation source. The authors have placed their measurements on an absolute intensity scale, this allows systematic trends to be seen and comparisons with theory to be made. They find that the insulating S = 1/2 antiferromagnetic parent compounds show a dramatic renormalization in the spin wave intensity. The effect of doping on the response is to cause broadenings in wave vector and large redistributions of spectral weight in frequency.

  16. Absolute frequency measurement with uncertainty below 1× 10^{-15} using International Atomic Time

    NASA Astrophysics Data System (ADS)

    Hachisu, Hidekazu; Petit, Gérard; Ido, Tetsuya

    2017-01-01

    The absolute frequency of the ^{87}Sr clock transition measured in 2015 (Jpn J Appl Phys 54:112401, 2015) was reevaluated using an improved frequency link to the SI second. The scale interval of International Atomic Time (TAI) that we used as the reference was calibrated for an evaluation interval of 5 days instead of the conventional interval of 1 month which is regularly employed in Circular T. The calibration on a 5-day basis removed the uncertainty in assimilating the TAI scale of the 5-day mean to that of the 1-month mean. The reevaluation resulted in the total uncertainty of 10^{-16} level for the first time without local cesium fountains. Since there are presumably no correlations among systematic shifts of cesium fountains worldwide, the measurement is not limited by the systematic uncertainty of a specific primary frequency standard.

  17. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    SciTech Connect

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; Sangster, T. C.; Shoup, M.; Ulreich, J.; Ashabranner, R. C.; Bionta, R. M.; Carpenter, A. C.; Felker, B.; Khater, H. Y.; LePape, S.; MacKinnon, A.; McKernan, M. A.; Moran, M.; Rygg, J. R.; Yeoman, M. F.; Zacharias, R.; Leeper, R. J.; Fletcher, K.; Farrell, M.; Jasion, D.; Kilkenny, J.; Paguio, R.

    2013-04-18

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, iontemperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  18. Absolute measurement of the 242Pu neutron-capture cross section

    SciTech Connect

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.

    2016-04-21

    Here, the absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n,γ) cross section was made over the incident neutron energy range from thermal to ≈ 6 keV, and the absolute scale of the (n,γ) cross section was set according to the known 239Pu(n,f) resonance at En,R = 7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the cross section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈ 40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n,γ) cross section at the En,R = 2.68 eV resonance is within 2.4% of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30% lower than the evaluated data at En ≈ 1 keV and are approximately 2σ away from the previous measurement at En ≈ 20 keV.

  19. Motor Fatigue Measurement by Distance-Induced Slow Down of Walking Speed in Multiple Sclerosis

    PubMed Central

    Phan-Ba, Rémy; Calay, Philippe; Grodent, Patrick; Delrue, Gael; Lommers, Emilie; Delvaux, Valérie; Moonen, Gustave; Belachew, Shibeshih

    2012-01-01

    Background and rationale Motor fatigue and ambulation impairment are prominent clinical features of people with multiple sclerosis (pMS). We hypothesized that a multimodal and comparative assessment of walking speed on short and long distance would allow a better delineation and quantification of gait fatigability in pMS. Our objectives were to compare 4 walking paradigms: the timed 25-foot walk (T25FW), a corrected version of the T25FW with dynamic start (T25FW+), the timed 100-meter walk (T100MW) and the timed 500-meter walk (T500MW). Methods Thirty controls and 81 pMS performed the 4 walking tests in a single study visit. Results The 4 walking tests were performed with a slower WS in pMS compared to controls even in subgroups with minimal disability. The finishing speed of the last 100-meter of the T500MW was the slowest measurable WS whereas the T25FW+ provided the fastest measurable WS. The ratio between such slowest and fastest WS (Deceleration Index, DI) was significantly lower only in pMS with EDSS 4.0–6.0, a pyramidal or cerebellar functional system score reaching 3 or a maximum reported walking distance ≤4000 m. Conclusion The motor fatigue which triggers gait deceleration over a sustained effort in pMS can be measured by the WS ratio between performances on a very short distance and the finishing pace on a longer more demanding task. The absolute walking speed is abnormal early in MS whatever the distance of effort when patients are unaware of ambulation impairment. In contrast, the DI-measured ambulation fatigability appears to take place later in the disease course. PMID:22514661

  20. Absolute fluorescence measurements > 1000 nm: setup design, calibration and standards (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Resch-Genger, Ute; Würth, Christian; Pauli, Jutta; Hatami, Soheil; Kaiser, Martin

    2016-03-01

    There is an increasing interest in optical reporters like semiconductor quantum dots and upconversion nanophosphors with emission < 1000 nm for bioanalysis, medical diagnostics, and safety barcodes and hence, in reliable fluorescence measurements in this wavelength region, e.g., for the comparison of material performance and the rational design of new nanomaterials with improved properties [1-4]. The performance of fluorescence measurements < 800 nm and especially < 1000 nm is currently hampered by the lack of suitable methods and standards for the simple determination of the wavelength-dependent spectral responsivity of fluorescence measuring systems and the control of measured emission spectra and intensities [3-5]. This is of special relevance for nanocrystalline emitters like quantum dots and rods as well as for upconversion nanocrystals, where surface states and the accessibility of emissive states by quenchers largely control accomplishable quantum yields and hence, signal sizes and detection sensitivities from the reporter side. Here, we present the design of an integrating sphere setup for the absolute measurement of emission spectra and quantum yields in the wavelength region of 650 to 1600 nm and its calibration as well as examples for potential fluorescence standards from different reporter classes for the control of the reliability of such measurements [5]. This includes new spectral fluorescence standards for the wavelength region of 650 nm to 1000 nm as well as a set of quantum yield standards covering the wavelength region from 400 nm to 1000 nm.

  1. White-light interferometer with dispersion: an accurate fiber-optic sensor for the measurement of distance.

    PubMed

    Pavlícek, Pavel; Häusler, Gerd

    2005-05-20

    We present a fiber-optical sensor for distance measurement of smooth and rough surfaces that is based on white-light interferometry; the sensor measures the distance from the sample surface to the sensor head. Because white light is used, the measurement is absolute. The measurement uncertainty depends not on the aperture of the optical system but only on the properties of the rough surface and is commonly approximately 1 microm. The measurement range is approximately 1 mm. The sensor includes no mechanical moving parts; mechanical movement is replaced by the spectral decomposition of light at the interferometer output. The absence of mechanical moving parts enables a high measuring rate to be reached.

  2. THE DISTANCE MEASUREMENT OF NGC 1313 WITH CEPHEIDS

    SciTech Connect

    Qing, Gao; Wang, Wei; Liu, Ji-Feng; Yoachim, Peter

    2015-01-20

    We present the detection of Cepheids in the barred spiral galaxy NGC 1313, using the Wide Field and Planetary Camera 2 on the Hubble Space Telescope. Twenty B(F450W) and V(F555W) epochs of observations spanning over three weeks were obtained, on which the profile-fitting photometry of all stars in the monitored field was performed using the package HSTphot. A sample of 26 variable stars have been identified to be Cepheids, with periods between 3 and 14 days. Based on the derived period-luminosity relations in B- and V-bands, we obtain an extinction-corrected distance modulus of μ{sub NGC} {sub 1313} = 28.32 ± 0.08 (random) ± 0.06 (systematic), employing the Large Magellanic Cloud as the distance zero point calibrator. The above moduli correspond to a distance of 4.61 ± 0.17 (random) ±0.13 (systematic) Mpc, consistent with previous measurements reported in the literature within uncertainties. In addition, the reddening to NGC 1313 is found to be small.

  3. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  4. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy.

    PubMed

    Hallacoglu, Bertan; Sassaroli, Angelo; Wysocki, Michael; Guerrero-Berroa, Elizabeth; Schnaider Beeri, Michal; Haroutunian, Vahram; Shaul, Merav; Rosenberg, Irwin H; Troen, Aron M; Fantini, Sergio

    2012-08-01

    We present near-infrared spectroscopy measurement of absolute cerebral hemoglobin concentration and saturation in a large sample of 36 healthy elderly (mean age, 85 ± 6 years) and 19 young adults (mean age, 28 ± 4 years). Non-invasive measurements were obtained on the forehead using a commercially available multi-distance frequency-domain system and analyzed using a diffusion theory model for a semi-infinite, homogeneous medium with semi-infinite boundary conditions. Our study included repeat measurements, taken five months apart, on 16 elderly volunteers that demonstrate intra-subject reproducibility of the absolute measurements with cross-correlation coefficients of 0.9 for absorption coefficient (μa), oxy-hemoglobin concentration ([HbO2]), and total hemoglobin concentration ([HbT]), 0.7 for deoxy-hemoglobin concentration ([Hb]), 0.8 for hemoglobin oxygen saturation (StO2), and 0.7 for reduced scattering coefficient (μ's). We found significant differences between the two age groups. Compared to young subjects, elderly subjects had lower cerebral [HbO2], [Hb], [HbT], and StO2 by 10 ± 4 μM, 4 ± 3 μM, 14 ± 5 μM, and 6%±5%, respectively. Our results demonstrate the reliability and robustness of multi-distance near-infrared spectroscopy measurements based on a homogeneous model in the human forehead on a large sample of human subjects. Absolute, non-invasive optical measurements on the brain, such as those presented here, can significantly advance the development of NIRS technology as a tool for monitoring resting/basal cerebral perfusion, hemodynamics, oxygenation, and metabolism.

  5. Absolute measurements of the cosmic microwave background from Amundsen-Scott South Pole Station

    SciTech Connect

    Bersanelli, S.; Bonelli, G.; Sironi, G. ); Levin, S. ); Smoot, G.F.; Bensadoun, M.; De Amici, G.; Limon, M.; Vinje, W. )

    1993-01-01

    Observations of the cosmic microwave background play a central role in modern cosmology. The existence of the CMB as a remanent of the early Universe has constituted a pillar for the Big Bang scenario. The recent cosmic background explorer differential microwave radiometer results have provided further support to the generally accepted standard model by detecting for the first time primordial fluctuations in the CMB field at the limits expected by structure formation theories. An international program of ground-based absoluted measurements of the CMB at the centimeter and multicentimeter wavelengths was initiated in 1982. This paper reports results at the South Pole, one of a few areas of low-background environments. 12 refs., 2 tabs.

  6. Measurement of the absolute reflectance of polytetrafluoroethylene (PTFE) immersed in liquid xenon

    NASA Astrophysics Data System (ADS)

    Neves, F.; Lindote, A.; Morozov, A.; Solovov, V.; Silva, C.; Bras, P.; Rodrigues, J. P.; Lopes, M. I.

    2017-01-01

    The performance of a detector using liquid xenon (LXe) as a scintillator is strongly dependent on the collection efficiency for xenon scintillation light, which in turn is critically dependent on the reflectance of the surfaces that surround the active volume. To improve the light collection in such detectors the active volume is usually surrounded by polytetrafluoroethylene (PTFE) reflector panels, used due to its very high reflectance—even at the short wavelength of scintillation light of LXe (peaked at 178 nm). In this work, which contributed to the overall R&D effort towards the LUX-ZEPLIN (LZ) experiment, we present experimental results for the absolute reflectance measurements of three different PTFE samples (including the material used in the LUX detector) immersed in LXe for its scintillation light. The obtained results show that very high bi-hemispherical reflectance values (>= 97%) can be achieved, enabling very low energy thresholds in liquid xenon scintillator-based detectors.

  7. Absolute spectral response measurements of different photodiodes useful for applications in the UV spectral region

    NASA Astrophysics Data System (ADS)

    Pelizzo, Maria G.; Ceccherini, Paolo; Garoli, Denis; Masut, Pietro; Nicolosi, Piergiorgio

    2004-09-01

    Long UV radiation exposure can result in damages of biological tissues, as burns, skin aging, erythema and even melanoma cancer. In the past years an increase of melanoma cancer has been observed and associated to the atmospheric ozone deployment. Attendance of sun tanning unit centers has become a huge social phenomena, and the maximum UV radiation dose that a human being can receive is regulated by law. On the other side, UV radiation is largely used for therapeutic and germicidal purposes. In all these areas, spectroradiometer and radiomenter are needed for monitoring UVA (315-400 nm), UVB (280-315 nm) and UVC (100-280 nm) irradiance. We have selected some commercial photodiodes which can be used as solid state detectors in these instruments. We have characterized them by measuring their absolute spectral response in the 200 - 400 nm spectral range.

  8. Measurement of the Absolute Branching Fraction of D0 to K- pi+

    SciTech Connect

    Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, A.; Eigen, G.; Ofte, I.; Stugu, B.; Sun, L.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Button-Shafer, J.; /LBL, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Munich, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /Frascati /Genoa U. /Harvard U. /Heidelberg U. /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Karlsruhe U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /Maryland U. /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /Paris U., VI-VII /Pennsylvania U. /Perugia U. /Pisa U. /Prairie View A-M /Princeton U. /INFN, Rome /Rostock U. /Rutherford /DSM, DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison /Yale U.

    2007-04-25

    The authors measure the absolute branching fraction for D{sup 0} {yields} K{sup -} {pi}{sup +} using partial reconstruction of {bar B}{sup 0} {yields} D*{sup +}X{ell}{sup -}{bar {nu}}{sub {ell}} decays, in which only the charged lepton and the pion from the decay D*{sup +} {yields} D{sup 0}{pi}{sup +} are used. Based on a data sample of 230 million B{bar B} pairs collected at the {Upsilon}(4S) resonance with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC, they obtain {Beta}(D{sup 0} {yields} K{sup -}{pi}{sup +}) = (4.007 {+-} 0.037 {+-} 0.070)%, where the first error is statistical and the second error is systematic.

  9. Long-Distance Measurement-Device-Independent Multiparty Quantum Communication

    NASA Astrophysics Data System (ADS)

    Fu, Yao; Yin, Hua-Lei; Chen, Teng-Yun; Chen, Zeng-Bing

    2015-03-01

    The Greenberger-Horne-Zeilinger (GHZ) entanglement, originally introduced to uncover the extreme violation of local realism against quantum mechanics, is an important resource for multiparty quantum communication tasks. But the low intensity and fragility of the GHZ entanglement source in current conditions have made the practical applications of these multiparty tasks an experimental challenge. Here we propose a feasible scheme for practically distributing the postselected GHZ entanglement over a distance of more than 100 km for experimentally accessible parameter regimes. Combining the decoy-state and measurement-device-independent protocols for quantum key distribution, we anticipate that our proposal suggests an important avenue for practical multiparty quantum communication.

  10. Distance Measurements between Homonuclear Spins in Rotating Solids

    NASA Astrophysics Data System (ADS)

    Weintraub, O.; Vega, S.; Hoelger, C.; Limbach, H. H.

    The effective Hamiltonian of the "simple excitation for the dephasing of the rotational-echo amplitudes" (SEDRA) experiment has been derived. This experiment enables the determination of the strength of the dipolar interaction of a homonuclear spin pair in a solid, rotating at the magic angle, and thus provides a way to measure internuclear distances. The dipolar decay of the rotational-echo amplitudes of powder samples, generated by a set of π pulses, is measured together with the echo decay that is not influenced by the dipolar interaction. The latter is measured by the transverse-echo SEDRA experiment that refocuses the SEDRA decay. The Floquet theory approach is utilized to evaluate the effective Hamiltonians that describe the behavior of the spin systems. The influence of the chemical-shift anisotropy parameters of the interacting spins on the effective SEDRA Hamiltonian is also discussed. Results of Δ S/ S0 SEDRA experiments on the 15N spin pair in solid 3(5)-methyl-5(3) -phenylpyrazole- 15N 2 are shown and compared with exact calculations. The data suggest a nuclear distance between the nitrogen atoms of 1.385 ± 0.025 Å.

  11. Absolute height measurement of specular surfaces with modified active fringe reflection photogrammetry

    NASA Astrophysics Data System (ADS)

    Ren, Hongyu; Jiang, Xiangqian; Gao, Feng; Zhang, Zonghua

    2014-07-01

    Deflectometric methods have been studied for more than a decade for slope measurement of specular freeform surfaces through utilization of the deformation of a sample pattern after reflection from a tested sample surface. Usually, these approaches require two-directional fringe patterns to be projected on a LCD screen or ground glass and require slope integration, which leads to some complexity for the whole measuring process. This paper proposes a new mathematical measurement model for measuring topography information of freeform specular surfaces, which integrates a virtual reference specular surface into the method of active fringe reflection photogrammetry and presents a straight-forward relation between height of the tested surface and phase signals. This method only requires one direction of horizontal or vertical sinusoidal fringe patterns to be projected from a LCD screen, resulting in a significant reduction in capture time over established methods. Assuming the whole system has been precalibrated during the measurement process, the fringe patterns are captured separately via the virtual reference and detected freeform surfaces by a CCD camera. The reference phase can be solved according to the spatial geometric relation between the LCD screen and the CCD camera. The captured phases can be unwrapped with a heterodyne technique and optimum frequency selection method. Based on this calculated unwrapped-phase and that proposed mathematical model, absolute height of the inspected surface can be computed. Simulated and experimental results show that this methodology can conveniently calculate topography information for freeform and structured specular surfaces without integration and reconstruction processes.

  12. Absolute Calibration of the Magnetic Field Measurement for Muon g-2

    NASA Astrophysics Data System (ADS)

    Farooq, Midhat; Chupp, Tim; Muon g-2 Collaboration Collaboration

    2017-01-01

    The muon g-2 experiment at Fermilab (E989) investigates the >3- σ discrepancy between the standard model prediction and the current experimental measurement of the muon magnetic moment anomaly, aμ = (g-2)/2. The effort requires a precise measurement of the 1.45 T magnetic field of the muon storage ring to 70 ppb. The final measurement will employ multiple absolute calibration probes: two water probes and a 3He probe. The 3He probe offers a cross-check of the water probes with different systematic corrections, adding a level of confidence to the measurement. A low-field 3He probe was developed at the Univ. of Michigan by employing a method called MEOP for the hyper-polarization of 3He gas, followed by NMR to determine the frequency proportional to the magnetic field in which the probe is placed. A modified probe design for operation under high fields will be tested at Argonne National Lab. Future development also involves the study of the systematic uncertainties to attain the error budget of <30 ppb for the calibration. Next, the calibration from the probes will be transferred to g-2 through several steps of a calibration chain ending in the final step of calibrating the NMR probes which measure the field in the muon storage ring at Fermilab. NSF PHY-1506021.

  13. Is absolute noninvasive temperature measurement by the Pr[MOE-DO3A] complex feasible.

    PubMed

    Hentschel, M; Findeisen, M; Schmidt, W; Frenzel, T; Wlodarczyk, W; Wust, P; Felix, R

    2000-02-01

    Recently, the feasibility of the praseodymium complex of 10-(2-methoxyethyl)-1,4,7,10-tetraaza-cyclododecane-1,4,7-tr iacetate (Pr[MOE-DO3A]) for non-invasive temperature measurement via 1H spectroscopy has been demonstrated. Particularly the suitability of the complex for non-invasive temperature measurements including in vivo spectroscopy without spatial resolution as well as first spectroscopic imaging measurements at low temporal resolution (> or = 4 min) and high temporal resolution (breath hold, approximately 20 s) has been shown. As of today, calibration curves according to the particular experimental conditions are necessary. This work aims to clarify whether the Pr[MOE-DO3A] probe in conjunction with 1H-NMR spectroscopy allows non-invasive absolute temperature measurements with high accuracy. The measurement results from two different representative media, distilled water and human plasma, show a slight but significant dependence of the calibration curves on the surrounding medium. Calibration curves in water and plasma were derived for the temperature dependence of the chemical shift difference (F) between Pr[MOE-DO3A]'s OCH3 and water with F = -(27.53 +/- 0.04) + (0.125 +/- 0.001) x T and F = -(27.61 +/- 0.02) + (0.129 +/- 0.001) x T, respectively, with F in ppm and T in degrees C. However, the differences are minuscule even for the highest spectral resolution of 0.001 ppm/pt, so that they are indistinguishable under practical conditions. The estimated temperature errors are +/- 0.18 degrees C for water and +/- 0.14 degrees C for plasma and with that only slightly worse than the measurement accuracy of the fiber-optical temperature probe (+/- 0.1 degrees C). It can be concluded that the results obtained indicate the feasibility of the 1H spectroscopy method in conjunction with the Pr[MOE-DO3A] probe for absolute temperature measurements, with a maximum accuracy of +/- 0.2 degrees C.

  14. Demonstrating the error budget for the climate absolute radiance and refractivity observatory through solar irradiance measurements (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Thome, Kurtis J.; McCorkel, Joel; Angal, Amit

    2016-09-01

    The goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to provide high-accuracy data for evaluation of long-term climate change trends. Essential to the CLARREO project is demonstration of SI-traceable, reflected measurements that are a factor of 10 more accurate than current state-of-the-art sensors. The CLARREO approach relies on accurate, monochromatic absolute radiance calibration in the laboratory transferred to orbit via solar irradiance knowledge. The current work describes the results of field measurements with the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) that is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. Recent measurements of absolute spectral solar irradiance using SOLARIS are presented. The ground-based SOLARIS data are corrected to top-of-atmosphere values using AERONET data collected within 5 km of the SOLARIS operation. The SOLARIS data are converted to absolute irradiance using laboratory calibrations based on the Goddard Laser for Absolute Measurement of Radiance (GLAMR). Results are compared to accepted solar irradiance models to demonstrate accuracy values giving confidence in the error budget for the CLARREO reflectance retrieval.

  15. An absolute index (Ab-index) to measure a researcher's useful contributions and productivity.

    PubMed

    Biswal, Akshaya Kumar

    2013-01-01

    Bibliographic analysis has been a very powerful tool in evaluating the effective contributions of a researcher and determining his/her future research potential. The lack of an absolute quantification of the author's scientific contributions by the existing measurement system hampers the decision-making process. In this paper, a new metric system, Absolute index (Ab-index), has been proposed that allows a more objective comparison of the contributions of a researcher. The Ab-index takes into account the impact of research findings while keeping in mind the physical and intellectual contributions of the author(s) in accomplishing the task. The Ab-index and h-index were calculated for 10 highly cited geneticists and molecular biologist and 10 young researchers of biological sciences and compared for their relationship to the researchers input as a primary author. This is the first report of a measuring method clarifying the contributions of the first author, corresponding author, and other co-authors and the sharing of credit in a logical ratio. A java application has been developed for the easy calculation of the Ab-index. It can be used as a yardstick for comparing the credibility of different scientists competing for the same resources while the Productivity index (Pr-index), which is the rate of change in the Ab-index per year, can be used for comparing scientists of different age groups. The Ab-index has clear advantage over other popular metric systems in comparing scientific credibility of young scientists. The sum of the Ab-indices earned by individual researchers of an institute per year can be referred to as Pr-index of the institute.

  16. Absolute branching fraction measurements for exclusive D{sub s} semileptonic decays

    SciTech Connect

    Yelton, J.; Rubin, P.; Lowrey, N.; Mehrabyan, S.; Selen, M.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Poling, R.; Scott, A. W.; Zweber, P.; Dobbs, S.; Metreveli, Z.

    2009-09-01

    We measure the absolute branching fractions of D{sub s} semileptonic decays where the hadron in the final state is one of {phi}, {eta}, {eta}{sup '}, K{sub S}{sup 0}, K*{sup 0}, and f{sub 0}, using 2.8x10{sup 5} e{sup +}e{sup -}{yields}D{sub s}D{sub s}* decays collected in the CLEO-c detector at a center-of-mass energy close to 4170 MeV. We obtain B(D{sub s}{sup +}{yields}{phi}e{sup +}{nu}{sub e})=(2.29{+-}0.37{+-}0.11)%, B(D{sub s}{sup +}{yields}{eta}e{sup +}{nu}{sub e})=(2.48{+-}0.29{+-}0.13)%, B(D{sub s}{sup +}{yields}{eta}{sup '}e{sup +}{nu}{sub e})=(0.91{+-}0.33{+-}0.05)%, where the first uncertainties are statistical and the second are systematic. We also obtain B(D{sub s}{sup +}{yields}K{sup 0}e{sup +}{nu}{sub e})=(0.37{+-}0.10{+-}0.02)%, and B(D{sub s}{sup +}{yields}K*{sup 0}e{sup +}{nu}{sub e})=(0.18{+-}0.07{+-}0.01)%, which are the first measurements of Cabibbo suppressed exclusive D{sub s} semileptonic decays, and, B(D{sub s}{sup +}{yields}f{sub 0}e{sup +}{nu}{sub e})xB(f{sub 0}{yields}{pi}{sup +}{pi}{sup -})=(0.13{+-}0.04{+-}0.01)%. This is the first absolute product branching fraction determination for a semileptonic decay including a scalar meson in the final state.

  17. Sinusoidal-wavelength-scanning interferometer with double feedback control for real-time distance measurement.

    PubMed

    Sasaki, Osami; Akiyama, Kazuhiro; Suzuki, Takamasa

    2002-07-01

    In addition to a conventional phase a the interference signal of a sinusoidal-wavelength-scanning interferometer has a phase-modulation amplitude Zb that is proportional to the optical path difference L and amplitude b of the wavelength scan. L and b are controlled by a double feedback system so that the phase alpha and the amplitude Zb are kept at 3pi/2 and pi, respectively. The voltage applied to a device that displaces a reference mirror to change the optical path difference becomes a ruler with scales smaller than a wavelength. Voltage applied to a device that determines the amplitude of the wavelength scan becomes a ruler marking every wavelength. These two rulers enable one to measure an absolute distance longer than a wavelength in real time.

  18. Measurements of Absolute Hadronic Branching Fractions of the Λc+ Baryon

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Eren, E. E.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fedorov, O.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2016-02-01

    We report the first measurement of absolute hadronic branching fractions of Λc+ baryon at the Λc+Λ¯c - production threshold, in the 30 years since the Λc+ discovery. In total, 12 Cabibbo-favored Λc+ hadronic decay modes are analyzed with a double-tag technique, based on a sample of 567 pb-1 of e+e- collisions at √{s }=4.599 GeV recorded with the BESIII detector. A global least-squares fitter is utilized to improve the measured precision. Among the measurements for twelve Λc+ decay modes, the branching fraction for Λc+→p K-π+ is determined to be (5.84 ±0.27 ±0.23 )%, where the first uncertainty is statistical and the second is systematic. In addition, the measurements of the branching fractions of the other 11 Cabibbo-favored hadronic decay modes are significantly improved.

  19. Absolute air refractive index measurement and tracking based on variable length vacuum cell

    NASA Astrophysics Data System (ADS)

    Yu, Xiangzhi; Zhang, Tieli; Ellis, Jonathan D.

    2016-06-01

    A refractometer system using four modified Wu-type heterodyne interferometers with a variable length vacuum cell is presented. The proposed system has two working modes: (1) a moving mode for measuring the absolute air refractive index at the start of a measurement and (2) a static mode for monitoring the air refractive index fluctuation with the same bandwidth as a traditional displacement interferometer. The system requires no gas filling or pumping during the measurement and can be used for real-time refractive index compensation. Comparison experiments with empirical equations are conducted to investigate the feasibility and performance of the proposed system. The standard deviation of the measurement difference between the proposed system and empirical equation is 2.8 parts in 107, which is close to the uncertainty of our refractive index reference based on the accuracy of the environmental sensors. The relative refractive index tracking is a few parts in 108 with a bandwidth of 10 Hz, but high bandwidths are readily achievable.

  20. Characteristic Functional of a Probability Measure Absolutely Continuous with Respect to a Gaussian Radon Measure

    DTIC Science & Technology

    1984-08-01

    1962) 372-390. 5. J. Neveu, "Martingales a temps discret." Masson et Cie. Paris. 1972. 6. H. Sato and Y. Okazaki, Separabilities of a Gaussian Radon measure. Ann. Inst. Henri Poincare , 11 (1975) 287-298.

