Science.gov

Sample records for absolute dose values

  1. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  2. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  3. Be Resolute about Absolute Value

    ERIC Educational Resources Information Center

    Kidd, Margaret L.

    2007-01-01

    This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

  4. Inequalities, Absolute Value, and Logical Connectives.

    ERIC Educational Resources Information Center

    Parish, Charles R.

    1992-01-01

    Presents an approach to the concept of absolute value that alleviates students' problems with the traditional definition and the use of logical connectives in solving related problems. Uses a model that maps numbers from a horizontal number line to a vertical ray originating from the origin. Provides examples solving absolute value equations and…

  5. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  6. Solving Absolute Value Equations Algebraically and Geometrically

    ERIC Educational Resources Information Center

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  7. Teaching Absolute Value Inequalities to Mature Students

    ERIC Educational Resources Information Center

    Sierpinska, Anna; Bobos, Georgeana; Pruncut, Andreea

    2011-01-01

    This paper gives an account of a teaching experiment on absolute value inequalities, whose aim was to identify characteristics of an approach that would realize the potential of the topic to develop theoretical thinking in students enrolled in prerequisite mathematics courses at a large, urban North American university. The potential is…

  8. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  9. Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.

    2008-01-01

    Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…

  10. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    PubMed

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed. PMID:26022836

  11. Supplementary and Enrichment Series: Absolute Value. Teachers' Commentary. SP-25.

    ERIC Educational Resources Information Center

    Bridgess, M. Philbrick, Ed.

    This is one in a series of manuals for teachers using SMSG high school supplementary materials. The pamphlet includes commentaries on the sections of the student's booklet, answers to the exercises, and sample test questions. Topics covered include addition and multiplication in terms of absolute value, graphs of absolute value in the Cartesian…

  12. Supplementary and Enrichment Series: Absolute Value. SP-24.

    ERIC Educational Resources Information Center

    Bridgess, M. Philbrick, Ed.

    This is one in a series of SMSG supplementary and enrichment pamphlets for high school students. This series is designed to make material for the study of topics of special interest to students readily accessible in classroom quantity. Topics covered include absolute value, addition and multiplication in terms of absolute value, graphs of absolute…

  13. Absolute Value Boundedness, Operator Decomposition, and Stochastic Media and Equations

    NASA Technical Reports Server (NTRS)

    Adomian, G.; Miao, C. C.

    1973-01-01

    The research accomplished during this period is reported. Published abstracts and technical reports are listed. Articles presented include: boundedness of absolute values of generalized Fourier coefficients, propagation in stochastic media, and stationary conditions for stochastic differential equations.

  14. An improved generalized Newton method for absolute value equations.

    PubMed

    Feng, Jingmei; Liu, Sanyang

    2016-01-01

    In this paper, we suggest and analyze an improved generalized Newton method for solving the NP-hard absolute value equations [Formula: see text] when the singular values of A exceed 1. We show that the global and local quadratic convergence of the proposed method. Numerical experiments show the efficiency of the method and the high accuracy of calculation. PMID:27462490

  15. Absolute Value Inequalities: High School Students' Solutions and Misconceptions

    ERIC Educational Resources Information Center

    Almog, Nava; Ilany, Bat-Sheva

    2012-01-01

    Inequalities are one of the foundational subjects in high school math curricula, but there is a lack of academic research into how students learn certain types of inequalities. This article fills part of the research gap by presenting the findings of a study that examined high school students' methods of approaching absolute value inequalities,…

  16. Invalid phase values removal method for absolute phase recovery.

    PubMed

    Lu, Jin; Mo, Rong; Sun, Huibin; Chang, Zhiyong; Zhao, Xiaxia

    2016-01-10

    A novel approach is presented for more effectively removing invalid phase values in absolute phase recovery. The approach is based on a detailed study involving the types and cases of invalid phase values. Meanwhile, some commonalities of the existing removal algorithms also are thoroughly analyzed. It is well known that rough absolute phase and fringe order maps can very easily be obtained by temporal phase unwrapping techniques. After carefully analyzing the components and fringe order distribution of the rough fringe order map, the proposed method chiefly adopts an entirely new strategy to refine a pure fringe order map. The strategy consists of three parts: (1) the square of an image gradient, (2) subregion areas of the binary image, and (3) image decomposition and composition. In combination with the pure fringe order map and a removal criterion, the invalid phase values can be identified and filtered out from the rough absolute phase map. This new strategy not only gets rid of the limitations of traditional removal methods but also has a two-fold function. The paper also offers different metrics from the experiment to evaluate the quality of the final absolute phase. In contrast with other removal methods, experimental results have verified the feasibility, effectiveness, and superiority of the proposed method. PMID:26835776

  17. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams.

    PubMed

    Popescu, I A; Shaw, C P; Zavgorodni, S F; Beckham, W A

    2005-07-21

    Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 x 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 x 10(13) +/- 1.0% electrons incident on the target and a total dose of 20.87 cGy +/- 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations. PMID:16177516

  18. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams

    NASA Astrophysics Data System (ADS)

    Popescu, I. A.; Shaw, C. P.; Zavgorodni, S. F.; Beckham, W. A.

    2005-07-01

    Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 × 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 × 1013 ± 1.0% electrons incident on the target and a total dose of 20.87 cGy ± 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.

  19. The preference of visualization in teaching and learning absolute value

    NASA Astrophysics Data System (ADS)

    Cihan Konyalioğlu, Alper; Aksu, Zeki; Özge Şenel, Esma

    2012-07-01

    Visualization is mostly despised although it complements and - sometimes - guides the analytical process. This study mainly investigates teachers' preferences concerning the use of the visualization method and determines the extent to which they encourage their students to make use of it within the problem-solving process. This study was conducted for the ninth-grade students and their mathematics teacher in a social science intensive public school in the city of Erzurum, Turkey. Utilizing case study as the preferred method, data were collected through observations, interviews and student evaluations. This study revealed that visualization has a positive effect at the preliminary phases of teaching the absolute value concept but generates a lack of stimulation during problem solving in further phases of the instruction. This could be explained as a result of current examination system which requires a habituation of the analytical process in solving mathematical questions.

  20. Precision absolute value amplifier for a precision voltmeter

    SciTech Connect

    Hearn, W. E.; Rondeau, D. J.

    1985-05-21

    Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resister is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resister. The output current through the load resister is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resister. A second gain determining resister is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

  1. Precision absolute value amplifier for a precision voltmeter

    DOEpatents

    Hearn, William E.; Rondeau, Donald J.

    1985-01-01

    Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resister is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resister. The output current through the load resister is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resister. A second gain determining resister is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

  2. Precision absolute-value amplifier for a precision voltmeter

    DOEpatents

    Hearn, W.E.; Rondeau, D.J.

    1982-10-19

    Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resistor is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resistor. The output current through the load resistor is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resistor. A second gain determining resistor is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

  3. A Special Application of Absolute Value Techniques in Authentic Problem Solving

    ERIC Educational Resources Information Center

    Stupel, Moshe

    2013-01-01

    There are at least five different equivalent definitions of the absolute value concept. In instances where the task is an equation or inequality with only one or two absolute value expressions, it is a worthy educational experience for learners to solve the task using each one of the definitions. On the other hand, if more than two absolute value…

  4. The Cauchy principal value and the Hadamard finite part integral as values of absolutely convergent integrals

    NASA Astrophysics Data System (ADS)

    Galapon, Eric A.

    2016-03-01

    The divergent integral ∫a b f ( x ) ( x - x 0 ) - n - 1 d x , for -∞ < a < x0 < b < ∞ and n = 0, 1, 2, …, is assigned, under certain conditions, the value equal to the simple average of the contour integrals ∫C±f(z)(z - x0)-n-1dz, where C+ (C-) is a path that starts from a and ends at b and which passes above (below) the pole at x0. It is shown that this value, which we refer to as the analytic principal value, is equal to the Cauchy principal value for n = 0 and to the Hadamard finite-part of the divergent integral for positive integer n. This implies that, where the conditions apply, the Cauchy principal value and the Hadamard finite-part integral are in fact values of absolutely convergent integrals. Moreover, it leads to the replacement of the boundary values in the Sokhotski-Plemelj-Fox theorem with integrals along some arbitrary paths. The utility of the analytic principal value in the numerical, analytical, and asymptotic evaluations of the principal value and the finite-part integral is discussed and demonstrated.

  5. The impact of water temperature on the measurement of absolute dose

    NASA Astrophysics Data System (ADS)

    Islam, Naveed Mehdi

    To standardize reference dosimetry in radiation therapy, Task Group 51 (TG 51) of American Association of Physicist's in Medicine (AAPM) recommends that dose calibration measurements be made in a water tank at a depth of 10 cm and at a reference geometry. Methodologies are provided for calculating various correction factors to be applied in calculating the absolute dose. However the protocol does not specify the water temperature to be used. In practice, the temperature of water during dosimetry may vary considerably between independent sessions and different centers. In this work the effect of water temperature on absolute dosimetry has been investigated. Density of water varies with temperature, which in turn may impact the beam attenuation and scatter properties. Furthermore, due to thermal expansion or contraction air volume inside the chamber may change. All of these effects can result in a change in the measurement. Dosimetric measurements were made using a Farmer type ion chamber on a Varian Linear Accelerator for 6 MV and 23 MV photon energies for temperatures ranging from 10 to 40 °C. A thermal insulation was designed for the water tank in order to maintain relatively stable temperature over the duration of the experiment. Dose measured at higher temperatures were found to be consistently higher by a very small magnitude. Although the differences in dose were less than the uncertainty in each measurement, a linear regression of the data suggests that the trend is statistically significant with p-values of 0.002 and 0.013 for 6 and 23 MV beams respectively. For a 10 degree difference in water phantom temperatures, which is a realistic deviation across clinics, the final calculated reference dose can differ by 0.24% or more. To address this effect, first a reference temperature (e.g.22 °C) can be set as the standard; subsequently a correction factor can be implemented for deviations from this reference. Such a correction factor is expected to be of similar

  6. Absolute value equations - what can we learn from their graphical representation?

    NASA Astrophysics Data System (ADS)

    Stupel, Moshe; Ben-Chaim, David

    2014-08-01

    Understanding graphical representations of algebraic equations, particularly graphical representations of absolute value equations, significantly improves students' mathematical comprehension and ignites within them an appreciation of the beauty and aesthetics of mathematics. In this paper, we focus on absolute value equations of linear and quadratic expressions, by examining various cases, presenting different methods of solving them by graphical representation, exhibiting the advantage of using dynamic software such as GeoGebra in solving them, and illustrating some examples of interesting graphical solutions. We recommend that teachers take advantage of the rapid development in technology to help learners tangibly visualize the solutions of absolute value equations before proceeding to the analytical solutions.

  7. Characterization of Fricke-gel layers for absolute dose measurements in radiotherapy

    SciTech Connect

    Gambarini, G.; Carrara, M.; Rrushi, B.; Guilizzoni, R.; Borroni, M.; Tomatis, S.; Pirola, L.; Battistoni, G.

    2011-07-01

    Fricke-gel layer dosimeters (FGLDs) have shown promising features for attaining absolute measurements of the spatial distribution of the absorbed dose in radiotherapy. Good precision of results (within 3%) is achieved by means of calibration of each single dosimeter before measurement. The calibration is performed irradiating the dosimeter at a uniform and precisely known dose, in order to get a calibration matrix that must be used, with pixel-to-pixel manipulation, to obtain the dose image. A study of the trend in time of dosimeter response after one or more exposures was carried out and calibration protocols were suitably established and verified. (authors)

  8. A special application of absolute value techniques in authentic problem solving

    NASA Astrophysics Data System (ADS)

    Stupel, Moshe

    2013-06-01

    There are at least five different equivalent definitions of the absolute value concept. In instances where the task is an equation or inequality with only one or two absolute value expressions, it is a worthy educational experience for learners to solve the task using each one of the definitions. On the other hand, if more than two absolute value expressions are involved, the definition that is most helpful is the one involving solving by intervals and evaluating critical points. In point of fact, application of this technique is one reason that the topic of absolute value is important in mathematics in general and in mathematics teaching in particular. We present here an authentic practical problem that is solved using absolute values and the 'intervals' method, after which the solution is generalized with surprising results. This authentic problem also lends itself to investigation using educational technological tools such as GeoGebra dynamic geometry software: mathematics teachers can allow their students to initially cope with the problem by working in an inductive environment in which they conduct virtual experiments until a solid conjecture has been reached, after which they should prove the conjecture deductively, using classic theoretical mathematical tools.

  9. Absolute dose measurements by means of a small cylindrical ionization chamber for very high dose per pulse high energy electron beams

    SciTech Connect

    Karaj, E.; Righi, S.; Di Martino, F.

    2007-03-15

    Very high dose per pulse (3-13 cGy/pulse) high energy electron beams are currently produced by special linear accelerators (linac) dedicated to Intra Operative Radiation Therapy (IORT). The electron beams produced by such linacs are collimated by special Perspex applicators of various size and cylindrically shaped. The biggest problems from the dosimetric point of view are caused by the high dose-per-pulse values and the use of inclined applicators. In this work measurements of absolute dose for the inclined applicators were done by using a small cylindrical ionization chamber, type CC01 (Wellhofer), a parallel plane ionization chamber type Markus (PTW 23343) and radiochromic films type EBT. We show a method which allows calculating the quality correction factors for CC01 chamber with an uncertainty of 1% and the absolute dose value for the inclined applicators using CC01 with an uncertainty of 3.1% for electron beams of energy of 6 and 7 MeV produced by the linac dedicated to IORT Novac7.

  10. Radiation pneumonitis following large single dose irradiation: a re-evaluation based on absolute dose to lung

    SciTech Connect

    Van Dyk, J.; Keane, T.J.; Kan, S.; Rider, W.D.; Fryer, C.J.H.

    1981-04-01

    The acute radiation pneumonitis syndrome is a major complication for patients receiving total thoracic irradiation in a large single dose. Previous studies have evaluated the onset of radiation pneumonitis on the basis of radiation doses calculated assuming unit density tissues. In this report, the incidence of radiation pneumonitis is determined as a function of absolute dose to lung. A simple algorithm relating dose correction factor to anterior-posterior patient diameter has been derived using a CT-aided treatment planning system. This algorithm was used to determine, retrospectively, the dose to lung for a group of 303 patients who had been treated with large field irradiation techniques. Of this group, 150 patients had no previous lung disease and had virtually no additional lung irradiation prior or subsequent to their large field treatment. The actuarial incidence of radiation pneumonitis versus dose to lung was evaluated using a simplified probit analysis. The resultant best fit sigmoidal complication curve demonstrates the onset of radiation pneumonitis to occur at about 750 rad with the 5% actuarial incidence occurring at approximately 820 rad. The errors associated with the dose determination procedure as well as the actuarial incidence calculations are considered. The time of onset of radiation pneumonitis occurs between 1 to 7 months after irradiation for 90% of the patients who developed pneumonitis with the peak incidence occurring at 2 at 3 months. No correlation was found between time of onset and the dose to lung over a dose range of 650 to 1250 rad.

  11. Evaluation of clinical IMRT treatment planning using the GATE Monte Carlo simulation platform for absolute and relative dose calculations

    SciTech Connect

    Benhalouche, S.; Le Maitre, A.; Visvikis, D.; Pradier, O.; Boussion, N.

    2013-02-15

    Purpose: The objective of this study was to evaluate and validate the use of the Geant4 application for emission tomography (GATE) Monte Carlo simulation platform for clinical intensity modulated radiotherapy (IMRT) dosimetry studies. Methods: The first step consisted of modeling a 6 MV photon beam linear accelerator (LINAC), with its corresponding validation carried out using percent depth dose evaluation, transverse profiles, tissue phantom ratio, and output factor on water phantom. The IMRT evaluation was performed by comparing simulation and measurements in terms of absolute and relative doses using IMRT dedicated quality assurance phantoms considering seven different patient datasets. Results: Concerning the LINAC simulated model validation tissue phantom ratios at 20 and 10 cm in water TPR{sub 10}{sup 20} obtained from GATE and measurements were 0.672 {+-} 0.063 and 0.675, respectively. In terms of percent depth dose and transverse profiles, error ranges were, respectively: 1.472%{+-} 0.285% and 4.827%{+-} 1.323% for field size of 4 Multiplication-Sign 4, 5 Multiplication-Sign 5, 10 Multiplication-Sign 10, 15 Multiplication-Sign 15, 20 Multiplication-Sign 20, 25 Multiplication-Sign 25, 30 Multiplication-Sign 30, and 40 Multiplication-Sign 40 cm{sup 2}. Most errors were observed at the edge of radiation fields because of higher dose gradient in these areas. Output factors showed good agreement between simulation and measurements with a maximum error of 1.22%. Finally, for IMRT simulations considering seven patient datasets, GATE provided good results with a relative error of 0.43%{+-} 0.25% on absolute dose between simulated and measured beams (measurements at the isocenter, volume 0.125 cm{sup 3}). Planar dose comparisons were also performed using gamma-index analysis. For the whole set of beams considered the mean gamma-index value was 0.497 {+-} 0.152 and 90.8%{+-} 3.6% of the evaluated dose points satisfied the 5%/ 4 mm criterion. Conclusions: These

  12. Using a dose-area product for absolute measurements in small fields: a feasibility study.

    PubMed

    Dufreneix, S; Ostrowsky, A; Le Roy, M; Sommier, L; Gouriou, J; Delaunay, F; Rapp, B; Daures, J; Bordy, J-M

    2016-01-21

    To extend the dosimetric reference system to field sizes smaller than 2 cm × 2 cm, the LNE-LNHB laboratory is studying an approach based on a new dosimetric quantity named the dose-area product instead of the commonly used absorbed dose at a point. A graphite calorimeter and a plane parallel ion chamber with a sensitive surface of 3 cm diameter were designed and built for measurements in fields of 2, 1 and 0.75 cm diameter. The detector surface being larger than the beam section, most of the issues linked with absolute dose measurements at a point could be avoided. Calibration factors of the plane parallel ionization chamber were established in terms of dose-area product in water for small fields with an uncertainty smaller than 0.9%. PMID:26690271

  13. Maple (Computer Algebra System) in Teaching Pre-Calculus: Example of Absolute Value Function

    ERIC Educational Resources Information Center

    Tuluk, Güler

    2014-01-01

    Modules in Computer Algebra Systems (CAS) make Mathematics interesting and easy to understand. The present study focused on the implementation of the algebraic, tabular (numerical), and graphical approaches used for the construction of the concept of absolute value function in teaching mathematical content knowledge along with Maple 9. The study…

  14. A Multidimensional Approach to Explore the Understanding of the Notion of Absolute Value

    ERIC Educational Resources Information Center

    Gagatsis, Athanasios; Panaoura, Areti

    2014-01-01

    The study aimed to investigate students' conceptions on the notion of absolute value and their abilities in applying the specific notion in routine and non-routine situations. A questionnaire was constructed and administered to 17-year-old students. Data were analysed using the hierarchical clustering of variables and the implicative method,…

  15. Multiphase permittivity imaging using absolute value electrical capacitance tomography data and a level set algorithm.

