Science.gov

Sample records for absolute dose rate

  1. Absolute depth-dose-rate measurements for an {sup 192}Ir HDR brachytherapy source in water using MOSFET detectors

    SciTech Connect

    Zilio, Valery Olivier; Joneja, Om Parkash; Popowski, Youri; Rosenfeld, Anatoly; Chawla, Rakesh

    2006-06-15

    Reported MOSFET measurements concern mostly external radiotherapy and in vivo dosimetry. In this paper, we apply the technique for absolute dosimetry in the context of HDR brachytherapy using an {sup 192}Ir source. Measured radial dose rate distributions in water for different planes perpendicular to the source axis are presented and special attention is paid to the calibration of the R and K type detectors, and to the determination of appropriate correction factors for the sensitivity variation with the increase of the threshold voltage and the energy dependence. The experimental results are compared with Monte Carlo simulated dose rate distributions. The experimental results show a good agreement with the Monte Carlo simulations: the discrepancy between experimental and Monte Carlo results being within 5% for 82% of the points and within 10% for 95% of the points. Moreover, all points except two are found to lie within the experimental uncertainties, confirming thereby the quality of the results obtained.

  2. Absolute rates of hole transfer in DNA.

    PubMed

    Senthilkumar, Kittusamy; Grozema, Ferdinand C; Guerra, Célia Fonseca; Bickelhaupt, F Matthias; Lewis, Frederick D; Berlin, Yuri A; Ratner, Mark A; Siebbeles, Laurens D A

    2005-10-26

    Absolute rates of hole transfer between guanine nucleobases separated by one or two A:T base pairs in stilbenedicarboxamide-linked DNA hairpins were obtained by improved kinetic analysis of experimental data. The charge-transfer rates in four different DNA sequences were calculated using a density-functional-based tight-binding model and a semiclassical superexchange model. Site energies and charge-transfer integrals were calculated directly as the diagonal and off-diagonal matrix elements of the Kohn-Sham Hamiltonian, respectively, for all possible combinations of nucleobases. Taking into account the Coulomb interaction between the negative charge on the stilbenedicarboxamide linker and the hole on the DNA strand as well as effects of base pair twisting, the relative order of the experimental rates for hole transfer in different hairpins could be reproduced by tight-binding calculations. To reproduce quantitatively the absolute values of the measured rate constants, the effect of the reorganization energy was taken into account within the semiclassical superexchange model for charge transfer. The experimental rates could be reproduced with reorganization energies near 1 eV. The quantum chemical data obtained were used to discuss charge carrier mobility and hole-transport equilibria in DNA. PMID:16231945

  3. Radiation dose rate meter

    SciTech Connect

    Kronenberg, S.; Siebentritt, C.R.

    1981-07-28

    A combined dose rate meter and charger unit therefor which does not require the use of batteries but on the other hand produces a charging potential by means of a piezoelectric cylinder which is struck by a manually triggered hammer mechanism. A tubular type electrometer is mounted in a portable housing which additionally includes a geiger-muller (Gm) counter tube and electronic circuitry coupled to the electrometer for providing multi-mode operation. In one mode of operation, an rc circuit of predetermined time constant is connected to a storage capacitor which serves as a timed power source for the gm tube, providing a measurement in terms of dose rate which is indicated by the electrometer. In another mode, the electrometer indicates individual counts.

  4. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams.

    PubMed

    Popescu, I A; Shaw, C P; Zavgorodni, S F; Beckham, W A

    2005-07-21

    Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 x 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 x 10(13) +/- 1.0% electrons incident on the target and a total dose of 20.87 cGy +/- 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations. PMID:16177516

  5. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams

    NASA Astrophysics Data System (ADS)

    Popescu, I. A.; Shaw, C. P.; Zavgorodni, S. F.; Beckham, W. A.

    2005-07-01

    Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 × 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 × 1013 ± 1.0% electrons incident on the target and a total dose of 20.87 cGy ± 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.

  6. The Absolute Rate of LGRB Formation

    NASA Astrophysics Data System (ADS)

    Graham, J. F.; Schady, P.

    2016-06-01

    We estimate the long-duration gamma-ray burst (LGRB) progenitor rate using our recent work on the effects of environmental metallically on LGRB formation in concert with supernovae (SNe) statistics via an approach patterned loosely off the Drake equation. Beginning with the cosmic star formation history, we consider the expected number of broad-line Type Ic events (the SNe type associated with LGRBs) that are in low-metallicity host environments adjusted by the contribution of high-metallicity host environments at a much reduced rate. We then compare this estimate to the observed LGRB rate corrected for instrumental selection effects to provide a combined estimate of the efficiency fraction of these progenitors to produce LGRBs and the fraction of which are beamed in our direction. From this we estimate that an aligned LGRB occurs for approximately every 4000 ± 2000 low-metallically broad-lined SNe Ic. Therefore, if one assumes a semi-nominal beaming factor of 100, then only about one such supernova out of 40 produce an LGRB. Finally, we propose an off-axis LGRB search strategy of targeting only broad-line Type Ic events that occur in low-metallicity hosts for radio observation.

  7. Flow rate calibration for absolute cell counting rationale and design.

    PubMed

    Walker, Clare; Barnett, David

    2006-05-01

    There is a need for absolute leukocyte enumeration in the clinical setting, and accurate, reliable (and affordable) technology to determine absolute leukocyte counts has been developed. Such technology includes single platform and dual platform approaches. Derivations of these counts commonly incorporate the addition of a known number of latex microsphere beads to a blood sample, although it has been suggested that the addition of beads to a sample may only be required to act as an internal quality control procedure for assessing the pipetting error. This unit provides the technical details for undertaking flow rate calibration that obviates the need to add reference beads to each sample. It is envisaged that this report will provide the basis for subsequent clinical evaluations of this novel approach. PMID:18770842

  8. Atmospheric radiation flight dose rates

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  9. Dose-rate dependence of heat radiosensitization

    SciTech Connect

    Gerner, E.W.; Oval, J.H.; Manning, M.R.; Sim, D.A.; Bowden, G.T.; Hevezi, J.M.

    1983-09-01

    The dose rate dependence of heat radiosensitization was studied using rat astrocytoma cells in culture and a cliniclly relevant protocol of heat dose and heat radiation sequence. Cells were treated with a minimally toxic heat dose of 43/sup 0/C for 30 minutes, after which they were irradiated with varying doses of radiation at dose rates ranging from 0.567 to 300 cGy/min. This heat dose substantially reduced the extrapolation number (n), but had little effect on D/sub 0/ of the radiation survival curve at dose rates of 50 cGy/min or greater. At dose rates less than 10 cGy/min, 43/sup 0/C for 30 min had little effect on n and only for the lowest dose rate studied (0.567 cGy/min) was there a significant reduction in D/sub 0/ (60%). The thermal enhancement ratio did not vary inversely with radiation dose rate over the dose rate range studied but, instead, was maximal at the two dose rate extremes (0.567 and 300 cGy/min). These data demonstrate that a clinically relevant heat dose enhances very low dose rate, as well as high dose rate, ionizing radiation, but suggest that little benefit is to be gained from using dose rates intermediate between conventional radiotherapeutic high dose rates or dose rates representative of interstitial implants.

  10. Tank Z-361 dose rate calculations

    SciTech Connect

    Richard, R.F.

    1998-09-30

    Neutron and gamma ray dose rates were calculated above and around the 6-inch riser of tank Z-361 located at the Plutonium Finishing Plant. Dose rates were also determined off of one side of the tank. The largest dose rate 0.029 mrem/h was a gamma ray dose and occurred 76.2 cm (30 in.) directly above the open riser. All other dose rates were negligible. The ANSI/ANS 1991 flux to dose conversion factor for neutrons and photons were used in this analysis. Dose rates are reported in units of mrem/h with the calculated uncertainty shown within the parentheses.

  11. Estimation of the Dose and Dose Rate Effectiveness Factor

    NASA Technical Reports Server (NTRS)

    Chappell, L.; Cucinotta, F. A.

    2013-01-01

    Current models to estimate radiation risk use the Life Span Study (LSS) cohort that received high doses and high dose rates of radiation. Transferring risks from these high dose rates to the low doses and dose rates received by astronauts in space is a source of uncertainty in our risk calculations. The solid cancer models recommended by BEIR VII [1], UNSCEAR [2], and Preston et al [3] is fitted adequately by a linear dose response model, which implies that low doses and dose rates would be estimated the same as high doses and dose rates. However animal and cell experiments imply there should be curvature in the dose response curve for tumor induction. Furthermore animal experiments that directly compare acute to chronic exposures show lower increases in tumor induction than acute exposures. A dose and dose rate effectiveness factor (DDREF) has been estimated and applied to transfer risks from the high doses and dose rates of the LSS cohort to low doses and dose rates such as from missions in space. The BEIR VII committee [1] combined DDREF estimates using the LSS cohort and animal experiments using Bayesian methods for their recommendation for a DDREF value of 1.5 with uncertainty. We reexamined the animal data considered by BEIR VII and included more animal data and human chromosome aberration data to improve the estimate for DDREF. Several experiments chosen by BEIR VII were deemed inappropriate for application to human risk models of solid cancer risk. Animal tumor experiments performed by Ullrich et al [4], Alpen et al [5], and Grahn et al [6] were analyzed to estimate the DDREF. Human chromosome aberration experiments performed on a sample of astronauts within NASA were also available to estimate the DDREF. The LSS cohort results reported by BEIR VII were combined with the new radiobiology results using Bayesian methods.

  12. Dose rate mapping of VMAT treatments.

    PubMed

    Podesta, Mark; Popescu, I Antoniu; Verhaegen, Frank

    2016-06-01

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min(-1) and 12 Gy min(-1) but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  <1 Gy min(-1). Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown. PMID:27164221

  13. Dose rate mapping of VMAT treatments

    NASA Astrophysics Data System (ADS)

    Podesta, Mark; Antoniu Popescu, I.; Verhaegen, Frank

    2016-06-01

    Human tissues exhibit a varying response to radiation dose depending on the dose rate and fractionation scheme used. Dose rate effects have been reported for different radiations, and tissue types. The literature indicates that there is not a significant difference in response for low-LET radiation when using dose rates between 1 Gy min‑1 and 12 Gy min‑1 but lower dose rates have an observable sparing effect on tissues and a differential effect between tissues. In intensity-modulated radiotherapy such as volumetric modulated arc therapy (VMAT) the dose can be delivered with a wide range of dose rates. In this work we developed a method based on time-resolved Monte Carlo simulations to quantify the dose rate frequency distribution for clinical VMAT treatments for three cancer sites, head and neck, lung, and pelvis within both planning target volumes (PTV) and normal tissues. The results show a wide range of dose rates are used to deliver dose in VMAT and up to 75% of the PTV can have its dose delivered with dose rates  <1 Gy min‑1. Pelvic plans on average have a lower mean dose rate within the PTV than lung or head and neck plans but a comparable mean dose rate within the organs at risk. Two VMAT plans that fulfil the same dose objectives and constraints may be delivered with different dose rate distributions, particularly when comparing single arcs to multiple arc plans. It is concluded that for dynamic plans, the dose rate range used varies to a larger degree than previously assumed. The effect of the dose rate range in VMAT on clinical outcome is unknown.

  14. Dose Rate Effects in Linear Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis

    2011-01-01

    Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.

  15. A Program for Calculating Radiation Dose Rates.

    1986-01-27

    Version 00 SMART calculates radiation dose rate at the center of the outer cask surface. It can be applied to determine the radiation dose rate on each cask if source conditions, characteristic function, and material conditions in the bottle regions are given. MANYCASK calculates radiation dose rate distribution in a space surrounded by many casks. If the dose rate on each cask surface can be measured, MANYCASK can be applied to predict dose spatial dosemore » rate distribution for any case of cask configuration.« less

  16. Characterization of Fricke-gel layers for absolute dose measurements in radiotherapy

    SciTech Connect

    Gambarini, G.; Carrara, M.; Rrushi, B.; Guilizzoni, R.; Borroni, M.; Tomatis, S.; Pirola, L.; Battistoni, G.

    2011-07-01

    Fricke-gel layer dosimeters (FGLDs) have shown promising features for attaining absolute measurements of the spatial distribution of the absorbed dose in radiotherapy. Good precision of results (within 3%) is achieved by means of calibration of each single dosimeter before measurement. The calibration is performed irradiating the dosimeter at a uniform and precisely known dose, in order to get a calibration matrix that must be used, with pixel-to-pixel manipulation, to obtain the dose image. A study of the trend in time of dosimeter response after one or more exposures was carried out and calibration protocols were suitably established and verified. (authors)

  17. Radiation pneumonitis following large single dose irradiation: a re-evaluation based on absolute dose to lung

    SciTech Connect

    Van Dyk, J.; Keane, T.J.; Kan, S.; Rider, W.D.; Fryer, C.J.H.

    1981-04-01

    The acute radiation pneumonitis syndrome is a major complication for patients receiving total thoracic irradiation in a large single dose. Previous studies have evaluated the onset of radiation pneumonitis on the basis of radiation doses calculated assuming unit density tissues. In this report, the incidence of radiation pneumonitis is determined as a function of absolute dose to lung. A simple algorithm relating dose correction factor to anterior-posterior patient diameter has been derived using a CT-aided treatment planning system. This algorithm was used to determine, retrospectively, the dose to lung for a group of 303 patients who had been treated with large field irradiation techniques. Of this group, 150 patients had no previous lung disease and had virtually no additional lung irradiation prior or subsequent to their large field treatment. The actuarial incidence of radiation pneumonitis versus dose to lung was evaluated using a simplified probit analysis. The resultant best fit sigmoidal complication curve demonstrates the onset of radiation pneumonitis to occur at about 750 rad with the 5% actuarial incidence occurring at approximately 820 rad. The errors associated with the dose determination procedure as well as the actuarial incidence calculations are considered. The time of onset of radiation pneumonitis occurs between 1 to 7 months after irradiation for 90% of the patients who developed pneumonitis with the peak incidence occurring at 2 at 3 months. No correlation was found between time of onset and the dose to lung over a dose range of 650 to 1250 rad.

  18. Assessing dose rate distributions in VMAT plans

    NASA Astrophysics Data System (ADS)

    Mackeprang, P.-H.; Volken, W.; Terribilini, D.; Frauchiger, D.; Zaugg, K.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2016-04-01

    Dose rate is an essential factor in radiobiology. As modern radiotherapy delivery techniques such as volumetric modulated arc therapy (VMAT) introduce dynamic modulation of the dose rate, it is important to assess the changes in dose rate. Both the rate of monitor units per minute (MU rate) and collimation are varied over the course of a fraction, leading to different dose rates in every voxel of the calculation volume at any point in time during dose delivery. Given the radiotherapy plan and machine specific limitations, a VMAT treatment plan can be split into arc sectors between Digital Imaging and Communications in Medicine control points (CPs) of constant and known MU rate. By calculating dose distributions in each of these arc sectors independently and multiplying them with the MU rate, the dose rate in every single voxel at every time point during the fraction can be calculated. Independently calculated and then summed dose distributions per arc sector were compared to the whole arc dose calculation for validation. Dose measurements and video analysis were performed to validate the calculated datasets. A clinical head and neck, cranial and liver case were analyzed using the tool developed. Measurement validation of synthetic test cases showed linac agreement to precalculated arc sector times within  ±0.4 s and doses  ±0.1 MU (one standard deviation). Two methods for the visualization of dose rate datasets were developed: the first method plots a two-dimensional (2D) histogram of the number of voxels receiving a given dose rate over the course of the arc treatment delivery. In similarity to treatment planning system display of dose, the second method displays the dose rate as color wash on top of the corresponding computed tomography image, allowing the user to scroll through the variation over time. Examining clinical cases showed dose rates spread over a continuous spectrum, with mean dose rates hardly exceeding 100 cGy min-1 for conventional

  19. Using a dose-area product for absolute measurements in small fields: a feasibility study.

    PubMed

    Dufreneix, S; Ostrowsky, A; Le Roy, M; Sommier, L; Gouriou, J; Delaunay, F; Rapp, B; Daures, J; Bordy, J-M

    2016-01-21

    To extend the dosimetric reference system to field sizes smaller than 2 cm × 2 cm, the LNE-LNHB laboratory is studying an approach based on a new dosimetric quantity named the dose-area product instead of the commonly used absorbed dose at a point. A graphite calorimeter and a plane parallel ion chamber with a sensitive surface of 3 cm diameter were designed and built for measurements in fields of 2, 1 and 0.75 cm diameter. The detector surface being larger than the beam section, most of the issues linked with absolute dose measurements at a point could be avoided. Calibration factors of the plane parallel ionization chamber were established in terms of dose-area product in water for small fields with an uncertainty smaller than 0.9%. PMID:26690271

  20. Absolute calibration of the Gamma Knife{sup ®} Perfexion™ and delivered dose verification using EPR/alanine dosimetry

    SciTech Connect

    Hornbeck, Amaury E-mail: tristan.garcia@cea.fr; Garcia, Tristan E-mail: tristan.garcia@cea.fr; Cuttat, Marguerite; Jenny, Catherine

    2014-06-15

    Purpose: Elekta Leksell Gamma Knife{sup ®} (LGK) is a radiotherapy beam machine whose features are not compliant with the international calibration protocols for radiotherapy. In this scope, the Laboratoire National Henri Becquerel and the Pitié-Salpêtrière Hospital decided to conceive a new LKG dose calibration method and to compare it with the currently used one. Furthermore, the accuracy of the dose delivered by the LGK machine was checked using an “end-to-end” test. This study also aims to compare doses delivered by the two latest software versions of the Gammaplan treatment planning system (TPS). Methods: The dosimetric method chosen is the electron paramagnetic resonance (EPR) of alanine. Dose rate (calibration) verification was done without TPS using a spherical phantom. Absolute calibration was done with factors calculated by Monte Carlo simulation (MCNP-X). For “end-to-end” test, irradiations in an anthropomorphic head phantom, close to real treatment conditions, are done using the TPS in order to verify the delivered dose. Results: The comparison of the currently used calibration method with the new one revealed a deviation of +0.8% between the dose rates measured by ion chamber and EPR/alanine. For simple fields configuration (less than 16 mm diameter), the “end-to-end” tests showed out average deviations of −1.7% and −0.9% between the measured dose and the calculated dose by Gammaplan v9 and v10, respectively. Conclusions: This paper shows there is a good agreement between the new calibration method and the currently used one. There is also a good agreement between the calculated and delivered doses especially for Gammaplan v10.

  1. Dose rate in brachytherapy using after-loading machine: pulsed or high-dose rate?

    PubMed

    Hannoun-Lévi, J-M; Peiffert, D

    2014-10-01

    Since February 2014, it is no longer possible to use low-dose rate 192 iridium wires due to the end of industrial production of IRF1 and IRF2 sources. The Brachytherapy Group of the French society of radiation oncology (GC-SFRO) has recommended switching from iridium wires to after-loading machines. Two types of after-loading machines are currently available, based on the dose rate used: pulsed-dose rate or high-dose rate. In this article, we propose a comparative analysis between pulsed-dose rate and high-dose rate brachytherapy, based on biological, technological, organizational and financial considerations. PMID:25195117

  2. Dose rate effects in WLS fibers

    NASA Astrophysics Data System (ADS)

    Maio, A.; David, M.; Gomes, A.

    1997-03-01

    The radiation hardness of different types of WLS fibers produced by BICRON, KURARAY and POL.HI.TECH has been systematically studied. Low dose rate irradiations (from 0.55 krad/h up to 4 krad/h and total dose of about 140 krad) were performed with a 60Co γ source. The results are compared with high dose rate irradiations (1.5 Mrad/h and total dose of 1 Mrad) in a mixed field of 20% of neutrons and 80% of γ's in a nuclear reactor. The degradation of the optical properties of fibers with different composition, namely different Ultraviolet absorber (UVA) concentration and different type of cladding are studied. Dose rate effects are investigated as well as the effect of irradiation with different type of particles. The UVA can help on the radiation hardness, but no permanent dose rate effects, or special effects due to the neutron component of the irradiation field were observed.

  3. Sampling and recording dose rate meter

    SciTech Connect

    Kronenberg, S.

    1984-04-06

    A wide range radiation dose rate for civil defense use, including a Geiger-Mueller tube used in a continuous counting mode and for measuring dose rates from the natural background to about 30. rads/hr., with an ion chamber arranged to measure higher dose rates up to 10,000 rads/hr. The instrument has a sample and record capability in which the selected radiation detector will have its output connected to a selected storage capacitor for a precise interval of time determined by a timing circuit and the storage capacitor will accumulate and hold a voltage proportional to the dose rate, which can be read by means of an electrometer at a later time. The instrument has a self contained hand cranked power supply and all components are selected for long shelf life.

  4. Pretreatment verification of IMRT absolute dose distributions using a commercial a-Si EPID

    SciTech Connect

    Talamonti, C.; Casati, M.; Bucciolini, M.

    2006-11-15

    A commercial amorphous silicon electronic portal imaging device (EPID) has been studied to investigate its potential in the field of pretreatment verifications of step and shoot, intensity modulated radiation therapy (IMRT), 6 MV photon beams. The EPID was calibrated to measure absolute exit dose in a water-equivalent phantom at patient level, following an experimental approach, which does not require sophisticated calculation algorithms. The procedure presented was specifically intended to replace the time-consuming in-phantom film dosimetry. The dosimetric response was characterized on the central axis in terms of stability, linearity, and pulse repetition frequency dependence. The a-Si EPID demonstrated a good linearity with dose (within 2% from 1 monitor unit), which represent a prerequisite for the application in IMRT. A series of measurements, in which phantom thickness, air gap between the phantom and the EPID, field size and position of measurement of dose in the phantom (entrance or exit) varied, was performed to find the optimal calibration conditions, for which the field size dependence is minimized. In these conditions (20 cm phantom thickness, 56 cm air gap, exit dose measured at the isocenter), the introduction of a filter for the low-energy scattered radiation allowed us to define a universal calibration factor, independent of field size. The off-axis extension of the dose calibration was performed by applying a radial correction for the beam profile, distorted due to the standard flood field calibration of the device. For the acquisition of IMRT fields, it was necessary to employ home-made software and a specific procedure. This method was applied for the measurement of the dose distributions for 15 clinical IMRT fields. The agreement between the dose distributions, quantified by the gamma index, was found, on average, in 97.6% and 98.3% of the analyzed points for EPID versus TPS and for EPID versus FILM, respectively, thus suggesting a great

  5. Radiation Leukemogenesis at Low Dose Rates

    SciTech Connect

    Weil, Michael; Ullrich, Robert

    2013-09-25

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures.

  6. TU-A-12A-09: Absolute Blood Flow Measurement in a Cardiac Phantom Using Low Dose CT

    SciTech Connect

    Ziemer, B; Hubbard, L; Lipinski, J; Molloi, S

    2014-06-15

    Purpose: To investigate a first pass analysis technique to measure absolute flow from low dose CT images in a cardiac phantom. This technique can be combined with a myocardial mass assignment to yield absolute perfusion using only two volume scans and reduce the radiation dose to the patient. Methods: A four-chamber cardiac phantom and perfusion chamber were constructed from poly-acrylic and connected with tubing to approximate anatomical features. The system was connected to a pulsatile pump, input/output reservoirs and power contrast injector. Flow was varied in the range of 1-2.67 mL/s with the pump operating at 60 beats/min. The system was imaged once a second for 14 seconds with a 320-row scanner (Toshiba Medical Systems) using a contrast-enhanced, prospective-gated cardiac perfusion protocol. Flow was calculated by the following steps: subsequent images of the perfusion volume were subtracted to find the contrast entering the volume; this was normalized by an upstream, known volume region to convert Hounsfield (HU) values to concentration; this was divided by the subtracted images time difference. The technique requires a relatively stable input contrast concentration and no contrast can leave the perfusion volume before the flow measurement is completed. Results: The flow calculated from the images showed an excellent correlation with the known rates. The data was fit to a linear function with slope 1.03, intercept 0.02 and an R{sup 2} value of 0.99. The average root mean square (RMS) error was 0.15 mL/s and the average standard deviation was 0.14 mL/s. The flow rate was stable within 7.7% across the full scan and served to validate model assumptions. Conclusion: Accurate, absolute flow rates were measured from CT images using a conservation of mass model. Measurements can be made using two volume scans which can substantially reduce the radiation dose compared with current dynamic perfusion techniques.

  7. Extended range radiation dose-rate monitor

    DOEpatents

    Valentine, Kenneth H.

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  8. Historical river flow rates for dose calculations

    SciTech Connect

    Carlton, W.H.

    1991-06-10

    Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS`s, EID`S, SAR`S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants.

  9. The impact of water temperature on the measurement of absolute dose

    NASA Astrophysics Data System (ADS)

    Islam, Naveed Mehdi

    To standardize reference dosimetry in radiation therapy, Task Group 51 (TG 51) of American Association of Physicist's in Medicine (AAPM) recommends that dose calibration measurements be made in a water tank at a depth of 10 cm and at a reference geometry. Methodologies are provided for calculating various correction factors to be applied in calculating the absolute dose. However the protocol does not specify the water temperature to be used. In practice, the temperature of water during dosimetry may vary considerably between independent sessions and different centers. In this work the effect of water temperature on absolute dosimetry has been investigated. Density of water varies with temperature, which in turn may impact the beam attenuation and scatter properties. Furthermore, due to thermal expansion or contraction air volume inside the chamber may change. All of these effects can result in a change in the measurement. Dosimetric measurements were made using a Farmer type ion chamber on a Varian Linear Accelerator for 6 MV and 23 MV photon energies for temperatures ranging from 10 to 40 °C. A thermal insulation was designed for the water tank in order to maintain relatively stable temperature over the duration of the experiment. Dose measured at higher temperatures were found to be consistently higher by a very small magnitude. Although the differences in dose were less than the uncertainty in each measurement, a linear regression of the data suggests that the trend is statistically significant with p-values of 0.002 and 0.013 for 6 and 23 MV beams respectively. For a 10 degree difference in water phantom temperatures, which is a realistic deviation across clinics, the final calculated reference dose can differ by 0.24% or more. To address this effect, first a reference temperature (e.g.22 °C) can be set as the standard; subsequently a correction factor can be implemented for deviations from this reference. Such a correction factor is expected to be of similar

  10. Sensitivity to relative reinforcer rate in concurrent schedules: independence from relative and absolute reinforcer duration.

    PubMed Central

    McLean, A P; Blampied, N M

    2001-01-01

    Twelve pigeons responded on two keys under concurrent variable-interval (VI) schedules. Over several series of conditions, relative and absolute magnitudes of reinforcement were varied. Within each series, relative rate of reinforcement was varied and sensitivity of behavior ratios to reinforcer-rate ratios was assessed. When responding at both alternatives was maintained by equal-sized small reinforcers, sensitivity to variation in reinforcer-rate ratios was the same as when large reinforcers were used. This result was observed when the overall rate of reinforcement was constant over conditions, and also in another series of concurrent schedules in which one schedule was kept constant at VI ached 120 s. Similarly, reinforcer magnitude did not affect the rate at which response allocation approached asymptote within a condition. When reinforcer magnitudes differred between the two responses and reinforcer-rate ratios were varied, sensitivity of behavior allocation was unaffected although response bias favored the schedule that arranged the larger reinforcers. Analysis of absolute response rates ratio sensitivity to reinforcement occurrred on the two keys showed that this invariance of response despite changes in reinforcement interaction that were observed in absolute response rates on the constant VI 120-s schedule. Response rate on the constant VI 120-s schedule was inversely related to reinforcer rate on the varied key and the strength of this relation depended on the relative magnitude of reinforcers arranged on varied key. Independence of sensitivity to reinforcer-rate ratios from relative and absolute reinforcer magnitude is consistent with the relativity and independence assumtions of the matching law. PMID:11256865

  11. Enhanced Low Dose Rate Sensitivity at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Pease, Ronald; Forney, James; Carts, Martin; Phan, Anthony; Cox, Stephen; Kruckmeyer, Kriby; Burns, Sam; Albarian, Rafi; Holcombe, Bruce; Little, Bradley; Salzman, James; Chaumont, Geraldine; Duperray, Herve; Ouellet, Al; Buchner, Stephen; LaBel, Kenneth

    2011-01-01

    We have presented results of ultra-low dose rate irradiations (< or = 10 mrad(Si)/s) for a variety of radiation hardened and commercial linear bipolar devices. We observed low dose rate enhancement factors exceeding 1.5 in several parts. The worst case of dose rate enhancement resulted in functional failures, which occurred after 10 and 60 krad(Si), for devices irradiated at 0.5 and 10 mrad(Si)/s, respectively. Devices fabricated with radiation hardened processes and designs also displayed dose rate enhancement at below 10 mrad(Si)/s. Furthermore, the data indicated that these devices have not reached the damage saturation point. Therefore the degradation will likely continue to increase with increasing total dose, and the low dose rate enhancement will further magnify. The cases presented here, in addition to previous examples, illustrate the significance and pervasiveness of low dose rate enhancement at dose rates lower than 10 mrad(Si). These results present further challenges for radiation hardness assurance of bipolar linear circuits, and raise the question of whether the current standard test dose rate is conservative enough to bound degradations due to ELDRS.

  12. Absolute and Relative Reliability of Percentage of Syllables Stuttered and Severity Rating Scales

    ERIC Educational Resources Information Center

    Karimi, Hamid; O'Brian, Sue; Onslow, Mark; Jones, Mark

    2014-01-01

    Purpose: Percentage of syllables stuttered (%SS) and severity rating (SR) scales are measures in common use to quantify stuttering severity and its changes during basic and clinical research conditions. However, their reliability has not been assessed with indices measuring both relative and absolute reliability. This study was designed to provide…

  13. On determining dose rate constants spectroscopically

    SciTech Connect

    Rodriguez, M.; Rogers, D. W. O.

    2013-01-15

    Purpose: To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of {sup 125}I and {sup 103}Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089-6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated {sup 125}I and {sup 103}Pd sources. Methods: Spectra generated by 14 {sup 125}I and 6 {sup 103}Pd seeds were calculated in vacuo at 10 cm from the source in a 2.7 Multiplication-Sign 2.7 Multiplication-Sign 0.05 cm{sup 3} voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the {sup 125}I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for {sup 103}Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were Less-Than-Or-Slanted-Equal-To 0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. Results: The ratio of the intensity of the 31 keV line relative to that of the main peak in {sup 125}I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The {sup 103}Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak when

  14. ISFSI site boundary radiation dose rate analyses.

    PubMed

    Hagler, R J; Fero, A H

    2005-01-01

    Across the globe nuclear utilities are in the process of designing and analysing Independent Spent Fuel Storage Installations (ISFSI) for the purpose of above ground spent-fuel storage primarily to mitigate the filling of spent-fuel pools. Using a conjoining of discrete ordinates transport theory (DORT) and Monte Carlo (MCNP) techniques, an ISFSI was analysed to determine neutron and photon dose rates for a generic overpack, and ISFSI pad configuration and design at distances ranging from 1 to -1700 m from the ISFSI array. The calculated dose rates are used to address the requirements of 10CFR72.104, which provides limits to be enforced for the protection of the public by the NRC in regard to ISFSI facilities. For this overpack, dose rates decrease by three orders of magnitude through the first 200 m moving away from the ISFSI. In addition, the contributions from different source terms changes over distance. It can be observed that although side photons provide the majority of dose rate in this calculation, scattered photons and side neutrons take on more importance as the distance from the ISFSI is increased. PMID:16604670

  15. FFTF (Fast Flux Test Facility) Reactor Characterization Program: Absolute Fission-rate Measurements

    SciTech Connect

    Fuller, J.L.; Gilliam, D.M.; Grundl, J.A.; Rawlins, J.A.; Daughtry, J.W.

    1981-05-01

    Absolute fission rate measurements using modified National Bureau of Standards fission chambers were performed in the Fast Flux Test Facility at two core locations for isotopic deposits of {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu. Monitor chamber results at a third location were analyzed to support other experiments involving passive dosimeter fission rate determinations.

  16. FFTF (FAST FLUX TEST FACILITY) REACTOR CHARACTERIZATION PROGRAM ABSOLUTE FISSION RATE MEASUREMENTS

    SciTech Connect

    FULLER JL; GILLIAM DM; GRUNDL JA; RAWLINS JA; DAUGHTRY JW

    1981-05-01

    Absolute fission rate measurements using modified National Bureau of Standards fission chambers were performed in the Fast Flux Test Facility at two core locations for isotopic deposits of {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu. Monitor chamber results at a third location were analyzed to support other experiments involving passive dosimeter fission rate determinations.

  17. Effective light absorption and absolute electron transport rates in the coral Pocillopora damicornis.

    PubMed

    Szabó, Milán; Wangpraseurt, Daniel; Tamburic, Bojan; Larkum, Anthony W D; Schreiber, Ulrich; Suggett, David J; Kühl, Michael; Ralph, Peter J

    2014-10-01

    Pulse Amplitude Modulation (PAM) fluorometry has been widely used to estimate the relative photosynthetic efficiency of corals. However, both the optical properties of intact corals as well as past technical constrains to PAM fluorometers have prevented calculations of the electron turnover rate of PSII. We used a new Multi-colour PAM (MC-PAM) in parallel with light microsensors to determine for the first time the wavelength-specific effective absorption cross-section of PSII photochemistry, σII(λ), and thus PAM-based absolute electron transport rates of the coral photosymbiont Symbiodinium both in culture and in hospite in the coral Pocillopora damicornis. In both cases, σII of Symbiodinium was highest in the blue spectral region and showed a progressive decrease towards red wavelengths. Absolute values for σII at 440 nm were up to 1.5-times higher in culture than in hospite. Scalar irradiance within the living coral tissue was reduced by 20% in the blue when compared to the incident downwelling irradiance. Absolute electron transport rates of P. damicornis at 440 nm revealed a maximum PSII turnover rate of ca. 250 electrons PSII(-1) s(-1), consistent with one PSII turnover for every 4 photons absorbed by PSII; this likely reflects the limiting steps in electron transfer between PSII and PSI. Our results show that optical properties of the coral host strongly affect light use efficiency of Symbiodinium. Therefore, relative electron transport rates do not reflect the productivity rates (or indeed how the photosynthesis-light response is parameterised). Here we provide a non-invasive approach to estimate absolute electron transport rates in corals. PMID:25146689

  18. Absolute rate of the reaction of hydrogen atoms with ozone from 219-360 K

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Michael, J. V.; Payne, W. A.; Stief, L. J.

    1978-01-01

    Absolute rate constants for the reaction of atomic hydrogen with ozone were obtained over the temperature range 219-360 K by the flash photolysis-resonance fluorescence technique. The results can be expressed in Arrhenius form by K = (1.33 plus or minus 0.32)x10 to the minus 10 power exp (-449 plus or minus 58/T) cu cm/molecule/s (two standard deviations). The present work is compared to two previous determinations and is discussed theoretically.

  19. Absolute Density Calibration Cell for Laser Induced Fluorescence Erosion Rate Measurements

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Stevens, Richard E.

    2001-01-01

    Flight qualification of ion thrusters typically requires testing on the order of 10,000 hours. Extensive knowledge of wear mechanisms and rates is necessary to establish design confidence prior to long duration tests. Consequently, real-time erosion rate measurements offer the potential both to reduce development costs and to enhance knowledge of the dependency of component wear on operating conditions. Several previous studies have used laser-induced fluorescence (LIF) to measure real-time, in situ erosion rates of ion thruster accelerator grids. Those studies provided only relative measurements of the erosion rate. In the present investigation, a molybdenum tube was resistively heated such that the evaporation rate yielded densities within the tube on the order of those expected from accelerator grid erosion. This work examines the suitability of the density cell as an absolute calibration source for LIF measurements, and the intrinsic error was evaluated.

  20. Cyclosporin A does not affect the absolute rate of cortical bone resorption at the organ level in the growing rat.

    PubMed

    Klein, L; Lemel, M S; Wolfe, M S; Shaffer, J

    1994-10-01

    The weanling rat, an animal model of rapid bone turnover, was used to evaluate the effects of various doses of cyclosporin A (CsA) on various bones during different time periods. Sprague-Dawley male rats were extensively prelabeled with 3H-tetracycline during 1-3 weeks of age. At 4 weeks of age, four groups of rats were given daily subcutaneous injections: vehicle or CsA--low dose (10 mg/kg), intermediary dose (20 mg/kg), or high dose (30 mg/kg) for 7, 14, or 28 days. Three different whole bones--the femur (low turnover), scapula (moderate turnover), and lumbar-6 vertebra (high turnover) were harvested intact at 4, 5, 6, and 8 weeks of age. The whole bones were assayed weekly for total dry defatted weight, calcium mass (formation), and loss of 3H-tetracycline (bone resorption) following treatment with CsA. Serum CsA levels, calcium creatinine, and alkaline phosphatase were measured weekly. Significant decreases in serum calcium and alkaline phosphatase were observed at 1 and 2 weeks, and were normalized by 4 weeks of treatment. No significant changes in serum creatinine were noted. For all three doses of CsA, no effect was observed on the absolute rate of cortical bone resorption of three different, whole bones over three time periods. Body weight and bone formation in treated animals was significantly smaller in a dose- and time-related fashion compared with control animals at sacrifice. However, compared with the initial control animals, body weights and bone masses of the final treated animals were much larger, suggesting that the smaller bone masses were due to insufficient growth and slow gain in bone mass.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7820781

  1. Dose rate, dose-equivalent rate, and quality factor in SLS-1

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Braby, L. A.; Cucinotta, F. A.; Atwell, W.

    1992-01-01

    A tissue-equivalent proportional counter (TEPC) sensitive to the lineal energy range of 0.26-300 keV micrometer-1 was flown on STS-40 (39 degrees x 278 km x 296 km) inside the Spacelab. This instrument was previously flown on STS-31 but was modified to provide a finer resolution at lower lineal energies to better map the South Atlantic Anomaly (SAA) protons. The instrument was turned on 6 June 1991, and operated for 7470 min (124.5 h). The flight duration was characterized by a very large number of X-ray solar flares and enhanced magnetic field fluctuations; however, no significant dose from the solar particles was measured at the location of this instrument. The flight data can be separated into trapped and galactic cosmic radiation parts. The dose rate, dose-equivalent rate and quality factor for trapped radiation were 4.21 +/- 0.03 mrad day-1, 7.72 +/- 0.05 mrem day-1, and 1.83 +/- 0.1, respectively. The dose rate, dose-equivalent rate, and quality factor for galactic cosmic radiation were 5.34 +/- 0.03 mrad day-1, 14.63 +/- 0.06 mrem day-1, and 2.74 +/- 0.1, respectively. The overall quality factor for the flight was 2.38. The dose from the GCR is higher than from SAA protons because of the high inclination and low altitude of this flight. The AP8MAX model of the trapped radiation gives a dose rate of 2.43 mrad day-1 and a quality factor of 1.77. The CREME solar maximum model of galactic cosmic radiation gives a dose rate of 2.54 mrad day-1 and a quality factor of 2.91. Thus the AP8MAX model underestimates the dose by a factor of 1.8 whereas the CREME model leads to an underestimation of the dose by a factor of 2. A comparison of the LET spectra using the AP8MAX model and galactic cosmic radiation transport codes shows only a qualitative agreement.

  2. Absolute rate parameters for the reaction of atomic hydrogen with hydrazine

    NASA Technical Reports Server (NTRS)

    Stief, L. J.; Payne, W. A.

    1976-01-01

    Absolute rate parameters for the reaction of atomic hydrogen with hydrazine H + N2H4 yields H2 + N2H3 have been determined in a direct manner using flash photolysis of dilute mixtures of hydrazine in helium and time dependent observation of H via resonance fluorescence. By measuring the H-atom decay under pseudo-first-order conditions, the bimolecular rate constant K sub 1 was obtained over the temperature range 228-400 K. The data were fitted with good linearity to the Arrhenius expression K sub 1 = (9.87 plus or minus 1.17) x 10 to the -12th exp(-2380 plus or minus 100/RT) cu cm/molecule/s. The data were shown to be free of any contributions from secondary reactions involving H as a reactant or product.

  3. Evaluation of clinical IMRT treatment planning using the GATE Monte Carlo simulation platform for absolute and relative dose calculations

    SciTech Connect

    Benhalouche, S.; Le Maitre, A.; Visvikis, D.; Pradier, O.; Boussion, N.

    2013-02-15

    Purpose: The objective of this study was to evaluate and validate the use of the Geant4 application for emission tomography (GATE) Monte Carlo simulation platform for clinical intensity modulated radiotherapy (IMRT) dosimetry studies. Methods: The first step consisted of modeling a 6 MV photon beam linear accelerator (LINAC), with its corresponding validation carried out using percent depth dose evaluation, transverse profiles, tissue phantom ratio, and output factor on water phantom. The IMRT evaluation was performed by comparing simulation and measurements in terms of absolute and relative doses using IMRT dedicated quality assurance phantoms considering seven different patient datasets. Results: Concerning the LINAC simulated model validation tissue phantom ratios at 20 and 10 cm in water TPR{sub 10}{sup 20} obtained from GATE and measurements were 0.672 {+-} 0.063 and 0.675, respectively. In terms of percent depth dose and transverse profiles, error ranges were, respectively: 1.472%{+-} 0.285% and 4.827%{+-} 1.323% for field size of 4 Multiplication-Sign 4, 5 Multiplication-Sign 5, 10 Multiplication-Sign 10, 15 Multiplication-Sign 15, 20 Multiplication-Sign 20, 25 Multiplication-Sign 25, 30 Multiplication-Sign 30, and 40 Multiplication-Sign 40 cm{sup 2}. Most errors were observed at the edge of radiation fields because of higher dose gradient in these areas. Output factors showed good agreement between simulation and measurements with a maximum error of 1.22%. Finally, for IMRT simulations considering seven patient datasets, GATE provided good results with a relative error of 0.43%{+-} 0.25% on absolute dose between simulated and measured beams (measurements at the isocenter, volume 0.125 cm{sup 3}). Planar dose comparisons were also performed using gamma-index analysis. For the whole set of beams considered the mean gamma-index value was 0.497 {+-} 0.152 and 90.8%{+-} 3.6% of the evaluated dose points satisfied the 5%/ 4 mm criterion. Conclusions: These

  4. Membrane electroporation: The absolute rate equation and nanosecond time scale pore creation

    NASA Astrophysics Data System (ADS)

    Vasilkoski, Zlatko; Esser, Axel T.; Gowrishankar, T. R.; Weaver, James C.

    2006-08-01

    The recent applications of nanosecond, megavolt-per-meter electric field pulses to biological systems show striking cellular and subcellular electric field induced effects and revive the interest in the biophysical mechanism of electroporation. We first show that the absolute rate theory, with experimentally based parameter input, is consistent with membrane pore creation on a nanosecond time scale. Secondly we use a Smoluchowski equation-based model to formulate a self-consistent theoretical approach. The analysis is carried out for a planar cell membrane patch exposed to a 10ns trapezoidal pulse with 1.5ns rise and fall times. Results demonstrate reversible supraelectroporation behavior in terms of transmembrane voltage, pore density, membrane conductance, fractional aqueous area, pore distribution, and average pore radius. We further motivate and justify the use of Krassowska’s asymptotic electroporation model for analyzing nanosecond pulses, showing that pore creation dominates the electrical response and that pore expansion is a negligible effect on this time scale.

  5. Absolute dose measurements by means of a small cylindrical ionization chamber for very high dose per pulse high energy electron beams

    SciTech Connect

    Karaj, E.; Righi, S.; Di Martino, F.

    2007-03-15

    Very high dose per pulse (3-13 cGy/pulse) high energy electron beams are currently produced by special linear accelerators (linac) dedicated to Intra Operative Radiation Therapy (IORT). The electron beams produced by such linacs are collimated by special Perspex applicators of various size and cylindrically shaped. The biggest problems from the dosimetric point of view are caused by the high dose-per-pulse values and the use of inclined applicators. In this work measurements of absolute dose for the inclined applicators were done by using a small cylindrical ionization chamber, type CC01 (Wellhofer), a parallel plane ionization chamber type Markus (PTW 23343) and radiochromic films type EBT. We show a method which allows calculating the quality correction factors for CC01 chamber with an uncertainty of 1% and the absolute dose value for the inclined applicators using CC01 with an uncertainty of 3.1% for electron beams of energy of 6 and 7 MeV produced by the linac dedicated to IORT Novac7.

  6. Feasibility on the spectrometric determination of the individual dose rate for detected gamma nuclides using the dose rate spectroscopy

    NASA Astrophysics Data System (ADS)

    Ji, Young-Yong; Chung, Kun Ho; Lee, Wanno; Park, Doo-Won; Kang, Mun-Ja

    2014-04-01

    A spectrometric determination of the dose rate using a detector is a very useful method to identify the contribution of artificial nuclides. In addition, the individual dose rate for detected gamma nuclides from the radioactive materials as well as the environment can give further information such as the in-situ measurement because of the direct relation between the individual dose rate and the activity of a nuclide. In this study, the calculation method for the individual dose rate for detected gamma nuclides was suggested by introducing the concept of the dose rate spectroscopy and the peak-to-total ratio in the energy spectrum for the dose rate, which means just a form of multiplied counts and the value of a G-factor in the spectrum. In addition, the validity of the suggested method for the individual dose rate was experimentally verified through a comparison of the calculation results on the energy spectra for several conditions of the standard source.

  7. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    SciTech Connect

    Levy, R.P.

    1991-01-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examining the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute [gamma]-radiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. It was concluded that oligodendrocytes in irradiated cultures had significantly lower functional capacity than did unirradiated controls. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. At DIC 14, the group irradiated in a single fraction had significantly lower oligodendrocyte counts than any group given split doses; all irradiated cultures had marked depression of MBP synthesis, but to significant differences referable to time interval between doses. At DIC 21, cultures irradiated at intervals of 0 h to 2 h had similar oligodendrocyte counts to one another, but these counts were significantly lower than in cultures irradiated at intervals of 4 h to 6 h; MBP levels remained depressed at DIC 21 for all irradiated cultures. The oligodendrocyte response to dose rate (0.03 to 1.97 Gy/min) was evaluated at DIC 14 and DIC 21. Exposure at 0.03 Gy/min suppressed oligodendrocyte counts at DIC 21 less than did higher dose rates in 5-Gy irradiated cultures.

  8. Method to determine the position-dependant metal correction factor for dose-rate equivalent laser testing of semiconductor devices

    SciTech Connect

    Horn, Kevin M.

    2013-07-09

    A method reconstructs the charge collection from regions beneath opaque metallization of a semiconductor device, as determined from focused laser charge collection response images, and thereby derives a dose-rate dependent correction factor for subsequent broad-area, dose-rate equivalent, laser measurements. The position- and dose-rate dependencies of the charge-collection magnitude of the device are determined empirically and can be combined with a digital reconstruction methodology to derive an accurate metal-correction factor that permits subsequent absolute dose-rate response measurements to be derived from laser measurements alone. Broad-area laser dose-rate testing can thereby be used to accurately determine the peak transient current, dose-rate response of semiconductor devices to penetrating electron, gamma- and x-ray irradiation.

  9. The Effects of ELDRS at Ultra-Low Dose Rates

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Forney, James; Carts, Martin; Phan, Anthony; Pease, Ronald; Kruckmeyer, Kirby; Cox, Stephen; LaBel, Kenneth; Burns, Samuel; Albarian, Rafi; Holcombe, Bruce; Little, Bradley; Salzman, James; Chaumont, Geraldine; Duperray, Herve; Ouellet, Al

    2011-01-01

    We present results on the effects on ELDRS at dose rates of 10, 5, 1, and 0.5 mrad(Si)/s for a variety of radiation hardened and commercial devices. We observed low dose rate enhancement below 10 mrad(Si)/s in several different parts. The magnitudes of the dose rate effects vary. The TL750L, a commercial voltage regulator, showed dose rate dependence in the functional failures, with initial failures occurring after 10 krad(Si) for the parts irradiated at 0.5 mrad(Si)/s. The RH1021 showed an increase in low dose rate enhancement by 2x at 5 mrad(Si)/s relative to 8 mrad(Si)/s and high dose rate, and parametric failure after 100 krad(Si). Additionally the ELDRS-free devices, such as the LM158 and LM117, showed evidence of dose rate sensitivity in parametric degradations. Several other parts also displayed dose rate enhancement, with relatively lower degradations up to approx.15 to 20 krad(Si). The magnitudes of the dose rate enhancement will likely increase in significance at higher total dose levels.

  10. High Dose-Rate Versus Low Dose-Rate Brachytherapy for Lip Cancer

    SciTech Connect

    Ghadjar, Pirus; Bojaxhiu, Beat; Simcock, Mathew; Terribilini, Dario; Isaak, Bernhard; Gut, Philipp; Wolfensberger, Patrick; Broemme, Jens O.; Geretschlaeger, Andreas; Behrensmeier, Frank; Pica, Alessia; Aebersold, Daniel M.

    2012-07-15

    Purpose: To analyze the outcome after low-dose-rate (LDR) or high-dose-rate (HDR) brachytherapy for lip cancer. Methods and Materials: One hundred and three patients with newly diagnosed squamous cell carcinoma of the lip were treated between March 1985 and June 2009 either by HDR (n = 33) or LDR brachytherapy (n = 70). Sixty-eight patients received brachytherapy alone, and 35 received tumor excision followed by brachytherapy because of positive resection margins. Acute and late toxicity was assessed according to the Common Terminology Criteria for Adverse Events 3.0. Results: Median follow-up was 3.1 years (range, 0.3-23 years). Clinical and pathological variables did not differ significantly between groups. At 5 years, local recurrence-free survival, regional recurrence-free survival, and overall survival rates were 93%, 90%, and 77%. There was no significant difference for these endpoints when HDR was compared with LDR brachytherapy. Forty-two of 103 patients (41%) experienced acute Grade 2 and 57 of 103 patients (55%) experienced acute Grade 3 toxicity. Late Grade 1 toxicity was experienced by 34 of 103 patients (33%), and 5 of 103 patients (5%) experienced late Grade 2 toxicity; no Grade 3 late toxicity was observed. Acute and late toxicity rates were not significantly different between HDR and LDR brachytherapy. Conclusions: As treatment for lip cancer, HDR and LDR brachytherapy have comparable locoregional control and acute and late toxicity rates. HDR brachytherapy for lip cancer seems to be an effective treatment with acceptable toxicity.

  11. Radiation dose rates from UF{sub 6} cylinders

    SciTech Connect

    Friend, P.J.

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  12. The estimation of galactic cosmic ray penetration and dose rates

    NASA Technical Reports Server (NTRS)

    Burrell, M. O.; Wright, J. J.

    1972-01-01

    This study is concerned with approximation methods that can be readily applied to estimate the absorbed dose rate from cosmic rays in rads - tissue or rems inside simple geometries of aluminum. The present work is limited to finding the dose rate at the center of spherical shells or behind plane slabs. The dose rate is calculated at tissue-point detectors or for thin layers of tissue. This study considers cosmic-rays dose rates for both free-space and earth-orbiting missions.

  13. Subjective evaluation of HDTV stereoscopic videos in IPTV scenarios using absolute category rating

    NASA Astrophysics Data System (ADS)

    Wang, K.; Barkowsky, M.; Cousseau, R.; Brunnström, K.; Olsson, R.; Le Callet, P.; Sjöström, M.

    2011-03-01

    Broadcasting of high definition (HD) stereobased 3D (S3D) TV are planned, or has already begun, in Europe, the US, and Japan. Specific data processing operations such as compression and temporal and spatial resampling are commonly used tools for saving network bandwidth when IPTV is the distribution form, as this results in more efficient recording and transmission of 3DTV signals, however at the same time it inevitably brings quality degradations to the processed video. This paper investigated observers quality judgments of state of the art video coding schemes (simulcast H.264/AVC or H.264/MVC), with or without added temporal and spatial resolution reduction of S3D videos, by subjective experiments using the Absolute Category Rating method (ACR) method. The results showed that a certain spatial resolution reduction working together with high quality video compressing was the most bandwidth efficient way of processing video data when the required video quality is to be judged as "good" quality. As the subjective experiment was performed in two different laboratories in two different countries in parallel, a detailed analysis of the interlab differences was performed.

  14. Spatial Variation of Dosimetric Leaf Gap and Its Impact on Absolute Dose Delivery in Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Kumaraswamy, Lalith

    During dose calculation, the Eclipse Treatment Planning system (TPS) retracts the MLC leaf positions by half of the dosimetric leaf gap (DLG) value (measured at central axis) for all leaf positions in a dynamic MLC plan to accurately model the rounded leaf ends. The aim of this study is to map the variation of DLG along the travel path of each MLC leaf pair and quantify how this variation impacts delivered dose. 6 MV DLG values were measured for all MLC leaf pairs in increments of 1.0 cm (from the line intersecting the CAX and perpendicular to MLC motion) to 13.0 cm off axis distance at depth of dose maximum. The measurements were performed on two Varian LINACs, both employing the Millennium 120-leaf MLC. The measurements were performed at several locations in the beam with both a Sun Nuclear MapCHECK device and a PTW pinpoint ion chamber. The measured DLGs for the middle 40 MLC leaf pairs (each 0.5 cm width) at positions along a line through the CAX and perpendicular to MLC leaf travel direction were very similar, varying maximally by only 0.2 mm. The outer 20 MLC leaf pairs (each 1.0 cm width) have much lower DLG values, about 0.3 to 0.5 mm lower than the central MLC leaf pair, at their respective central line position. Overall, the mean and the maximum variation between the 0.5 cm width leaves and the 1.0 cm width leaf pairs is 0.32 mm and 0.65 mm, respectively. The spatial variation in DLG is caused by the variation of intraleaf transmission through MLC leaves. Fluences centered on the CAX would not be affected since DLG does not vary; but any fluences residing significantly off-axis with narrow sweeping leaves may exhibit significant dose differences. This is due to the fact that there are differences in DLG between the true DLG exhibited by the 1.0 cm width outer leaves and the constant DLG value utilized by the TPS for dose calculation. Since there are large differences in DLG between the 0.5 cm width leaf pairs and 1.0 cm width leaf pairs, there is a need

  15. Dosimetric investigation of high dose rate, gated IMRT

    SciTech Connect

    Lin, Teh; Chen Yan; Hossain, Murshed; Li, Jinsheng; Ma, C.-M.

    2008-11-15

    Increasing the dose rate offers time saving for IMRT delivery but the dosimetric accuracy is a concern, especially in the case of treating a moving target. The objective of this work is to determine the effect of dose rate associated with organ motion and gated treatment using step-and-shoot IMRT delivery. Both measurements and analytical simulation on clinical plans are performed to study the dosimetric differences between high dose rate and low dose rate gated IMRT step-and-shoot delivery. Various sites of IMRT plans for liver, lung, pancreas, and breast cancers were delivered to a custom-made motorized phantom, which simulated sinusoidal movement. Repeated measurements were taken for gated and nongated delivery with different gating settings and three dose rates, 100, 500, and 1000 MU/min using ion chambers and extended dose range films. For the study of the residual motion effect for individual segment dose and composite dose of IMRT plans, our measurements with 30%-60% phase gating and without gating for various dose rates were compared. A small but clinically acceptable difference in delivered dose was observed between 1000, 500, and 100 MU/min at 30%-60% phase gating. A simulation is presented, which can be used for predicting dose profiles for patient cases in the presence of motion and gating to confirm that IMRT step-and-shoot delivery with gating for 1000 MU/min are not much different from 500 MU/min. Based on the authors sample plan analyses, our preliminary results suggest that using 1000 MU/Min dose rate is dosimetrically accurate and efficient for IMRT treatment delivery with gating. Nonetheless, for the concern of patient care and safety, a patient specific QA should be performed as usual for IMRT plans for high dose rate deliveries.

  16. Space Radiation Quality Factors and the Delta Ray Dose and Dose-Rate Reduction Effectiveness Factor.

    PubMed

    Cucinotta, Francis A; Cacao, Eliedonna; Alp, Murat

    2016-03-01

    In this paper, the authors recommend that the dose and dose-rate effectiveness factor used for space radiation risk assessments should be based on a comparison of the biological effects of energetic electrons produced along a cosmic ray particles path in low fluence exposures to high dose-rate gamma-ray exposures of doses of about 1 Gy. Methods to implement this approach are described. PMID:26808878

  17. Dose rate analysis for Tank 101 AZ (Project W151)

    SciTech Connect

    Schwarz, R.A.; Hillesland, K.E.; Carter, L.L.

    1994-11-01

    This document describes the expected dose rates for modification to tank 101 AZ including modifications to the steam coil, mixer pump, and temperature probes. The thrust of the effort is to determine dose rates from: modification of a steam coil and caisson; the installation of mixer pumps; the installation of temperature probes; and estimates of dose rates that will be encountered while making these changes. Because the dose rates for all of these configurations depend upon the photon source within the supernate and sludge, comparisons were also made between measured dose rates within a drywell and the corresponding calculated dose rates. The calculational tool used is a Monte Carlo (MCNP{sub 2}) code since complicated three dimensional geometries are involved. A summary of the most important results of the entire study is given in Section 2. The basic calculational geometry model of the tank is discussed in Section 3, along with a tabulation of the photon sources that were used within the supernate and the sludge, and a discussion of uncertainties. The calculated dose rates around the steam coil and caisson before and after modification are discussed in Section 4. The configuration for the installation of the mixer pumps and the resulting dose rates are given in Section 5. The predicted changes in dose rates due to a possible dilution of the supernate source are given in Section 6. The calculational configuration used to model the installation of temperature probes and the resulting predicted dose rates are discussed in Section 7. Finally, comparisons of measured to calculated dose rates within a drywell are summarized in Section 8. Extended discussions of calculational models and Monte Carlo optimization techniques used are included in Appendix A.

  18. SU-E-J-85: Leave-One-Out Perturbation (LOOP) Fitting Algorithm for Absolute Dose Film Calibration

    SciTech Connect

    Chu, A; Ahmad, M; Chen, Z; Nath, R

    2014-06-01

    Purpose: To introduce an outliers-recognition fitting routine for film dosimetry. It cannot only be flexible with any linear and non-linear regression but also can provide information for the minimal number of sampling points, critical sampling distributions and evaluating analytical functions for absolute film-dose calibration. Methods: The technique, leave-one-out (LOO) cross validation, is often used for statistical analyses on model performance. We used LOO analyses with perturbed bootstrap fitting called leave-one-out perturbation (LOOP) for film-dose calibration . Given a threshold, the LOO process detects unfit points (“outliers”) compared to other cohorts, and a bootstrap fitting process follows to seek any possibilities of using perturbations for further improvement. After that outliers were reconfirmed by a traditional t-test statistics and eliminated, then another LOOP feedback resulted in the final. An over-sampled film-dose- calibration dataset was collected as a reference (dose range: 0-800cGy), and various simulated conditions for outliers and sampling distributions were derived from the reference. Comparisons over the various conditions were made, and the performance of fitting functions, polynomial and rational functions, were evaluated. Results: (1) LOOP can prove its sensitive outlier-recognition by its statistical correlation to an exceptional better goodness-of-fit as outliers being left-out. (2) With sufficient statistical information, the LOOP can correct outliers under some low-sampling conditions that other “robust fits”, e.g. Least Absolute Residuals, cannot. (3) Complete cross-validated analyses of LOOP indicate that the function of rational type demonstrates a much superior performance compared to the polynomial. Even with 5 data points including one outlier, using LOOP with rational function can restore more than a 95% value back to its reference values, while the polynomial fitting completely failed under the same conditions

  19. Effect of various methods for rectum delineation on relative and absolute dose-volume histograms for prostate IMRT treatment planning.

    PubMed

    Kusumoto, Chiaki; Ohira, Shingo; Miyazaki, Masayoshi; Ueda, Yoshihiro; Isono, Masaru; Teshima, Teruki

    2016-01-01

    Several reports have dealt with correlations of late rectal toxicity with rectal dose-volume histograms (DVHs) for high dose levels. There are 2 techniques to assess rectal volume for reception of a specific dose: relative-DVH (R-DVH, %) that indicates relative volume for a vertical axis, and absolute-DVH (A-DVH, cc) with its vertical axis showing absolute volume of the rectum. The parameters of DVH vary depending on the rectum delineation method, but the literature does not present any standardization of such methods. The aim of the present study was to evaluate the effects of different delineation methods on rectal DVHs. The enrollment for this study comprised 28 patients with high-risk localized prostate cancer, who had undergone intensity-modulated radiation therapy (IMRT) with the prescription dose of 78Gy. The rectum was contoured with 4 different methods using 2 lengths, short (Sh) and long (Lg), and 2 cross sections, rectum (Rec) and rectal wall (Rw). Sh means the length from 1cm above the seminal vesicles to 1cm below the prostate and Lg the length from the rectosigmoid junction to the anus. Rec represents the entire rectal volume including the rectal contents and Rw the rectal volume of the area with a wall thickness of 4mm. We compared dose-volume parameters by using 4 rectal contour methods for the same plan with the R-DVHs as well as the A-DVHs. For the high dose levels, the R-DVH parameters varied widely. The mean of V70 for Sh-Rw was the highest (19.4%) and nearly twice as high as that for Lg-Rec (10.4%). On the contrary, only small variations were observed in the A-DVH parameters (4.3, 4.3, 5.5, and 5.5cc for Sh-Rw, Lg-Rw, Sh-Rec, and Lg-Rec, respectively). As for R-DVHs, the parameters of V70 varied depending on the rectal lengths (Sh-Rec vs Lg-Rec: R = 0.76; Sh-Rw vs Lg-Rw: R = 0.85) and cross sections (Sh-Rec vs Sh-Rw: R = 0.49; Lg-Rec vs Lg-Rw: R = 0.65). For A-DVHs, however, the parameters of Sh rectal A-DVHs hardly changed regardless of

  20. Effects Of Dose Rates On Radiation Damage In CMOS Parts

    NASA Technical Reports Server (NTRS)

    Goben, Charles A.; Coss, James R.; Price, William E.

    1990-01-01

    Report describes measurements of effects of ionizing-radiation dose rate on consequent damage to complementary metal oxide/semiconductor (CMOS) electronic devices. Depending on irradiation time and degree of annealing, survivability of devices in outer space, or after explosion of nuclear weapons, enhanced. Annealing involving recovery beyond pre-irradiation conditions (rebound) detrimental. Damage more severe at lower dose rates.

  1. Impact of Drug Therapy, Radiation Dose, and Dose Rate on Renal Toxicity Following Bone Marrow Transplantation

    SciTech Connect

    Cheng, Jonathan C.; Schultheiss, Timothy E. Wong, Jeffrey Y.C.

    2008-08-01

    Purpose: To demonstrate a radiation dose response and to determine the dosimetric and chemotherapeutic factors that influence the incidence of late renal toxicity following total body irradiation (TBI). Methods and Materials: A comprehensive retrospective review was performed of articles reporting late renal toxicity, along with renal dose, fractionation, dose rate, chemotherapy regimens, and potential nephrotoxic agents. In the final analysis, 12 articles (n = 1,108 patients), consisting of 24 distinct TBI/chemotherapy conditioning regimens were included. Regimens were divided into three subgroups: adults (age {>=}18 years), children (age <18 years), and mixed population (both adults and children). Multivariate logistic regression was performed to identify dosimetric and chemotherapeutic factors significantly associated with late renal complications. Results: Individual analysis was performed on each population subgroup. For the purely adult population, the only significant variable was total dose. For the mixed population, the significant variables included total dose, dose rate, and the use of fludarabine. For the pediatric population, only the use of cyclosporin or teniposide was significant; no dose response was noted. A logistic model was generated with the exclusion of the pediatric population because of its lack of dose response. This model yielded the following significant variables: total dose, dose rate, and number of fractions. Conclusion: A dose response for renal damage after TBI was identified. Fractionation and low dose rates are factors to consider when delivering TBI to patients undergoing bone marrow transplantation. Drug therapy also has a major impact on kidney function and can modify the dose-response function.

  2. Dose rate constant and energy spectrum of interstitial brachytherapy sources.

    PubMed

    Chen, Z; Nath, R

    2001-01-01

    In the past two years, several new manufacturers have begun to market low-energy interstitial brachytherapy seeds containing 125I and 103Pd. Parallel to this development, the National Institute of Standards and Technology (NIST) has implemented a modification to the air-kerma strength (S(K)) standard for 125I seeds and has also established an S(K) standard for 103Pd seeds. These events have generated a considerable number of investigations on the determination of the dose rate constants (inverted V) of interstitial brachytherapy seeds. The aim of this work is to study the general properties underlying the determination of dose rate constant and to develop a simple method for a quick and accurate estimation of dose rate constant. As the dose rate constant of clinical seeds is defined at a fixed reference point, we postulated that dose rate constant may be calculated by treating the seed as an effective point source when the seed's source strength is specified in S(K) and its source characteristics are specified by the photon energy spectrum measured in air at the reference point. Using a semi-analytic approach, an analytic expression for dose rate constant was derived for point sources with known photon energy spectra. This approach enabled a systematic study of dose rate constant as a function of energy. Using the measured energy spectra, the calculated dose rate constant for 125I model 6711 and 6702 seeds and for 192Ir seed agreed with the AAPM recommended values within +/-1%. For the 103Pd model 200 seed, the agreement was 5% with a recently measured value (within the +/-7% experimental uncertainty) and was within 1% with the Monte Carlo simulations. The analytic expression for dose rate constant proposed here can be evaluated using a programmable calculator or a simple spreadsheet and it provides an efficient method for checking the measured dose rate constant for any interstitial brachytherapy seed once the energy spectrum of the seed is known. PMID:11213926

  3. Optimal mapping of terrestrial gamma dose rates using geological parent material and aerogeophysical survey data.

    PubMed

    Rawlins, B G; Scheib, C; Tyler, A N; Beamish, D

    2012-12-01

    Regulatory authorities need ways to estimate natural terrestrial gamma radiation dose rates (nGy h⁻¹) across the landscape accurately, to assess its potential deleterious health effects. The primary method for estimating outdoor dose rate is to use an in situ detector supported 1 m above the ground, but such measurements are costly and cannot capture the landscape-scale variation in dose rates which are associated with changes in soil and parent material mineralogy. We investigate the potential for improving estimates of terrestrial gamma dose rates across Northern Ireland (13,542 km²) using measurements from 168 sites and two sources of ancillary data: (i) a map based on a simplified classification of soil parent material, and (ii) dose estimates from a national-scale, airborne radiometric survey. We used the linear mixed modelling framework in which the two ancillary variables were included in separate models as fixed effects, plus a correlation structure which captures the spatially correlated variance component. We used a cross-validation procedure to determine the magnitude of the prediction errors for the different models. We removed a random subset of 10 terrestrial measurements and formed the model from the remainder (n = 158), and then used the model to predict values at the other 10 sites. We repeated this procedure 50 times. The measurements of terrestrial dose vary between 1 and 103 (nGy h⁻¹). The median absolute model prediction errors (nGy h⁻¹) for the three models declined in the following order: no ancillary data (10.8) > simple geological classification (8.3) > airborne radiometric dose (5.4) as a single fixed effect. Estimates of airborne radiometric gamma dose rate can significantly improve the spatial prediction of terrestrial dose rate. PMID:23147566

  4. Simultaneous estimation of lithospheric uplift rates and absolute sea level change in southwest Scandinavia from inversion of sea level data

    NASA Astrophysics Data System (ADS)

    Nielsen, Lars; Hansen, Jens Morten; Hede, Mikkel Ulfeldt; Clemmensen, Lars B.; Pejrup, Morten; Noe-Nygaard, Nanna

    2014-11-01

    Relative sea level curves contain coupled information about absolute sea level change and vertical lithospheric movement. Such curves may be constructed based on, for example tide gauge data for the most recent times and different types of geological data for ancient times. Correct account for vertical lithospheric movement is essential for estimation of reliable values of absolute sea level change from relative sea level data and vise versa. For modern times, estimates of vertical lithospheric movement may be constrained by data (e.g. GPS-based measurements), which are independent from the relative sea level data. Similar independent data do not exist for ancient times. The purpose of this study is to test two simple inversion approaches for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates for ancient times in areas where a dense coverage of relative sea level data exists and well-constrained average lithospheric movement values are known from, for example glacial isostatic adjustment (GIA) models. The inversion approaches are tested and used for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates in southwest Scandinavia from modern relative sea level data series that cover the period from 1900 to 2000. In both approaches, a priori information is required to solve the inverse problem. A priori information about the average vertical lithospheric movement in the area of interest is critical for the quality of the obtained results. The two tested inversion schemes result in estimated absolute sea level rise of ˜1.2/1.3 mm yr-1 and vertical uplift rates ranging from approximately -1.4/-1.2 mm yr-1 (subsidence) to about 5.0/5.2 mm yr-1 if an a priori value of 1 mm yr-1 is used for the vertical lithospheric movement throughout the study area. In case the studied time interval is broken into two time intervals (before and after 1970), absolute sea level rise values of ˜0.8/1.2 mm yr-1 (before

  5. Unexpectedly large dose rate dependent output from a linear accelerator.

    PubMed

    Cheng, P C; Kubo, H

    1988-01-01

    During our routine calibration of a Varian Clinac-20 linear accelerator, the absorbed dose for a fixed monitor unit (mu) was found to decrease with increasing dose rate. Between dose rates of 100 and 500 mu/min, there was up to 20% difference in absorbed dose for a 20-MeV electron beam. The cause of this problem was a failure in the electronics circuit of an integrating board. This paper presents our analysis of the problem and suggests a possible means of isolating such a failure to warn technologists, physicists, and engineers. PMID:3141760

  6. External dose-rate conversion factors for calculation of dose to the public

    SciTech Connect

    Not Available

    1988-07-01

    This report presents a tabulation of dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides in the environment. This report was prepared in conjunction with criteria for limiting dose equivalents to members of the public from operations of the US Department of Energy (DOE). The dose-rate conversion factors are provided for use by the DOE and its contractors in performing calculations of external dose equivalents to members of the public. The dose-rate conversion factors for external exposure to photons and electrons presented in this report are based on a methodology developed at Oak Ridge National Laboratory. However, some adjustments of the previously documented methodology have been made in obtaining the dose-rate conversion factors in this report. 42 refs., 1 fig., 4 tabs.