  1. The impact of water temperature on the measurement of absolute dose

    NASA Astrophysics Data System (ADS)

    Islam, Naveed Mehdi

    To standardize reference dosimetry in radiation therapy, Task Group 51 (TG 51) of American Association of Physicist's in Medicine (AAPM) recommends that dose calibration measurements be made in a water tank at a depth of 10 cm and at a reference geometry. Methodologies are provided for calculating various correction factors to be applied in calculating the absolute dose. However the protocol does not specify the water temperature to be used. In practice, the temperature of water during dosimetry may vary considerably between independent sessions and different centers. In this work the effect of water temperature on absolute dosimetry has been investigated. Density of water varies with temperature, which in turn may impact the beam attenuation and scatter properties. Furthermore, due to thermal expansion or contraction air volume inside the chamber may change. All of these effects can result in a change in the measurement. Dosimetric measurements were made using a Farmer type ion chamber on a Varian Linear Accelerator for 6 MV and 23 MV photon energies for temperatures ranging from 10 to 40 °C. A thermal insulation was designed for the water tank in order to maintain relatively stable temperature over the duration of the experiment. Dose measured at higher temperatures were found to be consistently higher by a very small magnitude. Although the differences in dose were less than the uncertainty in each measurement, a linear regression of the data suggests that the trend is statistically significant with p-values of 0.002 and 0.013 for 6 and 23 MV beams respectively. For a 10 degree difference in water phantom temperatures, which is a realistic deviation across clinics, the final calculated reference dose can differ by 0.24% or more. To address this effect, first a reference temperature (e.g.22 °C) can be set as the standard; subsequently a correction factor can be implemented for deviations from this reference. Such a correction factor is expected to be of similar

  2. Reservoir properties inversion in a karst aquifer using absolute gravity measurements

    NASA Astrophysics Data System (ADS)

    Sabrina, Deville; Thomas, Jacob; Jean, Chery; Roger, Bayer; Cedric, Champollion; Moigne Nicolas, Le

    2010-05-01

    Direct estimate of water storage and transfer in karst aquifers are difficult to obtain due to the extreme permeability variation of the medium. In this study, we aim to quantify water transfer properties in a karst aquifer of the Larzac plateau (South Massif Central, France) using absolute gravity monitoring. Our measurements are cutting edge as they directly measure the integrated water content below the gravimeter. We analyze monthly repeated FG5 absolute gravity measurements (1-2 microGal precision) over a three-year period at three sites on the karst aquifer. Important precipitation events lead to significant gravity increases which peak up to several weeks after the events depending on the site. Also, gravity decreases in a different manner at each site during drier periods. We consider the different gravity responses at each site to relate to water transfer properties between the surface and the unsaturated zone beneath. Within this scope, the gravity signal is used to invert for those water transfer properties. A simple two-tank reservoir model including a ‘soil' reservoir that feeds into a ‘subsurface' reservoir is used as the forward model in a Monte Carlo simulation. Reservoir discharge proceeds according to Maillet's law. Water levels within the reservoirs are converted into a gravity signal considering an infinite slab scaled by a factor that accounts for both the surrounding topographic effects and the water interception by the building where the measurements are made. Inverted parameters are the discharge constants and the scaling factors. Model input is rainfall measured with rain gauges at each site minus estimated evapotranspiration. The inversion leads to scaling factors much smaller than 1 for the attraction of the surface reservoir. The effects of the surrounding topography and those of the building on gravity are compared to the inversion result of the ‘surface reservoir' scaling factors. We discuss if the forward model and underlying

  3. Approximation by Absolutely Continuous Invariant Measures of Iterated Function Systems with Place-Dependent Probabilities

    NASA Astrophysics Data System (ADS)

    Islam, Md Shafiqul; Chandler, Stephen

    2015-10-01

    Let S be the attractor (fractal) of a contractive iterated function system (IFS) with place-dependent probabilities. An IFS with place-dependent probabilities is a random map T = {τ1(x),τ2(x),…,τK(x); p1(x),p2(x),…,pK(x)}, where the probabilities p1(x),p2(x),…,pK(x) of switching from one transformation to another are functions of positions, that is, at each step, the random map T moves the point x to τk(x) with probability pk(x). If the random map T has a unique invariant measure μ, then the support of μ is the attractor S. For a bounded region X ⊆ ℝN, we prove the existence of a sequence {T0,n∗} of IFSs with place-dependent probabilities whose invariant measures {μn} are absolutely continuous with respect to Lebesgue measure. Moreover, if X is a compact metric space, we prove that μn converges weakly to μ as n →∞. We present examples with computations.

  4. Femtosecond frequency comb measurement of absolute frequencies and hyperfine coupling constants in cesium vapor

    SciTech Connect

    Stalnaker, Jason E.; Mbele, Vela; Gerginov, Vladislav; Fortier, Tara M.; Diddams, Scott A.; Hollberg, Leo; Tanner, Carol E.

    2010-04-15

    We report measurements of absolute transition frequencies and hyperfine coupling constants for the 8S{sub 1/2}, 9S{sub 1/2}, 7D{sub 3/2}, and 7D{sub 5/2} states in {sup 133}Cs vapor. The stepwise excitation through either the 6P{sub 1/2} or 6P{sub 3/2} intermediate state is performed directly with broadband laser light from a stabilized femtosecond laser optical-frequency comb. The laser beam is split, counterpropagated, and focused into a room-temperature Cs vapor cell. The repetition rate of the frequency comb is scanned and we detect the fluorescence on the 7P{sub 1/2,3/2{yields}}6S{sub 1/2} branches of the decay of the excited states. The excitations to the different states are isolated by the introduction of narrow-bandwidth interference filters in the laser beam paths. Using a nonlinear least-squares method we find measurements of transition frequencies and hyperfine coupling constants that are in agreement with other recent measurements for the 8S state and provide improvement by 2 orders of magnitude over previously published results for the 9S and 7D states.

  5. Measurements of absolute radical densities in atmospheric pressure plasmas with complex gas mixtures

    NASA Astrophysics Data System (ADS)

    O'Connell, Deborah

    2015-05-01

    Low temperature plasmas are emerging as an exciting development for therapeutics. Non-equilibrium plasmas, operated at ambient atmospheric pressure and temperature, are very efficient sources for highly reactive neutral particles, including reactive oxygen and nitrogen species (RONS), which are known to play a crucial role in biological systems and existing therapeutics. Transport of these plasma components to the target is complex. In order to understand the chemical kinetics and plasma-liquid-biological interaction mechanisms measurements of the relevant RONS are key. Under atmospheric pressure these are challenging, primarily due to the multi-phase and highly collisional environment, requiring extremely high temporal (picosecond to nanosecond) and spatial (microns) resolution. Absolute measurements of radical densities (including O and OH) using picosecond two-photon absorption laser induced fluorescence (ps-TALIF), UV and high-resolution synchrotron VUV absorption spectroscopy will be presented. Fluorescence lifetime measurements of the laser-excited radicals are possible with picosecond resolution and this provides us with information about collisional quenching partners and thus collision kinetics with the surrounding environment. The authors acknowledge support by the UK EPSRC EP/H003797 and EP/K018388.

  6. Absolute angle measurement using the earth-field-referenced hall effect sensors.

    PubMed

    Kolen, P T; Rhode, J P; Francis, P R

    1993-03-01

    A miniaturized absolute angle sensor utilizing Hall generators referenced to the Earth's ambient magnetic field has been developed. The sensor has three-dimensional angular sensitivity which allows the output to be self-normalized resulting in high immunity to both B-field and temperature induced errors. The individual Hall generator elements were operated with a final sensitivity of 4.07 V G-1. The Earth's field, magnitude 0.486 G with a surface declination angle of 58.2 degrees (San Diego, California), was used as the excitation/reference field. Bandwidth limiting, low-noise design, and active/passive thermal compensation techniques were employed resulting in a sensor bandwidth of DC to 100 Hz with a maximum signal-to-noise ratio of 44.5 dB. The maximum angular resolution of the sensor was measured to be +/- 0.27 degrees. Temperature induced error was measured to be less than 2% from 25 degrees C to 40 degrees C. The measurement of shoulder joint rotation was used as the test case application for the sensor with excellent agreement between theoretical and experimental performance.

  7. Distance measurement based on light field geometry and ray tracing.

    PubMed

    Chen, Yanqin; Jin, Xin; Dai, Qionghai

    2017-01-09

    In this paper, we propose a geometric optical model to measure the distances of object planes in a light field image. The proposed geometric optical model is composed of two sub-models based on ray tracing: object space model and image space model. The two theoretic sub-models are derived on account of on-axis point light sources. In object space model, light rays propagate into the main lens and refract inside it following the refraction theorem. In image space model, light rays exit from emission positions on the main lens and subsequently impinge on the image sensor with different imaging diameters. The relationships between imaging diameters of objects and their corresponding emission positions on the main lens are investigated through utilizing refocusing and similar triangle principle. By combining the two sub-models together and tracing light rays back to the object space, the relationships between objects' imaging diameters and corresponding distances of object planes are figured out. The performance of the proposed geometric optical model is compared with existing approaches using different configurations of hand-held plenoptic 1.0 cameras and real experiments are conducted using a preliminary imaging system. Results demonstrate that the proposed model can outperform existing approaches in terms of accuracy and exhibits good performance at general imaging range.

  8. Atlas of Galaxies Useful for Measuring the Cosmological Distance Scale

    NASA Technical Reports Server (NTRS)

    Sandage, Allan; Bedke, John

    1988-01-01

    A critical first step in determining distances to galaxies is to measure some property of primary objects such as stars of specific types, H II regions, and supernovae remnants that are resolved out of the general galactic star content. With the completion of the Mount Wilson/Palomar/Las Campanas survey of bright galaxies in 1985, excellent large-scale photographs of the complete Shapley-Ames sample were on hand. Most of the galaxies useful for distance scale calibration are in this collection. This atlas contains photographs of 322 galaxies including the majority of all Shapley-Ames bright galaxies, plus cluster members in the Virgo Cluster core that might be usefully resolved by the Hubble Space Telescope (HST). Because of crowding and high background-disk surface brightness, the choice of field position is crucial for programs involving resolution of particular galaxies into stars. The purpose of this atlas is to facilitate this choice. Enough information is given herein (coordinates of the galaxy centers and the scale of the photography) to allow optimum placement of the HST wide-field planetary camera format of approximately 150 arc-seconds on a side.

  9. Distance measure with improved lower bound for multivariate time series

    NASA Astrophysics Data System (ADS)

    Li, Hailin

    2017-02-01

    Lower bound function is one of the important techniques used to fast search and index time series data. Multivariate time series has two aspects of high dimensionality including the time-based dimension and the variable-based dimension. Due to the influence of variable-based dimension, a novel method is proposed to deal with the lower bound distance computation for multivariate time series. The proposed method like the traditional ones also reduces the dimensionality of time series in its first step and thus does not directly apply the lower bound function on the multivariate time series. The dimensionality reduction is that multivariate time series is reduced to univariate time series denoted as center sequences according to the principle of piecewise aggregate approximation. In addition, an extended lower bound function is designed to obtain good tightness and fast measure the distance between any two center sequences. The experimental results demonstrate that the proposed lower bound function has better tightness and improves the performance of similarity search in multivariate time series datasets.

  10. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    SciTech Connect

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; /more authors..

    2012-09-20

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between {approx}6 and {approx}13 GeV with an estimated uncertainty of {approx}2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  11. Measurement of the Absolute Branching Fractions for $D^-_s\\!\\rightarrow\\!\\ell^-\\bar{\

    SciTech Connect

    del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, David Nathan; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; Tanabe, T.; /more authors..

    2010-10-27

    The absolute branching fractions for the decays D{sub s}{sup -} {yields} {ell}{sup -}{bar {nu}}{sub {ell}} ({ell} = e, {mu}, or {tau}) are measured using a data sample corresponding to an integrated luminosity of 521 fb{sup -1} collected at center of mass energies near 10.58 GeV with the BABAR detector at the PEP-II e{sup +}e{sup -} collider at SLAC. The number of D{sub s}{sup -} mesons is determined by reconstructing the recoiling system DKX{gamma} in events of the type e{sup +}e{sup -}DKXD*{sub s}{sup -}, where D*{sub s}{sup -} {yields} D{sub s}{sup -}{gamma} and X represents additional pions from fragmentation. The D{sub s}{sup -} {yields} {ell}{sup 0}{nu}{sub {ell}} events are detected by full or partial reconstruction of the recoiling system DKX{gamma}{ell}. The branching fraction measurements are combined to determine the D{sub s}{sup -} decay constant f{sub D{sub s}} = (258.6 {+-} 6.4 {+-} 7.5) MeV, where the first uncertainty is statistical and the second is systematic.

  12. Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurements of compressed materials

    DOE PAGES

    Gregor, M. C.; Boni, R.; Sorce, A.; ...

    2016-11-29

    Experiments in high-energy-density physics often use optical pyrometry to determine temperatures of dynamically compressed materials. In combination with simultaneous shock-velocity and optical-reflectivity measurements using velocity interferometry, these experiments provide accurate equation-of-state data at extreme pressures (P > 1 Mbar) and temperatures (T > 0.5 eV). This paper reports on the absolute calibration of the streaked optical pyrometer (SOP) at the Omega Laser Facility. The wavelength-dependent system response was determined by measuring the optical emission from a National Institute of Standards and Technology–traceable tungsten-filament lamp through various narrowband (40 nm-wide) filters. The integrated signal over the SOP’s ~250-nm operating range ismore » then related to that of a blackbody radiator using the calibrated response. We present a simple closed-form equation for the brightness temperature as a function of streak-camera signal derived from this calibration. As a result, error estimates indicate that brightness temperature can be inferred to a precision of <5%.« less

  13. Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurements of compressed materials

    NASA Astrophysics Data System (ADS)

    Gregor, M. C.; Boni, R.; Sorce, A.; Kendrick, J.; McCoy, C. A.; Polsin, D. N.; Boehly, T. R.; Celliers, P. M.; Collins, G. W.; Fratanduono, D. E.; Eggert, J. H.; Millot, M.

    2016-11-01

    Experiments in high-energy-density physics often use optical pyrometry to determine temperatures of dynamically compressed materials. In combination with simultaneous shock-velocity and optical-reflectivity measurements using velocity interferometry, these experiments provide accurate equation-of-state data at extreme pressures (P > 1 Mbar) and temperatures (T > 0.5 eV). This paper reports on the absolute calibration of the streaked optical pyrometer (SOP) at the Omega Laser Facility. The wavelength-dependent system response was determined by measuring the optical emission from a National Institute of Standards and Technology-traceable tungsten-filament lamp through various narrowband (40-nm-wide) filters. The integrated signal over the SOP's ˜250-nm operating range is then related to that of a blackbody radiator using the calibrated response. We present a simple closed-form equation for the brightness temperature as a function of streak-camera signal derived from this calibration. Error estimates indicate that brightness temperature can be inferred to a precision of <5%.

  14. Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurements of compressed materials

    SciTech Connect

    Gregor, M. C.; Boni, R.; Sorce, A.; Kendrick, J.; McCoy, C. A.; Polsin, D. N.; Boehly, T. R.; Celliers, P. M.; Collins, G. W.; Fratanduono, D. E.; Eggert, J. H.; Millot, M.

    2016-11-29

    Experiments in high-energy-density physics often use optical pyrometry to determine temperatures of dynamically compressed materials. In combination with simultaneous shock-velocity and optical-reflectivity measurements using velocity interferometry, these experiments provide accurate equation-of-state data at extreme pressures (P > 1 Mbar) and temperatures (T > 0.5 eV). This paper reports on the absolute calibration of the streaked optical pyrometer (SOP) at the Omega Laser Facility. The wavelength-dependent system response was determined by measuring the optical emission from a National Institute of Standards and Technology–traceable tungsten-filament lamp through various narrowband (40 nm-wide) filters. The integrated signal over the SOP’s ~250-nm operating range is then related to that of a blackbody radiator using the calibrated response. We present a simple closed-form equation for the brightness temperature as a function of streak-camera signal derived from this calibration. As a result, error estimates indicate that brightness temperature can be inferred to a precision of <5%.

  15. ArtDeco: a beam-deconvolution code for absolute cosmic microwave background measurements

    NASA Astrophysics Data System (ADS)

    Keihänen, E.; Reinecke, M.

    2012-12-01

    We present a method for beam-deconvolving cosmic microwave background (CMB) anisotropy measurements. The code takes as input the time-ordered data along with the corresponding detector pointings and known beam shapes, and produces as output the harmonic aTlm, aElm, and aBlm coefficients of the observed sky. From these one can derive temperature and Q and U polarisation maps. The method is applicable to absolute CMB measurements with wide sky coverage, and is independent of the scanning strategy. We tested the code with extensive simulations, mimicking the resolution and data volume of Planck 30 GHz and 70 GHz channels, but with exaggerated beam asymmetry. We applied it to multipoles up to l = 1700 and examined the results in both pixel space and harmonic space. We also tested the method in presence of white noise. The code is released under the terms of the GNU General Public License and can be obtained from http://sourceforge.net/projects/art-deco/

  16. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbielini, G; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B,; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Gehrels, N.; Hays, E.; McEnery, J. E.; Thompson, D. J.; Troja, E. J.

    2012-01-01

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron- plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between approx. 6 and approx. 13 GeV with an estimated uncertainty of approx. 2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  17. Measuring the absolute water content of the brain using quantitative MRI.

    PubMed

    Shah, Nadim Joni; Ermer, Veronika; Oros-Peusquens, Ana-Maria

    2011-01-01

    Methods for quantitative imaging of the brain are presented and compared. Highly precise and accurate mapping of the absolute water content and distribution, as presented here, requires a significant number of corrections and also involves mapping of other MR parameters. Here, either T(1) and T(2)(*) or T(2) is mapped, and several corrections involving the measurement of temperature, transmit and receive B(1) inhomogeneities and signal extrapolation to zero TE are applied. Information about the water content of the whole brain can be acquired in clinically acceptable measurement times (10 or 20 min). Since water content is highly regulated in the healthy brain, pathological changes can be easily identified and their evolution or correlation with other manifestations of the disease investigated. In addition to voxel-based total water content, information about the different environments of water can be gleaned from qMRI. The myelin water fraction can be extracted from the fit of very high-SNR multiple-echo T(2) decay curves with a superposition of a large number of exponentials. Diseases involving de- or dysmyelination can be investigated and lead to novel observations regarding the water compartmentalisation in tissue, despite the limited spatial coverage. In conclusion, quantitative MRI is emerging as an unparalleled tool for the study of the normal and diseased brain, replacing the customary time-space environment of the sequential mixed-contrast MRI with a multi-NMR-parametric space in which tissue microscopy is increasingly revealed.

  18. Frequency scanning interferometry in ATLAS: remote, multiple, simultaneous and precise distance measurements in a hostile environment

    NASA Astrophysics Data System (ADS)

    Coe, P. A.; Howell, D. F.; Nickerson, R. B.

    2004-11-01

    ATLAS is the largest particle detector under construction at CERN Geneva. Frequency scanning interferometry (FSI), also known as absolute distance interferometry, will be used to monitor shape changes of the SCT (semiconductor tracker), a particle tracker in the inaccessible, high radiation environment at the centre of ATLAS. Geodetic grids with several hundred fibre-coupled interferometers (30 mm to 1.5 m long) will be measured simultaneously. These lengths will be measured by tuning two lasers and comparing the resulting phase shifts in grid line interferometers (GLIs) with phase shifts in a reference interferometer. The novel inexpensive GLI design uses diverging beams to reduce sensitivity to misalignment, albeit with weaker signals. One micrometre precision length measurements of grid lines will allow 10 µm precision tracker shape corrections to be fed into ATLAS particle tracking analysis. The technique was demonstrated by measuring a 400 mm interferometer to better than 400 nm and a 1195 mm interferometer to better than 250 nm. Precise measurements were possible, even with poor quality signals, using numerical analysis of thousands of intensity samples. Errors due to drifts in interferometer length were substantially reduced using two lasers tuned in opposite directions and the precision was further improved by linking measurements made at widely separated laser frequencies.

  19. Comb mode filtering silver mirror cavity for spectroscopic distance measurement

    NASA Astrophysics Data System (ADS)

    Šmíd, R.; Hänsel, A.; Pravdová, L.; Sobota, J.; Číp, O.; Bhattacharya, N.

    2016-09-01

    In this work we present a design of an external optical cavity based on Fabry-Perot etalons applied to a 100 MHz Er-doped fiber optical frequency comb working at 1560 nm to increase its repetition frequency. A Fabry-Perot cavity is constructed based on a transportable cage system with two silver mirrors in plano-concave geometry including the mode-matching lenses, fiber coupled collimation package and detection unit. The system enables full 3D angle mirror tilting and x-y off axis movement as well as distance between the mirrors. We demonstrate the increase of repetition frequency by direct measurement of the beat frequency and spectrally by using the virtually imaged phased array images.

  20. Distance measurements from supernovae and dark energy constraints

    SciTech Connect

    Wang Yun

    2009-12-15

    Constraints on dark energy from current observational data are sensitive to how distances are measured from Type Ia supernova (SN Ia) data. We find that flux averaging of SNe Ia can be used to test the presence of unknown systematic uncertainties, and yield more robust distance measurements from SNe Ia. We have applied this approach to the nearby+SDSS+ESSENCE+SNLS+HST set of 288 SNe Ia, and the 'Constitution' set of 397 SNe Ia. Combining the SN Ia data with cosmic microwave background anisotropy data from Wilkinson Microwave Anisotropy Probe 5 yr observations, the Sloan Digital Sky Survey baryon acoustic oscillation measurements, the data of 69 gamma-ray bursts (GRBs) , and the Hubble constant measurement from the Hubble Space Telescope project SHOES, we measure the dark energy density function X(z){identical_to}{rho}{sub X}(z)/{rho}{sub X}(0) as a free function of redshift (assumed to be a constant at z>1 or z>1.5). Without the flux averaging of SNe Ia, the combined data using the Constitution set of SNe Ia seem to indicate a deviation from a cosmological constant at {approx}95% confidence level at 0 < or apporx. z < or approx. 0.8; they are consistent with a cosmological constant at {approx}68% confidence level when SNe Ia are flux averaged. The combined data using the nearby+SDSS+ESSENCE+SNLS+HST data set of SNe Ia are consistent with a cosmological constant at 68% confidence level with or without flux averaging of SNe Ia, and give dark energy constraints that are significantly more stringent than that using the Constitution set of SNe Ia. Assuming a flat Universe, dark energy is detected at >98% confidence level for z{<=}0.75 using the combined data with 288 SNe Ia from nearby+SDSS+ESSENCE+SNLS+HST, independent of the assumptions about X(z{>=}1). We quantify dark energy constraints without assuming a flat Universe using the dark energy figure of merit for both X(z) and a dark energy equation-of-state linear in the cosmic scale factor.

  1. Measuring U-Series Isotopes in Polar Ice: Toward an Absolute Ice Chronometer

    NASA Astrophysics Data System (ADS)

    Aciego, S. M.; Bourdon, B.; Schwander, J.; Stocker, T.

    2007-12-01

    Comparison of ice records between ice sheets, alpine glaciers, and marine records currently rely on a combination of ice layer counting, matching relative time scales, and interpolation. U-series recoil from mineral aerosols (dust) into the ice matrix is one possible technique for determining the absolute age of ice, independent of any other parameters. However, the low concentrations of the U-series parents and daughters have made previous measurements difficult and the results ambiguous. We present here the first results of work we have undertaken for determining U-series recoil ages in ice cores. The primary difficulty of this technique is the extremely low concentrations of dust in polar ice samples, and therefore, of the recoil daughter products in the ice. Previous work on dust provenance indicates 0.01 to 1 mg of dust concentration per kilogram of ice from the ice cores of Greenland and Antarctica. Given these conditions, U and Th dissolved in the water fraction of the aerosol-ice system may overwhelm the total U-series budget. Constraining the possible "initial" U and Th is the first step in determining the feasibility of this dating method for ice cores. We have implemented new geochemical techniques: ultra-clean ice processing, multiple ion counter ICP-MS measurements of U and Th, and quantification of total recoveries of the aerosol and water fractions using both established USGS standards, an internal lab loess standard that best approximates the dust fraction found in ice cores, and [U]-[Th] standards SRM960 and Th105. Dissolution experiments using U and Th spikes with these standards indicate recovery of the dust and dissolved fractions are better than 99%. We present here the first concentration measurements of U from the water fraction (<0.2 microns) of freshly deposited South Pole snow (20pg/kg), as well as a series of measurements from the upper section (~128m) of the Dye 3 ice core in Greenland which thus far range from 410pg/kg to 520fg/kg U

  2. Measurement of absolute E2 transition strengths in {sup 176}W: Signatures for a rapid shape change

    SciTech Connect

    Fransen, Ch.; Dewald, A.; Friessner, G.; Hackstein, M.; Jolie, J.; Pissulla, T.; Rother, W.; Zell, K.-O.; Moeller, O.

    2011-10-28

    The X(5) symmetry describes nuclei at the critical point of the shape phase transition from axially deformed rotor nuclei to spherical vibrators. {sup 150}Nd, {sup 152}Sm, and {sup 154}Gd were the first nuclei where the predicted characteristics of the X(5) symmetry were observed. Later it was shown that also {sup 176,178,180}Os can be successfully described with the X(5) symmetry.In the close vicinity of shape phase transitions one expects strongly changing nuclear shapes. In the X(5) region around A = 150 this was observed for nuclei with different neutron numbers, whereas in the X(5) region around A = 180 this is to be expected for different proton numbers. The aim of the work presented here is the confirmation of a rapid shape change for nuclei close to {sup 178}Os. Besides the knowledge on the level scheme of the nuclei of interest, especially absolute E2 transition strengths are crucial for the interpretation of nuclear structure. Prolate deformation is expected for {sup 176}W. Thus we performed a recoil distance Doppler shift (RDDS) measurement on {sup 176}W to measure E2 transition strengths from level lifetimes. The experiment was performed at the Cologne FN TANDEM accelerator with the Cologne coincidence plunger with the reaction {sup 169}Dy({sup 16}O,4n){sup 176}W and a beam energy of 80 MeV. We will present our experimental results and relate them to data on the neighboring nuclei {sup 178}Os and {sup 182}Pt. The results will be discussed in the framework of nuclear shape transitions in this mass region and compared to calculations with both the Interacting Boson Model (IBM) and the GCM.

  3. Absolute multilateration between spheres

    NASA Astrophysics Data System (ADS)

    Muelaner, Jody; Wadsworth, William; Azini, Maria; Mullineux, Glen; Hughes, Ben; Reichold, Armin

    2017-04-01

    Environmental effects typically limit the accuracy of large scale coordinate measurements in applications such as aircraft production and particle accelerator alignment. This paper presents an initial design for a novel measurement technique with analysis and simulation showing that that it could overcome the environmental limitations to provide a step change in large scale coordinate measurement accuracy. Referred to as absolute multilateration between spheres (AMS), it involves using absolute distance interferometry to directly measure the distances between pairs of plain steel spheres. A large portion of each sphere remains accessible as a reference datum, while the laser path can be shielded from environmental disturbances. As a single scale bar this can provide accurate scale information to be used for instrument verification or network measurement scaling. Since spheres can be simultaneously measured from multiple directions, it also allows highly accurate multilateration-based coordinate measurements to act as a large scale datum structure for localized measurements, or to be integrated within assembly tooling, coordinate measurement machines or robotic machinery. Analysis and simulation show that AMS can be self-aligned to achieve a theoretical combined standard uncertainty for the independent uncertainties of an individual 1 m scale bar of approximately 0.49 µm. It is also shown that combined with a 1 µm m‑1 standard uncertainty in the central reference system this could result in coordinate standard uncertainty magnitudes of 42 µm over a slender 1 m by 20 m network. This would be a sufficient step change in accuracy to enable next generation aerospace structures with natural laminar flow and part-to-part interchangeability.

  4. Absolute light and resolution measurements for sensitive CsI(Tl)/photodiode detectors

    NASA Astrophysics Data System (ADS)

    Meier, Michael M.

    2003-01-01

    To conserve volume and power, photodiode/scintillator combinations are strong candidates for gamma-ray detection in space applications. High sensitivity to MeV gamma rays necessitates large-volume scintillators, which are most effectively read out with large-area photodiodes. However, because photodiodes have unity gain, the electronic noise limits resolution, and therefore small-area photodiodes that minimize capacitance are preferred. Thus, optimization of resolution involves maximizing light production and transport in the scintillator and light collection in the photodiode, while minimizing photodiode area. Measurements of performance are reported for 1×1×1cm3/10×10mm2, 80cm3/18×18mm2, and 85cm3/10×10mm2 CsI(Tl)/photodiode combinations. Each large scintillator was a single crystal, machined to a geometry that comprised a 40mm diameter × 50mm height cylindrical section that was extended through a 20°conical section to a square face that matched the respective photodiode sensitive surface. Absolute scales were estimated for the light output by measuring the photodiode responses to 241Am (59.54keV), 57Co (122.06 and 136.47keV), and 133Ba (80.99keV) and assuming a value of 3.67eV/electron-hole pair. The photodiode quantum efficiencies for the CsI(Tl) emission spectrum, corrected for Si reflection back into the scintillator, was taken to be 0.835. We obtained values of 58.2, 46.7, and 34.6 photons/keV for the combined light production and transport into the CsI for the 1cm3, ~80cm3, and ~85cm3 detectors, respectively. The best measured resolutions at 662keVfor the detectors were 5.9%, 7.2%, and 7.4% FWHM, respectively.