    PubMed

    Al Hosani, E; Soleimani, M

    2016-06-28

    Multiphase flow imaging is a very challenging and critical topic in industrial process tomography. In this article, simulation and experimental results of reconstructing the permittivity profile of multiphase material from data collected in electrical capacitance tomography (ECT) are presented. A multiphase narrowband level set algorithm is developed to reconstruct the interfaces between three- or four-phase permittivity values. The level set algorithm is capable of imaging multiphase permittivity by using one set of ECT measurement data, so-called absolute value ECT reconstruction, and this is tested with high-contrast and low-contrast multiphase data. Simulation and experimental results showed the superiority of this algorithm over classical pixel-based image reconstruction methods. The multiphase level set algorithm and absolute ECT reconstruction are presented for the first time, to the best of our knowledge, in this paper and critically evaluated. This article is part of the themed issue 'Supersensing through industrial process tomography'. PMID:27185966

  16. Absolute value optimization to estimate phase properties of stochastic time series

    NASA Technical Reports Server (NTRS)

    Scargle, J. D.

    1977-01-01

    Most existing deconvolution techniques are incapable of determining phase properties of wavelets from time series data; to assure a unique solution, minimum phase is usually assumed. It is demonstrated, for moving average processes of order one, that deconvolution filtering using the absolute value norm provides an estimate of the wavelet shape that has the correct phase character when the random driving process is nonnormal. Numerical tests show that this result probably applies to more general processes.

  17. Pretreatment verification of IMRT absolute dose distributions using a commercial a-Si EPID

    SciTech Connect

    Talamonti, C.; Casati, M.; Bucciolini, M.

    2006-11-15

    A commercial amorphous silicon electronic portal imaging device (EPID) has been studied to investigate its potential in the field of pretreatment verifications of step and shoot, intensity modulated radiation therapy (IMRT), 6 MV photon beams. The EPID was calibrated to measure absolute exit dose in a water-equivalent phantom at patient level, following an experimental approach, which does not require sophisticated calculation algorithms. The procedure presented was specifically intended to replace the time-consuming in-phantom film dosimetry. The dosimetric response was characterized on the central axis in terms of stability, linearity, and pulse repetition frequency dependence. The a-Si EPID demonstrated a good linearity with dose (within 2% from 1 monitor unit), which represent a prerequisite for the application in IMRT. A series of measurements, in which phantom thickness, air gap between the phantom and the EPID, field size and position of measurement of dose in the phantom (entrance or exit) varied, was performed to find the optimal calibration conditions, for which the field size dependence is minimized. In these conditions (20 cm phantom thickness, 56 cm air gap, exit dose measured at the isocenter), the introduction of a filter for the low-energy scattered radiation allowed us to define a universal calibration factor, independent of field size. The off-axis extension of the dose calibration was performed by applying a radial correction for the beam profile, distorted due to the standard flood field calibration of the device. For the acquisition of IMRT fields, it was necessary to employ home-made software and a specific procedure. This method was applied for the measurement of the dose distributions for 15 clinical IMRT fields. The agreement between the dose distributions, quantified by the gamma index, was found, on average, in 97.6% and 98.3% of the analyzed points for EPID versus TPS and for EPID versus FILM, respectively, thus suggesting a great

  18. The Impact of Different Absolute Solar Irradiance Values on Current Climate Model Simulations

    NASA Technical Reports Server (NTRS)

    Rind, David H.; Lean, Judith L.; Jonas, Jeffrey

    2014-01-01

    Simulations of the preindustrial and doubled CO2 climates are made with the GISS Global Climate Middle Atmosphere Model 3 using two different estimates of the absolute solar irradiance value: a higher value measured by solar radiometers in the 1990s and a lower value measured recently by the Solar Radiation and Climate Experiment. Each of the model simulations is adjusted to achieve global energy balance; without this adjustment the difference in irradiance produces a global temperature change of 0.48C, comparable to the cooling estimated for the Maunder Minimum. The results indicate that by altering cloud cover the model properly compensates for the different absolute solar irradiance values on a global level when simulating both preindustrial and doubled CO2 climates. On a regional level, the preindustrial climate simulations and the patterns of change with doubled CO2 concentrations are again remarkably similar, but there are some differences. Using a higher absolute solar irradiance value and the requisite cloud cover affects the model's depictions of high-latitude surface air temperature, sea level pressure, and stratospheric ozone, as well as tropical precipitation. In the climate change experiments it leads to an underestimation of North Atlantic warming, reduced precipitation in the tropical western Pacific, and smaller total ozone growth at high northern latitudes. Although significant, these differences are typically modest compared with the magnitude of the regional changes expected for doubled greenhouse gas concentrations. Nevertheless, the model simulations demonstrate that achieving the highest possible fidelity when simulating regional climate change requires that climate models use as input the most accurate (lower) solar irradiance value.

  19. TU-A-12A-09: Absolute Blood Flow Measurement in a Cardiac Phantom Using Low Dose CT

    SciTech Connect

    Ziemer, B; Hubbard, L; Lipinski, J; Molloi, S

    2014-06-15

    Purpose: To investigate a first pass analysis technique to measure absolute flow from low dose CT images in a cardiac phantom. This technique can be combined with a myocardial mass assignment to yield absolute perfusion using only two volume scans and reduce the radiation dose to the patient. Methods: A four-chamber cardiac phantom and perfusion chamber were constructed from poly-acrylic and connected with tubing to approximate anatomical features. The system was connected to a pulsatile pump, input/output reservoirs and power contrast injector. Flow was varied in the range of 1-2.67 mL/s with the pump operating at 60 beats/min. The system was imaged once a second for 14 seconds with a 320-row scanner (Toshiba Medical Systems) using a contrast-enhanced, prospective-gated cardiac perfusion protocol. Flow was calculated by the following steps: subsequent images of the perfusion volume were subtracted to find the contrast entering the volume; this was normalized by an upstream, known volume region to convert Hounsfield (HU) values to concentration; this was divided by the subtracted images time difference. The technique requires a relatively stable input contrast concentration and no contrast can leave the perfusion volume before the flow measurement is completed. Results: The flow calculated from the images showed an excellent correlation with the known rates. The data was fit to a linear function with slope 1.03, intercept 0.02 and an R{sup 2} value of 0.99. The average root mean square (RMS) error was 0.15 mL/s and the average standard deviation was 0.14 mL/s. The flow rate was stable within 7.7% across the full scan and served to validate model assumptions. Conclusion: Accurate, absolute flow rates were measured from CT images using a conservation of mass model. Measurements can be made using two volume scans which can substantially reduce the radiation dose compared with current dynamic perfusion techniques.

  20. SU-E-J-85: Leave-One-Out Perturbation (LOOP) Fitting Algorithm for Absolute Dose Film Calibration

    SciTech Connect

    Chu, A; Ahmad, M; Chen, Z; Nath, R

    2014-06-01

    Purpose: To introduce an outliers-recognition fitting routine for film dosimetry. It cannot only be flexible with any linear and non-linear regression but also can provide information for the minimal number of sampling points, critical sampling distributions and evaluating analytical functions for absolute film-dose calibration. Methods: The technique, leave-one-out (LOO) cross validation, is often used for statistical analyses on model performance. We used LOO analyses with perturbed bootstrap fitting called leave-one-out perturbation (LOOP) for film-dose calibration . Given a threshold, the LOO process detects unfit points (“outliers”) compared to other cohorts, and a bootstrap fitting process follows to seek any possibilities of using perturbations for further improvement. After that outliers were reconfirmed by a traditional t-test statistics and eliminated, then another LOOP feedback resulted in the final. An over-sampled film-dose- calibration dataset was collected as a reference (dose range: 0-800cGy), and various simulated conditions for outliers and sampling distributions were derived from the reference. Comparisons over the various conditions were made, and the performance of fitting functions, polynomial and rational functions, were evaluated. Results: (1) LOOP can prove its sensitive outlier-recognition by its statistical correlation to an exceptional better goodness-of-fit as outliers being left-out. (2) With sufficient statistical information, the LOOP can correct outliers under some low-sampling conditions that other “robust fits”, e.g. Least Absolute Residuals, cannot. (3) Complete cross-validated analyses of LOOP indicate that the function of rational type demonstrates a much superior performance compared to the polynomial. Even with 5 data points including one outlier, using LOOP with rational function can restore more than a 95% value back to its reference values, while the polynomial fitting completely failed under the same conditions

  1. A redetermination of absolute values for 17RVPDB-CO2 and 17RVSMOW.

    PubMed

    Assonov, Sergey S; Brenninkmeijer, Carl A M

    2003-01-01

    In a companion paper in this issue we presented a review of the current state of (17)O-corrections for CO(2) mass spectrometry and considered an approach (including algebraic formulae) of how to determine absolute values for (17)R(VPDB-CO2) and (17)R(VSMOW). Here we present the results of experiments conducted to determine these values. Two oxygen gases (one depleted in heavy isotopes and the other isotopically normal oxygen) were analysed to obtain the relative (17)O content. Samples of both gases were converted into CO(2), and the resulting CO(2) samples were analysed as well. Possible experimental and analytical errors are carefully considered and eliminated as far as feasible. Much attention was paid to understanding and dealing with cross-contamination effects occurring in the mass spectrometer. Based on the data obtained, the absolute values are calculated to be: (17)R(VPDB-CO2) = 0.00039511 +/- 0.00000094 and (17)R(VSMOW) = 0.00038672 +/- 0.00000087 (expanded uncertainties). Both values are on the original scale of Craig (Geochim. Cosmochim. Acta 1957; 12: 133-149) with (13)R(VPDB-CO2) = 0.0112372. A (17)O-correction algorithm incorporating the newly determined value for (17)R(VPDB-CO2) and lambda = 0.528 by Meijer and Li (Isot. Environ. Health Stud. 1998; 34: 349-369) is constructed. A computational test is performed to demonstrate the degree of delta(13)C bias relative to the previously known correction algorithms. delta(13)C values produced by the constructed algorithm are in the middle of the values produced by the other algorithms. We refrain, however, from giving any recommendation concerning which (17)O-correction algorithm to use in order to obtain delta(13)C data in the most accurate way. The present work illuminates the need to reconsider recommendations concerning the correction algorithm. PMID:12720281

  2. Accuracy, Precision, Sensitivity, and Specificity of Noninvasive ICP Absolute Value Measurements.

    PubMed

    Krakauskaite, Solventa; Petkus, Vytautas; Bartusis, Laimonas; Zakelis, Rolandas; Chomskis, Romanas; Preiksaitis, Aidanas; Ragauskas, Arminas; Matijosaitis, Vaidas; Petrikonis, Kestutis; Rastenyte, Daiva

    2016-01-01

    An innovative absolute intracranial pressure (ICP) value measurement method has been validated by multicenter comparative clinical studies. The method is based on two-depth transcranial Doppler (TCD) technology and uses intracranial and extracranial segments of the ophthalmic artery as pressure sensors. The ophthalmic artery is used as a natural pair of "scales" that compares ICP with controlled pressure Pe, which is externally applied to the orbit. To balance the scales, ICP = Pe a special two-depth TCD device was used as a pressure balance indicator. The proposed method is the only noninvasive ICP measurement method that does not need patient-specific calibration. PMID:27165929

  3. Theoretical prediction of relative and absolute pKa values of aminopyridines.

    PubMed

    Caballero, N A; Melendez, F J; Muñoz-Caro, C; Niño, A

    2006-11-20

    This work presents a study aimed at the theoretical prediction of pK(a) values of aminopyridines, as a factor responsible for the activity of these compounds as blockers of the voltage-dependent K(+) channels. To cover a large range of pK(a) values, a total of seven substituted pyridines is considered as a calibration set: pyridine, 2-aminopyridine, 3-aminopyridine, 4-aminopyridine, 2-chloropyridine, 3-chloropyridine, and 4-methylpirydine. Using ab initio G1, G2 and G3 extrapolation methods, and the CPCM variant of the Polarizable Continuum Model for solvation, we calculate gas phase and solvation free energies. pK(a) values are obtained from these data using a thermodynamic cycle for describing protonation in aqueous and gas phases. The results show that the relatively inexpensive G1 level of theory is the most accurate at predicting pK(a) values in aminopyridines. The highest standard deviation with respect to the experimental data is 0.69 pK(a) units for absolute values calculations. The difference increases slightly to 0.74 pK(a) units when the pK(a) is computed relative to the pyridine molecule. Considering only compounds at least as basic as pyridine (the values of interest for bioactive aminopyridines) the error falls to 0.10 and 0.12 pK(a) units for the absolute and relative computations, respectively. The technique can be used to predict the effect of electronegative substituents in the pK(a) of 4-AP, the most active aminopyridine considered in this work. Thus, 2-chloro and 3-chloro-4-aminopyridine are taken into account. The results show a decrease of the pK(a), suggesting that these compounds are less active than 4-AP at blocking the K(+) channel. PMID:16844281

  4. Spatial Variation of Dosimetric Leaf Gap and Its Impact on Absolute Dose Delivery in Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Kumaraswamy, Lalith

    During dose calculation, the Eclipse Treatment Planning system (TPS) retracts the MLC leaf positions by half of the dosimetric leaf gap (DLG) value (measured at central axis) for all leaf positions in a dynamic MLC plan to accurately model the rounded leaf ends. The aim of this study is to map the variation of DLG along the travel path of each MLC leaf pair and quantify how this variation impacts delivered dose. 6 MV DLG values were measured for all MLC leaf pairs in increments of 1.0 cm (from the line intersecting the CAX and perpendicular to MLC motion) to 13.0 cm off axis distance at depth of dose maximum. The measurements were performed on two Varian LINACs, both employing the Millennium 120-leaf MLC. The measurements were performed at several locations in the beam with both a Sun Nuclear MapCHECK device and a PTW pinpoint ion chamber. The measured DLGs for the middle 40 MLC leaf pairs (each 0.5 cm width) at positions along a line through the CAX and perpendicular to MLC leaf travel direction were very similar, varying maximally by only 0.2 mm. The outer 20 MLC leaf pairs (each 1.0 cm width) have much lower DLG values, about 0.3 to 0.5 mm lower than the central MLC leaf pair, at their respective central line position. Overall, the mean and the maximum variation between the 0.5 cm width leaves and the 1.0 cm width leaf pairs is 0.32 mm and 0.65 mm, respectively. The spatial variation in DLG is caused by the variation of intraleaf transmission through MLC leaves. Fluences centered on the CAX would not be affected since DLG does not vary; but any fluences residing significantly off-axis with narrow sweeping leaves may exhibit significant dose differences. This is due to the fact that there are differences in DLG between the true DLG exhibited by the 1.0 cm width outer leaves and the constant DLG value utilized by the TPS for dose calculation. Since there are large differences in DLG between the 0.5 cm width leaf pairs and 1.0 cm width leaf pairs, there is a need

  5. Prospective Teachers' Reactions to "Right-or-Wrong" Tasks: The Case of Derivatives of Absolute Value Functions

    ERIC Educational Resources Information Center

    Tsamir, Pessia; Rasslan, Shaker; Dreyfus, Tommy

    2006-01-01

    This paper illustrates the role of a "Thinking-about-Derivatives" task in identifying learners' derivative conceptions and for promoting their critical thinking about derivatives of absolute value functions. The task included three parts: "Define" the derivative of a function f(x) at x = x[subscript 0], "Solve-if-Possible" the derivative of f(x) =…

  6. [Dose output at an image intensifier with peak value- or mean value-control].

    PubMed

    Bronder, T

    1985-01-01

    X-ray fluoroscopy equipment with automatic brightness control works either on the principle of peak value control or mean value control. The different modes of operation of both control types have the consequence that different dose rate values are regulated if a homogeneous phantom is used. The controlled value using peak value control lies a factor of 1.4 higher than by mean value control. A theoretical consideration about the effect of different dose rate contrast distributions at the image intensifier with regard to the peak and mean values of both types of brightness control results in conditions, which an inhomogeneous phantom must satisfy to yield the same mean dose rate in both cases. By means of an inhomogeneous phantom construction in accordance with these conditions it is possible to compare the dose rate and also image quality parameters of different X-ray units with different types of brightness control. PMID:3969693

  7. Delta Procalcitonin Is a Better Indicator of Infection Than Absolute Procalcitonin Values in Critically Ill Patients: A Prospective Observational Study.