  7. BEHAVIRORAL EFFECTS OF MICROWAVES: RELATIONSHIP OF TOTAL DOSE AND DOSE RATE

    EPA Science Inventory

    The goal of the research was to compare the relationship of whole body averaged specific absorption rate (SAR) and specific absorption (SA) to determine whether dose rate or dose was the better predictor of biological effects. Sperm positive Long-Evans female rats were exposed to...

  8. Dose characterization in the near-source region for two high dose rate brachytherapy sources.

    PubMed

    Wang, Ruqing; Li, X Allen

    2002-08-01

    High dose rate (HDR) 192Ir sources are currently used in intravascular brachytherapy (IVB) for the peripheral arterial system. This poses a demand on evaluating accurate dose parameters in the near-source region for such sources. The purpose of this work is to calculate the dose parameters for the old VariSource HDR 192Ir source and the new microSelectron HDR 192Ir source, using Monte Carlo electron and photon transport simulation. The two-dimensional (2D) dose rate distributions and the air kerma strengths for the two HDR sources were calculated by EGSnrc and EGS4 Monte Carlo codes. Based on these data, the dose parameters proposed in the AAPM TG-60 protocol were derived. The dose rate constants obtained are 13.119+/-0.028 cGy h(-1) U(-1) for the old VariSource source, and 22.751+/-0.031 cGy h(-1) U(-1) for the new microSelectron source at the reference point (r0 = 2 mm, theta = pi/2). The 2D dose rate distributions, the radial dose functions, and the anisotropy functions presented for the two sources cover radial distances ranging from 0.5 to 10 mm. In the near-source region on the transverse plane, the dose effects of the charged particle nonequilibrium and the beta-particle dose contribution were studied. It is found that at radial distances ranging from 0.5 to 2 mm, these effects increase the calculated dose rates by up to 29% for the old VariSource source, and by up to 12% for the new microSelectron source, which, in turn, change values of the radial dose function and the anisotropy function. The present dose parameters, which account for the charged particle nonequilibrium and the beta particle contribution, may be used for accurate IVB dose calculation. PMID:12201413

  9. Evaluation of Rectal Dose During High-Dose-Rate Intracavitary Brachytherapy for Cervical Carcinoma

    SciTech Connect

    Sha, Rajib Lochan; Reddy, Palreddy Yadagiri; Rao, Ramakrishna; Muralidhar, Kanaparthy R.; Kudchadker, Rajat J.

    2011-01-01

    High-dose-rate intracavitary brachytherapy (HDR-ICBT) for carcinoma of the uterine cervix often results in high doses being delivered to surrounding organs at risk (OARs) such as the rectum and bladder. Therefore, it is important to accurately determine and closely monitor the dose delivered to these OARs. In this study, we measured the dose delivered to the rectum by intracavitary applications and compared this measured dose to the International Commission on Radiation Units and Measurements rectal reference point dose calculated by the treatment planning system (TPS). To measure the dose, we inserted a miniature (0.1 cm{sup 3}) ionization chamber into the rectum of 86 patients undergoing radiation therapy for cervical carcinoma. The response of the miniature chamber modified by 3 thin lead marker rings for identification purposes during imaging was also characterized. The difference between the TPS-calculated maximum dose and the measured dose was <5% in 52 patients, 5-10% in 26 patients, and 10-14% in 8 patients. The TPS-calculated maximum dose was typically higher than the measured dose. Our study indicates that it is possible to measure the rectal dose for cervical carcinoma patients undergoing HDR-ICBT. We also conclude that the dose delivered to the rectum can be reasonably predicted by the TPS-calculated dose.

  10. VMATc: VMAT with constant gantry speed and dose rate.

    PubMed

    Peng, Fei; Jiang, Steve B; Romeijn, H Edwin; Epelman, Marina A

    2015-04-01

    This article considers the treatment plan optimization problem for Volumetric Modulated Arc Therapy (VMAT) with constant gantry speed and dose rate (VMATc). In particular, we consider the simultaneous optimization of multi-leaf collimator leaf positions and a constant gantry speed and dose rate. We propose a heuristic framework for (approximately) solving this optimization problem that is based on hierarchical decomposition. Specifically, an iterative algorithm is used to heuristically optimize dose rate and gantry speed selection, where at every iteration a leaf position optimization subproblem is solved, also heuristically, to find a high-quality plan corresponding to a given dose rate and gantry speed. We apply our framework to clinical patient cases, and compare the resulting VMATc plans to idealized IMRT, as well as full VMAT plans. Our results suggest that VMATc is capable of producing treatment plans of comparable quality to VMAT, albeit at the expense of long computation time and generally higher total monitor units. PMID:25789937

  11. SU-E-T-189: First Experimental Verification of the Accuracy of Absolute Dose Reconstruction From PET-CT Imaging of Yttrium 90 Microspheres

    SciTech Connect

    Veltchev, I; Fourkal, E; Doss, M; Ma, C; Meyer, J; Yu, M; Horwitz, E

    2014-06-01

    Purpose: In the past few years there have been numerous proposals for 3D dose reconstruction from the PET-CT imaging of patients undergoing radioembolization treatment of the liver with yttrium-90 microspheres. One of the most promising techniques uses convolution of the measured PET activity distribution with a pre-calculated Monte Carlo dose deposition kernel. The goal of the present study is to experimentally verify the accuracy of this method and to analyze the significance of various error sources. Methods: Optically stimulated luminescence detectors (OSLD) were used (NanoDot, Landauer) in this experiment. Two detectors were mounted on the central axis of a cylinder filled with water solution of yttrium-90 chloride. The total initial activity was 90mCi. The cylinder was inserted in a larger water phantom and scanned on a Siemens Biograph 16 Truepoint PET-CT scanner. Scans were performed daily over a period of 20 days to build a calibration curve for the measured absolute activity spanning 7 yttrium-90 half-lives. The OSLDs were mounted in the phantom for a predetermined period of time in order to record 2Gy dose. The measured dose was then compared to the dose reconstructed from the activity density at the location of each dosimeter. Results: Thorough error analysis of the dose reconstruction algorithm takes into account the uncertainties in the absolute PET activity, branching ratios, and nonlinearity of the calibration curve. The measured dose for 105-minute exposure on day 10 of the experiment was 219(11)cGy, while the reconstructed dose at the location of the detector was 215(47)cGy. Conclusion: We present the first experimental verification of the accuracy of the convolution algorithm for absolute dose reconstruction of yttrium-90 microspheres. The excellent agreement between the measured and calculated point doses will encourage the broad clinical adoption of the convolution-based dose reconstruction algorithm, making future quantitative dose

  12. Dose rate effects during damage accumulation in silicon

    SciTech Connect

    Caturla, M.J.; Diaz de la Rubia, T.

    1997-11-01

    The authors combine molecular dynamics and Monte Carlo simulations to study damage accumulation and dose rate effects during irradiation of silicon. They obtain the initial stage of the damage produced by heavy and light ions using classical molecular dynamics simulations. While heavy ions like As or Pt induce amorphization by single ion impact, light ions like B only produce point defects or small clusters of defects. The amorphous pockets generated by heavy ions are stable below room temperature and recrystallize at temperatures below the threshold for recrystallization of a planar amorphous-crystalline interface. The damage accumulation during light ion irradiation is simulated using a Monte Carlo model for defect diffusion. In this approach, the authors study the damage in the lattice as a function of dose and dose rate. A strong reduction in the total number of defects left in the lattice is observed for lower dose rates.

  13. Dose rate effects during damage accumulation in silicon

    SciTech Connect

    Caturla, M.J.; Diaz de la Rubia, T.

    1997-01-01

    We combine molecular dynamics and Monte Carlo simulations to study damage accumulation and dose rate effects during irradiation of Silicon. We obtain the initial stage of the damage produced by heavy and light ions using classical molecular dynamics simulations. While heavy ions like As or Pt induce amorphization by single ion impact, light ions like B only produce point defects or small clusters of defects. The amorphous pockets generated by heavy ions are stable below room temperature and recrystallize at temperatures below the threshold for recrystallization of a planar amorphous-crystalline interface. The damage accumulation during light ion irradiation is simulated using a Monte Carlo model for defect diffusion. In this approach, we study the damage in the lattice as a function of dose and dose rate. A strong reduction in the total number of defects left in the lattice is observed for lower dose rates.

  14. Analysis of decay dose rates and dose management in the National Ignition Facility.

    PubMed

    Khater, Hesham; Brereton, Sandra; Dauffy, Lucile; Hall, Jim; Hansen, Luisa; Kim, Soon; Kohut, Tom; Pohl, Bertram; Sitaraman, Shiva; Verbeke, Jerome; Young, Mitchell

    2013-06-01

    A detailed model of the Target Bay (TB) at the National Ignition Facility (NIF) has been developed to estimate the post-shot radiation environment inside the facility. The model includes the large number of structures and diagnostic instruments present inside the TB. These structures and instruments are activated by neutrons generated during a shot, and the resultant gamma dose rates are estimated at various decay times following the shot. A set of computational tools was developed to help in estimating potential radiation exposure to TB workers. The results presented in this paper describe the expected radiation environment inside the TB following a low-yield DT shot of 10(16) neutrons. General environment dose rates drop below 30 μSv h(-1) within 3 h following a shot, with higher dose rates observed in the vicinity (~30 cm) of few components. The dose rates drop by more than a factor of two at 1 d following the shot. Dose rate maps of the different TB levels were generated to aid in estimating worker stay-out times following a shot before entry is permitted into the TB. Primary components, including the Target Chamber and diagnostic and beam line components, are constructed of aluminum. Near-term TB accessibility is driven by the decay of the aluminum activation product, 24Na. Worker dose is managed using electronic dosimeters (EDs) self-issued at kiosks using commercial dose management software. The software programs the ED dose and dose rate alarms based on the Radiological Work Permit (RWP) and tracks dose by individual, task, and work group. PMID:23629063

  15. Analysis of bipolar linear circuit response mechanisms for high and low dose rate total dose irradiations

    SciTech Connect

    Barnaby, H.; Tausch, H.J.; Turfler, R.; Cole, P.; Baker, P.; Pease, R.L.

    1996-12-01

    A methodology is presented for the identification of circuit total dose response mechanisms in bipolar linear microcircuits irradiated at high and low dose rates. This methodology includes manual circuit analysis, circuit simulations with SPICE using extracted device parameters, and selective irradiations of portions of the circuit using a scanning electron microscope.

  16. Dose rate dependency of micelle leucodye 3D gel dosimeters

    NASA Astrophysics Data System (ADS)

    Vandecasteele, J.; Ghysel, S.; De Deene, Y.

    2010-11-01

    Recently a novel 3D radiochromic gel dosimeter was introduced which uses micelles to dissolve a leucodye in a gelatin matrix. Experimental results show that this 3D micelle gel dosimeter was found to be dose rate dependent. A maximum difference in optical dose sensitivity of 70% was found for dose rates between 50 cGy min-1 and 400 cGy min-1. A novel composition of 3D radiochromic dosimeter is proposed composed of gelatin, sodium dodecyl sulphate, chloroform, trichloroacetic acid and leucomalachite green. The novel gel dosimeter formulation exhibits comparable radio-physical properties in respect to the composition previously proposed. Nevertheless, the novel formulation was found to be still dose rate dependent. A maximum difference of 33% was found for dose rates between 50 cGy min-1 and 400 cGy min-1. On the basis of these experimental results it is concluded that the leucodye micelle gel dosimeter is still unsatisfactory for clinical radiation therapy dose verifications. Some insights in the physico-chemical mechanisms were obtained and are discussed.

  17. Absolute rate constant of the reaction between chlorine /2P/ atoms and hydrogen peroxide from 298 to 424 K

    NASA Technical Reports Server (NTRS)

    Keyser, L. F.

    1980-01-01

    The absolute rate constant of the reaction between chlorine (2P) atoms and hydrogen peroxide was determined from 298 to 424 K, using the discharge flow resonance fluorescence technique. Pseudo-first-order conditions were used with hydrogen peroxide in large excess. A fast flow-sampling procedure limited hydrogen peroxide decomposition to less than 5% over the temperature range studied. At 298 K, the rate constant is (4.1 plus or minus 0.2) x 10 to the minus 13th cu cm/molecule-sec.

  18. Statistical variability and confidence intervals for planar dose QA pass rates

    SciTech Connect

    Bailey, Daniel W.; Nelms, Benjamin E.; Attwood, Kristopher; Kumaraswamy, Lalith; Podgorsak, Matthew B.

    2011-11-15

    Purpose: The most common metric for comparing measured to calculated dose, such as for pretreatment quality assurance of intensity-modulated photon fields, is a pass rate (%) generated using percent difference (%Diff), distance-to-agreement (DTA), or some combination of the two (e.g., gamma evaluation). For many dosimeters, the grid of analyzed points corresponds to an array with a low areal density of point detectors. In these cases, the pass rates for any given comparison criteria are not absolute but exhibit statistical variability that is a function, in part, on the detector sampling geometry. In this work, the authors analyze the statistics of various methods commonly used to calculate pass rates and propose methods for establishing confidence intervals for pass rates obtained with low-density arrays. Methods: Dose planes were acquired for 25 prostate and 79 head and neck intensity-modulated fields via diode array and electronic portal imaging device (EPID), and matching calculated dose planes were created via a commercial treatment planning system. Pass rates for each dose plane pair (both centered to the beam central axis) were calculated with several common comparison methods: %Diff/DTA composite analysis and gamma evaluation, using absolute dose comparison with both local and global normalization. Specialized software was designed to selectively sample the measured EPID response (very high data density) down to discrete points to simulate low-density measurements. The software was used to realign the simulated detector grid at many simulated positions with respect to the beam central axis, thereby altering the low-density sampled grid. Simulations were repeated with 100 positional iterations using a 1 detector/cm{sup 2} uniform grid, a 2 detector/cm{sup 2} uniform grid, and similar random detector grids. For each simulation, %/DTA composite pass rates were calculated with various %Diff/DTA criteria and for both local and global %Diff normalization

  19. In vivo TLD dose measurements in catheter-based high-dose-rate brachytherapy.

    PubMed

    Adlienė, Diana; Jakštas, Karolis; Urbonavičius, Benas Gabrielis

    2015-07-01

    Routine in vivo dosimetry is well established in external beam radiotherapy; however, it is restricted mainly to detection of gross errors in high-dose-rate (HDR) brachytherapy due to complicated measurements in the field of steep dose gradients in the vicinity of radioactive source and high uncertainties. The results of in vivo dose measurements using TLD 100 mini rods and TLD 'pin worms' in catheter-based HDR brachytherapy are provided in this paper alongside with their comparison with corresponding dose values obtained using calculation algorithm of the treatment planning system. Possibility to perform independent verification of treatment delivery in HDR brachytherapy using TLDs is discussed. PMID:25809111

  20. PRECEDENTS FOR AUTHORIZATION OF CONTENTS USING DOSE RATE MEASUREMENTS

    SciTech Connect

    Abramczyk, G.; Bellamy, S.; Nathan, S.; Loftin, B.

    2012-06-05

    For the transportation of Radioactive Material (RAM) packages, the requirements for the maximum allowed dose rate at the package surface and in its vicinity are given in Title 10 of the Code of Federal Regulations, Section 71.47. The regulations are based on the acceptable dose rates to which the public, workers, and the environment may be exposed. As such, the regulations specify dose rates, rather than quantity of radioactive isotopes and require monitoring to confirm the requirements are met. 10CFR71.47 requires that each package of radioactive materials offered for transportation must be designed and prepared for shipment so that under conditions normally incident to transportation the radiation level does not exceed 2 mSv/h (200 mrem/h) at any point on the external Surface of the package, and the transport index does not exceed 10. Before shipment, the dose rate of the package is determined by measurement, ensuring that it conforms to the regulatory limits, regardless of any analyses. This is the requirement for all certified packagings. This paper discusses the requirements for establishing the dose rates when shipping RAM packages and the precedents for meeting these requirements by measurement.

  1. Absolute Rate Constants for the Reaction of OH with [|#11#|]Cyclopentane and Cycloheptane from 230-350 K

    NASA Astrophysics Data System (ADS)

    Dransfield, T. J.; Gennaco, M. M.; Huang, Y.; Hannun, R. A.

    2011-12-01

    We report absolute measurements of the rate constants of the reaction of hydroxyl radical (OH) with cyclopentane and cycloheptane in 6-8 Torr of nitrogen from 230-350 K using Harvard's High Pressure Flow System. Ethane's reactivity was simultaneously measured as a test of experimental performance. Hydroxyl concentrations were measured using Laser-Induced Fluorescence, and alkane concentrations were measured using Fourier-Transform Infrared Spectroscopy. Recent work on this flow system has suggested that cyclohexane has a significantly higher activation energy to reaction with OH than does cyclo-octane, a result which is not suggested by our understanding of hydrocarbon reactivity nor predicted by structure-activity relationships. This work examines the temperature dependent rates for two other similarly-sized cycloalkanes to determine whether they behave as cyclohexane or as cyclooctane. While several previous experiments have studied the reaction with cyclopentane, there is significant scatter in the room temperature rates, and only four absolute rate measurements are available at non-ambient temperatures. There are only two absolute rate measurements available for the reaction with cycloheptane; only one of these reports a temperature dependence, and that study is limited to temperatures above 298 K. Thus, this work significantly expands the available data set for both reactions. The data for the reactions of OH with ethane, cyclopentane, cyclohexane, and cycloheptane are all modeled using a simple Arrhenius fit, and also with a modified Arrhenius equation based on transition state theory, ignoring tunneling. Results from the latter fit indicate that the activation barriers for both title reactions are greater than that of OH + cyclo-octane. The measured activation energy for OH + cyclopentane actually exceeds that of OH + cyclohexane.

  2. Calculation of the biological effective dose for piecewise defined dose-rate fits

    SciTech Connect

    Hobbs, Robert F.; Sgouros, George

    2009-03-15

    An algorithmic solution to the biological effective dose (BED) calculation from the Lea-Catcheside formula for a piecewise defined function is presented. Data from patients treated for metastatic thyroid cancer were used to illustrate the solution. The Lea-Catcheside formula for the G-factor of the BED is integrated numerically using a large number of small trapezoidal fits to each integral. The algorithmically calculated BED is compatible with an analytic calculation for a similarly valued exponentially fitted dose-rate plot and is the only resolution for piecewise defined dose-rate functions.

  3. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    SciTech Connect

    Chibani, Omar C-M Ma, Charlie

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR

  4. Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates.

    PubMed

    Fournier, P; Crosbie, J C; Cornelius, I; Berkvens, P; Donzelli, M; Clavel, A H; Rosenfeld, A B; Petasecca, M; Lerch, M L F; Bräuer-Krisch, E

    2016-07-21

    Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency's TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called 'current ramping' method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials. PMID:27366861

  5. Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates

    NASA Astrophysics Data System (ADS)

    Fournier, P.; Crosbie, J. C.; Cornelius, I.; Berkvens, P.; Donzelli, M.; Clavel, A. H.; Rosenfeld, A. B.; Petasecca, M.; Lerch, M. L. F.; Bräuer-Krisch, E.

    2016-07-01

    Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency’s TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called ‘current ramping’ method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials.

  6. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  7. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  8. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate.

    PubMed

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J; Ravelli, Raimond B G

    2011-05-01

    Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50-250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e(-)Å(-2) s(-1) or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection combined with

  9. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate

    PubMed Central

    Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Vulovic, Milos; Koster, Abraham J.; Ravelli, Raimond B. G.

    2011-01-01

    Radiation damage is an important resolution limiting factor both in macromolecular X-ray crystallography and cryo-electron microscopy. Systematic studies in macromolecular X-ray crystallography greatly benefited from the use of dose, expressed as energy deposited per mass unit, which is derived from parameters including incident flux, beam energy, beam size, sample composition and sample size. In here, the use of dose is reintroduced for electron microscopy, accounting for the electron energy, incident flux and measured sample thickness and composition. Knowledge of the amount of energy deposited allowed us to compare doses with experimental limits in macromolecular X-ray crystallography, to obtain an upper estimate of radical concentrations that build up in the vitreous sample, and to translate heat-transfer simulations carried out for macromolecular X-ray crystallography to cryo-electron microscopy. Stroboscopic exposure series of 50–250 images were collected for different incident flux densities and integration times from Lumbricus terrestris extracellular hemoglobin. The images within each series were computationally aligned and analyzed with similarity metrics such as Fourier ring correlation, Fourier ring phase residual and figure of merit. Prior to gas bubble formation, the images become linearly brighter with dose, at a rate of approximately 0.1% per 10 MGy. The gradual decomposition of a vitrified hemoglobin sample could be visualized at a series of doses up to 5500 MGy, by which dose the sample was sublimed. Comparison of equal-dose series collected with different incident flux densities showed a dose-rate effect favoring lower flux densities. Heat simulations predict that sample heating will only become an issue for very large dose rates (50 e−Å−2 s−1 or higher) combined with poor thermal contact between the grid and cryo-holder. Secondary radiolytic effects are likely to play a role in dose-rate effects. Stroboscopic data collection

  10. Patient release criteria for low dose rate brachytherapy implants.

    PubMed

    Boyce, Dale E; Sheetz, Michael A

    2013-04-01

    A lack of consensus regarding a model governing the release of patients following sealed source brachytherapy has led to a set of patient release policies that vary from institution to institution. The U.S. Nuclear Regulatory Commission has issued regulatory guidance on patient release in NUREG 1556, Volume 9, Rev. 2, Appendix U, which allows calculation of release limits following implant brachytherapy. While the formalism presented in NUREG is meaningful for the calculation of release limits in the context of relatively high energy gamma emitters, it does not estimate accurately the effective dose equivalent for the common low dose rate brachytherapy sources Cs, I, and Pd. NUREG 1556 states that patient release may be based on patient-specific calculations as long as the calculation is documented. This work is intended to provide a format for patient-specific calculations to be used for the consideration of patients' release following the implantation of certain low dose rate brachytherapy isotopes. PMID:23439145

  11. Simulating total-dose and dose-rate effects on digital microelectronics timing delays using VHDL

    SciTech Connect

    Brothers, C.P. Jr.; Pugh, R.D.

    1995-12-01

    This paper describes a fast timing simulator based on Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) for simulating the timing of digital microelectronics in pre-irradiation, total dose, and dose-rate radiation environments. The goal of this research is the rapid and accurate timing simulation of radiation-hardened microelectronic circuits before, during, and after exposure to ionizing radiation. The results of this research effort were the development of VHDL compatible models capable of rapid and accurate simulation of the effect of radiation on the timing performance of microelectronic circuits. The effects of radiation for total dose at 1 Mrad(Si) and dose rates up to 2 {times} 10{sup 12} rads(Si) per second were modeled for a variety of Separation by IMplantion of OXygen (SIMOX) circuits. In all cases tested, the VHDL simulations ran at least 600 times faster than SPICE while maintaining a timing accuracy to within 15% of SPICE values.

  12. Total Dose Effects on Error Rates in Linear Bipolar Systems

    NASA Technical Reports Server (NTRS)

    Buchner, Stephen; McMorrow, Dale; Bernard, Muriel; Roche, Nicholas; Dusseau, Laurent

    2007-01-01

    The shapes of single event transients in linear bipolar circuits are distorted by exposure to total ionizing dose radiation. Some transients become broader and others become narrower. Such distortions may affect SET system error rates in a radiation environment. If the transients are broadened by TID, the error rate could increase during the course of a mission, a possibility that has implications for hardness assurance.

  13. ACDOS2: an improved neutron-induced dose rate code

    SciTech Connect

    Lagache, J.C.

    1981-06-01

    To calculate the expected dose rate from fusion reactors as a function of geometry, composition, and time after shutdown a computer code, ACDOS2, was written, which utilizes up-to-date libraries of cross-sections and radioisotope decay data. ACDOS2 is in ANSI FORTRAN IV, in order to make it readily adaptable elsewhere.

  14. Detecting absolute human knee angle and angular velocity using accelerometers and rate gyroscopes.

    PubMed

    Williamson, R; Andrews, B J

    2001-05-01

    Knee joint angle and angular velocity were calculated in real time during standing up and sitting down. Two small modules comprising rate gyroscopes and accelerometers were attached to the thigh and shank of two able-bodied volunteers and one T5 ASIA(A) paraplegic assisted by functional electrical stimulation (FES). The offset and drift of the rate gyroscopes was compensated for by auto-resetting and auto-nulling algorithms. The tilt of the limb segments was calculated by combining the signals of the accelerometer and the rate gyroscope. The joint angle was calculated as the difference in tilt of the segments. The modules were also tested on a two-dimensional model. The mean differences between the rate gyroscope-accelerometer system and the reference goniometer for the model, able-bodied and paraplegic standing trials were 2.1 degrees, 2.4 degrees and 2.3 degrees respectively for knee angle and 2.3 degrees s(-1), 5.0 degrees s(-1) and 11.8 degrees s(-1) respectively for knee velocity. The rate gyroscope-accelerometer system was more accurate than using the accelerometer as a tilt meter, possibly due to the greater bandwidth of the rate gyroscope-accelerometer system. PMID:11465883

  15. Total dose and dose rate models for bipolar transistors in circuit simulation.

    SciTech Connect

    Campbell, Phillip Montgomery; Wix, Steven D.

    2013-05-01

    The objective of this work is to develop a model for total dose effects in bipolar junction transistors for use in circuit simulation. The components of the model are an electrical model of device performance that includes the effects of trapped charge on device behavior, and a model that calculates the trapped charge densities in a specific device structure as a function of radiation dose and dose rate. Simulations based on this model are found to agree well with measurements on a number of devices for which data are available.

  16. TH-E-BRE-09: TrueBeam Monte Carlo Absolute Dose Calculations Using Monitor Chamber Backscatter Simulations and Linac-Logged Target Current

    SciTech Connect

    A, Popescu I; Lobo, J; Sawkey, D; Svatos, M

    2014-06-15

    Purpose: To simulate and measure radiation backscattered into the monitor chamber of a TrueBeam linac; establish a rigorous framework for absolute dose calculations for TrueBeam Monte Carlo (MC) simulations through a novel approach, taking into account the backscattered radiation and the actual machine output during beam delivery; improve agreement between measured and simulated relative output factors. Methods: The ‘monitor backscatter factor’ is an essential ingredient of a well-established MC absolute dose formalism (the MC equivalent of the TG-51 protocol). This quantity was determined for the 6 MV, 6X FFF, and 10X FFF beams by two independent Methods: (1) MC simulations in the monitor chamber of the TrueBeam linac; (2) linac-generated beam record data for target current, logged for each beam delivery. Upper head MC simulations used a freelyavailable manufacturer-provided interface to a cloud-based platform, allowing use of the same head model as that used to generate the publicly-available TrueBeam phase spaces, without revealing the upper head design. The MC absolute dose formalism was expanded to allow direct use of target current data. Results: The relation between backscatter, number of electrons incident on the target for one monitor unit, and MC absolute dose was analyzed for open fields, as well as a jaw-tracking VMAT plan. The agreement between the two methods was better than 0.15%. It was demonstrated that the agreement between measured and simulated relative output factors improves across all field sizes when backscatter is taken into account. Conclusion: For the first time, simulated monitor chamber dose and measured target current for an actual TrueBeam linac were incorporated in the MC absolute dose formalism. In conjunction with the use of MC inputs generated from post-delivery trajectory-log files, the present method allows accurate MC dose calculations, without resorting to any of the simplifying assumptions previously made in the True

  17. Environmental dose rate distribution along the Romanian Black Sea shore

    NASA Astrophysics Data System (ADS)

    Duliu, Octavian G.; Margineanu, Romul M.; Blebea-Apostu, Ana-Maria; Gomoiu, Claudia; Bercea, Sorin

    2013-04-01

    The radiometric investigation of the natural radioactivity dose rate distribution along the most important Romanian Black Sea tourist resorts showed values between 34 and 54 nSv/h, lower than the 59 nSv/h, the average background reported for the entire Romanian territory. At the same time we have noticed that the experimental dose rates monotonously increase northward, reaching a maximum in the vicinity of Vadu and Corbu beaches, both on the southern part of the Chituc sandbank. Concurrent gamma ray spectrometric measurements, performed at the Slanic-Prahova Low-Background Radiation Laboratory for sand samples collected from the same location, have shown that the natural radionuclides have a major contribution to background radiation while anthropogenic Cs-137 plays, 26 years after Chernobyl catastrophe, a negligible role. The experimental values of activity concentrations of all radionuclides present in sand samples were used to calculate the corresponding values of dose rates to which, by adding the contribution of cosmic rays, we have obtained values coincident, within experimental uncertainties, with the experimental ones. At the same time, on Chituc sandbank, a transverse profile of dose rate distribution revealed the presence of some local maxima, two to thee times higher then the average ones. Subsequent gamma ray spectrometry showed an increased content of natural radionuclides, most probably due to a local accumulation of heavy minerals, a common occurrence in the vicinity of river deltas, in our case the Danube Delta. In such a way, the monitoring of local dose rate distribution could be very useful not only in attesting the environmental quality of various resorts and beaches, but also, in signaling the presence of heavy minerals, with beneficent economic consequences.

  18. High-Dose-Rate 192Ir Brachytherapy Dose Verification: A Phantom Study

    PubMed Central

    Nikoofar, Alireza; Hoseinpour, Zohreh; Rabi Mahdavi, Seied; Hasanzadeh, Hadi; Rezaei Tavirani, Mostafa

    2015-01-01

    Background: The high-dose-rate (HDR) brachytherapy might be an effective tool for palliation of dysphagia. Because of some concerns about adverse effects due to absorbed radiation dose, it is important to estimate absorbed dose in risky organs during this treatment. Objectives: This study aimed to measure the absorbed dose in the parotid, thyroid, and submandibular gland, eye, trachea, spinal cord, and manubrium of sternum in brachytherapy in an anthropomorphic phantom. Materials and Methods: To measure radiation dose, eye, parotid, thyroid, and submandibular gland, spine, and sternum, an anthropomorphic phantom was considered with applicators to set thermoluminescence dosimeters (TLDs). A specific target volume of about 23 cm3 in the upper thoracic esophagus was considered as target, and phantom planned computed tomography (CT) for HDR brachytherapy, then with a micro-Selectron HDR (192Ir) remote after-loading unit. Results: Absorbed doses were measured with calibrated TLDs and were expressed in centi-Gray (cGy). In regions far from target (≥ 16 cm) such as submandibular, parotid and thyroid glands, mean measured dose ranged from 1.65 to 5.5 cGy. In closer regions (≤ 16 cm), the absorbed dose might be as high as 113 cGy. Conclusions: Our study showed similar depth and surface doses; in closer regions, the surface and depth doses differed significantly due to the role of primary radiation that had imposed a high-dose gradient and difference between the plan and measurement, which was more severe because of simplifications in tissue inhomogeneity, considered in TPS relative to phantom. PMID:26413250

  19. Impact of Surface Curvature on Dose Delivery in Intraoperative High-Dose-Rate Brachytherapy

    SciTech Connect

    Oh, Moonseong Wang Zhou; Malhotra, Harish K.; Jaggernauth, Wainwright; Podgorsak, Matthew B.

    2009-04-01

    In intraoperative high-dose-rate (IOHDR) brachytherapy, a 2-dimensional (2D) geometry is typically used for treatment planning. The assumption of planar geometry may cause serious errors in dose delivery for target surfaces that are, in reality, curved. A study to evaluate the magnitude of these errors in clinical practice was undertaken. Cylindrical phantoms with 6 radii (range: 1.35-12.5 cm) were used to simulate curved treatment geometries. Treatment plans were developed for various planar geometries and were delivered to the cylindrical phantoms using catheters inserted into Freiburg applicators of varying dimension. Dose distributions were measured using radiographic film. In comparison to the treatment plan (for a planar geometry), the doses delivered to prescription points were higher on the concave side of the geometry, up to 15% for the phantom with the smallest radius. On the convex side of the applicator, delivered doses were up to 10% lower for small treated areas ({<=} 5 catheters) but, interestingly, the dose error was negligible for large treated areas (>5 catheters). Our measurements have shown inaccuracy in dose delivery when the original planar treatment plan is delivered with a curved applicator. Dose delivery errors arising from the use of planar treatment plans with curved applicators may be significant.

  20. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle.

    PubMed

    Gurley, Katelyn; Shang, Yu; Yu, Guoqiang

    2012-07-01

    This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (V̇O(2)) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and V̇O(2) in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO(2)], [Hb], and THC), tissue oxygen saturation (S(t)O(2)), relative BF (rBF), and relative oxygen consumption rate (rV̇O(2)). The rBF and rV̇O(2) signals were calibrated with absolute baseline BF and V̇O(2) obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology. PMID:22894482

  1. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    PubMed Central

    Gurley, Katelyn; Shang, Yu

    2012-01-01

    Abstract. This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (V˙O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and V˙O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (rV˙O2). The rBF and rV˙O2 signals were calibrated with absolute baseline BF and V˙O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology. PMID:22894482

  2. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    NASA Astrophysics Data System (ADS)

    Gurley, Katelyn; Shang, Yu; Yu, Guoqiang

    2012-07-01

    This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (\\Vdot O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and \\Vdot O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (r\\Vdot O2). The rBF and r\\Vdot O2 signals were calibrated with absolute baseline BF and \\Vdot O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology.

  3. Solar modulation of dose rate onboard the Mir station.

    PubMed

    Badhwar, G D; Shurshakov, V A; Tsetlin, V V

    1997-12-01

    Models of the radiation belts that are currently used to estimate exposure for astronauts describe the environment at times of either solar minimum or solar maximum. Static models, constructed using data acquired prior to 1970 during a solar cycle with relatively low solar radio flux, have flux uncertainties of a factor of two to live and dose-rate uncertainties of a factor of about two. The inability of these static models to provide a dynamic description of the radiation belt environment limits our ability to predict radiation exposures for long-duration missions in low earth orbits. In an attempt to add some predictive capability of these models, we studied the measured daily absorbed dose rate on the Mir orbital station over roughly the complete 22nd solar cycle that saw some of the highest solar flux values in the last 40 y. We show that the daily trapped particle dose rate is an approximate power law function of daily atmospheric density. Atmospheric density values are in turn obtained from standard correlation with observed solar radio noise flux. This correlation improves, particularly during periods of high solar activity, if the density at roughly 400 days earlier time is used. This study suggests the possibility of a dose- and flux-predictive trapped-belt model based on atmospheric density. PMID:11542263

  4. Absolute rate coefficients for photorecombination of beryllium-like and boron-like silicon ions

    NASA Astrophysics Data System (ADS)

    Bernhardt, D.; Becker, A.; Brandau, C.; Grieser, M.; Hahn, M.; Krantz, C.; Lestinsky, M.; Novotný, O.; Repnow, R.; Savin, D. W.; Spruck, K.; Wolf, A.; Müller, A.; Schippers, S.

    2016-04-01

    We report measured rate coefficients for electron-ion recombination of Si10+ forming Si9+ and of Si9+ forming Si8+, respectively. The measurements were performed using the electron-ion merged-beams technique at a heavy-ion storage ring. Electron-ion collision energies ranged from 0 to 50 eV for Si9+ and from 0 to 2000 eV for Si10+, thus, extending previous measurements for Si10+ (Orban et al 2010 Astrophys. J. 721 1603) to much higher energies. Experimentally derived rate coefficients for the recombination of Si9+ and Si10+ ions in a plasma are presented along with simple parameterizations. These rate coefficients are useful for the modeling of the charge balance of silicon in photoionized plasmas (Si9+ and Si10+) and in collisionally ionized plasmas (Si10+ only). In the corresponding temperature ranges, the experimentally derived rate coefficients agree with the latest corresponding theoretical results within the experimental uncertainties.

  5. Absolute rate constant for the O plus NO chemiluminescence in the near infrared

    NASA Technical Reports Server (NTRS)

    Golde, M. F.; Roche, A. E.; Kaufman, F.

    1973-01-01

    Infrared chemiluminescence from the process O + NO (+M) NO2 + hv (+M) has been studied between 1.3 and 4.1 micrometer. The wavelength dependence of the continuum between 1.3 and 3.3 micrometer is in fair agreement with previous studies and the measured radiative rate constant at 1.51 micrometer establishes the NO-O glow in this spectral range as a secondary emission standard. Comparison with previous studies of the visible region of the glow implies that the overall radiative rate constant lies in the range (9.4 to 11.2) x 10 to the minus 17 power cu cm sec/1. In the region 3.3 to 4.1 micrometer, the previously observed broad band, peaking at 3.7 micrometer, shows a complex kinetic dependence on O and M.

  6. Absolute rate of the reaction of bromine atoms with ozone from 200-360 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Lee, J. H.; Payne, W. A.; Stief, L. J.

    1978-01-01

    The rate constant for the reaction Br + O3 yields BrO + O2 was measured from 200 to 360 K by the technique of flash photolysis coupled to time resolved detection of bromine atoms by resonance fluorescence (FP-RF). Br atoms were produced by the flash photolysis of CH3Br at lambda 165nm.O3 was monitored continuously under reaction conditions by absorption at 253.7 nm. At each of five temperatures the results were independent of substantial variations in O3, total pressure and limited variations in flash intensity. The measured rate constants obeyed the Arrhenius expression, where the error quoted is two standard deviations. Results are compared with previous determinations which employed the discharge flow-mass spectrometric technique.

  7. Absolute rate constants for the reaction of atomic hydrogen with ketene from 298 to 500 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Nava, D. F.; Payne, W. A.; Stief, L. J.

    1979-01-01

    Rate constants for the reaction of atomic hydrogen with ketene have been measured at room temperature by two techniques, flash photolysis-resonance fluorescence and discharge flow-resonance fluorescence. The measured values are (6.19 + or - 1.68) x 10 to the -14th and (7.3 + or - 1.3) x 10 to the -14th cu cm/molecule/s, respectively. In addition, rate constants as a function of temperature have been measured over the range 298-500 K using the FP-RF technique. The results are best represented by the Arrhenius expression k = (1.88 + or - 1.12) x 10 to the -11th exp(-1725 + or - 190/T) cu cm/molecule/s, where the indicated errors are at the two standard deviation level.

  8. Absolute rate of the reaction of bromine atoms with ozone from 200 to 360 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Lee, J. H.; Payne, W. A.; Stief, L. J.

    1978-01-01

    The rate constant for the reaction Br + O3 yields BrO + O2 has been measured from 200 to 360 K by the technique of flash photolysis coupled to time resolved detection of bromine atoms by resonance fluorescence (FP-RF). Br atoms were produced by the flash photolysis of CH3Br at a wavelength of 165 nm. O3 concentration was monitored continuously under reaction conditions by absorption at 253.7 nm. At each of five temperatures the results were independent of substantial variations in O3 concentration, total pressure (Ar), and limited variations in flash intensity (i.e., initial Br concentration). The measured rate constants obey the Arrhenius expression, k = (7.74 plus or minus 0.50) x 10 to the -12th exp(-603 plus or minus 16/T) cu cm/molecule/sec, where the error quoted is two standard deviations.

  9. Radiobiological evaluation of low dose-rate prostate brachytherapy implants

    NASA Astrophysics Data System (ADS)

    Knaup, Courtney James

    Low dose-rate brachytherapy is a radiation therapy treatment for men with prostate cancer. While this treatment is common, the use of isotopes with varying dosimetric characteristics means that the prescription level and normal organ tolerances vary. Additionally, factors such as prostate edema, seed loss and seed migration may alter the dose distribution within the prostate. The goal of this work is to develop a radiobiological response tool based on spatial dose information which may be used to aid in treatment planning, post-implant evaluation and determination of the effects of prostate edema and seed migration. Aim 1: Evaluation of post-implant prostate edema and its dosimetric and biological effects. Aim 2: Incorporation of biological response to simplify post-implant evaluation. Aim 3: Incorporation of biological response to simplify treatment plan comparison. Aim 4: Radiobiologically based comparison of single and dual-isotope implants. Aim 5: Determine the dosimetric and radiobiological effects of seed disappearance and migration.

  10. Prototype Operational Advances for Atmospheric Radiation Dose Rate Specification

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Garrett, H. B.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, D.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, I.; Wiltberger, M. J.; Wiley, S.; Bacon, S.; Teets, E.; Sim, A.; Dominik, L.

    2014-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. The coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has developed innovative, new space weather observations that will become part of the toolset that is transitioned into operational use. One prototype operational system for providing timely information about the effects of space weather is SET's Automated Radiation Measurements for Aerospace Safety (ARMAS) system. ARMAS will provide the "weather" of the radiation environment to improve aircraft crew and passenger safety. Through several dozen flights the ARMAS project has successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time via Iridium satellites, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. We are extending the dose measurement domain above commercial aviation altitudes into the stratosphere with a collaborative project organized by NASA's Armstrong Flight Research Center (AFRC) called Upper-atmospheric Space and Earth Weather eXperiment (USEWX). In USEWX we will be flying on the ER-2 high altitude aircraft a micro dosimeter for

  11. Absolute vertical uplift rates in western Washington inferred from historical leveling and tide gauge data

    NASA Astrophysics Data System (ADS)

    Alba, S.; Weldon, R.; Livelybrooks, D.; Schmidt, D. A.

    2009-12-01

    We present a new uplift rate map for western Washington based on reanalysis of water levels from the 12 major NOAA tide gauges, three new water level series that combine NOAA’s historical records and our temporarily deployed gauges (at Cape Disappointment, Olympia, and Point Grenville), and reinterpretation of repeated 1st and 2nd order NGS leveling lines. As previous studies have concluded, EW gradients in the vertical deformation field are consistent with strain accumulation across the Cascadia subduction zone interface; however, uplift rates are highly variable along the outer Washington coast, ranging from approximately +4 to -2 mm/yr, suggesting significant changes in the depth of locking along strike. Improved measure of uplift rates from water level changes are accomplished by aggressively editing available hourly data and applying a transfer function approach to better remove tides, ocean and atmospheric “noise”. The analysis allows uplift to be determined from shorter and less complete records and in some cases permits the identification of transients like slow earthquakes. As we found in a similar study in Oregon (Burgette et al, JGR, 2009), releveled lines need to be anchored to as many tide gauges as possible to remove systematic error, and repeated releveling (especially of tidal benchmarks) is required to identify the few stable benchmarks that link water levels at the tidal stations to each other through time and to the regional NGS leveling lines. A portion of the westernmost Washington coast, from an approximate latitude of 47.4 to 47.9 N, is subsiding, and tilts suggest that the peak in uplift rate is well onshore, indicating that the locked zone extends onshore, in contrast to most previous studies. To the north, the peak in uplift approximately passes through Neah Bay (the NW corner of the Olympic Peninsula, lat. 48.3 N), and to the south the peak is offshore from Grays Harbor (lat. 47 N) to the Columbia River (lat. 46.2 N). A north

  12. Absolute rate parameters for the reaction of ground state atomic oxygen with dimethyl sulfide and episulfide

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Timmons, R. B.; Stief, L. J.

    1976-01-01

    It is pointed out that the investigated reaction of oxygen with dimethyl sulfide may play an important role in photochemical smog formation and in the chemical evolution of dense interstellar clouds. Kinetic data were obtained with the aid of the flash photolysis-resonance fluorescence method. The photodecomposition of molecular oxygen provided the oxygen atoms for the experiments. The decay of atomic oxygen was studied on the basis of resonance fluorescence observations. Both reactions investigated were found to be fast processes. A negative temperature dependence of the rate constants for reactions with dimethyl sulfide was observed.

  13. Absolute rate constants of alkoxyl radical reactions in aqueous solution. [Tert-butyl hydroperoxide

    SciTech Connect

    Erben-Russ, M.; Michel, C.; Bors, W.; Saran, M.

    1987-04-23

    The pulse radiolysis technique was used to generate the alkoxyl radical derived from tert-butyl hydroperoxide (/sup t/BuOOH) in aqueous solution. The reactions of this radical with 2,2'-azinobis(3-ethyl-6-benzothiazolinesulfonate) (ABTS) and promethazine were monitored by kinetic spectroscopy. The unimolecular decay rate constant of the tert-butoxyl radical (/sup t/BuO) was determined to be 1.4 x 10/sup 6/ s/sup -1/. On the basis of this value, the rate constants for /sup t/BuO attack on quercetin, crocin, crocetin, ascorbate, isoascorbate, trolox c, glutathione, thymidine, adenosine, guanosine, and unsaturated fatty acids were determined. In addition, the reaction of /sup t/BuO with the polyunsaturated fatty acids (PUFA) was observed by directly monitoring the formation of the fatty acid pentadienyl radicals. Interestingly, the attack of /sup t/BuO on PUFA was found to be faster by about one order of magnitude as compared to the same reaction in a nonpolar solvent.

  14. Dosimetric Study of a Low-Dose-Rate Brachytherapy Source

    NASA Astrophysics Data System (ADS)

    Rodríguez-Villafuerte, M.; Arzamendi, S.; Díaz-Perches, R.

    Carcinoma of the cervix is the most common malignancy - in terms of both incidence and mortality - in Mexican women. Low dose rate (LDR) intracavitary brachytherapy is normally prescribed for the treatment of this disease to the vast majority of patients attending public hospitals in our country. However, most treatment planning systems being used in these hospitals still rely on Sievert integral dose calculations. Moreover, experimental verification of dose distributions are hardly ever done. In this work we present a dosimetric characterisation of the Amersham CDCS-J 137Cs source, an LDR brachytherapy source commonly used in Mexican hospitals. To this end a Monte Carlo simulation was developed, that includes a realistic description of the internal structure of the source embedded in a scattering medium. The Monte Carlo results were compared to experimental measurements of dose distributions. A lucite phantom with the same geometric characteristics as the one used in the simulation was built. Dose measurements were performed using thermoluminescent dosimeters together with commercial RadioChromic dye film. A comparison between our Monte Carlo simulation, the experimental data, and results reported in the literature is presented.

  15. Patient-specific dose calculation methods for high-dose-rate iridium-192 brachytherapy

    NASA Astrophysics Data System (ADS)

    Poon, Emily S.

    In high-dose-rate 192Ir brachytherapy, the radiation dose received by the patient is calculated according to the AAPM Task Group 43 (TG-43) formalism. This table-based dose superposition method uses dosimetry parameters derived with the radioactive 192Ir source centered in a water phantom. It neglects the dose perturbations caused by inhomogeneities, such as the patient anatomy, applicators, shielding, and radiographic contrast solution. In this work, we evaluated the dosimetric characteristics of a shielded rectal applicator with an endocavitary balloon injected with contrast solution. The dose distributions around this applicator were calculated by the GEANT4 Monte Carlo (MC) code and measured by ionization chamber and GAFCHROMIC EBT film. A patient-specific dose calculation study was then carried out for 40 rectal treatment plans. The PTRAN_CT MC code was used to calculate the dose based on computed tomography (CT) images. This study involved the development of BrachyGUI, an integrated treatment planning tool that can process DICOM-RT data and create PTRAN_CT input initialization files. BrachyGUI also comes with dose calculation and evaluation capabilities. We proposed a novel scatter correction method to account for the reduction in backscatter radiation near tissue-air interfaces. The first step requires calculating the doses contributed by primary and scattered photons separately, assuming a full scatter environment. The scatter dose in the patient is subsequently adjusted using a factor derived by MC calculations, which depends on the distances between the point of interest, the 192Ir source, and the body contour. The method was validated for multicatheter breast brachytherapy, in which the target and skin doses for 18 patient plans agreed with PTRAN_CT calculations better than 1%. Finally, we developed a CT-based analytical dose calculation method. It corrects for the photon attenuation and scatter based upon the radiological paths determined by ray tracing

  16. Temperature and pressure dependence of the absolute rate constant for the reactions of NH2 radicals with acetylene and ethylene

    NASA Technical Reports Server (NTRS)

    Bosco, S. R.; Nava, D. F.; Brobst, W. D.; Stief, L. J.

    1984-01-01

    The absolute rate constants for the reaction between the NH2 free radical and acetylene and ethylene is measured experimentally using a flash photolysis technique. The constant is considered to be a function of temperature and pressure. At each temperature level of the experiment, the observed pseudo-first-order rate constants were assumed to be independent of flash intensity. The results of the experiment indicate that the bimolecular rate constant for the NH2 + C2H2 reaction increases with pressure at 373 K and 459 K but not at lower temperatures. Results near the pressure limit conform to an Arrhenius expression of 1.11 (+ or -) 0.36 x 10 to the -13th over the temperature range from 241 to 459 K. For the reaction NH2 + C2H4, a smaller rate of increase in the bimolecular rate constant was observed over the temperature range 250-465 K. The implications of these results for current theoretical models of NH2 + C2H2 (or H4) reactions in the atmospheres of Jupiter and Saturn are discussed.

  17. Commissioning and Implementation of an EPID Based IMRT QA System "Dosimetry Check" for 3D Absolute Dose Measurements and Quantitative Comparisons to MapCheck

    NASA Astrophysics Data System (ADS)

    Patel, Jalpa A.

    The software package "Dosimetry Check" by MathResolutions, LLC, provides an absolute 3D volumetric dose measurement for IMRT QA using the existing Electronic Portal Imaging Device (EPID) mounted on most linear accelerators. This package provides a feedback loop using the patient's treatment planning CT data as the phantom for dose reconstruction. The aim of this work is to study the difference between point, planar and volumetric doses with MapCheck and Dosimetry Check via the use of the EPID and the diode array respectively. Evaluating tools such as point doses at isocenter, 1-D profiles, gamma volume histograms, and dose volume histograms are used for IMRT dose comparison in three types of cases: head and neck, prostate, and lung. Dosimetry Check can be a valuable tool for IMRT QA as it uses patient specific attenuation corrections and the superiority of the EPID as compared to the MapCheck diode array. This helps reduce the uncertainty in dose for less variability in delivery and a more realistic measured vs computed dose verification system as compared to MapCheck.

  18. NAC-1 cask dose rate calculations for LWR spent fuel

    SciTech Connect

    CARLSON, A.B.

    1999-02-24

    A Nuclear Assurance Corporation nuclear fuel transport cask, NAC-1, is being considered as a transport and storage option for spent nuclear fuel located in the B-Cell of the 324 Building. The loaded casks will be shipped to the 200 East Area Interim Storage Area for dry interim storage. Several calculations were performed to assess the photon and neutron dose rates. This report describes the analytical methods, models, and results of this investigation.

  19. SU-E-T-244: Motion Control Challenges in High Dose Rate Brachytherapy

    SciTech Connect

    Hyvarinen, M; Leventouri, T; Pella, S; Dumitru, N

    2014-06-01

    Purpose: High dose rate (HDR) brachytherapy dose distribution is highly localized and has a very sharp fall-off. Thus the one of the most important part of the treatment is the localization and immobilization of the applicator from the implantation to the setup verification to the treatment delivery. The smallest motions of the patient can induce a small rotation, tilt, or translational movement of the applicator that can convert into miss of a significant part of the tumor or to over irradiating a nearby critical organ.The purpose of this study is to revise most of the HDR types of treatments with their applicators and their localization challenges. Since every millimeter of misplacement counts the study will look into the necessity of increasing the immobilization for several types of applicators. Methods: The study took over 136 plans generated by the treatment planning system (TPS) looking into the applicator placement in regard to the organs at risk (OR) and simulated the three possible displacements at the hottest dose point on the critical organ for several accessories to evaluate the variation of the delivered dose at the point due to the displacement. Results: Many of the present immobilization devices produced for external radiotherapy can be used to improve the localization of HDR applicators during transportation of the patient and during treatment. Conclusion: This study data indicates that an improvement of the immobilization devices for HDR is absolutely necessary. Better applicator fixation devices are required too. Developing new immobilization devices for all the applicators is recommended.

  20. Charged particle radiation environment for the LST. [measuring charged particle dose rates

    NASA Technical Reports Server (NTRS)

    Watts, J. W., Jr.; Burrell, M. O.; Wright, J. J.

    1974-01-01

    Preliminary charged particle dose rates are presented for the LST orbit. The trapped proton component appears to dominate the total dose for the expected shielding available. Typical dose rates should range from 400 to 800 millirads/day.

  1. Solid-state track recorder dosimetry device to measure absolute reaction rates and neutron fluence as a function of time

    DOEpatents

    Gold, Raymond; Roberts, James H.

    1989-01-01

    A solid state track recording type dosimeter is disclosed to measure the time dependence of the absolute fission rates of nuclides or neutron fluence over a period of time. In a primary species an inner recording drum is rotatably contained within an exterior housing drum that defines a series of collimating slit apertures overlying windows defined in the stationary drum through which radiation can enter. Film type solid state track recorders are positioned circumferentially about the surface of the internal recording drum to record such radiation or its secondary products during relative rotation of the two elements. In another species both the recording element and the aperture element assume the configuration of adjacent disks. Based on slit size of apertures and relative rotational velocity of the inner drum, radiation parameters within a test area may be measured as a function of time and spectra deduced therefrom.

  2. Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations

    SciTech Connect

    Granero, Domingo; Perez-Calatayud, Jose; Vijande, Javier; Ballester, Facundo; Rivard, Mark J.

    2014-02-15

    Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm × 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR{sup 60}Co and {sup 192}Ir sources and a hypothetical {sup 169}Yb source were considered. The Geant4 Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm × 5 cm{sup 192}Ir superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about −3%. When the source was positioned at the skin surface, dose differences were smaller than −1% for {sup 60}Co and {sup 192}Ir, yet −3% for {sup 169}Yb. For the interstitial implant, dose differences at the skin surface were −7% for {sup 60}Co, −0.6% for {sup 192}Ir, and −2.5% for {sup 169}Yb. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either {sup 60}Co and {sup 192}Ir. For

  3. Sci—Fri PM: Dosimetry — 03: Delta4 diode absolute dose response for large and small target volume IMRT QA

    SciTech Connect

    Simard, D; Thakur, V

    2014-08-15

    The goal of this project was to quantify the over-response/under-response of the Delta4 diodes for Helical Tomotherapy plans on extreme target volume sizes. A custom Delta4 phantom quarter with a hole to insert an ionisation chamber (IC) close to the center of the phantom have been used to acquire simultaneous IC and diodes absolute dose measurements. Eight plans for different target volumes were created from 20cm to 1cm diameter. Diodes dose measurements in the target were compared with IC measurement, to quantify absolute dose accuracy. IC measurements show a good agreement with planned dose (±2%). Diode measurements demonstrate a good agreement with IC for regular target size of 5 and 10cm (0 to 1%). For larger targets, an over-response is observed for FW 25mm and 10mm (2 to 3%). for small target of 1cm diameter, a major under-response is observed for FW 25mm and 10mm (−8 and −36%). The over-response could to be due to the extra amount of scattered radiation and the opposite for under-response. Although this scatter hypothesis still has to be proven, early testing demonstrates an over-response of 40%/20% of the central diodes compare to IC when an open helical rotational beam is delivered 75mm/25mm away from the center of the phantom. These results are in agreement with the real patient Delta4 DQA results at our center.

  4. Ambient dose and dose rate measurements in the vicinity of Elekta Precise accelerators for radiation therapy.

    PubMed

    Zutz, H; Hupe, O

    2014-12-01

    In radiation therapy, commercially available medical linear accelerators (LINACs) are used. At high primary beam energies in the 10-MeV range, the leakage dose of the accelerator head and the backscatter from the room walls, the air and the patient become more important. Therefore, radiation protection measurements of photon dose rates in the treatment room and in the maze are performed to quantify the radiation field. Since the radiation of the LINACs is usually pulsed with short radiation pulse durations in the microsecond range, there are problems with electronic dose (rate) meters commonly used in radiation protection. In this paper measurements with ionisation chambers are presented and electronic dosemeters are used for testing at selected positions. The measured time-averaged dose rate ranges from a few microsieverts per hour in the maze to some millisieverts per hour in the vicinity of the accelerator head and up to some sieverts per hour in the blanked primary beam and several hundred sieverts per hour in the direct primary beam. PMID:24379437

  5. Interaction of 2-Gy Equivalent Dose and Margin Status in Perioperative High-Dose-Rate Brachytherapy

    SciTech Connect

    Martinez-Monge, Rafael; Cambeiro, Mauricio; Moreno, Marta; Gaztanaga, Miren; San Julian, Mikel; Alcalde, Juan; Jurado, Matias

    2011-03-15

    Purpose: To determine patient, tumor, and treatment factors predictive of local control (LC) in a series of patients treated with either perioperative high-dose-rate brachytherapy (PHDRB) alone (Group 1) or with PHDRB combined with external-beam radiotherapy (EBRT) (Group 2). Patient and Methods: Patients (n = 312) enrolled in several PHDRB prospective Phase I-II studies conducted at the Clinica Universidad de Navarra were analyzed. Treatment with PHDRB alone, mainly because of prior irradiation, was used in 126 patients to total doses of 32 Gy/8 b.i.d. or 40 Gy/10 b.i.d. treatments after R0 or R1 resections. Treatment with PHDRB plus EBRT was used in 186 patients to total doses of 16 Gy/4 b.i.d. or 24 Gy/6 b.i.d. treatments after R0 or R1 resections along with 45 Gy of EBRT with or without concomitant chemotherapy. Results: No dose-margin interaction was observed in Group 1 patients. In Group 2 patients there was a significant interaction between margin status and 2-Gy equivalent (Eq2Gy) dose (p = 0.002): (1) patients with negative margins had 9-year LC of 95.7% at Eq2Gy = 62.9Gy; (2) patients with close margins of >1 mm had 9-year LC of 92.4% at Eq2Gy = 72.2Gy, and (3) patients with positive/close <1-mm margins had 9-year LC of 68.0% at Eq2Gy = 72.2Gy. Conclusions: Two-gray equivalent doses {>=}70 Gy may compensate the effect of close margins {>=}1 mm but do not counterbalance the detrimental effect of unfavorable (positive/close <1 mm) resection margins. No dose-margin interaction is observed in patients treated at lower Eq2Gy doses {<=}50 Gy with PHDRB alone.

  6. Comparison of high-dose-rate and low-dose-rate brachytherapy in the treatment of endometrial carcinoma

    SciTech Connect

    Fayed, Alaa; Mutch, David G.; Rader, Janet S.; Gibb, Randall K. |; Powell, Matthew A. |; Wright, Jason D.; El Naqa, Issam; Zoberi, Imran |; Grigsby, Perry W. |||. E-mail: pgrigsby@wustl.edu

    2007-02-01

    Purpose: To compare the outcomes for endometrial carcinoma patients treated with either high-dose-rate (HDR) or low-dose-rate (LDR) brachytherapy. Methods and Materials: This study included 1,179 patients divided into LDR (1,004) and HDR groups (175). Patients with International Federation of Gynecology and Obstetrics (FIGO) surgical Stages I-III were included. All patients were treated with postoperative irradiation. In the LDR group, the postoperative dose applied to the vaginal cuff was 60-70 Gy surface doses to the vaginal mucosa. The HDR brachytherapy prescription was 6 fractions of 2 Gy each to a depth of 0.5 cm from the surface of the vaginal mucosa. Overall survival, disease-free survival, local control, and complications were endpoints. Results: For all stages combined, the overall survival, disease-free survival, and local control at 5 years in the LDR group were 70%, 69%, and 81%, respectively. For all stages combined, the overall survival, disease-free survival, and local control at 5 years in the HDR group were 68%, 62%, and 78%, respectively. There were no significant differences in early or late Grade III and IV complications in the HDR or LDR groups. Conclusion: Survival outcomes, pelvic tumor control, and Grade III and IV complications were not significantly different in the LDR brachytherapy group compared with the HDR group.

  7. Indirectly estimated absolute lung cancer mortality rates by smoking status and histological type based on a systematic review

    PubMed Central

    2013-01-01

    Background National smoking-specific lung cancer mortality rates are unavailable, and studies presenting estimates are limited, particularly by histology. This hinders interpretation. We attempted to rectify this by deriving estimates indirectly, combining data from national rates and epidemiological studies. Methods We estimated study-specific absolute mortality rates and variances by histology and smoking habit (never/ever/current/former) based on relative risk estimates derived from studies published in the 20th century, coupled with WHO mortality data for age 70–74 for the relevant country and period. Studies with populations grossly unrepresentative nationally were excluded. 70–74 was chosen based on analyses of large cohort studies presenting rates by smoking and age. Variations by sex, period and region were assessed by meta-analysis and meta-regression. Results 148 studies provided estimates (Europe 59, America 54, China 22, other Asia 13), 54 providing estimates by histology (squamous cell carcinoma, adenocarcinoma). For all smoking habits and lung cancer types, mortality rates were higher in males, the excess less evident for never smokers. Never smoker rates were clearly highest in China, and showed some increasing time trend, particularly for adenocarcinoma. Ever smoker rates were higher in parts of Europe and America than in China, with the time trend very clear, especially for adenocarcinoma. Variations by time trend and continent were clear for current smokers (rates being higher in Europe and America than Asia), but less clear for former smokers. Models involving continent and trend explained much variability, but non-linearity was sometimes seen (with rates lower in 1991–99 than 1981–90), and there was regional variation within continent (with rates in Europe often high in UK and low in Scandinavia, and higher in North than South America). Conclusions The indirect method may be questioned, because of variations in definition of smoking and

  8. The reaction H + C4H2 - Absolute rate constant measurement and implication for atmospheric modeling of Titan

    NASA Astrophysics Data System (ADS)

    Nava, D. F.; Mitchell, M. B.; Stief, L. J.

    1986-04-01

    The absolute rate constant for the reaction H + C4H2 has been measured over the temperature (T) interval 210-423 K, using the technique of flash photolysis-resonance fluorescence. At each of the five temperatures employed, the results were independent of variations in C4H2 concentration, total pressure of Ar or N2, and flash intensity (i.e., the initial H concentration). The rate constant, k, was found to be equal to 1.39 x 10 to the -10th exp (-1184/T) cu cm/s, with an error of one standard deviation. The Arrhenius parameters at the high pressure limit determined here for the H + C4H2 reaction are consistent with those for the corresponding reactions of H with C2H2 and C3H4. Implications of the kinetic carbon chemistry results, particularly those at low temperature, are considered for models of the atmospheric carbon chemistry of Titan. The rate of this reaction, relative to that of the analogous, but slower, reaction of H + C2H2, appears to make H + C4H2 a very feasible reaction pathway for effective conversion of H atoms to molecular hydrogen in the stratosphere of Titan.

  9. Pressure dependence of the absolute rate constant for the reaction OH + C2H2 from 228 to 413K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Nava, D. F.; Borokowski, R. P.; Payne, W. A.; Stief, L. J.

    1980-01-01

    The pressure dependence of absolute rate constants for the reaction of OH + C2H2 yields products has been examined at five temperatures ranging from 228 to 413 K. The experimental techniques which was used is flash photolysis-resonance fluoresence. OH was produced by water photolysis and hydroxyl resonance fluorescent photons were measured by multiscaling techniques. The results indicate that the low pressure bimolecular rate constant is 4 x 10 the the minus 13th power cu cm molecule (-1) s(-1) over the temperature range studied. A substantial increase in the bimolecular rate constant with an increase in pressure was observed at all temperatures except 228 K. This indicates the importance of initial adduct formation and subsequent stablization. The high pressure results are well represented by the Arrhenius expression (k sub bi) sub infinity = (6.83 + or - 1.19) x 10 to the minus 12th power exp(-646 + or - 47/T)cu cm molecule (-1) s(-1). The results are compared to previous investigated and are theoretically discussed. The implications of these results on modeling of terrestrial and planetary atmospheres and also in combustion chemistry are discussed.

  10. High dose rate intraluminal irradiation in recurrent endobronchial carcinoma

    SciTech Connect

    Seagren, S.L.; Harrell, J.H.; Horn, R.A.

    1985-12-01

    Palliative therapy for previously irradiated patients with symptomatic recurrent endobronchial malignancy is a difficult problem. We have had the opportunity to treat 20 such patients with high dose rate (50-100 rad/min) endobronchial brachytherapy. Eligible patients had received previous high dose thoracic irradiation (TDF greater than or equal to 90), a performance status of greater than or equal to 50, and symptoms caused by a bronchoscopically defined and implantable lesion. The radiation is produced by a small cobalt-60 source (0.7 Ci) remotely afterloaded by cable control. The source is fed into a 4 mm diameter catheter which is placed with bronchoscopic guidance; it may oscillate if necessary to cover the lesion. A dose of 1,000 rad at 1 cm from the source is delivered. We have performed 22 procedures in 20 patients, four following YAG laser debulking. Most had cough, some with hemoptysis. Eight had dyspnea secondary to obstruction and three had obstructive pneumonitis. In 12, symptoms recurred with a mean time to recurrence of 4.3 months (range 1-9 months). Eighteen patients were followed-up and reexamined via bronchoscope 1-2.5 months following the procedure; two were lost to follow-up. All had at least 50 percent clearance of tumor, and six had complete clearance; most regressions were documented on film or videotape. In six, the palliation was durable. The procedure has been well tolerated with no toxicity. We conclude that palliative endobronchial high dose rate brachytherapy is a useful palliative modality in patients with recurrent endobronchial symptomatic carcinoma.

  11. A rare gas optics-free absolute photon flux and energy analyzer to provide absolute photoionization rates of inflowing interstellar neutrals

    NASA Technical Reports Server (NTRS)

    Judge, Darrell L.

    1994-01-01

    A prototype spectrometer has been developed for space applications requiring long term absolute EUV photon flux measurements. The energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.

  12. Low-dose-rate, low-dose irradiation delays neurodegeneration in a model of retinitis pigmentosa.

    PubMed

    Otani, Atsushi; Kojima, Hiroshi; Guo, Congrong; Oishi, Akio; Yoshimura, Nagahisa

    2012-01-01

    The existence of radiation hormesis is controversial. Several stimulatory effects of low-dose (LD) radiation have been reported to date; however, the effects on neural tissue or neurodegeneration remain unknown. Here, we show that LD radiation has a neuroprotective effect in mouse models of retinitis pigmentosa, a hereditary, progressive neurodegenerative disease that leads to blindness. Various LD radiation doses were administered to the eyes in a retinal degeneration mouse model, and their pathological and physiological effects were analyzed. LD gamma radiation in a low-dose-rate (LDR) condition rescues photoreceptor cell apoptosis both morphologically and functionally. The greatest effect was observed in a condition using 650 mGy irradiation and a 26 mGy/minute dose rate. Multiple rounds of irradiation strengthened this neuroprotective effect. A characteristic up-regulation (563%) of antioxidative gene peroxiredoxin-2 (Prdx2) in the LDR-LD-irradiated retina was observed compared to the sham-treated control retina. Silencing the Prdx2 using small-interfering RNA administration reduced the LDR-LD rescue effect on the photoreceptors. Our results demonstrate for the first time that LDR-LD irradiation has a biological effect in neural cells of living animals. The results support that radiation exhibits hormesis, and this effect may be applied as a novel therapeutic concept for retinitis pigmentosa and for other progressive neurodegenerative diseases regardless of the mechanism of degeneration involved. PMID:22074737

  13. Radiation dose rates from commercial PWR and BWR spent fuel elements

    SciTech Connect

    Willingham, C.E.

    1981-10-01

    Data on measurements of gamma dose rates from commercial reactor spent fuel were collected, and documented calculated gamma dose rates were reviewed. As part of this study, the gamma dose rate from spent fuel was estimated, using computational techniques similar to previous investigations into this problem. Comparison of the measured and calculated dose rates provided a recommended dose rate in air versus distance curve for PWR spent fuel.

  14. Advanced Computational Approaches for Characterizing Stochastic Cellular Responses to Low Dose, Low Dose Rate Exposures

    SciTech Connect

    Scott, Bobby, R., Ph.D.

    2003-06-27

    applications of NEOTRANS2, indicate that nonlinear threshold-type, dose-response relationships for excess stochastic effects (problematic nonlethal mutations, neoplastic transformation) should be expected after exposure to low linear energy transfer (LET) gamma rays or gamma rays in combination with high-LET alpha radiation. Similar thresholds are expected for low-dose-rate low-LET beta irradiation. We attribute the thresholds to low-dose, low-LET radiation induced protection against spontaneous mutations and neoplastic transformations. The protection is presumed mainly to involve selective elimination of problematic cells via apoptosis. Low-dose, low-LET radiation is presumed to trigger wide-area cell signaling, which in turn leads to problematic bystander cells (e.g., mutants, neoplastically transformed cells) selectively undergoing apoptosis. Thus, this protective bystander effect leads to selective elimination of problematic cells (a tissue cleansing process in vivo). However, this protective bystander effects is a different process from low-dose stimulation of the immune system. Low-dose, low-LET radiation stimulation of the immune system may explain why thresholds for inducing excess cancer appear much larger (possibly more than 100-fold larger) than thresholds for inducing excess mutations and neoplastic transformations, when the dose rate is low. For ionizing radiation, the current risk assessment paradigm is such that the relative risk (RR) is always ¡Ý 1, no matter how small the dose. Our research results indicate that for low-dose or low-dose-rate, low-LET irradiation, RR < 1 may be more the rule than the exception. Directly tied to the current RR paradigm are the billion-dollar cleanup costs for radionuclide-contaminated DOE sites. Our research results suggest that continued use of the current RR paradigm for which RR ¡Ý 1 could cause more harm than benefit to society (e.g., by spreading unwarranted fear about phantom excess risks associated with low-dose low

  15. NOTE: A Monte Carlo study of dose rate distribution around the specially asymmetric CSM3-a 137Cs source

    NASA Astrophysics Data System (ADS)

    Pérez-Calatayud, J.; Lliso, F.; Ballester, F.; Serrano, M. A.; Lluch, J. L.; Limami, Y.; Puchades, V.; Casal, E.