  5. Measurement of the absolute Raman cross section of the optical phonon in silicon

    NASA Astrophysics Data System (ADS)

    Aggarwal, R. L.; Farrar, L. W.; Saikin, S. K.; Aspuru-Guzik, A.; Stopa, M.; Polla, D. L.

    2011-04-01

    The absolute Raman cross section σ of the first-order 519 cm -1 optical phonon in silicon was measured using a small temperature-controlled blackbody for the signal calibration of the Raman system. Measurements were made with a 25-mil thick (001) silicon sample located in the focal plane of a 20-mm effective focal length (EFL) lens using 785-, 1064-, and 1535-nm CW pump lasers for the excitation of Raman scattering. The pump beam was polarized along the [100] axis of the silicon sample. Values of 1.0±0.2×10 -27, 3.6±0.7×10 -28, and 1.1±0.2×10 -29 cm 2 were determined for σ for 785-, 1064-, and 1535-nm excitation, respectively. The corresponding values of the Raman scattering efficiency S are 4.0±0.8×10 -6, 1.4±0.3×10 -6, and 4.4±0.8×10 -8 cm -1 sr -1.The values of the Raman polarizability |d| for 785-, 1064-, and 1535-nm excitation are 4.4±0.4×10 -15, 5.1±0.5×10 -15, and 1.9±0.2×10 -15 cm 2, respectively. The values of 4.4±0.4×10 -15 and 5.1±0.5×10 -15 cm 2 for |d| for 785- and 1064-nm excitation, respectively, are 1.3 and 2.0 times larger than the values of 3.5×10 -15 and 2.5×10 -15 cm 2 calculated by Wendel. The Raman polarizability |d| computed using the density functional theory in the long-wavelength limit is consistent with the general trend of the measured data and Wendel's model.

  6. ARCADE 2 Measurement of the Absolute Sky Brightness at 3-90 GHz

    NASA Technical Reports Server (NTRS)

    Fixsen, D. J.; Kogut, A.; Levin, S.; Limon, M.; Mirel, P.; Seiffert, M.; Singal, J.; Wollack, E.; Villela, T.; Wuensche, C. A.

    2011-01-01

    The ARCADE 2 instrument has measured the absolute temperature of the sky at frequencies 3, 8, 10, 30, and 90 GHz, uSing an open-aperture cryogenic instrument observing al balloon altitudes with no emissive windows between the beam-forming optics and the sky. An external blackbody calibrator provides an in situ reference. Systematic errors were greatly reduced by using differential radiometers and cooling all critical components to physical temperatures approximating the cosmic microwave background (CMB) temperature. A linear model is used to compare the output of each radiometer to a set of thermometers on the instrument. Small correction. are made for the residual emission from the flight train, balloon, atmosphere, and foreground Galactic emission. The ARCADE 2 data alone show an excess radio rise of 54 +/- 6 mK at 3.3 GHz in addition to a CMB temperature of 2.731 +/- 0.004 K. Combining the ARCADE 2 data with data from the literature shows an excess power-law spectrum of T = 24.1 +/- 2.1 (K)(v/v(sub o)(exp -2.599+/-0.036 from 22 MHz to 10 GHz (v(sub 0) = 310 MHz) in addition to a CMB temperature of 2.725 +/- 0.001 K.

  7. Effect of inhomogeneities on high precision measurements of cosmological distances

    NASA Astrophysics Data System (ADS)

    Peel, Austin; Troxel, M. A.; Ishak, Mustapha

    2014-12-01

    We study effects of inhomogeneities on distance measures in an exact relativistic Swiss-cheese model of the Universe, focusing on the distance modulus. The model has Λ CDM background dynamics, and the "holes" are nonsymmetric structures described by the Szekeres metric. The Szekeres exact solution of Einstein's equations, which is inhomogeneous and anisotropic, allows us to capture potentially relevant effects on light propagation due to nontrivial evolution of structures in an exact framework. Light beams traversing a single Szekeres structure in different ways can experience either magnification or demagnification, depending on the particular path. Consistent with expectations, we find a shift in the distance modulus μ to distant sources due to demagnification when the light beam travels primarily through the void regions of our model. Conversely, beams are magnified when they propagate mainly through the overdense regions of the structures, and we explore a small additional effect due to time evolution of the structures. We then study the probability distributions of Δ μ =μΛ CDM-μSC for sources at different redshifts in various Swiss-cheese constructions, where the light beams travel through a large number of randomly oriented Szekeres holes with random impact parameters. We find for Δ μ the dispersions 0.004 ≤σΔ μ≤0.008 mag for sources with redshifts 1.0 ≤z ≤1.5 , which are smaller than the intrinsic dispersion of, for example, magnitudes of type Ia supernovae. The shapes of the distributions we obtain for our Swiss-cheese constructions are peculiar in the sense that they are not consistently skewed toward the demagnification side, as they are in analyses of lensing in cosmological simulations. Depending on the source redshift, the distributions for our models can be skewed to either the demagnification or the magnification side, reflecting a limitation of these constructions. This could be the result of requiring the continuity of Einstein

  8. Functional claudication distance: a reliable and valid measurement to assess functional limitation in patients with intermittent claudication

    PubMed Central

    Kruidenier, Lotte M; Nicolaï, Saskia PA; Willigendael, Edith M; de Bie, Rob A; Prins, Martin H; Teijink, Joep AW

    2009-01-01

    Background Disease severity and functional impairment in patients with intermittent claudication is usually quantified by the measurement of pain-free walking distance (intermittent claudication distance, ICD) and maximal walking distance (absolute claudication distance, ACD). However, the distance at which a patient would prefer to stop because of claudication pain seems a definition that is more correspondent with the actual daily life walking distance. We conducted a study in which the distance a patient prefers to stop was defined as the functional claudication distance (FCD), and estimated the reliability and validity of this measurement. Methods In this clinical validity study we included patients with intermittent claudication, following a supervised exercise therapy program. The first study part consisted of two standardised treadmill tests. During each test ICD, FCD and ACD were determined. Primary endpoint was the reliability as represented by the calculated intra-class correlation coefficients. In the second study part patients performed a standardised treadmill test and filled out the Rand-36 questionnaire. Spearman's rho was calculated to assess validity. Results The intra-class correlation coefficients of ICD, FCD and ACD were 0.940, 0.959, and 0.975 respectively. FCD correlated significantly with five out of nine domains, namely physical function (rho = 0.571), physical role (rho = 0.532), vitality (rho = 0.416), pain (rho = 0.416) and health change (rho = 0.414). Conclusion FCD is a reliable and valid measurement for determining functional capacity in trained patients with intermittent claudication. Furthermore it seems that FCD better reflects the actual functional impairment. In future studies, FCD could be used alongside ICD and ACD. PMID:19254382

  9. Noise in two-color electronic distance meter measurements revisited

    USGS Publications Warehouse

    Langbein, J.

    2004-01-01

    Frequent, high-precision geodetic data have temporally correlated errors. Temporal correlations directly affect both the estimate of rate and its standard error; the rate of deformation is a key product from geodetic measurements made in tectonically active areas. Various models of temporally correlated errors are developed and these provide relations between the power spectral density and the data covariance matrix. These relations are applied to two-color electronic distance meter (EDM) measurements made frequently in California over the past 15-20 years. Previous analysis indicated that these data have significant random walk error. Analysis using the noise models developed here indicates that the random walk model is valid for about 30% of the data. A second 30% of the data can be better modeled with power law noise with a spectral index between 1 and 2, while another 30% of the data can be modeled with a combination of band-pass-filtered plus random walk noise. The remaining 10% of the data can be best modeled as a combination of band-pass-filtered plus power law noise. This band-pass-filtered noise is a product of an annual cycle that leaks into adjacent frequency bands. For time spans of more than 1 year these more complex noise models indicate that the precision in rate estimates is better than that inferred by just the simpler, random walk model of noise.

  10. ELENA MCP detector: absolute efficiency measurement for low energy neutral atoms

    NASA Astrophysics Data System (ADS)

    Rispoli, R.; De Angelis, E.; Colasanti, L.; Vertolli, N.; Orsini, S.; Scheer, J.; Mura, A.; Milillo, A.; Wurz, P.; Selci, S.; Di Lellis, A. M.; Leoni, R.; D'Alessandro, M.; Mattioli, F.; Cibella, S.

    2012-04-01

    MicroChannel plates (MCP) detectors are frequently used in space instrumentation for detecting a wide range of radiation and particles. In particular, the capability to detect non-thermal low energy neutral species is crucial for the sensor ELENA (Emitted Low-Energy Neutral Atoms), part of the package SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) on board the BepiColombo mission to Mercury to be launched in 2014. ELENA is a TOF sensor, based on a novel concept ultra-sonic oscillating shutter (Start section)which is operated at frequencies up to 50 kHz; a MCP detector is used as a Stop section. It is aimed to detect neutral atoms in the range 10 eV - 5 keV, within 70° FOV, perpendicular to the S/C orbital plane. ELENA will monitor the emission of neutral atoms from the whole surface of Mercury thanks to the spacecraft motion. The major scientific objectives are the interaction between the environment and the planet, the global particle loss-rate and the remote sensing of the surface properties. In particular, surface release processes are investigated by identifying particles release from the surface, via solar wind-induced ion sputtering (<1eV and >100 eV) as well as Hydrogen back-scattered at hundreds eV. MCP absolute detection efficiency for very low energy neutral atoms (E< 30eV) is a crucial point not yet investigated. At the MEFISTO facility of the Physical Institute of University of Bern (CH), measurements on three different type of MCPs coating have been performed providing the behaviors of MCP detection efficiency in the range 10eV-1keV. Outcomes from such measurements are here discussed.

  11. Reduced dose measurement of absolute myocardial blood flow using dynamic SPECT imaging in a porcine model

    SciTech Connect

    Timmins, Rachel; Klein, Ran; Petryk, Julia; Marvin, Brian; Kemp, Robert A. de; Ruddy, Terrence D.; Wells, R. Glenn; Wei, Lihui

    2015-09-15

    Purpose: Absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR) measurements provide important additional information over traditional relative perfusion imaging. Recent advances in camera technology have made this possible with single-photon emission tomography (SPECT). Low dose protocols are desirable to reduce the patient radiation risk; however, increased noise may reduce the accuracy of MBF measurements. The authors studied the effect of reducing dose on the accuracy of dynamic SPECT MBF measurements. Methods: Nineteen 30–40 kg pigs were injected with 370 + 1110 MBq of Tc-99m sestamibi or tetrofosmin or 37 + 111 MBq of Tl-201 at rest + stress. Microspheres were injected simultaneously to measure MBF. The pigs were imaged in list-mode for 11 min starting at the time of injection using a Discovery NM 530c camera (GE Healthcare). Each list file was modified so that 3/4, 1/2, 1/4, 1/8, 1/16, and 1/32 of the original counts were included in the projections. Modified projections were reconstructed with CT-based attenuation correction and an energy window-based scatter correction and analyzed with FlowQuant kinetic modeling software using a 1-compartment model. A modified Renkin-Crone extraction function was used to convert the tracer uptake rate K1 to MBF values. The SPECT results were compared to those from microspheres. Results: Correlation between SPECT and microsphere MBF values for the full injected activity was r ≥ 0.75 for all 3 tracers and did not significantly degrade over all count levels. The mean MBF and MFR and the standard errors in the estimates were not significantly worse than the full-count data at 1/4-counts (Tc99m-tracers) and 1/2-counts (Tl-201). Conclusions: Dynamic SPECT measurement of MBF and MFR in pigs can be performed with 1/4 (Tc99m-tracers) or 1/2 (Tl-201) of the standard injected activity without significantly reducing accuracy and precision.

  12. A new distance measure for model-based sequence clustering.

    PubMed

    García-García, Darío; Parrado Hernández, Emilio; Díaz-de María, Fernando

    2009-07-01

    We review the existing alternatives for defining model-based distances for clustering sequences and propose a new one based on the Kullback-Leibler divergence. This distance is shown to be especially useful in combination with spectral clustering. For improved performance in real-world scenarios, a model selection scheme is also proposed.

  13. Measuring the e-Learning Autonomy of Distance Education Students

    ERIC Educational Resources Information Center

    Firat, Mehmet

    2016-01-01

    Previous studies have provided evidence that learner autonomy is an important factor in academic achievement. However, few studies have investigated the autonomy of distance education students in e-learning environments. The purpose of this study is to evaluate the e-learning autonomy of distance education students who are responsible for their…

  14. New Trends of Measurement and Assessment in Distance Education

    ERIC Educational Resources Information Center

    Kaya, Zeki; Tan, Seref

    2014-01-01

    Distance education is a discipline that offers solutions to some important education problems. Distance education, contribute to the solution to the problems such as; inequality of opportunities, lifelong education, the implementation of a series of individual and social goals that can contribute to and benefit from educational technology and…

  15. Correlation measure to detect time series distances, whence economy globalization

    NASA Astrophysics Data System (ADS)

    Miśkiewicz, Janusz; Ausloos, Marcel

    2008-11-01

    An instantaneous time series distance is defined through the equal time correlation coefficient. The idea is applied to the Gross Domestic Product (GDP) yearly increments of 21 rich countries between 1950 and 2005 in order to test the process of economic globalisation. Some data discussion is first presented to decide what (EKS, GK, or derived) GDP series should be studied. Distances are then calculated from the correlation coefficient values between pairs of series. The role of time averaging of the distances over finite size windows is discussed. Three network structures are next constructed based on the hierarchy of distances. It is shown that the mean distance between the most developed countries on several networks actually decreases in time, -which we consider as a proof of globalization. An empirical law is found for the evolution after 1990, similar to that found in flux creep. The optimal observation time window size is found ≃15 years.

  16. Some triple-filament lead isotope ratio measurements and an absolute growth curve for single-stage leads

    USGS Publications Warehouse

    Stacey, J.S.; Delevaux, M.E.; Ulrych, T.J.

    1969-01-01

    Triple-filament analyses of three standard lead samples are used to calibrate a mass spectrometer in an absolute sense. The bias we measure is 0.0155 percent per mass unit, and the precision (for 95% confidence limits) is ??0.13% or less for all ratios relative to 204Pb. Although its precision is not quite so good as that of the lead-tetramethyl method in the analysis of large samples, the triple-filament method is less complex and is an attractive alternative for smaller sample sizes down to 500 ??g. Triple-filament data are presented for six possibly single-stage lead ores and one feldspar. These new data for ores are combined with corrected tetramethyl data for stratiform lead deposits to compute absolute parameters for a universal single-stage lead isotope growth curve. Absolute isotopic ratios for primeval lead have been determined by Oversby and because all the previous data for both meteorites and lead ores were similarly fractionated, the absolute value of 238U 204Pb = 9.09 ?? 0.06 for stratiform leads is little different from the value 8.99 ?? 0.05 originally computed by Ostic, Russell and Stanton. Absolute values for lead isotope ratios for all interlaboratory standard samples presently available from the literature are tabulated. ?? 1969.

  17. Field Measurement of Sand Dune Bidirectional Reflectance Characteristics for Absolute Radiometric Calibration of Optical Remote Sensing Data.

    NASA Astrophysics Data System (ADS)

    Coburn, C. A.; Logie, G.; Beaver, J.; Helder, D.

    2015-12-01

    The use of Pseudo Invariant Calibration Sites (PICS) for establishing the radiometric trending of optical remote sensing systems has a long history of successful implementation. Past studies have shown that the PICS method is useful for evaluating the trend of sensors over time or cross-calibration of sensors but was not considered until recently for deriving absolute calibration. Current interest in using this approach to establish absolute radiometric calibration stems from recent research that indicates that with empirically derived models of the surface properties and careful atmospheric characterisation Top of Atmosphere (TOA) reflectance values can be predicted and used for absolute sensor radiometric calibration. Critical to the continued development of this approach is the accurate characterization of the Bidirectional Reflectance Distribution Function (BRDF) of PICS sites. This paper presents the field data collected by a high-performance portable goniometer system in order to develop a BRDF model for the Algodones Dunes in California. These BRDF data are part of a larger study that is seeking to evaluate and quantify all aspects of this dune system (from regional effects to the micro scale optical properties of the sand) in order to provide an absolute radiometric calibration PICS. This paper presents the results of a dense temporal measurement sequence (several measurements per hour with high angular resolution), to yield detailed information on the nature of the surface reflectance properties. The BRDF data were collected covering typical view geometry of space borne sensors and will be used to close the loop on the calibration to create an absolute calibration target for optical satellite absolute radiometric calibration.

  18. Design of a quasi-zero-stiffness based sensor system for the measurement of absolute vibration displacement of moving platforms

    NASA Astrophysics Data System (ADS)

    Jing, Xingjian; Wang, Yu; Li, Quankun; Sun, Xiuting

    2016-09-01

    This study presents the analysis and design of a novel sensor system for measuring the absolute vibration displacement of moving platforms based on the concept of quasi-zero-stiffness (QZS). The sensor system is constructed using positive- and negative-stiffness springs, which make it possible to achieve an equivalent QZS and consequently to create a broadband vibration-free point for absolute vibration displacement measurement in moving platforms. Theoretical analysis is conducted for the analysis and design of the influence of structure parameters on system measurement performance. A prototype is designed which can avoid the drawback of instability in existing QZS systems with negative stiffness, and corresponding data-processing software is developed to fulfill time domain measurements. Both the simulation and experimental results verify the effectiveness of this novel sensor system.

  19. A simple setup to simultaneously measure the resonant frequency and the absolute dissipation factor of a quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Rodahl, Michael; Kasemo, Bengt

    1996-09-01

    An experimental setup is described that can simultaneously measure the absolute dissipation factor and the resonant frequency of a short-circuited quartz crystal microbalance. The crystal is driven at approximately its resonant frequency by a signal generator which is intermittently disconnected by a relay, causing the crystal oscillation amplitude to decay exponentially. The decay is measured using a ferrite toroid transformer. One of the crystal leads is fed through the center of the ferrite toroid and thereby acts as the primary winding of the transformer. The secondary winding of the transformer is connected to a digitizing oscilloscope which records the decay of the crystal oscillation. From the recorded decay curve, the absolute dissipation factor (calculated from the decay time constant) and the series resonant frequency of the freely oscillating crystal are obtained. Alternatively, the dissipation factor and resonant frequency can be measured for the crystal oscillating under open-circuit conditions, i.e., in the parallel mode. The measurements are automated.

  20. A new Cepheid distance measurement and method for NGC 6822

    SciTech Connect

    Rich, Jeffrey A.; Persson, S. E.; Freedman, Wendy L.; Madore, Barry F.; Monson, Andrew J.; Scowcroft, Victoria; Seibert, Mark

    2014-10-20

    We present a revised distance to the nearby galaxy NGC 6822 using a new multi-band fit to both previously published and new optical, near-, and mid-infrared data for Cepheid variables. The new data presented in this study include multi-epoch observations obtained in 3.6 μm and 4.5 μm with the Spitzer Space Telescope taken for the Carnegie Hubble Program. We also present new observations in J, H, and K{sub s} with FourStar on the Magellan Baade Telescope at Las Campanas Observatory. We determine mean magnitudes and present new period-luminosity relations in V, I, J, H, K{sub s} , Infrared Array Camera 3.6 μm, and 4.5 μm. In addition to using the multi-band distance moduli to calculate extinction and a true distance, we present a new method for determining an extinction-corrected distance modulus from multi-band data with varying sample sizes. We combine the distance moduli and extinction for individual stars to determine E(B – V) = 0.35 ± 0.04 and a true distance modulus μ {sub o} = 23.38 ± 0.02{sub stat} ± 0.04{sub sys}.

  1. Constraining the cosmology of the phantom brane using distance measures

    NASA Astrophysics Data System (ADS)

    Alam, Ujjaini; Bag, Satadru; Sahni, Varun

    2017-01-01

    The phantom brane has several important distinctive features: (i) Its equation of state is phantomlike, but there is no future "big rip" singularity, and (ii) the effective cosmological constant on the brane is dynamically screened, because of which the expansion rate is smaller than that in Λ CDM at high redshifts. In this paper, we constrain the Phantom braneworld using distance measures such as type-Ia supernovae (SNeIa), baryon acoustic oscillations (BAO), and the compressed cosmic microwave background (CMB) data. We find that the simplest braneworld models provide a good fit to the data. For instance, BAO +SNeIa data can be accommodated by the braneworld for a large region in parameter space 0 ≤Ωℓ≲0.3 at 1 σ . The Hubble parameter can be as high as H0≲78 km s-1 Mpc-1 , and the effective equation of state at present can show phantomlike behavior with w0≲-1.2 at 1 σ . We note a correlation between H0 and w0, with higher values of H0 leading to a lower, and more phantomlike, value of w0. Inclusion of CMB data provides tighter constraints Ωℓ≲0.1 . (Here Ωℓ encodes the ratio of the five- and four-dimensional Planck mass.) The Hubble parameter in this case is more tightly constrained to H0≲71 km s-1 Mpc-1 , and the effective equation of state to w0≲-1.1 . Interestingly, we find that the Universe is allowed to be closed or open, with -0.5 ≲Ωκ≲0.5 , even on including the compressed CMB data. There appears to be some tension in the low and high-z BAO data which may either be resolved by future data, or act as a pointer to interesting new cosmology.

  2. High-accuracy interferometer with a prism pair for measurement of the absolute refractive index of glass

    SciTech Connect

    Hori, Yasuaki; Hirai, Akiko; Minoshima, Kaoru; Matsumoto, Hirokazu

    2009-04-10

    We propose a variable-path interferometric technique for the measurement of the absolute refractive index of optical glasses. We use two interferometers to decide the ratio between changes in the optical path in a prism-shaped sample glass and in air resulting from displacement of the sample. The method allows precise measurements to be made without prior knowledge of the properties of the sample. The combined standard uncertainty of the proposed method is 1.6x10{sup -6}.

  3. High-accuracy long-distance measurements in air with a frequency comb laser.

    PubMed

    Cui, M; Zeitouny, M G; Bhattacharya, N; van den Berg, S A; Urbach, H P; Braat, J J M

    2009-07-01

    We experimentally demonstrate that a femtosecond frequency comb laser can be applied as a tool for long-distance measurement in air. Our method is based on the measurement of cross correlation between individual pulses in a Michelson interferometer. From the position of the correlation functions, distances of up to 50 m have been measured. We have compared this measurement to a counting laser interferometer, showing an agreement with the measured distance within 2 microm (4x10(-8) at 50 m).

  4. Study on the measuring distance for blood glucose infrared spectral measuring by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Li, Xiang

    2016-10-01

    Blood glucose monitoring is of great importance for controlling diabetes procedure and preventing the complications. At present, the clinical blood glucose concentration measurement is invasive and could be replaced by noninvasive spectroscopy analytical techniques. Among various parameters of optical fiber probe used in spectrum measuring, the measurement distance is the key one. The Monte Carlo technique is a flexible method for simulating light propagation in tissue. The simulation is based on the random walks that photons make as they travel through tissue, which are chosen by statistically sampling the probability distributions for step size and angular deflection per scattering event. The traditional method for determine the optimal distance between transmitting fiber and detector is using Monte Carlo simulation to find out the point where most photons come out. But there is a problem. In the epidermal layer there is no artery, vein or capillary vessel. Thus, when photons propagate and interactive with tissue in epidermal layer, no information is given to the photons. A new criterion is proposed to determine the optimal distance, which is named effective path length in this paper. The path length of each photons travelling in dermis is recorded when running Monte-Carlo simulation, which is the effective path length defined above. The sum of effective path length of every photon at each point is calculated. The detector should be place on the point which has most effective path length. Then the optimal measuring distance between transmitting fiber and detector is determined.

  5. Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement.

    PubMed

    Zhu, Jigui; Cui, Pengfei; Guo, Yin; Yang, Linghui; Lin, Jiarui

    2015-05-18

    A pulse-to-pulse alignment method based on interference fringes and the second-order temporal coherence function of optical frequency combs is proposed for absolute distance measurement. The second-order temporal coherence function of the pulse train emitted from optical frequency combs is studied. A numerical model of the function is developed with an assumption of Gaussian pulse and has good agreement with experimental measurements taken by an ordinary Michelson interferometer. The experimental results show an improvement of standard deviation of peak finding results from 27.3 nm to 8.5 nm by the method in ordinary laboratory conditions. The absolute distance measurement with the pulse-to-pulse alignment method is also proposed and experimentally proved.

  6. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF.

    PubMed

    Casey, D T; Frenje, J A; Gatu Johnson, M; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Knauer, J P; Meyerhofer, D D; Sangster, T C; Bionta, R M; Bleuel, D L; Döppner, T; Glenzer, S; Hartouni, E; Hatchett, S P; Le Pape, S; Ma, T; MacKinnon, A; McKernan, M A; Moran, M; Moses, E; Park, H-S; Ralph, J; Remington, B A; Smalyuk, V; Yeamans, C B; Kline, J; Kyrala, G; Chandler, G A; Leeper, R J; Ruiz, C L; Cooper, G W; Nelson, A J; Fletcher, K; Kilkenny, J; Farrell, M; Jasion, D; Paguio, R

    2012-10-01

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  7. Microgravity combustion of dust clouds: Quenching distance measurements

    NASA Technical Reports Server (NTRS)

    Goroshin, S.; Kleine, H.; Lee, J. H. S.; Frost, D.

    1995-01-01

    parameters is in a gravity-free environment. Access to the microgravity environment provided by the use of large-scale drop towers, parabolic flights of aircraft and rockets, and shuttle and space station orbits has permitted now to proceed with a systematic program of dust combustion microgravity research. For example, the NASA-Lewis drop tower and a Lear jet parabolic flight aircraft were used by Ross et al. and by Berlad and Tangirala for experiments with Iycopodium/air mixtures. The Japan Microgravity Center drop shaft (JAMIC) where a microgravity condition of 10(exp -4) g for 10 s is available, was recently used by Kobayashi, Niioka et al. for measuring flame propagation velocities in polymethyl methacrylate dust/air suspensions. Microgravity dust combustion experiments were started at McGill University in the early 90's under the sponsorship of the Canadian Space Agency. Several generations of dust combustion platforms permitting dust combustion microgravity experiments to be carried out on board a parabolic flight aircraft (KC-135, NASA) have been designed and tested. The experimental data and experience gained from this research allowed us to design and build in a current phase of this program the microgravity apparatus for the visual observation of freely propagating constant pressure laminar dust flames. Quenching distances in aluminum dust suspensions have been measured in a wide range of dust cloud parameters in ground-based experiments and in recent microgravity experiments (KC-135 parabolic flights, Houston, February 1995).

  8. Integration of Quantitative Positron Emission Tomography Absolute Myocardial Blood Flow Measurements in the Clinical Management of Coronary Artery Disease.

    PubMed

    Gewirtz, Henry; Dilsizian, Vasken

    2016-05-31

    In the >40 years since planar myocardial imaging with(43)K-potassium was introduced into clinical research and management of patients with coronary artery disease (CAD), diagnosis and treatment have undergone profound scientific and technological changes. One such innovation is the current state-of-the-art hardware and software for positron emission tomography myocardial perfusion imaging, which has advanced it from a strictly research-oriented modality to a clinically valuable tool. This review traces the evolving role of quantitative positron emission tomography measurements of myocardial blood flow in the evaluation and management of patients with CAD. It presents methodology, currently or soon to be available, that offers a paradigm shift in CAD management. Heretofore, radionuclide myocardial perfusion imaging has been primarily qualitative or at best semiquantitative in nature, assessing regional perfusion in relative terms. Thus, unlike so many facets of modern cardiovascular practice and CAD management, which depend, for example, on absolute values of key parameters such as arterial and left ventricular pressures, serum lipoprotein, and other biomarker levels, the absolute levels of rest and maximal myocardial blood flow have yet to be incorporated into routine clinical practice even in most positron emission tomography centers where the potential to do so exists. Accordingly, this review focuses on potential value added for improving clinical CAD practice by measuring the absolute level of rest and maximal myocardial blood flow. Physiological principles and imaging fundamentals necessary to understand how positron emission tomography makes robust, quantitative measurements of myocardial blood flow possible are highlighted.