    PubMed

    Trásy, Domonkos; Tánczos, Krisztián; Németh, Márton; Hankovszky, Péter; Lovas, András; Mikor, András; Hajdú, Edit; Osztroluczki, Angelika; Fazakas, János; Molnár, Zsolt

    2016-01-01

    Purpose. To investigate whether absolute value of procalcitonin (PCT) or the change (delta-PCT) is better indicator of infection in intensive care patients. Materials and Methods. Post hoc analysis of a prospective observational study. Patients with suspected new-onset infection were included in whom PCT, C-reactive protein (CRP), temperature, and leukocyte (WBC) values were measured on inclusion (t 0) and data were also available from the previous day (t -1). Based on clinical and microbiological data, patients were grouped post hoc into infection- (I-) and noninfection- (NI-) groups. Results. Of the 114 patients, 85 (75%) had proven infection. PCT levels were similar at t -1: I-group (median [interquartile range]): 1.04 [0.40-3.57] versus NI-group: 0.53 [0.16-1.68], p = 0.444. By t 0 PCT levels were significantly higher in the I-group: 4.62 [1.91-12.62] versus 1.12 [0.30-1.66], p = 0.018. The area under the curve to predict infection for absolute values of PCT was 0.64 [95% CI = 0.52-0.76], p = 0.022; for percentage change: 0.77 [0.66-0.87], p < 0.001; and for delta-PCT: 0.85 [0.78-0.92], p < 0.001. The optimal cut-off value for delta-PCT to indicate infection was 0.76 ng/mL (sensitivity 80 [70-88]%, specificity 86 [68-96]%). Neither absolute values nor changes in CRP, temperature, or WBC could predict infection. Conclusions. Our results suggest that delta-PCT values are superior to absolute values in indicating infection in intensive care patients. This trial is registered with ClinicalTrials.gov identifier: NCT02311816. PMID:27597981

  8. Delta Procalcitonin Is a Better Indicator of Infection Than Absolute Procalcitonin Values in Critically Ill Patients: A Prospective Observational Study

    PubMed Central

    Hankovszky, Péter; Hajdú, Edit

    2016-01-01

    Purpose. To investigate whether absolute value of procalcitonin (PCT) or the change (delta-PCT) is better indicator of infection in intensive care patients. Materials and Methods. Post hoc analysis of a prospective observational study. Patients with suspected new-onset infection were included in whom PCT, C-reactive protein (CRP), temperature, and leukocyte (WBC) values were measured on inclusion (t0) and data were also available from the previous day (t−1). Based on clinical and microbiological data, patients were grouped post hoc into infection- (I-) and noninfection- (NI-) groups. Results. Of the 114 patients, 85 (75%) had proven infection. PCT levels were similar at t−1: I-group (median [interquartile range]): 1.04 [0.40–3.57] versus NI-group: 0.53 [0.16–1.68], p = 0.444. By t0 PCT levels were significantly higher in the I-group: 4.62 [1.91–12.62] versus 1.12 [0.30–1.66], p = 0.018. The area under the curve to predict infection for absolute values of PCT was 0.64 [95% CI = 0.52–0.76], p = 0.022; for percentage change: 0.77 [0.66–0.87], p < 0.001; and for delta-PCT: 0.85 [0.78–0.92], p < 0.001. The optimal cut-off value for delta-PCT to indicate infection was 0.76 ng/mL (sensitivity 80 [70–88]%, specificity 86 [68-96]%). Neither absolute values nor changes in CRP, temperature, or WBC could predict infection. Conclusions. Our results suggest that delta-PCT values are superior to absolute values in indicating infection in intensive care patients. This trial is registered with ClinicalTrials.gov identifier: NCT02311816. PMID:27597981

  9. Absolute calibration of the Gamma Knife{sup ®} Perfexion™ and delivered dose verification using EPR/alanine dosimetry

    SciTech Connect

    Hornbeck, Amaury E-mail: tristan.garcia@cea.fr; Garcia, Tristan E-mail: tristan.garcia@cea.fr; Cuttat, Marguerite; Jenny, Catherine

    2014-06-15

    Purpose: Elekta Leksell Gamma Knife{sup ®} (LGK) is a radiotherapy beam machine whose features are not compliant with the international calibration protocols for radiotherapy. In this scope, the Laboratoire National Henri Becquerel and the Pitié-Salpêtrière Hospital decided to conceive a new LKG dose calibration method and to compare it with the currently used one. Furthermore, the accuracy of the dose delivered by the LGK machine was checked using an “end-to-end” test. This study also aims to compare doses delivered by the two latest software versions of the Gammaplan treatment planning system (TPS). Methods: The dosimetric method chosen is the electron paramagnetic resonance (EPR) of alanine. Dose rate (calibration) verification was done without TPS using a spherical phantom. Absolute calibration was done with factors calculated by Monte Carlo simulation (MCNP-X). For “end-to-end” test, irradiations in an anthropomorphic head phantom, close to real treatment conditions, are done using the TPS in order to verify the delivered dose. Results: The comparison of the currently used calibration method with the new one revealed a deviation of +0.8% between the dose rates measured by ion chamber and EPR/alanine. For simple fields configuration (less than 16 mm diameter), the “end-to-end” tests showed out average deviations of −1.7% and −0.9% between the measured dose and the calculated dose by Gammaplan v9 and v10, respectively. Conclusions: This paper shows there is a good agreement between the new calibration method and the currently used one. There is also a good agreement between the calculated and delivered doses especially for Gammaplan v10.

  10. Absolute depth-dose-rate measurements for an {sup 192}Ir HDR brachytherapy source in water using MOSFET detectors

    SciTech Connect

    Zilio, Valery Olivier; Joneja, Om Parkash; Popowski, Youri; Rosenfeld, Anatoly; Chawla, Rakesh

    2006-06-15

    Reported MOSFET measurements concern mostly external radiotherapy and in vivo dosimetry. In this paper, we apply the technique for absolute dosimetry in the context of HDR brachytherapy using an {sup 192}Ir source. Measured radial dose rate distributions in water for different planes perpendicular to the source axis are presented and special attention is paid to the calibration of the R and K type detectors, and to the determination of appropriate correction factors for the sensitivity variation with the increase of the threshold voltage and the energy dependence. The experimental results are compared with Monte Carlo simulated dose rate distributions. The experimental results show a good agreement with the Monte Carlo simulations: the discrepancy between experimental and Monte Carlo results being within 5% for 82% of the points and within 10% for 95% of the points. Moreover, all points except two are found to lie within the experimental uncertainties, confirming thereby the quality of the results obtained.

  11. Calculation of absolute free energy of binding for theophylline and its analogs to RNA aptamer using nonequilibrium work values

    NASA Astrophysics Data System (ADS)

    Tanida, Yoshiaki; Ito, Masakatsu; Fujitani, Hideaki

    2007-08-01

    The massively parallel computation of absolute binding free energy with a well-equilibrated system (MP-CAFEE) has been developed [H. Fujitani, Y. Tanida, M. Ito, G. Jayachandran, C.D. Snow, M.R. Shirts, E.J. Sorin, V.S. Pande, J. Chem. Phys. 123 (2005) 084108]. As an application, we perform the binding affinity calculations of six theophylline-related ligands with RNA aptamer. Basically, our method is applicable when using many compute nodes to accelerate simulations, thus a parallel computing system is also developed. To further reduce the computational cost, the adequate non-uniform intervals of coupling constant λ, connecting two equilibrium states, namely bound and unbound, are determined. The absolute binding energies Δ G thus obtained have effective linear relation between the computed and experimental values. If the results of two other different methods are compared, thermodynamic integration (TI) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) by the paper of Gouda et al. [H. Gouda, I.D. Kuntz, D.A. Case, P.A. Kollman, Biopolymers 68 (2003) 16], the predictive accuracy of the relative values ΔΔ G is almost comparable to that of TI: the correlation coefficients ( R) obtained are 0.99 (this work), 0.97 (TI), and 0.78 (MM-PBSA). On absolute binding energies meanwhile, a constant energy shift of ˜-7 kcal/mol against the experimental values is evident. To solve this problem, several presumable reasons are investigated.

  12. Effect of various methods for rectum delineation on relative and absolute dose-volume histograms for prostate IMRT treatment planning.

    PubMed

    Kusumoto, Chiaki; Ohira, Shingo; Miyazaki, Masayoshi; Ueda, Yoshihiro; Isono, Masaru; Teshima, Teruki

    2016-01-01

    Several reports have dealt with correlations of late rectal toxicity with rectal dose-volume histograms (DVHs) for high dose levels. There are 2 techniques to assess rectal volume for reception of a specific dose: relative-DVH (R-DVH, %) that indicates relative volume for a vertical axis, and absolute-DVH (A-DVH, cc) with its vertical axis showing absolute volume of the rectum. The parameters of DVH vary depending on the rectum delineation method, but the literature does not present any standardization of such methods. The aim of the present study was to evaluate the effects of different delineation methods on rectal DVHs. The enrollment for this study comprised 28 patients with high-risk localized prostate cancer, who had undergone intensity-modulated radiation therapy (IMRT) with the prescription dose of 78Gy. The rectum was contoured with 4 different methods using 2 lengths, short (Sh) and long (Lg), and 2 cross sections, rectum (Rec) and rectal wall (Rw). Sh means the length from 1cm above the seminal vesicles to 1cm below the prostate and Lg the length from the rectosigmoid junction to the anus. Rec represents the entire rectal volume including the rectal contents and Rw the rectal volume of the area with a wall thickness of 4mm. We compared dose-volume parameters by using 4 rectal contour methods for the same plan with the R-DVHs as well as the A-DVHs. For the high dose levels, the R-DVH parameters varied widely. The mean of V70 for Sh-Rw was the highest (19.4%) and nearly twice as high as that for Lg-Rec (10.4%). On the contrary, only small variations were observed in the A-DVH parameters (4.3, 4.3, 5.5, and 5.5cc for Sh-Rw, Lg-Rw, Sh-Rec, and Lg-Rec, respectively). As for R-DVHs, the parameters of V70 varied depending on the rectal lengths (Sh-Rec vs Lg-Rec: R = 0.76; Sh-Rw vs Lg-Rw: R = 0.85) and cross sections (Sh-Rec vs Sh-Rw: R = 0.49; Lg-Rec vs Lg-Rw: R = 0.65). For A-DVHs, however, the parameters of Sh rectal A-DVHs hardly changed regardless of

  13. Differences between absolute and predicted values of forced expiratory volumes to classify ventilatory impairment in chronic obstructive pulmonary disease.

    PubMed

    Checkley, William; Foreman, Marilyn G; Bhatt, Surya P; Dransfield, Mark T; Han, MeiLan; Hanania, Nicola A; Hansel, Nadia N; Regan, Elizabeth A; Wise, Robert A

    2016-02-01

    The Global Initiative for Chronic Obstructive Lung Disease (GOLD) severity criterion for COPD is used widely in clinical and research settings; however, it requires the use of ethnic- or population-specific reference equations. We propose two alternative severity criteria based on absolute post-bronchodilator FEV1 values (FEV1 and FEV1/height2) that do not depend on reference equations. We compared the accuracy of these classification schemasto those based on % predicted values (GOLD criterion) and Z-scores of post-bronchodilator FEV1 to predict COPD-related functional outcomes or percent emphysema by computerized tomography of the lung. We tested the predictive accuracy of all severity criteria for the 6-minute walk distance (6MWD), St. George's Respiratory Questionnaire (SGRQ), 36-item Short-Form Health Survey physical health component score (SF-36) and the MMRC Dyspnea Score. We used 10-fold cross-validation to estimate average prediction errors and Bonferroni-adjusted t-tests to compare average prediction errors across classification criteria. We analyzed data of 3772 participants with COPD (average age 63 years, 54% male). Severity criteria based on absolute post-bronchodilator FEV1 or FEV1/height2 yielded similar prediction errors for 6MWD, SGRQ, SF-36 physical health component score, and the MMRC Dyspnea Score when compared to the GOLD criterion (all p > 0.34); and, had similar predictive accuracy when compared with the Z-scores criterion, with the exception for 6MWD where post-bronchodilator FEV1 appeared to perform slightly better than Z-scores (p = 0.01). Subgroup analyses did not identify differences across severity criteria by race, sex, or age between absolute values and the GOLD criterion or one based on Z-scores. Severity criteria for COPD based on absolute values of post-bronchodilator FEV1 performed equally as well as did criteria based on predicted values when benchmarked against COPD-related functional and structural outcomes, are simple to use

  14. Advances in the Metrology of Absolute Value Assignments to Isotopic Reference Materials: Consequences from the Avogadro Project

    NASA Astrophysics Data System (ADS)

    Vocke, Robert; Rabb, Savelas

    2015-04-01

    All isotope amount ratios (hereafter referred to as isotope ratios) produced and measured on any mass spectrometer are biased. This unfortunate situation results mainly from the physical processes in the source area where ions are produced. Because the ionized atoms in poly-isotopic elements have different masses, such processes are typically mass dependent and lead to what is commonly referred to as mass fractionation (for thermal ionization and electron impact sources) and mass bias (for inductively coupled plasma sources.) This biasing process produces a measured isotope ratio that is either larger or smaller than the "true" ratio in the sample. This has led to the development of numerous fractionation "laws" that seek to correct for these effects, many of which are not based on the physical processes giving rise to the biases. The search for tighter and reproducible precisions has led to two isotope ratio measurement systems that exist side-by-side. One still seeks to measure "absolute" isotope ratios while the other utilizes an artifact based measurement system called a delta-scale. The common element between these two measurement systems is the utilization of isotope reference materials (iRMs). These iRMs are used to validate a fractionation "law" in the former case and function as a scale anchor in the latter. Many value assignments of iRMs are based on "best measurements" by the original groups producing the reference material, a not entirely satisfactory approach. Other iRMs, with absolute isotope ratio values, have been produced by calibrated measurements following the Atomic Weight approach (AW) pioneered by NBS nearly 50 years ago. Unfortunately, the AW is not capable of calibrating the new generation of iRMs to sufficient precision. So how do we get iRMs with isotope ratios of sufficient precision and without bias? Such a focus is not to denigrate the extremely precise delta-scale measurements presently being made on non-traditional and tradition

  15. SU-E-T-189: First Experimental Verification of the Accuracy of Absolute Dose Reconstruction From PET-CT Imaging of Yttrium 90 Microspheres

    SciTech Connect

    Veltchev, I; Fourkal, E; Doss, M; Ma, C; Meyer, J; Yu, M; Horwitz, E

    2014-06-01

    Purpose: In the past few years there have been numerous proposals for 3D dose reconstruction from the PET-CT imaging of patients undergoing radioembolization treatment of the liver with yttrium-90 microspheres. One of the most promising techniques uses convolution of the measured PET activity distribution with a pre-calculated Monte Carlo dose deposition kernel. The goal of the present study is to experimentally verify the accuracy of this method and to analyze the significance of various error sources. Methods: Optically stimulated luminescence detectors (OSLD) were used (NanoDot, Landauer) in this experiment. Two detectors were mounted on the central axis of a cylinder filled with water solution of yttrium-90 chloride. The total initial activity was 90mCi. The cylinder was inserted in a larger water phantom and scanned on a Siemens Biograph 16 Truepoint PET-CT scanner. Scans were performed daily over a period of 20 days to build a calibration curve for the measured absolute activity spanning 7 yttrium-90 half-lives. The OSLDs were mounted in the phantom for a predetermined period of time in order to record 2Gy dose. The measured dose was then compared to the dose reconstructed from the activity density at the location of each dosimeter. Results: Thorough error analysis of the dose reconstruction algorithm takes into account the uncertainties in the absolute PET activity, branching ratios, and nonlinearity of the calibration curve. The measured dose for 105-minute exposure on day 10 of the experiment was 219(11)cGy, while the reconstructed dose at the location of the detector was 215(47)cGy. Conclusion: We present the first experimental verification of the accuracy of the convolution algorithm for absolute dose reconstruction of yttrium-90 microspheres. The excellent agreement between the measured and calculated point doses will encourage the broad clinical adoption of the convolution-based dose reconstruction algorithm, making future quantitative dose

  16. Comparison of methods for generation of absolute reflectance-factor values for bidirectional reflectance-distribution function studies.