    2001-07-01

    The CSM3 137Cs type stainless-steel encapsulated source is widely used in manually afterloaded low dose rate brachytherapy. A specially asymmetric source, CSM3-a, has been designed by CIS Bio International (France) substituting the eyelet side seed with an inactive material in the CSM3 source. This modification has been done in order to allow a uniform dose level over the upper vaginal surface when this `linear' source is inserted at the top of the dome vaginal applicators. In this study the Monte Carlo GEANT3 simulation code, incorporating the source geometry in detail, was used to investigate the dosimetric characteristics of this special CSM3-a 137Cs brachytherapy source. The absolute dose rate distribution in water around this source was calculated and is presented in the form of an along-away table. Comparison of Sievert integral type calculations with Monte Carlo results are discussed.

  16. Dosimetry Modeling for Focal Low-Dose-Rate Prostate Brachytherapy

    SciTech Connect

    Al-Qaisieh, Bashar; Mason, Josh; Bownes, Peter; Henry, Ann; Dickinson, Louise; Ahmed, Hashim U.; Emberton, Mark; Langley, Stephen

    2015-07-15

    Purpose: Focal brachytherapy targeted to an individual lesion(s) within the prostate may reduce side effects experienced with whole-gland brachytherapy. The outcomes of a consensus meeting on focal prostate brachytherapy were used to investigate optimal dosimetry of focal low-dose-rate (LDR) prostate brachytherapy targeted using multiparametric magnetic resonance imaging (mp-MRI) and transperineal template prostate mapping (TPM) biopsy, including the effects of random and systematic seed displacements and interseed attenuation (ISA). Methods and Materials: Nine patients were selected according to clinical characteristics and concordance of TPM and mp-MRI. Retrospectively, 3 treatment plans were analyzed for each case: whole-gland (WG), hemi-gland (hemi), and ultra-focal (UF) plans, with 145-Gy prescription dose and identical dose constraints for each plan. Plan robustness to seed displacement and ISA were assessed using Monte Carlo simulations. Results: WG plans used a mean 28 needles and 81 seeds, hemi plans used 17 needles and 56 seeds, and UF plans used 12 needles and 25 seeds. Mean D90 (minimum dose received by 90% of the target) and V100 (percentage of the target that receives 100% dose) values were 181.3 Gy and 99.8% for the prostate in WG plans, 195.7 Gy and 97.8% for the hemi-prostate in hemi plans, and 218.3 Gy and 99.8% for the focal target in UF plans. Mean urethra D10 was 205.9 Gy, 191.4 Gy, and 92.4 Gy in WG, hemi, and UF plans, respectively. Mean rectum D2 cm{sup 3} was 107.5 Gy, 77.0 Gy, and 42.7 Gy in WG, hemi, and UF plans, respectively. Focal plans were more sensitive to seed displacement errors: random shifts with a standard deviation of 4 mm reduced mean target D90 by 14.0%, 20.5%, and 32.0% for WG, hemi, and UF plans, respectively. ISA has a similar impact on dose-volume histogram parameters for all plan types. Conclusions: Treatment planning for focal LDR brachytherapy is feasible. Dose constraints are easily met with a notable

  17. The Dose Rate Conversion Factors for Nuclear Fallout

    SciTech Connect

    Spriggs, G D

    2009-02-13

    In a previous paper, the composite exposure rate conversion factor (ECF) for nuclear fallout was calculated using a simple theoretical photon-transport model. The theoretical model was used to fill in the gaps in the FGR-12 table generated by ORNL. The FGR-12 table contains the individual conversion factors for approximate 1000 radionuclides. However, in order to calculate the exposure rate during the first 30 minutes following a nuclear detonation, the conversion factors for approximately 2000 radionuclides are needed. From a human-effects standpoint, it is also necessary to have the dose rate conversion factors (DCFs) for all 2000 radionuclides. The DCFs are used to predict the whole-body dose rates that would occur if a human were standing in a radiation field of known exposure rate. As calculated by ORNL, the whole-body dose rate (rem/hr) is approximately 70% of the exposure rate (R/hr) at one meter above the surface. Hence, the individual DCFs could be estimated by multiplying the individual ECFs by 0.7. Although this is a handy rule-of-thumb, a more consistent (and perhaps, more accurate) method of estimating the individual DCFs for the missing radionuclides in the FGR-12 table is to use the linear relationship between DCF and total gamma energy released per decay. This relationship is shown in Figure 1. The DCFs for individual organs in the body can also be estimated from the estimated whole-body DCF. Using the DCFs given FGR-12, the ratio of the organ-specific DCFs to the whole-body DCF were plotted as a function of the whole-body DCF. From these plots, the asymptotic ratios were obtained (see Table 1). Using these asymptotic ratios, the organ-specific DCFs can be estimated using the estimated whole-body DCF for each of the missing radionuclides in the FGR-12 table. Although this procedure for estimating the organ-specific DCFs may over-estimate the value for some low gamma-energy emitters, having a finite value for the organ-specific DCFs in the table is

  18. Dose and dose rate effects of whole-body gamma-irradiation: I. Lymphocytes and lymphoid organs

    NASA Technical Reports Server (NTRS)

    Pecaut, M. J.; Nelson, G. A.; Gridley, D. S.

    2001-01-01

    The major goal of part I of this study was to compare varying doses and dose rates of whole-body gamma-radiation on lymphoid cells and organs. C57BL/6 mice (n = 75) were exposed to 0, 0.5, 1.5, and 3.0 Gy gamma-rays (60Co) at 1 cGy/min (low-dose rate, LDR) and 80 cGy/min (high-dose rate, HDR) and euthanized 4 days later. A significant dose-dependent loss of spleen mass was observed with both LDR and HDR irradiation; for the thymus this was true only with HDR. Decreasing leukocyte and lymphocyte numbers occurred with increasing dose in blood and spleen at both dose rates. The numbers (not percentages) of CD3+ T lymphocytes decreased in the blood in a dose-dependent manner at both HDR and LDR. Splenic T cell counts decreased with dose only in HDR groups; percentages increased with dose at both dose rates. Dose-dependent decreases occurred in CD4+ T helper and CD8+ T cytotoxic cell counts at HDR and LDR. In the blood the percentages of CD4+ cells increased with increasing dose at both dose rates, whereas in the spleen the counts decreased only in the HDR groups. The percentages of the CD8+ population remained stable in both blood and spleen. CD19+ B cell counts and percentages in both compartments declined markedly with increasing HDR and LDR radiation. NK1.1+ natural killer cell numbers and proportions remained relatively stable. Overall, these data indicate that the observed changes were highly dependent on the dose, but not dose rate, and that cells in the spleen are more affected by dose rate than those in blood. The results also suggest that the response of lymphocytes in different body compartments may be variable.

  19. SU-D-BRE-04: Evaluating the Dose Accuracy of a 2D Ion Chamber Array in High Dose Rate Pencil Beam Scanning Proton Beam

    SciTech Connect

    Perles, L; Mascia, A; Piskulich, F; Lepage, R; Zhang, Y; Giebeler, A; Dong, L

    2014-06-01

    Purpose: To evaluate the absolute dose accuracy of the PTW Octavius 729 XDR 2D ion chamber array at a high dose rate pencil beam scanning proton therapy facility. Methods: A set of 18 plans were created in our treatment planning system, each of which comprising a unique combination of field sizes (FS), length of spread out of Bragg peaks (SOBP) and depths. The parameters used were: FS of 5×5cm{sup 2}, 10×10cm{sup 2} and 15×15cm{sup 2}; flat SOBP of 5cm and 10cm; and isocenter depths of 10cm, 15cm and 20cm, which coincides with the center of the SOBP. The 2D array detector was positioned at the machine isocenter and the appropriate amount of solid water was used to match the planned depths of 10, 15 and 20 cm water equivalent depth. Subsequently, we measured the absolute dose at isocenter using a CC04 ion chamber in a 1D water tank. Both 2D array and CC04 were previously cross calibrated. We also collected the MU rates used by our proton machine from the log files. Results: The relative differences between the CC04 and the 2D array can be summarized into two groups, one with 5 cm SOBP and another with 10 cm SOBP. Plotting these datasets against FS shows that the 2D array response for high dose rate fields (FS of 5×5cm{sup 2} and 5cm SOBP) can be up to 2% lower. Similarly, plotting them against isocenter depths reveals the detector's response can be up to 2% lower for higher energy beams (about 200MeV nominal). The MU rate found in the machine log files for 5cm SOBP's were as high as twice the MU rate for the 10cm SOBP. Conclusion: The 2D array dose response showed a dose rate effect in scanning pencil beam delivery, which needs to be corrected to achieve a better dose accuracy.

  20. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    SciTech Connect

    Levy, R.P.

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute {gamma}-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain.

  1. Radiological mapping of Kelantan, Malaysia, using terrestrial radiation dose rate.

    PubMed

    Garba, Nuraddeen Nasiru; Ramli, Ahmad Termizi; Saleh, Muneer Aziz; Sanusi, Syazwan Mohd; Gabdo, Hamman Tukur

    2016-06-01

    Measurements of the environmental terrestrial gamma radiation dose rate (TGRD) in each district of Kelantan state, Malaysia, were carried out using a portable hand-held radiation survey meter and global positioning system. The measurements were done based on geology and soil types of the area. The mean TGRD was found to be 209 nGy h(-1). Few areas of relatively enhanced activity were observed in Pasir Mas, Tanah Merah and Jeli districts, which have a mean TGRD between 300 and 500 nGy h(-1). An isodose map of the area was produced using ArcGIS software version 9.3. PMID:26540360

  2. Optimized source selection for intracavitary low dose rate brachytherapy

    SciTech Connect

    Nurushev, T.; Kim, Jinkoo

    2005-05-01

    A procedure has been developed for automating optimal selection of sources from an available inventory for the low dose rate brachytherapy, as a replacement for the conventional trial-and-error approach. The method of optimized constrained ratios was applied for clinical source selection for intracavitary Cs-137 implants using Varian BRACHYVISION software as initial interface. However, this method can be easily extended to another system with isodose scaling and shaping capabilities. Our procedure provides optimal source selection results independent of the user experience and in a short amount of time. This method also generates statistics on frequently requested ideal source strengths aiding in ordering of clinically relevant sources.

  3. Radiation dose-rate meter using an energy-sensitive counter

    DOEpatents

    Kopp, Manfred K.

    1988-01-01

    A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate.

  4. Metabolically consistent breathing rates for use in dose assessments

    SciTech Connect

    Layton, D.W. )

    1993-01-01

    Assessments of doses resulting from exposures to airborne gases and particles are based almost exclusively on inhalation rates that are inconsistent with the quantities of oxygen needed to metabolize dietary intakes of fats, carbohydrates, and protein. This inconsistency leads to erroneous estimates of inhalation exposures and can distort the relative importance of inhalation and ingestion-based exposures to environmental contaminants that are present in foods, air, and water. As a means of dealing with this problem, a new methodology for estimating breathing rates is presented that is based on the oxygen uptake associated with energy expenditures and a ventilatory equivalent that relates minute volume to oxygen uptake. Three alternative energy-based approaches for estimating daily inhalation rates are examined: (1) average daily intakes of food energy from dietary surveys, adjusted for under reporting of foods; (2) average daily energy expenditure calculated from ratios of total daily expenditure to basal metabolism; and (3) daily energy expenditures determined from a time-activity survey. Under the first two approaches, inhalation rates for adult females in different age cohorts ranged from 9.7 to 11 m3 d-1, whereas for adult males the range was 13 to 17 m3 d-1. Inhalation rates for adults determined from activity patterns were higher (i.e., 13 to 18 m3 d-1), however, those rates were shown to be quite sensitive to the energy expenditures used to represent light and sedentary activities. In contrast to the above estimates, the ICRP 23 reference values for adult females and males are 21 and 23 m3 d-1 (Snyder et al. 1975). Finally, the paper provides a technique for determining the short-term breathing rates of individuals based on their basal metabolic rate and level of physical activity.

  5. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection.

    PubMed

    Rühm, Werner; Woloschak, Gayle E; Shore, Roy E; Azizova, Tamara V; Grosche, Bernd; Niwa, Ohtsura; Akiba, Suminori; Ono, Tetsuya; Suzuki, Keiji; Iwasaki, Toshiyasu; Ban, Nobuhiko; Kai, Michiaki; Clement, Christopher H; Bouffler, Simon; Toma, Hideki; Hamada, Nobuyuki

    2015-11-01

    The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection. PMID:26343037

  6. Modifications to SAS4 to provide cask dose rate profiles

    SciTech Connect

    Napolitano, D.G.; Sweezy, J.E.; Henkel, C.S.

    1997-12-01

    SAS4 of the SCALE code system has been used extensively by NAC International (NAC) to perform storage and transport cask shielding analyses. SAS4 utilizes a one-dimensional XSDRNPM adjoint calculation of the cask to generate biasing parameters for a three-dimensional MORSE-SGC Monte Carlo model of the cask geometry. This technique is very efficient in getting particles to tally at the cask exterior surfaces. However, SAS4/MORSE-SGC is limited to the use of point detectors (next-event estimators) and large surface detectors (surface-crossing estimators). Modifications to SAS4 were made to allow a more flexible use of the surface detectors. This modification allows multiple nonoverlapping surface detectors on each surface and allows each surface detector to be broken into subdetectors. The use of subdetectors enables the user to obtain detailed surface dose rate profiles. Tallies can now be performed on all surfaces of the cask and at user-specified distances from the cask surface. The subdetectors provide an alternative to point detectors and excessive computational time. The NAC version of SAS4 is called SAS4A. A comparison of CPU time and dose rates is made between SAS4 point detectors and SAS4A surface subdetection on the NLI {1/2} transport cask.

  7. Effects of dose rate on microsturctural evolution and swelling in austenitic steels under irradiation

    NASA Astrophysics Data System (ADS)

    Okita, T.; Kamada, T.; Sekimura, N.

    2000-12-01

    Effects of dose rate on microstructural evolution in a simple model austenitic ternary alloy are examined. Annealed specimens are irradiated with fast neutrons at several positions in the core and above core in FFTF/MOTA between 390°C and 435°C in a wide range of doses and dose rates. In Fe-15Cr-16Ni, swelling seems to increase linearly with dose without incubation dose. Cavities are observed even in the specimens irradiated to 0.07 dpa at 1.9×10-9 dpa/s. Both cavity nucleation and growth are enhanced by low dose rates. These are mainly caused by accelerated formation of dislocation loops at lower dose rates. Low dose rates enhance swelling by shortening incubation dose for the onset of steady-state swelling. In the specimens irradiated at higher dose rates to higher doses, high density of dislocation increases average cavity diameter, however decreases cavity density.

  8. High-dose-rate prostate brachytherapy inverse planning on dose-volume criteria by simulated annealing

    NASA Astrophysics Data System (ADS)

    Deist, T. M.; Gorissen, B. L.

    2016-02-01

    High-dose-rate brachytherapy is a tumor treatment method where a highly radioactive source is brought in close proximity to the tumor. In this paper we develop a simulated annealing algorithm to optimize the dwell times at preselected dwell positions to maximize tumor coverage under dose-volume constraints on the organs at risk. Compared to existing algorithms, our algorithm has advantages in terms of speed and objective value and does not require an expensive general purpose solver. Its success mainly depends on exploiting the efficiency of matrix multiplication and a careful selection of the neighboring states. In this paper we outline its details and make an in-depth comparison with existing methods using real patient data.

  9. High-dose-rate prostate brachytherapy inverse planning on dose-volume criteria by simulated annealing.

    PubMed

    Deist, T M; Gorissen, B L

    2016-02-01

    High-dose-rate brachytherapy is a tumor treatment method where a highly radioactive source is brought in close proximity to the tumor. In this paper we develop a simulated annealing algorithm to optimize the dwell times at preselected dwell positions to maximize tumor coverage under dose-volume constraints on the organs at risk. Compared to existing algorithms, our algorithm has advantages in terms of speed and objective value and does not require an expensive general purpose solver. Its success mainly depends on exploiting the efficiency of matrix multiplication and a careful selection of the neighboring states. In this paper we outline its details and make an in-depth comparison with existing methods using real patient data. PMID:26760757

  10. Guidance on Dose Rate Measurements for Use in Dose-to-Curie Conversions

    SciTech Connect

    Howell, R.S.

    2000-09-05

    The dose-to-curie (DTC) methodology used at SRS was developed in early 1994 by Health Physics Technology (HPT) for inclusion in the Site Waste Information Tracking System (WITS). DTC is used to estimate the nuclide activity in a waste container based on the measured dose rate from the container. The DTC method is a simple and easy to apply method that can provide a reasonable estimate of the container activity by nuclide when properly applied. In order to make the method practical, numerous assumptions had to be made and limitations placed on its use. Many of these assumptions and limitations can only be procedurally controlled and must be well understood by these individuals in order to assure proper application numerous the method. These limitations are addressed in this report.

  11. Reporting small bowel dose in cervix cancer high-dose-rate brachytherapy.

    PubMed

    Liao, Yixiang; Dandekar, Virag; Chu, James C H; Turian, Julius; Bernard, Damian; Kiel, Krystyna

    2016-01-01

    Small bowel (SB) is an organ at risk (OAR) that may potentially develop toxicity after radiotherapy for cervix cancer. However, its dose from brachytherapy (BT) is not systematically reported as in other OARs, even with image-guided brachytherapy (IGBT). This study aims to introduce consideration of quantified objectives for SB in BT plan optimization and to evaluate the feasibility of sparing SB while maintaining adequate target coverage. In all, 13 patients were included in this retrospective study. All patients were treated with external beam radiotherapy (EBRT) 45Gy in 25 fractions followed by high dose rate (HDR)-BT boost of 28Gy in 4 fractions using tandem/ring applicator. Magnetic resonance imaging (MRI) and computed tomographic (CT) images were obtained to define the gross tumor volume (GTV), high-risk clinical target volume (HR-CTV) and OARs (rectum, bladder, sigmoid colon, and SB). Treatment plans were generated for each patient using GEC-ESTRO recommendations based on the first CT/MRI. Treatment plans were revised to reduce SB dose when the [Formula: see text] dose to SB was > 5Gy, while maintaining other OAR constraints. For the 7 patients with 2 sets of CT and MRI studies, the interfraction variation of the most exposed SB was analyzed. Plan revisions were done in 6 of 13 cases owing to high [Formula: see text] of SB. An average reduction of 19% in [Formula: see text] was achieved. Meeting SB and other OAR constraints resulted in less than optimal target coverage in 2 patients (D90 of HR-CTV < 77Gyαβ10). The highest interfraction variation was observed for SB at 16 ± 59%, as opposed to 28 ± 27% for rectum and 21 ± 16% for bladder. Prospective reporting of SB dose could provide data required to establish a potential correlation with radiation-induced late complication for SB. PMID:26235549

  12. Continuous, online measurement of the absolute plasma refill rate during hemodialysis using feedback regulated ultrafiltration: preliminary results.

    PubMed

    Brummelhuis, Walter J; van Schelven, Leonard J; Boer, Walther H

    2008-01-01

    Methods to continuously measure absolute refill during dialysis are not available. It would be useful to have such a method because it would allow investigating the mechanism of refill the effect of interventions. We designed a feedback algorithm that adjusts ultrafiltration rate (QUF) according to hemoglobin (Hb) concentration changes in such a way that relative blood volume (BV) remains constant within a narrow target range. In this situation, the generated QUF quantitatively reflects refill. Refill patterns were studied in five hypotension prone patients. In addition, on separate occasions, we studied the effect of antiembolism stockings (AES) and infusion of hydroxy-ethylated starch (HAES) on refill in these patients. Refill during the first hour fell significantly from 21 +/- 3 ml/min to 9 +/- 2 ml/min (p < 0.05). In the second hour, refill decreased further and became zero in four out of five patients. Neither AES nor HAES measurably affected refill. The marked and rapid fall in refill in the early stages of dialysis suggests untimely depletion of the interstitial compartment and underestimation of dry weight. We propose that continuous, online measurement of refill patterns may be of value for accurate estimation of dry weight in dialysis patients. PMID:18204322

  13. Monte Carlo Study of Radiation Dose Enhancement by Gadolinium in Megavoltage and High Dose Rate Radiotherapy

    PubMed Central

    Zhang, Daniel G.; Feygelman, Vladimir; Moros, Eduardo G.; Latifi, Kujtim; Zhang, Geoffrey G.

    2014-01-01

    MRI is often used in tumor localization for radiotherapy treatment planning, with gadolinium (Gd)-containing materials often introduced as a contrast agent. Motexafin gadolinium is a novel radiosensitizer currently being studied in clinical trials. The nanoparticle technologies can target tumors with high concentration of high-Z materials. This Monte Carlo study is the first detailed quantitative investigation of high-Z material Gd-induced dose enhancement in megavoltage external beam photon therapy. BEAMnrc, a radiotherapy Monte Carlo simulation package, was used to calculate dose enhancement as a function of Gd concentration. Published phase space files for the TrueBeam flattening filter free (FFF) and conventional flattened 6MV photon beams were used. High dose rate (HDR) brachytherapy with Ir-192 source was also investigated as a reference. The energy spectra difference caused a dose enhancement difference between the two beams. Since the Ir-192 photons have lower energy yet, the photoelectric effect in the presence of Gd leads to even higher dose enhancement in HDR. At depth of 1.8 cm, the percent mean dose enhancement for the FFF beam was 0.38±0.12, 1.39±0.21, 2.51±0.34, 3.59±0.26, and 4.59±0.34 for Gd concentrations of 1, 5, 10, 15, and 20 mg/mL, respectively. The corresponding values for the flattened beam were 0.09±0.14, 0.50±0.28, 1.19±0.29, 1.68±0.39, and 2.34±0.24. For Ir-192 with direct contact, the enhanced were 0.50±0.14, 2.79±0.17, 5.49±0.12, 8.19±0.14, and 10.80±0.13. Gd-containing materials used in MRI as contrast agents can also potentially serve as radiosensitizers in radiotherapy. This study demonstrates that Gd can be used to enhance radiation dose in target volumes not only in HDR brachytherapy, but also in 6 MV FFF external beam radiotherapy, but higher than the currently used clinical concentration (>5 mg/mL) would be needed. PMID:25275550

  14. Variable dose rate single-arc IMAT delivered with a constant dose rate and variable angular spacing

    NASA Astrophysics Data System (ADS)

    Tang, Grace; Earl, Matthew A.; Yu, Cedric X.

    2009-11-01

    Single-arc intensity-modulated arc therapy (IMAT) has gained worldwide interest in both research and clinical implementation due to its superior plan quality and delivery efficiency. Single-arc IMAT techniques such as the Varian RapidArc™ deliver conformal dose distributions to the target in one single gantry rotation, resulting in a delivery time in the order of 2 min. The segments in these techniques are evenly distributed within an arc and are allowed to have different monitor unit (MU) weightings. Therefore, a variable dose-rate (VDR) is required for delivery. Because the VDR requirement complicates the control hardware and software of the linear accelerators (linacs) and prevents most existing linacs from delivering IMAT, we propose an alternative planning approach for IMAT using constant dose-rate (CDR) delivery with variable angular spacing. We prove the equivalence by converting VDR-optimized RapidArc plans to CDR plans, where the evenly spaced beams in the VDR plan are redistributed to uneven spacing such that the segments with larger MU weighting occupy a greater angular interval. To minimize perturbation in the optimized dose distribution, the angular deviation of the segments was restricted to <=± 5°. This restriction requires the treatment arc to be broken into multiple sectors such that the local MU fluctuation within each sector is reduced, thereby lowering the angular deviation of the segments during redistribution. The converted CDR plans were delivered with a single gantry sweep as in the VDR plans but each sector was delivered with a different value of CDR. For four patient cases, including two head-and-neck, one brain and one prostate, all CDR plans developed with the variable spacing scheme produced similar dose distributions to the original VDR plans. For plans with complex angular MU distributions, the number of sectors increased up to four in the CDR plans in order to maintain the original plan quality. Since each sector was delivered

  15. The susceptibility of TaOx-based memristors to high dose rate ionizing radiation and total ionizing dose

    DOE PAGESBeta

    McLain, Michael Lee; Sheridan, Timothy J.; Hjalmarson, Harold Paul; Mickel, Patrick R.; Hanson, Donald J.; McDonald, Joseph K.; Hughart, David Russell; Marinella, Matthew J.

    2014-11-11

    This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaOx) memristors. Transient data were obtained during the pulsed exposures for dose rates ranging from approximately 5.0 ×107 rad(Si)/s to 4.7 ×108 rad(Si)/s and for pulse widths ranging from 50 ns to 50 μs. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of ~3.0 ×108 rad(Si)/s. This is the first dose rate study on any type of memristive memory technology. Inmore » addition to assessing the tolerance of TaOx memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. As a result, numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages.« less

  16. High-dose-rate brachytherapy in uterine cervical carcinoma

    SciTech Connect

    Patel, Firuza D. . E-mail: patelfd@glide.net.in; Rai, Bhavana; Mallick, Indranil; Sharma, Suresh C.

    2005-05-01

    Purpose: High-dose-rate (HDR) brachytherapy is in wide use for curative treatment of cervical cancer. The American Brachytherapy Society has recommended that the individual fraction size be <7.5 Gy and the range of fractions should be four to eight; however, many fractionation schedules, varying from institution to institution, are in use. We use 9 Gy/fraction of HDR in two to five fractions in patients with carcinoma of the uterine cervix. We found that our results and toxicity were comparable to those reported in the literature and hereby present our experience with this fractionation schedule. Methods and Materials: A total of 121 patients with Stage I-III carcinoma of the uterine cervix were treated with HDR brachytherapy between 1996 and 2000. The total number of patients analyzed was 113. The median patient age was 53 years, and the histopathologic type was squamous cell carcinoma in 93% of patients. The patients were subdivided into Groups 1 and 2. In Group 1, 18 patients with Stage Ib-IIb disease, tumor size <4 cm, and preserved cervical anatomy underwent simultaneous external beam radiotherapy to the pelvis to a dose of 40 Gy in 20 fractions within 4 weeks with central shielding and HDR brachytherapy of 9 Gy/fraction, given weekly, and interdigitated with external beam radiotherapy. The 95 patients in Group 2, who had Stage IIb-IIIb disease underwent external beam radiotherapy to the pelvis to a dose of 46 Gy in 23 fractions within 4.5 weeks followed by two sessions of HDR intracavitary brachytherapy of 9 Gy each given 1 week apart. The follow-up range was 3-7 years (median, 36.4 months). Late toxicity was graded according to the Radiation Therapy Oncology Group criteria. Results: The 5-year actuarial local control and disease-free survival rate was 74.5% and 62.0%, respectively. The actuarial local control rate at 5 years was 100% for Stage I, 80% for Stage II, and 67.2% for Stage III patients. The 5-year actuarial disease-free survival rate was 88.8% for

  17. Influence of dose and dose rate on the physical properties of commercial papers commonly used in libraries and archives

    NASA Astrophysics Data System (ADS)

    Area, María C.; Calvo, Ana M.; Felissia, Fernando E.; Docters, Andrea; Miranda, María V.

    2014-03-01

    The aim of this study was to evaluate the effects of dose and dose rate of gamma irradiation on the physical properties of commercial papers commonly used in libraries and archives to optimize the irradiation conditions. Three different brands of paper of different fiber compositions were treated, using a 32 factorial design with four replicates of the center point, with doses ranging from 2 to 11 kGy and dose rates between 1 and 11 kGy/h. Chemical, mechanical and optical properties were determined on the samples. With some differences between the different kinds of papers, tensile strength, elongation, TEA, and air resistance were in general, unaffected by the treatment. The minimum loss of tear resistance and brightness were obtained with doses in the range 4-6 kGy at any dose rate for all three kinds of paper. These conditions are ideal to remove insects and sufficient to eliminate fungus.

  18. New model for assessing dose, dose rate, and temperature sensitivity of radiation-induced absorption in glasses

    SciTech Connect

    Gilard, Olivier; Quadri, Gianandrea; Caussanel, Matthieu; Duval, Herve; Reynaud, Francois

    2010-11-15

    A new theoretical approach is proposed to explain the dose, dose rate and temperature sensitivity of the radiation-induced absorption (RIA) in glasses. In this paper, a {beta}{sup th}-order dispersive kinetic model is used to simulate the growth of the density of color centers in irradiated glasses. This model yields an explanation for the power-law dependence on dose and dose rate usually observed for the RIA in optical fibers. It also leads to an Arrhenius-like relationship between the RIA and the glass temperature during irradiation. With a very limited number of adjustable parameters, the model succeeds in explaining, with a good agreement, the RIA growth of two different optical fiber references over wide ranges of dose, dose rate and temperature.

  19. Dose rate effect of pulsed electron beam on micronucleus frequency in human peripheral blood lymphocytes.

    PubMed

    Acharya, Santhosh; Sanjeev, Ganesh; Bhat, Nagesh N; Narayana, Yerol

    2010-03-01

    The micronucleus assay in human peripheral blood lymphocytes is a sensitive indicator of radiation damage and could serve as a biological dosimeter in evaluating suspected overexposure to ionising radiation. Micronucleus (MN) frequency as a measure of chromosomal damage has also extensively been employed to quantify the effects of radiation dose rate on biological systems. Here we studied the effects of 8 MeV pulsed electron beam emitted by Microtron electron accelerator on MN induction at dose rates between 35 Gy min-1 and 352.5 Gy min-1. These dose rates were achieved by varying the pulse repetition rate (PRR). Fricke dosimeter was employed to measure the absorbed dose at different PRR and to ensure uniform dose distribution of the electron beam. To study the dose rate effect, blood samples were irradiated to an absorbed dose of (4.7+/-0.2) Gy at different rates and cytogenetic damage was quantified using the micronucleus assay. The obtained MN frequency showed no dose rate dependence within the studied dose rate range. Our earlier dose effect study using 8 MeV electrons revealed that the response of MN was linear-quadratic. Therefore, in the event of an accident, dose estimation can be made using linear-quadratic dose response parameters, without adding dose rate as a correction factor. PMID:20338871

  20. Morphological transformation of Syrian hamster embryo cells by low doses of fission neutrons delivered at different dose rates

    SciTech Connect

    Jones, C.A.; Sedita, B.A. ); Hill, C.K. . Cancer Research Lab.); Elkind, M.M. . Dept. of Radiology and Radiation Biology)

    1991-01-01

    Both induction of cell transformation and killing were examined with Syrian hamster embryo (SHE) fibroblasts exposed to low doses of JANUS fission-spectrum neutrons delivered at high (10.3 cGy/min) and low (0.43 and 0.086 cGy/min) dose rates. Second-passage cells were irradiated in mass cultures, then cloned over feeder cells. Morphologically transformed colonies were identified 8-10 days later. Cell killing was independent of dose rate, but the yield of transformation was greater after low-dose-rate irradiations. Decreasing the neutron dose-rate from 10.3 to 0.086 cGy/min resulted in a two- to threefold increase in the yield of transformation for neutron exposures below 50 cGy, and enhancement which was consistently observed in repetitive experiments in different radiosensitive SHE cell preparations. 43 refs., 5 figs., 1 tab.

  1. Modeling Low-Dose-Rate Effects in Irradiated Bipolar-Base Oxides

    SciTech Connect

    Cirba, C.R.; Fleetwood, D.M.; Graves, R.J.; Michez, A.; Milanowski, R.J.; Saigne, F.; Schrimpf, R.D.; Witczak, S.C.

    1998-10-26

    A physical model is developed to quantify the contribution of oxide-trapped charge to enhanced low-dose-rate gain degradation in bipolar junction transistors. Multiple-trapping simulations show that space charge limited transport is partially responsible for low-dose-rate enhancement. At low dose rates, more holes are trapped near the silicon-oxide interface than at high dose rates, resulting in larger midgap voltage shifts at lower dose rates. The additional trapped charge near the interface may cause an exponential increase in excess base current, and a resultant decrease in current gain for some NPN bipolar technologies.

  2. A patient-specific quality assurance study on absolute dose verification using ionization chambers of different volumes in RapidArc treatments

    SciTech Connect

    Syam Kumar, S.A.; Sukumar, Prabakar; Sriram, Padmanaban; Rajasekaran, Dhanabalan; Aketi, Srinu; Vivekanandan, Nagarajan

    2012-01-01

    The recalculation of 1 fraction from a patient treatment plan on a phantom and subsequent measurements have become the norms for measurement-based verification, which combines the quality assurance recommendations that deal with the treatment planning system and the beam delivery system. This type of evaluation has prompted attention to measurement equipment and techniques. Ionization chambers are considered the gold standard because of their precision, availability, and relative ease of use. This study evaluates and compares 5 different ionization chambers: phantom combinations for verification in routine patient-specific quality assurance of RapidArc treatments. Fifteen different RapidArc plans conforming to the clinical standards were selected for the study. Verification plans were then created for each treatment plan with different chamber-phantom combinations scanned by computed tomography. This includes Medtec intensity modulated radiation therapy (IMRT) phantom with micro-ionization chamber (0.007 cm{sup 3}) and pinpoint chamber (0.015 cm{sup 3}), PTW-Octavius phantom with semiflex chamber (0.125 cm{sup 3}) and 2D array (0.125 cm{sup 3}), and indigenously made Circular wax phantom with 0.6 cm{sup 3} chamber. The measured isocenter absolute dose was compared with the treatment planning system (TPS) plan. The micro-ionization chamber shows more deviations when compared with semiflex and 0.6 cm{sup 3} with a maximum variation of -4.76%, -1.49%, and 2.23% for micro-ionization, semiflex, and farmer chambers, respectively. The positive variations indicate that the chamber with larger volume overestimates. Farmer chamber shows higher deviation when compared with 0.125 cm{sup 3}. In general the deviation was found to be <1% with the semiflex and farmer chambers. A maximum variation of 2% was observed for the 0.007 cm{sup 3} ionization chamber, except in a few cases. Pinpoint chamber underestimates the calculated isocenter dose by a maximum of 4.8%. Absolute dose

  3. Dose and dose rate effects of whole-body proton-irradiation on lymphocyte blastogenesis and hematological variables: part II

    NASA Technical Reports Server (NTRS)

    Pecaut, Michael J.; Gridley, Daila S.; Smith, Anna L.; Nelson, Gregory A.

    2002-01-01

    The goal of part II of this study was to evaluate functional characteristics of leukocytes and circulating blood cell parameters after whole-body proton irradiation at varying doses and at low- and high-dose-rates (LDR and HDR, respectively). C57BL/6 mice (n=51) were irradiated and euthanized at 4 days post-exposure for assay. Significant radiation dose- (but not dose-rate-) dependent decreases were observed in splenocyte responses to T and B cell mitogens when compared to sham-irradiated controls (P<0.001). Spontaneous blastogenesis, also significantly dose-dependent, was increased in both blood and spleen (P<0.001). Red blood cell counts, hemoglobin concentration, and hematocrit were decreased in a dose-dependent manner (P<0.05), whereas thrombocyte numbers were only slightly affected. Comparison of proton- and gamma-irradiated groups (both receiving 3 Gy at HDR) showed a higher level of spontaneous blastogenesis in blood leukocytes and a lower splenocyte response to concanavalin A following proton irradiation (P<0.05). There were no dose rate effects. Collectively, the data demonstrate that the measurements in blood and spleen were largely dependent upon the total dose of proton radiation and that an 80-fold difference in the dose rate was not a significant factor. A difference, however, was found between protons and gamma-rays in the degree of change induced in some of the measurements.

  4. Inverse modelling of radionuclide release rates using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Hamburger, Thomas; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2014-05-01

    Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. The hazardous consequences reach out on a national and continental scale. Environmental measurements and methods to model the transport and dispersion of the released radionuclides serve as a platform to assess the regional impact of nuclear accidents - both, for research purposes and, more important, to determine the immediate threat to the population. However, the assessments of the regional radionuclide activity concentrations and the individual exposure to radiation dose underlie several uncertainties. For example, the accurate model representation of wet and dry deposition. One of the most significant uncertainty, however, results from the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source terms of severe nuclear accidents may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on rather rough estimates of released key radionuclides given by the operators. Precise measurements are mostly missing due to practical limitations during the accident. Inverse modelling can be used to realise a feasible estimation of the source term (Davoine and Bocquet, 2007). Existing point measurements of radionuclide activity concentrations are therefore combined with atmospheric transport models. The release rates of radionuclides at the accident site are then obtained by improving the agreement between the modelled and observed concentrations (Stohl et al., 2012). The accuracy of the method and hence of the resulting source term depends amongst others on the availability, reliability and the resolution in time and space of the observations. Radionuclide activity concentrations are observed on a

  5. Retrospective dosimetric comparison of low-dose-rate and pulsed-dose-rate intracavitary brachytherapy using a tandem and mini-ovoids.

    PubMed

    Mourtada, Firas; Gifford, Kent A; Berner, Paula A; Horton, John L; Price, Michael J; Lawyer, Ann A; Eifel, Patricia J

    2007-01-01

    The purpose of this study was to compare the dose distribution of Iridium-192 ((192)Ir) pulsed-dose-rate (PDR) brachytherapy to that of Cesium-137 ((137)Cs) low-dose-rate (LDR) brachytherapy around mini-ovoids and an intrauterine tandem. Ten patient treatment plans were selected from our clinical database, all of which used mini-ovoids and an intrauterine tandem. A commercial treatment planning system using AAPM TG43 formalism was used to calculate the dose in water for both the (137)Cs and (192)Ir sources. For equivalent system loadings, we compared the dose distributions in relevant clinical planes, points A and B, and to the ICRU bladder and rectal reference points. The mean PDR doses to points A and B were 3% +/- 1% and 6% +/- 1% higher than the LDR doses, respectively. For the rectum point, the PDR dose was 4% +/- 3% lower than the LDR dose, mainly because of the (192)Ir PDR source anisotropy. For the bladder point, the PDR dose was 1% +/- 4% higher than the LDR dose. We conclude that the PDR and LDR dose distributions are equivalent for intracavitary brachytherapy with a tandem and mini-ovoids. These findings will aid in the transfer from the current practice of LDR intracavitary brachytherapy to PDR for the treatment of gynecologic cancers. PMID:17707197

  6. Retrospective Dosimetric Comparison of Low-Dose-Rate and Pulsed-Dose-Rate Intracavitary Brachytherapy Using a Tandem and Mini-Ovoids

    SciTech Connect

    Mourtada, Firas Gifford, Kent A.; Berner, Paula A.; Horton, John L.; Price, Michael J.; Lawyer, Ann A.; Eifel, Patricia J.

    2007-10-01

    The purpose of this study was to compare the dose distribution of Iridium-192 ({sup 192}Ir) pulsed-dose-rate (PDR) brachytherapy to that of Cesium-137 ({sup 137}Cs) low-dose-rate (LDR) brachytherapy around mini-ovoids and an intrauterine tandem. Ten patient treatment plans were selected from our clinical database, all of which used mini-ovoids and an intrauterine tandem. A commercial treatment planning system using AAPM TG43 formalism was used to calculate the dose in water for both the {sup 137}Cs and {sup 192}Ir sources. For equivalent system loadings, we compared the dose distributions in relevant clinical planes, points A and B, and to the ICRU bladder and rectal reference points. The mean PDR doses to points A and B were 3% {+-} 1% and 6% {+-} 1% higher than the LDR doses, respectively. For the rectum point, the PDR dose was 4% {+-} 3% lower than the LDR dose, mainly because of the {sup 192}Ir PDR source anisotropy. For the bladder point, the PDR dose was 1% {+-} 4% higher than the LDR dose. We conclude that the PDR and LDR dose distributions are equivalent for intracavitary brachytherapy with a tandem and mini-ovoids. These findings will aid in the transfer from the current practice of LDR intracavitary brachytherapy to PDR for the treatment of gynecologic cancers.

  7. Measurement of patient entrance surface dose rates for fluoroscopic x-ray units.

    PubMed

    Martin, C J

    1995-05-01

    Measurements of patient entrance surface dose rate provide valuable data for interpreting results from dose-area product studies on fluoroscopic x-ray equipment. Methods for measurement of entrance surface dose rate with backscatter and incident dose rate without backscatter have been investigated. Entrance surface dose rate is measured with an ionization chamber in contact with a tissue-equivalent phantom. Backscattered radiation contributes 27-45% to the measurement and is affected by field size and chamber position. Incident dose rate measured using a copper phantom provides an alternative approach. Consistent relationships between thicknesses of Perspex and copper giving similar incident dose rates under automatic gain control have been established for different tube potentials with and without a grid. This allows measurements of incident dose rate made using copper to be linked to corresponding thicknesses of tissue-equivalent material. Since only a few millimetres of copper are required, contributions from backscatter can be minimized and transport of phantoms is simplified. Incident dose can be related to dose-area product and entrance surface dose derived using backscatter factors. Such measurements play a valuable role in interpreting patient dose data and recommending options to reduce patient dose. PMID:7652010

  8. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines.

    PubMed

    Gridley, D S; Pecaut, M J; Miller, G M; Moyers, M F; Nelson, G A

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p < 0.05). Basal proliferation of leukocytes in the blood and spleen increased significantly with increasing dose (p < 0.05). Significant dose rate effects were observed only in thrombocyte counts. Plasma levels of transforming growth factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements. PMID:11491015

  9. Dose and dose rate effects of whole-body gamma-irradiation: II. Hematological variables and cytokines

    NASA Technical Reports Server (NTRS)

    Gridley, D. S.; Pecaut, M. J.; Miller, G. M.; Moyers, M. F.; Nelson, G. A.

    2001-01-01

    The goal of part II of this study was to evaluate the effects of gamma-radiation on circulating blood cells, functional characteristics of splenocytes, and cytokine expression after whole-body irradiation at varying total doses and at low- and high-dose-rates (LDR, HDR). Young adult C57BL/6 mice (n = 75) were irradiated with either 1 cGy/min or 80 cGy/min photons from a 60Co source to cumulative doses of 0.5, 1.5, and 3.0 Gy. The animals were euthanized at 4 days post-exposure for in vitro assays. Significant dose- (but not dose-rate-) dependent decreases were observed in erythrocyte and blood leukocyte counts, hemoglobin, hematocrit, lipopolysaccharide (LPS)-induced 3H-thymidine incorporation, and interleukin-2 (IL-2) secretion by activated spleen cells when compared to sham-irradiated controls (p < 0.05). Basal proliferation of leukocytes in the blood and spleen increased significantly with increasing dose (p < 0.05). Significant dose rate effects were observed only in thrombocyte counts. Plasma levels of transforming growth factor-beta 1 (TGF-beta 1) and splenocyte secretion of tumor necrosis factor-alpha (TNF-alpha) were not affected by either the dose or dose rate of radiation. The data demonstrate that the responses of blood and spleen were largely dependent upon the total dose of radiation employed and that an 80-fold difference in the dose rate was not a significant factor in the great majority of measurements.

  10. High versus Low-Dose Rate Brachytherapy for Cervical Cancer

    PubMed Central

    Patankar, Sonali S.; Tergas, Ana I.; Deutsch, Israel; Burke, William M.; Hou, June Y.; Ananth, Cande V.; Huang, Yongmei; Neugut, Alfred I.; Hershman, Dawn L.; Wright, Jason D.

    2015-01-01

    Objectives Brachytherapy plays an important role in the treatment of cervical cancer. While small trials have shown comparable survival outcomes between high (HDR) and low-dose rate (LDR) brachytherapy, little data is available in the US. We examined the utilization of HDR brachytherapy and analyzed the impact of type of brachytherapy on survival for cervical cancer. Methods Women with stage IB2–IVA cervical cancer treated with primary (external beam and brachytherapy) radiotherapy between 2003–2011 and recorded in the National Cancer Database (NCDB) were analyzed. Generalized linear mixed models and Cox proportional hazards regression were used to examine predictors of HDR brachytherapy use and the association between HDR use and survival. Results A total of 10,564 women including 2681 (25.4%) who received LDR and 7883 (74.6%) that received HDR were identified. Use of HDR increased from 50.2% in 2003 to 83.9% in 2011 (P<0.0001). In a multivariable model, year of diagnosis was the strongest predictor of use of HDR. While patients in the Northeast were more likely to receive HDR therapy, there were no other clinical or socioeconomic characteristics associated with receipt of HDR. In a multivariable Cox model, survival was similar between the HDR and LDR groups (HR=0.93; 95% 0.83–1.03). Similar findings were noted in analyses stratified by stage and histology. Kaplan-Meier analyses demonstrated no difference in survival based on type of brachytherapy for stage IIB (P=0.68), IIIB (P=0.17), or IVA (P=0.16) tumors. Conclusions The use of HDR therapy has increased rapidly. Overall survival is similar for LDR and HDR brachytherapy. PMID:25575481

  11. Genetic Factors Affecting Susceptibility to Low Dose & Low Dose-Rate Radiation

    SciTech Connect

    Bedford, Joel

    2014-04-18

    Our laboratory has, among other things, developed and used the gamma H2AX focus assay and other chromosomal and cell killing assays to show that differences in this DNA double strand break (dsb) related response can be clearly and distinctly demonstrated for cells which are mildly hyper-radiosensitive such as those associated with A-T heterozygosity. We have found this level of mild hypersensitivity for cells from some 20 to 30 % of apparently normal individuals and from apparently normal parents of Retinoblastoma patients. We found significant differences in gene expression in somatic cells from unaffected parents of Rb patients as compared with normal controls, suggesting that these parents may harbor some as yet unidentified genetic abnormality. In other experiments we sought to determine the extent of differences in normal human cellular reaponses to radiation depending on their irradiation in 2D monolayer vs 3D organized acinar growth conditions. We exmined cell reproductive death, chromosomal aberration induction, and the levels of γ-H2AX foci in cells after single acute gamma-ray doses and immediately after 20 hours of irradiation at a dose rate of 0.0017 Gy/min. We found no significant differences in the dose-responses of these cells under the 2D or 3D growth conditions. While this does not mean such differences cannot occur in other situations, it does mean that they do not generally or necessarily occur. In another series of studies in collaboration with Dr Chuan Li, with supprt from this current grant. We reported a role for apoptotic cell death in promoting wound healing and tissue regeneration in mice. Apoptotic cells released growth signals that stimulated the proliferation of progenitor or stem cells. In yet another collaboration with Dr, B. Chen with funds from this grant, the relative radiosensitivity to cell killing as well as chromosomal instability of 13 DNA-PKcs site-directed mutant cell lines (defective at phosphorylation sites or kinase

  12. Facility for gamma irradiations of cultured cells at low dose rates: design, physical characteristics and functioning.

    PubMed

    Esposito, Giuseppe; Anello, Pasquale; Pecchia, Ilaria; Tabocchini, Maria Antonella; Campa, Alessandro

    2016-09-01

    We describe a low dose/dose rate gamma irradiation facility (called LIBIS) for in vitro biological systems, for the exposure, inside a CO2 cell culture incubator, of cells at a dose rate ranging from few μGy/h to some tens of mGy/h. Three different (137)Cs sources are used, depending on the desired dose rate. The sample is irradiated with a gamma ray beam with a dose rate uniformity of at least 92% and a percentage of primary 662keV photons greater than 80%. LIBIS complies with high safety standards. PMID:27423023

  13. Evaluation of High Performance Converters Under Low Dose Rate Total Ionizing Dose (TID) Testing for NASA Programs

    NASA Technical Reports Server (NTRS)

    Sharma, Ashok K.; Sahu, Kusum

    1998-01-01

    This paper reports the results of low dose rate (0.01-0.18 rads(Si)/sec) total ionizing dose (TID) tests performed on several types of high performance converters. The parts used in this evaluation represented devices such as a high speed flash converter, a 16-bit ADC and a voltage-to-frequency converter.

  14. Absorbed dose and dose rate using the Varian OBI 1.3 and 1.4 CBCT system.

    PubMed

    Palm, Asa; Nilsson, Elisabeth; Herrnsdorf, Lars

    2010-01-01

    According to published data, the absorbed dose used for a CBCT image acquisition with Varian OBI v1.3 can be as high as 100 mGy. In 2008 Varian released a new OBI version (v1.4), which promised to reduce the imaging dose. In this study, absorbed doses used for CBCT image acquisitions with the default irradiation techniques of Varian OBI v1.3 and v1.4 are measured. TLDs are used to derive dose distributions at three planes inside an anthropomorphic phantom. In addition, point doses and dose profiles inside a 'stack' of three CTDI body phantoms are measured using a new solid state detector, the CT Dose Profiler. With the CT Dose Profiler, the individual pulses from the X-ray tube are also studied. To verify the absorbed dose measured with the CT Dose Profiler, it is compared to TLD. The image quality is evaluated using a Catphan phantom. For OBI v1.3, doses measured in transverse planes of the Alderson phantom range between 64 mGy and 144 mGy. The average dose is around 100 mGy. For OBI v1.4, doses measured in transverse planes of the Alderson phantom range between 1 mGy and 51 mGy. Mean doses range between 3-35 mGy depending on CBCT mode. CT Dose Profiler data agree with TLD measurements in a CTDI phantom within the uncertainty of the TLD measurements (estimated SD +/- 10%). Instantaneous dose rate at the periphery of the phantom can be higher than 20 mGy/s, which is 10 times the dose rate at the center. The spatial resolution in v1.4 is not as high as in v1.3. In conclusion, measurements show that the imaging doses for default modes in Varian OBI v1.4 CBCT system are significantly lower than in v1.3. The CT Dose Profiler is proven fast and accurate for CBCT applications. PMID:20160695

  15. Dose specification for 192Ir high dose rate brachytherapy in terms of dose-to-water-in-medium and dose-to-medium-in-medium

    NASA Astrophysics Data System (ADS)

    Paiva Fonseca, Gabriel; Carlsson Tedgren, Åsa; Reniers, Brigitte; Nilsson, Josef; Persson, Maria; Yoriyaz, Hélio; Verhaegen, Frank

    2015-06-01

    Dose calculation in high dose rate brachytherapy with 192Ir is usually based on the TG-43U1 protocol where all media are considered to be water. Several dose calculation algorithms have been developed that are capable of handling heterogeneities with two possibilities to report dose: dose-to-medium-in-medium (Dm,m) and dose-to-water-in-medium (Dw,m). The relation between Dm,m and Dw,m for 192Ir is the main goal of this study, in particular the dependence of Dw,m on the dose calculation approach using either large cavity theory (LCT) or small cavity theory (SCT). A head and neck case was selected due to the presence of media with a large range of atomic numbers relevant to tissues and mass densities such as air, soft tissues and bone interfaces. This case was simulated using a Monte Carlo (MC) code to score: Dm,m, Dw,m (LCT), mean photon energy and photon fluence. Dw,m (SCT) was derived from MC simulations using the ratio between the unrestricted collisional stopping power of the actual medium and water. Differences between Dm,m and Dw,m (SCT or LCT) can be negligible (<1%) for some tissues e.g. muscle and significant for other tissues with differences of up to 14% for bone. Using SCT or LCT approaches leads to differences between Dw,m (SCT) and Dw,m (LCT) up to 29% for bone and 36% for teeth. The mean photon energy distribution ranges from 222 keV up to 356 keV. However, results obtained using mean photon energies are not equivalent to the ones obtained using the full, local photon spectrum. This work concludes that it is essential that brachytherapy studies clearly report the dose quantity. It further shows that while differences between Dm,m and Dw,m (SCT) mainly depend on tissue type, differences between Dm,m and Dw,m (LCT) are, in addition, significantly dependent on the local photon energy fluence spectrum which varies with distance to implanted sources.

  16. Mortality risk coefficients for radiation-induced cancer at high doses and dose-rates, and extrapolation to the low dose domain.

    PubMed

    Liniecki, J

    1989-01-01

    Risk coefficients for life-long excessive mortality due to radiation-induced cancers are presented, as derived in 1988 by the U.N. Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), principally on the basis of follow-up from A-bomb survivors in Japan, over the period from 1950 through 1985. The data are based on the new, revised dosimetry (DS 86) in the two cities, and reflect the effects of high and intermediate doses of basically low LET radiation delivered instantaneously. The author presents arguments relevant to the extrapolation of the risk to the low dose (dose rate) domain, as outlined by UNSCEAR in its 1986, and the NCRP (USA) in its 1980, (no 64), reports. The arguments are based on models and dose-response relationships for radiation action, derived from data on cellular radiobiology, animal experiments on radiation-induced cancers and life shortening, as well as the available limited human epidemiological evidence. The available information points to the lower effectiveness of sparsely ionizing radiation at low doses and low dose-rates, as compared with that observed for high, acutely delivered doses. The possible range of the reduction values (DREF) is presented. For high LET radiations, the evidence is less extensive and sometimes contradictory; however, it does not point to a reduction of the effectiveness at low doses/dose-rates, relative to the high dose domain. Practical consequences of these facts are considered. PMID:2489419

  17. Critical target and dose and dose-rate responses for the induction of chromosomal instability by ionizing radiation

    NASA Technical Reports Server (NTRS)

    Limoli, C. L.; Corcoran, J. J.; Milligan, J. R.; Ward, J. F.; Morgan, W. F.

    1999-01-01

    To investigate the critical target, dose response and dose-rate response for the induction of chromosomal instability by ionizing radiation, bromodeoxyuridine (BrdU)-substituted and unsubstituted GM10115 cells were exposed to a range of doses (0.1-10 Gy) and different dose rates (0.092-17.45 Gy min(-1)). The status of chromosomal stability was determined by fluorescence in situ hybridization approximately 20 generations after irradiation in clonal populations derived from single progenitor cells surviving acute exposure. Overall, nearly 700 individual clones representing over 140,000 metaphases were analyzed. In cells unsubstituted with BrdU, a dose response was found, where the probability of observing delayed chromosomal instability in any given clone was 3% per gray of X rays. For cells substituted with 25-66% BrdU, however, a dose response was observed only at low doses (<1.0 Gy); at higher doses (>1.0 Gy), the incidence of chromosomal instability leveled off. There was an increase in the frequency and complexity of chromosomal instability per unit dose compared to cells unsubstituted with BrdU. The frequency of chromosomal instability appeared to saturate around approximately 30%, an effect which occurred at much lower doses in the presence of BrdU. Changing the gamma-ray dose rate by a factor of 190 (0.092 to 17.45 Gy min(-1)) produced no significant differences in the frequency of chromosomal instability. The enhancement of chromosomal instability promoted by the presence of the BrdU argues that DNA comprises at least one of the critical targets important for the induction of this end point of genomic instability.

  18. Dose-Dependent Mutation Rates Determine Optimum Erlotinib Dosing Strategies for EGFR Mutant Non-Small Cell Lung Cancer Patients

    PubMed Central

    Liu, Lin L.; Li, Fei; Pao, William; Michor, Franziska

    2015-01-01

    Background The advent of targeted therapy for cancer treatment has brought about a paradigm shift in the clinical management of human malignancies. Agents such as erlotinib used for EGFR-mutant non-small cell lung cancer or imatinib for chronic myeloid leukemia, for instance, lead to rapid tumor responses. Unfortunately, however, resistance often emerges and renders these agents ineffective after a variable amount of time. The FDA-approved dosing schedules for these drugs were not designed to optimally prevent the emergence of resistance. To this end, we have previously utilized evolutionary mathematical modeling of treatment responses to elucidate the dosing schedules best able to prevent or delay the onset of resistance. Here we expand on our approaches by taking into account dose-dependent mutation rates at which resistant cells emerge. The relationship between the serum drug concentration and the rate at which resistance mutations arise can lead to non-intuitive results about the best dose administration strategies to prevent or delay the emergence of resistance. Methods We used mathematical modeling, available clinical trial data, and different considerations of the relationship between mutation rate and drug concentration to predict the effectiveness of different dosing strategies. Results We designed several distinct measures to interrogate the effects of different treatment dosing strategies and found that a low-dose continuous strategy coupled with high-dose pulses leads to the maximal delay until clinically observable resistance. Furthermore, the response to treatment is robust against different assumptions of the mutation rate as a function of drug concentration. Conclusions For new and existing targeted drugs, our methodology can be employed to compare the effectiveness of different dose administration schedules and investigate the influence of changing mutation rates on outcomes. PMID:26536620

  19. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding

    NASA Technical Reports Server (NTRS)

    George, K.; Willingham, V.; Wu, H.; Gridley, D.; Nelson, G.; Cucinotta, F. A.

    2002-01-01

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  20. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding.

    PubMed

    George, K; Willingham, V; Wu, H; Gridley, D; Nelson, G; Cucinotta, F A

    2002-01-01

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples. PMID:12539753

  1. Chromosome aberrations in human lymphocytes induced by 250 MeV protons: effects of dose, dose rate and shielding

    NASA Astrophysics Data System (ADS)

    George, K.; Willingham, V.; Wu, H.; Gridley, D.; Nelson, G.; Cucinotta, F. A.

    Although the space radiation environment consists predominantly of energetic protons, astronauts inside a spacecraft are chronically exposed to both primary particles as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary neutrons and secondary charged particles can have an LET value that is greater than the primary protons and, therefore, produce a higher relative biological effectiveness (RBE). Using the accelerator facility at Loma Linda University, we exposed human lymphocytes in vitro to 250 MeV protons with doses ranging from 0 to 60 cGy at three different dose rates: a low dose rate of 7.5 cGy/h, an intermediate dose rate of 30 cGy/h and a high dose rate of 70 cGy/min. The effect of 15 g/cm 2 aluminum shielding on the induction of chromosome aberrations was investigated for each dose rate. After exposure, lymphocytes were incubated in growth medium containing phytohemagglutinin (PHA) and chromosome spreads were collected using a chemical-induced premature chromosome condensation (PCC) technique. Aberrations were analyzed using the fluorescence in situ hybridization (FISH) technique with three different colored chromosome-painting probes. The frequency of reciprocal and complex-type chromosome exchanges were compared in shielded and unshielded samples.

  2. A model to calculate the induced dose rate around an 18 MV ELEKTA linear accelerator.

    PubMed

    Perrin, Bruce; Walker, Anne; Mackay, Ranald

    2003-03-01

    The dose rate due to activity induced by (gamma, n) reactions around an ELEKTA Precise accelerator running at 18 MV is reported. A model to calculate the induced dose rate for a variety of working practices has been derived and compared to the measured values. From this model, the dose received by the staff using the machine can be estimated. From measured dose rates at the face of the linear accelerator for a 10 x 10 cm2 jaw setting at 18 MV an activation coefficient per MU was derived for each of the major activation products. The relative dose rates at points around the linac head, for different energy and jaw settings, were measured. Dose rates adjacent to the patient support system and portal imager were also measured. A model to calculate the dose rate at these points was derived, and compared to those measured over a typical working week. The model was then used to estimate the maximum dose to therapists for the current working schedule on this machine. Calculated dose rates at the linac face agreed to within +/- 12% of those measured over a week, with a typical dose rate of 4.5 microSv h(-1) 2 min after the beam has stopped. The estimated maximum annual whole body dose for a treatment therapist, with the machine treating at only 18 MV, for 60000 MUs per week was 2.5 mSv. This compares well with value of 2.9 mSv published for a Clinac 21EX. A model has been derived to calculate the dose from the four dominant activation products of an ELEKTA Precise 18 MV linear accelerator. This model is a useful tool to calculate the induced dose rate around the treatment head. The model can be used to estimate the dose to the staff for typical working patterns. PMID:12696804

  3. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams

    NASA Astrophysics Data System (ADS)

    Pinto, M.; Pimpinella, M.; Quini, M.; D'Arienzo, M.; Astefanoaei, I.; Loreti, S.; Guerra, A. S.

    2016-02-01

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm-2, and at a dose rate of about 0.15 Gy min-1, results of calorimetric measurements of absorbed dose to water, D w, were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D w and D wK were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D w uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D w, it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  4. Enhanced Low Dose Rate Effects in Bipolar Circuits: A New Hardness Assurance Problem for NASA

    NASA Technical Reports Server (NTRS)

    Johnston, A.; Barnes, C.

    1995-01-01

    Many bipolar integrated circuits are much more susceptible to ionizing radiation at low dose rates than they are at high dose rates typically used for radiation parts testing. Since the low dose rate is equivalent to that seen in space, the standard lab test no longer can be considered conservative and has caused the Air Force to issue an alert. Although a reliable radiation hardness assurance test has not yet been designed, possible mechanisms for low dose rate enhancement and hardness assurance tests are discussed.

  5. Study of the effect of dose-rate on radiation-induced damage to human erythrocytes

    NASA Astrophysics Data System (ADS)

    Krokosz, Anita; Koziczak, Renata; Gonciarz, Marta; Szweda-Lewandowska, Zofia

    2006-01-01

    Human erythrocytes suspended in an isotonic Na-phosphate buffer, pH 7.4 (hematocrit of 2%) were irradiated with γ-rays at three dose-rates of 66.7, 36.7, 25 Gy min -1 in order to investigate the influence of the dose-rate on radiation-induced membrane damage, hemoglobin oxidation and loss of reduced glutathione. The obtained results showed that such processes as erythrocyte hemolysis, lipid and protein destruction depend on the radiation dose-rate. The parameter values describing these processes showed an inverse dose-rate effect.

  6. Assessment of gamma-dose rate in city of Kermanshah

    PubMed Central

    Tavakoli, Mohamad Bagher; Kodamoradi, Ehsan; Shaneh, Zahra

    2012-01-01

    Introduction: Environmental natural radiation measurement is of great importance and interest especially for human health. The induction of genetic disorder and cancer appears to be the most important in an exposed population. Materials and Methods: Measurements of background gamma rays were performed using a mini-rad environmental survey meter at 25 different locations around the city of Kermanshah (a city in the west of Iran). The measurements were also performed at two different time of day one in the morning and the other in the afternoon. At each location and time measurements were repeated for five times and the mean was considered as the background dose at that location. Results and Discussions: Comparison between the measured results in the morning and afternoon has not shown any significant difference (P > 0.95). The maximum and minimum obtained results were 2.63 mSv/y and 1.49 mSv/y, respectively. From the total measurements at 25 sites mean and SD background radiation dose to the population is 2.24 ± 0.25 mSv. Conclusion: The mean radiation dose to the population is about 2.5 times of the world average total external exposure cosmic rays and terrestrial gamma rays dose reported by UNSCEAR. PMID:23555133

  7. Dose and dose rate effects of whole-body proton irradiation on leukocyte populations and lymphoid organs: part I

    NASA Technical Reports Server (NTRS)

    Gridley, Daila S.; Pecaut, Michael J.; Dutta-Roy, Radha; Nelson, Gregory A.

    2002-01-01

    The goal of part I of this study was to evaluate the effects of whole-body proton irradiation on lymphoid organs and specific leukocyte populations. C57BL/6 mice were exposed to the entry region of the proton Bragg curve to total doses of 0.5 gray (Gy), 1.5 Gy, and 3.0 Gy, each delivered at a low dose rate (LDR) of 1 cGy/min and high dose rate (HDR) of 80 cGy/min. Non-irradiated and 3 Gy HDR gamma-irradiated groups were included as controls. At 4 days post-irradiation, highly significant radiation dose-dependent reductions were observed in the mass of both lymphoid organs and the numbers of leukocytes and T (CD3(+)), T helper (CD3(+)/CD4(+)), T cytotoxic (CD3(+)/CD8(+)), and B (CD19(+)) cells in both blood and spleen. A less pronounced dose effect was noted for natural killer (NK1.1(+) NK) cells in spleen. Monocyte, but not granulocyte, counts in blood were highly dose-dependent. The numbers for each population generally tended to be lower with HDR than with LDR radiation; a significant dose rate effect was found in the percentages of T and B cells, monocytes, and granulocytes and in CD4(+):CD8(+) ratios. These data indicate that mononuclear cell response to the entry region of the proton Bragg curve is highly dependent upon the total dose and that dose rate effects are evident with some cell types. Results from gamma- and proton-irradiated groups (both at 3 Gy HDR) were similar, although proton-irradiation gave consistently lower values in some measurements.

  8. Study of the dose rate effect of 180 nm nMOSFETs

    NASA Astrophysics Data System (ADS)

    He, Bao-Ping; Yao, Zhi-Bin; Sheng, Jiang-Kun; Wang, Zu-Jun; Huang, Shao-Yan; Liu, Min-Bo; Xiao, Zhi-Gang

    2015-01-01

    Radiation induced offstate leakage in the shallow trench isolation regions of SIMC 0.18 μm nMOSFETs is studied as a function of dose rate. A “true” dose rate effect (TDRE) is observed. Increased damage is observed at low dose rate (LDR) than at high dose rate (HDR) when annealing is taken into account. A new method of simulating radiation induced degradation in shallow trench isolation (STI) is presented. A comparison of radiation induced offstate leakage current in test nMOSFETs between total dose irradiation experiments and simulation results exhibits excellent agreement. The investigation results imply that the enhancement of the leakage current may be worse for the dose rate encountered in the environment of space.

  9. Absorbed dose rate in air in metropolitan Tokyo before the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Inoue, K; Hosoda, M; Fukushi, M; Furukawa, M; Tokonami, S

    2015-11-01

    The monitoring of absorbed dose rate in air has been carried out continually at various locations in metropolitan Tokyo after the accident of the Fukushima Daiichi Nuclear Power Plant. While the data obtained before the accident are needed to more accurately assess the effects of radionuclide contamination from the accident, detailed data for metropolitan Tokyo obtained before the accident have not been reported. A car-borne survey of the absorbed dose rate in air in metropolitan Tokyo was carried out during August to September 2003. The average absorbed dose rate in air in metropolitan Tokyo was 49±6 nGy h(-1). The absorbed dose rate in air in western Tokyo was higher compared with that in central Tokyo. Here, if the absorbed dose rate indoors in Tokyo is equivalent to that outdoors, the annual effective dose would be calculated as 0.32 mSv y(-1). PMID:25944962

  10. Changes in ambient dose equivalent rates around roads at Kawamata town after the Fukushima accident.

    PubMed

    Kinase, Sakae; Sato, Satoshi; Sakamoto, Ryuichi; Yamamoto, Hideaki; Saito, Kimiaki

    2015-11-01

    Changes in ambient dose equivalent rates noted through vehicle-borne surveys have elucidated ecological half-lives of radioactive caesium in the environment. To confirm that the ecological half-lives are appropriate for predicting ambient dose equivalent rates within living areas, it is important to ascertain ambient dose equivalent rates on/around roads. In this study, radiation monitoring on/around roads at Kawamata town, located about 37 km northwest of the Fukushima Daiichi Nuclear Power Plant, was performed using monitoring vehicles and survey meters. It was found that the ambient dose equivalent rates around roads were higher than those on roads as of October 2012. And withal the ecological half-lives on roads were essentially consistent with those around roads. With dose predictions using ecological half-lives on roads, it is necessary to make corrections to ambient dose equivalent rates through the vehicle-borne surveys against those within living areas. PMID:25953794

  11. Distinguishing prostate-specific antigen bounces from biochemical failure after low-dose-rate prostate brachytherapy

    PubMed Central

    Hackett, Cian; Ghosh, Sunita; Sloboda, Ron; Martell, Kevin; Lan, Lanna; Pervez, Nadeem; Pedersen, John; Yee, Don; Murtha, Albert; Amanie, John

    2014-01-01

    Purpose The purpose of this study was to characterize benign prostate-specific antigen (PSA) bounces of at least 2.0 ng/mL and biochemical failure as defined by the Phoenix definition after prostate brachytherapy at our institution, and to investigate distinguishing features between three outcome groups: patients experiencing a benign PSA bounce, biochemical failure, or neither. Material and methods Five hundred and thirty consecutive men treated with low-dose-rate brachytherapy with follow-up of at least 3 years were divided into outcome groups experiencing bounce, failure, or neither. A benign bounce was defined as a rise of at least 2.0 ng/mL over the pre-rise nadir followed by a decline to 0.5 ng/mL or below, without intervention. Patient and tumor characteristics, treatment variables, and PSA kinetics were analyzed between groups. Results Thirty-two (6.0%) men experienced benign bounces and 47 (8.9%) men experienced failure. Men experiencing a bounce were younger (p = 0.01), had a higher 6-month PSA level (p = 0.03), and took longer to reach a final nadir (p < 0.01). Compared to the failure group, men with bounce had a lower pre-treatment PSA level (p = 0.01) and experienced a rise of at least 2.0 ng/mL that occurred sooner after the implant (p < 0.01) with a faster PSA doubling time (p = 0.01). Only time to PSA rise independently differentiated between bounce and failure (p < 0.01), with a benign bounce not being seen after 36 months post-treatment. Prostate-specific antigen levels during a bounce reached levels as high as 12.6 ng/mL in this cohort, and in some cases took over 5 years to decline to below 0.5 ng/mL. Conclusions Although there is substantial overlap between the features of benign PSA bounces and failure, physicians may find it useful to evaluate the timing, absolute PSA level, initial response to treatment, and rate of rise when contemplating management for a PSA rise after low-dose-rate brachytherapy. PMID:25337125

  12. Correlation of Point B and Lymph Node Dose in 3D-Planned High-Dose-Rate Cervical Cancer Brachytherapy

    SciTech Connect

    Lee, Larissa J.; Sadow, Cheryl A.; Russell, Anthony; Viswanathan, Akila N.

    2009-11-01

    Purpose: To compare high dose rate (HDR) point B to pelvic lymph node dose using three-dimensional-planned brachytherapy for cervical cancer. Methods and Materials: Patients with FIGO Stage IB-IIIB cervical cancer received 70 tandem HDR applications using CT-based treatment planning. The obturator, external, and internal iliac lymph nodes (LN) were contoured. Per fraction (PF) and combined fraction (CF) right (R), left (L), and bilateral (Bil) nodal doses were analyzed. Point B dose was compared with LN dose-volume histogram (DVH) parameters by paired t test and Pearson correlation coefficients. Results: Mean PF and CF doses to point B were R 1.40 Gy +- 0.14 (CF: 7 Gy), L 1.43 +- 0.15 (CF: 7.15 Gy), and Bil 1.41 +- 0.15 (CF: 7.05 Gy). The correlation coefficients between point B and the D100, D90, D50, D2cc, D1cc, and D0.1cc LN were all less than 0.7. Only the D2cc to the obturator and the D0.1cc to the external iliac nodes were not significantly different from the point B dose. Significant differences between R and L nodal DVHs were seen, likely related to tandem deviation from irregular tumor anatomy. Conclusions: With HDR brachytherapy for cervical cancer, per fraction nodal dose approximates a dose equivalent to teletherapy. Point B is a poor surrogate for dose to specific nodal groups. Three-dimensional defined nodal contours during brachytherapy provide a more accurate reflection of delivered dose and should be part of comprehensive planning of the total dose to the pelvic nodes, particularly when there is evidence of pathologic involvement.