  9. Gd(III)-Gd(III) distance measurements with chirp pump pulses.

    PubMed

    Doll, Andrin; Qi, Mian; Wili, Nino; Pribitzer, Stephan; Godt, Adelheid; Jeschke, Gunnar

    2015-10-01

    The broad EPR spectrum of Gd(III) spin labels restricts the dipolar modulation depth in distance measurements between Gd(III) pairs to a few percent. To overcome this limitation, frequency-swept chirp pulses are utilized as pump pulses in the DEER experiment. Using a model system with 3.4 nm Gd-Gd distance, application of one single chirp pump pulse at Q-band frequencies leads to modulation depths beyond 10%. However, the larger modulation depth is counteracted by a reduction of the absolute echo intensity due to the pump pulse. As supported by spin dynamics simulations, this effect is primarily driven by signal loss to double-quantum coherence and specific to the Gd(III) high spin state of S=7/2. In order to balance modulation depth and echo intensity for optimum sensitivity, a simple experimental procedure is proposed. An additional improvement by 25% in DEER sensitivity is achieved with two consecutive chirp pump pulses. These pulses pump the Gd(III) spectrum symmetrically around the observation position, therefore mutually compensating for dynamical Bloch-Siegert phase shifts at the observer spins. The improved sensitivity of the DEER data with modulation depths on the order of 20% is due to mitigation of the echo reduction effects by the consecutive pump pulses. In particular, the second pump pulse does not lead to additional signal loss if perfect inversion is assumed. Moreover, the compensation of the dynamical Bloch-Siegert phase prevents signal loss due to spatial dependence of the dynamical phase, which is caused by inhomogeneities in the driving field. The new methodology is combined with pre-polarization techniques to measure long distances up to 8.6 nm, where signal intensity and modulation depth become attenuated by long dipolar evolution windows. In addition, the influence of the zero-field splitting parameters on the echo intensity is studied with simulations. Herein, larger sensitivity is anticipated for Gd(III) complexes with zero-field splitting

  10. Gd(III)-Gd(III) distance measurements with chirp pump pulses

    NASA Astrophysics Data System (ADS)

    Doll, Andrin; Qi, Mian; Wili, Nino; Pribitzer, Stephan; Godt, Adelheid; Jeschke, Gunnar

    2015-10-01

    The broad EPR spectrum of Gd(III) spin labels restricts the dipolar modulation depth in distance measurements between Gd(III) pairs to a few percent. To overcome this limitation, frequency-swept chirp pulses are utilized as pump pulses in the DEER experiment. Using a model system with 3.4 nm Gd-Gd distance, application of one single chirp pump pulse at Q-band frequencies leads to modulation depths beyond 10%. However, the larger modulation depth is counteracted by a reduction of the absolute echo intensity due to the pump pulse. As supported by spin dynamics simulations, this effect is primarily driven by signal loss to double-quantum coherence and specific to the Gd(III) high spin state of S = 7/2. In order to balance modulation depth and echo intensity for optimum sensitivity, a simple experimental procedure is proposed. An additional improvement by 25% in DEER sensitivity is achieved with two consecutive chirp pump pulses. These pulses pump the Gd(III) spectrum symmetrically around the observation position, therefore mutually compensating for dynamical Bloch-Siegert phase shifts at the observer spins. The improved sensitivity of the DEER data with modulation depths on the order of 20% is due to mitigation of the echo reduction effects by the consecutive pump pulses. In particular, the second pump pulse does not lead to additional signal loss if perfect inversion is assumed. Moreover, the compensation of the dynamical Bloch-Siegert phase prevents signal loss due to spatial dependence of the dynamical phase, which is caused by inhomogeneities in the driving field. The new methodology is combined with pre-polarization techniques to measure long distances up to 8.6 nm, where signal intensity and modulation depth become attenuated by long dipolar evolution windows. In addition, the influence of the zero-field splitting parameters on the echo intensity is studied with simulations. Herein, larger sensitivity is anticipated for Gd(III) complexes with zero

  11. Deuterium REDOR: Principles and Applications for Distance Measurements

    NASA Astrophysics Data System (ADS)

    Sack, I.; Goldbourt, A.; Vega, S.; Buntkowsky, G.

    1999-05-01

    The application of short composite pulse schemes ([figure] and [figure]) to the rotational echo double-resonance (REDOR) spectroscopy ofX-2H (X: spin{1}/{2}, observed) systems with large deuterium quadrupolar interactions has been studied experimentally and theoretically and compared with simple 180° pulse schemes. The basic properties of the composite pulses on the deuterium nuclei have been elucidated, using average Hamiltonian theory, and exact simulations of the experiments have been achieved by stepwise integration of the equation of motion of the density matrix. REDOR experiments were performed on15N-2H in doubly labeled acetanilide and on13C-2H in singly2H-labeled acetanilide. The most efficient REDOR dephasing was observed when [figure] composite pulses were used. It is found that the dephasing due to simple 180° deuterium pulses is about a factor of 2 less efficient than the dephasing due to the composite pulse sequences and thus the range of couplings observable byX-2H REDOR is enlarged toward weaker couplings, i.e., larger distances. From these experiments the2H-15N dipolar coupling between the amino deuteron and the amino nitrogen and the2H-13C dipolar couplings between the amino deuteron and the α and β carbons have been elucidated and the corresponding distances have been determined. The distance data from REDOR are in good agreement with data from X-ray and neutron diffraction, showing the power of the method.

  12. Data acquisition and processing platform in the real-time distance measurement system with dual-comb lasers

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Wang, Lanlan; Zhou, Qian; Li, Xinghui; Dong, Hao; Wang, Xiaohao

    2016-11-01

    The real-time distance measurement system with dual femtosecond comb lasers combines time-of-flight and interferometric measurement. It has advantages of wide-range, high-accuracy and fast speed at the rate about 10000 pts/s. Such a distance measurement system needs dedicated higher performance of the data acquisition and processing hardware platform to support. This paper introduces the dedicated platform of the developed absolute distance measurement system. This platform is divided into three parts according to their respective functions. First part is the data acquisition module, which function is mainly to realize the A/D conversion. In this part we designed a sampling clock adjustment module to assist the A/D conversion module to sample accurately. The sampling clock adjustment module accept a 250MHz maximum reference clock input, which from the same femtosecond laser source as the optical measurement system, then generate an output clock for the A/D converter that can be delayed up to 20ns with a resolution of 714ps. This data acquisition module can convert the analog laser pulse signal to digital signal with a 14 bits resolution and a 250 MSPS maximum sample rate. Second is the data processing and storage module consists of FPGA and DDR3 modules. The FPGA module calculates the test distance by the 16 bits digital sampling signal from the front data acquisition module. The DDR3 module implements sampling data caching. Finally part is the data transmission and peripheral interfaces module based on three DB9 and USB2.0. We can easily debug the platform in the PC and implement communication with upper machine. We tested our system used dedicate test bench in real-time. The scope of the measurement system range is 0 to 3 meters and the measurement deviation is less than 10um.

  13. Comparison of distance measures in spatial analytical modeling for health service planning

    PubMed Central

    2009-01-01

    Background Several methodological approaches have been used to estimate distance in health service research. In this study, focusing on cardiac catheterization services, Euclidean, Manhattan, and the less widely known Minkowski distance metrics are used to estimate distances from patient residence to hospital. Distance metrics typically produce less accurate estimates than actual measurements, but each metric provides a single model of travel over a given network. Therefore, distance metrics, unlike actual measurements, can be directly used in spatial analytical modeling. Euclidean distance is most often used, but unlikely the most appropriate metric. Minkowski distance is a more promising method. Distances estimated with each metric are contrasted with road distance and travel time measurements, and an optimized Minkowski distance is implemented in spatial analytical modeling. Methods Road distance and travel time are calculated from the postal code of residence of each patient undergoing cardiac catheterization to the pertinent hospital. The Minkowski metric is optimized, to approximate travel time and road distance, respectively. Distance estimates and distance measurements are then compared using descriptive statistics and visual mapping methods. The optimized Minkowski metric is implemented, via the spatial weight matrix, in a spatial regression model identifying socio-economic factors significantly associated with cardiac catheterization. Results The Minkowski coefficient that best approximates road distance is 1.54; 1.31 best approximates travel time. The latter is also a good predictor of road distance, thus providing the best single model of travel from patient's residence to hospital. The Euclidean metric and the optimal Minkowski metric are alternatively implemented in the regression model, and the results compared. The Minkowski method produces more reliable results than the traditional Euclidean metric. Conclusion Road distance and travel time

  14. Synchrotron measurements of the absolute x-ray quantum efficiency of CsI-coated microchannel plates

    NASA Astrophysics Data System (ADS)

    Rideout, Rob M.; Pearson, James F.; Fraser, George W.; Lees, John E.; Brunton, Adam N.; Bannister, N. P.; Kenter, Almus T.; Kraft, Ralph P.

    1998-11-01

    Two identical CsI-coated, low noise microchannel plate (MCP) detectors were taken to the Daresbury Synchrotron Radiation Source (SRS) to measure their quantum efficiencies over two different energy ranges - 450 eV to 1200 eV and 4.5 eV to 9.5 eV. The SRS was run in low ring current with the beam flux monitored using single wire gas proportional counters. We present accurate measurements of edge-related absolute quantum efficiency features due to the CsI photocathodes. This data will be incorporated into the calibration program of the Advanced X-ray Astrophysical Facility High Resolution Camera.

  15. Absolute frequency measurement of the {{}^{1}}{{\\text{S}}_{0}} – {{}^{3}}{{\\text{P}}_{0}} transition of 171Yb

    NASA Astrophysics Data System (ADS)

    Pizzocaro, Marco; Thoumany, Pierre; Rauf, Benjamin; Bregolin, Filippo; Milani, Gianmaria; Clivati, Cecilia; Costanzo, Giovanni A.; Levi, Filippo; Calonico, Davide

    2017-02-01

    We report the absolute frequency measurement of the unperturbed transition {{}1}{{\\text{S}}0} – {{}3}{{\\text{P}}0} at 578 nm in 171Yb realized in an optical lattice frequency standard relative to a cryogenic caesium fountain. The measurement result is 518 295 836 590 863.59(31) Hz with a relative standard uncertainty of 5.9× {{10}-16} . This value is in agreement with the ytterbium frequency recommended as a secondary representation of the second in the International System of Units.

  16. Absolute measurements of the densities of silicon crystals in vacuum for a determination of the Avogadro constant

    SciTech Connect

    Fujii, K.; Tanaka, M.; Nezu, Y.

    1994-12-31

    Absolute measurements of the densities of 1-kg single-crystal silicon spheres have been performed for a determination of the Avogadro constant. A scanning type optical interferometer was used to measure the diameters of the spheres in vacuum, and the volumes were obtained by fitting the diameters to a series of spherical harmonics. Thickness of oxide layers on the surfaces of the spheres has been determined by using an ellipsometer to evaluate the effect on the density. Total uncertainties of the densities are estimated to be 0.1 ppm.

  17. Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements.

    PubMed

    Yin, Lu; Wang, Qiang; Zhang, Qizhi; Jiang, Huabei

    2007-09-01

    We present a new method that can provide high resolution images of absolute optical absorption coefficient in heterogeneous turbid media. In this method, acoustic measurements in conventional photoacoustic tomography are combined with diffusing light measurements to separate the product of absorption coefficient and optical fluence or photon density. We validate this method using a series of tissuelike phantom experiments. The experimental results show that targets as small as 0.5 mm in diameter with optical absorption contrasts as low as 1.5 relative to a 50 mm diameter scattering background medium can be clearly detected.

  18. EPR Relaxation-Enhancement-Based Distance Measurements on Orthogonally Spin-Labeled T4-Lysozyme

    PubMed Central

    Razzaghi, Sahand; Brooks, Evan K.; Bordignon, Enrica; Hubbell, Wayne L.; Yulikov, Maxim; Jeschke, Gunnar

    2013-01-01

    Lanthanide-induced enhancement of the longitudinal relaxation of nitroxide radicals in combination with orthogonal site-directed spin labeling is presented as a systematic distance measurement method intended for studies of biomacromolecules and biomacromolecular complexes. The approach is tested on a water soluble protein (T4-lysozyme) for two different commercially available lanthanide labels, and complemented by previously reported data on a membrane inserted polypeptide. Single temperature measurements are shown to be sufficient for reliable distance determination, with an upper measurable distance limit of about 5-6 nm. The extracted averaged distances represent the closest approach in LnIII-nitroxide distance distributions. Studies of conformational changes and of biomacromolecule association-dissociation are proposed as possible application area of the RE-based distance measurements. PMID:23775845

  19. High stability multiplexed fiber interferometer and its application on absolute displacement measurement and on-line surface metrology.

    PubMed

    Lin, Dejiao; Jiang, Xiangqian; Xie, Fang; Zhang, Wei; Zhang, Lin; Bennion, Ian

    2004-11-15

    We propose a self-reference multiplexed fiber interferometer (MFI) by using a tunable laser and fiber Bragg grating (FBG). The optical measurement system multiplexes two Michelson fiber interferometers with shared optical path in the main part of optical system. One fiber optic interferometer is used as a reference interferometer to monitor and control the high accuracy of the measurement system under environmental perturbations. The other is used as a measurement interferometer to obtain information from the target. An active phase tracking homodyne (APTH) technique is applied for signal processing to achieve high resolution. MFI can be utilized for high precision absolute displacement measurement with different combination of wavelengths from the tunable laser. By means of Wavelength-Division-Multiplexing (WDM) technique, MFI is also capable of realizing on-line surface measurement, in which traditional stylus scanning is replaced by spatial light-wave scanning so as to greatly improve the measurement speed and robustness.

  20. Absolute wind measurements in the lower thermosphere of Venus using infrared heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Goldstein, Jeffrey J.

    1990-01-01

    The first absolute wind velocities above the Venusian cloud-tops were obtained using NASA/Goddard infrared heterodyne spectrometers at the NASA Infrared Telescope Facility (IRTF) and the McMath Solar Telescope. Beam-integrated Doppler displacements in the non-thermal emission core of (12)C(16)O2 10.33 micron R(8) sampled the line of sight projection of the lower thermospheric wind field (100 to 120 km). A field-usable Lamb-dip laser stabilization system, developed for spectrometer absolute frequency calibration to less than + or - 0.1 MHz, allowed S/N-limited line of sight velocity resolution at the 1 m/s level. The spectrometer's diffraction-limited beam (1.7 arc-second HPBW at McMath, 0.9 arc-second HPBW at IRTF), and 1 to 2 arc-second seeing, provided the spatial resolution necessary for circulation model discrimination. Qualitative analysis of beam-integrated winds provided definitive evidence of a dominant subsolar-antisolar circulation in the lower thermosphere. Beam-integrated winds were modelled with a 100x100 grid over the beam, incorporating beam spatial rolloff and across-the-beam gradients in non-thermal emission intensity, line of sight projection geometry, and horizontal wind velocity. Horizontal wind velocity was derived from a 2-parameter model wind field comprised of subsolar-antisolar and zonal components. Best-fit models indicated a dominant subsolar-antisolar flow with 120 m/s cross-terminator winds and a retrograde zonal component with a 25 m/s equatorial velocity. A review of all dynamical indicators above the cloud-tops allowed development of an integrated and self-consistent picture of circulation in the 70 to 200 km range.

  1. Absolute wind measurements in the lower thermosphere of Venus using infrared heterodyne spectroscopy

    NASA Astrophysics Data System (ADS)

    Goldstein, Jeffrey J.

    1990-05-01

    The first absolute wind velocities above the Venusian cloud-tops were obtained using NASA/Goddard infrared heterodyne spectrometers at the NASA Infrared Telescope Facility (IRTF) and the McMath Solar Telescope. Beam-integrated Doppler displacements in the non-thermal emission core of (12)C(16)O2 10.33 micron R(8) sampled the line of sight projection of the lower thermospheric wind field (100 to 120 km). A field-usable Lamb-dip laser stabilization system, developed for spectrometer absolute frequency calibration to less than + or - 0.1 MHz, allowed S/N-limited line of sight velocity resolution at the 1 m/s level. The spectrometer's diffraction-limited beam (1.7 arc-second HPBW at McMath, 0.9 arc-second HPBW at IRTF), and 1 to 2 arc-second seeing, provided the spatial resolution necessary for circulation model discrimination. Qualitative analysis of beam-integrated winds provided definitive evidence of a dominant subsolar-antisolar circulation in the lower thermosphere. Beam-integrated winds were modelled with a 100x100 grid over the beam, incorporating beam spatial rolloff and across-the-beam gradients in non-thermal emission intensity, line of sight projection geometry, and horizontal wind velocity. Horizontal wind velocity was derived from a 2-parameter model wind field comprised of subsolar-antisolar and zonal components. Best-fit models indicated a dominant subsolar-antisolar flow with 120 m/s cross-terminator winds and a retrograde zonal component with a 25 m/s equatorial velocity. A review of all dynamical indicators above the cloud-tops allowed development of an integrated and self-consistent picture of circulation in the 70 to 200 km range.

  2. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  3. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  4. Measurement of absolute CO number densities in CH3F/O2 plasmas by optical emission self-actinometry

    NASA Astrophysics Data System (ADS)

    Karakas, Erdinc; Kaler, Sanbir; Lou, Qiaowei; Donnelly, Vincent M.; Economou, Demetre J.

    2014-02-01

    CH3F/O2 inductively coupled plasmas at 10 mTorr were investigated using optical emission spectroscopy. A ‘self-actinometry’ method was developed to measure the absolute number density of CO that formed in reactions following dissociation of CH3F and O2 in the plasma. In this method, small amounts of CO were added to the plasma, leading to small increases in the CO emission intensity. By carefully accounting for small perturbations to the plasma electron density and/or electron energy distribution, and by showing that very little of the CO added to the plasma was decomposed by electron impact or other reactions, it was possible to derive absolute number densities for the CO content of the plasma. With equal fractions (0.50) of CH3F and O2 in the feed gas, the CO mole fraction as a function of plasma power saturated at a value of 0.20-0.25. As O2 in the feed gas was varied at a constant power of 100 W, the CO mole fraction went through a maximum of about 0.25 near an O2 feed gas fraction of 0.5. The relative CO number densities determined by ‘standard’ actinometry followed the same functional dependence as the absolute mole fractions determined by self-actinometry, aided by the fact that electron temperature did not change appreciably with power or feed gas composition.

  5. Accuracy of five electronic pedometers for measuring distance walked.

    PubMed

    Bassett, D R; Ainsworth, B E; Leggett, S R; Mathien, C A; Main, J A; Hunter, D C; Duncan, G E

    1996-08-01

    This is a three-part study that examined the accuracy of five brands of electronic pedometers (Freestyle Pacer, Eddie Bauer, L.L. Bean, Yamax, and Accusplit) under a variety of different conditions. In Part I, 20 subjects walked a 4.88-km sidewalk course while wearing two devices of the same brand (on the left and right side of the body) for each of five different trials. There were significant differences among pedometers (P < 0.05), with the Yamax, Pacer, and Accusplit approximating the actual distance more closely than the other models. The Yamax pedometers showed close agreement, but the left and right Pacer pedometers differed significantly (P = 0.0003) and the Accusplit displayed a similar trend (P = 0.0657). In Part II, the effects of walking surface on pedometer accuracy were examined. Ten of the original subjects completed an additional five trials around a 400-m rubberized outdoor track. The devices showed similar values for sidewalk and track surfaces. In Part III, the effects of walking speed on pedometer accuracy were examined. Ten different subjects walked on a treadmill at various speeds (54, 67, 80, 94, and 107 m.min-1). Pedometers that displayed both distance and number of steps were examined. The Yamax was more accurate than the Pacer and Eddie Bauer at slow-to-moderate speeds (P < 0.05), though no significant differences were seen at the fastest speed. While there are variations among brands in terms of accuracy, electronic pedometers may prove useful in recording walking activities in free-living populations.

  6. Comparison of efficiency of distance measurement methodologies in mango (Mangifera indica) progenies based on physicochemical descriptors.

    PubMed

    Alves, E O S; Cerqueira-Silva, C B M; Souza, A M; Santos, C A F; Lima Neto, F P; Corrêa, R X

    2012-03-14

    We investigated seven distance measures in a set of observations of physicochemical variables of mango (Mangifera indica) submitted to multivariate analyses (distance, projection and grouping). To estimate the distance measurements, five mango progeny (total of 25 genotypes) were analyzed, using six fruit physicochemical descriptors (fruit weight, equatorial diameter, longitudinal diameter, total soluble solids in °Brix, total titratable acidity, and pH). The distance measurements were compared by the Spearman correlation test, projection in two-dimensional space and grouping efficiency. The Spearman correlation coefficients between the seven distance measurements were, except for the Mahalanobis' generalized distance (0.41 ≤ rs ≤ 0.63), high and significant (rs ≥ 0.91; P < 0.001). Regardless of the origin of the distance matrix, the unweighted pair group method with arithmetic mean grouping method proved to be the most adequate. The various distance measurements and grouping methods gave different values for distortion (-116.5 ≤ D ≤ 74.5), cophenetic correlation (0.26 ≤ rc ≤ 0.76) and stress (-1.9 ≤ S ≤ 58.9). Choice of distance measurement and analysis methods influence the.

  7. Characterization and Absolute QE Measurements of Delta-Doped N-Channel and P-Channel CCDs

    NASA Technical Reports Server (NTRS)

    Jacquot, Blake C.; Monacos, Steve P.; Jones, Todd J.; Blacksberg, Jordana; Hoenk, Michael E.; Nikzad, Shouleh

    2010-01-01

    In this paper we present the methodology for making absolute quantum efficiency (QE) measurements from the vacuum ultraviolet (VUV) through the near infrared (NIR) on delta-doped silicon CCDs. Delta-doped detectors provide an excellent platform to validate measurements through the VUV due to their enhanced UV response. The requirements for measuring QE through the VUV are more strenuous than measurements in the near UV and necessitate, among other things, the use of a vacuum monochromator, and good camera vacuum to prevent chip condensation, and more stringent handling requirements. The system used for these measurements was originally designed for deep UV characterization of CCDs for the WF/PC instrument on Hubble and later for Cassini CCDs.

  8. 41 CFR 301-10.302 - How do I determine distance measurements for my travel?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... distance measurements for my travel? 301-10.302 Section 301-10.302 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES ALLOWABLE TRAVEL EXPENSES 10-TRANSPORTATION EXPENSES Privately Owned Vehicle (POV) § 301-10.302 How do I determine distance measurements...

  9. 41 CFR 301-10.302 - How do I determine distance measurements for my travel?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... distance measurements for my travel? 301-10.302 Section 301-10.302 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES ALLOWABLE TRAVEL EXPENSES 10-TRANSPORTATION EXPENSES Privately Owned Vehicle (POV) § 301-10.302 How do I determine distance measurements...

  10. 41 CFR 301-10.302 - How do I determine distance measurements for my travel?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... distance measurements for my travel? 301-10.302 Section 301-10.302 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES ALLOWABLE TRAVEL EXPENSES 10-TRANSPORTATION EXPENSES Privately Owned Vehicle (POV) § 301-10.302 How do I determine distance measurements...

  11. An International Parallax Campaign to Measure Distance to the Moon and Mars

    ERIC Educational Resources Information Center

    Cenadelli, D.; Zeni, M.; Bernagozzi, A.; Calcidese, P.; Ferreira, L.; Hoang, C.; Rijsdijk, C.

    2009-01-01

    Trigonometric parallax is a powerful method to work out the distance of celestial bodies, and it was used in the past to measure the distance of the Moon, Venus, Mars and nearby stars. We set up an observation campaign for high school and undergraduate students with the purpose to measure both the Moon's and Mars' parallax. To have a large enough…

  12. SU-E-T-89: Accuracy of Absolute Three-Dimensional Dose Distribution Measurement Using the Delta4

    SciTech Connect

    Uehara, R; Tachibana, H; Ohyoshi, H; Matsumoto, S; Baba, H; Tanaka, F; Ariji, T

    2015-06-15

    Purpose: In this study, we investigated the accuracy of the absolute dose distribution measurement using the Delta4 phantom compared to the measurements using a ionization chamber and EDR2 film Methods: Several conventional and intensity-modulated radiation therapy plans were used to compare the dose distribution measured using the Delta4 phantom to the absolute point dose using the chamber and the relative two-dimensional dose distribution using the EDR2 film. For the absolute dose distribution evaluation, the measurements using the Delta4, the chamber and the film were performed in similar measurement geometry. For point dose measurement using the chamber, an acrylic slab phantom with the PTW Semiflex chamber was inserted into the Delta4 phantom, alternative to the Delta4 main unit. Similarly, for dose distribution measurement using the film, the EDR2 film sandwiched with two acrylic slab phantoms were inserted to the phantom. Dose difference and gamma analysis were done for point dose and relative dose distribution comparisons, respectively. Results: The point dose measurements show slight negative systematic dose difference of −0.5 ± 0.1% and −1.0 ± 0.4% in the conventional and the IMRT plans, respectively. The additional measurement for direction dependency for Delta4 shows similar negative systematic dose difference even the phantom analysis software consider the directional dependency. The pass rate of the gamma evaluation was 77.7 ± 5.8% and 88.8±3.3% in the conventional and the IMRT plans, respectively. Conclusions: The Delta4 phantom shows a 1%-systematic dose difference derived from directional dependency and lower resolution compared to the film. Thus it is necessary to comprehensively evaluate the phantom to verify the IMRT/VMAT plans. Especially, the dosimetry tool is needed to have high resolution and high measurement accuracy in IMRT/VMAT-SBRT plan with small fields using intensity modulation in which the analysis area is limited and the

  13. Precise measurements of the absolute γ-ray emission probabilities of (223)Ra and decay progeny in equilibrium.

    PubMed

    Collins, S M; Pearce, A K; Regan, P H; Keightley, J D

    2015-08-01

    Precise measurements of the absolute γ-ray emission probabilities have been made of radiochemically pure solutions of (223)Ra in equilibrium with its decay progeny, which had been previously standardised by 4π(liquid scintillation)-γ digital coincidence counting techniques. Two high-purity germanium γ-ray spectrometers were used which had been accurately calibrated using a suite of primary and secondary radioactive standards. Comparison of the activity concentration determined by the primary technique against γ-ray spectrometry measurements using the nuclear data evaluations of the Decay Data Evaluation Project exhibited a range of ~18% in the most intense γ-ray emissions (>1% probability) of the (223)Ra decay series. Absolute γ-ray emission probabilities and standard uncertainties have been determined for the decay of (223)Ra, (219)Rn, (215)Po, (211)Pb, (211)Bi and (207)Tl in equilibrium. The standard uncertainties of the measured γ-ray emission probabilities quoted in this work show a significant improvement over previously reported γ-ray emission probabilities. Correlation coefficients for pairs of the measured γ-ray emission probabilities from the decays of the radionuclides (223)Ra, (219)Rn and (211)Pb have been determined and are presented. The α-transition probabilities of the (223)Ra have been deduced from P(γ+ce) balance using the γ-ray emission probabilities determined in this work with some agreement observed with the published experimental values of the α-emission probabilities.

  14. Repeat Absolute and Relative Gravity Measurements for Geothermal Reservoir Monitoring in the Ogiri Geothermal Field, Southern Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Nishijima, J.; Umeda, C.; Fujimitsu, Y.; Takayama, J.; Hiraga, N.; Higuchi, S.

    2016-09-01

    Repeat hybrid microgravity measurements were conducted around the Ogiri Geothermal Field on the western slope of Kirishima volcano, southern Kyushu, Japan. This study was undertaken to detect the short-term gravity change caused by the temporary shutdown of production and reinjection wells for regular maintenance in 2011 and 2013. Repeat microgravity measurements were taken using an A-10 absolute gravimeter (Micro-g LaCoste) and CG-5 gravimeter (Scintrex) before and after regular maintenance. Both instruments had an accuracy of 10 μgal. The gravity stations were established at 27 stations (two stations for absolute measurements and 25 stations for relative measurements). After removal of noise effects (e.g., tidal movement, precipitation, shallow groundwater level changes), the residual gravity changes were subdivided into five types of response. We detected a gravity decrease (up to 20 μgal) in the reinjection area and a gravity increase (up to 30 μgal) in the production area 1 month after the temporary shutdown. Most of the gravity stations recovered after the maintenance. The temporal density changes in the geothermal reservoir were estimated based on these gravity changes.

  15. Measurements of absolute M-subshell X-ray production cross sections of Th by electron impact

    NASA Astrophysics Data System (ADS)

    Moy, A.; Merlet, C.; Dugne, O.