    PubMed

    Feng, X; Schott, J R; Gallagher, T

    1993-03-01

    Currently, spectrophotometric standard reference materials are calibrated only by using the illumination and viewing geometries recommended by the Commission Internationale de l'Eclairage, and for some geometries the spectral range is limited to the visible wavelengths. A need exists for procedures that calibrate standards at many other geometries and for a broader spectral range. Two methods for calibrating the spectral bidirectional reflectance factor are described. The absolute bidirectional reflectance factor of a sintered polytetrafluoroethylene (PTFE) sample is determined for nearly all the possible illumination and viewing geometries from 400 nm to 2500 nm. The references are a 45/0 reflectance standard calibrated by the National Institute of Standards and Technology and a sintered PTFE sample with a directional, hemispherical reflectance factor traceable to the Institute. The results of the two methods agree to within 0.01 in reflectance factor values. With this PTFE sample as a transfer standard, the instrument described can also be used to measure the absolute bidirectional reflectance factor at nearly all the illumination and viewing geometries from 400 nm to 2500 nm. PMID:20820258

  17. Predicting Absolute Risk of Type 2 Diabetes Using Age and Waist Circumference Values in an Aboriginal Australian Community

    PubMed Central

    2015-01-01

    Objectives To predict in an Australian Aboriginal community, the 10-year absolute risk of type 2 diabetes associated with waist circumference and age on baseline examination. Method A sample of 803 diabetes-free adults (82.3% of the age-eligible population) from baseline data of participants collected from 1992 to 1998 were followed-up for up to 20 years till 2012. The Cox-proportional hazard model was used to estimate the effects of waist circumference and other risk factors, including age, smoking and alcohol consumption status, of males and females on prediction of type 2 diabetes, identified through subsequent hospitalisation data during the follow-up period. The Weibull regression model was used to calculate the absolute risk estimates of type 2 diabetes with waist circumference and age as predictors. Results Of 803 participants, 110 were recorded as having developed type 2 diabetes, in subsequent hospitalizations over a follow-up of 12633.4 person-years. Waist circumference was strongly associated with subsequent diagnosis of type 2 diabetes with P<0.0001 for both genders and remained statistically significant after adjusting for confounding factors. Hazard ratios of type 2 diabetes associated with 1 standard deviation increase in waist circumference were 1.7 (95%CI 1.3 to 2.2) for males and 2.1 (95%CI 1.7 to 2.6) for females. At 45 years of age with baseline waist circumference of 100 cm, a male had an absolute diabetic risk of 10.9%, while a female had a 14.3% risk of the disease. Conclusions The constructed model predicts the 10-year absolute diabetes risk in an Aboriginal Australian community. It is simple and easily understood and will help identify individuals at risk of diabetes in relation to waist circumference values. Our findings on the relationship between waist circumference and diabetes on gender will be useful for clinical consultation, public health education and establishing WC cut-off points for Aboriginal Australians. PMID:25876058

  18. Long-term variations of absolute and superconducting gravity values in Southeast Alaska, observed by the ISEA2 project

    NASA Astrophysics Data System (ADS)

    Kazama, T.; Hideaki, H.; Miura, S.; Kaufman, M.; Sato, T.; Larsen, C. F.; Freymueller, J. T.

    2013-12-01

    It is well known that gravity values have been decreasing in Southeast Alaska, mainly due to glacier mass changes from the end of the Little Ice Age to the present. For example, absolute gravity measurements made by the ISEA1 project (2006-2008) showed a maximum gravity change rate of -5.6 micro-gal/year (Sun et al., 2010; Sato et al., 2012a), which was consistent with large uplift rates obtained from GPS data (Larsen et al., 2005). However, the newly-obtained absolute gravity values in 2012 were about 10 micro-gal greater than expected based on the gravity trends of Sun et al. (2010), possibly because of above-average snowfall in the winter of 2011-2012 (Sato et al., 2012b). In order to monitor spatiotemporal gravity changes associated with glacier mass changes, seasonal hydrological gravity changes should be quantified via continuous gravity observations and/or hydrological modeling. We thus installed a superconducting gravimeter iGrav (serial number: 003) at Egan Library, University of Alaska Southeast in June 2012, as part of the ISEA2 project (2011-2015). The mass position (unit: volts) and air pressure have been recorded every second since June 2012, and the gravity value was then calculated from the mass position, using the scale factor of -89.561 micro-gal/V (Sato et al., 2012b). After the removal of tidal gravity changes using the BAYTAP software (Tamura et al., 1991), a gravity change of 4 micro-gal in peak to peak was extracted from the long-term superconducting gravity data from June 2012 to July 2013. Note that this non-tidal gravity change includes the instrumental drift, although the drift rate was very small (less than 1 micro-gal/year) according to the linear regression to the gravity change. We will discuss possible physical mechanisms of the non-tidal gravity change associated with water redistribution, using a hydrological model (e.g., Kazama et al., 2012) and/or long-term weather data. In addition, we also measured absolute gravity values at 6

  19. Reducing the Standard Deviation in Multiple-Assay Experiments Where the Variation Matters but the Absolute Value Does Not

    PubMed Central

    Echenique-Robba, Pablo; Nelo-Bazán, María Alejandra; Carrodeguas, José A.

    2013-01-01

    When the value of a quantity for a number of systems (cells, molecules, people, chunks of metal, DNA vectors, so on) is measured and the aim is to replicate the whole set again for different trials or assays, despite the efforts for a near-equal design, scientists might often obtain quite different measurements. As a consequence, some systems’ averages present standard deviations that are too large to render statistically significant results. This work presents a novel correction method of a very low mathematical and numerical complexity that can reduce the standard deviation of such results and increase their statistical significance. Two conditions are to be met: the inter-system variations of matter while its absolute value does not, and a similar tendency in the values of must be present in the different assays (or in other words, the results corresponding to different assays must present a high linear correlation). We demonstrate the improvements this method offers with a cell biology experiment, but it can definitely be applied to any problem that conforms to the described structure and requirements and in any quantitative scientific field that deals with data subject to uncertainty. PMID:24205158

  20. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  1. TH-E-BRE-09: TrueBeam Monte Carlo Absolute Dose Calculations Using Monitor Chamber Backscatter Simulations and Linac-Logged Target Current

    SciTech Connect

    A, Popescu I; Lobo, J; Sawkey, D; Svatos, M

    2014-06-15

    Purpose: To simulate and measure radiation backscattered into the monitor chamber of a TrueBeam linac; establish a rigorous framework for absolute dose calculations for TrueBeam Monte Carlo (MC) simulations through a novel approach, taking into account the backscattered radiation and the actual machine output during beam delivery; improve agreement between measured and simulated relative output factors. Methods: The ‘monitor backscatter factor’ is an essential ingredient of a well-established MC absolute dose formalism (the MC equivalent of the TG-51 protocol). This quantity was determined for the 6 MV, 6X FFF, and 10X FFF beams by two independent Methods: (1) MC simulations in the monitor chamber of the TrueBeam linac; (2) linac-generated beam record data for target current, logged for each beam delivery. Upper head MC simulations used a freelyavailable manufacturer-provided interface to a cloud-based platform, allowing use of the same head model as that used to generate the publicly-available TrueBeam phase spaces, without revealing the upper head design. The MC absolute dose formalism was expanded to allow direct use of target current data. Results: The relation between backscatter, number of electrons incident on the target for one monitor unit, and MC absolute dose was analyzed for open fields, as well as a jaw-tracking VMAT plan. The agreement between the two methods was better than 0.15%. It was demonstrated that the agreement between measured and simulated relative output factors improves across all field sizes when backscatter is taken into account. Conclusion: For the first time, simulated monitor chamber dose and measured target current for an actual TrueBeam linac were incorporated in the MC absolute dose formalism. In conjunction with the use of MC inputs generated from post-delivery trajectory-log files, the present method allows accurate MC dose calculations, without resorting to any of the simplifying assumptions previously made in the True

  2. Generalized approach for using unbiased symmetric metrics with negative values: normalized mean bias factor and normalized mean absolute error factor

    EPA Science Inventory

    Unbiased symmetric metrics provide a useful measure to quickly compare two datasets, with similar interpretations for both under and overestimations. Two examples include the normalized mean bias factor and normalized mean absolute error factor. However, the original formulations...

  3. A mathematical approach to optimal selection of dose values in the additive dose method of ERP dosimetry

    SciTech Connect

    Hayes, R.B.; Haskell, E.H.; Kenner, G.H.

    1996-01-01

    Additive dose methods commonly used in electron paramagnetic resonance (EPR) dosimetry are time consuming and labor intensive. We have developed a mathematical approach for determining optimal spacing of applied doses and the number of spectra which should be taken at each dose level. Expected uncertainitites in the data points are assumed to be normally distributed with a fixed standard deviation and linearity of dose response is also assumed. The optimum spacing and number of points necessary for the minimal error can be estimated, as can the likely error in the resulting estimate. When low doses are being estimated for tooth enamel samples the optimal spacing is shown to be a concentration of points near the zero dose value with fewer spectra taken at a single high dose value within the range of known linearity. Optimization of the analytical process results in increased accuracy and sample throughput.

  4. Commissioning and Implementation of an EPID Based IMRT QA System "Dosimetry Check" for 3D Absolute Dose Measurements and Quantitative Comparisons to MapCheck

    NASA Astrophysics Data System (ADS)

    Patel, Jalpa A.

    The software package "Dosimetry Check" by MathResolutions, LLC, provides an absolute 3D volumetric dose measurement for IMRT QA using the existing Electronic Portal Imaging Device (EPID) mounted on most linear accelerators. This package provides a feedback loop using the patient's treatment planning CT data as the phantom for dose reconstruction. The aim of this work is to study the difference between point, planar and volumetric doses with MapCheck and Dosimetry Check via the use of the EPID and the diode array respectively. Evaluating tools such as point doses at isocenter, 1-D profiles, gamma volume histograms, and dose volume histograms are used for IMRT dose comparison in three types of cases: head and neck, prostate, and lung. Dosimetry Check can be a valuable tool for IMRT QA as it uses patient specific attenuation corrections and the superiority of the EPID as compared to the MapCheck diode array. This helps reduce the uncertainty in dose for less variability in delivery and a more realistic measured vs computed dose verification system as compared to MapCheck.

  5. Stereotactic, Single-Dose Irradiation of Lung Tumors: A Comparison of Absolute Dose and Dose Distribution Between Pencil Beam and Monte Carlo Algorithms Based on Actual Patient CT Scans

    SciTech Connect

    Chen Huixiao; Lohr, Frank; Fritz, Peter; Wenz, Frederik; Dobler, Barbara; Lorenz, Friedlieb; Muehlnickel, Werner

    2010-11-01

    Purpose: Dose calculation based on pencil beam (PB) algorithms has its shortcomings predicting dose in tissue heterogeneities. The aim of this study was to compare dose distributions of clinically applied non-intensity-modulated radiotherapy 15-MV plans for stereotactic body radiotherapy between voxel Monte Carlo (XVMC) calculation and PB calculation for lung lesions. Methods and Materials: To validate XVMC, one treatment plan was verified in an inhomogeneous thorax phantom with EDR2 film (Eastman Kodak, Rochester, NY). Both measured and calculated (PB and XVMC) dose distributions were compared regarding profiles and isodoses. Then, 35 lung plans originally created for clinical treatment by PB calculation with the Eclipse planning system (Varian Medical Systems, Palo Alto, CA) were recalculated by XVMC (investigational implementation in PrecisePLAN [Elekta AB, Stockholm, Sweden]). Clinically relevant dose-volume parameters for target and lung tissue were compared and analyzed statistically. Results: The XVMC calculation agreed well with film measurements (<1% difference in lateral profile), whereas the deviation between PB calculation and film measurements was up to +15%. On analysis of 35 clinical cases, the mean dose, minimal dose and coverage dose value for 95% volume of gross tumor volume were 1.14 {+-} 1.72 Gy, 1.68 {+-} 1.47 Gy, and 1.24 {+-} 1.04 Gy lower by XVMC compared with PB, respectively (prescription dose, 30 Gy). The volume covered by the 9 Gy isodose of lung was 2.73% {+-} 3.12% higher when calculated by XVMC compared with PB. The largest differences were observed for small lesions circumferentially encompassed by lung tissue. Conclusions: Pencil beam dose calculation overestimates dose to the tumor and underestimates lung volumes exposed to a given dose consistently for 15-MV photons. The degree of difference between XVMC and PB is tumor size and location dependent. Therefore XVMC calculation is helpful to further optimize treatment planning.

  6. Sci—Fri PM: Dosimetry — 03: Delta4 diode absolute dose response for large and small target volume IMRT QA

    SciTech Connect

    Simard, D; Thakur, V

    2014-08-15

    The goal of this project was to quantify the over-response/under-response of the Delta4 diodes for Helical Tomotherapy plans on extreme target volume sizes. A custom Delta4 phantom quarter with a hole to insert an ionisation chamber (IC) close to the center of the phantom have been used to acquire simultaneous IC and diodes absolute dose measurements. Eight plans for different target volumes were created from 20cm to 1cm diameter. Diodes dose measurements in the target were compared with IC measurement, to quantify absolute dose accuracy. IC measurements show a good agreement with planned dose (±2%). Diode measurements demonstrate a good agreement with IC for regular target size of 5 and 10cm (0 to 1%). For larger targets, an over-response is observed for FW 25mm and 10mm (2 to 3%). for small target of 1cm diameter, a major under-response is observed for FW 25mm and 10mm (−8 and −36%). The over-response could to be due to the extra amount of scattered radiation and the opposite for under-response. Although this scatter hypothesis still has to be proven, early testing demonstrates an over-response of 40%/20% of the central diodes compare to IC when an open helical rotational beam is delivered 75mm/25mm away from the center of the phantom. These results are in agreement with the real patient Delta4 DQA results at our center.

  7. Generalized approach for using unbiased symmetric metrics with negative values: normalized mean bias factor and normalized mean absolute error factor

    SciTech Connect

    Gustafson, William I.; Yu, Shaocai

    2012-10-23

    Unbiased symmetric metrics provide a useful measure to quickly compare two datasets, with similar interpretations for both under and overestimations. Two examples include the normalized mean bias factor and normalized mean absolute error factor. However, the original formulations of these metrics are only valid for datasets with positive means. This paper presents a methodology to use and interpret the metrics with datasets that have negative means. The updated formulations give identical results compared to the original formulations for the case of positive means, so researchers are encouraged to use the updated formulations going forward without introducing ambiguity.

  8. Corresponding waist circumference and body mass index values based on 10-year absolute type 2 diabetes risk in an Australian Aboriginal community

    PubMed Central

    Adegbija, Odewumi; Hoy, Wendy E; Wang, Zhiqiang

    2015-01-01

    Objective There is a lack of waist circumference (WC) thresholds to identify Aboriginal individuals at high risk of type 2 diabetes. We generated gender-specific WC values with equivalent 10-year absolute risk of type 2 diabetes as body mass index (BMI) points in an Australian Aboriginal community to contribute to guidelines needed for establishing WC cut-off points for Aboriginals. Research design and methods A cohort of 803 adult participants free from type 2 diabetes in an Aboriginal community was followed up for up to 20 years. We derived WC values with absolute risks equivalent for the development of type 2 diabetes as BMI values (20–35 kg/m2) using the Weibull accelerated failure-time model. Results After a mean follow-up of 15.7 years, 110 participants developed type 2 diabetes. Absolute risk of type 2 diabetes increased as WC increased, ranging from 3.52% (WC=77.5 cm) to 14.14% (WC=119.9 cm) in males, and 5.04% (WC=79.5 cm) to 24.25% (WC=113.7 cm) in females. In males, WC values with same absolute risks of type 2 diabetes as BMI values were 77.5 cm for BMI=20 kg/m2, 91.5 cm for BMI=25 kg/m2 (overweight threshold), 105.7 cm for BMI=30 kg/m2 (obesity threshold) and 119.9 cm for BMI=35 kg/m2. In females, WC values were 79.5 cm for BMI=20 kg/m2, 90.9 cm for BMI=25 kg/m2, 102.3 cm for BMI=30 kg/m2 and 113.7 cm for BMI=35 kg/m2. Interaction between WC and gender was not statistically significant (p=0.53). Conclusions The absolute risk of type 2 diabetes increased with higher WC measured at baseline screening. Males were not significantly different from females in the association between WC and type 2 diabetes. Our findings are useful contributions for future establishment of WC cut-off points for identifying high-risk individuals in Aboriginal people. PMID:26405557

  9. Monte Carlo-based revised values of dose rate constants at discrete photon energies

    PubMed Central

    Selvam, T. Palani; Shrivastava, Vandana; Chourasiya, Ghanashyam; Babu, D. Appala Raju

    2014-01-01

    Absorbed dose rate to water at 0.2 cm and 1 cm due to a point isotropic photon source as a function of photon energy is calculated using the EDKnrc user-code of the EGSnrc Monte Carlo system. This code system utilized widely used XCOM photon cross-section dataset for the calculation of absorbed dose to water. Using the above dose rates, dose rate constants are calculated. Air-kerma strength Sk needed for deriving dose rate constant is based on the mass-energy absorption coefficient compilations of Hubbell and Seltzer published in the year 1995. A comparison of absorbed dose rates in water at the above distances to the published values reflects the differences in photon cross-section dataset in the low-energy region (difference is up to 2% in dose rate values at 1 cm in the energy range 30–50 keV and up to 4% at 0.2 cm at 30 keV). A maximum difference of about 8% is observed in the dose rate value at 0.2 cm at 1.75 MeV when compared to the published value. Sk calculations based on the compilation of Hubbell and Seltzer show a difference of up to 2.5% in the low-energy region (20–50 keV) when compared to the published values. The deviations observed in the values of dose rate and Sk affect the values of dose rate constants up to 3%. PMID:24600166

  10. The warm and cold neutral phase in the local interstellar medium at absolute value of B greater than or equal to 10 deg

    NASA Astrophysics Data System (ADS)

    Poppel, W. G. L.; Marronetti, P.; Benaglia, P.