  13. 'In Vivo' Dosimetry in High Dose Rate Brachytherapy for Cervical Cancer Treatments

    SciTech Connect

    Gonzalez-Azcorra, S. A.; Ruiz-Trejo, C.; Buenfil, A. E.; Mota-Garcia, A.; Poitevin-Chacon, M. A.; Santamaria-Torruco, B. J.; Rodriguez-Ponce, M.; Herrera-Martinez, F. P.; Gamboa de Buen, I.

    2008-08-11

    In this prospective study, rectal dose was measured 'in vivo' using TLD-100 crystals (3x3x1 mm{sup 3}), and it has been compared to the prescribed dose. Measurements were performed in patients with cervical cancer classified in FIGO stages IB-IIIB and treated with high dose rate brachytherapy (HDR BT) at the Instituto Nacional de Cancerologia (INCan)

  14. Dose rate effects on the thermoluminescence properties of MWCVD diamond films

    NASA Astrophysics Data System (ADS)

    Gastélum, S.; Cruz-Zaragoza, E.; Meléndrez, R.; Chernov, V.; Barboza-Flores, M.

    Synthetic CVD diamond, being non-toxic and tissue equivalent, has been proposed as a ionizing radiation passive dosimeter with relevant applications in radiotherapy and clinical dosimetry. In the present work, the thermoluminescence (TL) properties of microwave-assisted chemical vapor deposition (MWCVD) diamond, 6 μm thick film grown on (100) silicon substrates, were studied after room temperature γ-irradiation for 2.4, 3.1, 5.94, 13.1, 20.67, 43.4 and 81.11 Gy min-1 dose rates in the range of 0.05-10 kGy. At fixed irradiation dose the TL efficiency increases as the dose rate increases. As the dose increases the peak temperature at the maximum intensity of the TL glow curve is shifted about 10 K degrees toward the lower temperature side. The TL glow curve shape resembles first-order kinetics for low-radiation doses and second-order kinetics for higher doses. Linear dose behavior was found for doses below 200 Gy and supralinear for higher doses; respectively, with a significant dependence on the dose rate, reaching saturation for higher doses around 2.0 kGy. Due to the dose rate dependence of the TL properties of the CVD diamond sample, it is necessary to take these effects into consideration for dosimetric applications involving synthetic CVD diamond.

  15. The effect of dose rate on the response of austenitic stainless steels to neutron radiaiton

    SciTech Connect

    Allen, T. R.; Cole, J I.; Trybus, Carole L.; Porter, D. L.; Tsai, Hanchung; Garner, Francis A.; Kenik, E A.; Yoshitake, T.; Ohta, Joji

    2006-01-01

    Depending on reactor design and component location, austenitic stainless steels may experience significantly different irradiation dose rates in the same reactor. Understanding the effect of dose rate on radiation performance is important to predicting component lifetime. This study examined the effect of dose rate on swelling, grain boundary segregation, and tensile properties in austenitic stainless steels through the examination of components retrieved from the Experimental Breeder Reactor-II (EBR-II) following its shutdown. Annealed 304 stainless steel, stress-relieved 304 stainless steel, 12% cold-worked 316 stainless steel, and 20% cold-worked 316 stainless steel were irradiated over a dose range of 1-56 dpa at temperatures from 371 to 440 C and dose rates from 0.5 to 5.8 ? 10*7 dpa/s. Density and tensile properties were measured for 304 and 316 stainless steel. Changes in grain boundary composition were examined for 304 stainless steel. Swelling appears to increase at lower dose rates in both 304 and 316 stainless steel, although the effect was not always statistically significant. Grain boundary segregation also appears to increase at lower dose rate in 304 stainless steel. For the range of dose rates examined, no measurable dose rate effect on tensile properties was noted for any of the steels.

  16. Dose-rate conversion factors for external exposure to photons and electrons

    SciTech Connect

    Kocher, D.C.

    1981-08-01

    Dose-rate conversion factors for external exposure to photons and electrons have been calculated for approximately 500 radionuclides of potential importance in environmental radiological assessments. The dose-rate factors were obtained using the DOSFACTER computer code. The results given in this report incorporate calculation of electron dose-rate factors for radiosensitive tissues of the skin, improved estimates of organ dose-rate factors for photons, based on organ doses for monoenergetic sources at the body surface of an exposed individual, and the spectra of scattered photons in air from monoenergetic sources in an infinite, uniformly contaminated atmospheric cloud, calculation of dose-rate factors for other radionuclides in addition to those of interest in the nuclear fuel cycle, and incorporation of updated radioactive decay data for all radionuclides. Dose-rate factors are calculated for three exposure modes - immersion in contaminated air, immersion in contaminated water, and exposure at a height of 1 m above a contaminated ground surface. The report presents the equations used to calculate the external dose-rate factors for photons and electrons, documentation of the revised DOSFACTER computer code, and a complete tabulation of the calculated dose-rate factors. 30 refs., 12 figs.

  17. Inverse modelling of radionuclide release rates using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Hamburger, Thomas; Evangeliou, Nikolaos; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2015-04-01

    Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. Observations and dispersion modelling of the released radionuclides help to assess the regional impact of such nuclear accidents. Modelling the increase of regional radionuclide activity concentrations, which results from nuclear accidents, underlies a multiplicity of uncertainties. One of the most significant uncertainties is the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source term may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on estimates given by the operators of the nuclear power plant. Precise measurements are mostly missing due to practical limitations during the accident. The release rates of radionuclides at the accident site can be estimated using inverse modelling (Davoine and Bocquet, 2007). The accuracy of the method depends amongst others on the availability, reliability and the resolution in time and space of the used observations. Radionuclide activity concentrations are observed on a relatively sparse grid and the temporal resolution of available data may be low within the order of hours or a day. Gamma dose rates, on the other hand, are observed routinely on a much denser grid and higher temporal resolution and provide therefore a wider basis for inverse modelling (Saunier et al., 2013). We present a new inversion approach, which combines an atmospheric dispersion model and observations of radionuclide activity concentrations and gamma dose rates to obtain the source term of radionuclides. We use the Lagrangian particle dispersion model FLEXPART (Stohl et al., 1998; Stohl et al., 2005) to model the atmospheric transport of the released radionuclides. The

  18. Absorbed dose simulations in near-surface regions using high dose rate Iridium-192 sources applied for brachytherapy

    NASA Astrophysics Data System (ADS)

    Moura, E. S.; Zeituni, C. A.; Sakuraba, R. K.; Gonçalves, V. D.; Cruz, J. C.; Júnior, D. K.; Souza, C. D.; Rostelato, M. E. C. M.

    2014-02-01

    Brachytherapy treatment with Iridium-192 high dose rate (HDR) sources is widely used for various tumours and it could be developed in many anatomic regions. Iridium-192 sources are inserted inside or close to the region that will be treated. Usually, the treatment is performed in prostate, gynaecological, lung, breast and oral cavity regions for a better clinical dose coverage compared with other techniques, such as, high energy photons and Cobalt-60 machines. This work will evaluate absorbed dose distributions in near-surface regions around Ir-192 HDR sources. Near-surface dose measurements are a complex task, due to the contribution of beta particles in the near-surface regions. These dose distributions should be useful for non-tumour treatments, such as keloids, and other non-intracavitary technique. For the absorbed dose distribution simulations the Monte Carlo code PENELOPE with the general code penEasy was used. Ir-192 source geometry and a Polymethylmethacrylate (PMMA) tube, for beta particles shield were modelled to yield the percentage depth dose (PDD) on a cubic water phantom. Absorbed dose simulations were realized at the central axis to yield the Ir-192 dose fall-off along central axis. The results showed that more than 99.2% of the absorbed doses (relative to the surface) are deposited in 5 cm depth but with slower rate at higher distances. Near-surface treatments with Ir-192 HDR sources yields achievable measurements and with proper clinical technique and accessories should apply as an alternative for treatment of lesions where only beta sources were used.

  19. 'In vivo' Dose Measurements in High-Dose-Rate Brachytherapy Treatments for Cervical Cancer: A Project Proposal

    SciTech Connect

    Reynoso Mejia, C. A.; Buenfil Burgos, A. E.; Ruiz Trejo, C.; Mota Garcia, A.; Trejo Duran, E.; Rodriguez Ponce, M.; Gamboa de Buen, I.

    2010-12-07

    The aim of this thesis project is to compare doses calculated from the treatment planning system using computed tomography images, with those measured 'in vivo' by using thermoluminescent dosimeters placed at different regions of the rectum and bladder of a patient during high-dose-rate intracavitary brachytherapy treatment of uterine cervical carcinoma. The experimental dosimeters characterisation and calibration have concluded and the protocol to carry out the 'in vivo' measurements has been established. In this work, the calibration curves of two types of thermoluminescent dosimeters (rods and chips) are presented, and the proposed protocol to measure the 'in vivo' dose is fully described.

  20. Dosimetric and radiobiological comparison of volumetric modulated arc therapy, high-dose rate brachytherapy, and low-dose rate permanent seeds implant for localized prostate cancer.

    PubMed

    Yang, Ruijie; Zhao, Nan; Liao, Anyan; Wang, Hao; Qu, Ang

    2016-01-01

    To investigate the dosimetric and radiobiological differences among volumetric modulated arc therapy (VMAT), high-dose rate (HDR) brachytherapy, and low-dose rate (LDR) permanent seeds implant for localized prostate cancer. A total of 10 patients with localized prostate cancer were selected for this study. VMAT, HDR brachytherapy, and LDR permanent seeds implant plans were created for each patient. For VMAT, planning target volume (PTV) was defined as the clinical target volume plus a margin of 5mm. Rectum, bladder, urethra, and femoral heads were considered as organs at risk. A 78Gy in 39 fractions were prescribed for PTV. For HDR and LDR plans, the dose prescription was D90 of 34Gy in 8.5Gy per fraction, and 145Gy to clinical target volume, respectively. The dose and dose volume parameters were evaluated for target, organs at risk, and normal tissue. Physical dose was converted to dose based on 2-Gy fractions (equivalent dose in 2Gy per fraction, EQD2) for comparison of 3 techniques. HDR and LDR significantly reduced the dose to rectum and bladder compared with VMAT. The Dmean (EQD2) of rectum decreased 22.36Gy in HDR and 17.01Gy in LDR from 30.24Gy in VMAT, respectively. The Dmean (EQD2) of bladder decreased 6.91Gy in HDR and 2.53Gy in LDR from 13.46Gy in VMAT. For the femoral heads and normal tissue, the mean doses were also significantly reduced in both HDR and LDR compared with VMAT. For the urethra, the mean dose (EQD2) was 80.26, 70.23, and 104.91Gy in VMAT, HDR, and LDR brachytherapy, respectively. For localized prostate cancer, both HDR and LDR brachytherapy were clearly superior in the sparing of rectum, bladder, femoral heads, and normal tissue compared with VMAT. HDR provided the advantage in sparing of urethra compared with VMAT and LDR. PMID:27400663

  1. Effect of γ-dose rate and total dose interrelation on the polymeric hydrogel: A novel injectable male contraceptive

    NASA Astrophysics Data System (ADS)

    Jha, Pradeep K.; Jha, Rakhi; Gupta, B. L.; Guha, Sujoy K.

    2010-05-01

    Functional necessity to use a particular range of dose rate and total dose of γ-initiated polymerization to manufacture a novel polymeric hydrogel RISUG ® (reversible inhibition of sperm under guidance) made of styrene maleic anhydride (SMA) dissolved in dimethyl sulphoxide (DMSO), for its broad biomedical application explores new dimension of research. The present work involves 16 irradiated samples. They were tested by fourier transform infrared spectroscopy, matrix assisted laser desorption/ionization-TOF, field emission scanning electron microscopy, high resolution transmission electron microscopy, etc. to see the interrelation effect of gamma dose rates (8.25, 17.29, 20.01 and 25.00 Gy/min) and four sets of doses (1.8, 2.0, 2.2 and 2.4 kGy) on the molecular weight, molecular weight distribution and porosity analysis of the biopolymeric drug RISUG ®. The results of randomized experiment indicated that a range of 18-24 Gy/min γ-dose rate and 2.0-2.4 kGy γ-total doses is suitable for the desirable in vivo performance of the contraceptive copolymer.

  2. Dose rate estimates from irradiated light-water-reactor fuel assemblies in air

    SciTech Connect

    Lloyd, W.R.; Sheaffer, M.K.; Sutcliffe, W.G.

    1994-01-31

    It is generally considered that irradiated spent fuel is so radioactive (self-protecting) that it can only be moved and processed with specialized equipment and facilities. However, a small, possibly subnational, group acting in secret with no concern for the environment (other than the reduction of signatures) and willing to incur substantial but not lethal radiation doses, could obtain plutonium by stealing and processing irradiated spent fuel that has cooled for several years. In this paper, we estimate the dose rate at various distances and directions from typical pressurized-water reactor (PWR) and boiling-water reactor (BWR) spent-fuel assemblies as a function of cooling time. Our results show that the dose rate is reduced rapidly for the first ten years after exposure in the reactor, and that it is reduced by a factor of {approx}10 (from the one year dose rate) after 15 years. Even for fuel that has cooled for 15 years, a lethal dose (LD50) of 450 rem would be received at 1 m from the center of the fuel assembly after several minutes. However, moving from 1 to 5 m reduces the dose rate by over a factor of 10, and moving from 1 to 10 m reduces the dose rate by about a factor of 50. The dose rates 1 m from the top or bottom of the assembly are considerably less (about 10 and 22%, respectively) than 1 m from the center of the assembly, which is the direction of the maximum dose rate.

  3. Enhanced charge trapping in bipolar spacer oxides during low-dose-rate irradiation

    SciTech Connect

    Fleetwood, D.M.; Reber, R.A. Jr.; Winokur, P.S.; Kosier, S.L.; Schrimpf, R.D.; Nowlin, R.N.; Pease, R.L.; DeLaus, M.

    1994-03-01

    Thermally-stimulated-current and capacitance-voltage measurements reveal enhanced hole trapping in bipolar spacer-oxide capacitors irradiated at 0 V at low dose rates. Possible mechanisms and implications for bipolar low-rate response are discussed.

  4. Determination of subjective similarity for pairs of masses and pairs of clustered microcalcifications on mammograms: Comparison of similarity ranking scores and absolute similarity ratings

    SciTech Connect

    Muramatsu, Chisako; Li Qiang; Schmidt, Robert A.; Shiraishi, Junji; Suzuki, Kenji; Newstead, Gillian M.; Doi, Kunio

    2007-07-15

    The presentation of images that are similar to that of an unknown lesion seen on a mammogram may be helpful for radiologists to correctly diagnose that lesion. For similar images to be useful, they must be quite similar from the radiologists' point of view. We have been trying to quantify the radiologists' impression of similarity for pairs of lesions and to establish a ''gold standard'' for development and evaluation of a computerized scheme for selecting such similar images. However, it is considered difficult to reliably and accurately determine similarity ratings, because they are subjective. In this study, we compared the subjective similarities obtained by two different methods, an absolute rating method and a 2-alternative forced-choice (2AFC) method, to demonstrate that reliable similarity ratings can be determined by the responses of a group of radiologists. The absolute similarity ratings were previously obtained for pairs of masses and pairs of microcalcifications from five and nine radiologists, respectively. In this study, similarity ranking scores for eight pairs of masses and eight pairs of microcalcifications were determined by use of the 2AFC method. In the first session, the eight pairs of masses and eight pairs of microcalcifications were grouped and compared separately for determining the similarity ranking scores. In the second session, another similarity ranking score was determined by use of mixed pairs, i.e., by comparison of the similarity of a mass pair with that of a calcification pair. Four pairs of masses and four pairs of microcalcifications were grouped together to create two sets of eight pairs. The average absolute similarity ratings and the average similarity ranking scores showed very good correlations in the first study (Pearson's correlation coefficients: 0.94 and 0.98 for masses and microcalcifications, respectively). Moreover, in the second study, the correlations between the absolute ratings and the ranking scores were also

  5. Comparative investigation of three dose rate meters for their viability in pulsed radiation fields.

    PubMed

    Gotz, M; Karsch, L; Pawelke, J

    2015-06-01

    Pulsed radiation fields, characterized by microsecond pulse duration and correspondingly high pulse dose rates, are increasingly used in therapeutic, diagnostic and research applications. Yet, dose rate meters which are used to monitor radiation protection areas or to inspect radiation shielding are mostly designed, characterized and tested for continuous fields and show severe deficiencies in highly pulsed fields. Despite general awareness of the problem, knowledge of the specific limitations of individual instruments is very limited, complicating reliable measurements. We present here the results of testing three commercial dose rate meters, the RamION ionization chamber, the LB 1236-H proportional counter and the 6150AD-b scintillation counter, for their response in pulsed radiation fields of varied pulse dose and duration. Of these three the RamION proved reliable, operating in a pulsed radiation field within its specifications, while the other two instruments were only able to measure very limited pulse doses and pulse dose rates reliably. PMID:25978117

  6. Induction of reciprocal translocations in rhesus monkey stem-cell spermatogonia: effects of low doses and low dose rates

    SciTech Connect

    van Buul, P.P.; Richardson, J.F. Jr.; Goudzwaard, J.H.

    1986-01-01

    The induction of reciprocal translocation in rhesus monkey spermatogonial stem cells was studied following exposure to low doses of acute X rays (0.25 Gy, 300 mGy/min) or to low-dose-rate X rays (1 Gy, 2 mGy/min) and gamma rays (1 Gy, 0.2 mGy/min). The results obtained at 0.25 Gy of X rays fitted exactly the linear extrapolation down from the 0.5 and 1.0 Gy points obtained earlier. Extension of X-ray exposure reduced the yield of translocations similar to that in the mouse by about 50%. The reduction to 40% of translocation rate after chronic gamma exposure was clearly less than the value of about 80% reported for the mouse over the same range of dose rates. Differential cell killing with ensuing differential elimination of aberration-carrying cells is the most likely explanation for the differences between mouse and monkey.

  7. Theoretical explanation of enhanced low dose rate sensitivity in erbium-doped optical fibers.

    PubMed

    Gilard, Olivier; Thomas, Jérémie; Troussellier, Laurent; Myara, Mikhael; Signoret, Philippe; Burov, Ekaterina; Sotom, Michel

    2012-05-01

    A new theoretical framework is proposed to explain the dose and dose-rate dependence of radiation-induced absorption in optical fibers. A first-order dispersive kinetics model is used to simulate the growth of the density of color centers during an irradiation. This model succeeds in explaining the enhanced low dose rate sensitivity observed in certain kinds of erbium-doped optical fiber and provides some insight into the physical reasons behind this sensitivity. PMID:22614396

  8. Interstitial pneumonitis following bone marrow transplantation after low dose rate total body irradiation

    SciTech Connect

    Barrett, A.; Depledge, M.H.; Powles, R.L.

    1983-07-01

    Idiopathic and infective interstitial pneumonitis (IPn) is a common complication after bone marrow transplantation (BMT) in many centers and carries a high mortality. We report here a series of 107 patients with acute leukemia grafted at the Royal Marsden Hospital in which only 11 (10.3%) developed IPn and only 5 died (5%). Only one case of idiopathic IPn was seen. Factors which may account for this low incidence are discussed. Sixty of 107 patients were transplanted in first remission of acute myeloid leukemia (AML) and were therefore in good general condition. Lung radiation doses were carefully monitored and doses of 10.5 Gy were not exceeded except in a group of 16 patients in whom a study of escalating doses of TBI (up to 13 Gy) was undertaken. The dose rate used for total body irradiation (TBI) was lower than that used in other centers and as demonstrated elsewhere by ourselves and others, reduction of dose rate to <0.05 Gy/min may be expected to lead to substantial reduction in lung damage. Threshold doses of approximately 8 Gy for IPn have been reported, but within the dose range of 8 to 10.5 Gy we suggest that dose rate may significantly affect the incidence. Data so far available suggest a true improvement in therapeutic ratio for low dose rate single fraction TBI compared with high dose rate.

  9. Application of MCNP{trademark} to storage facility dose rate assessment

    SciTech Connect

    Urban, W.T.; Roberts, R.R.; Estes, G.P.; Taylor, W.M.

    1996-12-31

    The MCNP code is widely used in the determination of neutral particle dose rate analyses. In this paper we examine the application of MCNP to several storage facilities containing special nuclear material, SNM, wherein the neutron dose rate is the primary quantity of interest. In particular, we describe the special geometry, modeling assumptions, and physics considerations encountered in each of three applications.

  10. In situ gamma-ray spectrometry in the environment using dose rate spectroscopy

    NASA Astrophysics Data System (ADS)

    Ji, Young-Yong; Kim, Chang-Jong; Chung, Kun Ho; Choi, Hee-Yeoul; Lee, Wanno; Kang, Mun Ja; Park, Sang Tae

    2016-02-01

    In order to expand the application of dose rate spectroscopy to the environment, in situ gamma-ray spectrometry was first conducted at a height of 1 m above the ground to calculate the ambient dose rate and individual dose rate at that height, as well as the radioactivity in the soil layer for the detected gamma nuclides from the dose rate spectroscopy. The reliable results could be obtained by introducing the angular correction factor to correct the G-factor with respect to incident photons distributed in a certain range of angles. The intercomparison results of radioactivity using ISOCS software, an analysis of a sample taken from the soil around a detector, and dose rate spectroscopy had a difference of <20% for 214Pb, 214Bi, 228Ac, 212Bi, 208Tl, and 40K, except for 212Pb with low-energy photons, that is, <300 keV. In addition, the drawback of using dose rate spectroscopy, that is, all gamma rays from a nuclide should be identified to accurately assess the individual dose rate, was overcome by adopting the concept of contribution ratio of the key gamma ray to the individual dose rate of a nuclide, so that it could be accurately calculated by identifying only a key gamma ray from a nuclide.

  11. Absolute Zero

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.

    2006-12-01

    Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.

  12. Low-dose-rate extrapolation using the multistage model

    SciTech Connect

    Portier, C.; Hoel, D.

    1983-12-01

    The distribution of the maximum likelihood estimates of virtually safe levels of exposure to environmental chemicals is derived by using large-sample theory and Monte Carlo simulation according to the Armitage-Doll multistage model. Using historical dose-response we develop a set of 33 two-stage models upon which we base our conclusions. The large-sample distributions of the virtually safe dose are normal for cases in which the multistage-model parameters have nonzero expectation, and are skewed in other cases. The large-sample theory does not provide a good approximation of the distribution observed for small bioassays when Monte Carlo simulation is used. The constrained nature of the multistage-model parameters leads to bimodal distributions for small bioassays. The two modes are the direct result of estimating the linear parameter in the multistage model; the lower mode results from estimating this parameter to be nonzero, and the upper mode from estimating it to be zero. The results of this research emphasize the need for incorporation of the biological theory in the model-selection process.

  13. Influence of low-dose and low-dose-rate ionizing radiation on mutation induction in human cells

    NASA Astrophysics Data System (ADS)

    Yatagai, F.; Umebayashi, Y.; Suzuki, M.; Abe, T.; Suzuki, H.; Shimazu, T.; Ishioka, N.; Iwaki, M.; Honma, M.

    This is a review paper to introduce our recent studies on the genetic effects of low-dose and low-dose-rate ionizing radiation (IR). Human lymphoblastoid TK6 cells were exposed to γ-rays at a dose-rate of 1.2 mGy/h (total 30 mGy). The frequency of early mutations (EMs) in the thymidine kinase ( TK) gene locus was determined to be 1.7 × 10 -6, or 1.9-fold higher than the level seen in unirradated controls [Umebayashi, Y., Honma, M., Suzuki, M., Suzuki, H., Shimazu, T., Ishioka, N., Iwaki, M., Yatagai, F., Mutation induction in cultured human cells after low-dose and low-dose-rate γ-ray irradiation: detection by LOH analysis. J. Radiat. Res., 48, 7-11, 2007]. These mutants were then analyzed for loss of heterozygosity (LOH) events. Small interstitial-deletion events were restricted to the TK gene locus and were not observed in EMs in unirradated controls, but they comprised about half of the EMs (8/15) after IR exposure. Because of the low level of exposure to IR, this specific type of event cannot be considered to be the direct result of an IR-induced DNA double strand break (DSB). To better understand the effects of low-level IR exposure, the repair efficiency of site-specific chromosomal DSBs was also examined. The pre γ-irradiation under the same condition did not largely influence the efficiency of DSB repair via end-joining, but enhanced such efficiency via homologous recombination to an about 40% higher level (unpublished data). All these results suggest that DNA repair and mutagenesis can be indirectly influenced by low-dose/dose-rate IR.

  14. Neutron and photon effective dose equivalent rate calculations for the repackaging of tru waste

    SciTech Connect

    Sattelberger, J. A.

    2002-01-01

    Neutron and photon effective dose equivalent rates were estimated for operations that will occur in the characterization and repackaging of transuranic (TRU) waste drums. These activities will be performed in structures called Mobile Units (MU). A MU is defined as a modular and transportable container, also called a transportainer. The transportainers have been designed to house a process required for certification of TRU wastes. The purpose of these calculations was to provide dose rates from Pu-238 TRU waste in various locations in the transportainer using MCNP-4C. In addition to dose rates for the various radiological operations in the repackaging area, the dose rate from the adjacent storage area was calculated to determine the contribution to the total dose rate.

  15. High dose rate sources in remote afterloading brachytherapy: Implications for intracavitary and interstitial treatment of carcinoma

    SciTech Connect

    Syzek, E.J.; Bogardus, C.R. Jr. )

    1990-11-01

    Remote afterloading brachytherapy provides effective cancer treatment with zero personnel radiation exposure compared to conventional low dose rate systems requiring inpatient use of iridium, radium, or cesium sources. Clinical use of high dose rate brachytherapy is broadened to encompass curative treatment of cervical, endometrial, endobronchial, head and neck, esophageal, rectal, and prostatic carcinomas as well as palliation of intra-abdominal metastasis intraoperatively. Complications encountered with high dose rate sources will be compared to those of low dose rate systems commonly used in conjunction with external beam irradiation. Radiobiological effectiveness and economic benefits will be addressed to provide support for use of remote afterloading using high dose rate brachytherapy in palliative and curative treatment of selected carcinoma. 36 refs.

  16. Dose-rate conversion factors for external exposure to photons and electrons

    SciTech Connect

    Kocher, D. C.

    1980-01-01

    This paper describes recent modifications of the computer code DOSFACTER, which was developed for the purpose of estimating dose-rate conversion factors for external exposure to photons and electrons emitted by radionuclides dispersed in the environment. The modifications and additions which have been made to the calculations outlined above include the following: (1) calculation of electron dose-rate factors for radiosensitive portions of the skin; (2) incorporation of improved estimates of organ dose-rate factors for photons; and (3) calculation of dose-rate factors for additional radio nuclides and incorporation of updated radioactive decay data for all radionuclides. The revised dose-rate factors described in this paper are available upon request from the Radiation Shielding Information Center at Oak Ridge National Laboratory.

  17. Correlation between indoor radon concentration and dose rate in air from terrestrial gamma radiation in Japan.

    PubMed

    Fujimoto, K

    1998-09-01

    A correlation between the indoor radon concentration and dose rate in air from terrestrial gamma radiation is studied using the results of nationwide indoor radon and external exposure surveys, although the surveys were not conducted at the same time nor at the same location. The radon concentration shows a log-normal-like distribution, whereas the terrestrial gamma radiation dose rate in air shows a normal-like distribution. A log-linear scatterplot for each pair of the indoor radon concentration and gamma-ray dose rate in air in each city reveals a clear relationship. The average, maximum, and minimum as well as regression line of radon concentration were found to increase with the gamma-ray dose rate in air. The group in higher quantile of radon concentration shows larger dependence on the gamma-ray dose rate. The rate of increase of radon concentration with the gamma-ray dose rate in air depends on the house structure. The wooden house has a larger rate of increase than the concrete house, and the regression lines cross at high air dose rate. Based on the finding in the present study a certain criterion level of air dose rate could be established and used for an effective survey to find out which houses might require a remedial action in conjunction with other screening tools. The criterion level of air dose rate might be more effective if the level is set for each house structure since the rate of increase of radon concentration depends on house structure. PMID:9721838

  18. Dose rate dependence for different dosimeters and detectors: TLD, OSL, EBT films, and diamond detectors

    SciTech Connect

    Karsch, L.; Beyreuther, E.; Burris-Mog, T.; Kraft, S.; Richter, C.; Zeil, K.; Pawelke, J.

    2012-05-15

    Purpose: The use of laser accelerators in radiation therapy can perhaps increase the low number of proton and ion therapy facilities in some years due to the low investment costs and small size. The laser-based acceleration technology leads to a very high peak dose rate of about 10{sup 11} Gy/s. A first dosimetric task is the evaluation of dose rate dependence of clinical dosimeters and other detectors. Methods: The measurements were done at ELBE, a superconductive linear electron accelerator which generates electron pulses with 5 ps length at 20 MeV. The different dose rates are reached by adjusting the number of electrons in one beam pulse. Three clinical dosimeters (TLD, OSL, and EBT radiochromic films) were irradiated with four different dose rates and nearly the same dose. A faraday cup, an integrating current transformer, and an ionization chamber were used to control the particle flux on the dosimeters. Furthermore two diamond detectors were tested. Results: The dosimeters are dose rate independent up to 410{sup 9} Gy/s within 2% (OSL and TLD) and up to 1510{sup 9} Gy/s within 5% (EBT films). The diamond detectors show strong dose rate dependence. Conclusions: TLD, OSL dosimeters, and EBT films are suitable for pulsed beams with a very high pulse dose rate like laser accelerated particle beams.

  19. Stereotactic, Single-Dose Irradiation of Lung Tumors: A Comparison of Absolute Dose and Dose Distribution Between Pencil Beam and Monte Carlo Algorithms Based on Actual Patient CT Scans

    SciTech Connect

    Chen Huixiao; Lohr, Frank; Fritz, Peter; Wenz, Frederik; Dobler, Barbara; Lorenz, Friedlieb; Muehlnickel, Werner

    2010-11-01

    Purpose: Dose calculation based on pencil beam (PB) algorithms has its shortcomings predicting dose in tissue heterogeneities. The aim of this study was to compare dose distributions of clinically applied non-intensity-modulated radiotherapy 15-MV plans for stereotactic body radiotherapy between voxel Monte Carlo (XVMC) calculation and PB calculation for lung lesions. Methods and Materials: To validate XVMC, one treatment plan was verified in an inhomogeneous thorax phantom with EDR2 film (Eastman Kodak, Rochester, NY). Both measured and calculated (PB and XVMC) dose distributions were compared regarding profiles and isodoses. Then, 35 lung plans originally created for clinical treatment by PB calculation with the Eclipse planning system (Varian Medical Systems, Palo Alto, CA) were recalculated by XVMC (investigational implementation in PrecisePLAN [Elekta AB, Stockholm, Sweden]). Clinically relevant dose-volume parameters for target and lung tissue were compared and analyzed statistically. Results: The XVMC calculation agreed well with film measurements (<1% difference in lateral profile), whereas the deviation between PB calculation and film measurements was up to +15%. On analysis of 35 clinical cases, the mean dose, minimal dose and coverage dose value for 95% volume of gross tumor volume were 1.14 {+-} 1.72 Gy, 1.68 {+-} 1.47 Gy, and 1.24 {+-} 1.04 Gy lower by XVMC compared with PB, respectively (prescription dose, 30 Gy). The volume covered by the 9 Gy isodose of lung was 2.73% {+-} 3.12% higher when calculated by XVMC compared with PB. The largest differences were observed for small lesions circumferentially encompassed by lung tissue. Conclusions: Pencil beam dose calculation overestimates dose to the tumor and underestimates lung volumes exposed to a given dose consistently for 15-MV photons. The degree of difference between XVMC and PB is tumor size and location dependent. Therefore XVMC calculation is helpful to further optimize treatment planning.

  20. Monitoring of radiation dose rates around a clinical nuclear medicine site

    NASA Astrophysics Data System (ADS)

    Shao, Chia-Ho; Lu, Cheng-Chang; Chen, Tou-Rong; Weng, Jui-Hung; Kao, Pan-Fu; Dong, Shang-Lung; Chou, Ming-Jen

    2014-11-01

    The monitoring of radiation dose around the nuclear medicine site is an important study issue. In this study, TLD-100H radiation dosimeters were used to measure the ambient radiation dose rates around a clinical nuclear medicine site in order to investigate the latent hot zones of radiation exposure. Results of this study showed that the radiation doses measured from all piping and storage systems were comparable to the background dose. A relatively high dose was observed at the single bend point of waste water piping of the PET/CT. Another important finding was the unexpected high dose rates observed at the non-restricted waiting area (NRWA) of SPECT. To conclude, this study provides useful information for further determination of an appropriate dose reduction strategy to achieve the ALARA principle in a clinical nuclear medicine site.

  1. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    PubMed

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams. PMID:26841127

  2. CT based three dimensional dose-volume evaluations for high-dose rate intracavitary brachytherapy for cervical cancer

    PubMed Central

    2014-01-01

    Background In this study, high risk clinical target volumes (HR-CTVs) according to GEC-ESTRO guideline were contoured retrospectively based on CT images taken at the time of high-dose rate intracavitary brachytherapy (HDR-ICBT) and correlation between clinical outcome and dose of HR-CTV were analyzed. Methods Our study population consists of 51 patients with cervical cancer (Stages IB-IVA) treated with 50 Gy external beam radiotherapy (EBRT) using central shield combined with 2–5 times of 6 Gy HDR-ICBT with or without weekly cisplatin. Dose calculation was based on Manchester system and prescribed dose of 6 Gy were delivered for point A. CT images taken at the time of each HDR-ICBT were reviewed and HR-CTVs were contoured. Doses were converted to the equivalent dose in 2 Gy (EQD2) by applying the linear quadratic model (α/β = 10 Gy). Results Three-year overall survival, Progression-free survival, and local control rate was 82.4%, 85.3% and 91.7%, respectively. Median cumulative dose of HR-CTV D90 was 65.0 Gy (52.7-101.7 Gy). Median length from tandem to the most lateral edge of HR-CTV at the first ICBT was 29.2 mm (range, 18.0-51.9 mm). On univariate analysis, both LCR and PFS was significantly favorable in those patients D90 for HR-CTV was 60 Gy or greater (p = 0.001 and 0.03, respectively). PFS was significantly favorable in those patients maximum length from tandem to edge of HR-CTV at first ICBT was shorter than 3.5 cm (p = 0.042). Conclusion Volume-dose showed a relationship to the clinical outcome in CT based brachytherapy for cervical carcinoma. PMID:24938757

  3. Monte Carlo-based revised values of dose rate constants at discrete photon energies

    PubMed Central

    Selvam, T. Palani; Shrivastava, Vandana; Chourasiya, Ghanashyam; Babu, D. Appala Raju

    2014-01-01

    Absorbed dose rate to water at 0.2 cm and 1 cm due to a point isotropic photon source as a function of photon energy is calculated using the EDKnrc user-code of the EGSnrc Monte Carlo system. This code system utilized widely used XCOM photon cross-section dataset for the calculation of absorbed dose to water. Using the above dose rates, dose rate constants are calculated. Air-kerma strength Sk needed for deriving dose rate constant is based on the mass-energy absorption coefficient compilations of Hubbell and Seltzer published in the year 1995. A comparison of absorbed dose rates in water at the above distances to the published values reflects the differences in photon cross-section dataset in the low-energy region (difference is up to 2% in dose rate values at 1 cm in the energy range 30–50 keV and up to 4% at 0.2 cm at 30 keV). A maximum difference of about 8% is observed in the dose rate value at 0.2 cm at 1.75 MeV when compared to the published value. Sk calculations based on the compilation of Hubbell and Seltzer show a difference of up to 2.5% in the low-energy region (20–50 keV) when compared to the published values. The deviations observed in the values of dose rate and Sk affect the values of dose rate constants up to 3%. PMID:24600166

  4. Discrimination between natural and other gamma ray sources from environmental gamma ray dose rate monitoring data.

    PubMed

    Kumagai, K; Ookubo, H; Kimura, H

    2015-11-01

    In this study, a method to discriminate between natural and other γ-ray sources from environmental γ-ray dose rate monitoring data was developed, and it was successfully applied to actual monitoring data around nuclear facilities. The environmental dose rate is generally monitored by NaI(Tl) detector systems in the low dose rate range. The background dose rate varies mainly as a result of the deposition of (222)Rn progeny in precipitation and shielding of the ground by snow cover. Increments in the environmental dose rate due to radionuclides released from nuclear facilities must be separated from these background variations. The method in the present study corrects for the dose rate variations from natural sources by multiple regression analysis based on the γ-ray counting rates of single-channel analysers opened in the energy ranges of γ-rays emitted by (214)Bi and (208)Tl. Assuming a normal distribution of the results and using the one-sided type I error of 0.01 while ignoring the type II error, the detection limit of the γ-ray dose rate from artificial sources was 0.77 nGy h(-1). PMID:25948830

  5. On the relationship between the Martian pressure changes and the MSL/RAD dose rate variations

    NASA Astrophysics Data System (ADS)

    Guo, Jingnan; Wimmer-Schweingruber, Robert; zeitlin, Cary; Rafkin, Scot; Koehler, Jan; Hassler, Donald; Ehresmann, Bent; Appel, Jan; Boehm, Eckart; Boettcher, Stephan; Brinza, David; Burmeister, Soenke; Lohf, Henning; Martin, Cesar; Posner, Arik; Reitz, Guenther

    2015-04-01

    The Radiation Assessment Detector (RAD) onboard the Mars Science Laboratory's (MSL) rover Curiosity measures the radiation dose rate at the surface of Mars. With these first-ever measurements on the Martian surface, RAD observed the diurnal variations of the total dose rate and neutron count rate due to changes in atmospheric column mass driven by the atmospheric thermal tide tep{rafkin2014}. Variations in the dose rate are shown to be anti-correlated with the changes in atmospheric shielding, while the neutron count rate shows a positive-correlation with the changes of atmospheric pressure. We have analyzed this cyclic variations in the longer term and discovered a second-order effect of this diurnal correlation which indicates a non-linear pressure-dose rate effect. We also employed a PLANETOCOSMIC simulation which shows as well a non-linear correlation between pressure and particles fluxes on the surface of Mars.

  6. A guide to the measurement of environmental gamma-ray dose rate

    NASA Astrophysics Data System (ADS)

    Spiers, F. W.; Gibson, J. A. B.; Thompson, I. M. G.

    The performance of Geiger counters, ionization chambers, scintillators, gamma-ray spectrometers and thermoluminescence dosimeters is discussed. Cosmic, man made, and natural environmental gamma radiation is considered. Dosimeter calibration, measurement procedures, precautions which reduce errors, accuracy assessment, and the interpretation of results are covered. The calculation of dose equivalent to body organs is outlined. Levels of the annual dose equivalent received by the UK population are given. The minimum change in measured dose rate significant at the 95% confidence level as an estimate of the mean environmental dose rate is 12mrad/yr.

  7. Recombination of W19 + ions with electrons: Absolute rate coefficients from a storage-ring experiment and from theoretical calculations

    NASA Astrophysics Data System (ADS)

    Badnell, N. R.; Spruck, K.; Krantz, C.; Novotný, O.; Becker, A.; Bernhardt, D.; Grieser, M.; Hahn, M.; Repnow, R.; Savin, D. W.; Wolf, A.; Müller, A.; Schippers, S.

    2016-05-01

    Experimentally measured and theoretically calculated rate coefficients for the recombination of W19 +([Kr ] 4 d10 4 f9 ) ions with free electrons (forming W18 +) are presented. At low electron-ion collision energies, the merged-beam rate coefficient is dominated by strong, mutually overlapping, recombination resonances as already found previously for the neighboring charge-state ions W18 + and W20 +. In the temperature range where W19 + is expected to form in a collisionally ionized plasma, the experimentally derived recombination rate coefficient deviates by up to a factor of about 20 from the theoretical rate coefficient obtained from the Atomic Data and Analysis Structure database. The present calculations, which employ a Breit-Wigner redistributive partitioning of autoionizing widths for dielectronic recombination via multi-electron resonances, reproduce the experimental findings over the entire temperature range.

  8. Absolute rate of the reaction of atomic hydrogen with ethylene from 198 to 320 K at high pressure

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Michael, J. V.; Payne, W. A.; Stief, L. J.

    1978-01-01

    The rate constant for the H+C2H4 reaction has been measured as a function of temperature. Experiments were performed with high pressures of Ar heat bath gas at seven temperatures from 198 to 320 K with the flash photolysis-resonance fluorescence (FP-RF) technique. Pressures were chosen so as to isolate the addition rate constant k1. The results are well represented by an Arrhenius expression. The results are compared with other studies and are theoretically discussed.

  9. Absolute rate of the reaction of Cl(p-2) with molecular hydrogen from 200 - 500 K

    NASA Technical Reports Server (NTRS)

    Whytock, D. A.; Lee, J. H.; Michael, J. V.; Payne, W. A.; Stief, L. J.

    1976-01-01

    Rate constants for the reaction of atomic chlorine with hydrogen are measured from 200 - 500 K using the flash photolysis-resonance fluorescence technique. The results are compared with previous work and are discussed with particular reference to the equilibrium constant for the reaction and to relative rate data for chlorine atom reactions. Theoretical calculations, using the BEBO method with tunneling, give excellent agreement with experiment.

  10. Dose-Rate Dependence of High-Dose Health Effects in Humans from Photon Radiation with Application to Radiological Terrorism

    SciTech Connect

    Strom, Daniel J.

    2005-01-14

    In 1981, as part of a symposium entitled ''The Control of Exposure of the Public to Ionizing Radiation in the Event of Accident or Attack,'' Lushbaugh, H?bner, and Fry published a paper examining ''radiation tolerance'' of various human health endpoints as a function of dose rate. This paper may not have received the notice it warrants. The health endpoints examined by Lushbaugh et al. were the lethal dose that will kill 50% of people within 60 days of exposure without medical care (LD50/60); severe bone marrow damage in healthy men; severe bone marrow damage in leukemia patients; temporary sterility (azoospermia); reduced male fertility; and late effects such as cancer. Their analysis was grounded in extensive clinical experience and anchored to a few selected data points, and based on the 1968 dose-rate dependence theory of J.L. Bateman. The Lushbaugh et al. paper did not give predictive equations for the relationships, although they were implied in the text, and the relationships were presented in a non-intuitive way. This work derives the parameters needed in Bateman's equation for each health endpoint, tabulates the results, and plots them in a more conventional manner on logarithmic scales. The results give a quantitative indication of how the human organism can tolerate more radiation dose when it is delivered at lower dose rates. For example, the LD50/60 increases from about 3 grays (300 rads) when given at very high dose rates to over 10 grays (1,000 rads) when given at much lower dose rates over periods of several months. The latter figure is borne out by the case of an individual who survived for at least 19 years after receiving doses in the range of 9 to 17 grays (900-1700 rads) over 106 days. The Lushbaugh et al. work shows the importance of sheltering when confronted with long-term exposure to radiological contamination such as would be expected from a radiological dispersion event, reactor accident, or ground-level nuclear explosion.

  11. Variation of indoor radon concentration and ambient dose equivalent rate in different outdoor and indoor environments.

    PubMed

    Stojanovska, Zdenka; Boev, Blazo; Zunic, Zora S; Ivanova, Kremena; Ristova, Mimoza; Tsenova, Martina; Ajka, Sorsa; Janevik, Emilija; Taleski, Vaso; Bossew, Peter

    2016-05-01

    Subject of this study is an investigation of the variations of indoor radon concentration and ambient dose equivalent rate in outdoor and indoor environments of 40 dwellings, 31 elementary schools and five kindergartens. The buildings are located in three municipalities of two, geologically different, areas of the Republic of Macedonia. Indoor radon concentrations were measured by nuclear track detectors, deployed in the most occupied room of the building, between June 2013 and May 2014. During the deploying campaign, indoor and outdoor ambient dose equivalent rates were measured simultaneously at the same location. It appeared that the measured values varied from 22 to 990 Bq/m(3) for indoor radon concentrations, from 50 to 195 nSv/h for outdoor ambient dose equivalent rates, and from 38 to 184 nSv/h for indoor ambient dose equivalent rates. The geometric mean value of indoor to outdoor ambient dose equivalent rates was found to be 0.88, i.e. the outdoor ambient dose equivalent rates were on average higher than the indoor ambient dose equivalent rates. All measured can reasonably well be described by log-normal distributions. A detailed statistical analysis of factors which influence the measured quantities is reported. PMID:26943159

  12. Fractal structure of the distributions of air dose rates in Koriyama city in Fukushima.

    PubMed

    Ishihara, Masamichi

    2014-10-01

    The authors investigated the fractal structure of the distributions of air dose rates in Koriyama city in Fukushima using data published by the Fukushima Prefectural and Koriyama City governments. Relative frequency data of air dose rates (strength distribution) could be well fitted with a q-distribution. In the present analysis, the relative frequency decreases approximately as s for high air dose rate values, where the quantity s represents air dose rate. The fractal dimension is a function of the threshold sth of air dose rate. The fractal dimension is approximately 1.59 when sth is the average of the air dose rates in Koriyama (0.9 μSv h) and decreases with increasing the threshold: it is approximately 1.97 for sth = 0.6 μSv h and 1.40 for sth = 1.2 μSv h. These results confirm that the strength distribution behaves like a power function for high air dose rate values and that the fallout pattern can be described as a fractal. PMID:25162424

  13. Influence of Dose Rate on the Cellular Response to Low- and High-LET Radiations

    PubMed Central

    Wozny, Anne-Sophie; Alphonse, Gersende; Battiston-Montagne, Priscillia; Simonet, Stéphanie; Poncet, Delphine; Testa, Etienne; Guy, Jean-Baptiste; Rancoule, Chloé; Magné, Nicolas; Beuve, Michael; Rodriguez-Lafrasse, Claire

    2016-01-01

    Nowadays, head and neck squamous cell carcinoma (HNSCC) treatment failure is mostly explained by locoregional progression or intrinsic radioresistance. Radiotherapy (RT) has recently evolved with the emergence of heavy ion radiations or new fractionation schemes of photon therapy, which modify the dose rate of treatment delivery. The aim of the present study was then to evaluate the in vitro influence of a dose rate variation during conventional RT or carbon ion hadrontherapy treatment in order to improve the therapeutic care of patient. In this regard, two HNSCC cell lines were irradiated with photons or 72 MeV/n carbon ions at a dose rate of 0.5, 2, or 10 Gy/min. For both radiosensitive and radioresistant cells, the change in dose rate significantly affected cell survival in response to photon exposure. This variation of radiosensitivity was associated with the number of initial and residual DNA double-strand breaks (DSBs). By contrast, the dose rate change did not affect neither cell survival nor the residual DNA DSBs after carbon ion irradiation. As a result, the relative biological efficiency at 10% survival increased when the dose rate decreased. In conclusion, in the RT treatment of HNSCC, it is advised to remain very careful when modifying the classical schemes toward altered fractionation. At the opposite, as the dose rate does not seem to have any effects after carbon ion exposure, there is less need to adapt hadrontherapy treatment planning during active system irradiation. PMID:27014633

  14. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  15. Volumetric (3D) bladder dose parameters are more reproducible than point (2D) dose parameters in vaginal vault high-dose-rate brachytherapy

    PubMed Central

    Sapienza, Lucas Gomes; Flosi, Adriana; Aiza, Antonio; de Assis Pellizzon, Antonio Cassio; Chojniak, Rubens; Baiocchi, Glauco

    2016-01-01

    There is no consensus on the use of computed tomography in vaginal cuff brachytherapy (VCB) planning. The purpose of this study was to prospectively determine the reproducibility of point bladder dose parameters (DICRU and maximum dose), compared with volumetric-based parameters. Twenty-two patients who were treated with high-dose-rate (HDR) VCB underwent simulation by computed tomography (CT-scan) with a Foley catheter at standard tension (position A) and extra tension (position B). CT-scan determined the bladder ICRU dose point in both positions and compared the displacement and recorded dose. Volumetric parameters (D0.1cc, D1.0cc, D2.0cc, D4.0cc and D50%) and point dose parameters were compared. The average spatial shift in ICRU dose point in the vertical, longitudinal and lateral directions was 2.91 mm (range: 0.10–9.00), 12.04 mm (range: 4.50–24.50) and 2.65 mm (range: 0.60–8.80), respectively. The DICRU ratio for positions A and B was 1.64 (p < 0.001). Moreover, a decrease in Dmax was observed (p = 0.016). Tension level of the urinary catheter did not affect the volumetric parameters. Our data suggest that point parameters (DICRU and Dmax) are not reproducible and are not the ideal choice for dose reporting. PMID:27296459

  16. Study of coolant activation and dose rates with flow rate and power perturbations in pool-type research reactors

    SciTech Connect

    Mirza, N.M.; Mirza, S.M.; Ahmad, N. )

    1991-12-01

    This paper reports on a computer code using the multigroup diffusion theory based LEOPARD and ODMUG programs that has been developed to calculate the activity in the coolant leaving the core of a pool-type research reactor. Using this code, the dose rates at various locations along the coolant path with varying coolant flow rate and reactor power perturbations are determined. A flow rate decrease from 1000 to 145 m{sup 3}/h is considered. The results indicate that a flow rate decrease leads to an increase in the coolant outlet temperature, which affects the neutron group constants and hence the group fluxes. The activity in the coolant leaving the core increases with flow rate decrease. However, at the inlet of the holdup tank, the total dose rate first increases, then passes through a maximum at {approximately} 500 m{sup 3}/h, and finally decreases with flow rate decrease. The activity at the outlet of the holdup tank is mainly due to {sup 24}Na and {sup 56}Mn, and it increases by {approximately} 2% when the flow rate decreases from 1000 to 145 m{sup 3}/h. In an accidental power rise at constant flow rate, the activity in the coolant increases, and the dose rates at all the points along the coolant path show a slight nonlinear rise as the reactor power density increases.

  17. Evaluation of Enhanced Low Dose Rate Sensitivity in Discrete Bipolar Junction Transistors

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Ladbury Raymond; LaBel, Kenneth; Topper, Alyson; Ladbury, Raymond; Triggs, Brian; Kazmakites, Tony

    2012-01-01

    We evaluate the low dose rate sensitivity in several families of discrete bipolar transistors across device parameter, quality assurance level, and irradiation bias configuration. The 2N2222 showed the most significant low dose rate sensitivity, with low dose rate enhancement factor of 3.91 after 100 krad(Si). The 2N2907 also showed critical degradation levels. The devices irradiated at 10 mrad(Si)/s exceeded specifications after 40 and 50 krad(Si) for the 2N2222 and 2N2907 devices, respectively.

  18. Image-guided high-dose-rate brachytherapy in inoperable endometrial cancer

    PubMed Central

    Petsuksiri, J; Chansilpa, Y; Hoskin, P J

    2014-01-01

    Inoperable endometrial cancer may be treated with curative aim using radical radiotherapy alone. The radiation techniques are external beam radiotherapy (EBRT) alone, EBRT plus brachytherapy and brachytherapy alone. Recently, high-dose-rate brachytherapy has been used instead of low-dose-rate brachytherapy. Image-guided brachytherapy enables sufficient coverage of tumour and reduction of dose to the organs at risk, thus increasing the therapeutic ratio of treatment. Local control rates with three-dimensional brachytherapy appear better than with conventional techniques (about 90–100% and 70–90%, respectively). PMID:24807067

  19. Treatment Outcome of Medium-Dose-Rate Intracavitary Brachytherapy for Carcinoma of the Uterine Cervix: Comparison With Low-Dose-Rate Intracavitary Brachytherapy

    SciTech Connect

    Kaneyasu, Yuko; Kita, Midori; Okawa, Tomohiko; Maebayashi, Katsuya; Kohno, Mari; Sonoda, Tatsuo; Hirabayashi, Hisae; Nagata, Yasushi; Mitsuhashi, Norio

    2012-09-01

    Purpose: To evaluate and compare the efficacy of medium-dose-rate (MDR) and low-dose-rate (LDR) intracavitary brachytherapy (ICBT) for uterine cervical cancer. Methods and Materials: We evaluated 419 patients with squamous cell carcinoma of the cervix who were treated by radical radiotherapy with curative intent at Tokyo Women's Medical University from 1969 to 1999. LDR was used from 1969 to 1986, and MDR has been used since July 1987. When compared with LDR, fraction dose was decreased and fraction size was increased (1 or 2 fractions) for MDR to make the total dose of MDR equal to that of LDR. In general, the patients received a total dose of 60 to 70 Gy at Point A with external beam radiotherapy combined with brachytherapy according to the International Federation of Gynecology and Obstetrics stage. In the LDR group, 32 patients had Stage I disease, 81 had Stage II, 182 had Stage III, and 29 had Stage IVA; in the MDR group, 9 patients had Stage I disease, 19 had Stage II, 55 had Stage III, and 12 had Stage IVA. Results: The 5-year overall survival rates for Stages I, II, III, and IVA in the LDR group were 78%, 72%, 55%, and 34%, respectively. In the MDR group, the 5-year overall survival rates were 100%, 68%, 52%, and 42%, respectively. No significant statistical differences were seen between the two groups. The actuarial rates of late complications Grade 2 or greater at 5 years for the rectum, bladder, and small intestine in the LDR group were 11.1%, 5.8%, and 2.0%, respectively. The rates for the MDR group were 11.7%, 4.2%, and 2.6%, respectively, all of which were without statistical differences. Conclusion: These data suggest that MDR ICBT is effective, useful, and equally as good as LDR ICBT in daytime (about 5 hours) treatments of patients with cervical cancer.

  20. Dosimetric characterizations of GZP6 60Co high dose rate brachytherapy sources: application of superimposition method

    PubMed Central

    Bahreyni Toossi, Mohammad Taghi; Ghorbani, Mahdi; Mowlavi, Ali Asghar; Meigooni, Ali Soleimani

    2012-01-01

    Background Dosimetric characteristics of a high dose rate (HDR) GZP6 Co-60 brachytherapy source have been evaluated following American Association of Physicists in MedicineTask Group 43U1 (AAPM TG-43U1) recommendations for their clinical applications. Materials and methods MCNP-4C and MCNPX Monte Carlo codes were utilized to calculate dose rate constant, two dimensional (2D) dose distribution, radial dose function and 2D anisotropy function of the source. These parameters of this source are compared with the available data for Ralstron 60Co and microSelectron192Ir sources. Besides, a superimposition method was developed to extend the obtained results for the GZP6 source No. 3 to other GZP6 sources. Results The simulated value for dose rate constant for GZP6 source was 1.104±0.03 cGyh-1U-1. The graphical and tabulated radial dose function and 2D anisotropy function of this source are presented here. The results of these investigations show that the dosimetric parameters of GZP6 source are comparable to those for the Ralstron source. While dose rate constant for the two 60Co sources are similar to that for the microSelectron192Ir source, there are differences between radial dose function and anisotropy functions. Radial dose function of the 192Ir source is less steep than both 60Co source models. In addition, the 60Co sources are showing more isotropic dose distribution than the 192Ir source. Conclusions The superimposition method is applicable to produce dose distributions for other source arrangements from the dose distribution of a single source. The calculated dosimetric quantities of this new source can be introduced as input data to the GZP6 treatment planning system (TPS) and to validate the performance of the TPS. PMID:23077455

  1. Methodology for estimating radiation dose rates to freshwater biota exposed to radionuclides in the environment

    SciTech Connect

    Blaylock, B.G.; Frank, M.L.; O`Neal, B.R.

    1993-08-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy`s (DOE`s) recommended dose rate limit of 0.4 mGy h{sup {minus}1} (1 rad d{sup {minus}1}). A dose rate no greater than 0.4 mGy h{sup {minus}1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE`s recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0. 1 mGy h{sup {minus}1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be conducted.

  2. Absolute rate constant of the reaction OH + H2O2 yields HO2 + H2O from 245 to 423 K

    NASA Technical Reports Server (NTRS)

    Keyser, L. F.

    1980-01-01

    The absolute rate constant of the reaction between the hydroxyl radical and hydrogen peroxide was measured by using the discharge-flow resonance fluorescence technique at total pressure between 1 and 4 torr. At 298 K the result is (1.64 + or - 0.32) x 10 to the -12th cu cm/molecule s. The observed rate constant is independent of pressure, surface-to-volume ratio, the addition of vibrational quenchers, and the source of OH. The temperature dependence has also been determined between 245 and 423 K; the resulting Arrhenius expression is k cu cm/molecule s is equal to (2.51 + or - 0.6) x 10 to the -12th exp(-126 + or - 76/T).

  3. Methodology for Estimating Radiation Dose Rates to Freshwater Biota Exposed to Radionuclides in the Environment

    SciTech Connect

    Blaylock, B.G.

    1993-01-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy's (DOE's) recommended dose rate limit of 0.4 mGy h{sup -1} (1 rad d{sup -1}). A dose rate no greater than 0.4 mGy h{sup -1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE's recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). The literature identifies the developing eggs and young of some species of teleost fish as the most radiosensitive organisms. DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0.1 mGy h{sup -1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be

  4. Conventional High-Dose-Rate Brachytherapy With Concomitant Complementary IMRT Boost: A Novel Approach for Improving Cervical Tumor Dose Coverage

    SciTech Connect

    Duan, Jun; Kim, Robert Y. Elassal, Shaaban; Lin Huiyi; Shen Sui

    2008-07-01

    Purpose: To investigate the feasibility of combining conventional high-dose-rate (HDR) brachytherapy with a concomitant complementary intensity-modulated radiotherapy (IMRT) boost for improved target coverage in cervical cancers. Methods and Materials: Six patients with cervical cancer underwent conventional HDR (C-HDR) treatment. Computed tomography (CT) and magnetic resonance imaging (MRI) scans were acquired with a CT/MRI-compatible applicator in place. The clinical target volumes (CTVs), defined as the gross target volume with a 3-mm margin and the uterus, were delineated on the CT scans, along with the organs at risk (OARs). The IMRT plans were optimized to generate dose distributions complementing those of C-HDR to cover the CTV while maintaining low doses to the OARs (IMRT-HDR). For comparison, dwell-weight optimized HDR (O-HDR) plans were also generated to cover the CTV and spare the OARs. The three treatment techniques (C-HDR, O-HDR, and IMRT-HDR) were compared. The percentage of volume receiving 95% of the prescription dose (V{sub 95}) was used to evaluate dose coverage to the CTV, and the minimal doses in the 2.0-cm{sup 3} volume receiving the greatest dose were calculated to compare the doses to the OARs. Results: The C-HDR technique provided very poor CTV coverage in 5 cases (V{sub 95} <62%). Although O-HDR provided excellent gross tumor volume coverage (V{sub 95} {>=}96.9%), it resulted in unacceptably high doses to the OARs in all 6 cases and unsatisfactory coverage to the whole CTV in 3 cases. IMRT-HDR not only yielded substantially improved CTV coverage (average V{sub 95} = 95.3%), but also kept the doses to the bladder and rectum reasonably low. Conclusion: Compared with C-HDR and O-HDR, concomitant IMRT boost complementary to C-HDR not only provided excellent CTV coverage, but also maintained reasonably low doses to the OARs.

  5. Effect of frequency of dosing of plant sterols on plasma cholesterol levels and synthesis rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to compare the effects of plant sterols (PS) consumed as a single dose (single) at breakfast or as three doses consumed with breakfast, lunch and dinner (divided) on plasma lipoprotien levels and cholesterol endogenous fractional synthesis rate (FSR). A randomized, placebo-controll...

  6. Eliminating the dose-rate effect in a radiochromic silicone-based 3D dosimeter

    NASA Astrophysics Data System (ADS)

    Høye, E. M.; Balling, P.; Yates, E. S.; Muren, L. P.; Petersen, J. B. B.; Skyt, P. S.

    2015-07-01

    Comprehensive dose verification, such as 3D dosimetry, may be required for safe introduction and use of advanced treatment modalities in radiotherapy. A radiochromic silicone-based 3D dosimetry system has recently been suggested, though its clinical use has so far been limited by a considerable dose-rate dependency of the dose response. In this study we have investigated the dose-rate dependency with respect to the chemical composition of the dosimeter. We found that this dependency was reduced with increasing dye concentration, and the dose response was observed to be identical for dosimeters irradiated with 2 and 6 Gy min-1 at concentrations of 0.26% (w/w) dye and 1% (w/w) dye solvent. Furthermore, for the optimized dosimeter formulation, no dose-rate effect was observed due to the attenuation of the beam fluence with depth. However, the temporal stability of the dose response decreased with dye concentration; the response was reduced by (62  ±  1)% within approximately 20 h upon irradiation, at the optimal chemical composition and storage at room temperature. In conclusion, this study presents a chemical composition for a dose-rate independent silicone dosimeter which has considerably improved the clinical applicability of such dosimeters, but at the cost of a decreased stability.

  7. Radiation response of industrial materials: Dose-rate and morphology implications

    NASA Astrophysics Data System (ADS)

    Berejka, Anthony J.

    2007-08-01

    Industrial uses of ionizing radiation mostly rely upon high current, high dose-rate (100 kGy/s) electron beam (EB) accelerators. To a lesser extent, industry uses low dose-rate (2.8 × 10-3 kGy/s) radioactive Cobalt-60 as a gamma source, generally for some rather specific purposes, as medical device sterilization and the treatment of food and foodstuffs. There are nearly nine times as many (∼1400) high current EB units in commercial operation than gamma sources (∼160). However, gamma sources can be easily scaled-down so that much research on materials effects is conducted using gamma radiation. Likewise, laboratories are more likely to have very low beam current and consequently low dose-rate accelerators such as Van de Graaff generators and linear accelerators. With the advent of very high current EB accelerators, X-ray processing has become an industrially viable option. With X-rays from high power sources, dose-rates can be modulated based upon accelerator power and the attenuation of the X-ray by the distance of the material from the X-ray target. Dose and dose-rate dependence has been found to be of consequence in several commercial applications which can employ the use of ionizing radiation. The combination of dose and dose-rate dependence of the polymerization and crosslinking of wood impregnants and of fiber composite matrix materials can yield more economically viable results which have promising commercial potential. Monomer and oligomer structure also play an important role in attaining these desirable results. The influence of morphology is shown on the radiation response of olefin polymers, such as ethylene, propylene and isobutylene polymers and their copolymers. Both controlled morphology and controlled dose-rate have commercial consequences. These are also impacted both by the adroit selection of materials and through the possible use of X-ray processing.

  8. Indoor Gamma Dose Rates In Kuwait Using Handheld Gamma-ray Spectrometer.

    PubMed

    Al-Azmi, Darwish

    2016-07-01

    A survey of indoor gamma dose rates was carried out in Kuwait using a NaI dosimeter/spectrometer. The measurements started from May 2013 until April 2015 and covered different locations within 200 dwellings: 158 halls, 26 rooms, 17 basements, and 43 kitchens (total of 244 locations). Alongside the dose rate measurements, gamma-ray spectra were also acquired to evaluate the relative contributions of K, Bi, and Tl and check the presence of Cs. The results show that the dose rates for all locations varied from 39.3 to 103.3 nSv h with a mean of 70.6 nSv h, indicating that the indoor dose rates are low and within the normal range. PMID:27218289

  9. Extension of a generalized state-vector model of radiation carcinogenesis to consideration of dose rate

    SciTech Connect

    Crawford-Brown, D.J. ); Hofmann, W. )

    1993-06-01

    Mathematical models for radiation carcinogenesis typically employ transition rates that either are a function of the dose to specific cells or are purely empirical constructs unrelated to biophysical theory. These functions either ignore or do not explicitly model interactions between the fates of cells in a community. This paper extends a model of mitosis, cell transformation, promotion, and progression to cases in which interacting cellular communities are irradiated at specified dose rates. The model predicts that lower dose rates are less effective at producing cancer when irradiation is by X- or gamma rays but are generally more effective in instances of irradiation by alpha particles up to a dose rate in excess of 0.01 Gy/day. The resulting predictions are compared with existing experimental data. 39 refs., 9 figs., 1 tab.

  10. An Interactive Point Kernel Program For Photon Dose Rate Prediction of Cylindrical Source/Shield Arrangements.

    1990-10-26

    Version 00 The program ZYLIND is an interactive point kernel program for photon dose rate prediction of a homogeneous cylindrical source shielded by cylindrical (radial) or plane (axial) layered shields.

  11. Dose rate effects in radiation degradation of polymer-based cable materials

    NASA Astrophysics Data System (ADS)

    Plaček, V.; Bartoníček, B.; Hnát, V.; Otáhal, B.

    2003-08-01

    Cable ageing under the nuclear power plant (NPP) conditions must be effectively managed to ensure that the required plant safety and reliability are maintained throughout the plant service life. Ionizing radiation is one of the main stressors causing age-related degradation of polymer-based cable materials in air. For a given absorbed dose, radiation-induced damage to a polymer in air environment usually depends on the dose rate of the exposure. In this work, the effect of dose rate on the degradation rate has been studied. Three types of NPP cables (with jacket/insulation combinations PVC/PVC, PVC/PE, XPE/XPE) were irradiated at room temperature using 60Co gamma ray source at average dose rates of 7, 30 and 100 Gy/h with the doses up to 590 kGy. The irradiated samples have been tested for their mechanical properties, thermo-oxidative stability (using differential scanning calorimetry, DSC), and density. In the case of PVC and PE samples, the tested properties have shown evident dose rate effects, while the XPE material has shown no noticeable ones. The values of elongation at break and the thermo-oxidative stability decrease with the advanced degradation, density tends to increase with the absorbed dose. For XPE samples this effect can be partially explained by the increase of crystallinity. It was tested by the DSC determination of the crystalline phase amount.

  12. Absolute rate constants for O + NO + M /= He, Ne, Ar, Kr/ yields NO2 + M from 217-500 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Payne, W. A.; Whytock, D. A.

    1976-01-01

    Rate constants for the reaction O + NO + M yields NO2 + M have been obtained at temperatures from 217-500 K in four different rare gases by a method combining flash photolysis with time resolved detection of O(3-P) by resonance fluorescence. The measured rate constants in Arrhenius form are (10.8 plus or minus 1.2) x 10 to the -33rd exp(1040 plus or minus 60/1.987 T) for helium; (9.01 plus or minus 1.16) x 10 to the -33rd exp(1180 plus or minus 70/1.987 T) for argon; (9.33 plus or minus 1.10) x 10 to the -33rd exp(1030 plus or minus 60/1.987 T) for neon; and (9.52 plus or minus 1.10) x 10 to the -33rd exp(1140 plus or minus 70/1.987 T) for krypton in units of cm to the 6th/sq molecule/s.

  13. Health Risks From Low Doses and Low Dose-Rates of Ionizing Radiation. Session 5: Future of Radiation Protection Regulations.

    PubMed

    Cool, Donald A

    2016-03-01

    The system of radiological protection is a prospective approach to protection of individuals in all exposure situations. It must be applied equitably across all age groups and all populations. This is a very different circumstance from dose assessment for a particular individual where the unique characteristics of the individual and the exposure can be taken into account. Notwithstanding the ongoing discussions on the possible shape of the dose response at low doses and dose rates, the prospective system of protection has therefore historically used a linear assumption as a pragmatic, prudent and protective approach. These radiation protection criteria are not intended to be a demarcation between "safe" and "unsafe" and are the product of a risk-informed judgement that includes inputs from science, ethics, and experience. There are significant implications for different dose response relationships. A linear model allows for equal treatment of an exposure, irrespective of the previously accumulated exposure. In contrast, other models would predict different implications. Great care is therefore needed in separating the thinking around risk assessment from risk management, and prospective protection for all age groups and genders from retrospective assessment for a particular individual. In the United States, the prospective regulatory structure functions effectively because of assumptions that facilitate independent treatment of different types of exposures, and which provide pragmatic and prudent protection. While the a linear assumption may, in fact, not be consistent with the biological reality, the implications of a different regulatory model must be considered carefully. PMID:26808877

  14. External dose rate in Unirea salt mine, Slanic-Prahova, Romania.

    PubMed

    Margineanu, R M; Apostu, A M; Duliu, O G; Bercea, S; Gomoiu, C M; Cristache, C I

    2009-05-01

    The distribution of the external dose rate within the former Unirea salt mine, host of the Low-Level Background Laboratory was determined and compared with calculated values based on the experimentally determined content of natural radioactive elements in the mine walls. The average external dose rate was found to be 1.3+/-0.3 nSv h(-1), close to calculated one of 1.4+/-0.2 nSv h(-1). PMID:19231217

  15. A dosimetric study on the Ir-192 high dose rate flexisource.

    PubMed

    Granero, D; Pérez-Calatayud, J; Casal, E; Ballester, F; Venselaar, J

    2006-12-01

    In this work, the dose rate distribution of a new Ir-192 high dose rate source (Flexisource used in the afterloading Flexitron system, Isodose Control, Veenendaal, The Netherlands) is studied by means of Monte Carlo techniques using the GEANT4 code. The dosimetric parameters of the Task Group No. 43 Report (TG43) formalism and two-dimensional rectangular look-up tables have been obtained. PMID:17278809

  16. A dosimetric study on the Ir-192 high dose rate Flexisource

    SciTech Connect

    Granero, D.; Perez-Calatayud, J.; Casal, E.; Ballester, F.; Venselaar, J.