    2014-08-01

    Measurements of absolute M-subshell X-ray production cross sections for element Th were made by electron impact for energies ranging from the ionization threshold up to 38 keV. Experimental data were obtained by measuring the X-ray intensity emitted from ultrathin Th films deposited onto self-supporting C backing films. The measurements were conducted with an electron microprobe using high-resolution wavelength dispersive spectrometers. Recorded intensities were converted into absolute X-ray production cross sections by means of atomic data and estimation of the number of primary electrons, target thickness, and detector efficiency. Our experimental X-ray production cross sections, the first to be reported for the M subshells of Th, are compared with X-ray production cross sections calculated with the mean of ionization cross sections obtained from the distorted-wave Born approximation. The Mα X-ray production cross section calculated is in excellent agreement with the measurements, allowing future use for standardless quantification in electron probe microanalysis.

  16. CIDME: Short distances measured with long chirp pulses.

    PubMed

    Doll, Andrin; Qi, Mian; Godt, Adelheid; Jeschke, Gunnar

    2016-12-01

    Frequency-swept pulses have recently been introduced as pump pulses into double electron-electron resonance (DEER) experiments. A limitation of this approach is that the pump pulses need to be short in comparison to dipolar evolution periods. The "chirp-induced dipolar modulation enhancement" (CIDME) pulse sequence introduced in this work circumvents this limitation by means of longitudinal storage during the application of one single or two consecutive pump pulses. The resulting six-pulse sequence is closely related to the five-pulse "relaxation-induced dipolar modulation enhancement" (RIDME) pulse sequence: While dipolar modulation in RIDME is due to stochastic spin flips during longitudinal storage, modulation in CIDME is due to the pump pulse during longitudinal storage. Experimentally, CIDME is examined for Gd-Gd and nitroxide-nitroxide distance determination using a high-power Q-band spectrometer. Since longitudinal storage results in a 50% signal loss, comparisons between DEER using short chirp pump pulses of 64ns duration and CIDME using longer pump pulses are in favor of DEER. While the lower sensitivity restrains the applicability of CIDME for routine distance determination on high-power spectrometers, this result is not to be generalized to spectrometers having lower power and to specialized "non-routine" applications or different types of spin labels. In particular, the advantage of prolonged CIDME pump pulses is demonstrated for experiments at large frequency offset between the pumped and observed spins. At a frequency separation of 1GHz, where broadening due to dipolar pseudo-secular contributions becomes largely suppressed, a Gd-Gd modulation depth larger than 10% is achieved. Moreover, a CIDME experiment at deliberately reduced power underlines the potential of the new technique for spectrometers with lower power, as often encountered at higher microwave frequencies. With longitudinal storage times T below 10μs, however, CIDME appears rather

  17. CIDME: Short distances measured with long chirp pulses

    NASA Astrophysics Data System (ADS)

    Doll, Andrin; Qi, Mian; Godt, Adelheid; Jeschke, Gunnar

    2016-12-01

    Frequency-swept pulses have recently been introduced as pump pulses into double electron-electron resonance (DEER) experiments. A limitation of this approach is that the pump pulses need to be short in comparison to dipolar evolution periods. The "chirp-induced dipolar modulation enhancement" (CIDME) pulse sequence introduced in this work circumvents this limitation by means of longitudinal storage during the application of one single or two consecutive pump pulses. The resulting six-pulse sequence is closely related to the five-pulse "relaxation-induced dipolar modulation enhancement" (RIDME) pulse sequence: While dipolar modulation in RIDME is due to stochastic spin flips during longitudinal storage, modulation in CIDME is due to the pump pulse during longitudinal storage. Experimentally, CIDME is examined for Gd-Gd and nitroxide-nitroxide distance determination using a high-power Q-band spectrometer. Since longitudinal storage results in a 50% signal loss, comparisons between DEER using short chirp pump pulses of 64 ns duration and CIDME using longer pump pulses are in favor of DEER. While the lower sensitivity restrains the applicability of CIDME for routine distance determination on high-power spectrometers, this result is not to be generalized to spectrometers having lower power and to specialized "non-routine" applications or different types of spin labels. In particular, the advantage of prolonged CIDME pump pulses is demonstrated for experiments at large frequency offset between the pumped and observed spins. At a frequency separation of 1 GHz, where broadening due to dipolar pseudo-secular contributions becomes largely suppressed, a Gd-Gd modulation depth larger than 10% is achieved. Moreover, a CIDME experiment at deliberately reduced power underlines the potential of the new technique for spectrometers with lower power, as often encountered at higher microwave frequencies. With longitudinal storage times T below 10 μs, however, CIDME appears rather

  18. SHIELD II: TRGB Distance Measurements from HST Imaging

    NASA Astrophysics Data System (ADS)

    Cannon, John M.; McQuinn, Kristen B.; Skillman, Evan D.; SHIELD Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs II" ("SHIELD II") is a multiwavelength, legacy-class observational campaign that is facilitating the study of both internal and global evolutionary processes in low-mass dwarf galaxies discovered by the Arecibo Legacy Fast ALFA (ALFALFA) survey. The observations and science expand on the results from detailed studies of 12 similarly low-mass dwarf galaxies from the original SHIELD campaign. New HST observations of 18 SHIELD II galaxies have allowed us to determine their TRGB distances, thus anchoring the physical scales on which our ongoing analysis is based. Combined with the HST observations of the original 12 SHIELD galaxies presented in McQuinn et al. (2014, 2015), these HST optical images enable a holistic study of the fundamental parameters and characteristics of a statistically robust sample of 30 extremely low-mass galaxies. Additional science goals include an accurate census of the dark matter contents of these galaxies, a spatial and temporal study of star formation within them, and a characterization of the fundamental parameters that change as galaxy masses range from "mini-halo" to star-forming dwarf.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College, and by NASA through grant GO-13750 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.

  19. 3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique

    PubMed Central

    Wang, Yajun; Laughner, Jacob I.; Efimov, Igor R.; Zhang, Song

    2013-01-01

    This paper presents a two-frequency binary phase-shifting technique to measure three-dimensional (3D) absolute shape of beating rabbit hearts. Due to the low contrast of the cardiac surface, the projector and the camera must remain focused, which poses challenges for any existing binary method where the measurement accuracy is low. To conquer this challenge, this paper proposes to utilize the optimal pulse width modulation (OPWM) technique to generate high-frequency fringe patterns, and the error-diffusion dithering technique to produce low-frequency fringe patterns. Furthermore, this paper will show that fringe patterns produced with blue light provide the best quality measurements compared to fringe patterns generated with red or green light; and the minimum data acquisition speed for high quality measurements is around 800 Hz for a rabbit heart beating at 180 beats per minute. PMID:23482151

  20. Absolute measurement of the differential cross section for deuteron photodisintegration from 63 to 71 MeV

    SciTech Connect

    Debevec, P.T.; Harty, P.D.; Knott, J.E. ); Jenkins, D.A.; Jones, R.T. )

    1992-03-01

    The absolute differential cross section for the {sup 2}H({gamma},{ital p}){ital n} reaction has been measured using a large solid angle detector, with a tagged photon beam of mean energy 67 MeV. The data have been compared with nine different theoretical calculations of the cross section, which account for the data to varying degrees. Best agreement is obtained for models utilizing the nonrelativistic impulse approximation with a realistic nuclear potential, meson-exchange currents, and relativistic corrections.

  1. A New Distance Measurement to NGC 4874 in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Bartier, Crystal-Lynn; Jensen, Joseph; Blakeslee, John

    2017-01-01

    By measuring distances to remote galaxies we can determine the size, expansion rate, and age of the Universe. One of the best ways to measure distance is known as surface brightness fluctuations (SBF). The purpose of this research is to improve the current distance to the Coma Cluster by making accurate SBF distance measurements to two galaxies, NGC 4874 and NGC 4921. We analyzed HST WFC3 images in the F110W and F160W bands for NGC 4874 and ACS F814W and F606W for NGC 4921. Although NGC 4921 has a Cepheid distance measurement, we were unable to make an SBF measurement to NGC 4921 due to the presence of dust and young stars. The results of the distance measurement to NGC 4874 will be compared with previous distance measurements for the Coma Cluster. We also present a comparison of the globular cluster luminosity function for NGC 4874 measured using Source Extractor and a modified version of Dophot to help determine the photometric accuracy of our measurements in the presence of the bright galaxy background.

  2. Distance Between Sets as an Objective Measure of Retrieval Effectiveness

    ERIC Educational Resources Information Center

    Heine, M. H.

    1973-01-01

    The Marczewski-Steinhaus metric provides what appears to be an objective general measure of retrieval effectiveness within the framework of set theory and the theory of metric spaces. (19 references) (Author/SJ)

  3. Measurement of the absolute vμ-CCQE cross section at the SciBooNE experiment

    SciTech Connect

    Aunion, Jose Luis Alcaraz

    2010-07-01

    This thesis presents the measurement of the charged current quasi-elastic (CCQE) neutrino-nucleon cross section at neutrino energies around 1 GeV. This measurement has two main physical motivations. On one hand, the neutrino-nucleon interactions at few GeV is a region where existing old data are sparse and with low statistics. The current measurement populates low energy regions with higher statistics and precision than previous experiments. On the other hand, the CCQE interaction is the most useful interaction in neutrino oscillation experiments. The CCQE channel is used to measure the initial and final neutrino fluxes in order to determine the neutrino fraction that disappeared. The neutrino oscillation experiments work at low neutrino energies, so precise measurement of CCQE interactions are essential for flux measurements. The main goal of this thesis is to measure the CCQE absolute neutrino cross section from the SciBooNE data. The SciBar Booster Neutrino Experiment (SciBooNE) is a neutrino and anti-neutrino scattering off experiment. The neutrino energy spectrum works at energies around 1 GeV. SciBooNE was running from June 8th 2007 to August 18th 2008. In that period, the experiment collected a total of 2.65 x 1020 protons on target (POT). This thesis has used full data collection in neutrino mode 0.99 x 1020 POT. A CCQE selection cut has been performed, achieving around 70% pure CCQE sample. A fit method has been exclusively developed to determine the absolute CCQE cross section, presenting results in a neutrino energy range from 0.2 to 2 GeV. The results are compatible with the NEUT predictions. The SciBooNE measurement has been compared with both Carbon (MiniBoonE) and deuterium (ANL and BNL) target experiments, showing a good agreement in both cases.

  4. Absolute Beam Energy Measurement using Elastic ep Scattering at Thomas Jefferson National Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Deur, Alexandre

    1999-10-01

    The Jefferson Lab beam energy measurement in Hall A using the elastic ep scattering will be described. This new, non-magnetic, energy measurement method allows a ( triangle E/E=10-4 ) precision. First-order corrections are canceled by the measurements of the electron and proton scattering angles for two symmetric kinematics. The measurement principle will be presented as well as the device and measurement results. Comparison with independent magnetic energy measurements of the same accuracy will be shown. This project is the result of a collaboration between the LPC: université Blaise Pascal/in2p3), Saclay and Jefferson Lab.

  5. A Novel Portable Absolute Transient Hot-Wire Instrument for the Measurement of the Thermal Conductivity of Solids

    NASA Astrophysics Data System (ADS)

    Assael, Marc J.; Antoniadis, Konstantinos D.; Metaxa, Ifigeneia N.; Mylona, Sofia K.; Assael, John-Alexander M.; Wu, Jiangtao; Hu, Miaomiao

    2015-11-01

    A new portable absolute Transient Hot-Wire instrument for measuring the thermal conductivity of solids over a range of 0.2 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} to 4 { W}{\\cdot }m^{-1}{\\cdot }{K}^{-1} is presented. The new instrument is characterized by three novelties: (a) an innovative two-wires sensor which provides robustness and portability, while at the same time employs a soft silicone layer to eliminate the effect of the contact resistance between the wires and the sample, (b) a newly designed compact portable printed electronic board employing an FPGA architecture CPU to the control output voltage and data processing—the new board replaces the traditional, large in size Wheatstone-type bridge system required to perform the experimental measurements, and (c) a cutting-edge software suite, developed for the mesh describing the structure of the sensor, and utilizing the Finite Elements Method to model the heat flow. The estimation of thermal conductivity is modeled as a minimization problem and is solved using Bayesian Optimization. Our revolutionizing proposed methodology exhibits radical speedups of up to × 120, compared to previous approaches, and considerably reduces the number of simulations performed, achieving convergence only in a few minutes. The new instrument was successfully employed to measure, at room temperature, the thermal conductivity of two thermal conductivity reference materials, Pyroceram 9606 and Pyrex 7740, and two possible candidate glassy solids, PMMA and BK7, with an absolute low uncertainty of 2 %.

  6. Measurement of Precision Geometric Distances to Three Anchor Points in the Local Universe

    NASA Technical Reports Server (NTRS)

    Reid, Mark J.

    2001-01-01

    We proposed a program to measure distances directly with accuracies of 5% to three anchor points in the Local Universe. We planned to accomplish this by conducting Very Long Baseline Interferometry (VLBI) observations of NGC 4258, M 33, and Sgr A*. These distance estimates should have a minimum of systematic uncertainty and can be used to re-calibrate several 'standard candles,' such as Cepheid and RR Lyrae variables. This will place the Galactic and extragalactic distance scales on much firmer ground. The primary contribution of our program will be to provide crucial independent checks and calibrations of extragalactic distance measurements. This will contribute to the ultimate success and impact of the HST Key Project on Extragalactic Distances and the Full-Sky Astrometric Mapping Explorer (FAME). Additionally, since distances are fundamental to astrophysics, our results will affect a large number of general projects on NASA facilities such as the Hubble Space Telescope, Chandra X-ray Observatory, and Next Generation Space Telescope.

  7. Radiometric absolute noise-temperature measurement system features improved accuracy and calibration ease

    NASA Technical Reports Server (NTRS)

    Brown, W.; Ewen, H.; Haroules, G.

    1970-01-01

    Radiometric receiver system, which measures noise temperatures in degrees Kelvin, does not require cryogenic noise sources for routine operation. It eliminates radiometer calibration errors associated with RF attenuation measurements. Calibrated noise source is required only for laboratory adjustment and calibration.

  8. VLBI ASTROMETRY OF PSR J2222-0137: A PULSAR DISTANCE MEASURED TO 0.4% ACCURACY

    SciTech Connect

    Deller, A. T.; Boyles, J.; Lorimer, D. R.; McLaughlin, M. A.; Kaspi, V. M.; Ransom, S.; Stairs, I. H.; Stovall, K.

    2013-06-20

    The binary pulsar J2222-0137 is an enigmatic system containing a partially recycled millisecond pulsar and a companion of unknown nature. While the low eccentricity of the system favors a white dwarf companion, an unusual double neutron star system is also a possibility, and optical observations will be able to distinguish between these possibilities. In order to allow the absolute luminosity (or upper limit) of the companion object to be properly calibrated, we undertook astrometric observations with the Very Long Baseline Array to constrain the system distance via a measurement of annual geometric parallax. With these observations, we measure the parallax of the PSR J2222-0137 system to be 3.742{sup +0.013}{sub -0.016} mas, yielding a distance of 267.3{sup +1.2}{sub -0.9} pc, and measure the transverse velocity to be 57.1{sup +0.3}{sub -0.2} km s{sup -1}. Fixing these parameters in the pulsar timing model made it possible to obtain a measurement of Shapiro delay and hence the system inclination, which shows that the system is nearly edge-on (sin i = 0.9985 {+-} 0.0005). Furthermore, we were able to detect the orbital motion of PSR J2222-0137 in our very long baseline interferometry (VLBI) observations and measure the longitude of ascending node {Omega}. The VLBI astrometry yields the most accurate distance obtained for a radio pulsar to date, and is furthermore the most accurate parallax for any radio source obtained at ''low'' radio frequencies (below {approx}5 GHz, where the ionosphere dominates the error budget). Using the astrometric results, we show that the companion to PSR J2222-0137 will be easily detectable in deep optical observations if it is a white dwarf. Finally, we discuss the implications of this measurement for future ultra-high-precision astrometry, in particular in support of pulsar timing arrays.

  9. Absolute prompt-gamma yield measurements for ion beam therapy monitoring

    NASA Astrophysics Data System (ADS)

    Pinto, M.; Bajard, M.; Brons, S.; Chevallier, M.; Dauvergne, D.; Dedes, G.; De Rydt, M.; Freud, N.; Krimmer, J.; La Tessa, C.; Létang, J. M.; Parodi, K.; Pleskač, R.; Prieels, D.; Ray, C.; Rinaldi, I.; Roellinghoff, F.; Schardt, D.; Testa, E.; Testa, M.

    2015-01-01

    Prompt-gamma emission detection is a promising technique for hadrontherapy monitoring purposes. In this regard, obtaining prompt-gamma yields that can be used to develop monitoring systems based on this principle is of utmost importance since any camera design must cope with the available signal. Herein, a comprehensive study of the data from ten single-slit experiments is presented, five consisting in the irradiation of either PMMA or water targets with lower and higher energy carbon ions, and another five experiments using PMMA targets and proton beams. Analysis techniques such as background subtraction methods, geometrical normalization, and systematic uncertainty estimation were applied to the data in order to obtain absolute prompt-gamma yields in units of prompt-gamma counts per incident ion, unit of field of view, and unit of solid angle. At the entrance of a PMMA target, where the contribution of secondary nuclear reactions is negligible, prompt-gamma counts per incident ion, per millimetre and per steradian equal to (124 ± 0.7stat ± 30sys) × 10-6 for 95 MeV u-1 carbon ions, (79 ± 2stat ± 23sys) × 10-6 for 310 MeV u-1 carbon ions, and (16 ± 0.07stat ± 1sys) × 10-6 for 160 MeV protons were found for prompt gammas with energies higher than 1 MeV. This shows a factor 5 between the yields of two different ions species with the same range in water (160 MeV protons and 310 MeV u-1 carbon ions). The target composition was also found to influence the prompt-gamma yield since, for 300/310 MeV u-1 carbon ions, a 42% greater yield ((112 ± 1stat ± 22sys) × 10-6 counts ion-1 mm-1 sr-1) was obtained with a water target compared to a PMMA one.

  10. Clustering of local group distances: Publication bias or correlated measurements? II. M31 and beyond

    SciTech Connect

    De Grijs, Richard; Bono, Giuseppe

    2014-07-01

    The accuracy of extragalactic distance measurements ultimately depends on robust, high-precision determinations of the distances to the galaxies in the local volume. Following our detailed study addressing possible publication bias in the published distance determinations to the Large Magellanic Cloud (LMC), here we extend our distance range of interest to include published distance moduli to M31 and M33, as well as to a number of their well-known dwarf galaxy companions. We aim at reaching consensus on the best, most homogeneous, and internally most consistent set of Local Group distance moduli to adopt for future, more general use based on the largest set of distance determinations to individual Local Group galaxies available to date. Based on a careful, statistically weighted combination of the main stellar population tracers (Cepheids, RR Lyrae variables, and the magnitude of the tip of the red-giant branch), we derive a recommended distance modulus to M31 of (m−M){sub 0}{sup M31}=24.46±0.10 mag—adopting as our calibration an LMC distance modulus of (m−M){sub 0}{sup LMC}=18.50 mag—and a fully internally consistent set of benchmark distances to key galaxies in the local volume, enabling us to establish a robust and unbiased, near-field extragalactic distance ladder.

  11. An absolute radon 222 activity measurement system at LNE-LNHB.

    PubMed

    Sabot, B; Pierre, S; Cassette, P

    2016-12-01

    A good metrological traceability of radon and progenies is necessary to accurately measure the radon concentration. In 1995, at the LNE-LNHB, J.L. Picolo developed a reference method using a defined-solid-angle (DSA) alpha spectrometer to measure a frozen radon source. With this method it was possible to measure radon standards with a relative standard uncertainty of 0.5%. This paper presents the design and the characterization of a new upgraded measurement system; all parameters and their uncertainties are discussed. This new system allows the measurement of radon sources from 100Bq to 4MBq with a relative standard uncertainty of 0.3%.

  12. Absolute Steady-State Thermal Conductivity Measurements by Use of a Transient Hot-Wire System.

    PubMed

    Roder, H M; Perkins, R A; Laesecke, A; Nieto de Castro, C A

    2000-01-01

    A transient hot-wire apparatus was used to measure the thermal conductivity of argon with both steady-state and transient methods. The effects of wire diameter, eccentricity of the wire in the cavity, axial conduction, and natural convection were accounted for in the analysis of the steady-state measurements. Based on measurements on argon, the relative uncertainty at the 95 % level of confidence of the new steady-state measurements is 2 % at low densities. Using the same hot wires, the relative uncertainty of the transient measurements is 1 % at the 95 % level of confidence. This is the first report of thermal conductivity measurements made by two different methods in the same apparatus. The steady-state method is shown to complement normal transient measurements at low densities, particularly for fluids where the thermophysical properties at low densities are not known with high accuracy.

  13. Absolute prompt-gamma yield measurements for ion beam therapy monitoring.

    PubMed

    Pinto, M; Bajard, M; Brons, S; Chevallier, M; Dauvergne, D; Dedes, G; De Rydt, M; Freud, N; Krimmer, J; La Tessa, C; Létang, J M; Parodi, K; Pleskač, R; Prieels, D; Ray, C; Rinaldi, I; Roellinghoff, F; Schardt, D; Testa, E; Testa, M

    2015-01-21

    Prompt-gamma emission detection is a promising technique for hadrontherapy monitoring purposes. In this regard, obtaining prompt-gamma yields that can be used to develop monitoring systems based on this principle is of utmost importance since any camera design must cope with the available signal. Herein, a comprehensive study of the data from ten single-slit experiments is presented, five consisting in the irradiation of either PMMA or water targets with lower and higher energy carbon ions, and another five experiments using PMMA targets and proton beams. Analysis techniques such as background subtraction methods, geometrical normalization, and systematic uncertainty estimation were applied to the data in order to obtain absolute prompt-gamma yields in units of prompt-gamma counts per incident ion, unit of field of view, and unit of solid angle. At the entrance of a PMMA target, where the contribution of secondary nuclear reactions is negligible, prompt-gamma counts per incident ion, per millimetre and per steradian equal to (124 ± 0.7stat ± 30sys) × 10(-6) for 95 MeV u(-1) carbon ions, (79 ± 2stat ± 23sys) × 10(-6) for 310 MeV u(-1) carbon ions, and (16 ± 0.07stat ± 1sys) × 10(-6) for 160 MeV protons were found for prompt gammas with energies higher than 1 MeV. This shows a factor 5 between the yields of two different ions species with the same range in water (160 MeV protons and 310 MeV u(-1) carbon ions). The target composition was also found to influence the prompt-gamma yield since, for 300/310 MeV u(-1) carbon ions, a 42% greater yield ((112 ± 1stat ± 22sys) × 10(-6) counts ion(-1) mm(-1) sr(-1)) was obtained with a water target compared to a PMMA one.

  14. Measurements of absolute total and partial cross sections for the electron ionization of tungsten hexafluoride (WF6)

    NASA Astrophysics Data System (ADS)

    Basner, R.; Schmidt, M.; Becker, K.

    2004-04-01

    We measured absolute partial cross sections for the formation of positive ions followed by electron impact on tungsten hexafluoride (WF6) from threshold to 900 eV using a time-of-flight mass spectrometer (TOF-MS). Dissociative ionization processes resulting in seven different singly charged ions (F+, W+, WFx+, x=1-5) and five doubly charged ions (W2+, WFx2+, x=1-4) were found to be the dominant ionization channels. The ion spectrum at all impact energies is dominated by WF5+ fragment ions. At 120 eV impact energy, the partial WF5+ ionization cross section has a maximum value of 3.92×10-16 cm2 that corresponds to 43% of the total ion yield. The cross section values of all the other singly charged fragment ions at 120 eV range between 0.39×10-16 and 0.73×10-16 cm2. The ionization cross sections of the doubly charged ions are more than one order of magnitude lower than the cross section of WF5+. Double ionization processes account for 21% of the total ion yield at 120 eV. The absolute total ionization cross section of WF6 was obtained as the sum of all measured partial ionization cross sections and is compared with available calculated cross sections.

  15. Measuring Transactional Distance in Web-Based Learning Environments: An Initial Instrument Development

    ERIC Educational Resources Information Center

    Huang, Xiaoxia; Chandra, Aruna; DePaolo, Concetta; Cribbs, Jennifer; Simmons, Lakisha

    2015-01-01

    This study was an initial attempt to operationalise Moore's transactional distance theory by developing and validating an instrument measuring the related constructs: dialogue, structure, learner autonomy and transactional distance. Data were collected from 227 online students and analysed through an exploratory factor analysis. Results suggest…

  16. 41 CFR 301-10.302 - How do I determine distance measurements for my travel?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... distance measurements for my travel? 301-10.302 Section 301-10.302 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES ALLOWABLE TRAVEL EXPENSES 10... my travel? If you travel by The distance between your origin and destination is Privately...

  17. 41 CFR 301-10.302 - How do I determine distance measurements for my travel?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... distance measurements for my travel? 301-10.302 Section 301-10.302 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES ALLOWABLE TRAVEL EXPENSES 10... my travel? If you travel by The distance between your origin and destination is Privately...

  18. Long distance, unconditional teleportation of atomic states via complete Bell state measurements.

    PubMed

    Lloyd, S; Shahriar, M S; Shapiro, J H; Hemmer, P R

    2001-10-15

    We propose a scheme for creating and storing quantum entanglement over long distances. Optical cavities that store this long-distance entanglement in atoms could then function as nodes of a quantum network, in which quantum information is teleported from cavity to cavity. The teleportation is conducted unconditionally via measurements of all four Bell states, using a novel method of sequential elimination.

  19. Measurements of absolute delayed neutron yield and group constants in the fast fission of {sup 235}U and {sup 237}Np

    SciTech Connect

    Loaiza, D.J.; Brunson, G.; Sanchez, R.; Butterfield, K.

    1998-03-01

    The delayed neutron activity resulting from the fast induced fission of {sup 235}U and {sup 237}Np has been studied. The six-group decay constants, relative abundances, and absolute yield of delayed neutrons from fast fission of {sup 235}U and {sup 237}Np were measured using the Godiva IV fast assembly at the Los Alamos Critical Experiments Facility. The absolute yield measured for {sup 235}U was 0.0163 {+-} 0.0008 neutron/fission. This value compares very well with the well-established Keepin absolute yield of 0.0165 {+-} 0.0005. The absolute yield value measured for {sup 237}Np was 0.0126 {+-} 0.0007. The measured delayed neutron parameters for {sup 235}U are corroborated with period (e-folding time) versus reactivity calculations.

  20. New distance measures: the route toward truly non-Gaussian geostatistics

    SciTech Connect

    Journel, A.G.

    1988-05-01

    The projection or minimum error norm algorithm does not require that the distance measure be a variogram. In non-Gaussian cases, the traditional variogram distance measure leading to minimization of an error variance offers no definite advantage. Other distance measures, more outlier-resistant than the variogram, are proposed which fulfill the condition of the projection theorem. The resulting minimum error norms provide the same data configurations ranking as traditionally obtained from kriging variances. A case study based on actual digital terrain data is presented.

  1. A Random Forest-Induced Distance-Based Measure of Physiological Dysregulation.

    PubMed

    Bello, Ghalib Ayodeji; Dumancas, Gerard

    2017-01-17

    Aging involves gradual, multisystemic physiological dysregulation and over time, this degenerative process increases an individual's risk for multiple age-related comorbidities. The ability to quantify age-related physiological dysregulation can provide key insights into the biological mechanisms underlying the aging process and facilitate the development of clinical interventions. Recent studies have introduced and validated a measure of physiological dysregulation based on statistical distance. This measure quantifies the extent of physiological dysregulation in an individual by measuring how much the individual's biomarker profile deviates from the expected average. The measurement is done by conceptualizing an individual's biomarker profile as a point in multidimensional space, and computing the Mahalanobis distance between this point and a population-based norm. Higher distances imply a greater degree of physiological dysregulation, i.e. increased divergence from normal, healthy functioning. The biomarkers used for the computation are typically clinical markers of physiological function, for example, cholesterol levels and blood glucose. Major shortcomings of this Mahalanobis distance-based approach are the incorrect assumption of multivariate normality, and identical weighting of biomarkers. In this study, we introduce a nonparametric approach that requires no distributional assumptions. This approach utilizes Random Survival Forests and produces a distance measure that exhibits better performance than the standard approach based on Mahalanobis distance. We find that our Random Forest-induced distance metric substantially outperforms the standard measure in predicting mortality, health status and biological age, which suggests it is a more accurate tool for characterizing and quantifying age-related physiological dysregulation.

  2. Using absolute x-ray spectral measurements to infer stagnation conditions in ICF implosions

    NASA Astrophysics Data System (ADS)

    Patel, Pravesh; Benedetti, L. R.; Cerjan, C.; Clark, D. S.; Hurricane, O. A.; Izumi, N.; Jarrott, L. C.; Khan, S.; Kritcher, A. L.; Ma, T.; Macphee, A. G.; Landen, O.; Spears, B. K.; Springer, P. T.