    1994-07-01

    We made a systematic separation of both the neutral phases using the atlases of 21-cm profiles of Heiles & Habing (1974) and Colomb et al. (1980), complemented with other data. First, we fitted the emission of the warm neutral medium (WNM) by means of a broad Gaussian curve (velocity dispersion sigma approximately 10-14 km/s). We derived maps of the column densities NWH and the radial velocities VW of the WNM. Its overall distribution appears to be very inhomogeneous with a large hole in the range b greater than or equal to +50 deg. However, if the hole is excluded, the mean latitude-profiles admit a rough cosec absolute value of b-fit common to both hemispheres. A kinematical analysis of VW for the range 10 deg less than or equal to absolute value of b less than or equal to 40 deg indicates a mean differential rotation with a small nodal deviation. At absolute value of b greater than 50 deg VW is negative, with larger values and discontinuities in the north. On the mean, sigma increases for absolute value of b decreasing, as is expected from differential rotation. From a statistical study of the peaks of the residual profiles we derived some characteristics of the cold neutral medium (CNM). The latter is generally characterized by a single component of sigma approximately 2-6 km/s. Additionally we derived the sky-distribution of the column densities NCH and the radial velocities VC of the CNM within bins of 1.2 deg sec b x 1 deg in l, b. Furthermore, we focused on the characteristics of Linblad's feature A of cool gas by considering the narrow ridge of local H I, which appears in the b-V contour maps at fixed l (e.g. Schoeber 1976). The ridge appears to be the main component of the CNM. We suggest a scenario for the formulation and evolution of the Gould belt system of stars and gas on the basis of an explosive event within a shingle of cold dense gas tilted to the galactic plane. The scenario appears to be consistent with the results found for both the neutral

  11. A patient-specific quality assurance study on absolute dose verification using ionization chambers of different volumes in RapidArc treatments

    SciTech Connect

    Syam Kumar, S.A.; Sukumar, Prabakar; Sriram, Padmanaban; Rajasekaran, Dhanabalan; Aketi, Srinu; Vivekanandan, Nagarajan

    2012-01-01

    The recalculation of 1 fraction from a patient treatment plan on a phantom and subsequent measurements have become the norms for measurement-based verification, which combines the quality assurance recommendations that deal with the treatment planning system and the beam delivery system. This type of evaluation has prompted attention to measurement equipment and techniques. Ionization chambers are considered the gold standard because of their precision, availability, and relative ease of use. This study evaluates and compares 5 different ionization chambers: phantom combinations for verification in routine patient-specific quality assurance of RapidArc treatments. Fifteen different RapidArc plans conforming to the clinical standards were selected for the study. Verification plans were then created for each treatment plan with different chamber-phantom combinations scanned by computed tomography. This includes Medtec intensity modulated radiation therapy (IMRT) phantom with micro-ionization chamber (0.007 cm{sup 3}) and pinpoint chamber (0.015 cm{sup 3}), PTW-Octavius phantom with semiflex chamber (0.125 cm{sup 3}) and 2D array (0.125 cm{sup 3}), and indigenously made Circular wax phantom with 0.6 cm{sup 3} chamber. The measured isocenter absolute dose was compared with the treatment planning system (TPS) plan. The micro-ionization chamber shows more deviations when compared with semiflex and 0.6 cm{sup 3} with a maximum variation of -4.76%, -1.49%, and 2.23% for micro-ionization, semiflex, and farmer chambers, respectively. The positive variations indicate that the chamber with larger volume overestimates. Farmer chamber shows higher deviation when compared with 0.125 cm{sup 3}. In general the deviation was found to be <1% with the semiflex and farmer chambers. A maximum variation of 2% was observed for the 0.007 cm{sup 3} ionization chamber, except in a few cases. Pinpoint chamber underestimates the calculated isocenter dose by a maximum of 4.8%. Absolute dose

  12. Mapping the microvascular and the associated absolute values of oxy-hemoglobin concentration through turbid media via local off-set diffuse optical imaging

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Klämpfl, Florian; Stelzle, Florian; Schmidt, Michael

    2014-11-01

    An imging resolution of micron-scale has not yet been discovered by diffuse optical imaging (DOI), while a superficial response was eliminated. In this work, we report on a new approach of DOI with a local off-set alignment to subvert the common boundary conditions of the modified Beer-Lambert Law (MBLL). It can resolve a superficial target in micron scale under a turbid media. To validate both major breakthroughs, this system was used to recover a subsurface microvascular mimicking structure under an skin equivalent phantom. This microvascular was included with oxy-hemoglobin solution in variant concentrations to distiguish the absolute values of CtRHb and CtHbO2 . Experimental results confirmed the feasibility of recovering the target vascular of 50 µm in diameter, and graded the values of the concentrations of oxy-hemoglobin from 10 g/L to 50 g/L absolutely. Ultimately, this approach could evolve into a non-invasive imaging system to map the microvascular pattern and the associated oximetry under a human skin in-vivo.

  13. Measurement of the B-->pi l nu branching fraction and determination of absolute value of V(ub) with tagged B mesons.

    PubMed

    Aubert, B; Barate, R; Bona, M; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; del Amo Sanchez, P; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Sherwood, D J; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Petzold, A; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Nash, J A; Nikolich, M B; Panduro Vazquez, W; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Staengle, H; Cowan, R; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; McLachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Raven, G; Snoek, H L; Jessop, C P; Losecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Chauveau, J; Briand, H; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Hartfiel, B L; John, M J J; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Lanceri, L; Vitale, L; Azzolini, V; Martinez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Flood, K T; Hollar, J J; Kutter, P E; Mellado, B; Mihalyi, A; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H

    2006-11-24

    We report a measurement of the B-->pi l nu branching fraction based on 211 fb(-1) of data collected with the BABAR detector. We use samples of B0 and B+ mesons tagged by a second B meson reconstructed in a semileptonic or hadronic decay and combine the results assuming isospin symmetry to obtain B(B(0)-->pi- l+ nu) = (1.33+/-0.17stat+/-0.11syst) x 10(-4). We determine the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element absolute value V(ub) by combining the partial branching fractions measured in ranges of the momentum transfer squared and theoretical calculations of the form factor. Using a recent lattice QCD calculation, we find absolute value V(ub) = (4.5+/-0.5stat+/-0.3syst(+0.7) -0.5FF x 10(-3), where the last error is due to the normalization of the form factor. PMID:17155736

  14. Value of public health and safety actions and radiation dose avoided

    SciTech Connect

    Baum, J.W.

    1994-05-01

    The values judged best to reflect the willingness of society to pay for the avoidance or reduction of risk were deduced from studies of costs of health care, transportation safety, consumer product safety, government agency actions, wage-risk compensation, consumer behavior (market) studies, and willingness-to-pay surveys. The results ranged from $1,400,000 to $2,700,000 per life saved. Applying the mean of these values ($2,100,000) and the latest risk per unit dose coefficients used by the ICRP (1991), which take into account risks to the general public, including genetic effects and nonfatal cancers, yields a value of dose avoided of $750 to $1,500 per person-cSv for public exposures. The lower value applies if adjustments are made for years of life lost per fatality. A nominal value of $1,000 per person-cSv seems appropriate in light of the many uncertainties involved in deducing these values. These values are consistent with values recommended by several European countries for individual doses in the region of 1 mSv/y (100 mrem/y). Below this dose rate, most countries have values a factor of 7 to 10 lower, based on the assumption that society is less concerned with fatality risks below about 10{sup {minus}4}/y.

  15. Staff lens doses in interventional urology. A comparison with interventional radiology, cardiology and vascular surgery values.

    PubMed

    Vano, E; Fernandez, J M; Resel, L E; Moreno, J; Sanchez, R M

    2016-03-01

    The purpose of this work is to evaluate radiation doses to the lens of urologists during interventional procedures and to compare them with values measured during interventional radiology, cardiology and vascular surgery. The measurements were carried out in a surgical theatre using a mobile C-arm system and electronic occupational dosimeters (worn over the lead apron). Patient and staff dose measurements were collected in a sample of 34 urology interventions (nephrolithotomies). The same dosimetry system was used in other medical specialties for comparison purposes. Median and 3rd quartile values for urology procedures were: patient doses 30 and 40 Gy cm(2); personal dose equivalent Hp(10) over the apron (μSv/procedure): 393 and 848 (for urologists); 21 and 39 (for nurses). Median values of over apron dose per procedure for urologists resulted 18.7 times higher than those measured for radiologists and cardiologists working with proper protection (using ceiling suspended screens) in catheterisation laboratories, and 4.2 times higher than the values measured for vascular surgeons at the same hospital. Comparison with passive dosimeters worn near the eyes suggests that dosimeters worn over the apron could be a reasonable conservative estimate for ocular doses for interventional urology. Authors recommend that at least the main surgeon uses protective eyewear during interventional urology procedures. PMID:26583458

  16. Association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury after intensity-modulated radiotherapy in lung cancer: a retrospective analysis.

    PubMed

    Chen, Jinmei; Hong, Jinsheng; Zou, Xi; Lv, Wenlong; Guo, Feibao; Hong, Hualan; Zhang, Weijian

    2015-11-01

    The aim of this study was to investigate the association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury (RILI) after intensity-modulated radiotherapy (IMRT) for lung cancer. The normal lung relative volumes receiving greater than 5, 10, 20 and 30 Gy (V5-30) mean lung dose (MLD), and absolute volumes spared from greater than 5, 10, 20 and 30 Gy (AVS5-30) for the bilateral and ipsilateral lungs of 83 patients were recorded. Any association of clinical factors and dose-volume parameters with Grade ≥2 RILI was analyzed. The median follow-up was 12.3 months; 18 (21.7%) cases of Grade 2 RILI, seven (8.4%) of Grade 3 and two (2.4%) of Grade 4 were observed. Univariate analysis revealed the located lobe of the primary tumor. V5, V10, V20, MLD of the ipsilateral lung, V5, V10, V20, V30 and MLD of the bilateral lung, and AVS5 and AVS10 of the ipsilateral lung were associated with Grade ≥2 RILI (P < 0.05). Multivariate analysis indicated AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI (P = 0.010, OR = 0.272, 95% CI: 0.102-0.729). Receiver operating characteristic curves indicated Grade ≥2 RILI could be predicted using AVS5 of the ipsilateral lung (area under curve, 0.668; cutoff value, 564.9 cm(3); sensitivity, 60.7%; specificity, 70.4%). The incidence of Grade ≥2 RILI was significantly lower with AVS5 of the ipsilateral lung ≥564.9 cm(3) than with AVS5 < 564.9 cm(3) (P = 0.008). Low-dose irradiation relative volumes and MLD of the bilateral or ipsilateral lung were associated with Grade ≥2 RILI, and AVS5 of the ipsilateral lung was prognostic for Grade ≥2 RILI for lung cancer after IMRT. PMID:26454068

  17. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876

  18. Comparison of high energy gamma rays from absolute value of b greater than 30 deg with the galactic neutral hydrogen distribution

    NASA Technical Reports Server (NTRS)

    Ozel, M. E.; Ogelman, H.; Tumer, T.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, F. J.

    1978-01-01

    High-energy gamma-ray (energy above 35 MeV) data from the SAS 2 satellite have been used to compare the intensity distribution of gamma rays with that of neutral hydrogen (H I) density along the line of sight, at high galactic latitudes (absolute values greater than 30 deg). A model has been constructed for the case where the observed gamma-ray intensity has been assumed to be the sum of a galactic component proportional to the H I distribution plus an isotropic extragalactic emission. A chi-squared test of the model parameters indicates that about 30% of the total high-latitude emission may originate within the Galaxy.

  19. A procedure to determine the planar integral spot dose values of proton pencil beam spots

    SciTech Connect

    Anand, Aman; Sahoo, Narayan; Zhu, X. Ronald; Sawakuchi, Gabriel O.; Poenisch, Falk; Amos, Richard A.; Ciangaru, George; Titt, Uwe; Suzuki, Kazumichi; Mohan, Radhe; Gillin, Michael T.

    2012-02-15

    Purpose: Planar integral spot dose (PISD) of proton pencil beam spots (PPBSs) is a required input parameter for beam modeling in some treatment planning systems used in proton therapy clinics. The measurement of PISD by using commercially available large area ionization chambers, like the PTW Bragg peak chamber (BPC), can have large uncertainties due to the size limitation of these chambers. This paper reports the results of our study of a novel method to determine PISD values from the measured lateral dose profiles and peak dose of the PPBS. Methods: The PISDs of 72.5, 89.6, 146.9, 181.1, and 221.8 MeV energy PPBSs were determined by area integration of their planar dose distributions at different depths in water. The lateral relative dose profiles of the PPBSs at selected depths were measured by using small volume ion chambers and were investigated for their angular anisotropies using Kodak XV films. The peak spot dose along the beam's central axis (D{sub 0}) was determined by placing a small volume ion chamber at the center of a broad field created by the superposition of spots at different locations. This method allows eliminating positioning uncertainties and the detector size effect that could occur when measuring it in single PPBS. The PISD was then calculated by integrating the measured lateral relative dose profiles for two different upper limits of integration and then multiplying it with corresponding D{sub 0}. The first limit of integration was set to radius of the BPC, namely 4.08 cm, giving PISD{sub RBPC}. The second limit was set to a value of the radial distance where the profile dose falls below 0.1% of the peak giving the PISD{sub full}. The calculated values of PISD{sub RBPC} obtained from area integration method were compared with the BPC measured values. Long tail dose correction factors (LTDCFs) were determined from the ratio of PISD{sub full}/PISD{sub RBPC} at different depths for PPBSs of different energies. Results: The spot profiles were

  20. Combined prognostic value of absolute lymphocyte/monocyte ratio in peripheral blood and interim PET/CT results in Hodgkin lymphoma.

    PubMed

    Simon, Zsofia; Barna, S; Miltenyi, Z; Husi, K; Magyari, F; Jona, A; Garai, I; Nagy, Z; Ujj, G; Szerafin, L; Illes, A

    2016-01-01

    Decreased absolute lymphocyte/monocyte ratio (LMR) in peripheral blood has been reported as an unfavorable prognostic marker in Hodgkin lymphoma. We aimed to investigate whether combining LMR and interim PET/CT scan result (PET2) confers stronger prognostic value than PET2 alone. 121 HL patients were investigated. LMR was calculated from a blood sample taken at the time of diagnosis. PET2 was carried out after the second chemotherapy cycle. Survival was calculated using the Kaplan-Meier method and significance was determined by log-rank test. Effect of variants on survival results was examined using univariate and multivariate analyses. Best LMR cut-off value was determined by receiver operating characteristic (ROC) curve. Best LMR cut-off value was 2.11 in the case of our patients (LMR > 2.11: favorable, LMR ≤ 2.11: unfavorable). Overall and progression-free survivals (OS/PFS) were significantly worse both in lower LMR (≤ 2.11) (OS: P = 0.041, PFS: P = 0.044) and PET2 positive groups (OS: P < 0.001, PFS: P < 0.001). In PET2 positive patient group (n = 32) the low LMR result meant a significantly worse OS (0.030) and PFS (0.001). Both LMR and PET2 proved to be independent prognostic factors on multivariate analysis, and strengthened each other's effect. PMID:26462809

  1. Absolute Zero

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.

    2006-12-01

    Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.

  2. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  3. Direction distributions of neutrons and reference values of the personal dose equivalent in workplace fields.

    PubMed

    Luszik-Bhadra, M; Bolognese-Milsztajn, T; Boschung, M; Coeck, M; Curzio, G; d'Errico, F; Fiechtner, A; Lacoste, V; Lindborg, L; Reginatto, M; Schuhmacher, H; Tanner, R; Vanhavere, F

    2007-01-01

    Within the EC project EVIDOS, double-differential (energy and direction) fluence spectra were determined by means of novel direction spectrometers. By folding the spectra with fluence-to-dose equivalent conversion coefficients, contributions to H*(10) for 14 directions, and values of the personal dose equivalent Hp(10) and the effective dose E for 6 directions of a person's orientation in the field were determined. The results of the measurements and calculations obtained within the EVIDOS project in workplace fields in nuclear installations in Europe, i.e., at Krümmel (boiling water reactor and transport cask), at Mol (Venus research reactor and fuel facility Belgonucléaire) and at Ringhals (pressurised reactor and transport cask) are presented. PMID:17369265

  4. A full-dimensional model of ozone forming reaction: the absolute value of the recombination rate coefficient, its pressure and temperature dependencies.

    PubMed

    Teplukhin, Alexander; Babikov, Dmitri

    2016-07-28

    Rigorous calculations of scattering resonances in ozone are carried out for a broad range of rotational excitations. The accurate potential energy surface of Dawes is adopted, and a new efficient method for calculations of ro-vibrational energies, wave functions and resonance lifetimes is employed (which uses hyper-spherical coordinates, the sequential diagonalization/truncation approach, grid optimization and complex absorbing potential). A detailed analysis is carried out to characterize distributions of resonance energies and lifetimes, their rotational/vibrational content and their positions with respect to the centrifugal barrier. Emphasis is on the contribution of these resonances to the recombination process that forms ozone. It is found that major contributions come from localized resonances at energies near the top of the barrier. Delocalized resonances at higher energies should also be taken into account, while very narrow resonances at low energies (trapped far behind the centrifugal barrier) should be treated as bound states. The absolute value of the recombination rate coefficient, its pressure and temperature dependencies are obtained using the energy-transfer model developed in the earlier work. Good agreement with experimental data is obtained if one follows the suggestion of Troe, who argued that the energy transfer mechanism of recombination is responsible only for 55% of the recombination rate (with the remaining 45% coming from the competing chaperon mechanism). PMID:27364351

  5. Biologically effective dose values for prostate brachytherapy: Effects on PSA failure and posttreatment biopsy results

    SciTech Connect

    Stock, Richard G. . E-mail: richard.stock@msnyuhealth.org; Stone, Nelson N.; Cesaretti, Jamie A.; Rosenstein, Barry S.