    2006-12-15

    In this work, the dose rate distribution of a new Ir-192 high dose rate source (Flexisource used in the afterloading Flexitron system, Isodose Control, Veenendaal, The Netherlands) is studied by means of Monte Carlo techniques using the GEANT4 code. The dosimetric parameters of the Task Group No. 43 Report (TG43) formalism and two-dimensional rectangular look-up tables have been obtained.

  17. Numerical calculation of relative dose rates from spherical 106Ru beta sources used in ophthalmic brachytherapy

    NASA Astrophysics Data System (ADS)

    de Paiva, Eduardo

    Concave beta sources of 106Ru/106Rh are used in radiotherapy to treat ophthalmic tumors. However, a problem that arises is the difficult determination of absorbed dose distributions around such sources mainly because of the small range of the electrons and the steep dose gradients. In this sense, numerical methods have been developed to calculate the dose distributions around the beta applicators. In this work a simple code in Fortran language is developed to estimate the dose rates along the central axis of 106Ru/106Rh curved plaques by numerical integration of the beta point source function and results are compared with other calculated data.

  18. Impact on ambient dose rate in metropolitan Tokyo from the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Inoue, Kazumasa; Tsuruoka, Hiroshi; Van Le, Tan; Arai, Moeko; Saito, Kyoko; Fukushi, Masahiro

    2016-07-01

    A car-borne survey was made in metropolitan Tokyo, Japan, in December 2014 to estimate external dose. This survey was conducted for all municipalities of Tokyo and the results were compared with measurements done in 2003. The ambient dose rate measured in the whole area of Tokyo in December 2014 was 60 nGy h(-1) (23-142 nGy h(-1)), which was 24% higher than the rate in 2003. Higher dose rates (>70 nGy h(-1)) were observed on the eastern and western ends of Tokyo; furthermore, the contribution ratio from artificial radionuclides ((134)Cs and (137)Cs) to ambient dose rate in eastern Tokyo was twice as high as that of western Tokyo. Based on the measured ambient dose rate, the effective dose rate after the accident was estimated to be 0.45 μSv h(-1) in Tokyo. This value was 22% higher than the value before the accident as of December 2014. PMID:27055250

  19. Measurement of dosimetric parameters for the Alpha-Omega high-dose-rate Iridium-192 source

    SciTech Connect

    Muller-Runkel, R. . E-mail: renate.muller@ssfhs.org

    2005-09-30

    Thermoluminescent (TLD) measurements of dose-rate constant, anisotropy function, and radial dose function are reported for the Alpha-Omega high dose rate (HDR) Iridium-192 ({sup 192}Ir) source, which has been available since 1998 for use in the MicroSelectron HDR afterloader manufactured by the Nucletron Corporation. Measurement results are compared with published or available Monte Carlo calculations for both sources. They are found in good agreement, and, within experimental accuracy, no difference is seen in the dosimetric parameters of both sources.

  20. On-site gamma dose rates at the Andreeva Bay shore technical base, northwest Russia.

    PubMed

    Reistad, O; Dowdall, M; Standring, W J F; Selnaes, Ø G; Hustveit, S; Steinhusen, F; Sørlie, A

    2008-07-01

    The spent nuclear fuel (SNF) and radioactive waste (RAW) storage facility at Andreeva Bay shore technical base (STB) is one of the largest and most hazardous nuclear legacy sites in northwest Russia. Originally commissioned in the 1960s the facility now stores large amounts of SNF and RAW associated with the Russian Northern Fleet of nuclear powered submarines. The objective of the present study was to map ambient gamma dose rates throughout the facility, in particular at a number of specific sites where SNF and RAW are stored. The data presented here are taken from a Norwegian-Russian collaboration enabling the first publication in the scientific literature of the complete survey of on-site dose rates. Results indicate that elevated gamma dose rates are found primarily at discrete sites within the facility; maximum dose rates of up to 1000 microSv/h close to the ground (0.1m) and up to 3000 microSv/h at 1m above ground were recorded, higher doses at the 1m height being indicative primarily of the presence of contaminated equipment as opposed to ground contamination. Highest dose rates were measured at sites located in the immediate vicinity of buildings used for storing SNF and sites associated with storage of solid and liquid radioactive wastes. Elevated dose rates were also observed near the former channel of a small brook that became heavily contaminated as a result of radioactive leaks from the SNF storage at Building 5 starting in 1982. Isolated patches of elevated dose rates were also observed throughout the STB. A second paper detailing the radioactive soil contamination at the site is published in this issue of Journal of Environmental Radioactivity. PMID:18243437

  1. Investigation of natural effective gamma dose rates case study: Ardebil Province in Iran

    PubMed Central

    2012-01-01

    Gamma rays pose enough energy to induce chemical changes that may be biologically important for the normal functioning of body cells. The external exposure of human beings to natural environmental gamma radiation normally exceeds that from all man-made sources combined. In this research natural background gamma dose rates and corresponding annual effective doses were determined for selected cities of Ardebil province. Outdoor gamma dose rates were measured using an Ion Chamber Survey Meter in 105 locations in selected districts. Average absorbed doses for Ardebil, Sar-Ein, Germy, Neer, Shourabil Recreational Lake, and Kosar were determined as 265, 219, 344, 233, 352, and 358 nSv/h, respectively. Although dose rates recorded for Germi and Kosar are comparable with some areas with high natural radiation background, however, the dose rates in other districts are well below the levels reported for such locations. Average annual effective dose due to indoor and outdoor gamma radiation for Ardebil province was estimated as 1.73 (1.35–2.39) mSv, which is on average 2 times higher than the world population weighted average. PMID:23369115

  2. Optically based quantification of absolute cerebral metabolic rate of oxygen (CMRO2) with high spatial resolution in rodents

    NASA Astrophysics Data System (ADS)

    Yaseen, Mohammad A.; Srinivasan, Vivek J.; Sakadžić, Sava; Vinogradov, Sergei A.; Boas, David A.

    2010-02-01

    Measuring oxygen delivery in brain tissue is important for identifying the pathophysiological changes associated with brain injury and various diseases such as cancer, stroke, and Alzheimer's disease. We have developed a multi-modal imaging system for minimally invasive measurement of cerebral oxygenation and blood flow in small animals with high spatial resolution. The system allows for simultaneous measurement of blood flow using Fourier-domain optical coherence tomography, and oxygen partial pressure (pO2) using either confocal or multiphoton phosphorescence lifetime imaging with exogenous porphyrin-based dyes sensitive to dissolved oxygen. Here we present the changes in pO2 and blood flow in superficial cortical vessels of Sprague Dawley rats in response to conditions such as hypoxia, hyperoxia, and functional stimulation. pO2 measurements display considerable heterogeneity over distances that cannot be resolved with more widely used oxygen-monitoring techniques such as BOLD-fMRI. Large increases in blood flow are observed in response to functional stimulation and hypoxia. Our system allows for quantification of cerebral metabolic rate of oxygen (CMRO2) with high spatial resolution, providing a better understanding of metabolic dynamics during functional stimulation and under various neuropathologies. Ultimately, better insight into the underlying mechanisms of neuropathologies will facilitate the development of improved therapeutic strategies to minimize damage to brain tissue.

  3. Pressure dependence of the absolute rate constant for the reaction Cl + C2H2 from 210-361 K

    NASA Technical Reports Server (NTRS)

    Brunning, J.; Stief, L. J.

    1985-01-01

    In recent years, considerable attention has been given to the role of chlorine compounds in the catalytic destruction of stratospheric ozone. However, while some reactions have been studied extensively, the kinetic data for the reaction of Cl with C2H2 is sparse with only three known determinations of the rate constant k3. The reactions involved are Cl + C2H2 yields reversibly ClC2H2(asterisk) (3a) and ClC2H2(asterisk) + M yields ClC2H2 + M (3b). In the present study, flash photolysis coupled with chlorine atomic resonance fluorescence have been employed to determine the pressure and temperature dependence of k3 with the third body M = Ar. Room temperature values are also reported for M = N2. The pressure dependence observed in the experiments confirms the expectation that the reaction involves addition of Cl to the unsaturated C2H2 molecule followed by collisional stabilization of the resulting adduct radical.

  4. Absolute oral bioavailability of ciprofloxacin.

    PubMed

    Drusano, G L; Standiford, H C; Plaisance, K; Forrest, A; Leslie, J; Caldwell, J

    1986-09-01

    We evaluated the absolute bioavailability of ciprofloxacin, a new quinoline carboxylic acid, in 12 healthy male volunteers. Doses of 200 mg were given to each of the volunteers in a randomized, crossover manner 1 week apart orally and as a 10-min intravenous infusion. Half-lives (mean +/- standard deviation) for the intravenous and oral administration arms were 4.2 +/- 0.77 and 4.11 +/- 0.74 h, respectively. The serum clearance rate averaged 28.5 +/- 4.7 liters/h per 1.73 m2 for the intravenous administration arm. The renal clearance rate accounted for approximately 60% of the corresponding serum clearance rate and was 16.9 +/- 3.0 liters/h per 1.73 m2 for the intravenous arm and 17.0 +/- 2.86 liters/h per 1.73 m2 for the oral administration arm. Absorption was rapid, with peak concentrations in serum occurring at 0.71 +/- 0.15 h. Bioavailability, defined as the ratio of the area under the curve from 0 h to infinity for the oral to the intravenous dose, was 69 +/- 7%. We conclude that ciprofloxacin is rapidly absorbed and reliably bioavailable in these healthy volunteers. Further studies with ciprofloxacin should be undertaken in target patient populations under actual clinical circumstances. PMID:3777908

  5. Rates of Change in Naturalistic Psychotherapy: Contrasting Dose-Effect and Good-Enough Level Models of Change

    ERIC Educational Resources Information Center

    Baldwin, Scott A.; Berkeljon, Arjan; Atkins, David C.; Olsen, Joseph A.; Nielsen, Stevan L.

    2009-01-01

    Most research on the dose-effect model of change has combined data across patients who vary in their total dose of treatment and has implicitly assumed that the rate of change during therapy is constant across doses. In contrast, the good-enough level model predicts that rate of change will be related to total dose of therapy. In this study, the…

  6. Absolute level-to-level rate constants for inelastic collisions and exchange reactions in lithium + gaseous lithium(v,j) going to gaseous lithium(v',j') + lithium

    NASA Astrophysics Data System (ADS)

    Coppage, Steven Danforth

    We report 644 absolute level-to-level inelastic and reactive constants for the L7i*2 A1S+u (nui, ji) + 7Li → L7i*2 A1S+u (nu', j') + 7Li system with initial molecular quantum numbers nui = 2 and ji = 3, 11, and 19. We collected 87 rate constants for rotationally inelastic and vibrationally elastic collisions, 281 rate constants for vibrationally inelastic collisions, and 276 constants for exchange reactions with final vibrational levels from nu f = 0 to nuf = 3. Inelastic collisions are characterized by even changes in rotational quantum number, j , and exchange reactions are identified by odd Deltaj. Level-to-level rate constants for even Deltaj inelastic collisions show distributions similar to those in rare gas collisions with the excited Li2 molecule. The ECS (energy corrected sudden) scaling law of DePristo, et al., fit the vibrationally elastic data well. Reactive rate constant results are characterized by a statistical distribution for Deltanu of 0, -1, and -2 at a substantially reduced effective temperature consistent with a kinematic model proposed by Picconatto et al. Fitting quasiclassical trajectory studies to the data using a modified LEPS potential surface provide first insights into the parameters of the excited-state Li3* three-body potential.

  7. Effect of Radiocesium Transfer on Ambient Dose Rate in Forest Environment

    NASA Astrophysics Data System (ADS)

    Kato, Hiroaki; Onda, Yuichi; Loffredo, Nicolas; Hisadome, Keigo; Kawamori, Ayumi

    2014-05-01

    We investigated the transfer of canopy-intercepted radiocesium to the forest floor following the Fukushima Daiichi nuclear power plant accident. The cesium-137 (Cs-137) contents of throughfall, stemflow, and litterfall were monitored in two coniferous stands (plantation of Japanese cedar) and a deciduous broad-leaved forest stand (beech with red pine). We also measured an ambient dose rate at different height in the forest by using a survey meter (TCS-172B, Hitachi-Aloka Medical, LTD.) and a portable Ge gamma-ray detector (Detective-DX-100T, Ortec, Ametek, Inc.). In decreasing order of total Cs-137 deposition from the canopy to forest floor were the mature cedar stand, the young cedar stand, and the broad-leaved forest. The ambient dose rate in forest exhibited height dependency and its vertical distribution varied by forest type and stand age. The ambient dose rate showed an exponential decrease with time for all the forest sites, however the decreasing trend differed depending on the height of dose measurement and forest type. The ambient dose rates at the canopy (approx. 10 m-) decreased earlier than physical attenuation of radiocesium, whereas those at the forest floor varied among three forest stands. These data suggested that an ambient dose rate in forest environment can be variable in spatially and temporally reflecting the transfer of radiocesium from canopy to forest floor.

  8. Multi-Level Effects of Low Dose Rate Ionizing Radiation on Southern Toad, Anaxyrus [Bufo] terrestris.

    PubMed

    Stark, Karolina; Scott, David E; Tsyusko, Olga; Coughlin, Daniel P; Hinton, Thomas G

    2015-01-01

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development -embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of 137Cs at 0.13, 2.4, 21, and 222 mGy d-1, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21 mGy d-1 and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae. PMID:25927361

  9. Multi-level effects of low dose rate ionizing radiation on southern toad, Anaxyrus [Bufo] terrestris

    DOE PAGESBeta

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; Coughlin, Daniel P.; Hinton, Thomas G.; Amendola, Roberto

    2015-04-30

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of ¹³⁷Cs at 0.13, 2.4, 21, and 222 mGy d⁻¹, resulting in total doses up to 15.8 Gy. Radiation treatments did notmore » affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21mGy d⁻¹ and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.« less

  10. Multi-Level Effects of Low Dose Rate Ionizing Radiation on Southern Toad, Anaxyrus [Bufo] terrestris

    PubMed Central

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; Coughlin, Daniel P.; Hinton, Thomas G.

    2015-01-01

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of 137Cs at 0.13, 2.4, 21, and 222 mGy d-1, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21 mGy d-1 and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae. PMID:25927361

  11. The influence of dose, dose-rate and particle fragmentation on cataract induction by energetic iron ions

    NASA Technical Reports Server (NTRS)

    Medvedovsky, C.; Worgul, B. V.; Huang, Y.; Brenner, D. J.; Tao, F.; Miller, J.; Zeitlin, C.; Ainsworth, E. J.

    1994-01-01

    Because activities in space necessarily involve chronic exposure to a heterogeneous charged particle radiation field it is important to assess the influence of dose-rate and the possible modulating role of heavy particle fragmentation on biological systems. Using the well-studied cataract model, mice were exposed to plateau 600 MeV/amu Fe-56 ions either as acute or fractionated exposures at total doses of 5-504 cGy. Additional groups of mice received 20, 360 and 504 cGy behind 50 mm of polyethylene, which simulates body shielding. The reference radiation consisted of Co-60 gamma radiation. The animals were examined by slit lamp biomicroscopy over their three year life spans. In accordance with our previous observations with heavy particles, the cataractogenic potential of the 600 MeV/amu Fe-56 ions was greater than for low-Linear Energy Transfer (LET) radiation and increased with decreasing dose relative to gamma rays. Fractionation of a given dose of Fe-56 ions did not reduce the cataractogenicity of the radiation compared to the acute regimen. Fragmentation of the beam in the polyethylene did not alter the cataractotoxicity of the ions, either when administered singly or in fractions.

  12. The influence of dose, dose-rate and particle fragmentation on cataract induction by energetic iron ions

    NASA Astrophysics Data System (ADS)

    Medvedovsky, C.; Worgul, B. V.; Huang, Y.; Brenner, D. J.; Tao, F.; Miller, J.; Zeitlin, C.; Ainsworth, E. J.

    1994-10-01

    Because activities in space necessarily involve chronic exposure to a heterogeneous charged particle radiation field it is important to assess the influence of dose-rate and the possible modulating role of heavy particle fragmentation on biological systems. Using the well-studied cataract model, mice were exposed to plateau 600 MeV/amu 56Fe ions either as acute or fractionated exposures at total doses of 5 - 504 cGy. Additional groups of mice received 20, 360 and 504 cGy behind 50 mm of polyethylene, which simulates body shielding. The reference radiation consisted of 60Co γ radiation. The animals were examined by slit lamp biomicroscopy over their three year life spans. In accordance with our previous observations with heavy particles, the cataractogenic potential of the 600 MeV/amu 56Fe ions was greater than for low-LET radiation and increased with decreasing dose relative to γ-rays. Fractionation of a given dose of 56Fe ions did not reduce the cataractogenicity of the radiation compared to the acute regimen. Fragmentation of the beam in the polyethylene did not alter the cataractotoxicity of the ions, either when administered singly or in fractions.

  13. Dosimetric characteristics of the Leipzig surface applicators used in the high dose rate brachy radiotherapy

    SciTech Connect

    Niu Hongquan; Hsi, Wen C.; Chu, James C.H.; Kirk, Michael C.; Kouwenhoven, Erik

    2004-12-01

    The nucletron Leipzig applicator is designed for (HDR) {sup 192}Ir brachy radiotherapy of surface lesions. The dosimetric characteristics of this applicator were investigated using simulation method based on Monte Carlo N-particle (MCNP) code and phantom measurements. The simulation method was validated by comparing calculated dose rate distributions of nucletron microSelectron HDR {sup 192}Ir source against published data. Radiochromic films and metal-oxide-semiconductor field-effect transistor (MOSFET) detectors were used for phantom measurements. The double exposure technique, correcting the nonuniform film sensitivity, was applied in the film dosimetry. The linear fit of multiple readings with different irradiation times performed for each MOSFET detector measurement was used to obtain the dose rate of each measurement and to correct the source transit-time error. The film and MOSFET measurements have uncertainties of 3%-7% and 3%-5%, respectively. The dose rate distributions of the Leipzig applicator with 30 mm opening calculated by the validated MC method were verified by measurements of film and MOSFET detectors. Calculated two-dimensional planar dose rate distributions show similar patterns as the film measurement. MC calculated dose rate at a reference point defined at depth 5 mm on the applicator's central axis is 7% lower than the film and 3% higher than the MOSFET measurements. The dose rate of a Leipzig applicator with 30 mm opening at reference point is 0.241{+-}3% cGy h{sup -1} U{sup -1}. The MC calculated depth dose rates and profiles were tabulated for clinic use.

  14. An Absorbed-Dose/Dose-Rate Dependence for the Alanine-EPR Dosimetry System and Its Implications in High-Dose Ionizing Radiation Metrology

    PubMed Central

    Desrosiers, M. F.; Puhl, J. M.; Cooper, S. L.

    2008-01-01

    NIST developed the alanine dosimetry system in the early 1990s to replace radiochromic dye film dosimeters. Later in the decade the alanine system was firmly established as a transfer service for high-dose radiation dosimetry and an integral part of the internal calibration scheme supporting these services. Over the course of the last decade, routine monitoring of the system revealed a small but significant observation that, after examination, led to the characterization of a previously unknown absorbed-dose-dependent, dose-rate effect for the alanine system. Though the potential impact of this effect is anticipated to be extremely limited for NIST’s customer-based transfer dosimetry service, much greater implications may be realized for international measurement comparisons between National Measurement Institutes. PMID:27096113

  15. Radiobiological effects of altering dose rate in filter-free photon beams.

    PubMed

    Karan, T; Moiseenko, V; Gill, B; Horwood, R; Kyle, A; Minchinton, A I

    2013-02-21

    To validate that altering radiotherapy dose rate through either changing pulse repetition frequency or instantaneous dose rate does not have an effect on cell survival, two human carcinoma and a hamster lung cell line were irradiated with various beam settings. Varian TrueBeam linac with a flattening filter free mode of operation was used for all experiments. The results obtained indicate that either method of changing dose rate has no effect on cell survival in the three cell lines studied. Filtered and filter free modes were also compared in treatments with protracted dose delivery which significantly increases overall treatment time. Cell survival indicated no difference between filter and filter free beam delivery in any of the protraction schemes. An increase in survival was seen in both modes upon protracting dose delivery to 15, 30 or 60 min rather than delivering acutely. Further, analysis of induced DNA double-strand breaks via the γH2AX assay showed no difference between filtered and unfiltered beams. The following study suggests that increasing dose rate is an acceptable manner of decreasing radiotherapy treatment time that does not have any detrimental effects on in vitro cell eradication. PMID:23363688

  16. Radiobiological effects of altering dose rate in filter-free photon beams

    NASA Astrophysics Data System (ADS)

    Karan, T.; Moiseenko, V.; Gill, B.; Horwood, R.; Kyle, A.; Minchinton, A. I.

    2013-02-01

    To validate that altering radiotherapy dose rate through either changing pulse repetition frequency or instantaneous dose rate does not have an effect on cell survival, two human carcinoma and a hamster lung cell line were irradiated with various beam settings. Varian TrueBeam linac with a flattening filter free mode of operation was used for all experiments. The results obtained indicate that either method of changing dose rate has no effect on cell survival in the three cell lines studied. Filtered and filter free modes were also compared in treatments with protracted dose delivery which significantly increases overall treatment time. Cell survival indicated no difference between filter and filter free beam delivery in any of the protraction schemes. An increase in survival was seen in both modes upon protracting dose delivery to 15, 30 or 60 min rather than delivering acutely. Further, analysis of induced DNA double-strand breaks via the γH2AX assay showed no difference between filtered and unfiltered beams. The following study suggests that increasing dose rate is an acceptable manner of decreasing radiotherapy treatment time that does not have any detrimental effects on in vitro cell eradication.

  17. Dose rate dependence of the current noise performance of an ultra-low noise precision bipolar operational amplifier

    SciTech Connect

    Hiemstra, D.M.

    1999-12-01

    The dose rate dependence of the current noise of a bipolar operational amplifier is presented. Total current noise performance degrades linearly with increasing dose rate. Generation-recombination, white and 1/f spectral components contribute to the degradation. The generation-recombination component is the most significant contributor to dose rate dependent current noise degradation.

  18. Effects of trapped proton flux anisotropy on dose rates in low Earth orbit.

    PubMed

    Badhwar, G D; Kushin, V V; Akatov YuA; Myltseva, V A

    1999-06-01

    Trapped protons in the South Atlantic Anomaly (SAA) have a rather narrow pitch angle distribution and exhibit east-west anisotropy. In low Earth orbits, the E-W effect results in different amounts of radiation dose received by different sections of the spacecraft. This effect is best studied on missions in which the spacecraft flies in a fixed orientation. The magnitude of the effect depends on the particle energy and altitude through the SAA. In this paper, we describe a clear example of this effect from measurements of radiation dose rates and linear energy transfer spectra made on Space Shuttle flight STS-94 (28.5 degree inclination x 296 km altitude). The ratio of dose rates from the two directions at this location in the mid-deck was 2.7. As expected from model calculations, the spectra from the two directions are different, that is the ratio is energy dependent. The data can be used to distinguish the anisotropy models. The flight carried an active tissue equivalent proportional counter (TEPC), and passive thermoluminscent detectors (TLDs), and two types of nuclear emulsions. Using nuclear emulsions, charged particles and secondary neutron energy spectra were measured. The combined galactic cosmic radiation+trapped charged particle lineal energy spectra measured by the TEPC and the linear energy transfer spectrum measured by nuclear emulsions are in good agreement. The charged particle absorbed dose rates varied from 112 to 175 microGy/day, and dose equivalent rates from 264.3 to 413 microSv/day. Neutrons in the 1-10 MeV contributed a dose rate of 3.7 microGy/day and dose equivalent rate of 30.8 microSv/day, respectively. PMID:11543145

  19. Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors

    SciTech Connect

    Nelms, Benjamin E.; Zhen Heming; Tome, Wolfgang A.

    2011-02-15

    Purpose: The purpose of this work is to determine the statistical correlation between per-beam, planar IMRT QA passing rates and several clinically relevant, anatomy-based dose errors for per-patient IMRT QA. The intent is to assess the predictive power of a common conventional IMRT QA performance metric, the Gamma passing rate per beam. Methods: Ninety-six unique data sets were created by inducing four types of dose errors in 24 clinical head and neck IMRT plans, each planned with 6 MV Varian 120-leaf MLC linear accelerators using a commercial treatment planning system and step-and-shoot delivery. The error-free beams/plans were used as ''simulated measurements'' (for generating the IMRT QA dose planes and the anatomy dose metrics) to compare to the corresponding data calculated by the error-induced plans. The degree of the induced errors was tuned to mimic IMRT QA passing rates that are commonly achieved using conventional methods. Results: Analysis of clinical metrics (parotid mean doses, spinal cord max and D1cc, CTV D95, and larynx mean) vs IMRT QA Gamma analysis (3%/3 mm, 2/2, 1/1) showed that in all cases, there were only weak to moderate correlations (range of Pearson's r-values: -0.295 to 0.653). Moreover, the moderate correlations actually had positive Pearson's r-values (i.e., clinically relevant metric differences increased with increasing IMRT QA passing rate), indicating that some of the largest anatomy-based dose differences occurred in the cases of high IMRT QA passing rates, which may be called ''false negatives.'' The results also show numerous instances of false positives or cases where low IMRT QA passing rates do not imply large errors in anatomy dose metrics. In none of the cases was there correlation consistent with high predictive power of planar IMRT passing rates, i.e., in none of the cases did high IMRT QA Gamma passing rates predict low errors in anatomy dose metrics or vice versa. Conclusions: There is a lack of correlation between

  20. Radiation bronchitis and stenosis secondary to high dose rate endobronchial irradiation

    SciTech Connect

    Speiser, B.L. ); Spratling, L.

    1993-03-15

    The purpose of the study was to describe a new clinical entity observed in follow-up bronchoscopies in patients who were treated with high dose rate and medium dose rate remote afterloading brachytherapy of the tracheobronchial tree. Patients were treated by protocol with medium dose rate, 47 patients receiving 1000 cGy at a 5 mm depth times three fractions, high dose rate 144 patients receiving 1000 cGy at a 10 mm depth for three fractions and high dose rate 151 patients receiving cGy at a 10 mm depth for three fractions followed by bronchoscopy. Incidence of this entity was 9% for the first group, 12% for the second, and 13% for the third group. Reactions were grade 1 consisting of mild inflammatory response with a partial whitish circumferential membrane in an asymptomatic patient; grade 2, thicker complete white circumferential membrane with cough and/or obstructive problems requiring intervention; grade 3, severe inflammatory response with marked membranous exudate and mild fibrotic reaction; and grade 4 a predominant fibrotic reaction with progressive stenosis. Variables associated with a slightly increased incidence of radiation bronchitis and stenosis included: large cell carcinoma histology, curative intent, prior laser photoresection, and/or concurrent external radiation. Survival was the strongest predictor of the reaction. Radiation bronchitis and stenosis is a new clinical entity that must be identified in bronchial brachytherapy patients and treated appropriately. 23 refs., 3 figs., 7 tabs.

  1. Gross Gamma Dose Rate Measurements for TRIGA Spent Nuclear Fuel Burnup Validation

    SciTech Connect

    Winston, Philip Lon; Sterbentz, James William

    2001-04-01

    Gross gamma-ray dose rates from six spent TRIGA fuel elements were measured and compared to calculated values as a means to validate the reported element burnups. A newly installed and functional gamma-ray detection subsystem of the In-Cell Examination System was used to perform the measurements and is described in some detail. The analytical methodology used to calculate the corresponding dose rates is presented along with the calculated values. Comparison of the measured and calculated dose rates for the TRIGA fuel elements indicates good agreement (less than a factor of 2 difference). The intent of the subsystem is to measure the gross gamma dose rate and correlate the measurement to a calculated dose rate based on the element s known burnup and other pertinent spent fuel information. Although validation of the TRIGA elements’ burnup is of primary concern in this paper, the measurement and calculational techniques can be used to either validate an element’s reported burnup or provide a burnup estimate for an element with an unknown burnup.

  2. Gross Gamma Dose Rate Measurements for TRIGA Spent Nuclear Fuel Burnup Validation

    SciTech Connect

    Winston, P.L.; Sterbentz, J.W.

    2002-07-01

    Gross gamma-ray dose rates from six spent TRIGA fuel elements were measured and compared to calculated values as a means to validate the reported element burnups. A newly installed and functional gamma-ray detection subsystem of the In-Cell Examination System was used to perform the measurements and is described in some detail. The analytical methodology used to calculate the corresponding dose rates is presented along with the calculated values. Comparison of the measured and calculated dose rates for the TRIGA fuel elements indicates good agreement (less than a factor of 2 difference). The intent of the subsystem is to measure the gross gamma dose rate and correlate the measurement to a calculated dose rate based on the element s known burnup and other pertinent spent fuel information. Although validation of the TRIGA elements' burnup is of primary concern in this paper, the measurement and calculational techniques can be used to either validate an element's reported burnup or provide a burnup estimate for an element with an unknown burnup. (authors)

  3. Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies

    SciTech Connect

    Pond, R.B.; Matos, J.E.

    1996-05-01

    As part of the Department of Energy`s spent nuclear fuel acceptance criteria, the mass of uranium and transuranic elements in spent research reactor fuel must be specified. These data are, however, not always known or readily determined. It is the purpose of this report to provide estimates of these data for some of the more common research reactor fuel assembly types. The specific types considered here are MTR, TRIGA and DIDO fuel assemblies. The degree of physical protection given to spent fuel assemblies is largely dependent upon the photon dose rate of the spent fuel material. These data also, are not always known or readily determined. Because of a self-protecting dose rate level of radiation (dose rate greater than 100 ren-x/h at I m in air), it is important to know the dose rate of spent fuel assemblies at all time. Estimates of the photon dose rate for spent MTR, TRIGA and DIDO-type fuel assemblies are given in this report.

  4. Measured dose rate constant from oncology patients administered 18F for positron emission tomography

    SciTech Connect

    Quinn, Brian; Holahan, Brian; Aime, Jean; Humm, John; St Germain, Jean; Dauer, Lawrence T.

    2012-10-15

    Purpose: Patient exposure rate measurements verify published patient dose rate data and characterize dose rates near 2-18-fluorodeoxyglucose ({sup 18}F-FDG) patients. A specific dose rate constant based on patient exposure rate measurements is a convenient quantity that can be applied to the desired distance, injection activity, and time postinjection to obtain an accurate calculation of cumulative external radiation dose. This study reports exposure rates measured at various locations near positron emission tomography (PET) {sup 18}F-FDG patients prior to PET scanning. These measurements are normalized for the amount of administered activity, measurement distance, and time postinjection and are compared with other published data. Methods: Exposure rates were measured using a calibrated ionization chamber at various body locations from 152 adult oncology patients postvoid after a mean uptake time of 76 min following injection with a mean activity of 490 MBq {sup 18}F-FDG. Data were obtained at nine measurement locations for each patient: three near the head, four near the chest, and two near the feet. Results: On contact with, 30 cm superior to and 30 cm lateral to the head, the mean (75th percentile) dose rates per unit injected activity at 60 min postinjection were 0.482 (0.511), 0.135 (0.155), and 0.193 (0.223) {mu}Sv/MBq h, respectively. On contact with, 30 cm anterior to, 30 cm lateral to and 1 m anterior to the chest, the mean (75th percentile) dose rates per unit injected activity at 60 min postinjection were 0.623 (0.709), 0.254 (0.283), 0.190 (0.218), and 0.067 (0.081) {mu}Sv/MBq h respectively. 30 cm inferior and 30 cm lateral to the feet, the mean (75th percentile) dose rates per unit injected activity at 60 min postinjection were 0.024 (0.022) and 0.039 (0.044) {mu}Sv/MBq h, respectively. Conclusions: The measurements for this study support the use of 0.092 {mu}Sv m{sup 2}/MBq h as a reasonable representation of the dose rate anterior from the chest of

  5. Dosimetric impact of source-positioning uncertainty in high-dose-rate balloon brachytherapy of breast cancer

    PubMed Central

    2015-01-01

    Purpose To evaluate the dosimetric impact of source-positioning uncertainty in high-dose-rate (HDR) balloon brachytherapy of breast cancer. Material and methods For 49 HDR balloon patients, each dwell position of catheter(s) was manually shifted distally (+) and proximally (–) with a magnitude from 1 to 4 mm. Total 392 plans were retrospectively generated and compared to corresponding clinical plans using 7 dosimetric parameters: dose (D95) to 95% of planning target volume for evaluation (PTV_EVAL), and volume covered by 100% and 90% of the prescribed dose (PD) (V100 and V90); skin and rib maximum point dose (Dmax); normal breast tissue volume receiving 150% and 200% of PD (V150 and V200). Results PTV_EVAL dosimetry deteriorated with larger average/maximum reduction (from ± 1 mm to ± 4 mm) for larger source position uncertainty (p value < 0.0001): from 1.0%/2.5%, 3.3%/5.9%, 6.3%/10.0% to 9.8%/14.5% for D95; from 1.0%/2.6%, 3.1%/5.7%, 5.8%/8.9% to 8.7%/12.3% for V100; from 0.2%/1.5%, 1.0%/4.0%, 2.7%/6.8% to 5.1%/10.3% for V90. ≥ ± 3 mm shift reduced average D95 to < 95% and average V100 to < 90%. While skin and rib Dmax change was case-specific, its absolute change (∣Δ(Value)∣) showed that larger shift and high dose group had larger variation compared to smaller and lower dose group (p value < 0.0001), respectively. Normal breast tissue V150 variation was case-specific and small. Average ∣Δ(V150)∣ was 0.2 cc for the largest shift (± 4 mm) with maximum < 1.7 cc. V200 was increased with higher elevation for larger shift: from 6.4 cc/9.8 cc, 7.0 cc/10.1 cc, 8.0 cc/11.3 cc to 9.2 cc/ 13.0 cc. Conclusions The tolerance of ± 2 mm recommended by AAPM TG 56 is clinically acceptable in most clinical cases. However, special attention should be paid to a case where both skin and rib are located proximally to balloon, and the orientation of balloon catheter(s) is vertical to these critical structures. In this case, sufficient dosimetric planning margins are

  6. Salvage high-dose-rate interstitial brachytherapy for locally recurrent rectal cancer*

    PubMed Central

    Pellizzon, Antônio Cássio Assis

    2016-01-01

    For tumors of the lower third of the rectum, the only safe surgical procedure is abdominal-perineal resection. High-dose-rate interstitial brachytherapy is a promising treatment for local recurrence of previously irradiated lower rectal cancer, due to the extremely high concentrated dose delivered to the tumor and the sparing of normal tissue, when compared with a course of external beam radiation therapy. PMID:27403021

  7. The MapCHECK Measurement Uncertainty function and its effect on planar dose pass rates.

    PubMed

    Bailey, Daniel W; Spaans, Jason D; Kumaraswamy, Lalith K; Podgorsak, Matthew B

    2016-01-01

    Our study aimed to quantify the effect of the Measurement Uncertainty function on planar dosimetry pass rates, as measured and analyzed with the Sun Nuclear Corporation MapCHECK 2 array and its associated software. This optional func-tion is toggled in the program preferences of the software (though turned on by default upon installation), and automatically increases the dose difference toler-ance defined by the user for each planar dose comparison. Dose planes from 109 static-gantry IMRT fields and 40 VMAT arcs, of varying modulation complexity, were measured at 5 cm water-equivalent depth in the MapCHECK 2 diode array, and respective calculated dose planes were exported from a commercial treatment planning system. Planar dose comparison pass rates were calculated within the Sun Nuclear Corporation analytic software using a number of calculation parameters, including Measurement Uncertainty on and off. By varying the percent difference (%Diff) criterion for similar analyses performed with Measurement Uncertainty turned off, an effective %Diff criterion was defined for each field/arc corresponding to the pass rate achieved with Measurement Uncertainty turned on. On average, the Measurement Uncertainty function increases the user-defined %Diff criterion by 0.8%-1.1% for 3%/3 mm analysis, depending on plan type and calculation technique (corresponding to an average change in pass rate of 1.0%-3.5%, and a maximum change of 8.7%). At the 2%/2 mm level, the Measurement Uncertainty function increases the user-defined %Diff criterion by 0.7%-1.2% on average, again depending on plan type and calculation technique (corresponding to an average change in pass rate of 3.5%-8.1%, and a maximum change of 14.2%). The largest increases in pass rate due to the Measurement Uncertainty function are generally seen with poorly matched planar dose comparisons, while the function has a notably smaller effect as pass rates approach 100%. The Measurement Uncertainty func-tion, then, may

  8. Dose Rate Calibration of a Commercial Beta-Particle Irradiator Used In Archeological and Geological Dating

    SciTech Connect

    Bernal, S.M.

    2004-10-31

    The 801E Multiple Sample Irradiator, manufactured by Daybreak Nuclear Systems, is capable of exposing up to 30 samples to beta radiation by placing each sample one by one directly beneath a heavily shielded ceramic Sr-90/Y-90 source and opening a specially designed shutter. Daybreak Nuclear Systems does not provide the {sup 90}Sr/{sup 90}Y dose rate to the sample because of variations of up to 20% in the nominal activity of the beta sources (separately manufactured by AEA Technology). Thus it is left to the end user to determine. Here aluminum oxide doped with carbon (Al{sub 2}O{sub 3}:C), in the form of Landauer's Luxel{trademark}, was irradiated to different known doses using a calibrated {sup 90}Sr/{sup 90}Y beta particle irradiator, and the OSL signal monitored after each irradiation to generate a calibration curve. Comparison of the OSL Signal from the unknown 801E Irradiator dose with the calibration curve enabled the dose and therefore dose rate to be determined. The timing accuracy of the 801E Irradiator was also evaluated and found to be +/- 0.5 seconds. The dose rate of the beta source was found to be 0.147 +/- 0.007 Gy/s.

  9. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    NASA Technical Reports Server (NTRS)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further

  10. Efficacy of a Low Dose of Estrogen on Antioxidant Defenses and Heart Rate Variability

    PubMed Central

    Casali, Karina Rabello; Baraldi, Dhãniel; Conzatti, Adriana; Araújo, Alex Sander da Rosa; Khaper, Neelam; Llesuy, Susana; Rigatto, Katya; Belló-Klein, Adriane

    2014-01-01

    This study tested whether a low dose (40% less than the pharmacological dose of 17-β estradiol) would be as effective as the pharmacological dose to improve cardiovascular parameters and decrease cardiac oxidative stress. Female Wistar rats (n = 9/group) were divided in three groups: (1) ovariectomized (Ovx), (2) ovariectomized animals treated for 21 days with low dose (LE; 0.2 mg), and (3) high dose (HE; 0.5 mg) 17-β estradiol subcutaneously. Hemodynamic assessment and spectral analysis for evaluation of autonomic nervous system regulation were performed. Myocardial superoxide dismutase (SOD) and catalase (CAT) activities, redox ratio (GSH/GSSG), total radical-trapping antioxidant potential (TRAP), hydrogen peroxide, and superoxide anion concentrations were measured. HE and LE groups exhibited an improvement in hemodynamic function and heart rate variability. These changes were associated with an increase in the TRAP, GSH/GSSG, SOD, and CAT. A decrease in hydrogen peroxide and superoxide anion was also observed in the treated estrogen groups as compared to the Ovx group. Our results indicate that a low dose of estrogen is just as effective as a high dose into promoting cardiovascular function and reducing oxidative stress, thereby supporting the approach of using low dose of estrogen in clinical settings to minimize the risks associated with estrogen therapy. PMID:24738017

  11. Isodose mapping of terrestrial gamma radiation dose rate of Selangor state, Kuala Lumpur and Putrajaya, Malaysia.

    PubMed

    Sanusi, M S M; Ramli, A T; Gabdo, H T; Garba, N N; Heryanshah, A; Wagiran, H; Said, M N

    2014-09-01

    A terrestrial gamma radiation survey for the state of Selangor, Kuala Lumpur and Putrajaya was conducted to obtain baseline data for environmental radiological health practices. Based on soil type, geological background and information from airborne survey maps, 95 survey points statistically representing the study area were determined. The measured doses varied according to geological background and soil types. They ranged from 17 nGy h(-1) to 500 nGy h(-1). The mean terrestrial gamma dose rate in air above the ground was 182 ± 81 nGy h(-1). This is two times higher than the average dose rate of terrestrial gamma radiation in Malaysia which is 92 nGy h(-1) (UNSCEAR 2000). An isodose map was produced to represent exposure rate from natural sources of terrestrial gamma radiation. PMID:24787672

  12. Biological cell irradiation at ultrahigh dose rate employing laser driven protons

    SciTech Connect

    Doria, D.; Kakolee, K. F.; Kar, S.; and others

    2012-07-09

    The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen's University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 10{sup 9}Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4{+-}0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.

  13. A full-dimensional model of ozone forming reaction: the absolute value of the recombination rate coefficient, its pressure and temperature dependencies.

    PubMed

    Teplukhin, Alexander; Babikov, Dmitri

    2016-07-28

    Rigorous calculations of scattering resonances in ozone are carried out for a broad range of rotational excitations. The accurate potential energy surface of Dawes is adopted, and a new efficient method for calculations of ro-vibrational energies, wave functions and resonance lifetimes is employed (which uses hyper-spherical coordinates, the sequential diagonalization/truncation approach, grid optimization and complex absorbing potential). A detailed analysis is carried out to characterize distributions of resonance energies and lifetimes, their rotational/vibrational content and their positions with respect to the centrifugal barrier. Emphasis is on the contribution of these resonances to the recombination process that forms ozone. It is found that major contributions come from localized resonances at energies near the top of the barrier. Delocalized resonances at higher energies should also be taken into account, while very narrow resonances at low energies (trapped far behind the centrifugal barrier) should be treated as bound states. The absolute value of the recombination rate coefficient, its pressure and temperature dependencies are obtained using the energy-transfer model developed in the earlier work. Good agreement with experimental data is obtained if one follows the suggestion of Troe, who argued that the energy transfer mechanism of recombination is responsible only for 55% of the recombination rate (with the remaining 45% coming from the competing chaperon mechanism). PMID:27364351

  14. Degradation and annealing studies on gamma rays irradiated COTS PPD CISs at different dose rates

    NASA Astrophysics Data System (ADS)

    Wang, Zujun; Ma, Yingwu; Liu, Jing; Xue, Yuan; He, Baoping; Yao, Zhibin; Huang, Shaoyan; Liu, Minbo; Sheng, Jiangkun

    2016-06-01

    The degradation and annealing studies on Colbalt-60 gamma-rays irradiated commercial-off-the-shelf (COTS) pinned photodiode (PPD) CMOS image sensors (CISs) at the various dose rates are presented. The irradiation experiments of COTS PPD CISs are carried out at 0.3, 3.0 and 30.0 rad(Si)/s. The COTS PPD CISs are manufactured using a standard 0.18-μm CMOS technology with four-transistor pixel PPD architecture. The behavior of the tested CISs shows a remarkable degradation after irradiation and differs in the dose rates. The dark current, dark signal non-uniformity (DSNU), random noise, saturation output, signal to noise ratio (SNR), and dynamic range (DR) versus the total ionizing dose (TID) at the various dose rates are investigated. The tendency of dark current, DSNU, and random noise increase and saturation output, SNR, and DR to decrease at 3.0 rad(Si)/s are far greater than those at 0.3 and 30.0 rad(Si)/s. The damage mechanisms caused by TID irradiation at the various dose rates are also analyzed. The annealing tests are carried out at room temperature with unbiased conditions after irradiation.

  15. Radiation-induced 1/f noise degradation of PNP bipolar junction transistors at different dose rates

    NASA Astrophysics Data System (ADS)

    Qi-Feng, Zhao; Yi-Qi, Zhuang; Jun-Lin, Bao; Wei, Hu

    2016-04-01

    It is found that ionizing-radiation can lead to the base current and the 1/f noise degradations in PNP bipolar junction transistors. In this paper, it is suggested that the surface of the space charge region of the emitter-base junction is the main source of the base surface 1/f noise. A model is developed which identifies the parameters and describes their interactive contributions to the recombination current at the surface of the space charge region. Based on the theory of carrier number fluctuation and the model of surface recombination current, a 1/f noise model is developed. This model suggests that 1/f noise degradations are the result of the accumulation of oxide-trapped charges and interface states. Combining models of ELDRS, this model can explain the reason why the 1/f noise degradation is more severe at a low dose rate than at a high dose rate. The radiations were performed in a Co60 source up to a total dose of 700 Gy(Si). The low dose rate was 0.001 Gy(Si)/s and the high dose rate was 0.1 Gy(Si)/s. The model accords well with the experimental results. Project supported by the National Natural Science Foundation of China (Grant Nos. 61076101 and 61204092).

  16. [Measurement of the Dose Rate Using Dosimeters in Interventional Radiology and Its Difficulty].

    PubMed

    Yoshida, Hidenori; Takahashi, Chiharu; Narita, Nobuhiro; Mizusawa, Yasuhiko; Sekiya, Masaru; Ohkubo, Masaki

    2016-01-01

    In equipment used for interventional radiology (IVR), automatic exposure control (AEC) is incorporated to obtain the X-ray output suitable for the treatment of targeted lesions. For the AEC, users select a region as the signal sensing region (measuring field, MF) in the flat panel detector; MFs with various sizes and shapes were pre-defined and prepared in the system. The aim of this study was to examine the change of measured dose rate with the selection of MFs, the type of dosimeters (the ionization chamber dosimeter and the semiconductor dosimeter), and the dosimeter placement relative to the direction of X-ray tube (from cathode to anode). The IVR equipment was Allura Xper FD20/10 (Philips Medical Systems), and six kinds of built-in MFs were used. It was found that dose rate measured by the ionization chamber dosimeter showed a variation of -2 mGy/min with the MFs and the ionization chamber dosimeter placement. The dose rate measured by the semiconductor dosimeter showed more variation than the ionization chamber dosimeter. The change of dose rate with the dosimeter placement would be caused by the MF overlapping the dosimeter which would affect the AEC (the X-ray output). Also, the change of dose rate with the dosimeter placement was considered to be related to the heel effect of the X-ray beam. When performing dose rate measurements, we should notice that the selection of MFs, the type of dosimeters, and the dosimeter placement would affect the measured values. PMID:26796935

  17. Moving from gamma passing rates to patient DVH-based QA metrics in pretreatment dose QA

    SciTech Connect

    Zhen, Heming; Nelms, Benjamin E.; Tome, Wolfgang A.

    2011-10-15

    Purpose: The purpose of this work is to explore the usefulness of the gamma passing rate metric for per-patient, pretreatment dose QA and to validate a novel patient-dose/DVH-based method and its accuracy and correlation. Specifically, correlations between: (1) gamma passing rates for three 3D dosimeter detector geometries vs clinically relevant patient DVH-based metrics; (2) Gamma passing rates of whole patient dose grids vs DVH-based metrics, (3) gamma passing rates filtered by region of interest (ROI) vs DVH-based metrics, and (4) the capability of a novel software algorithm that estimates corrected patient Dose-DVH based on conventional phan-tom QA data are analyzed. Methods: Ninety six unique ''imperfect'' step-and-shoot IMRT plans were generated by applying four different types of errors on 24 clinical Head/Neck patients. The 3D patient doses as well as the dose to a cylindrical QA phantom were then recalculated using an error-free beam model to serve as a simulated measurement for comparison. Resulting deviations to the planned vs simulated measured DVH-based metrics were generated, as were gamma passing rates for a variety of difference/distance criteria covering: dose-in-phantom comparisons and dose-in-patient comparisons, with the in-patient results calculated both over the whole grid and per-ROI volume. Finally, patient dose and DVH were predicted using the conventional per-beam planar data as input into a commercial ''planned dose perturbation'' (PDP) algorithm, and the results of these predicted DVH-based metrics were compared to the known values. Results: A range of weak to moderate correlations were found between clinically relevant patient DVH metrics (CTV-D95, parotid D{sub mean}, spinal cord D1cc, and larynx D{sub mean}) and both 3D detector and 3D patient gamma passing rate (3%/3 mm, 2%/2 mm) for dose-in-phantom along with dose-in-patient for both whole patient volume and filtered per-ROI. There was considerable scatter in the gamma passing rate

  18. Investigation of pulsed low dose rate radiotherapy using dynamic arc delivery techniques

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Lin, M. H.; Dai, X. F.; Koren, Sion; Klayton, T.; Wang, L.; Li, J. S.; Chen, L.; Price, R. A.

    2012-07-01

    There has been no consensus standard of care to treat recurrent cancer patients who have previously been irradiated. Pulsed low dose rate (PLDR) external beam radiotherapy has the potential to reduce normal tissue toxicities while still providing significant tumor control for recurrent cancers. This work investigates the dosimetry feasibility of PLDR treatment using dynamic arc delivery techniques. Five treatment sites were investigated in this study including breast, pancreas, prostate, head and neck, and lung. Dynamic arc plans were generated using the Varian Eclipse system and the RapidArc delivery technique with 6 and 10 MV photon beams. Each RapidArc plan consisted of two full arcs and the plan was delivered five times to achieve a daily dose of 200 cGy. The dosimetry requirement was to deliver approximately 20 cGy/arc with a 3 min interval to achieve an effective dose rate of 6.7 cGy min-1. Monte Carlo simulations were performed to calculate the actual dose delivered to the planning target volume (PTV) per arc taking into account beam attenuation/scattering and intensity modulation. The maximum, minimum and mean doses to the PTV were analyzed together with the dose volume histograms and isodose distributions. The dose delivery for the five plans was validated using solid water phantoms inserted with an ionization chamber and film, and a cylindrical detector array. Two intensity-modulated arcs were used to efficiently deliver the PLDR plans that provided conformal dose distributions for treating complex recurrent cancers. For the five treatment sites, the mean PTV dose ranged from 18.9 to 22.6 cGy/arc. For breast, the minimum and maximum PTV dose was 8.3 and 35.2 cGy/arc, respectively. The PTV dose varied between 12.9 and 27.5 cGy/arc for pancreas, 12.6 and 28.3 cGy/arc for prostate, 12.1 and 30.4 cGy/arc for H&N, and 16.2 and 27.6 cGy/arc for lung. Advanced radiation therapy can provide superior target coverage and normal tissue sparing for PLDR

  19. The susceptibility of TaOx-based memristors to high dose rate ionizing radiation and total ionizing dose

    SciTech Connect

    McLain, Michael Lee; Sheridan, Timothy J.; Hjalmarson, Harold Paul; Mickel, Patrick R.; Hanson, Donald J.; McDonald, Joseph K.; Hughart, David Russell; Marinella, Matthew J.

    2014-11-11

    This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaOx) memristors. Transient data were obtained during the pulsed exposures for dose rates ranging from approximately 5.0 ×107 rad(Si)/s to 4.7 ×108 rad(Si)/s and for pulse widths ranging from 50 ns to 50 μs. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of ~3.0 ×108 rad(Si)/s. This is the first dose rate study on any type of memristive memory technology. In addition to assessing the tolerance of TaOx memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. As a result, numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages.

  20. Iron Oxide Nanoparticle Agglomeration Influences Dose-Rates and Modulates Oxidative Stress Mediated Dose-Response Profiles In Vitro

    SciTech Connect

    Sharma, Gaurav; Kodali, Vamsi K.; Gaffrey, Matthew J.; Wang, Wei; Minard, Kevin R.; Karin, Norman J.; Teeguarden, Justin G.; Thrall, Brian D.

    2013-07-31

    Spontaneous agglomeration of engineered nanoparticles (ENPs) is a common problem in cell culture media which can confound interpretation of in vitro nanotoxicity studies. The authors created stable agglomerates of iron oxide nanoparticles (IONPs) in conventional culture medium, which varied in hydrodynamic size (276 nm-1.5 μm) but were composed of identical primary particles with similar surface potentials and protein coatings. Studies using C10 lung epithelial cells show that the dose rate effects of agglomeration can be substantial, varying by over an order of magnitude difference in cellular dose in some cases. Quantification by magnetic particle detection showed that small agglomerates of carboxylated IONPs induced greater cytotoxicity and redox-regulated gene expression when compared with large agglomerates on an equivalent total cellular IONP mass dose basis, whereas agglomerates of amine-modified IONPs failed to induce cytotoxicity or redox-regulated gene expression despite delivery of similar cellular doses. Dosimetry modelling and experimental measurements reveal that on a delivered surface area basis, large and small agglomerates of carboxylated IONPs have similar inherent potency for the generation of ROS, induction of stress-related genes and eventual cytotoxicity. The results suggest that reactive moieties on the agglomerate surface are more efficient in catalysing cellular ROS production than molecules buried within the agglomerate core. Because of the dynamic, size and density-dependent nature of ENP delivery to cells in vitro, the biological consequences of agglomeration are not discernible from static measures of exposure concentration (μg/ml) alone, highlighting the central importance of integrated physical characterisation and quantitative dosimetry for in vitro studies. The combined experimental and computational approach provides a quantitative framework for evaluating relationships between the biocompatibility of nanoparticles and their

  1. ANALYSIS OF DOSE RATES DURING REPLACEMENT OF MANIPULATORS IN THE FFTF INTERIM EXAMINATION & MAINTENANCE (IEM) CELL

    SciTech Connect

    NELSON, J.V.

    2002-01-23

    Replacement of a master-slave manipulator in the Interim Examination and Maintenance Cell at the Fast Flux Test Facility was carried out in August 2001. This operation created a 178-mm opening in the thick concrete wall of the hot cell. To aid in radiological work planning, dose rates outside the penetration in the wall were predicted using MCNP{trademark} photon transport calculations. The predicted dose rate was 7.7 mrem/h, which was reasonably close to the value of 10.4 mrem/h inferred from measurements.

  2. Benchmark Experiment of Dose Rate Distributions Around the Gamma Knife Medical Apparatus

    SciTech Connect

    Oishi, K.; Kosako, K.; Kobayashi, Y.; Sonoki, I.

    2014-06-15

    Dose rate measurements around a gamma knife apparatus were performed by using an ionization chamber. Analyses have been performed by using the Monte Carlo code MCNP-5. The nuclear library used for the dose rate distribution of {sup 60}Co was MCPLIB04. The calculation model was prepared with a high degree of fidelity, such as the position of each Cobalt source and shielding materials. Comparisons between measured results and calculated ones were performed, and a very good agreement was observed. It is concluded that the Monte Carlo calculation method with its related nuclear data library is very effective for such a complicated radiation oncology apparatus.

  3. Benchmark Experiment of Dose Rate Distributions Around the Gamma Knife Medical Apparatus

    NASA Astrophysics Data System (ADS)

    Oishi, K.; Kosako, K.; Kobayashi, Y.; Sonoki, I.

    2014-06-01

    Dose rate measurements around a gamma knife apparatus were performed by using an ionization chamber. Analyses have been performed by using the Monte Carlo code MCNP-5. The nuclear library used for the dose rate distribution of 60Co was MCPLIB04. The calculation model was prepared with a high degree of fidelity, such as the position of each Cobalt source and shielding materials. Comparisons between measured results and calculated ones were performed, and a very good agreement was observed. It is concluded that the Monte Carlo calculation method with its related nuclear data library is very effective for such a complicated radiation oncology apparatus.

  4. ITER Generic Diagnostic Upper Port Plug Nuclear Heating and Personnel Dose Rate Assesment

    SciTech Connect

    Russell E. Feder and Mahmoud Z. Youssef

    2009-01-28

    Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of a large aperture diagnostic were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture. The neutronics discrete-ordinates code ATTILA® and SEVERIAN® (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken from the ITER “Brand Model” MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and Large Aperture cases. The Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 μSv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 μSv/hr but fell below the limit to 90 μSv/hr 2-weeks later. The Large Aperture style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230

  5. Dose-rate and irradiation temperature dependence of BJT SPICE model rad-parameters

    SciTech Connect

    Montagner, X.; Briand, R.; Fouillat, P.; Touboul, A.; Schrimpf, R.D.; Galloway, K.F.; Calvet, M.C.; Calvel, P.

    1998-06-01

    A method to predict low dose rate degradation of bipolar transistors using high dose-rate, high temperature irradiation is evaluated, based on an analysis of four new rad-parameters that are introduced in the BJT SPICE model. This improved BJT model describes the radiation-induced excess base current with great accuracy. The low-level values of the rad-parameters are good tools for evaluating the proposed high-temperature test method because of their high sensitivity to radiation-induced degradation.

  6. Development and characterization of a novel variable low-dose rate irradiator for in vivo mouse studies

    PubMed Central

    Olipitz, Werner; Hembrador, Sheena; Davidson, Matthew; Yanch, Jacquelyn C.; Engelward, Bevin P.

    2011-01-01

    Radiation exposure of humans generally results in low doses delivered at low dose-rate. Our limited knowledge of the biological effects of low dose radiation is mainly based on data from the atomic bomb long-term survivor study (LSS) cohort. However, the total doses and dose-rates in the LSS cohort are still higher than most environmental and occupational exposures in humans. Importantly, the dose-rate is a critical determinant of health risks stemming from radiation exposure. Understanding the shape of the dose-rate response curve for different biological outcomes is thus crucial for projecting the biological hazard from radiation in different environmental and man-made conditions. A significant barrier to performing low dose-rate studies is the difficulty in creating radiation source configurations compatible with long-term cellular or animal experiments. In this study the design and characterization of a large area, 125I-based irradiator is described. The irradiator allows continuous long-term exposure of mice at variable dose-rates and can be sited in standard animal care facilities. The dose-rate is determined by the level of 125I activity added to a large NaOH filled, rectangular phantom. The desired dose rate is maintained at essentially constant levels by weekly additions of 125I to compensate for decay. Dosimetry results for long-term animal irradiation at targeted dose rates of 0.00021 and 0.0021 cGy min−1 are presented. PMID:20386202

  7. Emesis as a Screening Diagnostic for Low Dose Rate (LDR) Total Body Radiation Exposure.

    PubMed

    Camarata, Andrew S; Switchenko, Jeffrey M; Demidenko, Eugene; Flood, Ann B; Swartz, Harold M; Ali, Arif N

    2016-04-01

    Current radiation disaster manuals list the time-to-emesis (TE) as the key triage indicator of radiation dose. The data used to support TE recommendations were derived primarily from nearly instantaneous, high dose-rate exposures as part of variable condition accident databases. To date, there has not been a systematic differentiation between triage dose estimates associated with high and low dose rate (LDR) exposures, even though it is likely that after a nuclear detonation or radiologic disaster, many surviving casualties would have received a significant portion of their total exposure from fallout (LDR exposure) rather than from the initial nuclear detonation or criticality event (high dose rate exposure). This commentary discusses the issues surrounding the use of emesis as a screening diagnostic for radiation dose after LDR exposure. As part of this discussion, previously published clinical data on emesis after LDR total body irradiation (TBI) is statistically re-analyzed as an illustration of the complexity of the issue and confounding factors. This previously published data includes 107 patients who underwent TBI up to 10.5 Gy in a single fraction delivered over several hours at 0.02 to 0.04 Gy min. Estimates based on these data for the sensitivity of emesis as a screening diagnostic for the low dose rate radiation exposure range from 57.1% to 76.6%, and the estimates for specificity range from 87.5% to 99.4%. Though the original data contain multiple confounding factors, the evidence regarding sensitivity suggests that emesis appears to be quite poor as a medical screening diagnostic for LDR exposures. PMID:26910032

  8. Poster — Thur Eve — 27: Flattening Filter Free VMAT Quality Assurance: Dose Rate Considerations for Detector Response

    SciTech Connect

    Viel, Francis; Duzenli, Cheryl; Camborde, Marie-Laure; Strgar, Vincent; Horwood, Ron; Atwal, Parmveer; Gete, Ermias; Karan, Tania

    2014-08-15

    Introduction: Radiation detector responses can be affected by dose rate. Due to higher dose per pulse and wider range of mu rates in FFF beams, detector responses should be characterized prior to implementation of QA protocols for FFF beams. During VMAT delivery, the MU rate may also vary dramatically within a treatment fraction. This study looks at the dose per pulse variation throughout a 3D volume for typical VMAT plans and the response characteristics for a variety of detectors, and makes recommendations on the design of QA protocols for FFF VMAT QA. Materials and Methods: Linac log file data and a simplified dose calculation algorithm are used to calculate dose per pulse for a variety of clinical VMAT plans, on a voxel by voxel basis, as a function of time in a cylindrical phantom. Diode and ion chamber array responses are characterized over the relevant range of dose per pulse and dose rate. Results: Dose per pulse ranges from <0.1 mGy/pulse to 1.5 mGy/pulse in a typical VMAT treatment delivery using the 10XFFF beam. Diode detector arrays demonstrate increased sensitivity to dose (+./− 3%) with increasing dose per pulse over this range. Ion chamber arrays demonstrate decreased sensitivity to dose (+/− 1%) with increasing dose rate over this range. Conclusions: QA protocols should be designed taking into consideration inherent changes in detector sensitivity with dose rate. Neglecting to account for changes in detector response with dose per pulse can lead to skewed QA results.

  9. Absolute Determination for the Sodium-22(p,gamma)Magnesium-23 Reaction Rate: Consequences for Nucleosynthesis of Sodium-22 in Novae

    NASA Astrophysics Data System (ADS)

    Sallaska, Anne L.

    2010-11-01

    Hydrodynamic simulations of classical novae on ONe white dwarfs predict substantial production of 22Na. Observation of 22Na decay should be correlated with the corresponding nova because the half life of 22Na is only 2.6 years. The 1275-keV gamma ray from the beta decay of 22Na is, therefore, an excellent diagnostic for the nova phenomenon and a long-sought target of gamma-ray telescopes. Nova simulations determine the maximum 22Na-detection distance to be < 1 kpc for the INTEGRAL spectrometer SPI, consistent with its non-observation to date. However, model estimates are strongly dependent on the thermonuclear rate of the 22Na(p, gamma)23Mg reaction, which is the main destruction mechanism of 22Na in novae. The 22Na(p,gamma)23Mg rate is expected to be dominated by narrow, isolated resonances with Ep < 300 key. The currently employed rate is based on a single set of absolute resonance-strength measurements with Ep ≥ 290 keV, and one relative measurement of resonances with Ep ≥ 214 keV. Recently, a new level has been found in 23Mg which would correspond to a resonance at Ep = 198 keV that might dominate the reaction rate at nova temperatures. We have measured the 22Na(p, gamma) 23Mg resonance strengths directly and absolutely, in addition to resonance energies and branches. Proton beams were produced at the University of Washington and delivered to a specially designed beam line that included rastering and cold vacuum protection of the 22Na-implanted targets (fabricated at TRIUMF-ISAC). Two high-purity germanium detectors were employed and surrounded by anticoincidence shields to reduce cosmic backgrounds. Measurements were made on known 22Na+p resonances, which we observed at laboratory energies Ep = 213, 288, 454, 610 keV and on proposed resonances at Ep = 198, 209, and 232 key. The proposed resonances were not observed, and the upper limit placed on the 198-keV resonance strength indicates that the resonance at Ep = 213 keV still dominates the reaction rate

  10. Indoor terrestrial gamma dose rate mapping in France: a case study using two different geostatistical models.

    PubMed

    Warnery, E; Ielsch, G; Lajaunie, C; Cale, E; Wackernagel, H; Debayle, C; Guillevic, J

    2015-01-01

    Terrestrial gamma dose rates show important spatial variations in France. Previous studies resulted in maps of arithmetic means of indoor terrestrial gamma dose rates by "departement" (French district). However, numerous areas could not be characterized due to the lack of data. The aim of our work was to obtain more precise estimates of the spatial variability of indoor terrestrial gamma dose rates in France by using a more recent and complete data base and geostatistics. The study was based on the exploitation of 97,595 measurements results distributed in 17,404 locations covering all of France. Measurements were done by the Institute for Radioprotection and Nuclear Safety (IRSN) using RPL (Radio Photo Luminescent) dosimeters, exposed during several months between years 2011 and 2012 in French dentist surgeries and veterinary clinics. The data used came from dosimeters which were not exposed to anthropic sources. After removing the cosmic rays contribution in order to study only the telluric gamma radiation, it was decided to work with the arithmetic means of the time-series measurements, weighted by the time-exposure of the dosimeters, for each location. The values varied between 13 and 349 nSv/h, with an arithmetic mean of 76 nSv/h. The observed statistical distribution of the gamma dose rates was skewed to the right. Firstly, ordinary kriging was performed in order to predict the gamma dose rate on cells of 1*1 km(2), all over the domain. The second step of the study was to use an auxiliary variable in estimates. The IRSN achieved in 2010 a classification of the French geological formations, characterizing their uranium potential on the bases of geology and local measurement results of rocks uranium content. This information is georeferenced in a map at the scale 1:1,000,000. The geological uranium potential (GUP) was classified in 5 qualitative categories. As telluric gamma rays mostly come from the progenies of the (238)Uranium series present in rocks, this

  11. Environmental radioactivity in the UK: the airborne geophysical view of dose rate estimates.

    PubMed

    Beamish, David

    2014-12-01

    This study considers UK airborne gamma-ray data obtained through a series of high spatial resolution, low altitude surveys over the past decade. The ground concentrations of the naturally occurring radionuclides Potassium, Thorium and Uranium are converted to air absorbed dose rates and these are used to assess terrestrial exposure levels from both natural and technologically enhanced sources. The high resolution airborne information is also assessed alongside existing knowledge from soil sampling and ground-based measurements of exposure levels. The surveys have sampled an extensive number of the UK lithological bedrock formations and the statistical information provides examples of low dose rate lithologies (the formations that characterise much of southern England) to the highest sustained values associated with granitic terrains. The maximum dose rates (e.g. >300 nGy h(-1)) encountered across the sampled granitic terrains are found to vary by a factor of 2. Excluding granitic terrains, the most spatially extensive dose rates (>50 nGy h(-1)) are found in association with the Mercia Mudstone Group (Triassic argillaceous mudstones) of eastern England. Geological associations between high dose rate and high radon values are also noted. Recent studies of the datasets have revealed the extent of source rock (i.e. bedrock) flux attenuation by soil moisture in conjunction with the density and porosity of the temperate latitude soils found in the UK. The presence or absence of soil cover (and associated presence or absence of attenuation) appears to account for a range of localised variations in the exposure levels encountered. The hypothesis is supported by a study of an extensive combined data set of dose rates obtained from soil sampling and by airborne geophysical survey. With no attenuation factors applied, except those intrinsic to the airborne estimates, a bias to high values of between 10 and 15 nGy h(-1) is observed in the soil data. A wide range of

  12. Response of mouse lung to irradiation at different dose-rates

    SciTech Connect

    Hill, R.P.

    1983-07-01

    Groups of LAF1 mice were given thoracic irradiation using /sup 60/Co ..gamma..-rays at dose-rates of 0.05 Gy/min (LDR) or 1.1 Gy/min (HDR) and the death of the animals was monitored as a function of time. It was found that the time pattern of animal deaths was similar for the two different dose-rates. Dose response curves for animals dying at various times up to 500 days after irradiation were calculated and the LD/sub 50/ values determined. The curves for the LD/sub 50/ values, plotted as a function of the time at analysis for treatment at HDR or LDR, were essentially parallel to each other but separated by a factor (LDR/HDR) of about 1.8. This indicates that the sparing effect of LDR treatment is the same for deaths occurring during the early pneumonitis phase or during the late fibrotic phase of lung damage. The available information on the response of patients to whole thoracic irradiation, given for either palliation or piror to bone marrow transplantation, suggests that for similar dose-rates to those studied here the ratio (LDR/HDR) is only 1.2 to 1.3. This difference between the animal and human data may reflect the modifying effect of the large doses of cytotoxic drugs used in combination with the irradiation of bone marrow transplant patients.

  13. Feasibility study of volumetric modulated arc therapy with constant dose rate for endometrial cancer

    SciTech Connect

    Yang, Ruijie; Wang, Junjie; Xu, Feng; Li, Hua; Zhang, Xile

    2013-10-01

    To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. The nine-field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry run was performed to assess the dosimetric accuracy with MatriXX from IBA. Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V{sub 20} of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability.

  14. Feasibility study of volumetric modulated arc therapy with constant dose rate for endometrial cancer.

    PubMed

    Yang, Ruijie; Wang, Junjie; Xu, Feng; Li, Hua; Zhang, Xile

    2013-01-01

    To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. The nine-field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry run was performed to assess the dosimetric accuracy with MatriXX from IBA. Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V20 of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3mm criteria with MatriXX pretreatment verification for 9 patients. VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability. PMID:23669454

  15. Solar particle dose rate buildup and distribution in critical body organs

    SciTech Connect

    Atwell, W.; Weyland, M.D.; Simonsen, L.C. ||

    1993-12-31

    Human body organs have varying degrees of radiosensitivity as evidenced by radioepidemiologic tables. The major critical organs for both the male and female that have been identified include the lung, thyroid, stomach, and breast (female). Using computerized anatomical models of the 50th percentile United States Air Force male and female, we present the self-shielding effects of these various body organs and how the shielding effects change as the location (dose point) in the body varies. Several major solar proton events from previous solar cycles and several events from the current 22nd solar cycle have been analyzed. The solar particle event rise time, peak intensity, and decay time vary considerably from event to event. Absorbed dose and dose equivalent rate calculations and organ risk assessment data are presented for each critical body organ. These data are compared with the current NASA astronaut dose limits as recommended by the National Council on Radiation Protection and Measurements.

  16. Dosimetry in steep dose-rate gradient radiation fields: A challenge in clinical applications

    SciTech Connect

    Massillon-JL, G.

    2010-12-07

    The fundamental goal of radiotherapy is to reduce the damage to normal tissue and optimize the dose to the tumor with an associated high probability of cure. Because of this, an accurate and precise knowledge of the radiation dose distribution delivered around the tumor volume during radiotherapy treatments such as stereotactic radiosurgery, intensity modulated radiotherapy or brachytherapy with low-energy X-ray and beta particle sources is of great importance. However, in each of these radiation fields, there exists a steep dose-rate gradient which makes it very difficult to perform accurate dose measurements. In this work, the physics phenomena involved in the energy absorption for each of these situations are discussed, and a brief revision of what the Medical Physics community is doing is presented.