    2016-10-01

    Measurements of the continuum x-ray spectrum emitted from the hot-spot of an ICF implosion can be used to infer a number thermodynamic properties at stagnation including temperature, pressure, and hot-spot mix. In deuterium-tritium (DT) layered implosion experiments on the National Ignition Facility (NIF) we field a number of x-ray diagnostics that provide spatial, temporal, and spectrally-resolved measurements of the radiated x-ray emission. We report on analysis of these measurements using a 1-D hot-spot model to infer thermodynamic properties at stagnation. We compare these to similar properties that can be derived from DT fusion neutron measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Calibration of the Odyssey Photosynthetic Irradiance Recorder for Absolute Irradiance Measures

    EPA Science Inventory

    Researchers are increasingly interested in measuring hotosynthetically active radiation (PAR) because of its importance in determining the structure and function of lotic ecosystems. The Odyssey Photosynthetic Irradiance Recorder is an affordable PAR meter gaining popularity am...

  4. Application of a Fringe Capacitive Sensor to Small-Distance Measurement

    NASA Astrophysics Data System (ADS)

    Wang, Dau-Chung; Chou, Jung-Chuan; Wang, Shih-Ming; Lu, Po-Lun; Liao, Lan-Pin

    2003-09-01

    In this paper, we used a fringe capacitive sensor to measure a short-distance variation of a target. High-precision displacement measurement was carried out based on the small fringing capacitance of the sensor measured. Sensing sensitivity was 38 μV/μm when the measurement was carried out in the distance range from 75 to 150 μm, which is the distance range between the sensor and the target. The sensitivity of the fringing capacitor is affected by its dimension, linewidth, and pattern. A printed circuit board (PCB)-based fabrication process was used to fabricate fringing capacitive sensors of various patterns. A simple and low cost sensing circuit transformed fringing capacitances into voltage output signal, which is also called capacitance-to-voltage (C/V) conversion. We accomplished the short-distance measurement with precision up to a submicron level.

  5. Direct Measurement of Wave Kernels in Time-Distance Helioseismology

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.

    2006-01-01

    Solar f-mode waves are surface-gravity waves which propagate horizontally in a thin layer near the photosphere with a dispersion relation approximately that of deep water waves. At the power maximum near 3 mHz, the wavelength of 5 Mm is large enough for various wave scattering properties to be observable. Gizon and Birch (2002,ApJ,571,966)h ave calculated kernels, in the Born approximation, for the sensitivity of wave travel times to local changes in damping rate and source strength. In this work, using isolated small magnetic features as approximate point-sourc'e scatterers, such a kernel has been measured. The observed kernel contains similar features to a theoretical damping kernel but not for a source kernel. A full understanding of the effect of small magnetic features on the waves will require more detailed modeling.

  6. Solid-state track recorder dosimetry device to measure absolute reaction rates and neutron fluence as a function of time

    DOEpatents

    Gold, Raymond; Roberts, James H.

    1989-01-01

    A solid state track recording type dosimeter is disclosed to measure the time dependence of the absolute fission rates of nuclides or neutron fluence over a period of time. In a primary species an inner recording drum is rotatably contained within an exterior housing drum that defines a series of collimating slit apertures overlying windows defined in the stationary drum through which radiation can enter. Film type solid state track recorders are positioned circumferentially about the surface of the internal recording drum to record such radiation or its secondary products during relative rotation of the two elements. In another species both the recording element and the aperture element assume the configuration of adjacent disks. Based on slit size of apertures and relative rotational velocity of the inner drum, radiation parameters within a test area may be measured as a function of time and spectra deduced therefrom.

  7. Absolute depth-dose-rate measurements for an 192Ir HDR brachytherapy source in water using MOSFET detectors.

    PubMed

    Zilio, Valéry Olivier; Joneja, Om Parkash; Popowski, Youri; Rosenfeld, Anatoly; Chawla, Rakesh

    2006-06-01

    Reported MOSFET measurements concern mostly external radiotherapy and in vivo dosimetry. In this paper, we apply the technique for absolute dosimetry in the context of HDR brachytherapy using an 192Ir source. Measured radial dose rate distributions in water for different planes perpendicular to the source axis are presented and special attention is paid to the calibration of the R and K type detectors, and to the determination of appropriate correction factors for the sensitivity variation with the increase of the threshold voltage and the energy dependence. The experimental results are compared with Monte Carlo simulated dose rate distributions. The experimental results show a good agreement with the Monte Carlo simulations: the discrepancy between experimental and Monte Carlo results being within 5% for 82% of the points and within 10% for 95% of the points. Moreover, all points except two are found to lie within the experimental uncertainties, confirming thereby the quality of the results obtained.

  8. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    NASA Astrophysics Data System (ADS)

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.20, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  9. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata.

    PubMed

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya; Paul, Saikat; Duttagupta, Anjan

    2013-02-01

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and ±0.2(0), respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ("Dee" voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTe X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.

  10. Implementation of a data processing platform for real-time distance measurement with dual-comb lasers

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Xu, Mingfei; Zhou, Qian; Dong, Hao; Li, Xinghui; Wu, Guanhao

    2015-08-01

    Absolute distance measurement with dual femtosecond comb lasers has advantages of wide-range, high-accuracy and fast speed. It combines time-of-flight and interferometric measurement. The novelty of ranging method leads to new challenges in designing the data acquisition and processing hardware system. Currently there are no available real-time data processing system for dual-comb ranging. This paper introduces our recent progress on designing and implementing such a platform. Our platform mainly contains four different function modules. First, a clock module that accept a 250MHz maximum reference clock input was introduced to generate the sample clock for A/D converter, and the module's output clock can be delayed up to 20ns with a resolution of 714ps. Second, a high-speed data acquisition module with a 14-bit resolution and a 125 MSPS maximum sample rate was designed to convert the analog laser pulse signal to digital signal. Third, we built a real-time data processing module that allows an input of 16-bit data in the FPGA to calculate the distance from the digital signal within 83us. Finally, a data transmission module based on a 128MB DDR SDRAM and USB2.0 was added so that we can easily debug the platform in the PC. The performance of our system is evaluated in real-time. The test bench consists of two femtosecond laser sources, an optical fiber interferometer and our data processing system. The repetition frequencies of the two combs are around 50MHz, with frequency difference of 2.5kHz. The center wavelength of laser pulses is 1560nm. The target distance is from 0m to 3m. The experimental results show that our system can output measurement results at the rate of 2500 pts/s, and the measurement deviation is less than 10um.

  11. Absolute Thickness Measurements on Coatings Without Prior Knowledge of Material Properties Using Terahertz Energy

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Cosgriff, Laura M.; Harder, Bryan; Zhu, Dongming; Martin, Richard E.

    2013-01-01

    This study investigates the applicability of a novel noncontact single-sided terahertz electromagnetic measurement method for measuring thickness in dielectric coating systems having either dielectric or conductive substrate materials. The method does not require knowledge of the velocity of terahertz waves in the coating material. The dielectric coatings ranged from approximately 300 to 1400 m in thickness. First, the terahertz method was validated on a bulk dielectric sample to determine its ability to precisely measure thickness and density variation. Then, the method was studied on simulated coating systems. One simulated coating consisted of layered thin paper samples of varying thicknesses on a ceramic substrate. Another simulated coating system consisted of adhesive-backed Teflon adhered to conducting and dielectric substrates. Alumina samples that were coated with a ceramic adhesive layer were also investigated. Finally, the method was studied for thickness measurement of actual thermal barrier coatings (TBC) on ceramic substrates. The unique aspects and limitations of this method for thickness measurements are discussed.

  12. Absolute three-dimensional micro surface profile measurement based on a Greenough-type stereomicroscope

    NASA Astrophysics Data System (ADS)

    Hu, Yan; Chen, Qian; Tao, Tianyang; Li, Hui; Zuo, Chao

    2017-04-01

    Fringe projection profilometry has become a widely used method in 3D shape measurement and 3D data acquisition for the features of flexibility, noncontactness, and high accuracy. By combining fringe projection setup with microscopic optics, the fringe pattern can be projected and imaged within a small area, making it possible for measuring 3D surfaces of micro-components. In this paper, a Greenough-type stereomicroscope arrangement is firstly applied for this situation by using the two totally separated and coaxial optical paths of the stereomicroscope. The calibration framework of the stereomicroscope-based system is proposed, which enables high-accuracy calibration of the optical setup for quantitative measurement with the effect of lens distortion eliminated. In the process of 3D reconstruction, depth information is firstly retrieved through the phase-height relation calibrated by a nonlinear fitting algorithm, and the transverse position can be subsequently obtained by solving the equations derived from the calibrated model of the camera. Experiments of both calibration and measurements are conducted and the results reveal that our system is capable of conducting fully automated 3D measurements with a depth accuracy of approximately 4 μm in a volume of approximately 8(L) mm  ×  6(W) mm  ×  3(H) mm.

  13. TU-A-12A-09: Absolute Blood Flow Measurement in a Cardiac Phantom Using Low Dose CT

    SciTech Connect

    Ziemer, B; Hubbard, L; Lipinski, J; Molloi, S

    2014-06-15

    Purpose: To investigate a first pass analysis technique to measure absolute flow from low dose CT images in a cardiac phantom. This technique can be combined with a myocardial mass assignment to yield absolute perfusion using only two volume scans and reduce the radiation dose to the patient. Methods: A four-chamber cardiac phantom and perfusion chamber were constructed from poly-acrylic and connected with tubing to approximate anatomical features. The system was connected to a pulsatile pump, input/output reservoirs and power contrast injector. Flow was varied in the range of 1-2.67 mL/s with the pump operating at 60 beats/min. The system was imaged once a second for 14 seconds with a 320-row scanner (Toshiba Medical Systems) using a contrast-enhanced, prospective-gated cardiac perfusion protocol. Flow was calculated by the following steps: subsequent images of the perfusion volume were subtracted to find the contrast entering the volume; this was normalized by an upstream, known volume region to convert Hounsfield (HU) values to concentration; this was divided by the subtracted images time difference. The technique requires a relatively stable input contrast concentration and no contrast can leave the perfusion volume before the flow measurement is completed. Results: The flow calculated from the images showed an excellent correlation with the known rates. The data was fit to a linear function with slope 1.03, intercept 0.02 and an R{sup 2} value of 0.99. The average root mean square (RMS) error was 0.15 mL/s and the average standard deviation was 0.14 mL/s. The flow rate was stable within 7.7% across the full scan and served to validate model assumptions. Conclusion: Accurate, absolute flow rates were measured from CT images using a conservation of mass model. Measurements can be made using two volume scans which can substantially reduce the radiation dose compared with current dynamic perfusion techniques.

  14. Absolute atomic oxygen density measurements for nanosecond-pulsed atmospheric-pressure plasma jets using two-photon absorption laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Carter, C.

    2014-12-01

    Nanosecond-pulsed plasma jets that are generated under ambient air conditions and free from confinement of electrodes have become of great interest in recent years due to their promising applications in medicine and dentistry. Reactive oxygen species that are generated by nanosecond-pulsed, room-temperature non-equilibrium He-O2 plasma jets among others are believed to play an important role during the bactericidal or sterilization processes. We report here absolute measurements of atomic oxygen density in a 1 mm-diameter He/(1%)O2 plasma jet at atmospheric pressure using two-photon absorption laser-induced fluorescence spectroscopy. Oxygen number density on the order of 1013 cm-3 was obtained in a 150 ns, 6 kV single-pulsed plasma jet for an axial distance up to 5 mm above the device nozzle. Temporally resolved O density measurements showed that there are two maxima, separated in time by 60-70 µs, and a total pulse duration of 260-300 µs. Electrostatic modeling indicated that there are high-electric-field regions near the nozzle exit that may be responsible for the observed temporal behavior of the O production. Both the field-distribution-based estimation of the time interval for the O number density profile and a pulse-energy-dependence study confirmed that electric-field-dependent, direct and indirect electron-induced processes play important roles for O production.

  15. Resolving Differences in Absolute Irradiance Measurements Between the SOHO/CELIAS/SEM and the SDO/EVE

    NASA Astrophysics Data System (ADS)

    Wieman, S. R.; Didkovsky, L. V.; Judge, D. L.

    2014-08-01

    The Solar EUV Monitor (SEM) onboard SOHO has measured absolute extreme ultraviolet (EUV) and soft X-ray solar irradiance nearly continuously since January 1996. The EUV Variability Experiment (EVE) on SDO, in operation since April of 2010, measures solar irradiance in a wide spectral range that encompasses the band passes (26 - 34 nm and 0.1 - 50 nm) measured by SOHO/SEM. However, throughout the mission overlap, irradiance values from these two instruments have differed by more than the combined stated uncertainties of the measurements. In an effort to identify the sources of these differences and eliminate them, we investigate in this work the effect of reprocessing the SEM data using a more accurate SEM response function (obtained from synchrotron measurements with a SEM sounding-rocket clone instrument taken after SOHO was already in orbit) and time-dependent, measured solar spectral distributions - i.e., solar reference spectra that were unavailable prior to the launch of the SDO. We find that recalculating the SEM data with these improved parameters reduces mean differences with the EVE measurements from about 20 % to less than 5 % in the 26 - 34 nm band, and from about 35 % to about 15 % for irradiances in the 0.1 - 7 nm band extracted from the SEM 0.1 - 50 nm channel.

  16. Resolving Differences in Absolute Irradiance Measurements Between the SOHO/CELIAS/SEM and the SDO/EVE.

    PubMed

    Wieman, S R; Didkovsky, L V; Judge, D L

    The Solar EUV Monitor (SEM) onboard SOHO has measured absolute extreme ultraviolet (EUV) and soft X-ray solar irradiance nearly continuously since January 1996. The EUV Variability Experiment (EVE) on SDO, in operation since April of 2010, measures solar irradiance in a wide spectral range that encompasses the band passes (26 - 34 nm and 0.1 - 50 nm) measured by SOHO/SEM. However, throughout the mission overlap, irradiance values from these two instruments have differed by more than the combined stated uncertainties of the measurements. In an effort to identify the sources of these differences and eliminate them, we investigate in this work the effect of reprocessing the SEM data using a more accurate SEM response function (obtained from synchrotron measurements with a SEM sounding-rocket clone instrument taken after SOHO was already in orbit) and time-dependent, measured solar spectral distributions - i.e., solar reference spectra that were unavailable prior to the launch of the SDO. We find that recalculating the SEM data with these improved parameters reduces mean differences with the EVE measurements from about 20 % to less than 5 % in the 26 - 34 nm band, and from about 35 % to about 15 % for irradiances in the 0.1 - 7 nm band extracted from the SEM 0.1 - 50 nm channel.

  17. A technique for measuring absolute toe pressures: evaluation of pressure-sensitive film techniques.

    PubMed

    Tuckman, A S; Werner, F W; Fortino, M D; Spadaro, J A

    1992-05-01

    Although a number of pathologies of the forefoot in ballet dancers on pointe have been described, pressures and deforming forces have not been adequately measured. To evaluate the possible use of pressure-sensitive film (PSF) in measuring the pressures on the external soft tissues in such a confined space as the dancer's toe shoe, it was tested and calibrated with 20 cadaver toes. Each cadaver toe was internally stabilized and loaded longitudinally against PSF on a flat surface. The resultant films were analyzed with a video imaging system and the pressures and total forces were determined. Results showed that the linearity of the PSF to pressure had a regression value of 0.98. By using two sensitivity ranges of films, the total force measured by the PSF was found to be within 10% of the known applied force on each toe. The PSF, therefore, may very well be a useful and accurate method of measuring external soft tissue pressures on the forefoot.

  18. A preliminary study for portable walking distance measurement system using ultrasonic sensors.

    PubMed

    Jang, Yongwon; Shin, Seungchul; Lee, Jeong Won; Kim, Seunghwan

    2007-01-01

    Efforts have been made to measure the distance traveled by humans in motion, in ways that are compact and accurate, for a long time. There are several ways to measure the distance moved by walking or running in daily life, some of which already use commercial products, but those methods are inaccurate. In this study, a new method is provided using ultrasonic sensors, and this is the fundamental study. The newly devised 'Portable Walking Distance Measurement System' was developed using ultrasonic wave characteristics and has approximately 90% accuracy. This result provides an opportunity to estimate human activities and the developed system would provide more comfort and an exact way to measure the walking distance in daily life and could be applied to exercise.

  19. Measuring nanometer distances in nucleic acids using a sequence-independent nitroxide probe

    PubMed Central

    Qin, Peter Z; Haworth, Ian S; Cai, Qi; Kusnetzow, Ana K; Grant, Gian Paola G; Price, Eric A; Sowa, Glenna Z; Popova, Anna; Herreros, Bruno; He, Honghang

    2008-01-01

    This protocol describes the procedures for measuring nanometer distances in nucleic acids using a nitroxide probe that can be attached to any nucleotide within a given sequence. Two nitroxides are attached to phosphorothioates that are chemically substituted at specific sites of DNA or RNA. Inter-nitroxide distances are measured using a four-pulse double electron–electron resonance technique, and the measured distances are correlated to the parent structures using a Web-accessible computer program. Four to five days are needed for sample labeling, purification and distance measurement. The procedures described herein provide a method for probing global structures and studying conformational changes of nucleic acids and protein/nucleic acid complexes. PMID:17947978

  20. Clustering of Local Group Distances: Publication Bias or Correlated Measurements? IV. The Galactic Center

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Bono, Giuseppe

    2016-11-01

    Aiming at deriving a statistically well-justified Galactic Center distance, R 0, and reducing any occurrence of publication bias, we compiled the most comprehensive and most complete database of Galactic Center distances available to date, containing 273 new or revised R 0 estimates published since records began in 1918 October until 2016 June. We separate our R 0 compilation into direct and indirect distance measurements. The latter include a large body of estimates that rely on centroid determinations for a range of tracer populations, as well as measurements based on kinematic observations of objects at the solar circle, combined with a mass and/or rotational model of the Milky Way. Careful assessment of the Galactic Center distances resulting from orbital modeling and statistical parallax measurements in the Galactic nucleus yields our final Galactic Center distance recommendation of {R}0=8.3+/- 0.2 {{(statistical)}}+/- 0.4 {{(systematic)}} {kpc}. The centroid-based distances are in good agreement with this recommendation. Neither the direct measurements nor the post-1990 centroid-based distance determinations suggest that publication bias may be important. The kinematics-based distance estimates are affected by significantly larger uncertainties, but they can be used to constrain the Galaxy’s rotation velocity at the solar galactocentric distance, {{{\\Theta }}}0. Our results imply that the International-Astronomical-Union-recommended Galactic Center distance ({R}0{IAU}=8.5 {kpc}) needs a downward adjustment, while its {{{\\Theta }}}0 recommendation ({{{\\Theta }}}0=220 km s-1) requires a substantial upward revision.

  1. Measurement of the absolute branching fraction of Ds+ --> tau+ nutau decay.

    PubMed

    Ecklund, K M; Love, W; Savinov, V; Lopez, A; Mendez, H; Ramirez, J; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Rademacker, J; Asner, D M; Edwards, K W; Naik, P; Reed, J; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Libby, J; Powell, A; Wilkinson, G

    2008-04-25

    Using a sample of tagged D(s)(+) decays collected near the D(s)(*+/-)D(s)(-/+) peak production energy in e(+)e(-) collisions with the CLEO-c detector, we study the leptonic decay D(s)(+)-->tau(+)nu(tau) via the decay channel tau(+)-->e(+)nu(e)nu(tau). We measure B(D(s)(+)-->tau(+)nu(tau))=(6.17+/-0.71+/-0.34)%, where the first error is statistical and the second systematic. Combining this result with our measurements of D(s)(+)-->mu(+)nu(mu) and D(s)(+)-->tau(+)nu(tau) (via tau(+)-->pi(+)nu(tau)), we determine f(D(s))=(274+/-10+/-5) MeV.

  2. Reliability of the inter-rectus distance measured by palpation. Comparison of palpation and ultrasound measurements.

    PubMed

    Mota, Patrícia; Pascoal, Augusto Gil; Sancho, Fátima; Carita, Ana Isabel; Bø, Kari

    2013-08-01

    An increased inter-rectus distance (IRD) is a common condition in late pregnancy and in the postnatal period. The condition is difficult to assess. Palpation is the most commonly used method to assess IRD. To date there is scant knowledge of intra and inter-tester reliability of palpation to measure IRD and how palpation compares with ultrasound measurements. The aims of this study were: 1) evaluate intra and inter-rater reliability of abdominal palpation; 2) validate abdominal palpation of IRD measurements using ultrasound imaging as a reference. Two physiotherapists (PTs) conducted the palpation study in random order, blinded to each other's assessments. IRD was measured as finger widths between the two rectus abdominis (RA) muscles. Ultrasound images were recorded at the same locations as the palpation test. A blinded investigator measured the IRD offline. Palpation showed good intra-rater reliability between days expressed by a weighted Kappa (wK) higher than 0.7 for both physiotherapists, and moderate inter-rater reliability (wK = 0.534). Ultrasound was found to be more responsive for differences in IRD compared with values obtained by palpation. The intra-rater reliability was higher than the inter-rater reliability. Besides the difference in experience with palpation testing between the PTs, this result may be due to differences in finger width and/or the subjective interpretation of abdominal soft-tissues pressure. Ultrasound measures are highly sensitive to changes of IRD, which is not possible to replicate by palpation assessment using a finger width scale. Palpation has sufficient reliability to be used in clinical practice. However, ultrasound is a more accurate and valid method and is recommended in future research of IRD.

  3. Evaluating the impact of distance measures on deforestation simulations in the fluvial landscapes of amazonia.

    PubMed

    Salonen, Maria; Maeda, Eduardo Eiji; Toivonen, Tuuli

    2014-10-01

    Land use and land cover change (LUCC) models frequently employ different accessibility measures as a proxy for human influence on land change processes. Here, we simulate deforestation in Peruvian Amazonia and evaluate different accessibility measures as LUCC model inputs. We demonstrate how the selection, and different combinations, of accessibility measures impact simulation results. Out of the individual measures, time distance to market center catches the essential aspects of accessibility in our study area. The most accurate simulation is achieved when time distance to market center is used in association with distance to transport network and additional landscape variables. Although traditional Euclidean measures result in clearly lower simulation accuracy when used separately, the combination of two complementary Euclidean measures enhances simulation accuracy significantly. Our results highlight the need for site and context sensitive selection of accessibility variables. More sophisticated accessibility measures can potentially improve LUCC models' spatial accuracy, which often remains low.

  4. Solar rotation measurements at Mount Wilson. II - Systematic instrumental effects and the absolute rotation rate

    NASA Technical Reports Server (NTRS)

    Labonte, B. J.; Howard, R.

    1981-01-01

    Possible sources of systematic error in solar Doppler rotational velocities are examined. Scattered light is shown to affect the Mount Wilson solar rotation results, but this effect is not enough to bring the spectroscopic results in coincidence with the sunspot rotation. Interference fringes at the spectrograph focus at Mount Wilson have in two intervals affected the rotation results. It has been possible to correlate this error with temperature and thus correct for it. A misalignment between the entrance and exit slits is a possible source of error, but for the Mount Wilson slit configuration, the amplitude of this effect is negligibly small. Rapid scanning of the solar image also produces no measurable effect.

  5. Absolute np and pp cross section determinations aimed at improving the standard for cross section measurements

    SciTech Connect

    Laptev, Alexander B; Haight, Robert C; Tovesson, Fredrik; Arndt, Richard A; Briscoe, William J; Paris, Mark W; Strakovsky, Igor I; Workman, Ron L

    2010-01-01

    Purpose of present research is a keeping improvement of the standard for cross section measurements of neutron-induced reactions. The cross sections for np and pp scattering below 1000 MeV are determined based on partial-wave analyses (PW As) of nucleon-nucleon scattering data. These cross sections are compared with the most recent ENDF/B-V11.0 and JENDL-4.0 data files, and the Nijmegen PWA. Also a comparison of evaluated data with recent experimental data was made to check a quality of evaluation. Excellent agreement was found between the new experimental data and our PWA predictions.

  6. Absolute np and pp Cross Section Determinations Aimed At Improving The Standard For Cross Section Measurements

    SciTech Connect

    Laptev, A. B.; Haight, R. C.; Tovesson, F.; Arndt, R. A.; Briscoe, W. J.; Paris, M. W.; Strakovsky, I. I.; Workman, R. L.

    2011-06-01

    Purpose of present research is a keeping improvement of the standard for cross section measurements of neutron-induced reactions. The cross sections for np and pp scattering below 1 GeV are determined based on partial-wave analyses (PWAs) of nucleon-nucleon scattering data. These cross sections are compared with the most recent ENDF/B-VII.0 and JENDL-4.0 data files, and the Nijmegen PWA. Also a comparison of evaluated data with recent experimental data was made to check a quality of evaluation. Excellent agreement was found between the new experimental data and our PWA predictions.

  7. Regularity of absolutely continuous invariant measures for piecewise expanding unimodal maps

    NASA Astrophysics Data System (ADS)

    Contreras, Fabián; Dolgopyat, Dmitry

    2016-09-01

    Let f:[0,1]\\to [0,1] be a piecewise expanding unimodal map of class C  k+1, with k≥slant 1 , and μ =ρ \\text{d}x the (unique) SRB measure associated to it. We study the regularity of ρ. In particular, points N where ρ is not differentiable has zero Hausdorff dimension, but is uncountable if the critical orbit of f is dense. This improves on a work of Szewc (1984). We also obtain results about higher orders of differentiability of ρ in the sense of Whitney.

  8. Measurement of the Absolute Branching Fractions of$B^\\pm \\to K^\\pm X_{c\\bar c}$

    SciTech Connect

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; Eigen, G.; Ofte, I.; Stugu, B. /Bergen U. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Karlsruhe U., EKP /Imperial Coll., London /Iowa U. /Iowa State U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Naples U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /INFN, Padua /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /Pisa U. /INFN, Pisa /Prairie View A-M /Princeton U. /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Stony Brook /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Vanderbilt U. /Victoria U. /Warwick U. /Wisconsin U., Madison /Yale U. /Basilicata U., Potenza

    2005-11-02

    We study the two-body decays of B{sup {+-}} mesons to K{sup {+-}} and a charmonium state, X{sub c{bar c}}, in a sample of 210.5 fb{sup -1} of data from the BABAR experiment. We perform measurements of absolute branching fractions {Beta}(B{sup {+-}} {yields} K{sup {+-}} X{sub c{bar c}}) using a missing mass technique, and report several new or improved results. In particular, the upper limit {Beta}(B{sup {+-}} {yields} K{sup {+-}}(3872)) < 3.2 x 10{sup -4} at 90% CL and the inferred lower limit {Beta}(X(3872) {yields} J/{psi}{pi}{sup +}{pi}{sup -}) > 4.2% will help in understanding the nature of the recently discovered X(3872).

  9. Absolute branching fraction measurements for D+ and D0 inclusive semileptonic decays.

    PubMed

    Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Weinberger, M; Athar, S B; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Wiss, J; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Severini, H; Dytman, S A; Love, W; Savinov, V; Aquines, O; Li, Z; Lopez, A; Mehrabyan, S; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Blusk, S; Butt, J; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Briere, R A; Brock, I; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L

    2006-12-22

    We present measurements of the inclusive branching fractions for the decays D+-->Xe+ nu(e) and D0-->Xe+ nu(e), using 281 pb(-1) of data collected on the psi(3770) resonance with the CLEO-c detector. We find B(D0-->Xe+ nu(e)) = (6.46+/-0.17+/-0.13)% and B(D+-->Xe+ nu(e)) = (16.13+/-0.20+/-0.33)%. Using the known D meson lifetimes, we obtain the ratio Gamma(D+)sl/Gamma(D0)sl = 0.985+/-0.028+/-0.015, confirming isospin invariance at the level of 3%. The positron momentum spectra from D+ and D0 have consistent shapes.

  10. Measurement of the absolute differential cross section of proton–proton elastic scattering at small angles

    DOE PAGES

    Mchedlishvili, D.; Chiladze, D.; Dymov, S.; ...