    2006-02-01

    Purpose: To analyze the effect of biologically effective dose (BED) values on prostate-specific antigen (PSA) failure and posttreatment biopsy. Methods and Materials: From 1990 to 2003, 1,377 patients had prostate brachytherapy alone (I-125 or Pd-103) (571), hormonal and brachytherapy (371), and trimodality therapy (hormonal, implant, and external beam) (435). Dose was defined as the D90 (dose delivered to 90% of the gland from the dose-volume histogram). Results: Freedom from PSA failure (FFPF) at 10 years was 87%. The 10-year FFPF for BED <100, >100-120, >120-140, >140-160, <160-180, >180-200, and >200 were 46%, 68%, 81%, 85.5%, 90%, 90%, and 92%, respectively (p < 0.0001). BED and Gleason score had the greatest effect, with p values of p < 0.0001 in multivariate analysis. Posttreatment positive biopsy rate was 7% (31/446). The positive biopsy rates for BED {<=}100, >100-120, >120-140, >140-160, >160-180, >180-200, and >200 were 24% (8/33), 15% (3/20), 6% (2/33), 6% (3/52), 7% (6/82), 1% (1/72), and 3% (4/131), respectively (p < 0.0001). BED was the most significant predictor of biopsy outcome in multivariate analysis (p = 0.006). Conclusions: Biologically effective dose equations provide a method of comparing different isotopes and combined therapies in the brachytherapy management of prostate cancer. The effects of BED on FFPF and posttreatment biopsy demonstrate a strong dose-response relationship.

  6. Evaluation of Activity Concentration Values and Doses due to the Transport of Low Level Radioactive Material

    SciTech Connect

    Rawl, Richard R; Scofield, Patricia A; Leggett, Richard Wayne; Eckerman, Keith F

    2010-04-01

    The International Atomic Energy Agency (IAEA) initiated an international Coordinated Research Project (CRP) to evaluate the safety of transport of naturally occurring radioactive material (NORM). This report presents the United States contribution to that IAEA research program. The focus of this report is on the analysis of the potential doses resulting from the transport of low level radioactive material. Specific areas of research included: (1) an examination of the technical approach used in the derivation of exempt activity concentration values and a comparison of the doses associated with the transport of materials included or not included in the provisions of Paragraph 107(e) of the IAEA Safety Standards, Regulations for the Safe Transport of Radioactive Material, Safety Requirements No. TS-R-1; (2) determination of the doses resulting from different treatment of progeny for exempt values versus the A{sub 1}/A{sub 2} values; and (3) evaluation of the dose justifications for the provisions applicable to exempt materials and low specific activity materials (LSA-I). It was found that the 'previous or intended use' (PIU) provision in Paragraph 107(e) is not risk informed since doses to the most highly exposed persons (e.g., truck drivers) are comparable regardless of intended use of the transported material. The PIU clause can also have important economic implications for co-mined ores and products that are not intended for the fuel cycle but that have uranium extracted as part of their industrial processing. In examination of the footnotes in Table 2 of TS-R-1, which identifies the progeny included in the exempt or A1/A2 values, there is no explanation of how the progeny were selected. It is recommended that the progeny for both the exemption and A{sub 1}/A{sub 2} values should be similar regardless of application, and that the same physical information should be used in deriving the limits. Based on the evaluation of doses due to the transport of low-level NORM

  7. Comparison of internal dose estimates obtained using organ-level, voxel S value, and Monte Carlo techniques

    SciTech Connect

    Grimes, Joshua; Celler, Anna

    2014-09-15

    Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming the same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume (D90

  8. Area dose rate values derived from NaI or LaBr3 spectra.

    PubMed

    Dombrowski, H

    2014-08-01

    More and more spectrometric systems are being installed in environmental radiation monitoring stations instead of or in addition to dosimetric detectors, because novel spectrometric systems have been developed which do not need any cooling and because the necessary electronics, especially digital multichannel analysers, have become more manageable and more affordable. The advantage of obtaining information about nuclide vectors can justify the operation of a more complex spectroscopic measuring system, but if spectrometers are also used for dose rate measurements in the natural environment, ambient dose equivalent rate values have to be calculated from measured spectra. Different approaches to achieve this goal will be presented in this article. Some practical recommendations will also be presented to avoid known errors. PMID:24478307

  9. Fine-Resolution Voxel S Values for Constructing Absorbed Dose Distributions at Variable Voxel Size

    PubMed Central

    Dieudonné, Arnaud; Hobbs, Robert F.; Bolch, Wesley E.; Sgouros, George; Gardin, Isabelle

    2010-01-01

    This article presents a revised voxel S values (VSVs) approach for dosimetry in targeted radiotherapy, allowing dose calculation for any voxel size and shape of a given SPECT or PET dataset. This approach represents an update to the methodology presented in MIRD pamphlet no. 17. Methods VSVs were generated in soft tissue with a fine spatial sampling using the Monte Carlo (MC) code MCNPX for particle emissions of 9 radionuclides: 18F, 90Y, 99mTc, 111In, 123I, 131I, 177Lu, 186Re, and 201Tl. A specific resampling algorithm was developed to compute VSVs for desired voxel dimensions. The dose calculation was performed by convolution via a fast Hartley transform. The fine VSVs were calculated for cubic voxels of 0.5 mm for electrons and 1.0 mm for photons. Validation studies were done for 90Y and 131I VSV sets by comparing the revised VSV approach to direct MC simulations. The first comparison included 20 spheres with different voxel sizes (3.8–7.7 mm) and radii (4–64 voxels) and the second comparison a hepatic tumor with cubic voxels of 3.8 mm. MC simulations were done with MCNPX for both. The third comparison was performed on 2 clinical patients with the 3D-RD (3-Dimensional Radiobiologic Dosimetry) software using the EGSnrc (Electron Gamma Shower National Research Council Canada)-based MC implementation, assuming a homogeneous tissue-density distribution. Results For the sphere model study, the mean relative difference in the average absorbed dose was 0.20% ± 0.41% for 90Y and −0.36% ± 0.51% for 131I (n = 20). For the hepatic tumor, the difference in the average absorbed dose to tumor was 0.33% for 90Y and −0.61% for 131I and the difference in average absorbed dose to the liver was 0.25% for 90Y and −1.35% for 131I. The comparison with the 3D-RD software showed an average voxel-to-voxel dose ratio between 0.991 and 0.996. The calculation time was below 10 s with the VSV approach and 50 and 15 h with 3D-RD for the 2 clinical patients. Conclusion This new

  10. Comparison of doses to the rectum derived from treatment planning system with in-vivo dose values in vaginal vault brachytherapy using cylinder applicators

    PubMed Central

    Obed, Rachel Ibhade; Akinlade, Bidemi Idayat; Ntekim, Atara

    2015-01-01

    Purpose In-vivo measurements to determine doses to organs-at-risk can be an essential part of brachytherapy quality assurance (QA). This study compares calculated doses to the rectum with measured dose values as a means of QA in vaginal vault brachytherapy using cylinder applicators. Material and methods At the Department of Radiotherapy, University College Hospital (UCH), Ibadan, Nigeria, intracavitary brachytherapy (ICBT) was delivered by a GyneSource high-dose-rate (HDR) unit with 60Co. Standard 2D treatment plans were created with HDR basic 2.6 software for prescription doses 5-7 Gy at points 5 mm away from the posterior surface of vaginal cylinder applicators (20, 25, and 30 mm diameters). The LiF:Mg, Ti thermoluminescent dosimeter rods (1 x 6 mm) were irradiated to a dose of 7 Gy on Theratron 60Co machine for calibration purpose prior to clinical use. Measurements in each of 34 insertions involving fourteen patients were performed with 5 TLD-100 rods placed along a re-usable rectal marker positioned in the rectum. The dosimeters were read in Harshaw 3500 TLD reader and compared with doses derived from the treatment planning system (TPS) at 1 cm away from the dose prescription points. Results The mean calculated and measured doses ranged from 2.1-3.8 Gy and 1.2-5.6 Gy with averages of 3.0 ± 0.5 Gy and 3.1 ± 1.1 Gy, respectively, for treatment lengths 2-8 cm along the cylinder-applicators. The mean values correspond to 48.9% and 50.8% of the prescribed doses, respectively. The deviations of the mean in-vivo doses from the TPS values ranged from –1.9 to 2.1 Gy with a p-value of 0.427. Conclusions This study was part of efforts to verify rectal dose obtained from the TPS during vaginal vault brachytherapy. There was no significant difference in the dose to the rectum from the two methods of measurements. PMID:26816506

  11. Occupational ingestion of P-32: the value of monitoring techniques to determine dose. A case report.

    PubMed

    McCunney, R J; Masse, F; Galanek, M

    1999-10-01

    The purpose of this article is to described the analytical methods used to assess the internal dose from a P-32-labeled compound that was inadvertently ingested. Bioassay data, using the International Commission on Radiation Protection (ICRP)-30 model, enabled the calculation of internal dose. Whole body counting (WBC) and urinary measurement with liquid scintillation counting were utilized to estimate the amount of radioactive material deposited in body organs. This metabolic model assumes that 80% of the material ingested is absorbed through the gastrointestinal tract because P-32 is soluble. The time of the intake, a critical variable in this method, was estimated on the basis of urine contamination of clothing. Twenty-four-hour urine sampling over a 6-week period, coupled with daily WBC over the same period, was performed. Because P-32 does not emit photons, WBC relied on measuring the bremsstrahlung radiation produced as a result of interaction of beta radiation with the body's tissues. A P-32-spiked phantom was used as a control. Over the 6-week monitoring period, urinary results indicated an ingestion of 560 microCi of P-32, whereas WBC estimated on intake of 580 microCi. An assessment of the laboratory where the accident occurred indicated that approximately 600 microCi of radioactive phosphorous was missing. The total effective dose equivalent was estimated at 4.8 rem (48 mSv). On the basis of this study, the ICRP model appears to fit the data obtained from urine measurements and WBC. No symptoms were noted from the ingestion of 580 microCi. The committed organ doses were well within the occupational nonstochastic limits of 50 (0.5 Sv) permitted by the Nuclear Regulatory Commission. These results were confirmed by NUREG/CR-4884 and commercial software (CINDY). This report confirms the value of using the ICRP-30 model with urinary measurements and WBC to estimate the dose received as a result of ingestion of radioactive P-32. PMID:10529943

  12. Analysis of RapidArc optimization strategies using objective function values and dose-volume histograms.

    PubMed

    Oliver, Michael; Gagne, Isabelle; Popescu, Carmen; Ansbacher, Will; Beckham, Wayne A

    2010-01-01

    RapidArc is a novel treatment planning and delivery system that has recently been made available for clinical use. Included within the Eclipse treatment planning system are a number of different optimization strategies that can be employed to improve the quality of the final treatment plan. The purpose of this study is to systematically assess three categories of strategies for four phantoms, and then apply proven strategies to clinical head and neck cases. Four phantoms were created within Eclipse with varying shapes and locations for the planning target volumes and organs at risk. A baseline optimization consisting of a single 359.8 degrees arc with collimator at 45 degrees was applied to all phantoms. Three categories of strategies were assessed and compared to the baseline strategy. They include changing the initialization parameters, increasing the total number of control points, and increasing the total optimization time. Optimization log files were extracted from the treatment planning system along with final dose-volume histograms for plan assessment. Treatment plans were also generated for four head and neck patients to determine whether the results for phantom plans can be extended to clinical plans. The strategies that resulted in a significant difference from baseline were: changing the maximum leaf speed prior to optimization ( p < 0.05), increasing the total number of segments by adding an arc ( p < 0.05), and increasing the total optimization time by either continuing the optimization ( p < 0.01) or adding time to the optimization by pausing the optimization ( p < 0.01). The reductions in objective function values correlated with improvements in the dose-volume histogram (DVH). The addition of arcs and pausing strategies were applied to head and neck cancer cases, which demonstrated similar benefits with respect to the final objective function value and DVH. Analysis of the optimization log files is a useful way to intercompare treatment plans that

  13. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams

    NASA Astrophysics Data System (ADS)

    Pinto, M.; Pimpinella, M.; Quini, M.; D'Arienzo, M.; Astefanoaei, I.; Loreti, S.; Guerra, A. S.

    2016-02-01

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm-2, and at a dose rate of about 0.15 Gy min-1, results of calorimetric measurements of absorbed dose to water, D w, were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D w and D wK were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D w uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D w, it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

  14. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

    PubMed

    Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

    2016-02-21

    The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams. PMID:26841127

  15. Determination of absolute value of quantum efficiency of radiation in high quality GaN single crystals using an integrating sphere

    NASA Astrophysics Data System (ADS)

    Kojima, Kazunobu; Ohtomo, Tomomi; Ikemura, Ken-ichiro; Yamazaki, Yoshiki; Saito, Makoto; Ikeda, Hirotaka; Fujito, Kenji; Chichibu, Shigefusa F.

    2016-07-01

    Omnidirectional photoluminescence (ODPL) measurement using an integrating sphere was carried out to absolutely quantify the quantum efficiency of radiation ( η) in high quality GaN single crystals. The total numbers of photons belonging to photoluminescence (PL photons) and photons belonging to an excitation source (excitation photons) were simultaneously counted in the measurement, and η was defined as a ratio of the number of PL photons to the number of absorbed excitation photons. The ODPL spectra near the band edge commonly showed a two-peak structure, which originates from the sharp absorption edge of GaN. A methodology for quantifying internal quantum efficiency ( ηint ) from such experimentally obtained η is derived. A record high ηint of typically 15% is obtained for a freestanding GaN crystal grown by hydride vapor phase epitaxy on a GaN seed crystal synthesized by the ammonothermal method using an acidic mineralizer, when the excitation photon energy and power density were 3.81 eV and 60 W/cm2, respectively.

  16. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  17. Local patient dose diagnostic reference levels in pediatric interventional cardiology in Chile using age bands and patient weight values

    SciTech Connect

    Ubeda, Carlos; Miranda, Patricia; Vano, Eliseo

    2015-02-15

    Purpose: To present the results of a patient dose evaluation program in pediatric cardiology and propose local diagnostic reference levels (DRLs) for different types of procedure and age range, in addition to suggesting approaches to correlate patient dose values with patient weight. This study was the first conducted in Latin America for pediatric interventional cardiology under the auspices of the International Atomic Energy Agency. Methods: Over three years, the following data regarding demographic and patient dose values were collected: age, gender, weight, height, number of cine series, total number of cine frames, fluoroscopy time (FT), and two dosimetric quantities, dose-area product (DAP) and cumulative dose (CD), at the patient entrance reference point. The third quartile values for FT, DAP, CD, number of cine series, and the DAP/body weight ratio were proposed as the set of quantities to use as local DRLs. Results: Five hundred and seventeen patients were divided into four age groups. Sample sizes by age group were 120 for <1 yr; 213 for 1 to <5 yr; 82 for 5 to <10 yr; and 102 for 10 to <16 yr. The third quartile values obtained for DAP by diagnostic and therapeutic procedures and age range were 1.17 and 1.11 Gy cm{sup 2} for <1 yr; 1.74 and 1.90 Gy cm{sup 2} for 1 to <5 yr; 2.83 and 3.22 Gy cm{sup 2} for 5 to <10 yr; and 7.34 and 8.68 Gy cm{sup 2} for 10 to <16 yr, respectively. The third quartile value obtained for the DAP/body weight ratio for the full sample of procedures was 0.17 (Gy cm{sup 2}/kg) for diagnostic and therapeutic procedures. Conclusions: The data presented in this paper are an initial attempt at establishing local DRLs in pediatric interventional cardiology, from a large sample of procedures for the standard age bands used in Europe, complemented with the values of the ratio between DAP and patient weight. This permits a rough estimate of DRLs for different patient weights and the refining of these values for the age bands when there

  18. A large-scale multicentre study in Belgium of dose area product values and effective doses in interventional cardiology using contemporary X-ray equipment.

    PubMed

    Bogaert, E; Bacher, K; Thierens, H

    2008-01-01

    In this paper, a large-scale multicentre patient dose study performed in eight Belgian interventional cardiology departments is presented. Effective dose (E) was calculated based on a detailed dose-area product (DAP)-registration during each procedure and by using conversion coefficients generated by the Monte Carlo-based computer program PCXMC. Conversion coefficients were found to be 0.177 mSv Gycm(-2) for systems that do not use any additional copper filtration in cineradiography and 0.207 mSv Gycm(-2) for systems that use additional copper filtration in cineradiography. Mean E values of 9.6 and 15.3 mSv for diagnostic and therapeutic procedures, respectively, were obtained. DAP distributions were investigated in order to derive dose reference levels: 71 and 106 Gycm2 for diagnostic and therapeutic procedures, respectively, are proposed. Significant differences were observed in DAP distributions taking into account whether additional copper filtration was used in the cineradiography mode. Apart from the skin, the organs most at risk are lungs and heart. The probability of fatal cancer for the studied population amounted to 1.1x10(-4) and 2.1x10(-4) for diagnostic and therapeutic procedures, respectively, for the age distribution of the patients considered in this multicentre study. PMID:17681964

  19. Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter

    NASA Astrophysics Data System (ADS)

    Szczapa, Tomasz; Karpiński, Łukasz; Moczko, Jerzy; Weindling, Michael; Kornacka, Alicja; Wróblewska, Katarzyna; Adamczak, Aleksandra; Jopek, Aleksandra; Chojnacka, Karolina; Gadzinowski, Janusz

    2013-08-01

    The aim of this study is to compare a two-wavelength light emitting diode-based tissue oximeter (INVOS), which is designed to show trends in tissue oxygenation, with a four-wavelength laser-based oximeter (FORE-SIGHT), designed to deliver absolute values of tissue oxygenation. Simultaneous values of cerebral tissue oxygenation (StO2) are measured using both devices in 15 term and 15 preterm clinically stable newborns on the first and third day of life. Values are recorded simultaneously in two periods between which oximeter sensor positions are switched to the contralateral side. Agreement between StO2 values before and after the change of sensor position is analyzed. We find that mean cerebral StO2 values are similar between devices for term and preterm babies, but INVOS shows StO2 values spread over a wider range, with wider standard deviations than shown by the FORE-SIGHT. There is relatively good agreement with a bias up to 3.5% and limits of agreement up to 11.8%. Measurements from each side of the forehead show better repeatability for the FORE-SIGHT monitor. We conclude that performance of the two devices is probably acceptable for clinical purposes. Both performed sufficiently well, but the use of FORE-SIGHT may be associated with tighter range and better repeatability of data.