  17. Dosimetry in steep dose-rate gradient radiation fields: A challenge in clinical applications

    NASA Astrophysics Data System (ADS)

    Massillon-JL, G.

    2010-12-01

    The fundamental goal of radiotherapy is to reduce the damage to normal tissue and optimize the dose to the tumor with an associated high probability of cure. Because of this, an accurate and precise knowledge of the radiation dose distribution delivered around the tumor volume during radiotherapy treatments such as stereotactic radiosurgery, intensity modulated radiotherapy or brachytherapy with low-energy X-ray and beta particle sources is of great importance. However, in each of these radiation fields, there exists a steep dose-rate gradient which makes it very difficult to perform accurate dose measurements. In this work, the physics phenomena involved in the energy absorption for each of these situations are discussed, and a brief revision of what the Medical Physics community is doing is presented.

  18. Solar particle dose rate buildup and distribution in critical body organs

    NASA Technical Reports Server (NTRS)

    Atwell, William; Weyland, Mark D.; Simonsen, Lisa C.

    1993-01-01

    Human body organs have varying degrees of radiosensitivity as evidenced by radioepidemiologic tables. The major critical organs for both the male and female that have been identified include the lung, thyroid, stomach, and breast (female). Using computerized anatomical models of the 50th percentile United States Air Force male and female, we present the self-shielding effects of these various body organs and how the shielding effects change as the location (dose point) in the body varies. Several major solar proton events from previous solar cycles and several events from the current 22nd solar cycle have been analyzed. The solar particle event rise time, peak intensity, and decay time vary considerably from event to event. Absorbed dose and dose equivalent rate calculations and organ risk assessment data are presented for each critical body organ. These data are compared with the current NASA astronaut dose limits as recommended by the National Council on Radiation Protection and Measurements.

  19. Ruthenium-106 brachytherapy for thick uveal melanoma: reappraisal of apex and base dose radiation and dose rate

    PubMed Central

    Jaberi, Ramin; Sedaghat, Ahad; Azma, Zohreh; Nojomi, Marzieh; Falavarjani, Khalil Ghasemi; Nazari, Hossein

    2016-01-01

    Purpose To evaluate the outcomes of ruthenium-106 (106Ru) brachytherapy in terms of radiation parameters in patients with thick uveal melanomas. Material and methods Medical records of 51 patients with thick (thickness ≥ 7 mm and < 11 mm) uveal melanoma treated with 106Ru brachytherapy during a ten-year period were reviewed. Radiation parameters, tumor regression, best corrected visual acuity (BCVA), and treatment-related complications were assessed. Results Fifty one eyes of 51 consecutive patients including 25 men and 26 women with a mean age of 50.5 ± 15.2 years were enrolled. Patients were followed for 36.1 ± 26.5 months (mean ± SD). Mean radiation dose to tumor apex and to sclera were 71 (± 19.2) Gy and 1269 (± 168.2) Gy. Radiation dose rates to tumor apex and to sclera were 0.37 (± 0.14) Gy/h and 6.44 (± 1.50) Gy/h. Globe preservation was achieved in 82.4%. Preoperative mean tumor thickness of 8.1 (± 0.9) mm decreased to 4.5 (± 1.6) mm, 3.4 (± 1.4) mm, and 3.0 (± 1.46) mm at 12, 24, and 48 months after brachytherapy (p = 0.03). Four eyes that did not show regression after 6 months of brachytherapy were enucleated. Secondary enucleation was performed in 5 eyes because of tumor recurrence or neovascular glaucoma. Tumor recurrence was evident in 6 (11.8%) patients. Mean Log MAR (magnification requirement) visual acuity declined from 0.75 (± 0.63) to 0.94 (± 0.5) (p = 0.04). Best corrected visual acuity of 20/200 or worse was recorded in 37% of the patients at the time of diagnosis and 61.7% of the patients at last exam (p = 0.04). Non-proliferative and proliferative radiation-induced retinopathy was observed in 20 and 7 eyes. Conclusions Thick uveal melanomas are amenable to 106Ru brachytherapy with less than recommended apex radiation dose and dose rates. PMID:26985199

  20. Dose Rate Effects on Damage and Recovery of Radiation Hard Glass Under Gamma Irradiation

    NASA Astrophysics Data System (ADS)

    Menchini, Francesca; Baccaro, Stefania; Cemmi, Alessia; di Sarcina, Ilaria; Fiore, Salvatore; Piegari, Angela

    2014-06-01

    Optical systems employed in space missions are subjected to high fluxes of energetic particles. Their optical properties should be stable throughout the whole mission, to avoid a possible failure of the experiments. Radiation hard glasses are widely used as substrates or windows in high-energy applications, due to their resistance in hostile environments where energetic particles and γ rays are present. In this work we have irradiated radiation resistant glass windows by γ rays from a 60Co source at several doses, from 50 to 3×l05 Gy, and at two different dose rates. The optical properties of the samples have been monitored and the effects of radiations have been measured. Moreover, a partial recovery of the damage has been observed after the end of irradiation. The effects depend on the irradiation dose rate.

  1. Dosimetric evaluation of two treatment planning systems for high dose rate brachytherapy applications

    SciTech Connect

    Shwetha, Bondel; Ravikumar, Manickam; Supe, Sanjay S.; Sathiyan, Saminathan; Lokesh, Vishwanath; Keshava, Subbarao L.

    2012-04-01

    Various treatment planning systems are used to design plans for the treatment of cervical cancer using high-dose-rate brachytherapy. The purpose of this study was to make a dosimetric comparison of the 2 treatment planning systems from Varian medical systems, namely ABACUS and BrachyVision. The dose distribution of Ir-192 source generated with a single dwell position was compared using ABACUS (version 3.1) and BrachyVision (version 6.5) planning systems. Ten patients with intracavitary applications were planned on both systems using orthogonal radiographs. Doses were calculated at the prescription points (point A, right and left) and reference points RU, LU, RM, LM, bladder, and rectum. For single dwell position, little difference was observed in the doses to points along the perpendicular bisector. The mean difference between ABACUS and BrachyVision for these points was 1.88%. The mean difference in the dose calculated toward the distal end of the cable by ABACUS and BrachyVision was 3.78%, whereas along the proximal end the difference was 19.82%. For the patient case there was approximately 2% difference between ABACUS and BrachyVision planning for dose to the prescription points. The dose difference for the reference points ranged from 0.4-1.5%. For bladder and rectum, the differences were 5.2% and 13.5%, respectively. The dose difference between the rectum points was statistically significant. There is considerable difference between the dose calculations performed by the 2 treatment planning systems. It is seen that these discrepancies are caused by the differences in the calculation methodology adopted by the 2 systems.

  2. Correlation-study about the ambient dose rate and the weather conditions

    NASA Astrophysics Data System (ADS)

    Furuya, Masato; Hatano, Yuko; Aoyama, Tomoo; Igarashi, Yasuhito; Kita, Kazuyuki; Ishizuka, Masahide

    2016-04-01

    The long-term radiation risks are believed to be heavily affected by the resuspension process. We therefore focus on the surface-atmosphere exchange process of released radioactive materials in this study. Radioactive materials were deposited on the soil and float in the air, and such complicated process are influenced by the weather conditions deeply. We need to reveal the correlation between the weather conditions and the ambient dose rate. In this study, we study the correlation between the weather conditions and the ambient dose rate with the correction of the decrease due to the radioactive decay. We found that there is a negative correlation between the ambient dose rate and the soil water content by the correlation coefficient. Using this result, we reconstruct the ambient dose rate from the weather conditions by the multiple regression analysis and found that the reconstructed data agree with the observation very well. Using Kalman filter, which can be sequentially updates the state estimate, we obtained such a good agreement.

  3. Dose rate and beam profile measurement of proton beam using a flat panel detector

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Min

    2015-10-01

    A 20-MeV or 100-MeV proton beam is provided to users for their proton beam irradiation experiments at KOrea Multi-Purpose Accelerator Complex. Radiochromic film (Gafchromic / HDV2) has been used to measure the dose rate and the profile of an incident proton beam during irradiation experiments. However, such measurements using radiochromic film have some inconveniences because an additional scanning process of is required to quantify the film's image. Therefore, we tried to measure the dose rate and beam profile by using a flat panel detector (FPD), which was developed for X-ray radiography as a substitute for radiochromic film because the FPD can measure the beam profile and the dose rate directly through a digitized image with a high spatial resolution. In this work, we investigated the feasibility of using a FPD as a substitute for radiochromic film. The preliminary results for the beam profile and the dose rate measured by using the flat panel detector are reported in the paper.

  4. Absorbed Dose Rates in Tissue from Prompt Gamma Emissions from Near-thermal Neutron Absorption.

    PubMed

    Schwahn, Scott O

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency's Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment. PMID:26313590

  5. Saran-Chloropel plastic suit worker dose rates from airborne tritium exposure - first exposure hour

    SciTech Connect

    Edwards, T.

    1993-04-20

    Radiological Engineering was requested to develop Tritium Stay Time Chart dose rates for the 9 mil Saran-Chloropel (CPE) plastic suit for a period of one hour or less. Assumptions utilized in previous calculations were revised to better address the first hour of exposure in the suit for emergency situations.

  6. Absorbed dose rates in tissue from prompt gamma emissions from near-thermal neutron absorption

    DOE PAGESBeta

    Schwahn, Scott O.

    2015-10-01

    Prompt gamma emission data from the International Atomic Energy Agency s Prompt Gamma-ray Neutron Activation Analysis database are analyzed to determine the absorbed dose rates in tissue to be expected when natural elements are exposed in a near-thermal neutron environment.

  7. Monitoring performance of the cameras under the high dose-rate gamma ray environments.

    PubMed

    Cho, Jai Wan; Choi, Young Soo; Jeong, Kyung Min

    2014-05-01

    CCD/CMOS cameras, loaded on a robot system, are generally used as the eye of the robot and monitoring unit. A major problem that arises when dealing with images provided by CCD/CMOS cameras under severe accident situations of a nuclear power plant is the presence of speckles owing to the high dose-rate gamma irradiation fields. To use a CCD/CMOS camera as a monitoring unit in a high radiation area, the legibility of the camera image in such intense gamma-radiation fields should therefore be defined. In this paper, the authors describe the monitoring index as a figure of merit of the camera's legibleness under a high dose-rate gamma ray irradiation environment. From a low dose-rate (10 Gy h) to a high dose-rate (200 Gy h) level, the legible performances of the cameras owing to the speckles are evaluated. The numbers of speckles generated by gamma ray irradiation in the camera image are calculated by an image processing technique. The legibility of the sensor indicator (thermo/hygrometer) owing to the number of speckles is also presented. PMID:24667385

  8. Dose dependent effect of GnRH analogue on pregnancy rate of repeat breeder crossbred cows.

    PubMed

    Kharche, S D; Srivastava, S K

    2007-05-01

    The aim of this study was to investigate the effect of treating repeat breeder dairy crossbred cows with different doses of GnRH analogue through i.m. at the time of artificial insemination, on pregnancy rates from their first service after treatment and overall pregnancy rates. One hundred and thirty seven crossbred dairy cows with a history of repeat breeding and eligible after 6-8 infertile services but clinically free of diseases were selected for the study. The animals were randomly divided into three groups. Group 1 (n = 55) cows were treated intramuscularly with each 20 microg Buserelin-acetate (Receptal, Hoechst Roussel Vet GmbH) at the time of artificial insemination. Group 2 (n = 40) cows were treated intramuscularly with each 10 microg Buserelin-acetate at the time of artificial insemination. Group 3 (n = 42) cows were treated intramuscularly with saline as control at the time of artificial insemination. The first service pregnancy rates in Groups 1-3 were 45, 25 and 17%, respectively. Similarly, the overall conception rates in Groups 1-3 were 87, 58 and 48%, respectively. The results indicated that the pregnancy rate in crossbred cows could be improved by the GnRH treatment. The higher dose of GnRH significantly increased (P < 0.05) the first service as well as overall pregnancy rate in a dose dependent manner in repeat breeder crossbred cow bred previously 6-8 times unsuccessfully. PMID:16787717

  9. Bladder–Rectum Spacer Balloon in High-Dose-Rate Brachytherapy in Cervix Carcinoma

    SciTech Connect

    Rai, Bhavana; Patel, Firuza D.; Chakraborty, Santam; Sharma, Suresh C.; Kapoor, Rakesh; Aprem, Abi Santhosh

    2013-04-01

    Purpose: To compare bladder and rectum doses with the use of a bladder–rectum spacer balloon (BRSB) versus standard gauze packing in the same patient receiving 2 high-dose-rate intracavitary brachytherapy fractions. Methods and Materials: This was a randomized study to compare the reduction in bladder and rectum doses with the use of a BRSB compared with standard gauze packing in patients with carcinoma of the cervix being treated with high-dose-rate intracavitary brachytherapy. The patients were randomized between 2 arms. In arm A, vaginal packing was done with standard gauze packing in the first application, and BRSB was used in the second application. Arm B was the reverse of arm A. The International Commission for Radiation Units and Measurement (ICRU) point doses and doses to 0.1-cm{sup 3}, 1-cm{sup 3}, 2-cm{sup 3}, 5-cm{sup 3}, and 10-cm{sup 3} volumes of bladder and rectum were compared. The patients were also subjectively assessed for the ease of application and the time taken for application. Statistical analysis was done using the paired t test. Results: A total of 43 patients were enrolled; however, 3 patients had to be excluded because the BRSB could not be inserted owing to unfavorable local anatomy. Thus 40 patients (80 plans) were evaluated. The application was difficult in 3 patients with BRSB, and in 2 patients with BRSB the application time was prolonged. There was no significant difference in bladder doses to 0.1 cm{sup 3}, 1 cm{sup 3}, 2 cm{sup 3}, 5 cm{sup 3}, and 10 cm{sup 3} and ICRU bladder point. Statistically significant dose reductions to 0.1-cm{sup 3}, 1-cm{sup 3}, and 2-cm{sup 3} volumes for rectum were observed with the BRSB. No significant differences in 5-cm{sup 3} and 10-cm{sup 3} volumes and ICRU rectum point were observed. Conclusion: A statistically significant dose reduction was observed for small high-dose volumes in rectum with the BRSB. The doses to bladder were comparable for BRSB and gauze packing. Transparent balloons of

  10. Dose rate estimation of the Tohoku hynobiid salamander, Hynobius lichenatus, in Fukushima.

    PubMed

    Fuma, Shoichi; Ihara, Sadao; Kawaguchi, Isao; Ishikawa, Takahiro; Watanabe, Yoshito; Kubota, Yoshihisa; Sato, Youji; Takahashi, Hiroyuki; Aono, Tatsuo; Ishii, Nobuyoshi; Soeda, Haruhi; Matsui, Kumi; Une, Yumi; Minamiya, Yukio; Yoshida, Satoshi

    2015-05-01

    The radiological risks to the Tohoku hynobiid salamanders (class Amphibia), Hynobius lichenatus due to the Fukushima Dai-ichi Nuclear Power Plant accident were assessed in Fukushima Prefecture, including evacuation areas. Aquatic egg clutches (n = 1 for each sampling date and site; n = 4 in total), overwintering larvae (n = 1-5 for each sampling date and site; n = 17 in total), and terrestrial juveniles or adults (n = 1 or 3 for each sampling date and site; n = 12 in total) of H. lichenatus were collected from the end of April 2011 to April 2013. Environmental media such as litter (n = 1-5 for each sampling date and site; n = 30 in total), soil (n = 1-8 for each sampling date and site; n = 31 in total), water (n = 1 for each sampling date and site; n = 17 in total), and sediment (n = 1 for each sampling date and site; n = 17 in total) were also collected. Activity concentrations of (134)Cs + (137)Cs were 1.9-2800, 0.13-320, and 0.51-220 kBq (dry kg) (-1) in the litter, soil, and sediment samples, respectively, and were 0.31-220 and <0.29-40 kBq (wet kg)(-1) in the adult and larval salamanders, respectively. External and internal absorbed dose rates to H. lichenatus were calculated from these activity concentration data, using the ERICA Assessment Tool methodology. External dose rates were also measured in situ with glass dosimeters. There was agreement within a factor of 2 between the calculated and measured external dose rates. In the most severely contaminated habitat of this salamander, a northern part of Abukuma Mountains, the highest total dose rates were estimated to be 50 and 15 μGy h(-1) for the adults and overwintering larvae, respectively. Growth and survival of H. lichenatus was not affected at a dose rate of up to 490 μGy h(-1) in the previous laboratory chronic gamma-irradiation experiment, and thus growth and survival of this salamander would not be affected, even in the most severely contaminated habitat in Fukushima Prefecture. However, further

  11. Determination of the tissue inhomogeneity correction in high dose rate Brachytherapy for Iridium-192 source

    PubMed Central

    Ravikumar, Barlanka; Lakshminarayana, S.

    2012-01-01

    In Brachytherapy treatment planning, the effects of tissue heterogeneities are commonly neglected due to lack of accurate, general and fast three-dimensional (3D) dose-computational algorithms. In performing dose calculations, it is assumed that the tumor and surrounding tissues constitute a uniform, homogeneous medium equivalent to water. In the recent past, three-dimensional computed tomography (3D-CT) based treatment planning for Brachytherapy applications has been popularly adopted. However, most of the current commercially available planning systems do not provide the heterogeneity corrections for Brachytherapy dosimetry. In the present study, we have measured and quantified the impact of inhomogeneity caused by different tissues with a 0.015 cc ion chamber. Measurements were carried out in wax phantom which was employed to measure the heterogeneity. Iridium-192 (192Ir) source from high dose rate (HDR) Brachytherapy machine was used as the radiation source. The reduction of dose due to tissue inhomogeneity was measured as the ratio of dose measured with different types of inhomogeneity (bone, spleen, liver, muscle and lung) to dose measured with homogeneous medium for different distances. It was observed that different tissues attenuate differently, with bone tissue showing maximum attenuation value and lung tissue resulting minimum value and rest of the tissues giving values lying in between those of bone and lung. It was also found that inhomogeneity at short distance is considerably more than that at larger distances. PMID:22363109

  12. Real-time tracking of respiratory-induced tumor motion by dose-rate regulation

    NASA Astrophysics Data System (ADS)

    Han-Oh, Yeonju Sarah

    We have developed a novel real-time tumor-tracking technology, called Dose-Rate-Regulated Tracking (DRRT), to compensate for tumor motion caused by breathing. Unlike other previously proposed tumor-tracking methods, this new method uses a preprogrammed dynamic multileaf collimator (MLC) sequence in combination with real-time dose-rate control. This new scheme circumvents the technical challenge in MLC-based tumor tracking, that is to control the MLC motion in real time, based on real-time detected tumor motion. The preprogrammed MLC sequence describes the movement of the tumor, as a function of breathing phase, amplitude, or tidal volume. The irregularity of tumor motion during treatment is handled by real-time regulation of the dose rate, which effectively speeds up or slows down the delivery of radiation as needed. This method is based on the fact that all of the parameters in dynamic radiation delivery, including MLC motion, are enslaved to the cumulative dose, which, in turn, can be accelerated or decelerated by varying the dose rate. Because commercially available MLC systems do not allow the MLC delivery sequence to be modified in real time based on the patient's breathing signal, previously proposed tumor-tracking techniques using a MLC cannot be readily implemented in the clinic today. By using a preprogrammed MLC sequence to handle the required motion, the task for real-time control is greatly simplified. We have developed and tested the pre- programmed MLC sequence and the dose-rate regulation algorithm using lung-cancer patients breathing signals. It has been shown that DRRT can track the tumor with an accuracy of less than 2 mm for a latency of the DRRT system of less than 0.35 s. We also have evaluated the usefulness of guided breathing for DRRT. Since DRRT by its very nature can compensate for breathing-period changes, guided breathing was shown to be unnecessary for real-time tracking when using DRRT. Finally, DRRT uses the existing dose-rate control

  13. Four-dimensional dose distributions of step-and-shoot IMRT delivered with real-time tumor tracking for patients with irregular breathing: Constant dose rate vs dose rate regulation

    SciTech Connect

    Yang Xiaocheng; Han-Oh, Sarah; Gui Minzhi; Niu Ying; Yu, Cedric X.; Yi Byongyong

    2012-09-15

    Purpose: Dose-rate-regulated tracking (DRRT) is a tumor tracking strategy that programs the MLC to track the tumor under regular breathing and adapts to breathing irregularities during delivery using dose rate regulation. Constant-dose-rate tracking (CDRT) is a strategy that dynamically repositions the beam to account for intrafractional 3D target motion according to real-time information of target location obtained from an independent position monitoring system. The purpose of this study is to illustrate the differences in the effectiveness and delivery accuracy between these two tracking methods in the presence of breathing irregularities. Methods: Step-and-shoot IMRT plans optimized at a reference phase were extended to remaining phases to generate 10-phased 4D-IMRT plans using segment aperture morphing (SAM) algorithm, where both tumor displacement and deformation were considered. A SAM-based 4D plan has been demonstrated to provide better plan quality than plans not considering target deformation. However, delivering such a plan requires preprogramming of the MLC aperture sequence. Deliveries of the 4D plans using DRRT and CDRT tracking approaches were simulated assuming the breathing period is either shorter or longer than the planning day, for 4 IMRT cases: two lung and two pancreatic cases with maximum GTV centroid motion greater than 1 cm were selected. In DRRT, dose rate was regulated to speed up or slow down delivery as needed such that each planned segment is delivered at the planned breathing phase. In CDRT, MLC is separately controlled to follow the tumor motion, but dose rate was kept constant. In addition to breathing period change, effect of breathing amplitude variation on target and critical tissue dose distribution is also evaluated. Results: Delivery of preprogrammed 4D plans by the CDRT method resulted in an average of 5% increase in target dose and noticeable increase in organs at risk (OAR) dose when patient breathing is either 10% faster or

  14. Benchmarking of Monte Carlo based shutdown dose rate calculations for applications to JET.

    PubMed

    Petrizzi, L; Batistoni, P; Fischer, U; Loughlin, M; Pereslavtsev, P; Villari, R

    2005-01-01

    The calculation of dose rates after shutdown is an important issue for operating nuclear reactors. A validated computational tool is needed for reliable dose rate calculations. In fusion reactors neutrons induce high levels of radioactivity and presumably high doses. The complex geometries of the devices require the use of sophisticated geometry modelling and computational tools for transport calculations. Simple rule of thumb laws do not always apply well. Two computational procedures have been developed recently and applied to fusion machines. Comparisons between the two methods showed some inherent discrepancies when applied to calculation for the ITER while good agreement was found for a 14 MeV point source neutron benchmark experiment. Further benchmarks were considered necessary to investigate in more detail the reasons for the different results in different cases. In this frame the application to the Joint European Torus JET machine has been considered as a useful benchmark exercise. In a first calculational benchmark with a representative D-T irradiation history of JET the two methods differed by no more than 25%. In another, more realistic benchmark exercise, which is the subject of this paper, the real irradiation history of D-T and D-D campaigns conducted at JET in 1997-98 were used to calculate the shut-down doses at different locations, irradiation and decay times. Experimental dose data recorded at JET for the same conditions offer the possibility to check the prediction capability of the calculations and thus show the applicability (and the constraints) of the procedures and data to the rather complex shutdown dose rate analysis of real fusion devices. Calculation results obtained by the two methods are reported below, comparison with experimental results give discrepancies ranging between 2 and 10. The reasons of that can be ascribed to the high uncertainty on the experimental data and the unsatisfactory JET model used in the calculation. A new

  15. Predicting Radiosensitivity with Gamma-H2AX Foci Assay after Single High-Dose-Rate and Pulsed Dose-Rate Ionizing Irradiation.

    PubMed

    van Oorschot, Bregje; Hovingh, Suzanne; Dekker, Annelot; Stalpers, Lukas J; Franken, Nicolaas A P

    2016-02-01

    Gamma-H2AX foci detection is the standard method to quantify DNA double-strand break (DSB) induction and repair. In this study, we investigated the induction and decay of γ-H2AX foci of different tumor cell lines and fibroblasts with known mutations in DNA damage repair genes, including ATM, LigIV, DNA-PKcs, Rad51 and Rad54. A radiation dose of 2.4 Gy was used for either an acute single high-dose-rate (sHDR) exposure or a pulsed dose-rate (pDR) exposure over 24 h. The number of γ-H2AX foci was determined at 30 min and 24 h after sHDR irradiation and directly after pDR irradiation. In a similar manner, γ-H2AX foci were also examined in lymphocytes of patients with differences in normal tissue toxicity after a total radiation dose of 1 Gy. In an initial count of the number of foci 30 min after sHDR irradiation, repair-proficient cell types could not be distinguished from repair-deficient cell types. However at 24 h postirradiation, while we observed a large decrease in foci numbers in NHEJ-proficient cells, the amount of γ-H2AX foci in cell types with mutated NHEJ repair remained at high levels. Except for IRS-1SF cells, HR-deficient cell types eventually did show a moderate decrease in foci number over time, albeit to a lesser extent than their corresponding parentals or repair-proficient control cells. In addition, analysis of γ-H2AX foci after sHDR exposure of patients with different sensitivity status clearly showed individual differences in radiation response. Radiosensitive patients could be distinguished from the more radioresistant patients with γ-H2AX foci decay ratios (initial number of foci divided by residual number of foci). Significantly higher decay ratios were observed in patients without toxicities, indicating more proficient repair compared to patients with radiation-induced side effects. After pDR irradiation, no consistent correlation could be found between foci number and radiosensitivity. In conclusion, γ-H2AX formation is a rapid and

  16. In vitro RABiT measurement of dose rate effects on radiation induction of micronuclei in human peripheral blood lymphocytes

    PubMed Central

    Bertucci, Antonella; Smilenov, Lubomir B.; Turner, Helen C.; Amundson, Sally A.; Brenner, David J.

    2016-01-01

    Developing new methods for radiation biodosimetry has been identified as a high priority need in case of a radiological accident or nuclear terrorist attacks. A large-scale radiological incident would result in an immediate critical need to assess the radiation doses received by thousands of individuals. Casualties will be exposed to different doses and dose-rates due to their geographical position and sheltering conditions, and dose-rate is one of the principal factors that determine the biological consequences of a given absorbed dose. In these scenarios high-throughput platforms are required to identify the biological dose in a large number of exposed individuals for clinical monitoring and medical treatment. The RABiT (Rapid Automated Biodosimetry Tool) is designed to be completely automated from the input of blood sample into the machine to the output of a dose estimate. The primary goal of this paper was to quantify the dose-rate effects for RABiT-measured micronuclei in vitro in human lymphocytes. Blood samples from healthy volunteers were exposed in vitro to different doses of X-rays to acute and protracted doses over a period up to 24 hours. The acute dose (ADR) was delivered at ∼1.03Gy/min and the low dose rate (LDR) exposure at ∼0.31Gy/min. The results showed that the yield of micronuclei decreases with decreasing dose-rate starting at 2Gy, whereas response was indistinguishable from that of acute exposure in the low dose region, up to 0.5Gy. The results showed a linear-quadratic dose-response relationship for the occurrence of micronuclei for the acute exposure and a linear dose-response relationship for the low dose-rate exposure. PMID:26791381

  17. In vitro RABiT measurement of dose rate effects on radiation induction of micronuclei in human peripheral blood lymphocytes.

    PubMed

    Bertucci, Antonella; Smilenov, Lubomir B; Turner, Helen C; Amundson, Sally A; Brenner, David J

    2016-03-01

    Developing new methods for radiation biodosimetry has been identified as a high-priority need in case of a radiological accident or nuclear terrorist attacks. A large-scale radiological incident would result in an immediate critical need to assess the radiation doses received by thousands of individuals. Casualties will be exposed to different doses and dose rates due to their geographical position and sheltering conditions, and dose rate is one of the principal factors that determine the biological consequences of a given absorbed dose. In these scenarios, high-throughput platforms are required to identify the biological dose in a large number of exposed individuals for clinical monitoring and medical treatment. The Rapid Automated Biodosimetry Tool (RABiT) is designed to be completely automated from the input of blood sample into the machine to the output of a dose estimate. The primary goal of this paper was to quantify the dose rate effects for RABiT-measured micronuclei in vitro in human lymphocytes. Blood samples from healthy volunteers were exposed in vitro to different doses of X-rays to acute and protracted doses over a period up to 24 h. The acute dose was delivered at ~1.03 Gy/min and the low dose rate exposure at ~0.31 Gy/min. The results showed that the yield of micronuclei decreases with decreasing dose rate starting at 2 Gy, whereas response was indistinguishable from that of acute exposure in the low dose region, up to 0.5 Gy. The results showed a linear-quadratic dose-response relationship for the occurrence of micronuclei for the acute exposure and a linear dose-response relationship for the low dose rate exposure. PMID:26791381

  18. The estimation of absorbed dose rates for non-human biota: an extended intercomparison.

    PubMed

    Vives i Batlle, J; Beaugelin-Seiller, K; Beresford, N A; Copplestone, D; Horyna, J; Hosseini, A; Johansen, M; Kamboj, S; Keum, D-K; Kurosawa, N; Newsome, L; Olyslaegers, G; Vandenhove, H; Ryufuku, S; Vives Lynch, S; Wood, M D; Yu, C

    2011-05-01

    An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP's Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of ±20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source-target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota. PMID:21113609

  19. Postoperative vaginal irradiation with high dose rate afterloading technique in endometrial carcinoma stage I

    SciTech Connect

    Sorbe, B.G.; Smeds, A.C. )

    1990-02-01

    A high dose rate ({sup 60}Co) afterloading technique was used for postoperative prophylactic vaginal irradiation in a series of 404 women with endometrial carcinoma Stage I. The total recurrence rate was 3.7% with 0.7% vaginal deposits. The crude 5-year survival rate for the complete series was 91.8% compared to 13.3% for those with recurrences. Depth of myometrial infiltration (greater than 1/3 of the uterine wall) and nuclear grade were the most important prognostic factors. Clinically significant late radiation reactions (bladder and/or rectum) were recorded in 6.9%. Dose per fraction and the size of the target volume were highly significantly related to the occurrence of both early and late radiation reactions. Vaginal shortening is closely related to the dose per fraction, length of the reference isodose, and the applicator diameter. The shape of the vaginal applicator versus the isodoses and the importance of the source train geometry and relative activity for dose gradient inhomogeneities within the target volume are discussed. Cumulative radiation effect (CRE) and linear-quadratic (LQ) calculations have been performed and related to tissue reactions within the target volume and in the risk organs. An alpha-beta quotient of 8.8 for vaginal shrinkage effect and 2.0 for late rectal complications are suggested on the basis of calculations using a maximum likelihood method for quantal radiation data.

  20. The estimation of absorbed dose rates for non-human biota : an extended inter-comparison.

    SciTech Connect

    Batlle, J. V. I.; Beaugelin-Seiller, K.; Beresford, N. A.; Copplestone, D.; Horyna, J.; Hosseini, A.; Johansen, M.; Kamboj, S.; Keum, D.-K.; Kurosawa, N.; Newsome, L.; Olyslaegers, G.; Vandenhove, H.; Ryufuku, S.; Lynch, S. V.; Wood, M. D.; Yu, C.

    2011-05-01

    An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP's Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of {+-}20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source-target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota.

  1. The time variation of dose rate artificially increased by the Fukushima nuclear crisis

    PubMed Central

    Hosoda, Masahiro; Tokonami, Shinji; Sorimachi, Atsuyuki; Monzen, Satoru; Osanai, Minoru; Yamada, Masatoshi; Kashiwakura, Ikuo; Akiba, Suminori

    2011-01-01

    A car-borne survey for dose rate in air was carried out in March and April 2011 along an expressway passing northwest of the Fukushima Dai-ichi Nuclear Power Station which released radionuclides starting after the Great East Japan Earthquake on March 11, 2011, and in an area closer to the Fukushima NPS which is known to have been strongly affected. Dose rates along the expressway, i.e. relatively far from the power station were higher after than before March 11, in some places by several orders of magnitude, implying that there were some additional releases from Fukushima NPS. The maximum dose rate in air within the high level contamination area was 36 μGy h−1, and the estimated maximum cumulative external dose for evacuees who came from Namie Town to evacuation sites (e.g. Fukushima, Koriyama and Nihonmatsu Cities) was 68 mSv. The evacuation is justified from the viewpoint of radiation protection. PMID:22355606

  2. Islet Oxygen Consumption Rate (OCR) Dose Predicts Insulin Independence in Clinical Islet Autotransplantation

    PubMed Central

    Papas, Klearchos K.; Bellin, Melena D.; Sutherland, David E. R.; Suszynski, Thomas M.; Kitzmann, Jennifer P.; Avgoustiniatos, Efstathios S.; Gruessner, Angelika C.; Mueller, Kathryn R.; Beilman, Gregory J.; Balamurugan, Appakalai N.; Loganathan, Gopalakrishnan; Colton, Clark K.; Koulmanda, Maria; Weir, Gordon C.; Wilhelm, Josh J.; Qian, Dajun; Niland, Joyce C.; Hering, Bernhard J.

    2015-01-01

    Background Reliable in vitro islet quality assessment assays that can be performed routinely, prospectively, and are able to predict clinical transplant outcomes are needed. In this paper we present data on the utility of an assay based on cellular oxygen consumption rate (OCR) in predicting clinical islet autotransplant (IAT) insulin independence (II). IAT is an attractive model for evaluating characterization assays regarding their utility in predicting II due to an absence of confounding factors such as immune rejection and immunosuppressant toxicity. Methods Membrane integrity staining (FDA/PI), OCR normalized to DNA (OCR/DNA), islet equivalent (IE) and OCR (viable IE) normalized to recipient body weight (IE dose and OCR dose), and OCR/DNA normalized to islet size index (ISI) were used to characterize autoislet preparations (n = 35). Correlation between pre-IAT islet product characteristics and II was determined using receiver operating characteristic analysis. Results Preparations that resulted in II had significantly higher OCR dose and IE dose (p<0.001). These islet characterization methods were highly correlated with II at 6–12 months post-IAT (area-under-the-curve (AUC) = 0.94 for IE dose and 0.96 for OCR dose). FDA/PI (AUC = 0.49) and OCR/DNA (AUC = 0.58) did not correlate with II. OCR/DNA/ISI may have some utility in predicting outcome (AUC = 0.72). Conclusions Commonly used assays to determine whether a clinical islet preparation is of high quality prior to transplantation are greatly lacking in sensitivity and specificity. While IE dose is highly predictive, it does not take into account islet cell quality. OCR dose, which takes into consideration both islet cell quality and quantity, may enable a more accurate and prospective evaluation of clinical islet preparations. PMID:26258815

  3. In vivo real-time dosimetric verification in high dose rate prostate brachytherapy

    SciTech Connect

    Seymour, Erin L.; Downes, Simon J.; Fogarty, Gerald B.; Izard, Michael A.; Metcalfe, Peter

    2011-08-15

    Purpose: To evaluate the performance of a diode array in the routine verification of planned dose to points inside the rectum from prostate high dose rate (HDR) brachytherapy using a real-time planning system. Methods: A dosimetric study involving 28 patients was undertaken where measured doses received during treatment were compared to those calculated by the treatment planning system (TPS). After the ultrasound imaging required for treatment planning had been recorded, the ultrasound probe was replaced with a geometric replica that contained an 8 mm diameter cylindrical cavity in which a PTW diode array type 9112 was placed. The replica probe was then positioned inside the rectum with the individual diode positions determined using fluoroscopy. Dose was then recorded during the patients' treatment and compared to associated coordinates in the planning system. Results: Factors influencing diode response and experimental uncertainty were initially investigated to estimate the overall uncertainty involved in dose measurements, which was determined to be {+-}10%. Data was acquired for 28 patients' first fractions, 11 patients' second fractions, and 13 patients' third fractions with collection dependent upon circumstances. Deviations between the diode measurements and predicted values ranged from -42% to +35% with 71% of measurements experiencing less than a 10% deviation from the predicted values. If the {+-}10% measurement uncertainty was combined with a tolerated dose discrepancy of {+-}10% then over 95% of the diode results exhibited agreement with the calculated data to within {+-}20%. It must also be noted that when large dose discrepancies were apparent they did not necessarily occur for all five diodes in the one measurement. Conclusions: This technique provided a method that could be utilized to detect gross errors in dose delivery of a real-time prostate HDR plan. Limitations in the detection system used must be well understood if meaningful results are to

  4. Extensive antibiotic prescription rate among hospitalized patients in Uganda: but with frequent missed-dose days

    PubMed Central

    Kiguba, Ronald; Karamagi, Charles; Bird, Sheila M.

    2016-01-01

    Objectives To describe the patterns of systemic antibiotic use and missed-dose days and detail the prescription, dispensing and administration of frequently used hospital-initiated antibiotics among Ugandan inpatients. Methods This was a prospective cohort of consented adult inpatients admitted on the medical and gynaecological wards of the 1790 bed Mulago National Referral Hospital. Results Overall, 79% (603/762; 95% CI: 76%–82%) of inpatients received at least one antibiotic during hospitalization while 39% (300/762; 95% CI: 36%–43%) had used at least one antibiotic in the 4 weeks pre-admission; 1985 antibiotic DDDs, half administered parenterally, were consumed in 3741 inpatient-days. Two-fifths of inpatients who received at least one of the five frequently used hospital-initiated antibiotics (ceftriaxone, metronidazole, ciprofloxacin, amoxicillin and azithromycin) missed at least one antibiotic dose-day (44%, 243/558). The per-day risk of missed antibiotic administration was greatest on day 1: ceftriaxone (36%, 143/398), metronidazole (27%, 67/245), ciprofloxacin (34%, 39/114) and all inpatients who missed at least one dose-day of prescribed amoxicillin and azithromycin. Most patients received fewer doses than were prescribed: ceftriaxone (74%, 273/371), ciprofloxacin (90%, 94/105) and metronidazole (97%, 222/230). Of prescribed doses, only 62% of ceftriaxone doses (1178/1895), 35% of ciprofloxacin doses (396/1130) and 27% of metronidazole doses (1043/3862) were administered. Seven percent (13/188) of patients on intravenous metronidazole and 6% (5/87) on intravenous ciprofloxacin switched to oral route. Conclusions High rates of antibiotic use both pre-admission and during hospitalization were observed, with low parenteral/oral switch of hospital-initiated antibiotics. Underadministration of prescribed antibiotics was common, especially on the day of prescription, risking loss of efficacy and antibiotic resistance. PMID:26945712

  5. Field and model investigations of external gamma dose rates along the Cumbrian coast, NW England.

    PubMed

    McDonald, P; Bryan, S E; Hunt, G J; Baldwin, M; Parker, T G

    2005-03-01

    A survey of the contribution to external dose from gamma rays originating from intertidal sediments in the vicinity of the British Nuclear Group Sellafield site showed that the major anthropogenic contributions were due to (137)Cs and (60)Co. At some sites, traces of other anthropogenic radionuclides were detected, namely (106)Ru, (125)Sb, and (154)Eu. The proportions of fine grained material (<63 microm) were used to improve model predictions of dose contribution due to external exposure to gamma rays, using the CUMBRIA77/DOSE77 model. Model dose predictions were compared to those directly measured in the field. Using the new proportions of fine grained material (1-17.5%) in conjunction with field gamma-ray spectra, model predictions were improved considerably for most sites. Exceptions were at Drigg Barn Scar and Whitehaven Coal Sands sites, which had their own unique characteristics. The highest (60)Co activity concentrations in this study were detected at Drigg Barn Scar. These relatively high activity concentrations of (60)Co were due to the presence of (60)Co in mussels and barnacles, hence upsetting the fine sediment relationships used in previous dose calculations. Whitehaven Coal Sands was unusual in that it contained higher levels of radionuclides than would be expected in sandy sediment. The mineralogy of these sediments was the controlling factor on (137)Cs binding, rather than the proportion of fine grained material. By adjusting the effective fine grained sediment proportions for calculations involving (60)Co and (137)Cs at Drigg Barn Scar and Whitehaven Coal Sands respectively, the CUMBRIA77/DOSE77 model predictions could be improved upon significantly for these sites. This work highlights the influence of particle size and sediment composition on external dose rate calculations, as well as the potential for external dose contributions from biota. PMID:15798279

  6. Response of lymphoid organs to low dose rate Cf-252, Cs-137 and acute Co-60

    SciTech Connect

    Feola, J.; Maruyama, Y.; Magura, C.; Hwang, H.N.

    1986-01-01

    RBE of low dose rate (LDR) /sup 252/Cf radiation was studied for thymus using weight loss compared to unirradiated controls. These were compared against LDR /sup 137/Cs and acute /sup 60/Co effects. For thymus, biexponential dose response curves were noted for acute /sup 60/Co and LDR /sup 137/Cs irradiations. No dose rate effect was noted with /sup 137/Cs. D/sub 37/ for the first component D/sub 1/ was 109 cGy and for the second D/sub 2/ was 624 cGy for /sup 60/Co. Relative biological effectiveness (RBE) is a complex endpoint and was different for the low dose (sensitive) and high dose (resistant) responses and for /sup 252/Cf. RBE/sub n/ of the sensitive portion was 1.7 and for overall was 4.0. Spleen response was also determined for the 3 radiations. Biexponential dose-response curves were also observed for resting spleen to acute /sup 60/Co and LDR /sup 137/Cs radiation. D/sub 1/ = 285 cGy and D/sub 2/ = 1538 cGy for acute /sup 60/Co; D/sub 1/ = 205 cGy for /sup 137/Cs and indicated a dose rate effect = 1.04 for /sup 137/Cs. The LDR /sup 137/Cs was 1.3x more effective than acute /sup 60/Co for the sensitive response; it was 1.9 x greater for the resistant response. However, the response to /sup 252/Cf vs. /sup 137/Cs for the spleen indicated that there was a greater sensitivity to dose rate than to LET. RBE/sub n/ for /sup 252/Cf vs. /sup 137/Cs was 1.0. Stimulation of spleen growth after injection of Corynebacterium parvum allowed study of radiation effects of proliferating spleen cells at day 10. Acute /sup 60/Co and LDR /sup 137/Cs ..gamma..-rays had reduced effects compared to LDR /sup 252/Cf radiation and RBE was 4.0 vs. LDR /sup 137/Cs. RBE in lymphoid organs thus depended on organ, on assay and on resting/proliferating status.

  7. Correlation of External Exposure and Dose Equivalent Rates with Uranium Surface Contamination

    SciTech Connect

    Ashley, J.C.; Bogard, J.S.; Brown, K.S.; England, C.A.; Hamm, R.N.; Turner, J.E.

    1999-06-01

    This report provides both calculated estimates and measured values of exposure in air and tissue dose from external penetrating radiation at a distance of 1 m from uranium contamination on surfaces at the Oak Ridge Y-12 Plant, in support of the Y-12 Site Radiological Characterization Study. Calculated values are based on the total energy from gamma rays and X rays emitted by uranium and its shordaughters at secular equilibrium. Results of a small number of measurements are provided for comparison. Dose rate values derived here are limited to those of external penetrating radiation from distributed sources with limited surface area and from point sources.

  8. Total-body irradiation and cataract incidence: A randomized comparison of two instantaneous dose rates

    SciTech Connect

    Ozsahin, M.; Belkacemi, Y.; Pene, F.; Dominique, C.; Schwartz, L.H.; Uzal, C.; Lefkopoulos, D.; Gindrey-Vie, B.; Vitu-Loas, L.; Touboul, E. )

    1994-01-15

    To assess the influence of instantaneous total-body irradiation dose rate in hematological malignancies, the authors randomized 157 patients according to different instantaneous dose rates. Patients have undergone a total-body irradiation before bone-marrow transplantation according to two different techniques: Either in one fraction (1000 cGy given to the midplane at the level of L4, and 800 cGy to the lungs) or in six fractions (1200 cGy over 3 consecutive days to the midplane at the level of L4, and 900 cGy to the lungs). Patients were randomized according to two instantaneous dose rates, called LOW and HIGH, in single-dose (6 vs. 15 cGy/min) and fractionated (3 vs. 6 cGy/min) TBI groups; there were 77 cases for the LOW and 80 for the HIGH groups, with 57 patients receiving single-dose (28 LOW, 29 HIGH) and 100 patients receiving fractionated total-body irradiation (49 LOW, 51 HIGH). As of July 1992, 16 of 157 patients developed cataracts after 17 to 46 months, with an estimated incidence of 23% at 5 years. Four of 77 patients in the LOW group, 12 of 80 patients in the HIGH group developed cataracts, with 5-year estimated incidences of 12% and 34%, respectively. Ten of 57 patients in the single-dose group, and 6 of 100 patients in the fractionated group developed cataracts, with 5-year estimated incidences of 39% and 13%, respectively. When the subgroups were considered, in the single-dose group, 3 of 28 LOW patients, and 7 of 29 HIGH patients developed cataracts, with 5-year estimated incidences of 24% and 53%, respectively; in the fractionated group, 1 of 49 LOW patients, and 5 of 51 HIGH patients developed cataracts, with 5-year estimated incidences of 4% and 22%, respectively. There was no statistically significant difference in terms of 5-year estimated cataract incidence between the patients receiving steroids and those not. The instantaneous dose rate was the only independent factor influencing the cataractogenesis. 18 refs., 5 figs., 1 tab.

  9. Novel application of high-dose rate brachytherapy for severe, recalcitrant palmoplantar pustulosis.

    PubMed

    Timerman, D; Devlin, P M; Nambudiri, V E; Wright, N A; Vleugels, R A; Clark, R A; Kupper, T S; Merola, J F; Patel, M

    2016-07-01

    Palmoplantar pustulosis (PPP) is a chronic pustular dermatitis of the palms and soles, which is frequently associated with significant pruritus and pain, often limiting daily activities. We present the case of a 36-year-old man with severe PPP who had treatment failure with multiple medical therapies but showed marked improvement with high-dose rate brachytherapy. Brachytherapy has the advantage of providing a conformal dose distribution over complex curved surfaces, such as the foot and ankle. Our observations suggest that brachytherapy may be a well-tolerated treatment option for patients with severe, refractory PPP. PMID:26848819

  10. Low dose radiation hypersensitivity and clustered DNA damages in human fibroblasts exposed to low dose and dose rate protons or 137CS y-rays

    SciTech Connect

    Bennett P. V.; Bennett, P.V.; Keszenman, D.J.; Johnson, A.M.; Sutherland, B.M.; Wilson, P.F.

    2013-05-14

    Effective radioprotection for human space travelers hinges upon understanding the individual properties of charged particles. A significant fraction of particle radiation astronauts will encounter in space exploratory missions will come from high energy protons in galactic cosmic radiation (GCR) and/or possible exposures to lower energy proton flux from solar particle events (SPEs). These potential exposures present major concerns for NASA and others, in planning and executing long term space exploratory missions. We recently reported cell survival and transformation (acquisition of anchorage-independent growth in soft agar) frequencies in apparently normal NFF-28 primary human fibroblasts exposed to 0-30 cGy of 50MeV, 100MeV (SPE-like), or 1000 MeV (GCR-like) monoenergetic protons. These were modeled after 1989 SPE energies at an SPE-like low dose-rate (LDR) of 1.65 cGy/min or high dose rate (HDR) of 33.3 cGy/min delivered at the NASA Space Radiation Laboratory (NSRL) at BNL.

  11. Biologically based analysis of the data for the Colorado uranium miners cohort: age, dose and dose-rate effects.

    PubMed

    Luebeck, E G; Heidenreich, W F; Hazelton, W D; Paretzke, H G; Moolgavkar, S H

    1999-10-01

    This study is a comprehensive analysis of the latest follow-up of the Colorado uranium miners cohort using the two-stage clonal expansion model with particular emphasis on effects related to age and exposure. The model provides a framework in which the hazard function for lung cancer mortality incorporates detailed information on exposure to radon and radon progeny from hard rock and uranium mining together with information on cigarette smoking. Even though the effect of smoking on lung cancer risk is explicitly modeled, a significant birth cohort effect is found which shows a linear increase in the baseline lung cancer risk with birth year of the miners in the cohort. The analysis based on the two-stage clonal expansion model suggests that exposure to radon affects both the rate of initiation of intermediate cells in the pathway to cancer and the rate of proliferation of intermediate cells. However, in contrast to the promotional effect of radon, which is highly significant, the effect of radon on the rate of initiation is found to be not significant. The model is also used to study the inverse dose-rate effect. This effect is evident for radon exposures typical for mines but is predicted to be attenuated, and for longer exposures even reversed, for the more protracted and lower radon exposures in homes. The model also predicts the drop in risk with time after exposure ceases. For residential exposures, lung cancer risks are compared with the estimates from the BEIR VI report. While the risk estimates are in agreement with those derived from residential studies, they are about two- to fourfold lower than those reported in the BEIR VI report. PMID:10477911

  12. The role of dose rate in radiation cancer risk: evaluating the effect of dose rate at the molecular, cellular and tissue levels using key events in critical pathways following exposure to low LET radiation

    PubMed Central

    Brooks, Antone L.; Hoel, David G.; Preston, R. Julian

    2016-01-01

    Abstract Purpose: This review evaluates the role of dose rate on cell and molecular responses. It focuses on the influence of dose rate on key events in critical pathways in the development of cancer. This approach is similar to that used by the U.S. EPA and others to evaluate risk from chemicals. It provides a mechanistic method to account for the influence of the dose rate from low-LET radiation, especially in the low-dose region on cancer risk assessment. Molecular, cellular, and tissues changes are observed in many key events and change as a function of dose rate. The magnitude and direction of change can be used to help establish an appropriate dose rate effectiveness factor (DREF). Conclusions: Extensive data on key events suggest that exposure to low dose-rates are less effective in producing changes than high dose rates. Most of these data at the molecular and cellular level support a large (2–30) DREF. In addition, some evidence suggests that doses delivered at a low dose rate decrease damage to levels below that observed in the controls. However, there are some data human and mechanistic data that support a dose-rate effectiveness factor of 1. In summary, a review of the available molecular, cellular and tissue data indicates that not only is dose rate an important variable in understanding radiation risk but it also supports the selection of a DREF greater than one as currently recommended by ICRP (2007) and BEIR VII (NRC/NAS 2006). PMID:27266588

  13. Developing A Directional High-Dose Rate (d-HDR) Brachytherapy Source

    NASA Astrophysics Data System (ADS)

    Heredia, Athena Yvonne

    Conventional sources used in brachytherapy provide nearly isotropic or radially symmetric dose distributions. Optimizations of dose distributions have been limited to varied dwell times at specified locations within a given treatment volume, or manipulations in source position for seed implantation techniques. In years past, intensity modulated brachytherapy (IMBT) has been used to reduce the amount of radiation to surrounding sensitive structures in select intracavitary cases by adding space or partial shields. Previous work done by Lin et al., at the University of Wisconsin-Madison, has shown potential improvements in conformality for brachytherapy treatments using a directionally shielded low dose rate (LDR) source for treatments in breast and prostate. Directional brachytherapy sources irradiate approximately half of the radial angles around the source, and adequately shield a quarter of the radial angles on the opposite side, with sharp gradient zones between the treated half and shielded quarter. With internally shielded sources, the radiation can be preferentially emitted in such a way as to reduce toxicities in surrounding critical organs. The objective of this work is to present findings obtained in the development of a new directional high dose rate (d-HDR) source. To this goal, 103Pd (Z = 46) is reintroduced as a potential radionuclide for use in HDR brachytherapy. 103Pd has a low average photon energy (21 keV) and relatively short half -life (17 days), which is why it has historically been used in low dose rate applications and implantation techniques. Pd-103 has a carrier-free specific activity of 75000 Ci/g. Using cyclotron produced 103Pd, near carrier-free specific activities can be achieved, providing suitability for high dose rate applications. The evolution of the d-HDR source using Monte Carlo simulations is presented, along with dosimetric parameters used to fully characterize the source. In addition, a discussion on how to obtain elemental

  14. A survey of quality control practices for high dose rate (HDR) and pulsed dose rate (PDR) brachytherapy in the United Kingdom

    PubMed Central

    Bidmead, Margaret; Nisbet, Andrew

    2012-01-01

    Purpose A survey of quality control (QC) currently undertaken in UK radiotherapy centres for high dose rate (HDR) and pulsed dose rate (PDR) brachytherapy has been conducted. The purpose was to benchmark current accepted practice of tests, frequencies and tolerances to assure acceptable HDR/PDR equipment performance. It is 20 years since a similar survey was conducted in the UK and the current review is timed to coincide with a revision of the IPEM Report 81 guidelines for quality control in radiotherapy. Material and methods All radiotherapy centres in the UK were invited by email to complete a comprehensive questionnaire on their current brachytherapy QC practice, including: equipment type, patient workload, source calibration method, level of image guidance for planning, prescribing practices, QC tests, method used, staff involved, test frequencies, and acceptable tolerance limits. Results Survey data was acquired between June and August 2012. Of the 64 centres invited, 47 (73%) responded, with 31 centres having brachytherapy equipment (3 PDR) and fully completing the survey, 13 reporting no HDR/PDR brachytherapy, and 3 intending to commence HDR brachytherapy in the near future. All centres had comprehensive QC schedules in place and there was general agreement on key test frequencies and tolerances. Greatest discord was whether source strength for treatment planning should be derived from measurement, as at 58% of centres, or from the certified value, at 42%. IPEM Report 81 continues to be the most frequently cited source of QC guidance, followed by ESTRO Booklet No. 8. Conclusions A comprehensive survey of QC practices for HDR/PDR brachytherapy in UK has been conducted. This is a useful reference to which centres may benchmark their own practice. However, individuals should take a risk-assessment based approach, employing full knowledge of local equipment, clinical procedures and available test equipment in order to determine individual QC needs. PMID:23378853

  15. Analysis of high–dose rate brachytherapy dose distribution resemblance in CyberKnife hypofractionated treatment plans of localized prostate cancer

    SciTech Connect

    Sudahar, H.; Kurup, P.G.G.; Murali, V.; Mahadev, P.; Velmurugan, J.

    2013-01-01

    The present study is to analyze the CyberKnife hypofractionated dose distribution of localized prostate cancer in terms of high–dose rate (HDR) brachytherapy equivalent doses to assess the degree of HDR brachytherapy resemblance of CyberKnife dose distribution. Thirteen randomly selected localized prostate cancer cases treated using CyberKnife with a dose regimen of 36.25 Gy in 5 fractions were considered. HDR equivalent doses were calculated for 30 Gy in 3 fractions of HDR brachytherapy regimen. The D{sub 5%} of the target in the CyberKnife hypofractionation was 41.57 ± 2.41 Gy. The corresponding HDR fractionation (3 fractions) equivalent dose was 32.81 ± 1.86 Gy. The mean HDR fractionation equivalent dose, D{sub 98%}, was 27.93 ± 0.84 Gy. The V{sub 100%} of the prostate target was 95.57% ± 3.47%. The V{sub 100%} of the bladder and the rectum were 717.16 and 79.6 mm{sup 3}, respectively. Analysis of the HDR equivalent dose of CyberKnife dose distribution indicates a comparable resemblance to HDR dose distribution in the peripheral target doses (D{sub 98%} to D{sub 80%}) reported in the literature. However, there is a substantial difference observed in the core high-dose regions especially in D{sub 10%} and D{sub 5%}. The dose fall-off within the OAR is also superior in reported HDR dose distribution than the HDR equivalent doses of CyberKnife.

  16. SU-E-J-93: Parametrisation of Dose to the Mucosa of the Anterior Rectal Wall in Transrectal Ultrasound Guided High-Dose-Rate Brachytherapy of the Prostate

    SciTech Connect

    Aitkenhead, A; Hamlett, L; Wood, D; Choudhury, A

    2014-06-01

    Purpose: In high-dose-rate (HDR) brachytherapy of the prostate, radiation is delivered from a number of radioactive sources which are inserted via catheter into the target volume. The rectal mucosa also receives dose during the treatment, which may lead to late toxicity effects. To allow possible links between rectal dose and toxicity to be investigated, suitable methods of parametrising the rectal dose are needed. Methods: During treatment of a series of 95 patients, anatomy and catheter locations were monitored by transrectal ultrasound, and target volume positions were contoured on the ultrasound scan by the therapist. The anterior rectal mucosal wall was identified by contouring the transrectal ultrasound balloon within the ultrasound scan. Source positions and dwell times, along with the dose delivered to the patient were computed using the Oncentra Prostate treatment planning system (TPS). Data for the series of patients were exported from the TPS in Dicom format, and a series of parametrisation methods were developed in a Matlab environment to assess the rectal dose. Results: Contours of the anterior rectal mucosa were voxelised within Matlab to allow the dose to the rectal mucosa to be analysed directly from the 3D dose grid. Dose parametrisations based on dose-surface (DSH) and dose-line (DLH) histograms were obtained. Both lateral and longitudinal extents of the mucosal dose were parametrised using dose-line histograms in the relevant directions. Conclusion: We have developed a series of dose parametrisations for quantifying the dose to the rectal mucosa during HDR prostate brachytherapy which are suitable for future studies investigating potential associations between mucosal dose and late toxicity effects. The geometry of the transrectal probe standardises the rectal anatomy, making this treatment technique particularly suited to studies of this nature.

  17. Long-term results of breast cancer irradiation treatment with low-dose-rate external irradiation

    SciTech Connect

    Pierquin, Bernard; Tubiana, Maurice . E-mail: maurice.tubiana@biomedicale.univ-paris5.fr; Pan, Camille; Lagrange, Jean-Leon; Calitchi, Elie; Otmezguine, Yves

    2007-01-01

    Purpose: The aim of this study was to assess beam therapy with low-dose-rate (LDR) external irradiation in a group of patients with breast cancer. Methods and Materials: This trial compared, from 1986 to 1989, patients with advanced breast cancer treated either by conventional fractionation or low-dose-rate (LDR) external radiotherapy (dose-rate 15 mGy/min, 5 sessions of 9 Gy delivered on 5 consecutive days). Results: A total of 21 patients were included in the fractionated therapy arm. At follow-up 15 years after treatment, 7 local recurrences had occurred, 3 patients had died of cancer, 18 patients were alive, 10 were without evidence of disease, and 6 had evidence of disease. A total of 22 patients had been included in the LDR arm of the study. Of these, 11 had received a dose of 45 Gy; thereafter, in view of severe local reactions, the dose was reduced to 35 Gy. There was no local recurrence in patients who had received 45 Gy, although there were 2 local recurrences among the 11 patients after 35 Gy. The sequelae were severe in patients who received 45 Gy but were comparable to those observed in patients treated by fractionated radiotherapy who received 35 Gy. The higher efficacy of tumor control in patients treated by LDR irradiation as well as the lower tolerance of normal tissue are probably related to the lack of repopulation. Conclusion: Although the patient numbers in this study are limited, based on our study results we conclude that the data for LDR irradiation are encouraging and that further investigation is warranted.

  18. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  19. Rotational IMRT delivery using a digital linear accelerator in very high dose rate 'burst mode'.

    PubMed

    Salter, Bill J; Sarkar, Vikren; Wang, Brian; Shukla, Himanshu; Szegedi, Martin; Rassiah-Szegedi, Prema

    2011-04-01

    Recently, there has been a resurgence of interest in arc-based IMRT, through the use of 'conventional' multileaf collimator (MLC) systems that can treat large tumor volumes in a single, or very few pass(es) of the gantry. Here we present a novel 'burst mode' modulated arc delivery approach, wherein 2000 monitor units per minute (MU min(-1)) high dose rate bursts of dose are facilitated by a flattening-filter-free treatment beam on a Siemens Artiste (Oncology Care Systems, Siemens Medical Solutions, Concord, CA, USA) digital linear accelerator in a non-clinical configuration. Burst mode delivery differs from continuous mode delivery, used by Elekta's VMAT (Elekta Ltd, Crawley, UK) and Varian's RapidArc (Varian Medical Systems, Palo Alto, CA, USA) implementations, in that dose is not delivered while MLC leaves are moving. Instead, dose is delivered in bursts over very short arc angles and only after an MLC segment shape has been completely formed and verified by the controller. The new system was confirmed to be capable of delivering a wide array of clinically relevant treatment plans, without machine fault or other delivery anomalies. Dosimetric accuracy of the modulated arc platform, as well as the Prowess (Prowess Inc., Concord, CA, USA) prototype treatment planning version utilized here, was quantified and confirmed, and delivery times were measured as significantly brief, even with large hypofractionated doses. The burst mode modulated arc approach evaluated here appears to represent a capable, accurate and efficient delivery approach. PMID:21364260

  20. Computation of dose rate at flight altitudes during ground level enhancements no. 69, 70 and 71

    NASA Astrophysics Data System (ADS)

    Mishev, A. L.; Adibpour, F.; Usoskin, I. G.; Felsberger, E.

    2015-01-01

    A new numerical model of estimating and monitoring the exposure of personnel due to secondary cosmic radiation onboard aircraft, in accordance with radiation safety standards as well as European and national regulations, has been developed. The model aims to calculate the effective dose at flight altitude (39,000 ft) due to secondary cosmic radiation of galactic and solar origin. In addition, the model allows the estimation of ambient dose equivalent at typical commercial airline altitudes in order to provide comparison with reference data. The basics, structure and function of the model are described. The model is based on a straightforward full Monte Carlo simulation of the cosmic ray induced atmospheric cascade. The cascade simulation is performed with the PLANETOCOSMICS code. The flux of secondary particles, namely neutrons, protons, gammas, electrons, positrons, muons and charged pions is calculated. A subsequent conversion of the particle fluence into the effective dose or ambient dose equivalent is performed as well as a comparison with reference data. An application of the model is demonstrated, using a computation of the effective dose rate at flight altitude during the ground level enhancements of 20 January 2005, 13 December 2006 and 17 May 2012.

  1. In vivo measurements for high dose rate brachytherapy with optically stimulated luminescent dosimeters

    SciTech Connect

    Sharma, Renu; Jursinic, Paul A.

    2013-07-15

    Purpose: To show the feasibility of clinical implementation of OSLDs for high dose-rate (HDR) in vivo dosimetry for gynecological and breast patients. To discuss how the OSLDs were characterized for an Ir-192 source, taking into account low gamma energy and high dose gradients. To describe differences caused by the dose calculation formalism of treatment planning systems.Methods: OSLD irradiations were made using the GammaMedplus iX Ir-192 HDR, Varian Medical Systems, Milpitas, CA. BrachyVision versions 8.9 and 10.0, Varian Medical Systems, Milpitas, CA, were used for calculations. Version 8.9 used the TG-43 algorithm and version 10.0 used the Acuros algorithm. The OSLDs (InLight Nanodots) were characterized for Ir-192. Various phantoms were created to assess calculated and measured doses and the angular dependence and self-absorption of the Nanodots. Following successful phantom measurements, patient measurements for gynecological patients and breast cancer patients were made and compared to calculated doses.Results: The OSLD sensitivity to Ir-192 compared to 6 MV is between 1.10 and 1.25, is unique to each detector, and changes with accumulated dose. The measured doses were compared to those predicted by the treatment planning system and found to be in agreement for the gynecological patients to within measurement uncertainty. The range of differences between the measured and Acuros calculated doses was -10%-14%. For the breast patients, there was a discrepancy of -4.4% to +6.5% between the measured and calculated doses at the skin surface when the Acuros algorithm was used. These differences were within experimental uncertainty due to (random) error in the location of the detector with respect to the treatment catheter.Conclusions: OSLDs can be successfully used for HDR in vivo dosimetry. However, for the measurements to be meaningful one must account for the angular dependence, volume-averaging, and the greater sensitivity to Ir-192 gamma rays than to 6 MV x

  2. The use of small fraction numbers in high dose-rate gynaecological afterloading: some radiobiological considerations.

    PubMed

    Dale, R G

    1990-04-01

    Using commonly assumed alpha/beta ratios for tumours and late-reacting tissues, the linear-quadratic (LQ) model has been used to compare low dose-rate (LDR) gynaecological treatment with high dose-rate (HDR) techniques given in small fraction numbers. Even in the absence of relatively favourable tissue recovery constants (mu values) it is shown that, provided a modest extra amount of geometrical sparing of critical tissues is available (by means of spacing or shielding), HDR treatment in a small number of fractions may be used in place of an LDR regime without loss of therapeutic ratio. This general result, although not universally true, does indicate that HDR treatment delivered in a small number of fractions may be more feasible than is sometimes thought. These findings do not contradict currently accepted radiobiological philosophy, which cautions against the use of small numbers of high-dose fractions. Primarily they serve to emphasize the importance of the recommendations of the ICRU (1985), which stress the need to consider the complete time-dose pattern of radiation delivery to all the critical tissues in an intracavitary treatment. PMID:2346867

  3. Monte Carlo dosimetric study of the medium dose rate CSM40 source.

    PubMed

    Vijande, J; Granero, D; Perez-Calatayud, J; Ballester, F

    2013-12-01

    The (137)Cs medium dose rate (MDR) CSM40 source model (Eckert & Ziegler BEBIG, Germany) is in clinical use but no dosimetric dataset has been published. This study aims to obtain dosimetric data for the CSM40 source for its use in clinical practice as required by the American Association of Physicists in Medicine (AAPM) and the European Society for Radiotherapy and Oncology (ESTRO). Penelope2008 and Geant4 Monte Carlo codes were used to characterize this source dosimetrically. It was located in an unbounded water phantom with composition and mass density as recommended by AAPM and ESTRO. Due to the low photon energies of (137)Cs, absorbed dose was approximated by collisional kerma. Additional simulations were performed to obtain the air-kerma strength, sK. Mass-energy absorption coefficients in water and air were consistently derived and used to calculate collisional kerma. Results performed with both radiation transport codes showed agreement typically within 0.05%. Dose rate constant, radial dose function and anisotropy function are provided for the CSM40 and compared with published data for other commercially available (137)Cs sources. An uncertainty analysis has been performed. The data provided by this study can be used as input data and verification in the treatment planning systems. PMID:24121444

  4. Car-borne survey of natural background gamma dose rate in Çanakkale region, Turkey.

    PubMed

    Turhan, S; Arıkan, I H; Oğuz, F; Özdemir, T; Yücel, B; Varinlioğlu, A; Köse, A

    2012-01-01

    Natural background gamma radiation was measured along roads in the environs of Çanakkale region by using a car-borne spectrometer system with a plastic gamma radiation detector. In addition, activity concentrations of ²³⁸U, ²²⁶Ra, ²³²Th and ⁴⁰K in soil samples from the Çanakkale region were determined by using a gamma spectrometer with an HPGe detector. A total of 92,856 data of the background gamma dose rate were collected for the Çanakkale region. The background gamma dose rate of the Çanakkale region was mapped using ArcGIS software, applying the geostatistical inverse distance-weighted method. The average and population-weighted average of the gamma dose are 55.4 and 40.6 nGy h⁻¹, respectively. The corresponding average annual effective dose to the public ranged from 26.6 to 96.8 µSv. PMID:21362693

  5. Toward endobronchial Ir-192 high-dose-rate brachytherapy therapeutic optimization

    NASA Astrophysics Data System (ADS)

    Gay, H. A.; Allison, R. R.; Downie, G. H.; Mota, H. C.; Austerlitz, C.; Jenkins, T.; Sibata, C. H.

    2007-06-01

    A number of patients with lung cancer receive either palliative or curative high-dose-rate (HDR) endobronchial brachytherapy. Up to a third of patients treated with endobronchial HDR die from hemoptysis. Rather than accept hemoptysis as an expected potential consequence of HDR, we have calculated the radial dose distribution for an Ir-192 HDR source, rigorously examined the dose and prescription points recommended by the American Brachytherapy Society (ABS), and performed a radiobiological-based analysis. The radial dose rate of a commercially available Ir-192 source was calculated with a Monte Carlo simulation. Based on the linear quadratic model, the estimated palliative, curative and blood vessel rupture radii from the center of an Ir-192 source were obtained for the ABS recommendations and a series of customized HDR prescriptions. The estimated radius at risk for blood vessel perforation for the ABS recommendations ranges from 7 to 9 mm. An optimized prescription may in some situations reduce this radius to 4 mm. The estimated blood perforation radius is generally smaller than the palliative radius. Optimized and individualized endobronchial HDR prescriptions are currently feasible based on our current understanding of tumor and normal tissue radiobiology. Individualized prescriptions could minimize complications such as fatal hemoptysis without sacrificing efficacy. Fiducial stents, HDR catheter centering or spacers and the use of CT imaging to better assess the relationship between the catheter and blood vessels promise to be useful strategies for increasing the therapeutic index of this treatment modality. Prospective trials employing treatment optimization algorithms are needed.