    2016-02-03

    The differential cross section for proton-proton elastic scattering has been measured at a beam kinetic energy of 1.0 GeV and in 200 MeV steps from 1.6 to 2.8 GeV for centre-of-mass angles in the range from 12°-16° to 25°-30°, depending on the energy. A precision in the overall normalisation of typically 3% was achieved by studying the energy losses of the circulating beam of the COSY storage ring as it passed repeatedly through the windowless hydrogen target of the ANKE magnetic spectrometer. It is shown that the data have a significant impact upon the results of a partial wave analysis.more » Furthermore, after extrapolating the differential cross sections to the forward direction, the results are broadly compatible with the predictions of forward dispersion relations.« less

  11. Measurement of the absolute differential cross section of proton–proton elastic scattering at small angles

    SciTech Connect

    Mchedlishvili, D.; Chiladze, D.; Dymov, S.; Bagdasarian, Z.; Barsov, S.; Gebel, R.; Gou, B.; Hartmann, M.; Kacharava, A.; Keshelashvili, I.; Khoukaz, A.; Kulessa, P.; Kulikov, A.; Lehrach, A.; Lomidze, N.; Lorentz, B.; Maier, R.; Macharashvili, G.; Merzliakov, S.; Mikirtychyants, S.; Nioradze, M.; Ohm, H.; Prasuhn, D.; Rathmann, F.; Serdyuk, V.; Schroer, D.; Shmakova, V.; Stassen, R.; Stein, H. J.; Stockhorst, H.; Strakovsky, I. I.; Stroher, H.; Tabidze, M.; Taschner, A.; Trusov, S.; Tsirkov, D.; Uzikov, Yu.; Valdau, Yu.; Wilkin, C.; Workman, R. L.; Wustner, P.

    2016-02-03

    The differential cross section for proton-proton elastic scattering has been measured at a beam kinetic energy of 1.0 GeV and in 200 MeV steps from 1.6 to 2.8 GeV for centre-of-mass angles in the range from 12°-16° to 25°-30°, depending on the energy. A precision in the overall normalisation of typically 3% was achieved by studying the energy losses of the circulating beam of the COSY storage ring as it passed repeatedly through the windowless hydrogen target of the ANKE magnetic spectrometer. It is shown that the data have a significant impact upon the results of a partial wave analysis. Furthermore, after extrapolating the differential cross sections to the forward direction, the results are broadly compatible with the predictions of forward dispersion relations.

  12. Mobile robot self-localization system using single webcam distance measurement technology in indoor environments.

    PubMed

    Li, I-Hsum; Chen, Ming-Chang; Wang, Wei-Yen; Su, Shun-Feng; Lai, To-Wen

    2014-01-27

    A single-webcam distance measurement technique for indoor robot localization is proposed in this paper. The proposed localization technique uses webcams that are available in an existing surveillance environment. The developed image-based distance measurement system (IBDMS) and parallel lines distance measurement system (PLDMS) have two merits. Firstly, only one webcam is required for estimating the distance. Secondly, the set-up of IBDMS and PLDMS is easy, which only one known-dimension rectangle pattern is needed, i.e., a ground tile. Some common and simple image processing techniques, i.e., background subtraction are used to capture the robot in real time. Thus, for the purposes of indoor robot localization, the proposed method does not need to use expensive high-resolution webcams and complicated pattern recognition methods but just few simple estimating formulas. From the experimental results, the proposed robot localization method is reliable and effective in an indoor environment.

  13. Procoagulant and platelet-derived microvesicle absolute counts determined by flow cytometry correlates with a measurement of their functional capacity

    PubMed Central

    Ayers, Lisa; Harrison, Paul; Kohler, Malcolm; Ferry, Berne

    2014-01-01

    Background Flow cytometry is the most commonly used technology to measure microvesicles (MVs). Despite reported limitations of this technique, MV levels obtained using conventional flow cytometry have yielded many clinically relevant findings, such as associations with disease severity and ability to predict clinical outcomes. This study aims to determine if MV enumeration by flow cytometry correlates with a measurement of their functional capacity, as this may explain how flow cytometry generates clinically relevant results. Methods One hundred samples from healthy individuals and patients with obstructive sleep apnoea were analysed by conventional flow cytometry (FACSCalibur) and by three functional MV assays: Zymuphen MP-activity in which data were given as phosphatidylserine equivalent, STA® Phospholipid Procoag Assay expressed as clotting time and Endogenous Thrombin Potential (ETP) reflecting in vitro thrombin generation. Correlations were determined by Spearman correlation. Results Absolute counts of lactadherin+ procoagulant MVs generated by flow cytometry weakly correlated with the results obtained from the Zymuphen MP-activity (r=0.5370, p<0.0001); correlated with ETP (r=0.7444, p<0.0001); negatively correlated with STA® Phospholipid Procoag Assay clotting time (−0.7872, p<0.0001), reflecting a positive correlation between clotting activity and flow cytometry. Levels of Annexin V+ procoagulant and platelet-derived MVs were also associated with functional assays. Absolute counts of MVs derived from other cell types were not correlated with the functional results. Conclusions Quantitative results of procoagulant and platelet-derived MVs from conventional flow cytometry are associated with the functional capability of the MVs, as defined by three functional MV assays. Flow cytometry is a valuable technique for the quantification of MVs from different cellular origins; however, a combination of several analytical techniques may give the most comprehensive

  14. Relaxation-based distance measurements between a nitroxide and a lanthanide spin label

    NASA Astrophysics Data System (ADS)

    Jäger, H.; Koch, A.; Maus, V.; Spiess, H. W.; Jeschke, G.

    2008-10-01

    Distance measurements by electron paramagnetic resonance techniques between labels attached to biomacromolecules provide structural information on systems that cannot be crystallized or are too large to be characterized by NMR methods. However, existing techniques are limited in their distance range and sensitivity. It is anticipated by theoretical considerations that these limits could be extended by measuring the enhancement of longitudinal relaxation of a nitroxide label due to a lanthanide complex label at cryogenic temperatures. The relaxivity of the dysprosium complex with the macrocyclic ligand DOTA can be determined without direct measurements of longitudinal relaxation rates of the lanthanide and without recourse to model compounds with well defined distance by analyzing the dependence of relaxation enhancement on either temperature or concentration in homogeneous glassy frozen solutions. Relaxivities determined by the two calibration techniques are in satisfying agreement with each other. Error sources for both techniques are examined. A distance of about 2.7 nm is measured in a model compound of the type nitroxide-spacer-lanthanide complex and is found in good agreement with the distance in a modeled structure. Theoretical considerations suggest that an increase of the upper distance limit requires measurements at lower fields and temperatures.

  15. Measurement of absolute auditory thresholds in the common marmoset (Callithrix jacchus).

    PubMed

    Osmanski, Michael S; Wang, Xiaoqin

    2011-07-01

    The common marmoset is a small, arboreal, New World primate that has emerged as a promising non-human model system in auditory neuroscience. A complete understanding of the neuroethology of auditory processing in marmosets will include behavioral work examining how sounds are perceived by these animals. However, there have been few studies of the marmoset's hearing and perceptual abilities and the audiogram of this species has not been measured using modern psychophysical methods. The present experiment pairs psychophysics with an operant conditioning technique to examine perception of pure tone stimuli by marmosets using an active behavioral paradigm. Subjects were trained to lick at a feeding tube when they detected a sound. Correct responses provided access to a food reward. Pure tones of varying intensities were presented to subjects using the method of constant stimuli. Behavioral thresholds were calculated for each animal based on hit rate--threshold was defined by the tone intensity that the animal correctly identified 50% of the time. Results show that marmoset hearing is comparable to that of other New World monkeys, with a hearing range extending from about 125 Hz up to 36 kHz and a sensitivity peak around 7 kHz.

  16. Direct measurement of the absolute absorption spectrum of individual semiconducting single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Blancon, Jean-Christophe; Paillet, Matthieu; Tran, Huy Nam; Than, Xuan Tinh; Guebrou, Samuel Aberra; Ayari, Anthony; Miguel, Alfonso San; Phan, Ngoc-Minh; Zahab, Ahmed-Azmi; Sauvajol, Jean-Louis; Fatti, Natalia Del; Vallée, Fabrice

    2013-09-01

    The optical properties of single-wall carbon nanotubes are very promising for developing novel opto-electronic components and sensors with applications in many fields. Despite numerous studies performed using photoluminescence or Raman and Rayleigh scattering, knowledge of their optical response is still partial. Here we determine using spatial modulation spectroscopy, over a broad optical spectral range, the spectrum and amplitude of the absorption cross-section of individual semiconducting single-wall carbon nanotubes. These quantitative measurements permit determination of the oscillator strength of the different excitonic resonances and their dependencies on the excitonic transition and type of semiconducting nanotube. A non-resonant background is also identified and its cross-section comparable to the ideal graphene optical absorbance. Furthermore, investigation of the same single-wall nanotube either free standing or lying on a substrate shows large broadening of the excitonic resonances with increase of oscillator strength, as well as stark weakening of polarization-dependent antenna effects, due to nanotube-substrate interaction.

  17. Measuring absolute frequencies beyond the GPS limit via long-haul optical frequency dissemination.

    PubMed

    Clivati, Cecilia; Cappellini, Giacomo; Livi, Lorenzo F; Poggiali, Francesco; de Cumis, Mario Siciliani; Mancini, Marco; Pagano, Guido; Frittelli, Matteo; Mura, Alberto; Costanzo, Giovanni A; Levi, Filippo; Calonico, Davide; Fallani, Leonardo; Catani, Jacopo; Inguscio, Massimo

    2016-05-30

    Global Positioning System (GPS) dissemination of frequency standards is ubiquitous at present, providing the most widespread time and frequency reference for the majority of industrial and research applications worldwide. On the other hand, the ultimate limits of the GPS presently curb further advances in high-precision, scientific and industrial applications relying on this dissemination scheme. Here, we demonstrate that these limits can be reliably overcome even in laboratories without a local atomic clock by replacing the GPS with a 642-km-long optical fiber link to a remote primary caesium frequency standard. Through this configuration we stably address the 1S0-3P0 clock transition in an ultracold gas of 173Yb, with a precision that exceeds the possibilities of a GPS-based measurement, dismissing the need for a local clock infrastructure to perform beyond-GPS high-precision tasks. We also report an improvement of two orders of magnitude in the accuracy on the transition frequency reported in literature.

  18. Absolute Ultraviolet Irradiance of the Moon from the LASP Lunar Albedo Measurement and Analysis from SOLSTICE (LLAMAS) Project

    NASA Astrophysics Data System (ADS)

    Snow, Martin; Holsclaw, Gregory M.; McClintock, William E.; Woods, Tom

    The Moon has been shown to be an extremely stable radiometric reference for calibration and long-term stability measurements of on-orbit sensors. The majority of the previous work on characterizing the lunar reflectance has been in the visible part of the spectrum using ground-based lunar images. The SOLar-STellar Irradiance Comparison Experiment (SOLSTICE) on the SOlar Radiation and Climate Experiment (SORCE) can be used to extend the lunar spectral irradiance dataset to include the 115-300 nm range. SOLSTICE can directly measure both the solar and lunar spectra from orbit, using the same optics and detectors. An observing campaign to map out the reflectance as a function of phase angle began in mid 2006 and continued through 2010. The geometry of SORCE's orbit is very favorable for lunar observations, and we have measurements spanning a range 0-170 ∘ in phase angle. In addition to Earth Observing Systems using the Moon for calibration, recent planetary missions have also made ultraviolet observations of the Moon during Earth flyby, and these SOLSTICE measurements can be useful in calibrating the absolute responsivity of those instruments as well.

  19. New Measurements of the Absolute Spectral Energy Distribution of Solar Radiation in the Range Double Lambda 650-1070 NM

    NASA Astrophysics Data System (ADS)

    Burlov-Vasilev, K. A.; Vasileva, I. E.; Matveev, Yu. B.

    1996-01-01

    Spectral measurements of the solar disk centre intensity for the near-IR region have been made at he Terskol High-Altitude Station in 1992. These measurements are the continuation of the program for the solar absolute spectral energy distribution investigation. Data published earlier are extended to the longwave spectral region up to 1070 nm. The special-purpose solar telescope SEF-1 was used. We compared the disk centre brightness with brightness of the calibrated region of the standard ribbon tungsten lamp. The atmospheric extinction was taken into account by the Bouguer method with simultaneous control of the atmosphere stability. The 1-nm integrals of the disk centre intensity in the range double lamda 650-1070 nm based on 5-day measurements in March-October 1992 are given. The uncertainty of these values is 2%. In regions with strong telluric absorption by oxygen and water-vapour bands, the reductions are made, using synthetic atmospheric absorption spectra computed on the basis of molecular parameter atlas HITRAN and the standard model atmosphere. By the use of the solar limb darkening coefficients the values of the solar flux at 1 A.U. were derived. Our measurements show the best agreement with the data of Makarova, Kharitonov, and Kazachevskaya as well as with the common data from Shaw and Frohlich. For lambda greater than 850 nm our data are systematically lower than the data by Neckel and Labs.

  20. Measurement of the absolute CF2 concentration in a dielectric barrier discharge running in argon/fluorocarbon mixtures

    NASA Astrophysics Data System (ADS)

    Vinogradov, I. P.; Dinkelmann, A.; Lunk, A.

    2004-11-01

    The role of different CFx-radicals in plasma polymerization in fluorocarbon mixtures has not been determined yet. Therefore spectroscopic investigations of dielectric barrier discharges (DBDs) in argon/fluorocarbon mixtures at atmospheric pressure were conducted with the focus on measurement of the concentration of CFx-radicals. The following diagnostic procedures were applied: FTIR absorption spectroscopy to diagnose stable compounds in the discharge, optical emission spectroscopy of the DBD in the UV and visible range and measurement of the CF2 concentration by UV absorption spectroscopy. The DBD was running in argon with the following admixtures: CF4, C2F6, C2H2F4, C3F8, C3HF7, c-C4F8. The relative concentration of the CF3-radical and the absolute concentration of CF2 in Ar/fluorocarbon mixtures were measured by emission spectroscopy and by absorption and emission spectroscopy, respectively. Emission and absorption spectroscopy were performed simultaneously in combination with electrical measurements of the discharge characteristics. The influence of small amounts of hydrogen or oxygen added to the argon/fluorocarbon mixtures was investigated.

  1. Absolute Zero

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.

    2006-12-01

    Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.

  2. Unified crosstalk measurement method for various distances on autostereoscopic multi-view displays

    NASA Astrophysics Data System (ADS)

    Duckstein, Bernd; Bartmann, Roland; Netzbandt, Ronny; Jurk, Silvio; Ebner, Thomas; de la Barré, René

    2015-03-01

    In this paper a procedure for crosstalk (CT) measurements on spatial-multiplexed multi-user autostereoscopic 3D displays with so-called viewing distance control (VDC) is presented. VDC makes use of a rendering method which allows shifting of the viewing distance for multiview displays by using a novel distribution of the content at sub-pixel level. Methods for CT measurements to date cannot be used as the measurements have to be executed at distances that are not defined in the standard procedures for stereoscopic displays. The measuring procedures used so far are not applicable, as neither a measurement process nor any test images are defined for the use at different viewing distances. As separate CT-measurement specifications for two-view and multiview autostereoscopic displays already exist, the authors propose a unified measurement process. This process is supposed to utilize both, the equipment, as well as the physical arrangement of measuring subject and instrument that are used so far. It has to be considered that, due to the basic functional principles, several quality measurement and evaluation criteria for 3D displays have emerged. Different autostereoscopic display technologies lead to different measurement procedures. A unified method for analyzing image quality features in 3D displays, requiring no enhanced effort but offering comparable results, is desirable.

  3. Distance and velocity measurements by the use of an orthogonal Michelson interferometer.

    PubMed

    Chang, Y S; Chien, P Y; Chang, M W

    1997-01-01

    A novel signal processing scheme for detecting distance and velocity signals simultaneously is demonstrated. In this method, a frequency-modulated diode laser is used to illuminate a dual-channel Michelson interferometer with two orthogonal output signals. The distance and the velocity signals then exist on the beat frequencies of the output interferometric signal. Two interferometric output signals with a quadrature phase shift are used to adjust the gating time period of frequency counters for beat-frequency measurement. The distance and velocity signals can thus be obtained from the counting number within the gated-in time period.

  4. A Technique to Measure Energy Partitioning and Absolute Gas Pressures of Strombolian Explosions Using Doppler Radar at Erebus Volcano

    NASA Astrophysics Data System (ADS)

    Gerst, A.; Hort, M.; Kyle, P. R.; Voege, M.

    2008-12-01

    In 2005/06 we deployed three 24GHz (K-Band) continuous wave Doppler radar instruments at the crater rim of Erebus volcano in Antarctica. At the time there was a ~40 m wide, ~1000°C hot convecting phonolite lava lake, which was the source of ~0-6 Strombolian gas bubble explosions per day. We measured the velocities of ~50 explosions using a sample rate of 1-15 Hz. Data were downloaded in real-time through a wireless network. The measurements provide new insights into the still largely unknown mechanism of Strombolian eruptions, and help improve existing eruption models. We present a technique for a quasi in-situ measurement of the absolute pressure inside an eruption gas bubble. Pressures were derived using a simple eruption model and measured high resolution bubble surface velocities during explosions. Additionally, this technique allows us to present a comprehensive energy budget of a volcanic explosion as a time series of all important energy terms (i.e. potential, kinetic, dissipative, infrasonic, surface, seismic and thermal energy output). The absolute gas pressure inside rising expanding gas bubbles rapidly drops from ~3-10 atm (at the time when the lake starts to bulge) to ~1 atm before the bubble bursts, which usually occurs at radii of ~15-20m. These pressures are significantly lower than previously assumed for such explosions. The according internal energy of the gas agrees well with the observed total energy output. The results show that large explosions released about 109 to 1010 J each (equivalent to about 200-2000 kg of TNT), at a peak discharge rate frequently exceeding 109 W (the power output of a typical nuclear power plant). This dynamic output is mainly controlled by the kinetic and potential energy of the exploding magma shell, while other energy types were found to be much smaller (with the exception of thermal energy). Remarkably, most explosions at Erebus show two distinct surface acceleration peaks separated by ~0.3 seconds. This suggests

  5. High-accuracy absolute rotation rate measurements with a large ring laser gyro: establishing the scale factor.

    PubMed

    Hurst, Robert B; Mayerbacher, Marinus; Gebauer, Andre; Schreiber, K Ulrich; Wells, Jon-Paul R

    2017-02-01

    Large ring lasers have exceeded the performance of navigational gyroscopes by several orders of magnitude and have become useful tools for geodesy. In order to apply them to tests in fundamental physics, remaining systematic errors have to be significantly reduced. We derive a modified expression for the Sagnac frequency of a square ring laser gyro under Earth rotation. The modifications include corrections for dispersion (of both the gain medium and the mirrors), for the Goos-Hänchen effect in the mirrors, and for refractive index of the gas filling the cavity. The corrections were measured and calculated for the 16  m2 Grossring laser located at the Geodetic Observatory Wettzell. The optical frequency and the free spectral range of this laser were measured, allowing unique determination of the longitudinal mode number, and measurement of the dispersion. Ultimately we find that the absolute scale factor of the gyroscope can be estimated to an accuracy of approximately 1 part in 108.

  6. Simultaneous absolute measurements of principal angle and phase retardation with a new common-path heterodyne interferometer.

    PubMed

    Lo, Yu-Lung; Lai, Chun-Hau; Lin, Jing-Fung; Hsu, Ping-Feng

    2004-04-01

    This study demonstrates a new method for simultaneously measuring both the angle of the principal axis and the phase retardation of the linear birefringence in optical materials. We used a circular common-path interferometer (polariscope) as the basic structure modulated by an electro-optic (EO) modulator. An algorithm was developed to simultaneously measure the principal axis and the phase retardation of a lambda/4 or lambda/8 plate as a sample. In the case of a lambda/4 plate, the average absolute error of the principal axis is approximately 3.77 degrees, and that of the phase retardation is approximately 1.03 degrees (1.09%). The retardation error is within the 5% uncertainty range of a commercial wave plate. Fortunately, the nonlinear error caused by the reflection phase retardation of the beam splitter dose not appear in the new system. Therefore the error could be attributed to misalignment and defects in the EO modulator or the other optical components. As for the repeatability of this new common-path heterodyne interferometer, the average deviation for the principal axis is 0.186 degrees and the phase retardation is 0.356 degrees. For the stability, the average deviation for the principal axis is 0.405 degrees and the phase retardation is 0.635 degrees. The resolution of this new system is estimated to be approximately 0.5 degrees, and the principal axis and phase retardation could be measured up to pi and 2pi, respectively, without ambiguity.

  7. Improved measurement of the absolute branching fraction of D+→ bar{K}^0 μ +ν _{μ }

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fedorov, O.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Y.; Huang, Z. L.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.

    2016-07-01

    By analyzing 2.93 fb^{-1} of data collected at √{s}=3.773 GeV with the BESIII detector, we measure the absolute branching fraction B(D+→ bar{K}^0μ +ν _{μ })=(8.72 ± 0.07_stat. ± 0.18_sys.)%, which is consistent with previous measurements within uncertainties but with significantly improved precision. Combining the Particle Data Group values of B(D^0→ K^-μ ^+ν _μ ), B(D+→ bar{K}^0 e+ν e), and the lifetimes of the D^0 and D^+ mesons with the value of B(D+→ bar{K}^0 μ +ν _{μ }) measured in this work, we determine the following ratios of partial widths: Γ (D^0→ K^-μ ^+ν _μ )/Γ (D+→ bar{K}^0μ +ν _{μ })=0.963± 0.044 and Γ (D+→ bar{K}^0 μ +ν _{μ })/Γ (D+→ bar{K}^0 e+ν e)=0.988± 0.033.

  8. Absolute Radiation Thermometry in the NIR

    NASA Astrophysics Data System (ADS)

    Bünger, L.; Taubert, R. D.; Gutschwager, B.; Anhalt, K.; Briaudeau, S.; Sadli, M.

    2017-04-01

    A near infrared (NIR) radiation thermometer (RT) for temperature measurements in the range from 773 K up to 1235 K was characterized and calibrated in terms of the "Mise en Pratique for the definition of the Kelvin" (MeP-K) by measuring its absolute spectral radiance responsivity. Using Planck's law of thermal radiation allows the direct measurement of the thermodynamic temperature independently of any ITS-90 fixed-point. To determine the absolute spectral radiance responsivity of the radiation thermometer in the NIR spectral region, an existing PTB monochromator-based calibration setup was upgraded with a supercontinuum laser system (0.45 μm to 2.4 μm) resulting in a significantly improved signal-to-noise ratio. The RT was characterized with respect to its nonlinearity, size-of-source effect, distance effect, and the consistency of its individual temperature measuring ranges. To further improve the calibration setup, a new tool for the aperture alignment and distance measurement was developed. Furthermore, the diffraction correction as well as the impedance correction of the current-to-voltage converter is considered. The calibration scheme and the corresponding uncertainty budget of the absolute spectral responsivity are presented. A relative standard uncertainty of 0.1 % (k=1) for the absolute spectral radiance responsivity was achieved. The absolute radiometric calibration was validated at four temperature values with respect to the ITS-90 via a variable temperature heatpipe blackbody (773 K ...1235 K) and at a gold fixed-point blackbody radiator (1337.33 K).

  9. Pulsed dipolar spectroscopy distance measurements in biomacromolecules labeled with Gd(III) markers

    NASA Astrophysics Data System (ADS)

    Song, Y.; Meade, T. J.; Astashkin, A. V.; Klein, E. L.; Enemark, J. H.; Raitsimring, A.

    2011-05-01

    This work demonstrates the feasibility of using Gd(III) tags for long-range Double Electron Electron Resonance (DEER) distance measurements in biomacromolecules. Double-stranded 14- base pair Gd(III)-DNA conjugates were synthesized and investigated at K a band. For the longest Gd(III) tag the average distance and average deviation between Gd(III) ions determined from the DEER time domains was about 59 ± 12 Å. This result demonstrates that DEER measurements with Gd(III) tags can be routinely carried out for distances of at least 60 Å, and analysis indicates that distance measurements up to 100 Å are possible. Compared with commonly used nitroxide labels, Gd(III)-based labels will be most beneficial for the detection of distance variations in large biomacromolecules, with an emphasis on large scale changes in shape or distance. Tracking the folding/unfolding and domain interactions of proteins and the conformational changes in DNA are examples of such applications.

  10. Absolute measurements of the electronic transition moments of seven band systems of the C2 molecule. Ph.D. Thesis - York Univ., Toronto

    NASA Technical Reports Server (NTRS)

    Cooper, D. M.

    1979-01-01

    Electronic transition moments of seven C2 singlet and triplet band systems in the 0.2-1.2 micron spectral region were measured. The measurements were made in emission behind incident shock waves in C2H2-argon mixtures. Narrow bandpass radiometers were used to obtain absolute measurements of shock-excited C2 radiation from which absolute electronic transition moments are derived by a synthetic spectrum analysis. New results are reported for the Ballik-Ramsay, Phillips, Swan, Deslandres-d'Azambuja, Fox-Herzberg, Mulliken, and Freymark systems.

  11. Laser distance measurement using a newly developed composite-type optical fiberscope for fetoscopic laser surgery

    NASA Astrophysics Data System (ADS)

    Seki, Takeshi; Oka, Kiyoshi; Naganawa, Akihiro; Yamashita, Hiromasa; Kim, Keri; Chiba, Toshio

    2010-10-01

    Twin-twin transfusion syndrome (TTTS) is a condition of twins disproportionately sharing blood by the communicating vessels in the shared placenta and resulting in the significantly high fetal and perinatal mortality rate. Fetoscopic laser surgery is performed to block these communicating vessels. It is difficult, however, to perceive the distance from the tip of the fetoscope to the placental surface with only a two-dimensional fetoscopic view. When the distance is too short it causes excessive irradiation and even the risk of inadvertent damage to the placenta. On the other hand, not only target vessels but also adjacent tissues can be irradiated when it is too long. We have developed a composite-type optical fiberscope (COF) that was able to observe the target area and also to perform laser irradiation at the same time. In this paper, we studied a method to estimate the distance from the tip of the COF to the target area. We combined the COF with a laser blood-flow meter. Using laser light from the meter, we measured the total amount of light received ("REFLEX") and estimated the relation between the "REFLEX" value and the laser irradiation distance. Further in vivo experiments were subsequently carried out using porcine mesenteric blood vessels. The results showed that the distance and the "REFLEX" value were inversely proportional, irrespective of the experimental environment (e.g. in air, water and amniotic fluid-like solution) and the target object. In the in vivo experiments, we quantitatively measured the distance within an accuracy of ±1 mm (approximately 10%). In conclusion, our new system was able to measure the distance in vivo enabling a surgeon to safely and effectively perform laser irradiation at a suitable distance. The system can be used not only for fetoscopic surgery but also for general endoscopic surgery.

  12. Measurement of Precision Geometric Distances to Three Anchor Points in the Local Universe

    NASA Technical Reports Server (NTRS)

    Reid, Mark J.

    2002-01-01

    Our program, funded by a NASA/SARA 3-yr grant, is designed to measure distances directly with accuracies of 5% to three anchor points in the Local Universe. We are attacking this problem on three fronts, using Very Long Baseline Interferometry (VLBI) observations of NGC 4258, M 33, and Sgr A*. We plan to provide distance estimates, with a minimum of systematic uncertainty, that can be used to re-calibrate several 'standard candles,' such as Cepheid and RR Lyrae variables. This will place the Galactic and extragalactic distance scales on much firmer ground. The program will provide crucial, independent checks and calibrations of extragalactic distance measurements, and will contribute to the ultimate success and impact of the HST Key Project on Extragalactic Distances, the Full-Sky Astrometric Mapping Explorer (FAME), and any future NASA astrometric missions. Additionally, since distances are fundamental to astrophysics, our results will affect a large number of general projects on NASA facilities such as the HST (Hubble Space Telescope), CXO (Chandra X-Ray Observatory), and NGST (Next Generation Space Telescope).