  20. Discovery of Cepheids in NGC 5253: Absolute peak brightness of SN Ia 1895B and SN Ia 1972E and the value of H(sub 0)

    NASA Technical Reports Server (NTRS)

    Saha, A.; Sandage, Allan; Labhardt, Lukas; Schwengeler, Hans; Tammann, G. A.; Panagia, N.; Macchetto, F. D.

    1995-01-01

    Observations of the Hubble Space Telescope (HST) between 1993 May 31 and 1993 July 19 in 20 epochs in the F555W passband and five epochs in the F785LP passband have led to the discovery of 14 Cepheids in the Amorphous galaxy NGC 5253. The apparent V distance modulus is (m-M)(sub AV) = 28.08 +/- 0.10 determined from the 12 Cepheids with normal amplitudes. The distance modulus using the F785LP data is consistent with the V value to within the errors. Five methods used to determine the internal reddening are consistent with zero differential reddening, accurate to a level of E(B-V) less than 0.05 mag, over the region occupied by Cepheids and the two supernovae (SNe) produced by NGC 5253. The apparent magnitudes at maximum for the two SNe in NGC 5253 are adopted as B(sub max) = 8.33 +/- 0.2 mag for SN 1895B, and B(sub max) = 8.56 +/- 0.1 and V(sub max) = 8.60 +/- 0.1 for SN 1972E which is a prototype SN of Type Ia. The apparent magnitude system used by Walker (1923) for SN 1859B has been corrected to the modern B scale and zero point to determine its adopted B(sub max) value.

  1. Value of increasing film processing time to reduce radiation dose during mammography

    SciTech Connect

    Skubic, S.E.; Yagan, R.; Oravec, D.; Shah, Z. )

    1990-12-01

    We systematically tested the effects on radiation dose and image quality of increasing the mammographic film processing time from the standard 90 sec to 3 min. Hurter and Driffield curves were obtained for a Kodak Min-R-OM1-SO177 screen-film combination processed with Kodak chemistry. Image contrast and radiation dose were measured for two tissue-equivalent breast phantoms. We also compared sequential pairs of mammograms, one processed at 90 sec and one at 3 min, from 44 patients on the basis of nine categories of image quality. Increased processing time reduced breast radiation dose by 30%, increased contrast by 11%, and produced slight overall gains in image quality. Simple modifications can convert a 90-sec processor to a 3-min unit. We recommend that implementation of extended processing be considered, especially by those centers that obtain a large number of screening mammograms. Three-minute film processing can reduce breast radiation dose by 30% and increase contrast by 11% without compromising image quality.

  2. Direct Dose Consequences Due to DOE-STD-1027 Threshold Values

    SciTech Connect

    Hochhalter, E Eugene; Durante, Richard Paul; Walker, Jonathon Bill

    2001-06-01

    The purpose of this paper is to discuss the potential direct dose consequences to facility workers and/or co-located workers from a Hazard Category 2 or 3 nuclear facility or a less than Hazard Category 3 radiological inventory. At the Idaho National Engineering and Environmental Laboratory (INEEL), the safety analysis for several Hazard Category 3 nuclear facilities had to be revisited and the direct dose consequences associated with the facility radiological inventory had to be analyzed and incorporated into the safety analysis. This additional safety analysis was required because it was assumed that for a nuclear facility operating with radiological inventories between the Hazard Category 3 threshold quantities as a lower bounds and less the Hazard Category 2 threshold quantities as an upper bounds, the risk to the facility worker and/or co-located worker was within the INEEL Evaluation Guidelines for radiological exposures.

  3. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  4. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  5. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  6. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  7. The X/Q values unit doses for spent nuclear fuel projects

    SciTech Connect

    Huang, C.H.

    1997-05-14

    The purpose of this document is to provide a single referenceable document that provides the X/Qs for all the facilities in the spent nuclear fuel projects, and includes the bases for the X/Q calculations. The X/Q values for the nuclear fuel projects were calculated over the past several years. The values currently used in the nuclear fuel project were documented in letter reports and as attached to various PSEs and Safety Analysis documents. Therefore, there is a need to consolidate these documents or reports into a single referenceable document. The final document includes the X/Qs for KE and KW Basins, the cold vacuum drying facility, and the canister storage building.

  8. Dose point kernel for boron-11 decay and the cellular S values in boron neutron capture therapy

    SciTech Connect

    Ma Yunzhi; Geng Jinpeng; Gao Song; Bao Shanglian

    2006-12-15

    The study of the radiobiology of boron neutron capture therapy is based on the cellular level dosimetry of boron-10's thermal neutron capture reaction {sup 10}B(n,{alpha}){sup 7}Li, in which one 1.47 MeV helium-4 ion and one 0.84 MeV lithium-7 ion are spawned. Because of the chemical preference of boron-10 carrier molecules, the dose is heterogeneously distributed in cells. In the present work, the (scaled) dose point kernel of boron-11 decay, called {sup 11}B-DPK, was calculated by GEANT4 Monte Carlo simulation code. The DPK curve drops suddenly at the radius of 4.26 {mu}m, the continuous slowing down approximation (CSDA) range of a lithium-7 ion. Then, after a slight ascending, the curve decreases to near zero when the radius goes beyond 8.20 {mu}m, which is the CSDA range of a 1.47 MeV helium-4 ion. With the DPK data, S values for nuclei and cells with the boron-10 on the cell surface are calculated for different combinations of cell and nucleus sizes. The S value for a cell radius of 10 {mu}m and a nucleus radius of 5 {mu}m is slightly larger than the value published by Tung et al. [Appl. Radiat. Isot. 61, 739-743 (2004)]. This result is potentially more accurate than the published value since it includes the contribution of a lithium-7 ion as well as the alpha particle.

  9. A multi-centennial time series of well-constrained ΔR values for the Irish Sea derived using absolutely-dated shell samples from the mollusc Arctica islandica

    NASA Astrophysics Data System (ADS)

    Butler, P. G.; Scourse, J. D.; Richardson, C. A.; Wanamaker, A. D., Jr.

    2009-04-01

    Determinations of the local correction (ΔR) to the globally averaged marine radiocarbon reservoir age are often isolated in space and time, derived from heterogeneous sources and constrained by significant uncertainties. Although time series of ΔR at single sites can be obtained from sediment cores, these are subject to multiple uncertainties related to sedimentation rates, bioturbation and interspecific variations in the source of radiocarbon in the analysed samples. Coral records provide better resolution, but these are available only for tropical locations. It is shown here that it is possible to use the shell of the long-lived bivalve mollusc Arctica islandica as a source of high resolution time series of absolutely-dated marine radiocarbon determinations for the shelf seas surrounding the North Atlantic ocean. Annual growth increments in the shell can be crossdated and chronologies can be constructed in a precise analogue with the use of tree-rings. Because the calendar dates of the samples are known, ΔR can be determined with high precision and accuracy and because all the samples are from the same species, the time series of ΔR values possesses a high degree of internal consistency. Presented here is a multi-centennial (AD 1593 - AD 1933) time series of 31 ΔR values for a site in the Irish Sea close to the Isle of Man. The mean value of ΔR (-62 14C yrs) does not change significantly during this period but increased variability is apparent before AD 1750.

  10. Relationship of glucose values to sliding scale insulin (correctional insulin) dose delivery and meal time in acute care patients with diabetes mellitus.

    PubMed

    Trotter, Barbara; Conaway, Mark R; Burns, Suzanne M

    2013-01-01

    Findings of this study suggest the traditional sliding scale insulin (SSI) method does not improve target glucose values among adult medical inpatients. Timing of blood glucose (BC) measurement does affect the required SSI dose. BC measurement and insulin dose administration should be accomplished immediately prior to mealtime. PMID:23802496

  11. The absolute path command

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  12. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  13. Absolute Measurements of Radiation Damage in Nanometer Thick Films

    PubMed Central

    Alizadeh, Elahe; Sanche, Léon

    2013-01-01

    We address the problem of absolute measurements of radiation damage in films of nanometer thicknesses. Thin films of DNA (~ 2–160nm) are deposited onto glass substrates and irradiated with varying doses of 1.5 keV X-rays under dry N2 at atmospheric pressure and room temperature. For each different thickness, the damage is assessed by measuring the loss of the supercoiled configuration as a function of incident photon fluence. From the exposure curves, the G-values are deduced, assuming that X-ray photons interacting with DNA, deposit all of their energy in the film. The results show that the G-value (i.e., damage per unit of deposited energy) increases with film thickness and reaches a plateau at 30±5 nm. This thickness dependence provides a correction factor to estimate the actual G-value for films with thicknesses below 30nm thickness. Thus, the absolute values of damage can be compared with that of films of any thickness under different experimental conditions. PMID:22562941

  14. The F value for chromosome aberrations in atomic bomb survivors does not provide evidence for a primary contribution of neutrons to the dose in Hiroshima.

    PubMed

    Kodama, Y; Ohtaki, K; Awa, A A; Nakano, M; Itoh, M; Nakamura, N

    1999-11-01

    Brenner and Sachs (Radiat. Res. 140, 134-142, 1994) proposed that the ratio of interchromosomal to intrachromosomal exchanges, termed the F value, can be a cytogenetic fingerprint of exposure to radiations of different linear energy transfer (LET). Using published data, they suggested that F values are over 10 for low-LET radiations and approximately 6 for high-LET radiations. Subsequently, as F values for atomic bomb survivors were reported to be around 6, Brenner suggested that the biological effects of atomic bomb radiation in Hiroshima are due primarily to neutrons. However, the F values used for the survivors were means from individuals exposed to various doses. As the F-value hypothesis predicts a radiation fingerprint at low doses, we analyzed our own data for the survivors in relation to dose. G-banding data for the survivors showed F values varying from 5 to 8 at DS86 doses of 0.2 to 5 Gy in Hiroshima and around 6 in Nagasaki with no evidence of a difference between the two cities. The results are consistent with our in vitro data that the F values are invariably around 6 for X and gamma rays at doses of 0.5 to 2 Gy as well as two types of fission-spectrum neutrons at doses of about 0.2 to 1 Gy. Thus, apart from a possible effect at even lower doses, current data do not provide evidence to support the proposition that the biological effects of atomic bomb radiation in Hiroshima are caused mainly by neutrons. PMID:10521934

  15. Absolute oral bioavailability of ciprofloxacin.

    PubMed

    Drusano, G L; Standiford, H C; Plaisance, K; Forrest, A; Leslie, J; Caldwell, J

    1986-09-01

    We evaluated the absolute bioavailability of ciprofloxacin, a new quinoline carboxylic acid, in 12 healthy male volunteers. Doses of 200 mg were given to each of the volunteers in a randomized, crossover manner 1 week apart orally and as a 10-min intravenous infusion. Half-lives (mean +/- standard deviation) for the intravenous and oral administration arms were 4.2 +/- 0.77 and 4.11 +/- 0.74 h, respectively. The serum clearance rate averaged 28.5 +/- 4.7 liters/h per 1.73 m2 for the intravenous administration arm. The renal clearance rate accounted for approximately 60% of the corresponding serum clearance rate and was 16.9 +/- 3.0 liters/h per 1.73 m2 for the intravenous arm and 17.0 +/- 2.86 liters/h per 1.73 m2 for the oral administration arm. Absorption was rapid, with peak concentrations in serum occurring at 0.71 +/- 0.15 h. Bioavailability, defined as the ratio of the area under the curve from 0 h to infinity for the oral to the intravenous dose, was 69 +/- 7%. We conclude that ciprofloxacin is rapidly absorbed and reliably bioavailable in these healthy volunteers. Further studies with ciprofloxacin should be undertaken in target patient populations under actual clinical circumstances. PMID:3777908

  16. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  17. Absolute and relative dosimetry for ELIMED

    SciTech Connect

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F.; Carpinelli, M.; Presti, D. Lo; Raffaele, L.; Tramontana, A.; Cirio, R.; Sacchi, R.; Monaco, V.; Marchetto, F.; Giordanengo, S.

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  18. ABSOLUTE POLARIMETRY AT RHIC.

    SciTech Connect

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  19. Patient radiation doses in interventional cardiology in the U.S.: Advisory data sets and possible initial values for U.S. reference levels

    SciTech Connect

    Miller, Donald L.; Hilohi, C. Michael; Spelic, David C.

    2012-10-15

    Purpose: To determine patient radiation doses from interventional cardiology procedures in the U.S and to suggest possible initial values for U.S. benchmarks for patient radiation dose from selected interventional cardiology procedures [fluoroscopically guided diagnostic cardiac catheterization and percutaneous coronary intervention (PCI)]. Methods: Patient radiation dose metrics were derived from analysis of data from the 2008 to 2009 Nationwide Evaluation of X-ray Trends (NEXT) survey of cardiac catheterization. This analysis used deidentified data and did not require review by an IRB. Data from 171 facilities in 30 states were analyzed. The distributions (percentiles) of radiation dose metrics were determined for diagnostic cardiac catheterizations, PCI, and combined diagnostic and PCI procedures. Confidence intervals for these dose distributions were determined using bootstrap resampling. Results: Percentile distributions (advisory data sets) and possible preliminary U.S. reference levels (based on the 75th percentile of the dose distributions) are provided for cumulative air kerma at the reference point (K{sub a,r}), cumulative air kerma-area product (P{sub KA}), fluoroscopy time, and number of cine runs. Dose distributions are sufficiently detailed to permit dose audits as described in National Council on Radiation Protection and Measurements Report No. 168. Fluoroscopy times are consistent with those observed in European studies, but P{sub KA} is higher in the U.S. Conclusions: Sufficient data exist to suggest possible initial benchmarks for patient radiation dose for certain interventional cardiology procedures in the U.S. Our data suggest that patient radiation dose in these procedures is not optimized in U.S. practice.

  20. Implants as absolute anchorage.

    PubMed

    Rungcharassaeng, Kitichai; Kan, Joseph Y K; Caruso, Joseph M

    2005-11-01

    Anchorage control is essential for successful orthodontic treatment. Each tooth has its own anchorage potential as well as propensity to move when force is applied. When teeth are used as anchorage, the untoward movements of the anchoring units may result in the prolonged treatment time, and unpredictable or less-than-ideal outcome. To maximize tooth-related anchorage, techniques such as differential torque, placing roots into the cortex of the bone, the use of various intraoral devices and/or extraoral appliances have been implemented. Implants, as they are in direct contact with bone, do not possess a periodontal ligament. As a result, they do not move when orthodontic/orthopedic force is applied, and therefore can be used as "absolute anchorage." This article describes different types of implants that have been used as orthodontic anchorage. Their clinical applications and limitations are also discussed. PMID:16463910

  1. Absolute isotopic abundances of TI in meteorites

    NASA Astrophysics Data System (ADS)

    Niederer, F. R.; Papanastassiou, D. A.; Wasserburg, G. J.

    1985-03-01

    The absolute isotope abundance of Ti has been determined in Ca-Al-rich inclusions from the Allende and Leoville meteorites and in samples of whole meteorites. The absolute Ti isotope abundances differ by a significant mass dependent isotope fractionation transformation from the previously reported abundances, which were normalized for fractionation using 46Ti/48Ti. Therefore, the absolute compositions define distinct nucleosynthetic components from those previously identified or reflect the existence of significant mass dependent isotope fractionation in nature. The authors provide a general formalism for determining the possible isotope compositions of the exotic Ti from the measured composition, for different values of isotope fractionation in nature and for different mixing ratios of the exotic and normal components.

  2. Differences among Monte Carlo codes in the calculations of voxel S values for radionuclide targeted therapy and analysis of their impact on absorbed dose evaluations

    SciTech Connect

    Pacilio, M.; Lanconelli, N.; Lo Meo, S.; Betti, M.; Montani, L.; Torres Aroche, L. A.; Coca Perez, M. A.

    2009-05-15

    Several updated Monte Carlo (MC) codes are available to perform calculations of voxel S values for radionuclide targeted therapy. The aim of this work is to analyze the differences in the calculations obtained by different MC codes and their impact on absorbed dose evaluations performed by voxel dosimetry. Voxel S values for monoenergetic sources (electrons and photons) and different radionuclides ({sup 90}Y, {sup 131}I, and {sup 188}Re) were calculated. Simulations were performed in soft tissue. Three general-purpose MC codes were employed for simulating radiation transport: MCNP4C, EGSnrc, and GEANT4. The data published by the MIRD Committee in Pamphlet No. 17, obtained with the EGS4 MC code, were also included in the comparisons. The impact of the differences (in terms of voxel S values) among the MC codes was also studied by convolution calculations of the absorbed dose in a volume of interest. For uniform activity distribution of a given radionuclide, dose calculations were performed on spherical and elliptical volumes, varying the mass from 1 to 500 g. For simulations with monochromatic sources, differences for self-irradiation voxel S values were mostly confined within 10% for both photons and electrons, but with electron energy less than 500 keV, the voxel S values referred to the first neighbor voxels showed large differences (up to 130%, with respect to EGSnrc) among the updated MC codes. For radionuclide simulations, noticeable differences arose in voxel S values, especially in the bremsstrahlung tails, or when a high contribution from electrons with energy of less than 500 keV is involved. In particular, for {sup 90}Y the updated codes showed a remarkable divergence in the bremsstrahlung region (up to about 90% in terms of voxel S values) with respect to the EGS4 code. Further, variations were observed up to about 30%, for small source-target voxel distances, when low-energy electrons cover an important part of the emission spectrum of the radionuclide

  3. Optimal individualized dosing strategies: A pharmacologic approach to developing dynamic treatment regimens for continuous-valued treatments.