  6. Characteristics and verification of a car-borne survey system for dose rates in air: KURAMA-II.

    PubMed

    Tsuda, S; Yoshida, T; Tsutsumi, M; Saito, K

    2015-01-01

    The car-borne survey system KURAMA-II, developed by the Kyoto University Research Reactor Institute, has been used for air dose rate mapping after the Fukushima Dai-ichi Nuclear Power Plant accident. KURAMA-II consists of a CsI(Tl) scintillation detector, a GPS device, and a control device for data processing. The dose rates monitored by KURAMA-II are based on the G(E) function (spectrum-dose conversion operator), which can precisely calculate dose rates from measured pulse-height distribution even if the energy spectrum changes significantly. The characteristics of KURAMA-II have been investigated with particular consideration to the reliability of the calculated G(E) function, dose rate dependence, statistical fluctuation, angular dependence, and energy dependence. The results indicate that 100 units of KURAMA-II systems have acceptable quality for mass monitoring of dose rates in the environment. PMID:24698118

  7. Simulated Microgravity and Low-Dose/Low-Dose-Rate Radiation Induces Oxidative Damage in the Mouse Brain.

    PubMed

    Mao, Xiao Wen; Nishiyama, Nina C; Pecaut, Michael J; Campbell-Beachler, Mary; Gifford, Peter; Haynes, Kristine E; Becronis, Caroline; Gridley, Daila S

    2016-06-01

    Microgravity and radiation are stressors unique to the spaceflight environment that can have an impact on the central nervous system (CNS). These stressors could potentially lead to significant health risks to astronauts, both acutely during the course of a mission or chronically, leading to long-term, post-mission decrements in quality of life. The CNS is sensitive to oxidative injury due to high concentrations of oxidizable, unsaturated lipids and low levels of antioxidant defenses. The purpose of this study was to evaluate oxidative damage in the brain cortex and hippocampus in a ground-based model for spaceflight, which includes prolonged unloading and low-dose radiation. Whole-body low-dose/low-dose-rate (LDR) gamma radiation using (57)Co plates (0.04 Gy at 0.01 cGy/h) was delivered to 6 months old, mature, female C57BL/6 mice (n = 4-6/group) to simulate the radiation component. Anti-orthostatic tail suspension was used to model the unloading, fluid shift and physiological stress aspects of the microgravity component. Mice were hindlimb suspended and/or irradiated for 21 days. Brains were isolated 7 days or 9 months after irradiation and hindlimb unloading (HLU) for characterization of oxidative stress markers and microvessel changes. The level of 4-hydroxynonenal (4-HNE) protein, an oxidative specific marker for lipid peroxidation, was significantly elevated in the cortex and hippocampus after LDR + HLU compared to controls (P < 0.05). The combination group also had the highest level of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) expression compared to controls (P < 0.05). There was a significant decrease in superoxide dismutase (SOD) expression in the animals that received HLU only or combined LDR + HLU compared to control (P < 0.05). In addition, 9 months after LDR and HLU exposure, microvessel densities were the lowest in the combination group, compared to age-matched controls in the cortex (P < 0.05). Our data provide the first evidence

  8. A METHODOLOGY FOR DETERMINING THE DOSE RATE FOR BOUNDING MASS LIMITS IN A 9977 PACKAGING

    SciTech Connect

    Abramczyk, G.; Bellamy, S.; Nathan, S.; Loftin, B.

    2012-05-24

    The Small Gram Quantity (SGQ) concept is based on the understanding that the hazards associated with the shipment of a radioactive material are directly proportional to its mass. This study describes a methodology that estimates the acceptable masses for several neutron and gamma emitting isotopes that can be shipped in a 9977 Package compliant with the Title 10 of the Code of Federal Regulations, Part 71 (10CFR71) external radiation level limits. 10CFR71.33 states that a shipping application identifies the radioactive and fissile materials at their maximum quantity and provides an evaluation demonstrating compliance with the external radiation standards. Since rather small amounts of some isotopes emit sufficiently strong radiation to produce a large external dose rate, quantifying of the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. A methodology was established for determining the dose rate for bounding mass limits for a set of isotopes in the Model 9977 Shipping Package. Calculations were performed to estimate external radiation levels using the MCNP radiation transport code to develop a set of response multipliers (Green's functions) for 'dose per source particle' for each neutron and photon spectral group. The source spectrum from one gram of each isotope was folded with the response multipliers to generate the dose rate per gram of each isotope in the 9977 shipping package and its associated shielded containers. The maximum amount of a single isotope that could be shipped within the regulatory limits for dose rate at the surface was determined. For a package containing a mixture of isotopes, the acceptability for shipment can be determined by a sum of fractions approach. Furthermore, the results of this analysis can be easily

  9. Assessment of ambient gamma dose rate around a prospective uranium mining area of South India - A comparative study of dose by direct methods and soil radioactivity measurements

    NASA Astrophysics Data System (ADS)

    Karunakara, N.; Yashodhara, I.; Sudeep Kumara, K.; Tripathi, R. M.; Menon, S. N.; Kadam, S.; Chougaonkar, M. P.

    Indoor and outdoor gamma dose rates were evaluated around a prospective uranium mining region - Gogi, South India through (i) direct measurements using a GM based gamma dose survey meter, (ii) integrated measurement days using CaSO4:Dy based thermo luminescent dosimeters (TLDs), and (iii) analyses of 273 soil samples for 226Ra, 232Th, and 40K activity concentration using HPGe gamma spectrometry. The geometric mean values of indoor and outdoor gamma dose rates were 104 nGy h-1 and 97 nGy h-1, respectively with an indoor to outdoor dose ratio of 1.09. The gamma dose rates and activity concentrations of 226Ra, 232Th, and 40K varied significantly within a small area due to the highly localized mineralization of the elements. Correlation study showed that the dose estimated from the soil radioactivity is better correlated with that measured directly using the portable survey meter, when compared to that obtained from TLDs. This study showed that in a region having localized mineralization in situ measurements using dose survey meter provide better representative values of gamma dose rates.

  10. Area dose rate values derived from NaI or LaBr3 spectra.

    PubMed

    Dombrowski, H

    2014-08-01

    More and more spectrometric systems are being installed in environmental radiation monitoring stations instead of or in addition to dosimetric detectors, because novel spectrometric systems have been developed which do not need any cooling and because the necessary electronics, especially digital multichannel analysers, have become more manageable and more affordable. The advantage of obtaining information about nuclide vectors can justify the operation of a more complex spectroscopic measuring system, but if spectrometers are also used for dose rate measurements in the natural environment, ambient dose equivalent rate values have to be calculated from measured spectra. Different approaches to achieve this goal will be presented in this article. Some practical recommendations will also be presented to avoid known errors. PMID:24478307

  11. Factors affecting quality for beta dose rate measurements using ISO 6980 series I reference sources

    SciTech Connect

    Burns, R.E. Jr.; O`Brien, J.M. Jr.

    1993-12-31

    Atlan-Tech, Inc. has performed several calibrations of ISO 6980 Series 1 reference beta sources over the past two to three years. There were many problems encountered in attempting to compare the results of these calibrations with those from other laboratories, indicating the need for more standardization in the methodology employed for the measurement of the absorbed dose rate from ISO 6980 Series 1 reference beta sources. This document describes some of the problems encountered in attempting to intercompare results of beta dose-rate measurements. It proposes some solutions in an attempt to open a dialogue among facilities using reference beta standards for the purpose of promoting better measurement quality assurance through data intercomparison.

  12. Influence of clouds on the cosmic radiation dose rate on aircraft.

    PubMed

    Pazianotto, Maurício T; Federico, Claudio A; Cortés-Giraldo, Miguel A; Pinto, Marcos Luiz de A; Gonçalez, Odair L; Quesada, José Manuel M; Carlson, Brett V; Palomo, Francisco R

    2014-10-01

    Flight missions were made in Brazilian territory in 2009 and 2011 with the aim of measuring the cosmic radiation dose rate incident on aircraft in the South Atlantic Magnetic Anomaly and to compare it with Monte Carlo simulations. During one of these flights, small fluctuations were observed in the vicinity of the aircraft with formation of Cumulonimbus clouds. Motivated by these observations, in this work, the authors investigated the relationship between the presence of clouds and the neutron flux and dose rate incident on aircraft using computational simulation. The Monte Carlo simulations were made using the MCNPX and Geant4 codes, considering the incident proton flux at the top of the atmosphere and its propagation and neutron production through several vertically arranged slabs, which were modelled according to the ISO specifications. PMID:24925902

  13. Terrestrial gamma radiation dose rate in Ryukyu Islands, subtropical region of Japan.

    PubMed

    Furukawa, M; Kina, S; Shiroma, M; Shiroma, Y; Masuda, N; Motomura, D; Hiraoka, H; Fujioka, S; Kawakami, T; Yasuda, Y; Arakawa, K; Fukahori, K; Jyunicho, M; Ishikawa, S; Ohomoto, T; Shingaki, R; Akata, N; Zhuo, W; Tokonami, S

    2015-11-01

    In order to explain the distribution of natural radiation level in the Asia, in situ measurements of dose rate in air due to terrestrial gamma radiation have been conducted in a total of 21 islands that belong to Ryukyu Islands (Ryukyu Archipelago), subtropical rejoin of southwest Japan. Car-borne surveys have also been carried out in Okinawa-jima, the biggest island of the archipelago. Based on the results for these measurements, arithmetic mean, the maximum and the minimum of the dose rates at 1 m in height from the unpaved soil ground in the archipelago were estimated to be 47, 165 and 8 nGy h(-1), respectively. A comparative study of car-borne data obtained prior to and subsequent to the 2011 Fukushima nuclear accident, as for Okinawa-jima, indicated that the nuclear accident has no impact on the environmental radiation at the present time. PMID:26065703

  14. Dose rate dependence of the speciation of neptunium in irradiated solutions of nitric acid

    SciTech Connect

    Precek, M.; Paulenova, A.; Mincher, B.J.; Mezyk, S.P.

    2013-07-01

    The effects of radiation on the redox speciation of neptunium are of interest due to their impact on the performance of separation of neptunium from highly radioactive solutions of dissolved used nuclear fuel. In this study, the influence of dose rate change from 0.4 kGy/h to 6 kGy/h was examined during irradiation of solutions of initially hexavalent 2.0-2.5 mM neptunium in nitric acid of two different concentrations (0.5 and 1 M). Results indicate that the immediate radiolytic steady-state concentration of neptunium(V) were depressed and its initial radiolytic yield was up to 2-times lower (in 1 M HNO{sub 3} solutions)during irradiations with the higher dose rate. The finding is explained on the basis of the enhancement of the role of oxidizing radicals during the radiolytic process. (authors)

  15. Mathematical Modeling of Radiocesium Migration and Air Dose Rate Changes in Eastern Fukushima Prefecture

    NASA Astrophysics Data System (ADS)

    Kitamura, A.; Sakuma, K.; Kurikami, H.; Malins, A.; Okumura, M.; Itakura, M.; Yamada, S.; Machida, M.

    2015-12-01

    Radioactive cesium that was deposited over Fukushima Prefecture after the accident at the Fukushima Daiichi nuclear power plant station is one of the major concerns regarding health physics today. Its migration is primarily by soil erosion and sediment transport within surface water during times of heavy rainfall and flooding. In order to predict the future distribution of radioactive cesium and resulting air dose rate at any location in Fukushima, we have integrated a number of mathematical models covering different time and spatial scales. In this presentation we report our overall scheme of prediction starting from sediment and radioactive cesium movement and resulting long term air dose rate changes. Specifically, we present simulation results of sediment movement and radioactive cesium migration using semi-empirical and physics based watershed models, and that of sediment and radioactive cesium behavior in a dam reservoir using one and two dimensional river simulation models. The model's results are compared with ongoing field monitoring.

  16. Dose rate observed on 19-21 October 1989 and its modulation by geophysical effects

    SciTech Connect

    Shea, M.A.; Smart, D.F.; Dachev, T.P.; Petrov, V.M.

    1994-12-31

    The Liulin dosimeter-radiometer on the MIR space station detected the 19 October 1989 high energy solar proton event. These results show the main particle increase contains protons with energies up to about 9 GeV. After the main particle onset the Liulin dosimeter observed a typical geomagnetic cutoff modulation of the dose rate from the solar particles as the MIR space station traversed magnetic latitude. When the interplanetary shock and associated solar plasma enveloped the earth on 20 October between 14 and 17 UT the radiation exposure increased significantly due to the lowering of the geomagnetic cutoff. The analysis of this event shows how various geophysical phenomena can significantly modulate the dose rate encountered by earth-orbiting spacecraft.

  17. Dose rate observed on 19-21 October 1989 and its modulation by geophysical effects

    SciTech Connect

    Smart, D.F.; Shea, M.A.; Bankov, N.G.; Petrov, V.M.; Bengin, V.V.

    1996-07-12

    The Liulin dosimeter radiometer on the MIR space station detected the 19 October 1989 high energy solar proton event. These results show that the main particle increase contains protons with energies up to about 9 GeV. After the main particle onset, the Liulin dosimeter observed a typical geomagnetic cut-off modulation of the dose rate from the solar particles as the MIR space station traversed magnetic latitudes. When the interplanetary shock and associated solar plasma enveloped the earth on 20 October between 14 and 17 UT, the radiation exposure increased significantly due to the lowering of the geomagnetic cutoff. The analysis of this event shows how various geophysical phenomena can significantly modulate the dose rate encountered by earth orbiting spacecraft.

  18. Lymphoid cell kinetics under continuous low dose-rate gamma irradiation: A comparison study

    NASA Technical Reports Server (NTRS)

    Foster, B. R.

    1975-01-01

    A comparison study was conducted of the effects of continuous low dose-rate gamma irradiation on cell population kinetics of lymphoid tissue (white pulp) of the mouse spleen with findings as they relate to the mouse thymus. Experimental techniques employed included autoradiography and specific labeling with tritiated thymidine (TdR-(h-3)). The problem studied involved the mechanism of cell proliferation of lymphoid tissue of the mouse spleen and thymus under the stress of continuous irradiation at a dose rate of 10 roentgens (R) per day for 105 days (15 weeks). The aim was to determine whether or not a steady state or near-steady state of cell population could be established for this period of time, and what compensatory mechanisms of cell population were involved.

  19. The provision of a uniform vaginal surface dose rate by a novel afterloading cylinder.

    PubMed

    Johnson, J M; Potish, R A

    1991-12-01

    The administration of a uniform dose rate to the vaginal surface is important in the management of endometrial, cervical, and vaginal malignancies. Unfortunately, conventional vaginal cylinders fail to provide this uniformity, and although dome cylinders do so, they require specialized 137Cs sources. Thus, a new acrylic vaginal cylinder has been developed to use with standard 137Cs sources and provides a uniform dose rate independent of vaginal size. Each contoured cylinder follows a particular isodose line. A metal ring is used to secure the device to minimize vulvar trauma associated with other vaginal cylinders. The construction and use of a set of these cylinders has allowed determination of their utility and limitations, which will be discussed in detail. Although these applicators do not completely replace conventional cylinders, they do offer a useful addition to the brachy-therapeutic armamentarium. PMID:1764169

  20. Dose Rate Calculations for the 2-MCO/2-DHLW Waste Package

    SciTech Connect

    G. Radulescu

    2000-10-03

    The objective of this calculation is to determine the dose rates on the external surfaces of the waste package (WP) containing two Hanford defense high-level waste (DHLW) glass canisters and two Hanford multi-canister overpacks (MCO). Each MCO is loaded with the N Reactor spent nuclear fuel (SNF). The information provided by the sketches attached to this calculation is that of the potential design for the WP type considered in this calculation. The scope of this calculation is limited to reporting dose rates averaged over segments of the WP radial and axial surfaces and of surfaces 1 m and 2 m from the WP. The results of this calculation will be used to assess the shielding performance of the 2-MC012-DHLW WP engineering design.

  1. Acceleration of atherogenesis in ApoE−/− mice exposed to acute or low-dose-rate ionizing radiation

    PubMed Central

    Mancuso, Mariateresa; Pasquali, Emanuela; Braga-Tanaka, Ignacia; Tanaka, Satoshi; Pannicelli, Alessandro; Giardullo, Paola; Pazzaglia, Simonetta; Tapio, Soile; Atkinson, Michael J.; Saran, Anna

    2015-01-01

    There is epidemiological evidence for increased non-cancer mortality, primarily due to circulatory diseases after radiation exposure above 0.5 Sv. We evaluated the effects of chronic low-dose rate versus acute exposures in a murine model of spontaneous atherogenesis. Female ApoE−/− mice (60 days) were chronically irradiated for 300 days with gamma rays at two different dose rates (1 mGy/day; 20 mGy/day), with total accumulated doses of 0.3 or 6 Gy. For comparison, age-matched ApoE−/− females were acutely exposed to the same doses and sacrificed 300 days post-irradiation. Mice acutely exposed to 0.3 or 6 Gy showed increased atherogenesis compared to age-matched controls, and this effect was persistent. When the same doses were delivered at low dose rate over 300 days, we again observed a significant impact on global development of atherosclerosis, although at 0.3 Gy effects were limited to the descending thoracic aorta. Our data suggest that a moderate dose of 0.3 Gy can have persistent detrimental effects on the cardiovascular system, and that a high dose of 6 Gy poses high risks at both high and low dose rates. Our results were clearly nonlinear with dose, suggesting that lower doses may be more damaging than predicted by a linear dose response. PMID:26359350

  2. Acceleration of atherogenesis in ApoE-/- mice exposed to acute or low-dose-rate ionizing radiation.

    PubMed

    Mancuso, Mariateresa; Pasquali, Emanuela; Braga-Tanaka, Ignacia; Tanaka, Satoshi; Pannicelli, Alessandro; Giardullo, Paola; Pazzaglia, Simonetta; Tapio, Soile; Atkinson, Michael J; Saran, Anna

    2015-10-13

    There is epidemiological evidence for increased non-cancer mortality, primarily due to circulatory diseases after radiation exposure above 0.5 Sv. We evaluated the effects of chronic low-dose rate versus acute exposures in a murine model of spontaneous atherogenesis. Female ApoE-/- mice (60 days) were chronically irradiated for 300 days with gamma rays at two different dose rates (1 mGy/day; 20 mGy/day), with total accumulated doses of 0.3 or 6 Gy. For comparison, age-matched ApoE-/- females were acutely exposed to the same doses and sacrificed 300 days post-irradiation. Mice acutely exposed to 0.3 or 6 Gy showed increased atherogenesis compared to age-matched controls, and this effect was persistent. When the same doses were delivered at low dose rate over 300 days, we again observed a significant impact on global development of atherosclerosis, although at 0.3 Gy effects were limited to the descending thoracic aorta. Our data suggest that a moderate dose of 0.3 Gy can have persistent detrimental effects on the cardiovascular system, and that a high dose of 6 Gy poses high risks at both high and low dose rates. Our results were clearly nonlinear with dose, suggesting that lower doses may be more damaging than predicted by a linear dose response. PMID:26359350

  3. Development and validation of a test dose strategy for once-daily i.v. busulfan: importance of fixed infusion rate dosing.

    PubMed

    Kangarloo, S Bill; Naveed, Farrukh; Ng, Ella S M; Chaudhry, M Ahsan; Wu, Judy; Bahlis, Nizar J; Brown, Christopher B; Daly, Andrew; Duggan, Peter; Geddes, Michelle; Quinlan, Diana; Savoie, Mary Lynn; Shafey, Mona; Stewart, Douglas A; Storek, Jan; Yang, Maggie; Zacarias, Nancy; Yue, Ping; Magliocco, Anthony M; Russell, James A

    2012-02-01

    Intravenous (i.v.) busulfan (Bu) administered once daily in myeloablative transplant regimens is convenient, effective, and relatively well tolerated. Therapeutic drug monitoring is recommended as nonrelapse mortality increases when daily exposure, as determined by the area under the plasma concentration versus time curve (AUC), exceeds 6000 μM·min. We describe sequential studies to achieve accurate prediction of treatment doses of Bu based on the kinetics of a smaller test dose. A total of 335 patients with hematologic malignancies were given daily i.v. Bu 3.2 mg/kg × 4 and fludarabine 50 mg/m(2) × 5. Pharmacokinetic monitoring was conducted for both the test dose and first treatment dose of Bu (day -5). Three different test dose schedules were evaluated: 12 mg Bu administered over 20 minutes, 0.8 mg/kg over 3 hours, and 0.8 mg/kg infused at 80 mg/h. The 3.2 mg/kg treatment doses were infused over a fixed time of 3 hours for the first 2 test dose trials and at a fixed rate of 80 mg/h for the final protocol. All test dose infusions were on day -7. In the first 2 schedules, Bu administered over a fixed time had significantly higher clearance for the test dose compared with the treatment dose. However, when both the test and the treatment doses were administered at the same infusion rate, clearance of the drug between the 2 dosing days was equivalent. Predicted day -5 AUC (AUC(-5)) showed a high linear correlation (r(2) = 0.74) to the actual AUC(-5). The error of these predictions was <20% in 98% of patients and <10% in 80%. In 24 individuals, the test dose predicted an AUC >5500 μM·min; therefore, the first Bu treatment dose was reduced to a desired target AUC. All adjusted doses fell within 20% of the targeted exposure. We conclude that a test dose strategy for therapeutic drug monitoring of daily i.v. Bu is accurate if the test and treatment doses are infused at the same rate. This approach allows targeting of therapeutic doses of Bu to desired levels and

  4. Distribution of terrestrial gamma radiation dose rate in the eastern coastal area of Odisha, India.

    PubMed

    Gusain, G S; Rautela, B S; Sahoo, S K; Ishikawa, T; Prasad, G; Omori, Y; Sorimachi, A; Tokonami, S; Ramola, R C

    2012-11-01

    Terrestrial gamma radiation is one of the important radiation exposures on the earth's surface that results from the three primordial radionuclides (226)Ra, (232)Th and (40)K. The elemental concentration of these elements in the earth's crust could result in the anomalous variation of the terrestrial gamma radiation in the environment. The geology of the local area plays an important role in distribution of these radioactive elements. Environmental terrestrial gamma radiation dose rates were measured around the eastern coastal area of Odisha with the objective of establishing baseline data on the background radiation level. The values of the terrestrial gamma radiation dose rate vary significantly at different locations in the study area. The values of the terrestrial gamma dose rate ranged from 77 to 1651 nGy h(-1), with an average of 230 nGy h(-1). During the measurement of the terrestrial gamma dose rate, sand and soil samples were also collected for the assessment of natural radionuclides. The activities of (226)Ra, (232)Th and (40)K from these samples were measured using a gamma-ray spectrometry with a NaI(Tl) detector. Activity concentrations of (226)Ra, (232)Th and (40)K ranged from 15.6 to 69 Bq kg(-1) with an average of 46.7 Bq kg(-1), from 28.9 to 973 Bq kg(-1) with an average of 250 Bq kg(-1) and from 139 to 952 Bq kg(-1) with an average of 429, respectively. The detailed significance of these studies has been discussed from the radiation protection point of view. PMID:22874894

  5. A comparison of analytic models for estimating dose equivalent rates in shielding with beam spill measurements

    SciTech Connect

    Frankle, S.C.; Fitzgerald, D.H.; Hutson, R.L.; Macek, R.J.; Wilkinson, C.A.

    1992-12-31

    A comparison of 800-MeV proton beam spill measurements at the Los Alamos Meson Physics Facility (LAMPF) with analytical model calculations of neutron dose equivalent rates (DER) show agreement within factors of 2-3 for simple shielding geometries. The DER estimates were based on a modified Moyer model for transverse angles and a Monte Carlo based forward angle model described in the proceeding paper.

  6. Measurement of absorbed dose rate of gamma radiation for lead compounds

    NASA Astrophysics Data System (ADS)

    Rudraswamy, B.; Dhananjaya, N.; Manjunatha, H. C.

    2010-07-01

    An attempt has been made to estimate the absorbed dose rate using both theoretical and measured mass energy attenuation coefficient of gamma for the lead compounds such as PbNO 3, PbCl 2, PbO 2 and PbO using various gamma sources such as 22Na (511, 1274), 137Cs (661.6), 54Mn (835) and 60Co (1173, 1332 keV).

  7. Using rainfall radar data to improve interpolated maps of dose rate in the Netherlands.

    PubMed

    Hiemstra, Paul H; Pebesma, Edzer J; Heuvelink, Gerard B M; Twenhöfel, Chris J W

    2010-12-01

    The radiation monitoring network in the Netherlands is designed to detect and track increased radiation levels, dose rate more specifically, in 10-minute intervals. The network consists of 153 monitoring stations. Washout of radon progeny by rainfall is the most important cause of natural variations in dose rate. The increase in dose rate at a given time is a function of the amount of progeny decaying, which in turn is a balance between deposition of progeny by rainfall and radioactive decay. The increase in progeny is closely related to average rainfall intensity over the last 2.5h. We included decay of progeny by using weighted averaged rainfall intensity, where the weight decreases back in time. The decrease in weight is related to the half-life of radon progeny. In this paper we show for a rainstorm on the 20th of July 2007 that weighted averaged rainfall intensity estimated from rainfall radar images, collected every 5min, performs much better as a predictor of increases in dose rate than using the non-averaged rainfall intensity. In addition, we show through cross-validation that including weighted averaged rainfall intensity in an interpolated map using universal kriging (UK) does not necessarily lead to a more accurate map. This might be attributed to the high density of monitoring stations in comparison to the spatial extent of a typical rain event. Reducing the network density improved the accuracy of the map when universal kriging was used instead of ordinary kriging (no trend). Consequently, in a less dense network the positive influence of including a trend is likely to increase. Furthermore, we suspect that UK better reproduces the sharp boundaries present in rainfall maps, but that the lack of short-distance monitoring station pairs prevents cross-validation from revealing this effect. PMID:20961600

  8. Dose Rate Calucaltion for the DHL W/DOE SNF Codisposal Waste Package

    SciTech Connect

    G. Radulescu

    2000-02-12

    The purpose of this calculation is to determine the surface dose rates of the short codisposal waste package (WP) of defense high-level waste (DHLW) and TRIGA (Training, Research, Isotopes, General Atomics) spent nuclear fuel (SNF). The WP contains the TRIGA SNF, in a standardized 18-in. DOE (U.S. Department of Energy) SNF canister, and five 3-m-long Savannah River Site (SRS) DHLW pour glass canisters, which surround the DOE SNF canister.

  9. Effect of Remediation Parameters on in-Air Ambient Dose Equivalent Rates When Remediating Open Sites with Radiocesium-contaminated Soil.

    PubMed

    Malins, Alex; Kurikami, Hiroshi; Kitamura, Akihiro; Machida, Masahiko

    2016-10-01

    Calculations are reported for ambient dose equivalent rates [H˙*(10)] at 1 m height above the ground surface before and after remediating radiocesium-contaminated soil at wide and open sites. The results establish how the change in H˙*(10) upon remediation depends on the initial depth distribution of radiocesium within the ground, on the size of the remediated area, and on the mass per unit area of remediated soil. The remediation strategies considered were topsoil removal (with and without recovering with a clean soil layer), interchanging a topsoil layer with a subsoil layer, and in situ mixing of the topsoil. The results show the ratio of the radiocesium components of H˙*(10) post-remediation relative to their initial values (residual dose factors). It is possible to use the residual dose factors to gauge absolute changes in H˙*(10) upon remediation. The dependency of the residual dose factors on the number of years elapsed after fallout deposition is analyzed when remediation parameters remain fixed and radiocesium undergoes typical downward migration within the soil column. PMID:27575348

  10. Monte Carlo calculation of dose rate conversion factors for external exposure to photon emitters in soil.

    PubMed

    Clouvas, A; Xanthos, S; Antonopoulos-Domis, M; Silva, J

    2000-03-01

    The dose rate conversion factors D(CF) (absorbed dose rate in air per unit activity per unit of soil mass, nGy h(-1) per Bq kg(-1)) are calculated 1 m above ground for photon emitters of natural radionuclides uniformly distributed in the soil. Three Monte Carlo codes are used: 1) The MCNP code of Los Alamos; 2) The GEANT code of CERN; and 3) a Monte Carlo code developed in the Nuclear Technology Laboratory of the Aristotle University of Thessaloniki. The accuracy of the Monte Carlo results is tested by the comparison of the unscattered flux obtained by the three Monte Carlo codes with an independent straightforward calculation. All codes and particularly the MCNP calculate accurately the absorbed dose rate in air due to the unscattered radiation. For the total radiation (unscattered plus scattered) the D(CF) values calculated from the three codes are in very good agreement between them. The comparison between these results and the results deduced previously by other authors indicates a good agreement (less than 15% of difference) for photon energies above 1,500 keV. Antithetically, the agreement is not as good (difference of 20-30%) for the low energy photons. PMID:10688452

  11. Remote Sensing of Radiation Dose Rate by a Robot for Outdoor Usage

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Doi, K.; Kanematsu, H.; Utsumi, Y.; Hashimoto, R.; Takashina, T.

    2013-04-01

    In the present paper, the design and prototyping of a telemetry system, in which GPS, camera, and scintillation counter were mounted on a crawler type traveling vehicle, were conducted for targeting outdoor usage such as school playground. As a result, the crawler type traveling vehicle can be operated smoothly in the school grounds of brick and asphalt. The results were as follows: (1) It was confirmed that the crawler type traveling vehicle can be operated smoothly in the school grounds of brick and asphalt (running speed: 17[m/min]). (2) It was confirmed that the location information captured by GPS is visible on the Google map, and that the incorporation of video information is also possible to play. (3)A radiation dose rate of 0.09[μSv / h] was obtained in the ground. The value is less than the 1/40 ([3.8μSv / h]) allowable radiation dose rate for children in Fukushima Prefecture.(4)As a further work, modifying to program traveling, the measurement of the distribution of the radiation dose rate in a school of Fukushima Prefecture, and class delivery on radiation measurement will be carried out.

  12. Dose-rate scaling factor estimation of THOR BNCT test beam.

    PubMed

    Hsu, F Y; Tung, C J; Chen, J C; Wang, Y L; Huang, H C; Zamenhof, R G

    2004-11-01

    In 1998, an epithermal neutron test beam was designed and constructed at the Tsing Hua Open-Pool Reactor (THOR) for the purpose of preliminary dosimetric experiments in boron neutron capture therapy (BNCT). A new epithermal neutron beam was designed at this facility, and is currently under construction, with clinical trials targeted in late 2004. Depth dose-rate distributions for the THOR BNCT test beam have been measured by means of activation foil and dual ion chamber techniques. Neutron and structure-induced gamma spectra measured at the test beam exit were configured into a source function for the Monte Carlo-based treatment planning code NCTPlan. Dose-rate scaling factors (DRSFs) were determined to normalize computationally derived dose-rate distributions with experimental measurements in corresponding mathematical and physical phantoms, and to thus enable accurate treatment planning using the NCTPlan code. A similar approach will be implemented in characterizing the new THOR epithermal beam in preparation for clinical studies. This paper reports the in-phantom calculated and experimental dosimetry comparisons and derived DRSFs obtained with the THOR test beam. PMID:15308162

  13. Dose-rate distribution of {sup 32}P-glass microspheres for intra-arterial brachytherapy

    SciTech Connect

    Guimaraes, Carla C.; Moralles, Mauricio; Sene, Frank F.; Martinelli, Jose R.

    2010-02-15

    Purpose: The intra-arterial administration of radioactive glass microspheres is an alternative therapy option for treating primary hepatocellular carcinoma, the main cause of liver cancer death, and metastatic liver cancer, another important kind of cancer induced in the liver. The technique involves the administration of radioactive microspheres in the hepatic artery, which are trapped preferentially in the tumor. Methods: In this work the GEANT4 toolkit was used to calculate the radial dose-rate distributions in water from {sup 32}P-loaded glass microspheres and also from {sup 90}Y-loaded glass microspheres. To validate the toolkit for this application, the authors compared the dose-rate distribution of {sup 32}P and {sup 90}Y point sources in water with data from the International Commission on Radiation Units and Measurements report 72. Results: Tables of radial dose-rate distributions are provided for practical use in brachytherapy planning with these microspheres. Conclusions: The simulations with the microspheres show that the shape of the beta ray energy spectra with respect to the {sup 32}P and {sup 90}Y sources is significantly modified by the glass matrix.

  14. Radiation Dose-Rate Effects on Gene Expression in a Mouse Biodosimetry Model

    PubMed Central

    Paul, Sunirmal; Smilenov, Lubomir B.; Elliston, Carl D.; Amundson, Sally A.

    2015-01-01

    In the event of a nuclear accident or radiological terrorist attack, there will be a pressing need for biodosimetry to triage a large, potentially exposed population and to assign individuals to appropriate treatment. Exposures from fallout are likely, resulting in protracted dose delivery that would, in turn, impact the extent of injury. Biodosimetry approaches that can distinguish such low-dose-rate (LDR) exposures from acute exposures have not yet been developed. In this study, we used the C57BL/6 mouse model in an initial investigation of the impact of low-dose-rate delivery on the transcriptomic response in blood. While a large number of the same genes responded to LDR and acute radiation exposures, for many genes the magnitude of response was lower after LDR exposures. Some genes, however, were differentially expressed (P < 0.001, false discovery rate < 5%) in mice exposed to LDR compared with mice exposed to acute radiation. We identified a set of 164 genes that correctly classified 97% of the samples in this experiment as exposed to acute or LDR radiation using a support vector machine algorithm. Gene expression is a promising approach to radiation biodosimetry, enhanced greatly by this first demonstration of its potential for distinguishing between acute and LDR exposures. Further development of this aspect of radiation biodosimetry, either as part of a complete gene expression biodosimetry test or as an adjunct to other methods, could provide vital triage information in a mass radiological casualty event. PMID:26114327

  15. Radiation Dose-Rate Effects on Gene Expression in a Mouse Biodosimetry Model.

    PubMed

    Paul, Sunirmal; Smilenov, Lubomir B; Elliston, Carl D; Amundson, Sally A

    2015-07-01

    In the event of a nuclear accident or radiological terrorist attack, there will be a pressing need for biodosimetry to triage a large, potentially exposed population and to assign individuals to appropriate treatment. Exposures from fallout are likely, resulting in protracted dose delivery that would, in turn, impact the extent of injury. Biodosimetry approaches that can distinguish such low-dose-rate (LDR) exposures from acute exposures have not yet been developed. In this study, we used the C57BL/6 mouse model in an initial investigation of the impact of low-dose-rate delivery on the transcriptomic response in blood. While a large number of the same genes responded to LDR and acute radiation exposures, for many genes the magnitude of response was lower after LDR exposures. Some genes, however, were differentially expressed (P < 0.001, false discovery rate <5%) in mice exposed to LDR compared with mice exposed to acute radiation. We identified a set of 164 genes that correctly classified 97% of the samples in this experiment as exposed to acute or LDR radiation using a support vector machine algorithm. Gene expression is a promising approach to radiation biodosimetry, enhanced greatly by this first demonstration of its potential for distinguishing between acute and LDR exposures. Further development of this aspect of radiation biodosimetry, either as part of a complete gene expression biodosimetry test or as an adjunct to other methods, could provide vital triage information in a mass radiological casualty event. PMID:26114327

  16. Radioactivity and gamma-dose rates observed at the Morungaba granites, Southeastern Brazil.

    PubMed

    Lucas, Fabio de Oliveira; Ribeiro, Fernando Brenha

    2013-07-01

    A ground gamma-ray survey was conducted over part of a large granitic body located near the city of Campinas, eastern São Paulo State, Brazil. The dominant rock types are K-feldspar porphyries-rich granites, porphyritic biotite and hornblend-bearing granites, fine to medium-grained monzogranites and medium to gross grained, biotite and muscovite-bearing monzogranites. The radioactive element distribution reflects local geology, in part re-worked by weathering, and the most radioactive rocks are the K-feldspar-rich granites. The rate of the absorbed dose by the air reflects the integrated effects of the radioactive elements distribution. Most of the observed values vary between 67 and 130 nGy h(-1) and with localised spots with the absorbed dose rate values up to 193 nGy h(-1) and low values of ∼25 nGy h(-1). The mean air absorbed dose rate for the studied area is 77 nGy h(-1). PMID:23222823

  17. Optimised geometry to calculate dose rate conversion coefficient for external exposure to photons.

    PubMed

    Askri, B; Manai, K; Trabelsi, A; Baccari, B

    2008-01-01

    A single-parameter geometry to describe soil is achieved for Monte Carlo calculation of absorbed dose rate in air for photon emitters from natural radionuclides. This optimised geometry based on physical assumptions consists of the soil part whose emitted radiation has a given minimum probability to reach the detector. This geometry was implemented in Geant4 toolkit and a significant reduction in computation time was achieved. Simulation tests have shown that for soil represented by a cylinder of 40 m radius and 1 m deep, >98% of the calculated dose rate conversion coefficients in air at 1 m above the ground is generated by only 6% of the soil volume in the case of uniform distribution of radioactivity, and >99.2% of the calculated dose rate for an exponential distribution. When the soil is represented by the entire optimised geometry, 99% of the conversion coefficients values are reached for a soil depth of 1 m and 100% for that of approximately 2 m. PMID:17959610

  18. Effects of prescription depth, cylinder size, treatment length, tip space, and curved end on doses in high-dose-rate vaginal brachytherapy

    SciTech Connect

    Li Shidong . E-mail: sli1@hfhs.org; Aref, Ibrahim; Walker, Eleanor; Movsas, Benjamin

    2007-03-15

    Purpose: To determine the effects of the prescription depth, cylinder size, treatment length, tip space, and curved end on high-dose-rate vaginal brachytherapy (HDR-VBT) of endometrial cancer. Methods and Materials: Treatment plans were prescribed and optimized based on points at the cylinder surface or at 0.5-cm depth. Cylinder sizes ranging from 2 to 4 cm in diameter, and treatment lengths ranging from 3 to 8 cm were used. Dose points in various depths were precisely defined along the cylinder dome. The given dose and dose uniformity to a depth of interest were measured by the mean dose (MD) and standard deviation (SD), respectively, among the dose points belonging to the depth. Dose fall-off beyond the 0.5 cm treatment depth was determined by the ratio of MD at 0.75-cm depth to MD at 0.5-cm depth. Results: Dose distribution varies significantly with different prescriptions. The surface prescription provides more uniform doses at all depths in the target volume, whereas the 0.5-cm depth prescription creates larger dose variations at the cylinder surface. Dosimetric uncertainty increases significantly (>30%) with shorter tip space. Extreme hot (>150%) and cold spots (<60%) occur if no optimization points were placed at the curved end. Conclusions: Instead of prescribing to a depth of 0.5 cm, increasing the dose per fraction and prescribing to the surface with the exact surface points around the cylinder dome appears to be the optimal approach.

  19. Impact of small MU/segment and dose rate on delivery accuracy of volumetric-modulated arc therapy (VMAT).

    PubMed

    Huang, Long; Zhuang, Tingliang; Mastroianni, Anthony; Djemil, Toufik; Cui, Taoran; Xia, Ping

    2016-01-01

    Volumetric-modulated arc therapy (VMAT) plans may require more control points (or segments) than some of fixed-beam IMRT plans that are created with a limited number of segments. Increasing number of control points in a VMAT plan for a given prescription dose could create a large portion of the total number of segments with small number monitor units (MUs) per segment. The purpose of this study is to investigate the impact of the small number MU/segment on the delivery accuracy of VMAT delivered with various dose rates. Ten patient datasets were planned for hippocampus sparing for whole brain irradiation. For each dataset, two VMAT plans were created with maximum dose rates of 600 MU/min (the maximum field size of 21 × 40 cm2) and 1000 MU/min (the maximum field size of 15 × 15 cm2) for a daily dose of 3 Gy. Without reoptimization, the daily dose of these plans was purposely reduced to 1.5 Gy and 1.0 Gy while keeping the same total dose. Using the two dose rates and three different daily doses, six VMAT plans for each dataset were delivered to a physical phantom to investigate how the changes of dose rate and daily doses impact on delivery accuracy. Using the gamma index, we directly compared the delivered planar dose profiles with the reduced daily doses (1.5 Gy and 1.0 Gy) to the delivered planar dose at 3 Gy daily dose, delivered at dose rate of 600 MU/min and 1000 MU/min, respectively. The average numbers of segments with MU/segment ≤ 1 were 35 ± 8, 87 ± 6 for VMAT-600 1.5 Gy, VMAT-600 1 Gy plans, and 30 ± 7 and 42 ± 6 for VMAT-1000 1.5 Gy and VMAT-1000 1 Gy plans, respectively. When delivered at 600 MU/min dose rate, the average gamma index passing rates (1%/1 mm criteria) of comparing delivered 1.5 Gy VMAT planar dose profiles to 3.0 Gy VMAT delivered planar dose profiles was 98.28% ± 1.66%, and the average gamma index passing rate of comparing delivered 1.0 Gy VMAT planar dose to 3.0 Gy VMAT delivered planar dose was 83.75% ± 4.86%. If using 2%/2mm

  20. High-Dose-Rate Prostate Brachytherapy Consistently Results in High Quality Dosimetry

    SciTech Connect

    White, Evan C.; Kamrava, Mitchell R.; Demarco, John; Park, Sang-June; Wang, Pin-Chieh; Kayode, Oluwatosin; Steinberg, Michael L.; Demanes, D. Jeffrey

    2013-02-01

    Purpose: We performed a dosimetry analysis to determine how well the goals for clinical target volume coverage, dose homogeneity, and normal tissue dose constraints were achieved with high-dose-rate (HDR) prostate brachytherapy. Methods and Materials: Cumulative dose-volume histograms for 208 consecutively treated HDR prostate brachytherapy implants were analyzed. Planning was based on ultrasound-guided catheter insertion and postoperative CT imaging; the contoured clinical target volume (CTV) was the prostate, a small margin, and the proximal seminal vesicles. Dosimetric parameters analyzed for the CTV were D90, V90, V100, V150, and V200. Dose to the urethra, bladder, bladder balloon, and rectum were evaluated by the dose to 0.1 cm{sup 3}, 1 cm{sup 3}, and 2 cm{sup 3} of each organ, expressed as a percentage of the prescribed dose. Analysis was stratified according to prostate size. Results: The mean prostate ultrasound volume was 38.7 {+-} 13.4 cm{sup 3} (range: 11.7-108.6 cm{sup 3}). The mean CTV was 75.1 {+-} 20.6 cm{sup 3} (range: 33.4-156.5 cm{sup 3}). The mean D90 was 109.2% {+-} 2.6% (range: 102.3%-118.4%). Ninety-three percent of observed D90 values were between 105 and 115%. The mean V90, V100, V150, and V200 were 99.9% {+-} 0.05%, 99.5% {+-} 0.8%, 25.4% {+-} 4.2%, and 7.8% {+-} 1.4%. The mean dose to 0.1 cm{sup 3}, 1 cm{sup 3}, and 2 cm{sup 3} for organs at risk were: Urethra: 107.3% {+-} 3.0%, 101.1% {+-} 14.6%, and 47.9% {+-} 34.8%; bladder wall: 79.5% {+-} 5.1%, 69.8% {+-} 4.9%, and 64.3% {+-} 5.0%; bladder balloon: 70.3% {+-} 6.8%, 59.1% {+-} 6.6%, and 52.3% {+-} 6.2%; rectum: 76.3% {+-} 2.5%, 70.2% {+-} 3.3%, and 66.3% {+-} 3.8%. There was no significant difference between D90 and V100 when stratified by prostate size. Conclusions: HDR brachytherapy allows the physician to consistently achieve complete prostate target coverage and maintain normal tissue dose constraints for organs at risk over a wide range of target volumes.

  1. Monte Carlo Dosimetry of the 60Co BEBIG High Dose Rate for Brachytherapy

    PubMed Central

    Campos, Luciana Tourinho; de Almeida, Carlos Eduardo Veloso

    2015-01-01

    Introduction The use of high-dose-rate brachytherapy is currently a widespread practice worldwide. The most common isotope source is 192Ir, but 60Co is also becoming available for HDR. One of main advantages of 60Co compared to 192Ir is the economic and practical benefit because of its longer half-live, which is 5.27 years. Recently, Eckert & Ziegler BEBIG, Germany, introduced a new afterloading brachytherapy machine (MultiSource®); it has the option to use either the 60Co or 192Ir HDR source. The source for the Monte Carlo calculations is the new 60Co source (model Co0.A86), which is referred to as the new BEBIG 60Co HDR source and is a modified version of the 60Co source (model GK60M21), which is also from BEBIG. Objective and Methods The purpose of this work is to obtain the dosimetry parameters in accordance with the AAPM TG-43U1 formalism with Monte Carlo calculations regarding the BEBIG 60Co high-dose-rate brachytherapy to investigate the required treatment-planning parameters. The geometric design and material details of the source was provided by the manufacturer and was used to define the Monte Carlo geometry. To validate the source geometry, a few dosimetry parameters had to be calculated according to the AAPM TG-43U1 formalism. The dosimetry studies included the calculation of the air kerma strength Sk, collision kerma in water along the transverse axis with an unbounded phantom, dose rate constant and radial dose function. The Monte Carlo code system that was used was EGSnrc with a new cavity code, which is a part of EGS++ that allows calculating the radial dose function around the source. The spectrum to simulate 60Co was composed of two photon energies, 1.17 and 1.33 MeV. Only the gamma part of the spectrum was used; the contribution of the electrons to the dose is negligible because of the full absorption by the stainless-steel wall around the metallic 60Co. The XCOM photon cross-section library was used in subsequent simulations, and the

  2. High-Dose-Rate Monotherapy: Safe and Effective Brachytherapy for Patients With Localized Prostate Cancer

    SciTech Connect

    Demanes, D. Jeffrey; Martinez, Alvaro A.; Ghilezan, Michel; Hill, Dennis R.; Schour, Lionel; Brandt, David; Gustafson, Gary

    2011-12-01

    Purpose: High-dose-rate (HDR) brachytherapy used as the only treatment (monotherapy) for early prostate cancer is consistent with current concepts in prostate radiobiology, and the dose is reliably delivered in a prospectively defined anatomic distribution that meets all the requirements for safe and effective therapy. We report the disease control and toxicity of HDR monotherapy from California Endocurietherapy (CET) and William Beaumont Hospital (WBH) in low- and intermediate-risk prostate cancer patients. Methods and Materials: There were 298 patients with localized prostate cancer treated with HDR monotherapy between 1996 and 2005. Two biologically equivalent hypofractionation protocols were used. At CET the dose was 42 Gy in six fractions (two implantations 1 week apart) delivered to a computed tomography-defined planning treatment volume. At WBH the dose was 38 Gy in four fractions (one implantation) based on intraoperative transrectal ultrasound real-time treatment planning. The bladder, urethral, and rectal dose constraints were similar. Toxicity was scored with the National Cancer Institute Common Toxicity Criteria for Adverse Events version 3. Results: The median follow-up time was 5.2 years. The median age of the patients was 63 years, and the median value of the pretreatment prostate-specific antigen was 6.0 ng/mL. The 8-year results were 99% local control, 97% biochemical control (nadir +2), 99% distant metastasis-free survival, 99% cause-specific survival, and 95% overall survival. Toxicity was scored per event, meaning that an individual patient with more than one symptom was represented repeatedly in the morbidity data table. Genitourinary toxicity consisted of 10% transient Grade 2 urinary frequency or urgency and 3% Grade 3 episode of urinary retention. Gastrointestinal toxicity was <1%. Conclusions: High disease control rates and low morbidity demonstrate that HDR monotherapy is safe and effective for patients with localized prostate cancer.

  3. Validation of absolute axial neutron flux distribution calculations with MCNP with 197Au(n,γ)198Au reaction rate distribution measurements at the JSI TRIGA Mark II reactor.

    PubMed

    Radulović, Vladimir; Štancar, Žiga; Snoj, Luka; Trkov, Andrej

    2014-02-01

    The calculation of axial neutron flux distributions with the MCNP code at the JSI TRIGA Mark II reactor has been validated with experimental measurements of the (197)Au(n,γ)(198)Au reaction rate. The calculated absolute reaction rate values, scaled according to the reactor power and corrected for the flux redistribution effect, are in good agreement with the experimental results. The effect of different cross-section libraries on the calculations has been investigated and shown to be minor. PMID:24316530

  4. Application of the dose rate spectroscopy to the dose-to-curie conversion method using a NaI(Tl) detector

    NASA Astrophysics Data System (ADS)

    JI, Young-Yong; Chung, Kun Ho; Kim, Chang-Jong; kang, Mun Ja; Park, Sang Tae

    2015-01-01

    Dose rate spectroscopy is a very useful method to directly calculate the individual dose rate from the converted energy spectrum for the dose rate using the G-factor which is related to the used detector response function. A DTC conversion method for the estimation of the radioactivity based on the measured dose rate from the radioactive materials can then be modified into a simple equation using the dose rate spectroscopy. In order to make the method validation of the modified DTC conversion method, experimental verifications using a 3″φx3″ NaI(Tl) detector were conducted at the simple geometry of the point source located onto a detector and more complex geometries which mean the assay of the simulated radioactive material. In addition, the linearity about the results from the modified DTC conversion method was also estimated by increasing the distance between source positions and a detector to confirm the method validation in the energy, dose rate, and distance range of the gamma nuclides.

  5. Analysis of Potassium in Bricks--Determining the Dose Rate from {sup 40}K for Thermoluminescence Dating

    SciTech Connect

    Musilek, Ladislav; Polach, Tomas; Trojek, Tomas

    2008-08-07

    Thermoluminescence (TL) dating is based on accumulating the natural radiation dose in the material of a dated artefact (brick, pottery, etc.), and comparing the dose accumulated during the lifetime of the object with the dose rate within the sample collected for TL measurement. Determining the dose rate from natural radionuclides in materials is one of the most important and most difficult parts of the technique. The most important radionuclides present are usually nuclides of the uranium and thorium decay series and {sup 40}K. An analysis of the total potassium concentration enables us to determine the {sup 40}K content effectively, and from this it is possible to calculate the dose rate originating from this radiation source. X-ray fluorescence (XRF) analysis can be used to determine the potassium concentration in bricks rapidly and efficiently. The procedure for analysing potassium, examples of results of dose rate calculation and possible sources of error are described here.

  6. Global radiation damage at 300 and 260 K with dose rates approaching 1 MGy s[superscript -1

    SciTech Connect

    Warkentin, Matthew; Badeau, Ryan; Hopkins, Jesse B.; Mulichak, Anne M.; Keefe, Lisa J.; Thorne, Robert E.

    2012-02-27

    Global radiation damage to 19 thaumatin crystals has been measured using dose rates from 3 to 680 kGy s{sup -1}. At room temperature damage per unit dose appears to be roughly independent of dose rate, suggesting that the timescales for important damage processes are less than {approx}1 s. However, at T = 260 K approximately half of the global damage manifested at dose rates of {approx}10 kGy s{sup -1} can be outrun by collecting data at 680 kGy s{sup -1}. Appreciable sample-to-sample variability in global radiation sensitivity at fixed dose rate is observed. This variability cannot be accounted for by errors in dose calculation, crystal slippage or the size of the data sets in the assay.

  7. Global radiation damage at 300 and 260 K with dose rates approaching 1 MGy s{sup −1}

    SciTech Connect

    Warkentin, Matthew; Badeau, Ryan; Hopkins, Jesse B.; Mulichak, Anne M.; Keefe, Lisa J.; Thorne, Robert E.

    2012-02-01

    Approximately half of global radiation damage to thaumatin crystals can be outrun at 260 K if data are collected in less than 1 s. Global radiation damage to 19 thaumatin crystals has been measured using dose rates from 3 to 680 kGy s{sup −1}. At room temperature damage per unit dose appears to be roughly independent of dose rate, suggesting that the timescales for important damage processes are less than ∼1 s. However, at T = 260 K approximately half of the global damage manifested at dose rates of ∼10 kGy s{sup −1} can be outrun by collecting data at 680 kGy s{sup −1}. Appreciable sample-to-sample variability in global radiation sensitivity at fixed dose rate is observed. This variability cannot be accounted for by errors in dose calculation, crystal slippage or the size of the data sets in the assay.

  8. Vertical distribution of radiation dose rates in the water of a brackish lake in Aomori Prefecture, Japan.

    PubMed

    Ohtsuka, Yoshihito; Iyogi, Takashi; Ueda, Shinji; Hisamatsu, Shun'ichi

    2015-11-01

    Seasonal radiation dose rates were measured with glass dosemeters housed in watertight cases at various depths in the water of Lake Obuchi, a brackish lake in Aomori Prefecture, Japan, during fiscal years 2011-2013 to assess the background external radiation dose to aquatic biota in the lake. The mean radiation dose in the surface water of the lake was found to be 27 nGy h(-1), which is almost the same as the absorption dose rate due to cosmic ray reported in the literature. Radiation dose rates decreased exponentially with water depth down to a depth of 1 m above the bottom sediment. In the water near the sediment, the dose rate increased with depth owing to the emission of γ-rays from natural radionuclides in the sediment. PMID:25944958

  9. Determination of the Absorbed Dose Rate to Water for the 18-mm Helmet of a Gamma Knife

    SciTech Connect

    Chung, Hyun-Tai; Park, Youngho; Hyun, Sangil; Choi, Yongsoo; Kim, Gi Hong; Kim, Dong Gyu; Chun, Kook Jin

    2011-04-01

    Purpose: To measure the absorbed dose rate to water of {sup 60}Co gamma rays of a Gamma Knife Model C using water-filled phantoms (WFP). Methods and Materials: Spherical WFP with an equivalent water depth of 5, 7, 8, and 9 cm were constructed. The dose rates at the center of an 18-mm helmet were measured in an 8-cm WFP (WFP-3) and two plastic phantoms. Two independent measurement systems were used: one was calibrated to an air kerma (Set I) and the other was calibrated to the absorbed dose to water (Set II). The dose rates of WFP-3 and the plastic phantoms were converted to dose rates for an 8-cm water depth using the attenuation coefficient and the equivalent water depths. Results: The dose rate measured at the center of WFP-3 using Set II was 2.2% and 1.0% higher than dose rates measured at the center of the two plastic phantoms. The measured effective attenuation coefficient of Gamma Knife photon beam in WFPs was 0.0621 cm{sup -1}. After attenuation correction, the difference between the dose rate at an 8-cm water depth measured in WFP-3 and dose rates in the plastic phantoms was smaller than the uncertainty of the measurements. Conclusions: Systematic errors related to the characteristics of the phantom materials in the dose rate measurement of a Gamma Knife need to be corrected for. Correction of the dose rate using an equivalent water depth and attenuation provided results that were more consistent.

  10. External beam radiation therapy followed by high-dose-rate brachytherapy for inoperable superficial esophageal carcinoma

    SciTech Connect

    Pasquier, David . E-mail: d-pasquier@o-lambret.fr; Mirabel, Xavier; Adenis, Antoine; Rezvoy, Nicolas; Hecquet, Genevieve; Fournier, Charles; Coche-Dequeant, Bernard; Prevost, Bernard; Castelain, Bernard; Lartigau, Eric

    2006-08-01

    Purpose: The aim of this study was to retrospectively evaluate the feasibility, efficacy, and tolerance of external beam radiotherapy followed by high-dose-rate brachytherapy in inoperable patients with superficial esophageal cancer. Patients and Methods: From November 1992 to May 1999, 66 patients with superficial esophageal cancer were treated with exclusive radiotherapy. The median age was 60 years (range, 41-85). Fifty-three percent of them were ineligible for surgery owing to synchronous or previously treated head-and-neck cancer. Most of the patients (n = 49) were evaluated with endoscopic ultrasonography (EUS) or computed tomography (CT). The mean doses of external beam radiotherapy and high-dose rate brachytherapy were 57.1 Gy ({+-}4.83) and 8.82 Gy ({+-}3.98), respectively. The most frequently used regimen was 60 Gy followed by 7 Gy at 5 mm depth in two applications. Results: Among patients evaluated with EUS or CT, the complete response rate was 98%. The 3-, 5-, and 7-year survival rates were 57.9%, 35.6%, and 26.6%, respectively. Median overall survival was 3.8 years. The 5-year relapse-free survival and cause-specific survival were 54.6% and 76.9%. The 5-year overall, relapse-free, and cause-specific survival of the whole population of 66 patients was 33%, 53%, and 77%, respectively. Local failure occurred in 15 of 66 patients; 6 were treated with brachytherapy. Severe late toxicity (mostly esophageal stenosis) rated according to the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer scale occurred in 6 of 66 patients (9%). Conclusion: This well tolerated regimen may be a therapeutic alternative for inoperable patients with superficial esophageal cancer. Only a randomized study could be able to check the potential benefit of brachytherapy after external beam radiation in superficial esophageal cancer.

  11. Terrestrial gamma radiation dose rates (TGRD) from surface soil in Negeri Sembilan, Malaysia

    NASA Astrophysics Data System (ADS)

    Norbani, Nor Eliana; Abdullah Salim, Nazaratul Ashifa; Saat, Ahmad; Hamzah, Zaini; Ramli, Ahmad Termizi; Wan Idris, Wan Mohd Rizlan; Jaafar, Mohd Zuli; Bradley, David A.; Abdul Rahman, Ahmad Taufek

    2014-11-01

    Baseline data on background radiation levels allows for future assessment of possible changes in natural radionuclide concentrations, either as a result of geological processes or radioactive contamination. We have measured terrestrial gamma radiation dose-rates (TGRD) from surface soils throughout accessible areas in the Peninsular Malaysia state of Negeri Sembilan (NS). Dose rate measurements were carried out using a NaI (TI) scintillation survey meter, encompassing 1708 locations, covering about 73% of the 6645 km2 of the land area in NS. This has allowed development of a TGRD contour map, plotted using WinSurf software. The range of measured TGRD was from 71±3 nGy/h up to 1000±11 nGy/h. The greatest measured TGRD was obtained in an area covered by soil types originating from igneous rock of granitic formations, while the least value of TGRD was observed in an area covered by limestone composed of calcite mineral, mostly found near river and coastal areas. Mean values of TGRD across the seven districts of NS ranged from 244±7 nGy/h to 458±13 nGy/h, the global mean being 330±8 nGy/h compared to a mean value of 92 nGy/h and 59 nGy/h for Malaysia and the world, respectively. The average annual dose from such terrestrial gamma radiation dose-rates to an individual residing in NS, assuming a tropical rural setting, is estimated to be 0.96 mSv per year.

  12. Automatic optimisation of gamma dose rate sensor networks: The DETECT Optimisation Tool

    NASA Astrophysics Data System (ADS)

    Helle, K. B.; Müller, T. O.; Astrup, P.; Dyve, J. E.

    2014-05-01

    Fast delivery of comprehensive information on the radiological situation is essential for decision-making in nuclear emergencies. Most national radiological agencies in Europe employ gamma dose rate sensor networks to monitor radioactive pollution of the atmosphere. Sensor locations were often chosen using regular grids or according to administrative constraints. Nowadays, however, the choice can be based on more realistic risk assessment, as it is possible to simulate potential radioactive plumes. To support sensor planning, we developed the DETECT Optimisation Tool (DOT) within the scope of the EU FP 7 project DETECT. It evaluates the gamma dose rates that a proposed set of sensors might measure in an emergency and uses this information to optimise the sensor locations. The gamma dose rates are taken from a comprehensive library of simulations of atmospheric radioactive plumes from 64 source locations. These simulations cover the whole European Union, so the DOT allows evaluation and optimisation of sensor networks for all EU countries, as well as evaluation of fencing sensors around possible sources. Users can choose from seven cost functions to evaluate the capability of a given monitoring network for early detection of radioactive plumes or for the creation of dose maps. The DOT is implemented as a stand-alone easy-to-use JAVA-based application with a graphical user interface and an R backend. Users can run evaluations and optimisations, and display, store and download the results. The DOT runs on a server and can be accessed via common web browsers; it can also be installed locally.

  13. Treatment of Recurrent Bronchial Carcinoma: The Role of High-Dose-Rate Endoluminal Brachytherapy

    SciTech Connect

    Hauswald, Henrik; Stoiber, Eva; Rochet, Nathalie; Lindel, Katja; Grehn, Christian; Becker, Heinrich D.; Debus, Juergen; Harms, Wolfgang

    2010-06-01

    Purpose: This study's aim was to assess outcome and toxicity of high-dose-rate endoluminal brachytherapy (HDREB) for recurrent bronchial carcinoma. Methods and Materials: From 1987 to 2005, 41 patients were treated with HDREB for symptomatic recurrent bronchial carcinoma. All patients had previously undergone external beam radiotherapy (EBRT) with a median dose of 56 Gy (range, 30-70 Gy). The median HDREB dose applied was 15 Gy (range, 5-29 Gy). The median time interval between primary EBRT and reirradiation was 9 months (range, 2-54 months). Results: After a median follow-up of 6.7 months, the 6-, 12-, and 24-month overall survival rates were 58%, 18%, and 7%, respectively. The median overall survival time was 6.7 months. Local remission was achieved in 73% of patients (n = 30). A total of 24% of patients (n = 10) showed no response or progressive disease within 8 weeks after treatment. In 1 patient, treatment response was not documented. The 6-, 12-, and 24-month local control rates were 38%, 17%, and 3%, respectively. The median local progression-free survival time was 4 months (range, 1-23 months). Prognostic factors were a total dose of >=15 Gy of HDREB (p = 0.029) and a Karnofsky performance score of >=80% (p = 0.0012). The cause of death was locoregional progression in 27% of patients (n = 11), distant metastases in 24% of patients (n = 10), fatal hemorrhage in 15% of patients (n = 6), and other causes in 29% of patients (n = 12). None of the patients with locally controlled disease showed grade 3 or 4 late effects. Conclusions: Palliative treatment of symptomatic, locally recurrent bronchial carcinoma with HDREB can effectively relieve symptoms in the majority of patients while causing only few complications. Still, time to progression is short.

  14. Reirradiation of glioblastoma through the use of a reduced dose rate on a tomotherapy unit.

    PubMed

    Rasmussen, Karl H; Hardcastle, Nicholas; Howard, Steven P; Tomé, Wolfgang A

    2010-08-01

    Pulsed Reduced Dose Rate (PRDR) is a method of irradiation designed to minimize radiation-related toxicities in patients undergoing reirradiation for loco-regional reoccurrence of glioblastoma. PRDR delivers a standard 2 Gy fraction delivered on a conventional medical linear accelerator using conventional 3D conformal beam arrangements. To reduce the likelihood of normal tissue complications, radiation is delivered over ten 0.2 Gy sub-fractions with a 3 minute time interval between subfractions to give a maximal time averaged dose rate of 4 Gy/hr. However, a TomoTherapy unit has a fixed output rate of 8 Gy/min. If the dose per fraction is conventionally planned at less than 0.6 Gy/fraction, the result is a clinically unacceptable treatment plan. The method described in this paper involves a virtual grid style blocking scheme, where half of the beam angles are directionally blocked using 15 equally spaced segments surrounding the center of the image set. Ten patients treated using conventional PRDR with an average PTV volume of 353.3 ml were retrospectively re-planned using five techniques (standard 2 Gy fraction, 2 Gy in ten 0.2 Gy fractions without grid blocking, two grid patterns, and a combination plan incorporating both grids) and analyzed with conformation numbers (CN), homogeneity indexes (HI), and dose volumes to normal tissues. Plans were optimized using equal constraints and machine parameters. The grid method allowed for clinically acceptable treatment plans at 0.2 Gy with a treatment time < or = 3 min per subfraction. The average HI was slightly poorer for the combination plan versus the standard 2 Gy fraction plan (0.064 versus 0.027) and the CN was similar over all techniques (0.72 - 0.73) employed. Normal tissue dose volumes for each patient were also similar for each technique. Initial ion chamber measurements agree with predicted values for a 0.2 Gy subfraction. PRDR is deliverable on a TomoTherapy system using our virtual directional blocking

  15. Reirradiation of glioblastoma through the use of a reduced dose rate on a Tomotherapy unit

    PubMed Central

    Rasmussen, Karl H.; Hardcastle, Nicholas; Howard, Steven P.; Tomé, Wolfgang A.

    2010-01-01

    Pulsed Reduced Dose Rate (PRDR) is a method of irradiation designed to minimize radiation-related toxicities in patients undergoing reirradiation for loco-regional reoccurrence of glioblastoma. PRDR delivers a standard 2 Gy fraction delivered on a conventional medical linear accelerator using conventional 3D conformal beam arrangements. To reduce the likelihood of normal tissue complications, radiation is delivered over ten 0.2 Gy sub-fractions with a 3 minute time interval between subfractions to give a maximal time averaged dose rate of 4 Gy/hr. However, a TomoTherapy unit has a fixed output rate of 8 Gy/min. If the dose per fraction is conventionally planned at less than 0.6 Gy/fraction, the result is a clinically unacceptable treatment plan. The method described in this paper involves a virtual grid style blocking scheme, where half of the beam angles are directionally blocked using 15 equally spaced segments surrounding the center of the image set. Ten patients treated using conventional PRDR with an average PTV volume of 353.3 ml were retrospectively re-planned using five techniques (standard 2 Gy fraction, 2 Gy in ten 0.2 Gy fractions without grid blocking, two grid patterns, and a combination plan incorporating both grids) and analyzed with conformation numbers (CN), homogeneity indexes (HI), and dose volumes to normal tissues. Plans were optimized using equal constraints and machine parameters. The grid method allowed for clinically acceptable treatment plans at 0.2 Gy with a treatment time ≤ 3min per subfraction. The average HI was slightly poorer for the combination plan versus the standard 2 Gy fraction plan (0.064 versus 0.027) and the CN was similar over all techniques (0.72 – 0.73) employed. Normal tissue dose volumes for each patient were also similar for each technique. Initial ion chamber measurements agree with predicted values for a 0.2 Gy subfraction. PRDR is deliverable on a TomoTherapy system using our virtual directional blocking method

  16. PACKAGING CERTIFICATION PROGRAM METHODOLOGY FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS

    SciTech Connect

    Nathan, S.; Loftin, B.; Abramczyk, G.; Bellamy, S.

    2012-05-09

    The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials (RAM), are significantly less hazardous than large amounts of the same materials. This paper describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials, under both normal and accident conditions, to perform the essential functions of material containment, subcriticality, and maintain external radiation levels within the specified limits. By placing the contents in a helium leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large dose rate outside the package. Quantifying the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings provides bounding shielding calculations that define mass limits compliant with 10 CFR 71.47 for a set of proposed SGQ isotopes. The approach is based on energy superposition with dose response calculated for a set of spectral groups for a baseline physical packaging configuration. The methodology includes using the MCNP radiation transport code to evaluate a family of neutron and photon spectral groups using the 9977 shipping package and its associated shielded containers as the base case. This results in a set of multipliers for 'dose per particle' for

  17. Combined methodology for estimating dose rates and health effects from exposure to radioactive pollutants

    SciTech Connect

    Dunning, D.E. Jr.; Leggett, R.W.; Yalcintas, M.G.

    1980-12-01

    The work described in the report is basically a synthesis of two previously existing computer codes: INREM II, developed at the Oak Ridge National Laboratory (ORNL); and CAIRD, developed by the Environmental Protection Agency (EPA). The INREM II code uses contemporary dosimetric methods to estimate doses to specified reference organs due to inhalation or ingestion of a radionuclide. The CAIRD code employs actuarial life tables to account for competing risks in estimating numbers of health effects resulting from exposure of a cohort to some incremental risk. The combined computer code, referred to as RADRISK, estimates numbers of health effects in a hypothetical cohort of 100,000 persons due to continuous lifetime inhalation or ingestion of a radionuclide. Also briefly discussed in this report is a method of estimating numbers of health effects in a hypothetical cohort due to continuous lifetime exposure to external radiation. This method employs the CAIRD methodology together with dose conversion factors generated by the computer code DOSFACTER, developed at ORNL; these dose conversion factors are used to estimate dose rates to persons due to radionuclides in the air or on the ground surface. The combination of the life table and dosimetric guidelines for the release of radioactive pollutants to the atmosphere, as required by the Clean Air Act Amendments of 1977.

  18. A Phase I/II Trial of Intensity Modulated Radiation (IMRT) Dose Escalation With Concurrent Fixed-dose Rate Gemcitabine (FDR-G) in Patients With Unresectable Pancreatic Cancer

    SciTech Connect

    Ben-Josef, Edgar; Schipper, Mathew; Francis, Isaac R.; Hadley, Scott; Ten-Haken, Randall; Lawrence, Theodore; Normolle, Daniel; Simeone, Diane M.; Sonnenday, Christopher; Abrams, Ross; Leslie, William; Khan, Gazala; Zalupski, Mark M.

    2012-12-01

    Purpose: Local failure in unresectable pancreatic cancer may contribute to death. We hypothesized that intensification of local therapy would improve local control and survival. The objectives were to determine the maximum tolerated radiation dose delivered by intensity modulated radiation with fixed-dose rate gemcitabine (FDR-G), freedom from local progression (FFLP), and overall survival (OS). Methods and Materials: Eligibility included pathologic confirmation of adenocarcinoma, radiographically unresectable, performance status of 0-2, absolute neutrophil count of {>=}1500/mm{sup 3}, platelets {>=}100,000/mm{sup 3}, creatinine <2 mg/dL, bilirubin <3 mg/dL, and alanine aminotransferase/aspartate aminotransferase {<=}2.5 Multiplication-Sign upper limit of normal. FDR-G (1000 mg/m{sup 2}/100 min intravenously) was given on days -22 and -15, 1, 8, 22, and 29. Intensity modulated radiation started on day 1. Dose levels were escalated from 50-60 Gy in 25 fractions. Dose-limiting toxicity was defined as gastrointestinal toxicity grade (G) {>=}3, neutropenic fever, or deterioration in performance status to {>=}3 between day 1 and 126. Dose level was assigned using TITE-CRM (Time-to-Event Continual Reassessment Method) with the target dose-limiting toxicity (DLT) rate set to 0.25. Results: Fifty patients were accrued. DLTs were observed in 11 patients: G3/4 anorexia, nausea, vomiting, and/or dehydration (7); duodenal bleed (3); duodenal perforation (1). The recommended dose is 55 Gy, producing a probability of DLT of 0.24. The 2-year FFLP is 59% (95% confidence interval [CI]: 32-79). Median and 2-year overall survival are 14.8 months (95% CI: 12.6-22.2) and 30% (95% CI 17-45). Twelve patients underwent resection (10 R0, 2 R1) and survived a median of 32 months. Conclusions: High-dose radiation therapy with concurrent FDR-G can be delivered safely. The encouraging efficacy data suggest that outcome may be improved in unresectable patients through intensification of local

  19. Operational specification and forecasting advances for Dst, LEO thermospheric densities, and aviation radiation dose and dose rate

    NASA Astrophysics Data System (ADS)

    Tobiska, W.; Knipp, D. J.; Burke, W. J.; Bouwer, D.; Bailey, J. J.; Hagan, M. P.; Didkovsky, L. V.; Garrett, H. B.; Bowman, B. R.; Gannon, J. L.; Atwell, W.; Blake, J. B.; Crain, W.; Rice, D.; Schunk, R. W.; Fulgham, J.; Bell, D.; Gersey, B.; Wilkins, R.; Fuschino, R.; Flynn, C.; Cecil, K.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, S. I.; Wiley, S.; Holland, M.; Malone, K.