  13. Internuclear 31P-51V Distance Measurements in Polyoxoanionic Solids Using REAPDOR NMR Spectroscopy

    PubMed Central

    Huang, Wenlin; Vega, Alexander J.; Gullion, Terry; Polenova, Tatyana

    2014-01-01

    We report the first results establishing REAPDOR experiments for distance measurements between a spin-1/2 (31P) and spin-7/2 (51V) pair in a series of vanadium-substituted polyoxoanionic solids from the Keggin and Wells-Dawson families. We have quantitatively measured 31P-51V distances in mono-vanadium substituted K4PVW11O40, 1-K7P2VW17O62, and 4-K7P2VW17O62. Numerical simulations of the experimental data yield very good agreement with the averaged P-W/P-V distances determined from the X-ray diffraction measurements in the same or related compounds. REAPDOR is therefore a very sensitive P-V distance probe anticipated to be especially useful in the absence of long-range order. Our results suggest that REAPDOR spectroscopy could be broadly applicable for interatomic distance measurements in other spin-7/2-spin-1/2 nuclear pairs. PMID:17918932

  14. Distance measurement to high remote targets based on the airborne chaotic laser

    NASA Astrophysics Data System (ADS)

    Kou, Renke; Wang, Haiyan; Wu, Xueming

    2016-10-01

    According to the characteristics of chaotic laser, which has ability of novel anti-jamming, high bandwidth and detecting distance of the movement target to the millimeter precision, a modeling method of using airborne chaotic laser system to detect distance of high remote targets is proposed for the first time. The characteristics of chaotic laser and principle of interferometry distance were analyzed and the model of airborne chaotic laser ranging is established. Meanwhile, the influence of detection accuracy, which inducted by the main peak width of chaotic laser and the jamming signal is analyzed. According to the results of simulation analysis, we can get conclusions that the main factors of affecting the distance measurement are transmitted power, receiving sensitivity, and various losses of transmission medium. Autocorrelation characteristic of chaotic signal can also affect the dynamic range of the whole system. The main peak width of chaotic laser is the main factor of influencing the accuracy of measurement. However, the jamming signal affect distance measuring range and accuracy of measurement little. Finally, the model's effectiveness is proved by comparing the experience data and simulation data.

  15. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  16. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present near-infrared spectroscopy measurement of absolute cerebral hemoglobin concentration and saturation in a large sample of 36 healthy elderly (mean age, 85 ± 6 years) and 19 young adults (mean age, 28 ± 4 years). Non-invasive measurements were obtained on the forehead using a commercially a...

  17. Application of distance correction to ChemCam laser-induced breakdown spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Mezzacappa, A.; Melikechi, N.; Cousin, A.; Wiens, R. C.; Lasue, J.; Clegg, S. M.; Tokar, R.; Bender, S.; Lanza, N. L.; Maurice, S.; Berger, G.; Forni, O.; Gasnault, O.; Dyar, M. D.; Boucher, T.; Lewin, E.; Fabre, C.

    2016-06-01

    Laser-induced breakdown spectroscopy (LIBS) provides chemical information from atomic, ionic, and molecular emissions from which geochemical composition can be deciphered. Analysis of LIBS spectra in cases where targets are observed at different distances, as is the case for the ChemCam instrument on the Mars rover Curiosity, which performs analyses at distances between 2 and 7.4 m is not a simple task. In our previous work we showed that spectral distance correction based on a proxy spectroscopic standard created from first-shot dust observations on Mars targets ameliorates the distance bias in multivariate-based elemental-composition predictions of laboratory data. In this work, we correct an expanded set of neutral and ionic spectral emissions for distance bias in the ChemCam data set. By using and testing different selection criteria to generate multiple proxy standards, we find a correction that minimizes the difference in spectral intensity measured at two different distances and increases spectral reproducibility. When the quantitative performance of distance correction is assessed, there is improvement for SiO2, Al2O3, CaO, FeOT, Na2O, K2O, that is, for most of the major rock forming elements, and for the total major-element weight percent predicted. However, for MgO the method does not provide improvements while for TiO2, it yields inconsistent results. In addition, we have observed that many emission lines do not behave consistently with distance, evidenced from laboratory analogue measurements and ChemCam data. This limits the effectiveness of the method.

  18. Equine hoof slip distance during trot at training speed: comparison between kinematic and accelerometric measurement techniques.

    PubMed

    Holden-Douilly, Laurène; Pourcelot, Philippe; Desquilbet, Loïc; Falala, Sylvain; Crevier-Denoix, Nathalie; Chateau, Henry

    2013-08-01

    Longitudinal sliding of horse's hooves at the beginning of stance can affect both performance and orthopaedic health. The objective of this study was to compare two measurement methods for quantifying hoof slip distances at training trot. The right front hoof of four French Trotters was equipped with an accelerometer (10 kHz) and kinematic markers. A firm wet sand track was equipped with a 50 m calibration corridor. A high-frequency camera (600 Hz) was mounted in a vehicle following each horse trotting at about 7 m/s. One of the horses was also trotted on raw dirt and harrowed dirt tracks. Longitudinal slip distance was calculated both from kinematic data, applying 2D direct linear transformation (2D-DLT) to the markers image coordinates, and from the double integration of the accelerometer signal. For each stride, both values were compared. The angle of the hoof with respect to the track was also measured. There was 'middling/satisfactory' agreement between accelerometric and 2D-DLT measurements for total slip and 'fairly good' agreement for hoof-flat slip. The influence of hoof rotation on total slip distance represented <6% of accelerometric measures. The differences between accelerometric and kinematic measures (from -0.5 cm to 2.1cm for total slip and from -0.2 cm to 1.4 cm for hoof-flat slip) were independent of slip distance magnitude. The accelerometric method was a simple method to measure hoof slip distances at a moderate training speed trot which may be useful to compare slip distances on various track surfaces.

  19. A new approach to distance measurements between two spin labels in the >10 nm range.

    PubMed

    Blank, A

    2017-02-15

    ESR spectroscopy can be efficiently used to acquire the distance between two spin labels placed on a macromolecule by measuring their mutual dipolar interaction frequency, as long as the distance is not greater than ∼10 nm. Any hope to significantly increase this figure is hampered by the fact that all available spin labels have a phase memory time (Tm), restricted to the microseconds range, which provides a limited window during which the dipolar interaction frequency can be measured. Thus, due to the inverse cubic dependence of the dipolar frequency over the labels' separation distance, evaluating much larger distances, e.g. 20 nm, would require to have a Tm that is ∼200 microsecond, clearly beyond any hope. Here we propose a new approach to greatly enhancing the maximum measured distance available by relying on another type of dipole interaction-mediated mechanism called spin diffusion. This mechanism operates and can be evaluated during the spin lattice relaxation time, T1 (commonly in the milliseconds range), rather than only during Tm. Up until recently, the observation of spin diffusion in solid electron spin systems was considered experimentally impractical. However, recent developments have enabled its direct measurement by means of high sensitivity pulsed ESR that employs intense short magnetic field gradients, thus opening the door to the subsequent utilization of these capabilities. The manuscript presents the subject of spin diffusion, the ways it can be directly measured, and a theoretical discussion on how intramolecular spin-pair distance, even in the range of 20-30 nm, could be accurately extracted from spin diffusion measurements.

  20. Real-time compensation of the refractive index of air in distance measurement.

    PubMed

    Kang, Hyun Jay; Chun, Byung Jae; Jang, Yoon-Soo; Kim, Young-Jin; Kim, Seung-Woo

    2015-10-05

    A two-color scheme of heterodyne laser interferometer is devised for distance measurements with the capability of real-time compensation of the refractive index of the ambient air. A fundamental wavelength of 1555 nm and its second harmonic wavelength of 777.5 nm are generated, with stabilization to the frequency comb of a femtosecond laser, to provide fractional stability of the order of 3.0 × 10(-12) at 1 s averaging. Achieved uncertainty is of the order of 10(-8) in measuring distances of 2.5 m without sensing the refractive index of air in adverse environmental conditions.

  1. Envelope pulsed ultrasonic distance measurement system based upon amplitude modulation and phase modulation

    SciTech Connect

    Huang, Y. P.; Wang, J. S.; Huang, K. N.; Ho, C. T.; Huang, J. D.; Young, M. S.

    2007-06-15

    A novel microcomputer-based ultrasonic distance measurement system is presented. This study proposes an efficient algorithm which combines both the amplitude modulation (AM) and the phase modulation (PM) of the pulse-echo technique. The proposed system can reduce error caused by inertia delay and amplitude attenuation effect when using the AM and PM envelope square wave form (APESW). The APESW ultrasonic driving wave form causes a phase inversion phenomenon in the relative wave form of the receiver. The phase inversion phenomenon sufficiently identifies the ''measurement pulse'' in the received wave forms, which can be used for accurate time-of-flight (TOF) measurement. In addition, combining a countertechnique to compute the phase shifts of the last cycle for TOF, the presented system can obtain distance resolution of 0.1% of the wavelength corresponding to the 40 kHz frequency of the ultrasonic wave. The standard uncertainty of the proposed distance measurement system is found to be 0.2 mm at a range of 50-500 mm. The APESW signal generator and phase detector of this measuring system are designed on a complex programmable logic device, which is used to govern the TOF measurement and send the data to a personal computer for distance calibration and examination. The main advantages of this APESW system are high resolution, low cost, narrow bandwidth requirement, and ease of implementation.

  2. Envelope pulsed ultrasonic distance measurement system based upon amplitude modulation and phase modulation.

    PubMed

    Huang, Y P; Wang, J S; Huang, K N; Ho, C T; Huang, J D; Young, M S

    2007-06-01

    A novel microcomputer-based ultrasonic distance measurement system is presented. This study proposes an efficient algorithm which combines both the amplitude modulation (AM) and the phase modulation (PM) of the pulse-echo technique. The proposed system can reduce error caused by inertia delay and amplitude attenuation effect when using the AM and PM envelope square wave form (APESW). The APESW ultrasonic driving wave form causes a phase inversion phenomenon in the relative wave form of the receiver. The phase inversion phenomenon sufficiently identifies the "measurement pulse" in the received wave forms, which can be used for accurate time-of-flight (TOF) measurement. In addition, combining a countertechnique to compute the phase shifts of the last cycle for TOF, the presented system can obtain distance resolution of 0.1% of the wavelength corresponding to the 40 kHz frequency of the ultrasonic wave. The standard uncertainty of the proposed distance measurement system is found to be 0.2 mm at a range of 50-500 mm. The APESW signal generator and phase detector of this measuring system are designed on a complex programmable logic device, which is used to govern the TOF measurement and send the data to a personal computer for distance calibration and examination. The main advantages of this APESW system are high resolution, low cost, narrow bandwidth requirement, and ease of implementation.

  3. Absolute sensitivity calibration of vacuum and extreme ultraviolet spectrometer systems and Z{sub eff} measurement based on bremsstrahlung continuum in HL-2A tokamak

    SciTech Connect

    Zhou Hangyu; Cui Zhengying; Fu Bingzhong; Sun Ping; Gao Yadong; Xu Yuan; Lu Ping; Yang Qingwei; Duan Xuru; Morita, Shigeru; Goto, Motoshi; Dong Chunfeng

    2012-10-15

    A grazing-incidence flat-field extreme ultraviolet (EUV) spectrometer has been newly developed in HL-2A tokamak. Typical spectral lines are observed from intrinsic impurities of carbon, oxygen, iron, and extrinsic impurity of helium in the wavelength range of 20 A-500 A. Bremsstrahlung continuum is measured at different electron densities of HL-2A discharges to calibrate absolute sensitivity of the EUV spectrometer system and to measure effective ionic charge, Z{sub eff}. The sensitivity of a vacuum ultraviolet (VUV) spectrometer system is also absolutely calibrated in overlapped wavelength range of 300 A-500 A by comparing the intensity between VUV and EUV line emissions.

  4. RIDME distance measurements using Gd(iii) tags with a narrow central transition.

    PubMed

    Collauto, A; Frydman, V; Lee, M D; Abdelkader, E H; Feintuch, A; Swarbrick, J D; Graham, B; Otting, G; Goldfarb, D

    2016-07-28

    Methods based on pulse electron paramagnetic resonance allow measurement of the electron-electron dipolar coupling between two spin labels. Here we compare the most popular technique, Double Electron-Electron Resonance (DEER or PELDOR), with the dead-time free 5-pulse Relaxation-Induced Dipolar Modulation Enhancement (RIDME) method for Gd(iii)-Gd(iii) distance measurements at W-band (94.9 GHz, ≈3.5 T) using Gd(iii) tags with a small zero field splitting (ZFS). Such tags are important because of their high EPR sensitivity arising from their narrow central transition. Two systems were investigated: (i) a rigid model compound with an inter-spin distance of 2.35 nm, and (ii) two mutants of a homodimeric protein, both labeled with a DOTA-based Gd(iii) chelate and characterized by an inter-spin distance of around 6 nm, one having a narrow distance distribution and the other a broad distribution. Measurements on the model compound show that RIDME is less sensitive to the complications arising from the failure of the weak coupling approximation which affect DEER measurements on systems characterized by short inter-spin distances between Gd(iii) tags having a narrow central transition. Measurements on the protein samples, which are characterized by a long inter-spin distance, emphasize the complications due to the appearance of harmonics of the dipolar interaction frequency in the RIDME traces for S > 1/2 spin systems, as well as enhanced uncertainties in the background subtraction. In both cases the sensitivity of RIDME was found to be significantly better than DEER. The effects of the experimental parameters on the RIDME trace are discussed.

  5. The reaction H + C4H2 - Absolute rate constant measurement and implication for atmospheric modeling of Titan

    NASA Technical Reports Server (NTRS)

    Nava, D. F.; Mitchell, M. B.; Stief, L. J.

    1986-01-01

    The absolute rate constant for the reaction H + C4H2 has been measured over the temperature (T) interval 210-423 K, using the technique of flash photolysis-resonance fluorescence. At each of the five temperatures employed, the results were independent of variations in C4H2 concentration, total pressure of Ar or N2, and flash intensity (i.e., the initial H concentration). The rate constant, k, was found to be equal to 1.39 x 10 to the -10th exp (-1184/T) cu cm/s, with an error of one standard deviation. The Arrhenius parameters at the high pressure limit determined here for the H + C4H2 reaction are consistent with those for the corresponding reactions of H with C2H2 and C3H4. Implications of the kinetic carbon chemistry results, particularly those at low temperature, are considered for models of the atmospheric carbon chemistry of Titan. The rate of this reaction, relative to that of the analogous, but slower, reaction of H + C2H2, appears to make H + C4H2 a very feasible reaction pathway for effective conversion of H atoms to molecular hydrogen in the stratosphere of Titan.

  6. The reaction H + C4H2 - Absolute rate constant measurement and implication for atmospheric modeling of Titan

    NASA Astrophysics Data System (ADS)

    Nava, D. F.; Mitchell, M. B.; Stief, L. J.

    1986-04-01

    The absolute rate constant for the reaction H + C4H2 has been measured over the temperature (T) interval 210-423 K, using the technique of flash photolysis-resonance fluorescence. At each of the five temperatures employed, the results were independent of variations in C4H2 concentration, total pressure of Ar or N2, and flash intensity (i.e., the initial H concentration). The rate constant, k, was found to be equal to 1.39 x 10 to the -10th exp (-1184/T) cu cm/s, with an error of one standard deviation. The Arrhenius parameters at the high pressure limit determined here for the H + C4H2 reaction are consistent with those for the corresponding reactions of H with C2H2 and C3H4. Implications of the kinetic carbon chemistry results, particularly those at low temperature, are considered for models of the atmospheric carbon chemistry of Titan. The rate of this reaction, relative to that of the analogous, but slower, reaction of H + C2H2, appears to make H + C4H2 a very feasible reaction pathway for effective conversion of H atoms to molecular hydrogen in the stratosphere of Titan.

  7. Measurement of Absolute Excitation Cross Sections in Highly-Charged Ions Using Electron Energy Loss and Merged Beams

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Smith, Steven J.; Lozano, J.

    2002-01-01

    There is increasing emphasis during this decade on understanding energy balance and phenomena observed in high electron temperature plasmas. The UV spectral return from FUSE, the X-ray spectral return from the HETG on Chandra and the LETGS 011 XMM-Newton are just beginning. Line emissions are almost entirely from highly-charged ions (HCIs) of C, N, 0, Ne, Mg, S, Si, Ca, and Fe. The Constellation-X mission will provide X-ray spectroscopy up to photon energies of 0.12 nm (10 keV) where primary line emitters will be HCIs. A variety of atomic parameters are required to model the stellar and solar plasma. These include cross sections for excitation, ionization, charge-exchange, X-ray emission, direct and indirect recombination, lifetimes and branching ratios, and dependences on l, m mixing by external E and B fields. In almost all cases the atomic quantities are calculated, and few comparisons to experiment have been carried out. Collision strengths and Einstein A-values are required to convert the observed spectral intensities to electron temperatures and densities in the stellar plasma. The JPL electron energy-loss and merged beam approach has been used to measure absolute collision strengths in a number of ions, with critical comparison made to the best available theories.

  8. Double sinusoidal phase-modulating distributed-Bragg-reflector laser-diode interferometer for distance measurement.

    PubMed

    Suzuki, Takamasa; Suda, Hiromi; Sasaki, Osami

    2003-01-01

    A previously proposed double sinusoidal phase-modulating (DSPM) laser-diode interferometer measures distances larger than a half-wavelength by detecting modulation depth. Although it requires a vibrating mirror to provide the second modulation to the interference signal, such vibrations naturally affect measurement accuracy. We propose a static-type DSPM laser-diode interferometer that uses no mechanical modulation. Our experimental results indicate a measurement error of +/- 1.6 microm.

  9. Absolute Photometry

    NASA Astrophysics Data System (ADS)

    Hartig, George

    1990-12-01

    The absolute sensitivity of the FOS will be determined in SV by observing 2 stars at 3 epochs, first in 3 apertures (1.0", 0.5", and 0.3" circular) and then in 1 aperture (1.0" circular). In cycle 1, one star, BD+28D4211 will be observed in the 1.0" aperture to establish the stability of the sensitivity and flat field characteristics and improve the accuracy obtained in SV. This star will also be observed through the paired apertures since these are not calibrated in SV. The stars will be observed in most detector/grating combinations. The data will be averaged to form the inverse sensitivity functions required by RSDP.

  10. MEASURING AN ERUPTIVE PROMINENCE AT LARGE DISTANCES FROM THE SUN. II. APPROACHING 1 AU

    SciTech Connect

    Howard, T. A.

    2015-06-20

    The physical properties of eruptive prominences are unknown at large distances from the Sun. They are rarely, if ever, measured by in situ spacecraft and until recently our ability to measure them beyond the fields of view of solar imagers has been severely limited. The data quality of heliospheric imaging has reached a point where some quantitative measurements of prominences are now possible. I present the first such measurements of a bright prominence continually out to distances of around 1 AU from the Sun. This work follows on from the preparatory work presented in an accompanying paper, which showed that that the brightness of a prominence can be safely assumed to arise entirely from Thomson scattering in the STEREO/HI fields of view. Measurements of distance, speed, and mass are provided along with those from its accompanying coronal mass ejection (CME) to demonstrate their geometric, kinematic, and mass relationships. I find that the prominence travels with a slower speed than that of the CME, but its location relative to the CME structure does not conform to the expected location for basic geometric expansion. Further, the mass of the prominence was found to decrease by around an order of magnitude while that of the CME increased by an order of magnitude across the same distance.

  11. Geometric measures of quantum correlations: characterization, quantification, and comparison by distances and operations

    NASA Astrophysics Data System (ADS)

    Roga, W.; Spehner, D.; Illuminati, F.

    2016-06-01

    We investigate and compare three distinguished geometric measures of bipartite quantum correlations that have been recently introduced in the literature: the geometric discord, the measurement-induced geometric discord, and the discord of response, each one defined according to three contractive distances on the set of quantum states, namely the trace, Bures, and Hellinger distances. We establish a set of exact algebraic relations and inequalities between the different measures. In particular, we show that the geometric discord and the discord of response based on the Hellinger distance are easy to compute analytically for all quantum states whenever the reference subsystem is a qubit. These two measures thus provide the first instance of discords that are simultaneously fully computable, reliable (since they satisfy all the basic Axioms that must be obeyed by a proper measure of quantum correlations), and operationally viable (in terms of state distinguishability). We apply the general mathematical structure to determine the closest classical-quantum state of a given state and the maximally quantum-correlated states at fixed global state purity according to the different distances, as well as a necessary condition for a channel to be quantumness breaking.

  12. Retinal Metric: A Stimulus Distance Measure Derived from Population Neural Responses

    NASA Astrophysics Data System (ADS)

    Tkačik, Gašper; Granot-Atedgi, Einat; Segev, Ronen; Schneidman, Elad

    2013-02-01

    The ability of an organism to distinguish between various stimuli is limited by the structure and noise in the population code of its sensory neurons. Here we infer a distance measure on the stimulus space directly from the recorded activity of 100 neurons in the salamander retina. In contrast to previously used measures of stimulus similarity, this “neural metric” tells us how distinguishable a pair of stimulus clips is to the retina, based on the similarity between the induced distributions of population responses. We show that the retinal distance strongly deviates from Euclidean, or any static metric, yet has a simple structure: we identify the stimulus features that the neural population is jointly sensitive to, and show the support-vector-machine-like kernel function relating the stimulus and neural response spaces. We show that the non-Euclidean nature of the retinal distance has important consequences for neural decoding.

  13. Determination of Extrapolation Distance with Measured Pressure Signatures from Two Low-Boom Models

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.; Kuhn, Neil

    2004-01-01

    A study to determine a limiting distance to span ratio for the extrapolation of near-field pressure signatures is described and discussed. This study was to be done in two wind-tunnel facilities with two wind-tunnel models. At this time, only the first half had been completed, so the scope of this report is limited to the design of the models, and to an analysis of the first set of measured pressure signatures. The results from this analysis showed that the pressure signatures measured at separation distances of 2 to 5 span lengths did not show the desired low-boom shapes. However, there were indications that the pressure signature shapes were becoming 'flat-topped'. This trend toward a 'flat-top' pressure signatures shape was seen to be a gradual one at the distance ratios employed in this first series of wind-tunnel tests.

  14. Measurement of the Critical Distance Parameter Against Icing Conditions on a NACA 0012 Swept Wing Tip

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Kreeger, Richard E.

    2011-01-01

    This work presents the results of three experiments, one conducted in the Icing Research Tunnel (IRT) at NASA Glenn Research Center and two in the Goodrich Icing Wind Tunnel (IWT). The experiments were designed to measure the critical distance parameter on a NACA 0012 Swept Wing Tip at sweep angles of 45deg, 30deg, and 15deg. A time sequence imaging technique (TSIT) was used to obtain real time close-up imaging data during the first 2 min of the ice accretion formation. The time sequence photographic data was used to measure the critical distance at each icing condition and to study how it develops in real time. The effect on the critical distance of liquid water content, drop size, total temperature, and velocity was studied. The results were interpreted using a simple energy balance on a roughness element

  15. Absolute Total Cross Section Measurements for Electron Scattering on GeH4 and SiH4 Molecules

    NASA Astrophysics Data System (ADS)

    Zejko, Pawel. Mo.; Kasperski, Grzegorz; Szmytkowski, Czeslaw

    1996-10-01

    We have measured absolute grand total electron--scattering cross section for GeH4 and SiH4 molecules in the energy range of 0.75--250 eV and 0.6--250 eV, respectively, using the linear transmission experimental setup(A.M. Krzysztofowicz and Cz. Szmytkowski 1995 J. Phys. B 28) 1593. The general character of both obtained total cross section (TCS) functions is similar. For germane TCS dramatically increases from 12× 10-20 m^2 at 0.8 eV up to nearly 59× 10-20 m^2 at the 3.8 eV maximum. For silane the maximum (57× 10-20 m^2) is localized near 2.9 eV. These structures are partly attributable to the existence of short-lived negative-ion resonant states. From 10 eV to the highest applied energy TCS' decrease monotonically with increasing impact energy E, and above 50 eV the total cross sections change like E-0.5. None low-energy e^--GeH4 experiment is available for comparison. Above 75 eV our results are in good agreement with the recent intermediate-energy TCS measurements of Karwasz(G.P. Karwasz 1995 J. Phys. B 28) 1301 and with calculations of Baluja et al(K.L. Baluja et al) 1992 Europhys. Lett. 17 139. There is also reasonably agreement of present e^--SiH4 data with available experimental results.

  16. Measurements of pulmonary vein ostial diameter and distance to first bifurcation: a comparison of different measurement methods.

    PubMed

    Cronin, Paul; Saab, Ali; Kelly, Aine Marie; Gross, Barry H; Patel, Smita; Kazerooni, Ella A; Carlos, Ruth C

    2009-07-01

    The purpose of this study was to evaluate the agreement between axial, multiplanar reformatted (MPR) and semi-automated software measurements of pulmonary vein ostial diameters and distance to the first bifurcation. CT examinations of the thorax were retrospectively reviewed in 150 consecutive patients. The pulmonary vein ostial diameter and distance to the first bifurcation of the four main pulmonary veins were independently measured. The three measurement methods were compared using a Bland-Altman test. There was no significant variation between pulmonary vein ostial diameter measurements for the superior pulmonary veins across the three measurement methods. There was significant variation between the semi-automated program and both the axial (p=0.001) and MPR (p<0.001) measured diameters for the right inferior pulmonary vein ostial diameter and between the MPR and semi-automated program measurements (p=0.02) for the left inferior pulmonary vein ostial diameter. There was no significant variation between the pulmonary vein distance to first bifurcation measurements for any pulmonary vein across the three measurement methods. However, from a clinical perspective, differences were negligible; therefore, the clinician may confidently use any of the three measurement methods presented.

  17. [Experiments of micro-distance measurement for GMLM with spectrum analysis method].

    PubMed

    Zhang, Jie; Huang, Shang-Lian; Zhang, Zhi-Hai; Sun, Ji-Yong; Shi, Ling-Na; Zhu, Yong

    2008-07-01

    Projection display devices are undergoing a period of multi-development, and with the maturation of MEMS technology, which leads to MEMS-based light modulators for display applications, have become one of the research focuses. The structure of MEMS-based grating moving light modulator (GMLM) is composed of the reflection plate, address electrode and four cantilevers, and movable grating plate, which is supported by four crab-cantilevers placed around, and is actuated like a piston by electrostatic force. The piston-type motion of grating can be used to modulate the phase of incident light. The micro-distance between the upper surface of movable grating and underlying reflector is a key parameter and is important to GMLM performance. Traditional measurement method such as step-machine would destroy the device; while a high accuracy and non-contact measurement machine called KYKO White Light Interferometer is expensive. In the present paper, the GMLM optical principle using scalar diffraction theory was in details analyzed. A novel non-contact wavelength scanning spectrum analysis method was put forward to measure the distance between the upper surface of movable grating and underlying reflector. The U-4100 spectrophotometer was adopted to gain spectrum information; while the spectrum analysis method using peak wavelength position was introduced to calculate the micro distance. The measurement result is consistent to theoretical result. The micro-distance is 1.131 3 microm using such non-contact wavelength scanning spectrum analysis method, while it is 1.240 0 microm with WYKO White Light Interferometer. The relative error was lower than 1%, compared with the results measured by WYKO White Light Interferometer, and the method has good repetition ability and is cheap with RMB50 Yuan each time. Furthermore, measuring pull-in voltage, resonance frequency and micro distance in MEMS-based diffraction and interference devices was proposed completely based on such non

  18. Site-directed spin labeling of proteins for distance measurements in vitro and in cells.

    PubMed

    Roser, P; Schmidt, M J; Drescher, M; Summerer, D

    2016-06-15

    Site-directed spin labeling (SDSL) in combination with electron paramagnetic resonance (EPR) spectroscopy allows studying the structure, dynamics, and interactions of proteins via distance measurements in the nanometer range. We here give an overview of available spin labels, the strategies for their introduction into proteins, and the associated potentials for protein structural studies in vitro and in the context of living cells.

  19. DARE: Distance and Angle Retrieval Environment: A Tale of the Two Measures.

    ERIC Educational Resources Information Center

    Zhang, Jin; Korfhage, Robert R.

    1999-01-01

    Presents a visualization tool for information retrieval that can display two different similarity measures, angle and distance, in the same space. Discusses the visual display of information-retrieval evaluation models and develops a new retrieval means based on the visual retrieval tool, the controlling bar. (Author/LRW)

  20. The design of Gaussian beam zoom system in intermediate and long distance measurement

    NASA Astrophysics Data System (ADS)

    Wang, Mengcheng; Zhou, Jian

    2016-10-01

    It is well known that laser possesses high brightness, high coherence, good directivity and other unique properties. In many practical applications, it is necessary to get small light spot in intermediate and long distance. Intermediate and long distance laser measurement demands to minimize the spot radius in order to improve the spatial resolution of the system and signal quality. Therefore, the study of Gaussian beam focusing property has high value for practical applications. In order to achieve intermediate and long distance laser measurement, this paper studies the method to adjust Gaussian beam spot diameter within a certain range after a near-field optical system transformation to improve the signal quality. Based on the fundamental characteristics of the Gaussian beam, this paper deduces the theoretical formula for the position and radius of the Gaussian beam waist and measures them by means of the CCD method. Then Matlab is used to simulate the spot diameter in the far field, and by combining numerical simulation results as well as optimizing the structure of the actual optical system, we make the light spot diameter in the target area fit the requirements of the laser velocimeter in intermediate and long distance measurement.