    2013-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the magnetosphere, thermosphere, and even troposphere are key regions that are affected. Space Environment Technologies (SET) has developed and is producing innovative space weather applications. Key operational systems for providing timely information about the effects of space weather on these domains are SET's Magnetosphere Alert and Prediction System (MAPS), LEO Alert and Prediction System (LAPS), and Automated Radiation Measurements for Aviation Safety (ARMAS) system. MAPS provides a forecast Dst index out to 6 days through the data-driven, redundant data stream Anemomilos algorithm. Anemomilos uses observational proxies for the magnitude, location, and velocity of solar ejecta events. This forecast index is used by satellite operations to characterize upcoming geomagnetic storms, for example. LAPS is the SET fully redundant operational system providing recent history, current epoch, and forecast solar and geomagnetic indices for use in operational versions of the JB2008 thermospheric density model. The thermospheric densities produced by that system, driven by the LAPS data, are forecast to 72-hours to provide the global mass densities for satellite operators. ARMAS is a project that has successfully demonstrated the operation of a micro dosimeter on aircraft to capture the real-time radiation environment due to Galactic Cosmic Rays and Solar Energetic Particles. The dose and dose-rates are captured on aircraft, downlinked in real-time via the Iridium satellites, processed on the ground, incorporated into the most recent NAIRAS global radiation climatology data runs, and made available to end users via the web and smart phone apps. ARMAS provides the 'weather' of the radiation environment to improve air-crew and passenger safety

  20. Operational specification and forecasting advances for Dst, LEO thermospheric densities, and aviation radiation dose and dose rate

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent

    Space weather’s effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun’s photons, particles, and fields. Of the space environment domains that are affected by space weather, the magnetosphere, thermosphere, and even troposphere are key regions that are affected. Space Environment Technologies (SET) has developed and is producing innovative space weather applications. Key operational systems for providing timely information about the effects of space weather on these domains are SET’s Magnetosphere Alert and Prediction System (MAPS), LEO Alert and Prediction System (LAPS), and Automated Radiation Measurements for Aviation Safety (ARMAS) system. MAPS provides a forecast Dst index out to 6 days through the data-driven, redundant data stream Anemomilos algorithm. Anemomilos uses observational proxies for the magnitude, location, and velocity of solar ejecta events. This forecast index is used by satellite operations to characterize upcoming geomagnetic storms, for example. In addition, an ENLIL/Rice Dst prediction out to several days has also been developed and will be described. LAPS is the SET fully redundant operational system providing recent history, current epoch, and forecast solar and geomagnetic indices for use in operational versions of the JB2008 thermospheric density model. The thermospheric densities produced by that system, driven by the LAPS data, are forecast to 72-hours to provide the global mass densities for satellite operators. ARMAS is a project that has successfully demonstrated the operation of a micro dosimeter on aircraft to capture the real-time radiation environment due to Galactic Cosmic Rays and Solar Energetic Particles. The dose and dose-rates are captured on aircraft, downlinked in real-time via the Iridium satellites, processed on the ground, incorporated into the most recent NAIRAS global radiation climatology data runs, and made available to end users via the web and

  1. On the use of pulsed reduced dose rate for improvement of the therapeutic ratio

    NASA Astrophysics Data System (ADS)

    Rasmussen, Karl H., V.

    This work demonstrates three related aspects of the efficacy, delivery, and verification of pulsed reduced dose rate radiotherapy (PRDR). PRDR is a method of irradiation designed to minimize radiation-related toxicities in patients undergoing reirradiation for loco-regional reoccurrence of glioblastoma. PRDR uses 0.2GyX10fx daily doses delivered over a 30-minute time span. Under PRDR treatments, a subset of patients have had an unexpectedly positive response to treatment. It was a primary goal of this project to determine if low-dose hyper-radiosensitivity was a contributor to the increased radio-response from these patients. This was done through the use of human T98G glioma and HT29 colorectal cells, and V79.379-A Chinese hamster fibroblasts with drug inhibition of the p53 and PI3K pathways. Radiation was delivered with a medical linear accelerator in either 2Gy acute doses or through PRDR. Methods used to analyze the effect of these techniques included clonogenic assay, flow cytometry, and western blots. Comparison of survival ratios demonstrated no decrease in efficacy for either the standard T98G or HT29 cell lines when using PRDR as compared to an acute dose. T98G with PI3K inhibition and V79.397-A cells demonstrated a decreased efficacy of treatment using PRDR relative to an acute dose. These results suggest an equivalency in tumor treatment with a possible improvement in normal tissue toxicities for the PRDR method. An additional method of delivering PRDR through the use of Tomotherapy was proposed and demonstrated to be accurate. Tomotherapy planning forces the short leaf open times for individual MLC projections from low dose fractionation closed, resulting in an undeliverable plan due to the loss of a large number of usable projections. Application of a virtual grid with directional blocking allows for the output from useable segments to be above this threshold, resulting in a deliverable treatment plan. Finally, analysis was performed on a proposed QA

  2. Mutation induction by different dose rates of gamma rays in radiation-sensitive mutants of mouse leukemia cells

    SciTech Connect

    Furuno-Fukushi, I.; Matsudaira, H. )

    1989-11-01

    Induction of cell killing and mutation to 6-thioguanine resistance was examined in a radiation-sensitive mutant strain LX830 of mouse leukemia cells following gamma irradiation at dose rates of 30 Gy/h (acute), 20 cGy/h (low dose rate), and 6.2 mGy/h (very low dose rate). LX830 cells were hypersensitive to killing by acute gamma rays. A slight but significant increase was observed in cell survival with decreasing dose rate down to 6.2 mGy/h, where the survival leveled off above certain total doses. The cells were also hypersensitive to mutation induction compared to the wild type. The mutation frequency increased linearly with increasing dose for all dose rates. No significant difference was observed in the frequency of induced mutations versus total dose at the three different dose rates so that the mutation frequency in LX830 cells at 6.2 mGy/h was not significantly different from that for moderate or acute irradiation.

  3. Survival of tumor cells after proton irradiation with ultra-high dose rates

    PubMed Central

    2011-01-01

    Background Laser acceleration of protons and heavy ions may in the future be used in radiation therapy. Laser-driven particle beams are pulsed and ultra high dose rates of >109 Gy s-1may be achieved. Here we compare the radiobiological effects of pulsed and continuous proton beams. Methods The ion microbeam SNAKE at the Munich tandem accelerator was used to directly compare a pulsed and a continuous 20 MeV proton beam, which delivered a dose of 3 Gy to a HeLa cell monolayer within < 1 ns or 100 ms, respectively. Investigated endpoints were G2 phase cell cycle arrest, apoptosis, and colony formation. Results At 10 h after pulsed irradiation, the fraction of G2 cells was significantly lower than after irradiation with the continuous beam, while all other endpoints including colony formation were not significantly different. We determined the relative biological effectiveness (RBE) for pulsed and continuous proton beams relative to x-irradiation as 0.91 ± 0.26 and 0.86 ± 0.33 (mean and SD), respectively. Conclusions At the dose rates investigated here, which are expected to correspond to those in radiation therapy using laser-driven particles, the RBE of the pulsed and the (conventional) continuous irradiation mode do not differ significantly. PMID:22008289

  4. Natural radioactivity and associated dose rates in soil samples from Kalpakkam, South India.

    PubMed

    Sowmya, M; Senthilkumar, B; Seshan, B R R; Hariharan, G; Purvaja, R; Ramkumar, S; Ramesh, R

    2010-10-01

    The activity concentration of naturally occurring radioactive elements such as 226Ra, 232Th and 40K were measured for 46 soil samples collected in the vicinity of the Madras atomic power station, Kalpakkam, South India using gamma-ray spectroscopy. The average activity concentration of 226Ra, 232Th and 40K in soil samples were found to be 22.6 ± 12.6, 92.8 ± 44.3 and 434.1 ± 131.1 Bq kg(-1), respectively. The activity concentration of natural radionuclides is higher than the world average except for (226)Ra. The external absorbed gamma dose rates due to 226Ra, 232Th and 40K are observed to be 74.6 ± 30.8 nGy h(-1) with a corresponding annual effective dose of 91.5 ± 37.8 µSv y(-1), which are also above the world average. The values of radium equivalent activity and external hazard index are less than the world average. Whereas, the values of the radioactivity level index (I(γ)) and the total gamma dose rate were found to be above the required criterion. PMID:20522563

  5. High-dose-rate vaginal brachytherapy with chemotherapy for surgically staged localized uterine serous carcinoma

    PubMed Central

    Higgins, Susan A.; Ratner, Elena; De Leon, Maria C.; Mani, Sheida; Silasi, Dan-Arin; Azodi, Masoud; Santin, Alessandro; Rutherford, Thomas; Schwartz, Peter E.

    2015-01-01

    Purpose To evaluate our institutional experience combining carboplatin-paclitaxel (C/T) chemotherapy with high-dose-rate (HDR) intra-vaginal brachytherapy (IVB) following comprehensive surgical staging in localized uterine serous carcinoma (USC). Material and methods Institutional chart review identified 56 patients with FIGO 2009 stage I-II USC treated between 2000-2010. Patients underwent total hysterectomy, bilateral salpingo-oopherectomy, and comprehensive surgical staging including pelvic and para-aortic lymph node dissection, omentectomy, and peritoneal cytology. Chemotherapy was 6 cycles of C/T, and the IVB dose was 14 Gy in 2 fractions, prescribed to 0.5 cm from the cylinder surface. Kaplan-Meier methods were used to estimate recurrence-free survival (RFS) and overall survival (OS). Results The median follow-up time was 49 months (range: 9-145). The 5-yr RFS and OS were 85% and 93%, respectively. In all cases of recurrence (n = 8), the first site of failure was extra-pelvic. There were no isolated vaginal recurrences, however, there was one vaginal apex recurrence recorded at 19 months in a patient with simultaneous lung metastases. Thus, the 2-year vaginal RFS was 98%. Conclusions Excellent vaginal/pelvic control rates were observed. Further study of HDR brachytherapy dose and fractionation in combination with chemotherapy is worthwhile. PMID:25829935

  6. Assessment of indoor absorbed gamma dose rate from natural radionuclides in concrete by the method of build-up factors.

    PubMed

    Manić, Vesna; Nikezic, Dragoslav; Krstic, Dragana; Manić, Goran

    2014-12-01

    The specific absorbed gamma dose rates, originating from natural radionuclides in concrete, were calculated at different positions of a detection point inside the standard room, as well as inside an example room. The specific absorbed dose rates corresponding to a wall with arbitrary dimensions and thickness were also evaluated, and appropriate fitting functions were developed, enabling dose rate calculation for most realistic rooms. In order to make calculation simpler, the expressions fitting the exposure build-up factors for whole (238)U and (232)Th radionuclide series and (40)K were derived in this work, as well as the specific absorbed dose rates from a point source in concrete. Calculated values of the specific absorbed dose rates at the centre point of the standard room for (238)U, (232)Th and (40)K are in the ranges of previously obtained data. PMID:24421381

  7. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    SciTech Connect

    Woloschak, G.E. |; Felcher, P.; Chang-Liu, Chin-Mei

    1992-12-31

    Experiments were designed to examine the effects of radiation dose-rate and of the protein synthesis inhibitor cycloheximide on expression of cytoskeletal elements ({gamma}- and {beta}-actin and {alpha}-tubulin) and matrix elements (fibronectin) in Syrian hamster embryo cells. Past work from our laboratory had already demonstrated optimum time points and doses for examination of radiation effects on accumulation of specific transcripts. Our results here demonstrated little effect of dose-rate for JANUS fission spectrum neutrons when comparing expression of either {alpha}-tubulin or fibronectin genes. Past work had already documented similar results for expression of actin transcripts. Effects of cycloheximide, however, revealed several interesting and novel findings: (1) Cycloheximide repressed accumulation of {alpha}-tubulin following exposure to high dose-rate neutrons or {gamma} rays; this did not occur following similar low dose-rate exposure (2) Cycloheximide did not affect accumulation of mRNA for actin genes. Cycloheximide abrogated the moderate induction of fibronectin-mRNA which occurred following exposure to {gamma} rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of {alpha}-tubulin and fibronectin mRNA accumulation following exposure to ionizing radiation. In addition, they suggest that the cellular/molecular response to low dose-rate neutrons may be different from the response to high dose-rate neutrons.

  8. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    SciTech Connect

    Woloschak, G.E. |; Felcher, P.; Chang-Liu, Chin-Mei

    1994-05-01

    Experiments were designed to examine the effects Of radiation dose-rate and of the protein synthesis inhibitor cycloheximide on expression of cytoskeletal elements ({gamma}- and {beta}-actin and {alpha}-tubulin) and matrix elements (fibronectin) in Syrian hamster embryo cells. Past work from our laboratory had already demonstrated optimum time points and doses for examination of radiation effects on accumulation of specific transcripts. Our results here demonstrated little effect of dose-rate for JANUS fission spectrum neutrons when comparing expression of either {alpha}-tubulin or fibronectin genes. Past work had already documented similar results for expression of actin transcripts. Effects of cycloheximide revealed that cycloheximide repressed accumulation of {alpha}-tubulin following exposure to high dose-rate neutrons or {gamma} rays; this did not occur following similar low dose-rate exposure. (2) Cycloheximide did not affect accumulation of MRNA for actin genes; and that cycloheximide abrogated the moderate induction of fibronectin-mRNA which occurred following exposure to {gamma} rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of {alpha}-tubulin and fibronectin MRNA accumulation following exposure to ionizing radiation. in addition, they suggest that the cellular/molecular response to low dose-rate neutrons may be different from the response to high dose-rate neutrons.

  9. Neutron and gamma-ray dose-rates from the Little Boy replica

    SciTech Connect

    Plassmann, E.A.; Pederson, R.A.

    1984-01-01

    We report dose-rate information obtained at many locations in the near vicinity of, and at distances out to 0.64 km from, the Little Boy replica while it was operated as a critical assembly. The measurements were made with modified conventional dosimetry instruments that used an Anderson-Braun detector for neutrons and a Geiger-Mueller tube for gamma rays with suitable electronic modules to count particle-induced pulses. Thermoluminescent dosimetry methods provide corroborative data. Our analysis gives estimates of both neutron and gamma-ray relaxation lengths in air for comparison with earlier calculations. We also show the neutron-to-gamma-ray dose ratio as a function of distance from the replica. Current experiments and further data analysis will refine these results. 7 references, 8 figures.

  10. Parametric study of radiation dose rates from rail and truck spent fuel transport casks

    SciTech Connect

    Parks, C.V.; Hermann, O.W.; Knight, J.R.

    1985-08-01

    Neutron and gamma dose rates from typical rail and truck spent fuel transport casks are reported for a variety of spent PWR fuel sources and cask conditions. The IF 300 rail cask and NLI 1/2 truck cask were selected for use as appropriate cask models. All calculations (cross section preparation, generation of spent fuel source terms, radiation transport calculations, and dose evaluation) were performed using various modules of the SCALE computational system. Conditions or parameters for which there were variations between cases include: detector distance from cask, spent fuel cooling time, the setting of fuel or neutron shielding cavities to either wet or dry, the cobalt content of assembly materials, normal fuel assemblies and consolidated cannisters, the geometry mesh interval size, and the order of the angular quadrature set. 13 refs., 6 figs., 9 tabs.

  11. Radiation Leukemogenesis: Applying Basic Science of Epidemiological Estimates of Low Dose Risks and Dose-Rate Effects

    SciTech Connect

    Hoel, D. G.

    1998-11-01

    The next stage of work has been to examine more closely the A-bomb leukemia data which provides the underpinnings of the risk estimation of CML in the above mentioned manuscript. The paper by Hoel and Li (Health Physics 75:241-50) shows how the linear-quadratic model has basic non-linearities at the low dose region for the leukemias including CML. Pierce et. al., (Radiation Research 123:275-84) have developed distributions for the uncertainty in the estimated exposures of the A-bomb cohort. Kellerer, et. al., (Radiation and Environmental Biophysics 36:73-83) has further considered possible errors in the estimated neutron values and with changing RBE values with dose and has hypothesized that the tumor response due to gamma may not be linear. We have incorporated his neutron model and have constricted new A-bomb doses based on his model adjustments. The Hoel and Li dose response analysis has also been applied using the Kellerer neutron dose adjustments for the leukemias. Finally, both Pierce's dose uncertainties and Kellerer neutron adjustments are combined as well as the varying RBE with dose as suggested by Rossi and Zaider and used for leukemia dose-response analysis. First the results of Hoel and Li showing a significantly improved fit of the linear-quadratic dose response by the inclusion of a threshold (i.e. low-dose nonlinearity) persisted. This work has been complete for both solid tumor as well as leukemia for both mortality as well as incidence data. The results are given in the manuscript described below which has been submitted to Health Physics.

  12. Impact of Dose on Local Failure Rates After Image-Guided Reirradiation of Recurrent Paraspinal Metastases

    SciTech Connect

    Damast, Shari; Wright, Jean; Bilsky, Mark; Hsu, Meier; Zhang Zhigang; Lovelock, Michael; Cox, Brett; Zatcky, Joan; Yamada, Yoshiya

    2011-11-01

    Purpose: To examine the impact of dose on local failure (LF) rates in the re-treatment of recurrent paraspinal metastases with image-guided intensity-modulated radiotherapy (IG-IMRT). Methods and Materials: The records of patients with in-field recurrence after previous spine radiation (median dose, 30 Gy) who received salvage IG-IMRT with either five 4-Gy (20-Gy group, n = 42) or five 6-Gy (30-Gy group, n = 55) daily fractions between January 2003 and August 2008 were reviewed. Institutional practice was 20 Gy before April 2006, when it changed to 30 Gy. A total of 47 cases (48%) were treated adjuvantly, after surgery to decompress epidural disease. LF after IG-IMRT was defined radiographically. Results: The median follow-up was 12.1 months (range, 0.2-63.6 months). The 1-year cumulative incidences of LF after 20 Gy and 30 Gy IG-IMRT were 45% and 26%, respectively (p = 0.04). Of all treatment characteristics examined (20-Gy vs. 30-Gy dose group, dose to 95% of the planned and gross target volume, tumor size, histology, receipt of surgery, and interval between first and second radiation), only dose group had a significant impact on actuarial LF incidence (p = 0.04; unadjusted HR, 0.51; 95% CI, 0.27-0.96). There was no incidence of myelopathy. Conclusions: A significant decrease in LF after IG-IMRT with five 6-Gy fractions compared with five 4-Gy fractions was observed without increased risk of myelopathy. Until prospective data comparing stereotactic hypofractionated and single-fraction regimens become available, when reirradiating recurrent paraspinal metastases with IG-IMRT, administration of five 6-Gy daily fractions is reasonable.

  13. Dosimetric perturbations of a lead shield for surface and interstitial high-dose-rate brachytherapy.

    PubMed

    Candela-Juan, Cristian; Granero, Domingo; Vijande, Javier; Ballester, Facundo; Perez-Calatayud, Jose; Rivard, Mark J

    2014-06-01

    In surface and interstitial high-dose-rate brachytherapy with either (60)Co, (192)Ir, or (169)Yb sources, some radiosensitive organs near the surface may be exposed to high absorbed doses. This may be reduced by covering the implants with a lead shield on the body surface, which results in dosimetric perturbations. Monte Carlo simulations in Geant4 were performed for the three radionuclides placed at a single dwell position. Four different shield thicknesses (0, 3, 6, and 10 mm) and three different source depths (0, 5, and 10 mm) in water were considered, with the lead shield placed at the phantom surface. Backscatter dose enhancement and transmission data were obtained for the lead shields. Results were corrected to account for a realistic clinical case with multiple dwell positions. The range of the high backscatter dose enhancement in water is 3 mm for (60)Co and 1 mm for both (192)Ir and (169)Yb. Transmission data for (60)Co and (192)Ir are smaller than those reported by Papagiannis et al (2008 Med. Phys. 35 4898-4906) for brachytherapy facility shielding; for (169)Yb, the difference is negligible. In conclusion, the backscatter overdose produced by the lead shield can be avoided by just adding a few millimetres of bolus. Transmission data provided in this work as a function of lead thickness can be used to estimate healthy organ equivalent dose saving. Use of a lead shield is justified. PMID:24705066

  14. High-dose-rate (HDR) brachytherapy for the treatment of benign obstructive endobronchial granulation tissue

    SciTech Connect

    Madu, Chika N. . E-mail: chikam@xrt.upenn.edu; Machuzak, Michael S.; Sterman, Daniel H.; Musani, Ali; Ahya, Vivek; McDonough, James; Metz, James M.

    2006-12-01

    Background: Severe airway obstruction can occur in the setting of benign granulation tissue forming at bronchial anastomotic sites after lung transplantation in up to 20% of patients. Many of these benign lesions respond to stent placement, laser ablation, or balloon bronchoplasty. However, in certain cases, proliferation of granulation tissue may persist despite all therapeutic attempts. This study describes a series of refractory patients treated with high-dose-rate (HDR) brachytherapy for benign proliferation of granulation tissue, causing airway compromise. Methods and Materials: Between April 2002 and June 2005, 5 patients with significant airway compromise from recurrent granulation tissue were treated with HDR brachytherapy. All patients had previously failed to maintain a patent airway despite multiple bronchoscopic interventions. Treatment was delivered using an HDR brachytherapy afterloader with {sup 192}Ir. Dose prescription was to a depth of 1 cm. All patients were treated weekly, with total doses ranging from 10 Gy to 21 Gy in two to three fractions. Results: The median follow-up was 12 months. All patients experienced a reduction in therapeutic bronchoscopic procedures after HDR brachytherapy compared with the pretreatment period. With the exception of possible radiation-induced bronchitis in 1 patient, there were no other treatment related complications. At the time of this report, 2 patients have died and the other 3 are alive with marked symptomatic improvement and reduced bronchoscopic procedures. Conclusion: High-dose-rate brachytherapy is an effective treatment for benign proliferation of granulation tissue causing airway obstruction. The early response to therapy is encouraging and further follow-up is necessary to determine long-term durability and late effects.

  15. Dosimetric Effects of Air Pockets Around High-Dose Rate Brachytherapy Vaginal Cylinders

    SciTech Connect

    Richardson, Susan; Palaniswaamy, Geethpriya; Grigsby, Perry W.

    2010-09-01

    Purpose: Most physicians use a single-channel vaginal cylinder for postoperative endometrial cancer brachytherapy. Recent published data have identified air pockets between the vaginal cylinders and the vaginal mucosa. The purpose of this research was to evaluate the incidence, size, and dosimetric effects of these air pockets. Methods and Materials: 25 patients receiving postoperative vaginal cuff brachytherapy with a high-dose rate vaginal cylinders were enrolled in this prospective data collection study. Patients were treated with 6 fractions of 200 to 400 cGy per fraction prescribed at 5 mm depth. Computed tomography simulation for brachytherapy treatment planning was performed for each fraction. The quantity, volume, and dosimetric impact of the air pockets surrounding the cylinder were quantified. Results: In 25 patients, a total of 90 air pockets were present in 150 procedures (60%). Five patients had no air pockets present during any of their treatments. The average number of air pockets per patient was 3.6, with the average total air pocket volume being 0.34 cm{sup 3} (range, 0.01-1.32 cm{sup 3}). The average dose reduction to the vaginal mucosa at the air pocket was 27% (range, 9-58%). Ten patients had no air pockets on their first fraction but air pockets occurred in subsequent fractions. Conclusion: Air pockets between high-dose rate vaginal cylinder applicators and the vaginal mucosa are present in the majority of fractions of therapy, and their presence varies from patient to patient and fraction to fraction. The existence of air pockets results in reduced radiation dose to the vaginal mucosa.

  16. Prevention of high-dose-rate brachytherapy accidents. ICRP Publication 97.

    PubMed

    Valentin, J

    2005-01-01

    High-dose-rate brachytherapy is a rapidly growing technique (HDR) that has been replacing low-dose-rate (LDR) procedures over the last few years in both industrialised and developing countries. It is estimated that about 500,000 procedures (administration of treatment) are performed by HDR units annually. LDR equipment has been discontinued by many manufacturers over the last few years, leaving HDR brachytherapy as the major alternative. HDR brachytherapy techniques deliver a very high dose, of the order of 1.6-5.0 Gy/min, so mistakes can lead to under- or overdosage with the potential for clinical adverse effects. More than 500 HDR accidents (including one death) have been reported along the entire chain of procedures from source packing to delivery of dose. Human error has been the prime cause of radiation events. In the present report, the International Commission on Radiological Protection concludes that many accidents could have been prevented if staff had had functional monitoring equipment and paid attention to the results. Since iridium has relatively short half-life, the HDR sources need to be replaced approximately every 4 months. Over 10,000 HDR sources are transported annually, with the resultant potential for accidents; therefore, appropriate procedures and regulations must be observed. A number of specific recommendations on procedures and equipment are given in this report. The need for an emergency plan and for practising emergency procedures is stressed. The possibility of loss or theft of sources must be kept in mind. A collaborating team of specifically trained personnel following quality assurance (QA) procedures is necessary to prevent accidents. Maintenance is indispensable component of QA; external audits of procedures re-enforce good and safe practice, and identify potential causes of accidents. QA should include peer review of cases. Accidents and incidents should be reported and the lessons learned should be shared with other users to

  17. Greater absolute rates of N2O production and consumption with soil warming dwarf variations in denitrification enzyme temperature sensitivities across seasons

    NASA Astrophysics Data System (ADS)

    Tiemann, L. K.; Billings, S. A.

    2010-12-01

    Investigators appreciate the important role that nitrate (NO3-) and soil moisture availability can play in governing net N2O production from soils. However, a large knowledge gap remains surrounding the drivers of soil N2O consumption and the role of microbial adaptation to changing environmental conditions in governing both N2O production and consumption. Net N2O soil efflux can be correlated with temperature, but little is known about the influence of temperature on gross rates of N2O production vs. consumption. Further, we do not understand how microbial communities responsible for these processes adapt or acclimate to soil warming. To investigate whether temperature alters the denitrifier-mediated fate of NO3- lost via N2O or N2, and if any such effect changes across seasons, we incubated soil collected in three seasons at four temperatures with and without 15N-enriched nitrate for 26 hours. Incubations were conducted in an anaerobic environment flushed with helium to permit detection of N2O and N2, and those gases’ δ15N. Temperature positively influenced CO2 production resulting from anaerobic processes. Maximum values of net N2O production were positively influenced by incubation and seasonal temperature, and the maximum rate of net N2O production occurred relatively early at warmer incubation temperatures. We also observed greater N2O:N2 ratios early in the incubations at warmer incubation temperatures. Isotope data are consistent with these trends. For those soils receiving the 15N label, differences in δ15N2O between early and late in the incubations were increasingly negative, and differences in δ15N2 increasingly positive, as temperature increased. Q10 values for N2O production and consumption exhibited increasing similarities as seasons progressed, with June N2O production and consumption Q10 values being nearly identical. These data provide convincing evidence that: a) increasing temperatures can induce denitrifying communities to perform complete

  18. Excess processing of oxidative damaged bases causes hypersensitivity to oxidative stress and low dose rate irradiation.

    PubMed

    Yoshikawa, Y; Yamasaki, A; Takatori, K; Suzuki, M; Kobayashi, J; Takao, M; Zhang-Akiyama, Q-M

    2015-10-01

    Ionizing radiations such as X-ray and γ-ray can directly or indirectly produce clustered or multiple damages in DNA. Previous studies have reported that overexpression of DNA glycosylases in Escherichia coli (E. coli) and human lymphoblast cells caused increased sensitivity to γ-ray and X-ray irradiation. However, the effects and the mechanisms of other radiation, such as low dose rate radiation, heavy-ion beams, or hydrogen peroxide (H2O2), are still poorly understood. In the present study, we constructed a stable HeLaS3 cell line overexpressing human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) protein. We determined the survival of HeLaS3 and HeLaS3/hOGG1 cells exposed to UV, heavy-ion beams, γ-rays, and H2O2. The results showed that HeLaS3 cells overexpressing hOGG1 were more sensitive to γ-rays, OH(•), and H2O2, but not to UV or heavy-ion beams, than control HeLaS3. We further determined the levels of 8-oxoG foci and of chromosomal double-strand breaks (DSBs) by detecting γ-H2AX foci formation in DNA. The results demonstrated that both γ-rays and H2O2 induced 8-oxoguanine (8-oxoG) foci formation in HeLaS3 cells. hOGG1-overexpressing cells had increased amounts of γ-H2AX foci and decreased amounts of 8-oxoG foci compared with HeLaS3 control cells. These results suggest that excess hOGG1 removes the oxidatively damaged 8-oxoG in DNA more efficiently and therefore generates more DSBs. Micronucleus formation also supported this conclusion. Low dose-rate γ-ray effects were also investigated. We first found that overexpression of hOGG1 also caused increased sensitivity to low dose rate γ-ray irradiation. The rate of micronucleus formation supported the notion that low dose rate irradiation increased genome instability. PMID:26059740

  19. Association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury after intensity-modulated radiotherapy in lung cancer: a retrospective analysis.

    PubMed

    Chen, Jinmei; Hong, Jinsheng; Zou, Xi; Lv, Wenlong; Guo, Feibao; Hong, Hualan; Zhang, Weijian

    2015-11-01

    The aim of this study was to investigate the association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury (RILI) after intensity-modulated radiotherapy (IMRT) for lung cancer. The normal lung relative volumes receiving greater than 5, 10, 20 and 30 Gy (V5-30) mean lung dose (MLD), and absolute volumes spared from greater than 5, 10, 20 and 30 Gy (AVS5-30) for the bilateral and ipsilateral lungs of 83 patients were recorded. Any association of clinical factors and dose-volume parameters with Grade ≥2 RILI was analyzed. The median follow-up was 12.3 months; 18 (21.7%) cases of Grade 2 RILI, seven (8.4%) of Grade 3 and two (2.4%) of Grade 4 were observed. Univariate analysis revealed the located lobe of the primary tumor. V5, V10, V20, MLD of the ipsilateral lung, V5, V10, V20, V30 and MLD of the bilateral lung, and AVS5 and AVS10 of the ipsilateral lung were associated with Grade ≥2 RILI (P < 0.05). Multivariate analysis indicated AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI (P = 0.010, OR = 0.272, 95% CI: 0.102-0.729). Receiver operating characteristic curves indicated Grade ≥2 RILI could be predicted using AVS5 of the ipsilateral lung (area under curve, 0.668; cutoff value, 564.9 cm(3); sensitivity, 60.7%; specificity, 70.4%). The incidence of Grade ≥2 RILI was significantly lower with AVS5 of the ipsilateral lung ≥564.9 cm(3) than with AVS5 < 564.9 cm(3) (P = 0.008). Low-dose irradiation relative volumes and MLD of the bilateral or ipsilateral lung were associated with Grade ≥2 RILI, and AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI for lung cancer after IMRT. PMID:26454068

  20. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  1. Reirradiation of Large-Volume Recurrent Glioma With Pulsed Reduced-Dose-Rate Radiotherapy

    SciTech Connect

    Adkison, Jarrod B.; Tome, Wolfgang; Seo, Songwon; Richards, Gregory M.; Robins, H. Ian; Rassmussen, Karl; Welsh, James S.; Mahler, Peter A.; Howard, Steven P.

    2011-03-01

    Purpose: Pulsed reduced-dose-rate radiotherapy (PRDR) is a reirradiation technique that reduces the effective dose rate and increases the treatment time, allowing sublethal damage repair during irradiation. Patients and Methods: A total of 103 patients with recurrent glioma underwent reirradiation using PRDR (86 considered to have Grade 4 at PRDR). PRDR was delivered using a series of 0.2-Gy pulses at 3-min intervals, creating an apparent dose rate of 0.0667 Gy/min to a median dose of 50 Gy (range, 20-60) delivered in 1.8-2.0-Gy fractions. The mean treatment volume was 403.5 {+-} 189.4 cm{sup 3} according to T{sub 2}-weighted magnetic resonance imaging and a 2-cm margin. Results: For the initial or upgraded Grade 4 cohort (n = 86), the median interval from the first irradiation to PRDR was 14 months. Patients undergoing PRDR within 14 months of the first irradiation (n = 43) had a median survival of 21 weeks. Those treated {>=}14 months after radiotherapy had a median survival of 28 weeks (n = 43; p = 0.004 and HR = 1.82 with a 95% CI ranging from 1.25 to 3.10). These data compared favorably to historical data sets, because only 16% of the patients were treated at first relapse (with 46% treated at the second relapse, 32% at the third or fourth relapse, and 4% at the fourth or fifth relapse). The median survival since diagnosis and retreatment was 6.3 years and 11.4 months for low-grade, 4.1 years and 5.6 months for Grade 3, and 1.6 years and 5.1 months for Grade 4 tumors, respectively, according to the initial histologic findings. Multivariate analysis revealed age at the initial diagnosis, initial low-grade disease, and Karnofsky performance score of {>=}80 to be significant predictors of survival after initiation of PRDR. Conclusion: PRDR allowed for safe retreatment of larger volumes to high doses with palliative benefit.

  2. Voxel modeling of rabbits for use in radiological dose rate calculations.

    PubMed

    Caffrey, E A; Johansen, M P; Higley, K A

    2016-01-01

    Radiation dose to biota is generally calculated using Monte Carlo simulations of whole body ellipsoids with homogeneously distributed radioactivity throughout. More complex anatomical phantoms, termed voxel phantoms, have been developed to test the validity of these simplistic geometric models. In most voxel models created to date, human tissue composition and density values have been used in lieu of biologically accurate values for non-human biota. This has raised questions regarding variable tissue composition and density effects on the fraction of radioactive emission energy absorbed within tissues (e.g. the absorbed fraction - AF), along with implications for age-dependent dose rates as organisms mature. The results of this study on rabbits indicates that the variation in composition between two mammalian tissue types (e.g. human vs rabbit bones) made little difference in self-AF (SAF) values (within 5% over most energy ranges). However, variable tissue density (e.g. bone vs liver) can significantly impact SAF values. An examination of differences across life-stages revealed increasing SAF with testis and ovary size of over an order of magnitude for photons and several factors for electrons, indicating the potential for increasing dose rates to these sensitive organs as animals mature. AFs for electron energies of 0.1, 0.2, 0.4, 0.5, 0.7, 1.0, 1.5, 2.0, and 4.0 MeV and photon energies of 0.01, 0.015, 0.02, 0.03, 0.05, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, and 4.0 MeV are provided for eleven rabbit tissues. The data presented in this study can be used to calculate accurate organ dose rates for rabbits and other small rodents; to aide in extending dose results among different mammal species; and to validate the use of ellipsoidal models for regulatory purposes. PMID:25971772

  3. Radioactivity measurements and dose rate calculations using ERICA tool in the terrestrial environment of Greece.

    PubMed

    Sotiropoulou, Maria; Florou, Heleny; Manolopoulou, Metaxia

    2016-06-01

    In the present study, the radioactivity levels to which terrestrial non-human biota were exposed are examined. Organisms (grass and herbivore mammals) and abiotic components (soil) were collected during the period of 2010 to 2014 from grasslands where sheep and goats were free-range grazing. Natural background radionuclides ((226)Ra, (228)Ra, (228)Th) and artificial radionuclides ((137)Cs, (134)Cs, (131)I) were detected in the collected samples using gamma spectrometry. The actual measured activity concentrations and site-specific data of the studied organisms were imported in ERICA Assessment Tool (version 1.2.0) in order to provide an insight of the radiological dose rates. The highest activity concentrations were detected in samples collected from Lesvos island and the lowest in samples collected from Attiki and Etoloakarnania prefectures. The highest contribution to the total dose rate was clearly derived from the internal exposure and is closely related to the exposure to alpha emitters of natural background ((226)Ra and (228)Th). The Fukushima-derived traces of (137)Cs, (134)Cs, and (131)I, along with the residual (137)Cs, resulted in quite low contribution to the total dose rate. The obtained results may strengthen the adaptation of software tools to a wider range of ecosystems and may be proved useful in further research regarding the possible impact of protracted low level ionizing radiation on non-human biota. This kind of studies may contribute to the effective incorporation of dosimetry tools in the development of integrated environmental and radiological impact assessment policies. PMID:26897581

  4. Desensitization Using Bortezomib and High-dose Immunoglobulin Increases Rate of Deceased Donor Kidney Transplantation.

    PubMed

    Jeong, Jong Cheol; Jambaldorj, Enkthuya; Kwon, Hyuk Yong; Kim, Myung-Gyu; Im, Hye Jin; Jeon, Hee Jung; In, Ji Won; Han, Miyeun; Koo, Tai Yeon; Chung, Junho; Song, Eun Young; Ahn, Curie; Yang, Jaeseok

    2016-02-01

    Combination therapy of intravenous immunoglobulin (IVIG) and rituximab showed a good transplant rate in highly sensitized wait-listed patients for deceased donor kidney transplantation (DDKT), but carried the risk of antibody-mediated rejection. The authors investigated the impact of a new combination therapy of bortezomib, IVIG, and rituximab on transplantation rate.This study was a prospective, open-labeled clinical trial. The desensitization regimen consisted of 2 doses of IVIG (2  g/kg), a single dose of rituximab (375  mg/m), and 4 doses of bortezomib (1.3  mg/m). The transplant rate was analyzed. Anti-Human leukocyte antigen (HLA) DRB antibodies were determined by a Luminex solid-phase bead assay at baseline and after 2, 3, and 6 months in the desensitized patients.There were 19 highly sensitized patients who received desensitization and 17 patients in the control group. Baseline values of class I and II panel reactive antibody (%, peak mean fluorescence intensity) were 83  ±  16.0 (14952  ±  5820) and 63  ±  36.0 (10321  ±  7421), respectively. Deceased donor kidney transplantation was successfully performed in 8 patients (42.1%) in the desensitization group versus 4 (23.5%) in the control group. Multivariate time-varying covariate Cox regression analysis showed that desensitization increased the probability of DDKT (hazard ratio, 46.895; 95% confidence interval, 3.468-634.132; P = 0.004). Desensitization decreased mean fluorescence intensity values of class I panel reactive antibody by 15.5% (20.8%) at 2 months. In addition, a liberal mismatch strategy in post hoc analysis increased the benefit of desensitization in donor-specific antibody reduction. Desensitization was well tolerated, and acute rejection occurred only in the control group.In conclusion, a desensitization protocol using bortezomib, high-dose IVIG, and rituximab increased the DDKT rate in highly sensitized, wait-listed patients. PMID:26844479

  5. Formation of fine particle emulsions by high-dose-rate polymerization

    SciTech Connect

    Hayashi, K.; Kijima, T.; Okamura, S.; Egusa, S.; Makuuchi, K.

    1982-12-01

    Emulsion of chloroprene, acrylic acid, styrene, n-butyl methacrylate, and 2-hydroxyethyl methacrylate monomers mixed with sodium lauryl sulfate as an emulsifier were polymerized or copolymerized in a flow system for control of temperature and for mixing of the emulsion under irradiation. Electron beams of a dose rate of 0.1 to 10 Mrad/s was used as a radiation source to produce very fine particle emulsions. Significant decreases in particle diameter were noted for polymers aged for as much as 5 weeks. (BLM)

  6. Desensitization Using Bortezomib and High-dose Immunoglobulin Increases Rate of Deceased Donor Kidney Transplantation

    PubMed Central

    Jeong, Jong Cheol; Jambaldorj, Enkthuya; Kwon, Hyuk Yong; Kim, Myung-Gyu; Im, Hye Jin; Jeon, Hee Jung; In, Ji Won; Han, Miyeun; Koo, Tai Yeon; Chung, Junho; Song, Eun Young; Ahn, Curie; Yang, Jaeseok

    2016-01-01

    Abstract Combination therapy of intravenous immunoglobulin (IVIG) and rituximab showed a good transplant rate in highly sensitized wait-listed patients for deceased donor kidney transplantation (DDKT), but carried the risk of antibody-mediated rejection. The authors investigated the impact of a new combination therapy of bortezomib, IVIG, and rituximab on transplantation rate. This study was a prospective, open-labeled clinical trial. The desensitization regimen consisted of 2 doses of IVIG (2 g/kg), a single dose of rituximab (375 mg/m2), and 4 doses of bortezomib (1.3 mg/m2). The transplant rate was analyzed. Anti-Human leukocyte antigen (HLA) DRB antibodies were determined by a Luminex solid-phase bead assay at baseline and after 2, 3, and 6 months in the desensitized patients. There were 19 highly sensitized patients who received desensitization and 17 patients in the control group. Baseline values of class I and II panel reactive antibody (%, peak mean fluorescence intensity) were 83 ± 16.0 (14952 ± 5820) and 63 ± 36.0 (10321 ± 7421), respectively. Deceased donor kidney transplantation was successfully performed in 8 patients (42.1%) in the desensitization group versus 4 (23.5%) in the control group. Multivariate time-varying covariate Cox regression analysis showed that desensitization increased the probability of DDKT (hazard ratio, 46.895; 95% confidence interval, 3.468–634.132; P = 0.004). Desensitization decreased mean fluorescence intensity values of class I panel reactive antibody by 15.5% (20.8%) at 2 months. In addition, a liberal mismatch strategy in post hoc analysis increased the benefit of desensitization in donor-specific antibody reduction. Desensitization was well tolerated, and acute rejection occurred only in the control group. In conclusion, a desensitization protocol using bortezomib, high-dose IVIG, and rituximab increased the DDKT rate in highly sensitized, wait-listed patients. PMID:26844479

  7. Mapping of dose distribution from IMRT onto MRI-guided high dose rate brachytherapy using deformable image registration for cervical cancer treatments: preliminary study with commercially available software

    PubMed Central

    Huq, M. Saiful; Houser, Chris; Beriwal, Sushil; Michalski, Dariusz

    2014-01-01

    Purpose For patients undergoing external beam radiation therapy (EBRT) and brachytherapy, recommendations for target doses and constraints are based on calculation of the equivalent dose in 2 Gy fractions (EQD2) from each phase. At present, the EBRT dose distribution is assumed to be uniform throughout the pelvis. We performed a preliminary study to determine whether deformable dose distribution mapping from the EBRT onto magnetic resonance (MR) images for the brachytherapy would yield differences in doses for organs at risk (OARs) and high-risk clinical target volume (HR-CTV). Material and methods Nine cervical cancer patients were treated to a total dose of 45 Gy in 25 fractions using intensity-modulated radiation therapy (IMRT), followed by MRI-based 3D high dose rate (HDR) brachytherapy. Retrospectively, the IMRT planning CT images were fused with the MR image for each fraction of brachytherapy using deformable image registration. The deformed IMRT dose onto MR images were converted to EQD2 and compared to the uniform dose assumption. Results For all patients, the EQD2 from the EBRT phase was significantly higher with deformable registration than with the conventional uniform dose distribution assumption. The mean EQD2 ± SD for HR-CTV D90 was 45.7 ± 0.7 Gy vs. 44.3 Gy for deformable vs. uniform dose distribution, respectively (p < 0.001). The dose to 2 cc of the bladder, rectum, and sigmoid was 46.4 ± 1.2 Gy, 46.2 ± 1.0 Gy, and 48.0 ± 2.5 Gy, respectively with deformable dose distribution, and was significantly higher than with uniform dose distribution (43.2 Gy for all OAR, p < 0.001). Conclusions This study reveals that deformed EBRT dose distribution to HR-CTV and OARs in MR images for brachytherapy is technically feasible, and achieves differences compared to a uniform dose distribution. Therefore, the assumption that EBRT contributes the same dose value may need to be carefully investigated further based on deformable image registration. PMID:25097559

  8. High-Dose-Rate Intraoperative Radiation Therapy for Recurrent Head-and-Neck Cancer

    SciTech Connect

    Perry, David J.; Chan, Kelvin; Wolden, Suzanne; Zelefsky, Michael J.; Chiu, Johnny; Cohen, Gilad; Zaider, Marco; Kraus, Dennis; Shah, Jatin; Lee, Nancy

    2010-03-15

    Purpose: To report the use of high-dose-rate intraoperative radiation therapy (HDR-IORT) for recurrent head-and-neck cancer (HNC) at a single institution. Methods and Materials: Between July 1998 and February 2007, 34 patients with recurrent HNC received 38 HDR-IORT treatments using a Harrison-Anderson-Mick applicator with Iridium-192. A single fraction (median, 15 Gy; range, 10-20 Gy) was delivered intraoperatively after surgical resection to the region considered at risk for close or positive margins. In all patients, the target region was previously treated with external beam radiation therapy (median dose, 63 Gy; range, 24-74 Gy). The 1- and 2-year estimates for in-field local progression-free survival (LPFS), locoregional progression-free survival (LRPFS), distant metastases-free survival (DMFS), and overall survival (OS) were calculated. Results: With a median follow-up for surviving patients of 23 months (range, 6-54 months), 8 patients (24%) are alive and without evidence of disease. The 1- and 2-year LPFS rates are 66% and 56%, respectively, with 13 (34%) in-field recurrences. The 1- and 2-year DMFS rates are 81% and 62%, respectively, with 10 patients (29%) developing distant failure. The 1- and 2-year OS rates are 73% and 55%, respectively, with a median time to OS of 24 months. Severe complications included cellulitis (5 patients), fistula or wound complications (3 patients), osteoradionecrosis (1 patient), and radiation-induced trigeminal neuralgia (1 patient). Conclusions: HDR-IORT has shown encouraging local control outcomes in patients with recurrent HNC with acceptable rates of treatment-related morbidity. Longer follow-up with a larger cohort of patients is needed to fully assess the benefit of this procedure.

  9. PCP METHODOLOGY FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS

    SciTech Connect

    Nathan, S.

    2011-08-23

    The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials, are significantly less hazardous than large amounts of the same materials. This study describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials perform, under both normal and accident conditions, the essential functions of material containment, subcriticality, and maintain external radiation levels within regulatory limits. 10 CFR 71.33(b)(1)(2)&(3) state radioactive and fissile materials must be identified and their maximum quantity, chemical and physical forms be included in an application. Furthermore, the U.S. Federal Regulations require application contain an evaluation demonstrating the package (i.e., the packaging and its contents) satisfies the external radiation standards for all packages (10 CFR 71.31(2), 71.35(a), & 71.47). By placing the contents in a He leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large external dose rate. Quantifying of the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings described in this report provides bounding mass limits for a set of proposed SGQ isotopes. Methodology calculations were performed to estimate external radiation levels

  10. Novel Use of the Contura for High Dose Rate Cranial Brachytherapy

    SciTech Connect

    Scanderbeg, Daniel J.; Alksne, John F.; Lawson, Joshua D.; Murphy, Kevin T.

    2011-01-01

    A popular choice for treatment of recurrent gliomas was cranial brachytherapy using the GliaSite Radiation Therapy System. However, this device was taken off the market in late 2008, thus leaving a treatment void. This case study presents our experience treating a cranial lesion for the first time using a Contura multilumen, high-dose-rate (HDR) brachytherapy balloon applicator. The patient was a 47-year-old male who was diagnosed with a recurrent right frontal anaplastic oligodendroglioma. Previous radiosurgery made him a good candidate for brachytherapy. An intracavitary HDR balloon brachytherapy device (Contura) was placed in the resection cavity and treated with a single fraction of 20 Gy. The implant, treatment, and removal of the device were all completed without incident. Dosimetry of the device was excellent because the dose conformed very well to the target. V90, V100, V150, and V200 were 98.9%, 95.7%, 27.2, and 8.8 cc, respectively. This patient was treated successfully using the Contura multilumen balloon. Contura was originally designed for deployment in a postlumpectomy breast for treatment by accelerated partial breast irradiation. Being an intracavitary balloon device, its similarity to the GliaSite system makes it a viable replacement candidate. Multiple lumens in the device also make it possible to shape the dose delivered to the target, something not possible before with the GliaSite applicator.

  11. Monte Carlo dosimetric study of the Flexisource Co-60 high dose rate source

    PubMed Central

    Granero, Domingo; Perez-Calatayud, Jose; Ballester, Facundo

    2012-01-01

    Purpose Recently, a new HDR 60Co brachytherapy source, Flexisource Co-60, has been developed (Nucletron B.V. Veenendaal, The Netherlands). This study aims to obtain dosimetric data for this source for its use in clinical practice as required by AAPM and ESTRO. Material and methods Two Monte Carlo radiation transport codes were used: Penelope2008 and GEANT4. The source was centrally-positioned in a 100 cm radius water phantom. Absorbed dose and collisional kerma were obtained using 0.01 cm (close) and 0.1 cm (far) sized voxels to provide high-resolution dosimetry near (far from) the source. Dose rate distributions obtained with the two Monte Carlo codes were compared. Results and Discussion Simulations performed with those two radiation transport codes showed an agreement typically within 0.2% for r > 0.8 cm and up to 2% closer to the source. Detailed results of dose distributions are being made available. Conclusions Dosimetric data are provided for the new Flexisource Co-60 source. These data are meant to be used in treatment planning systems in clinical practice. PMID:23346138

  12. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    SciTech Connect

    Woloschak, G.E. |; Felcher, P.; Chang-Liu, Chin-Mei

    1993-12-31

    Experiments were designed to examine the effects of radiation dose-rate and of the protein synthesis inhibitor cycloheximide on expression of cytoskeletal elements ({gamma}- and {beta}-actin and {alpha}-tubulin) and matrix elements (fibronectin) in Syrian hamster embryo cells. Results demonstrated little effect of dose-rate for JANUS fission-spectrum neutrons when comparing expression of either a-tubulin or fibronectin genes. Past work had already documented similar results for expression of actin transcripts. Cycloheximide, however, repressed accumulation of {alpha}-tubulin following exposure to high dose-rate neutrons or {gamma} rays; this did not occur following similar low dose-rate exposures. Cycloheximide did not affect accumulation of mRNA for actin genes. Cycloheximide abrogated the moderate induction of fibronectin-mRNA which occurred following exposure to {gamma} rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of {alpha}-tubulin and fibronectin mRNA accumulation following exposure to ionizing radiation and that the cellular/molecular response to low dose-rate neutrons may be different from the response to high dose-rate neutrons.

  13. Radiosensitization of Human Cervical Cancer Cells by Inhibiting Ribonucleotide Reductase: Enhanced Radiation Response at Low-Dose Rates

    SciTech Connect

    Kunos, Charles A.; Colussi, Valdir C.; Pink, John; Radivoyevitch, Tomas; Oleinick, Nancy L.

    2011-07-15

    Purpose: To test whether pharmacologic inhibition of ribonucleotide reductase (RNR) by 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC no. 663249) enhances radiation sensitivity during low-dose-rate ionizing radiation provided by a novel purpose-built iridium-192 cell irradiator. Methods and Materials: The cells were exposed to low-dose-rate radiation (11, 23, 37, 67 cGy/h) using a custom-fabricated cell irradiator or to high-dose-rate radiation (330 cGy/min) using a conventional cell irradiator. The radiation sensitivity of human cervical (CaSki, C33-a) cancer cells with or without RNR inhibition by 3-AP was evaluated using a clonogenic survival and an RNR activity assay. Alteration in the cell cycle distribution was monitored using flow cytometry. Results: Increasing radiation sensitivity of both CaSki and C33-a cells was observed with the incremental increase in radiation dose rates. 3-AP treatment led to enhanced radiation sensitivity in both cell lines, eliminating differences in cell cytotoxicity from the radiation dose rate. RNR blockade by 3-AP during low-dose-rate irradiation was associated with low RNR activity and extended G{sub 1}-phase cell cycle arrest. Conclusions: We conclude that RNR inhibition by 3-AP impedes DNA damage repair mechanisms that rely on deoxyribonucleotide production and thereby increases radiation sensitivity of human cervical cancers to low-dose-rate radiation.

  14. Radiation dose rates now and in the future for residents neighboring restricted areas of the Fukushima Daiichi Nuclear Power Plant

    PubMed Central

    Harada, Kouji H.; Niisoe, Tamon; Imanaka, Mie; Takahashi, Tomoyuki; Amako, Katsumi; Fujii, Yukiko; Kanameishi, Masatoshi; Ohse, Kenji; Nakai, Yasumichi; Nishikawa, Tamami; Saito, Yuuichi; Sakamoto, Hiroko; Ueyama, Keiko; Hisaki, Kumiko; Ohara, Eiji; Inoue, Tokiko; Yamamoto, Kanako; Matsuoka, Yukiyo; Ohata, Hitomi; Toshima, Kazue; Okada, Ayumi; Sato, Hitomi; Kuwamori, Toyomi; Tani, Hiroko; Suzuki, Reiko; Kashikura, Mai; Nezu, Michiko; Miyachi, Yoko; Arai, Fusako; Kuwamori, Masanori; Harada, Sumiko; Ohmori, Akira; Ishikawa, Hirohiko; Koizumi, Akio

    2014-01-01

    Radiation dose rates were evaluated in three areas neighboring a restricted area within a 20- to 50-km radius of the Fukushima Daiichi Nuclear Power Plant in August–September 2012 and projected to 2022 and 2062. Study participants wore personal dosimeters measuring external dose equivalents, almost entirely from deposited radionuclides (groundshine). External dose rate equivalents owing to the accident averaged 1.03, 2.75, and 1.66 mSv/y in the village of Kawauchi, the Tamano area of Soma, and the Haramachi area of Minamisoma, respectively. Internal dose rates estimated from dietary intake of radiocesium averaged 0.0058, 0.019, and 0.0088 mSv/y in Kawauchi, Tamano, and Haramachi, respectively. Dose rates from inhalation of resuspended radiocesium were lower than 0.001 mSv/y. In 2012, the average annual doses from radiocesium were close to the average background radiation exposure (2 mSv/y) in Japan. Accounting only for the physical decay of radiocesium, mean annual dose rates in 2022 were estimated as 0.31, 0.87, and 0.53 mSv/y in Kawauchi, Tamano, and Haramachi, respectively. The simple and conservative estimates are comparable with variations in the background dose, and unlikely to exceed the ordinary permissible dose rate (1 mSv/y) for the majority of the Fukushima population. Health risk assessment indicates that post-2012 doses will increase lifetime solid cancer, leukemia, and breast cancer incidences by 1.06%, 0.03% and 0.28% respectively, in Tamano. This assessment was derived from short-term observation with uncertainties and did not evaluate the first-year dose and radioiodine exposure. Nevertheless, this estimate provides perspective on the long-term radiation exposure levels in the three regions. PMID:24567380

  15. Analgesia dose prescribing and estimated glomerular filtration rate decline: a general practice database linkage cohort study

    PubMed Central

    Nderitu, Paul; Doos, Lucy; Strauss, Vicky Y; Lambie, Mark; Davies, Simon J; Kadam, Umesh T

    2014-01-01

    Objective We aimed to quantify the short-term effect of non-steroidal anti-inflammatory drugs (NSAIDs), aspirin and paracetamol analgesia dose prescribing on estimated glomerular filtration rate (eGFR) decline in the general practice population. Design A population-based longitudinal clinical data linkage cohort study. Setting Two large general practices in North Staffordshire, UK. Participants Patients aged 40 years and over with ≥2 eGFR measurements spaced ≥90 days apart between 1 January 2009 and 31 December 2010 were selected. Exposure Using WHO Defined Daily Dose standardised cumulative analgesia prescribing, patients were categorised into non-user, normal and high-dose groups. Outcome measure The primary outcome was defined as a >5 mL/min/1.73 m2/year eGFR decrease between the first and last eGFR. Logistic regression analyses were used to estimate risk, adjusting for sociodemographics, comorbidity, baseline chronic kidney disease (CKD) status, renin-angiotensin-system inhibitors and other analgesia prescribing. Results There were 4145 patients (mean age 66 years, 55% female) with an analgesia prescribing prevalence of 17.2% for NSAIDs, 39% for aspirin and 22% for paracetamol and stage 3–5 CKD prevalence was 16.1% (n=667). Normal or high-dose NSAID and paracetamol prescribing was not significantly associated with eGFR decline. High-dose aspirin prescribing was associated with a reduced risk of eGFR decline in patients with a baseline (first) eGFR ≥60 mL/min/1.73 m2; OR=0.52 (95% CI 0.35 to 0.77). Conclusions NSAID, aspirin and paracetamol prescribing over 2 years did not significantly affect eGFR decline with a reduced risk of eGFR decline in high-dose aspirin users with well-preserved renal function. However, the long-term effects of analgesia use on eGFR decline remain to be determined. PMID:25138808

  16. The radiobiological effect of intra-fraction dose-rate modulation in intensity modulated radiation therapy (IMRT)

    NASA Astrophysics Data System (ADS)

    Bewes, J. M.; Suchowerska, N.; Jackson, M.; Zhang, M.; McKenzie, D. R.

    2008-07-01

    Intensity-modulated radiation therapy (IMRT) achieves optimal dose conformity to the tumor through the use of spatially and temporally modulated radiation fields. In particular, average dose rate and instantaneous dose rate (pulse amplitude) are highly variable within a single IMRT fraction. In this study we isolate these variables and determine their impact on cell survival. Survival was assessed using a clonogenic assay. Two cell lines of differing radiosensitivity were examined: melanoma (MM576) and non-small cell lung cancer (NCI-H460). The survival fraction was observed to be independent of instantaneous dose rate. A statistically significant trend to increased survival was observed as the average dose rate was decreased, for a constant total dose. The results are relevant to IMRT practice, where average treatment times can be significantly extended to allow for movement of the multi-leaf collimator (MLC). Our in vitro study adds to the pool of theoretical evidence for the consequences of protracted treatments. We find that extended delivery times can substantially increase the cell survival. This also suggests that regional variation in the dose-rate history across a tumor, which is inherent to IMRT, will affect radiation dose efficacy.

  17. An automated optimization tool for high-dose-rate (HDR) prostate brachytherapy with divergent needle pattern.

    PubMed

    Borot de Battisti, M; Maenhout, M; Denis de Senneville, B; Hautvast, G; Binnekamp, D; Lagendijk, J J W; van Vulpen, M; Moerland, M A

    2015-10-01

    Focal high-dose-rate (HDR) for prostate cancer has gained increasing interest as an alternative to whole gland therapy as it may contribute to the reduction of treatment related toxicity. For focal treatment, optimal needle guidance and placement is warranted. This can be achieved under MR guidance. However, MR-guided needle placement is currently not possible due to space restrictions in the closed MR bore. To overcome this problem, a MR-compatible, single-divergent needle-implant robotic device is under development at the University Medical Centre, Utrecht: placed between the legs of the patient inside the MR bore, this robot will tap the needle in a divergent pattern from a single rotation point into the tissue. This rotation point is just beneath the perineal skin to have access to the focal prostate tumor lesion. Currently, there is no treatment planning system commercially available which allows optimization of the dose distribution with such needle arrangement. The aim of this work is to develop an automatic inverse dose planning optimization tool for focal HDR prostate brachytherapy with needle insertions in a divergent configuration. A complete optimizer workflow is proposed which includes the determination of (1) the position of the center of rotation, (2) the needle angulations and (3) the dwell times. Unlike most currently used optimizers, no prior selection or adjustment of input parameters such as minimum or maximum dose or weight coefficients for treatment region and organs at risk is required. To test this optimizer, a planning study was performed on ten patients (treatment volumes ranged from 8.5 cm(3)to 23.3 cm(3)) by using 2-14 needle insertions. The total computation time of the optimizer workflow was below 20 min and a clinically acceptable plan was reached on average using only four needle insertions. PMID:26378657

  18. An automated optimization tool for high-dose-rate (HDR) prostate brachytherapy with divergent needle pattern

    NASA Astrophysics Data System (ADS)

    Borot de Battisti, M.; Maenhout, M.; de Senneville, B. Denis; Hautvast, G.; Binnekamp, D.; Lagendijk, J. J. W.; van Vulpen, M.; Moerland, M. A.

    2015-10-01

    Focal high-dose-rate (HDR) for prostate cancer has gained increasing interest as an alternative to whole gland therapy as it may contribute to the reduction of treatment related toxicity. For focal treatment, optimal needle guidance and placement is warranted. This can be achieved under MR guidance. However, MR-guided needle placement is currently not possible due to space restrictions in the closed MR bore. To overcome this problem, a MR-compatible, single-divergent needle-implant robotic device is under development at the University Medical Centre, Utrecht: placed between the legs of the patient inside the MR bore, this robot will tap the needle in a divergent pattern from a single rotation point into the tissue. This rotation point is just beneath the perineal skin to have access to the focal prostate tumor lesion. Currently, there is no treatment planning system commercially available which allows optimization of the dose distribution with such needle arrangement. The aim of this work is to develop an automatic inverse dose planning optimization tool for focal HDR prostate brachytherapy with needle insertions in a divergent configuration. A complete optimizer workflow is proposed which includes the determination of (1) the position of the center of rotation, (2) the needle angulations and (3) the dwell times. Unlike most currently used optimizers, no prior selection or adjustment of input parameters such as minimum or maximum dose or weight coefficients for treatment region and organs at risk is required. To test this optimizer, a planning study was performed on ten patients (treatment volumes ranged from 8.5 cm3to 23.3 cm3) by using 2-14 needle insertions. The total computation time of the optimizer workflow was below 20 min and a clinically acceptable plan was reached on average using only four needle insertions.

  19. High dose rates obtained outside ISS in June 2015 during SEP event

    NASA Astrophysics Data System (ADS)

    Dachev, T. P.; Tomov, B. T.; Matviichuk, Yu. N.; Dimitrov, Pl. G.; Bankov, N. G.

    2016-06-01

    The R3DR2 instrument performed measurements in the European Space Agency (ESA) EXPOSE-R2 platform outside the Russian "Zvezda" module of the International Space Station (ISS) in the period 24 October 2014-11 January 2016. It is the Liulin-type deposited energy spectrometer (DES) (Dachev et al., 2015a). Took place in November 2014, this was the first attempt to monitor a small solar energetic particle (SEP) event outside ISS using the Liulin-type DES (Dachev et al., 2015d). In this study, we describe the dosimetric characteristics of the largest SEP event, observed on 22 June 2015 with the R3DR2 instrument outside ISS. The main finding of this study is that SEP protons with a minimum energy of approximately 7 MeV at the surface of the R3DR2 detector produced high dose rates, reaching >5000 μGy h-1, while the inner radiation belt maximum dose was at the level of 2200 μGy h-1. If a virtual external vehicle activity (EVA) was performed in the same period of the SEP maximum on 22 June 2015, the doses obtained in the skin of cosmonauts/astronauts can reach 2.84 mGy after 6.5 h, which is similar to the average absorbed dose inside ISS for 15 days (Reitz et al., 2005). A comparison with other extreme events measured with Liulin-type instruments shows that SEPs similar to that observed on 22 June 2015 could be one of the most dangerous events for the cosmonauts/astronauts involved in EVA.

  20. High dose rates obtained outside ISS in June 2015 during SEP event.

    PubMed

    Dachev, T P; Tomov, B T; Matviichuk, Yu N; Dimitrov, Pl G; Bankov, N G

    2016-06-01

    The R3DR2 instrument performed measurements in the European Space Agency (ESA) EXPOSE-R2 platform outside the Russian "Zvezda" module of the International Space Station (ISS) in the period 24 October 2014-11 January 2016. It is the Liulin-type deposited energy spectrometer (DES) (Dachev et al., 2015a). Took place in November 2014, this was the first attempt to monitor a small solar energetic particle (SEP) event outside ISS using the Liulin-type DES (Dachev et al., 2015d). In this study, we describe the dosimetric characteristics of the largest SEP event, observed on 22 June 2015 with the R3DR2 instrument outside ISS. The main finding of this study is that SEP protons with a minimum energy of approximately 7MeV at the surface of the R3DR2 detector produced high dose rates, reaching >5000µGyh(-1), while the inner radiation belt maximum dose was at the level of 2200µGyh(-1). If a virtual external vehicle activity (EVA) was performed in the same period of the SEP maximum on 22 June 2015, the doses obtained in the skin of cosmonauts/astronauts can reach 2.84mGy after 6.5h, which is similar to the average absorbed dose inside ISS for 15days (Reitz et al., 2005). A comparison with other extreme events measured with Liulin-type instruments shows that SEPs similar to that observed on 22 June 2015 could be one of the most dangerous events for the cosmonauts/astronauts involved in EVA. PMID:27345205

  1. High dose rates obtained outside ISS in June 2015 during SEP event

    NASA Astrophysics Data System (ADS)

    Dachev, T. P.; Tomov, B. T.; Matviichuk, Yu. N.; Dimitrov, Pl. G.; Bankov, N. G.

    2016-06-01

    The R3DR2 instrument performed measurements in the European Space Agency (ESA) EXPOSE-R2 platform outside the Russian "Zvezda" module of the International Space Station (ISS) in the period 24 October 2014-11 January 2016. It is the Liulin-type deposited energy spectrometer (DES) (Dachev et al., 2015a). Took place in November 2014, this was the first attempt to monitor a small solar energetic particle (SEP) event outside ISS using the Liulin-type DES (Dachev et al., 2015d). In this study, we describe the dosimetric characteristics of the largest SEP event, observed on 22 June 2015 with the R3DR2 instrument outside ISS. The main finding of this study is that SEP protons with a minimum energy of approximately 7 MeV at the surface of the R3DR2 detector produced high dose rates, reaching >5000 μGy h-1, while the inner radiation belt maximum dose was at the level of 2200 μGy h-1. If a virtual external vehicle activity (EVA) was performed in the same period of the SEP maximum on 22 June 2015, the doses obtained in the skin of cosmonauts/astronauts can reach 2.84 mGy after 6.5 h, which is similar to the average absorbed dose inside ISS for 15 days (Reitz et al., 2005). A comparison with other extreme events measured with Liulin-type instruments shows that SEPs similar to that observed on 22 June 2015 could be one of the most dangerous events for the cosmonauts/astronauts involved in EVA.

  2. Quality Control of High-Dose-Rate Brachytherapy: Treatment Delivery Analysis Using Statistical Process Control

    SciTech Connect

    Able, Charles M.; Bright, Megan; Frizzell, Bart

    2013-03-01

    Purpose: Statistical process control (SPC) is a quality control method used to ensure that a process is well controlled and operates with little variation. This study determined whether SPC was a viable technique for evaluating the proper operation of a high-dose-rate (HDR) brachytherapy treatment delivery system. Methods and Materials: A surrogate prostate patient was developed using Vyse ordnance gelatin. A total of 10 metal oxide semiconductor field-effect transistors (MOSFETs) were placed from prostate base to apex. Computed tomography guidance was used to accurately position the first detector in each train at the base. The plan consisted of 12 needles with 129 dwell positions delivering a prescribed peripheral dose of 200 cGy. Sixteen accurate treatment trials were delivered as planned. Subsequently, a number of treatments were delivered with errors introduced, including wrong patient, wrong source calibration, wrong connection sequence, single needle displaced inferiorly 5 mm, and entire implant displaced 2 mm and 4 mm inferiorly. Two process behavior charts (PBC), an individual and a moving range chart, were developed for each dosimeter location. Results: There were 4 false positives resulting from 160 measurements from 16 accurately delivered treatments. For the inaccurately delivered treatments, the PBC indicated that measurements made at the periphery and apex (regions of high-dose gradient) were much more sensitive to treatment delivery errors. All errors introduced were correctly identified by either the individual or the moving range PBC in the apex region. Measurements at the urethra and base were less sensitive to errors. Conclusions: SPC is a viable method for assessing the quality of HDR treatment delivery. Further development is necessary to determine the most effective dose sampling, to ensure reproducible evaluation of treatment delivery accuracy.

  3. Modelling the dynamics of ambient dose rates induced by radiocaesium in the Fukushima terrestrial environment.

    PubMed

    Gonze, Marc-André; Mourlon, Christophe; Calmon, Philippe; Manach, Erwan; Debayle, Christophe; Baccou, Jean

    2016-09-01

    Since the Fukushima accident, Japanese scientists have been intensively monitoring ambient radiations in the highly contaminated territories situated within 80 km of the nuclear site. The surveys that were conducted through mainly carborne, airborne and in situ gamma-ray measurement devices, enabled to efficiently characterize the spatial distribution and temporal evolution of air dose rates induced by Caesium-134 and Caesium-137 in the terrestrial systems. These measurements revealed that radiation levels decreased at rates greater than expected from physical decay in 2011-2012 (up to a factor of 2), and dependent on the type of environment (i.e. urban, agricultural or forest). Unlike carborne measurements that may have been strongly influenced by the depuration of road surfaces, no obvious reason can be invoked for airborne measurements, especially above forests that are known to efficiently retain and recycle radiocaesium. The purpose of our research project is to develop a comprehensive understanding of the data acquired by Japanese, and identify the environmental mechanisms or factors that may explain such decays. The methodology relies on the use of a process-based and spatially-distributed dynamic model that predicts radiocaesium transfer and associated air dose rates inside/above a terrestrial environment (e.g., forests, croplands, meadows, bare soils and urban areas). Despite the lack of site-specific data, our numerical study predicts decrease rates that are globally consistent with both aerial and in situ observations. The simulation at a flying altitude of 200 m indicated that ambient radiation levels decreased over the first 12 months by about 45% over dense urban areas, 15% above evergreen coniferous forests and between 2 and 12% above agricultural lands, owing to environmental processes that are identified and discussed. In particular, we demonstrate that the decrease over evergreen coniferous regions might be due the combined effects of canopy

  4. Salvage high-dose-rate (HDR) brachytherapy for recurrent head-and-neck cancer

    SciTech Connect

    Hepel, Jaroslaw T.; Syed, A.M. Nisar . E-mail: bvigil@memnet.org; Puthawala, Ajmel; Sharma, Anil; Frankel, Paul

    2005-08-01

    Background: A significant portion of head-and-neck cancer patients will develop persistent o