    PubMed

    Rich, Benjamin; Moodie, Erica E M; Stephens, David A

    2016-05-01

    There have been considerable advances in the methodology for estimating dynamic treatment regimens, and for the design of sequential trials that can be used to collect unconfounded data to inform such regimens. However, relatively little attention has been paid to how such methodology could be used to advance understanding of optimal treatment strategies in a continuous dose setting, even though it is often the case that considerable patient heterogeneity in drug response along with a narrow therapeutic window may necessitate the tailoring of dosing over time. Such is the case with warfarin, a common oral anticoagulant. We propose novel, realistic simulation models based on pharmacokinetic-pharmacodynamic properties of the drug that can be used to evaluate potentially optimal dosing strategies. Our results suggest that this methodology can lead to a dosing strategy that performs well both within and across populations with different pharmacokinetic characteristics, and may assist in the design of randomized trials by narrowing the list of potential dosing strategies to those which are most promising. PMID:26537297

  4. Absolute neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Wolf, Joachim

    2011-10-01

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.

  5. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  6. A gradient of radioactive contamination in Dolon village near the SNTS and comparison of computed dose values with instrumental estimates for the 29 August, 1949 nuclear test.

    PubMed

    Stepanenko, Valeriy F; Hoshi, Masaharu; Dubasov, Yuriy V; Sakaguchi, Aya; Yamamoto, Masayoshi; Orlov, Mark Y; Bailiff, Ian K; Ivannikov, Alexander I; Skvortsov, Valeriy G; Iaskova, Elena K; Kryukova, Irina G; Zhumadilov, Kassym S; Endo, Satoru; Tanaka, Kenichi; Apsalikov, Kazbek N; Gusev, Boris I

    2006-02-01

    Spatial distributions of soil contamination by 137Cs (89 sampling points) and 239+240Pu (76 points) near and within Dolon village were analyzed. An essential exponential decrease of contamination was found in Dolon village: the distance of a half reduction in contamination is about 0.87-1.25 km (in a northwest-southeast direction from the supposed centerline of the radioactive trace). This fact is in agreement with the available exposure rate measurements near Dolon (September 1949 archive data): on the basis of a few measurements the pattern of the trace was estimated to comprise a narrow 2 km corridor of maximum exposure rate. To compare computed external doses in air with local dose estimates by retrospective luminescence dosimetry (RLD) the gradient of radioactive soil contamination within the village was accounted for. The computed dose associated with the central axis of the trace was found to be equal to 2260 mGy (calculations based on archive exposure rate data). Local doses near the RLD sampling points (southeast of the village) were calculated to be in the range 466-780 mGy (averaged value: 645+/-70 mGy), which is comparable with RLD data (averaged value 460+/-92 mGy with range 380-618 mGy). A comparison of the computed mean dose in the settlement with dose estimates by ESR tooth enamel dosimetry makes it possible to estimate the "upper level" of the "shielding and behavior" factor in dose reduction for inhabitants of Dolon village which was found to be 0.28+/-0.068. PMID:16571930

  7. Absolute dosimetry for extreme-ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Berger, Kurt W.; Campiotti, Richard H.

    2000-06-01

    The accurate measurement of an exposure dose reaching the wafer on an extreme ultraviolet (EUV) lithographic system has been a technical challenge directly applicable to the evaluation of candidate EUV resist materials and calculating lithography system throughputs. We have developed a dose monitoring sensor system that can directly measure EUV intensities at the wafer plane of a prototype EUV lithographic system. This sensor system, located on the wafer stage adjacent to the electrostatic chuck used to grip wafers, operates by translating the sensor into the aerial image, typically illuminating an 'open' (unpatterned) area on the reticle. The absolute signal strength can be related to energy density at the wafer, and thus used to determine resist sensitivity, and the signal as a function of position can be used to determine illumination uniformity at the wafer plane. Spectral filtering to enhance the detection of 13.4 nm radiation was incorporated into the sensor. Other critical design parameters include the packaging and amplification technologies required to place this device into the space and vacuum constraints of a EUV lithography environment. We describe two approaches used to determine the absolute calibration of this sensor. The first conventional approach requires separate characterization of each element of the sensor. A second novel approach uses x-ray emission from a mildly radioactive iron source to calibrate the absolute response of the entire sensor system (detector and electronics) in a single measurement.

  8. Human intravenous pharmacokinetics and absolute oral bioavailability of cefatrizine.

    PubMed Central

    Pfeffer, M; Gaver, R C; Ximenez, J

    1983-01-01

    Cefatrizine was administered intravenously and orally at dose levels of 250, 500, and 1,000 mg to normal male volunteers in a crossover study. Intravenous pharmacokinetics were dose linear over this range; mean peak plasma concentrations at the end of 30-min infusions were, respectively, 18, 37, and 75 micrograms/ml, total body clearance was 218 ml/min per 1.73 m2, renal clearance was 176 ml/min per 1.73 m2, and mean retention time in the body was 1.11 h. Cumulative urinary excretion of intact cefatrizine was 80% of the dose, and half-lives ranged from 1 to 1.4 h. Steady-state volume of distribution was 0.22 liters/kg. On oral administration, the absolute bioavailabilities of cefatrizine were 75% at 250 and 500 mg and 50% at 1,000 mg. The mean peak plasma concentrations and peak times were, respectively, 4.9, 8.6, and 10.2 micrograms/ml at 1.4, 1.6, and 2.0 h, mean residence times were 2.4, 2.6, and 3.1 h, and mean absorption times were 1.3, 1.6, and 1.9 h. Oral renal clearance and half-life values corresponded well to the intravenous values. Cumulative urinary excretion of intact cefatrizine (as percentage of dose) was 60 at 250 mg, 56 at 500 mg, and 42 at 1,000 mg. It is hypothesized that the lack of oral dose linearity between the 500- and 1,000-mg doses is due to a component of cefatrizine absorption by a saturable transport process. Relative absorption at the high dose would be sufficiently slow that an absorption "window" would be passed before maximum bioavailability could be attained. It is not expected that the observed bioavailability decrease at doses exceeding 500 mg will have any therapeutic significance, since clinical studies are establishing efficacy for a recommended unit dosage regimen of 500 mg. PMID:6660858

  9. Human intravenous pharmacokinetics and absolute oral bioavailability of cefatrizine.

    PubMed

    Pfeffer, M; Gaver, R C; Ximenez, J

    1983-12-01

    Cefatrizine was administered intravenously and orally at dose levels of 250, 500, and 1,000 mg to normal male volunteers in a crossover study. Intravenous pharmacokinetics were dose linear over this range; mean peak plasma concentrations at the end of 30-min infusions were, respectively, 18, 37, and 75 micrograms/ml, total body clearance was 218 ml/min per 1.73 m2, renal clearance was 176 ml/min per 1.73 m2, and mean retention time in the body was 1.11 h. Cumulative urinary excretion of intact cefatrizine was 80% of the dose, and half-lives ranged from 1 to 1.4 h. Steady-state volume of distribution was 0.22 liters/kg. On oral administration, the absolute bioavailabilities of cefatrizine were 75% at 250 and 500 mg and 50% at 1,000 mg. The mean peak plasma concentrations and peak times were, respectively, 4.9, 8.6, and 10.2 micrograms/ml at 1.4, 1.6, and 2.0 h, mean residence times were 2.4, 2.6, and 3.1 h, and mean absorption times were 1.3, 1.6, and 1.9 h. Oral renal clearance and half-life values corresponded well to the intravenous values. Cumulative urinary excretion of intact cefatrizine (as percentage of dose) was 60 at 250 mg, 56 at 500 mg, and 42 at 1,000 mg. It is hypothesized that the lack of oral dose linearity between the 500- and 1,000-mg doses is due to a component of cefatrizine absorption by a saturable transport process. Relative absorption at the high dose would be sufficiently slow that an absorption "window" would be passed before maximum bioavailability could be attained. It is not expected that the observed bioavailability decrease at doses exceeding 500 mg will have any therapeutic significance, since clinical studies are establishing efficacy for a recommended unit dosage regimen of 500 mg. PMID:6660858

  10. The synthesis of [(14) C]AZD5122. Incorporation of an IV (14) C-microtracer dose into a first in human study to determine the absolute oral bioavailability of AZD5122.

    PubMed

    Hickey, Michael J; Allen, Paul H; Kingston, Lee P; Wilkinson, David J

    2016-05-30

    AZD5122, N-(2-(2,3-difluorobenzylthio)-6-((2R,3R)-3,4-dihydroxybutan-2-ylamino)pyrimidin-4-yl)azetidine-1-sulfonamide was under investigation as a potential chemokine receptor CXCR2 antagonist for the treatment for inflammatory diseases. To gain a better understanding of the human pharmacokinetic profile, an exploratory phase I IV microtracer study was conducted using carbon-14 radiolabelled AZD5122. [(14) C]AZD5122 was carbon-14 labelled in the pyrimidine ring in five steps in an overall radiochemical yield of 19% from [(14) C]thiourea. The absolute oral bioavailability of AZD5122 was assessed in healthy subjects by an oral administration of AZD5122, followed by a concomitant intravenous [(14) C]AZD5122 microdose. PMID:27169760

  11. THE UNIQUE VALUE OF BREATH BIOMARKERS FOR ESTIMATING PHAMACOKINETIC RATE CONSTANTS AND BODY BURDEN FROM RANDOM/INTERMITTENT DOSE

    EPA Science Inventory

    Biomarker measurements are used in three ways: 1) evaluating the time course and distribution of a chemical in the body, 2) estimating previous exposure or dose, and 3) assessing disease state. Blood and urine measurements are the primary methods employed. Of late, it has been ...

  12. Retention of Quality and Nutritional Value of Thirteen Fresh-cut Vegetables Treated with Low Dose Radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent outbreaks associated with consumption of spinach, lettuce and tomato have resulted in much concern over the safety of fresh-cut vegetables. The industry is in need of a “kill” step to ensure the safety of fresh-cut vegetables. Many studies have demonstrated that a dose of 1 kGy radiatio...

  13. Consideration of the ICRP 2006 revised tissue weighting factors on age-dependent values of the effective dose for external photons.

    PubMed

    Lee, Choonsik; Lee, Choonik; Han, Eun Young; Bolch, Wesley E

    2007-01-01

    The effective dose recommended by the International Commission on Radiological Protection (ICRP) is the sum of organ equivalent doses weighted by corresponding tissue weighting factors, w(T). ICRP is in the process of revising its 1990 recommendations on the effective dose where new values of organs and tissue weighting factors have been proposed and published in draft form for consultation by the radiological protection community. In its 5 June 2006 draft recommendations, new organs and tissues have been introduced in the effective dose which do not exist within the 1987 Oak Ridge National Laboratory (ORNL) phantom series (e.g., salivary glands). Recently, the investigators at University of Florida have updated the series of ORNL phantoms by implementing new organ models and adopting organ-specific elemental composition and densities. In this study, the effective dose changes caused by the transition from the current recommendation of ICRP Publication 60 to the 2006 draft recommendations were investigated for external photon irradiation across the range of ICRP reference ages (newborn, 1-year, 5-year, 10-year, 15-year and adult) and for six idealized irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT), right-lateral (RLAT), rotational (ROT) and isotropic (ISO). Organ-absorbed doses were calculated by implementing the revised ORNL phantoms in the Monte Carlo radiation transport code, MCNPX2.5, after which effective doses were calculated under the 1990 and draft 2006 evaluation schemes of the ICRP. Effective doses calculated under the 2006 draft scheme were slightly higher than estimated under ICRP Publication 60 methods for all irradiation geometries exclusive of the AP geometry where an opposite trend was observed. The effective doses of the adult phantom were more greatly affected by the change in tissue weighting factors than that seen within the paediatric members of the phantom series. Additionally, dose conversion

  14. Absolute Identification by Relative Judgment

    ERIC Educational Resources Information Center

    Stewart, Neil; Brown, Gordon D. A.; Chater, Nick

    2005-01-01

    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…

  15. Calculation of size specific dose estimates (SSDE) value at cylindrical phantom from CBCT Varian OBI v1.4 X-ray tube EGSnrc Monte Carlo simulation based

    NASA Astrophysics Data System (ADS)

    Nasir, M.; Pratama, D.; Anam, C.; Haryanto, F.

    2016-03-01

    The aim of this research was to calculate Size Specific Dose Estimates (SSDE) generated by the varian OBI CBCT v1.4 X-ray tube working at 100 kV using EGSnrc Monte Carlo simulations. The EGSnrc Monte Carlo code used in this simulation was divided into two parts. Phase space file data resulted by the first part simulation became an input to the second part. This research was performed with varying phantom diameters of 5 to 35 cm and varying phantom lengths of 10 to 25 cm. Dose distribution data were used to calculate SSDE values using trapezoidal rule (trapz) function in a Matlab program. SSDE obtained from this calculation was compared to that in AAPM report and experimental data. It was obtained that the normalization of SSDE value for each phantom diameter was between 1.00 and 3.19. The normalization of SSDE value for each phantom length was between 0.96 and 1.07. The statistical error in this simulation was 4.98% for varying phantom diameters and 5.20% for varying phantom lengths. This study demonstrated the accuracy of the Monte Carlo technique in simulating the dose calculation. In the future, the influence of cylindrical phantom material to SSDE would be studied.

  16. Probing absolute spin polarization at the nanoscale.

    PubMed

    Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus

    2014-12-10

    Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum. PMID:25423049

  17. Asteroid absolute magnitudes and slope parameters

    NASA Technical Reports Server (NTRS)

    Tedesco, Edward F.

    1991-01-01

    A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

  18. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  19. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  20. Organ S values and effective doses for family members exposed to adult patients following I-131 treatment: A Monte Carlo simulation study

    SciTech Connect

    Han, Eun Young; Lee, Choonsik; Mcguire, Lynn; Brown, Tracy L. Y.; Bolch, Wesley E.

    2013-08-15

    Purpose: To calculate organ S values (mGy/Bq-s) and effective doses per time-integrated activity (mSv/Bq-s) for pediatric and adult family members exposed to an adult male or female patient treated with I-131 using a series of hybrid computational phantoms coupled with a Monte Carlo radiation transport technique.Methods: A series of pediatric and adult hybrid computational phantoms were employed in the study. Three different exposure scenarios were considered: (1) standing face-to-face exposures between an adult patient and pediatric or adult family phantoms at five different separation distances; (2) an adult female patient holding her newborn child, and (3) a 1-yr-old child standing on the lap of an adult female patient. For the adult patient model, two different thyroid-related diseases were considered: hyperthyroidism and differentiated thyroid cancer (DTC) with corresponding internal distributions of {sup 131}I. A general purpose Monte Carlo code, MCNPX v2.7, was used to perform the Monte Carlo radiation transport.Results: The S values show a strong dependency on age and organ location within the family phantoms at short distances. The S values and effective dose per time-integrated activity from the adult female patient phantom are relatively high at shorter distances and to younger family phantoms. At a distance of 1 m, effective doses per time-integrated activity are lower than those values based on the NRC (Nuclear Regulatory Commission) by a factor of 2 for both adult male and female patient phantoms. The S values to target organs from the hyperthyroid-patient source distribution strongly depend on the height of the exposed family phantom, so that their values rapidly decrease with decreasing height of the family phantom. Active marrow of the 10-yr-old phantom shows the highest S values among family phantoms for the DTC-patient source distribution. In the exposure scenario of mother and baby, S values and effective doses per time-integrated activity to

  1. Recommended values for the distribution coefficient (Kd) to be used in dose assessments for decommissioning the Zion Nuclear Power Plant

    SciTech Connect

    Sullivan T.

    2014-06-09

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.

  2. Recommended values for the distribution coefficient (Kd) to be used in dose assessments for decommissioning the Zion Nuclear Power Plant

    SciTech Connect

    Sullivan, T.

    2014-09-24

    ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.

  3. Laser interferometry method for absolute measurement of the acceleration of gravity

    NASA Technical Reports Server (NTRS)

    Hudson, O. K.

    1971-01-01

    Gravimeter permits more accurate and precise absolute measurement of g without reference to Potsdam values as absolute standards. Device is basically Michelson laser beam interferometer in which one arm is mass fitted with corner cube reflector.

  4. Monte Carlo calculations for absolute dosimetry to determine machine outputs for proton therapy fields

    PubMed Central

    Paganetti, Harald

    2008-01-01

    The prescribed dose in radiation therapy has to be converted into machine monitor units for patient treatment. This is done routinely for each spread-out Bragg peak (SOBP) field either by calibration measurements, by using analytical algorithms or by relying on empirical data. At the Northeast Proton Therapy Center, a monitor unit corresponds to a fixed amount of charge collected in a segmented transmission ionization chamber inside the treatment head. The goal of this work was to use a detailed Monte Carlo model of the treatment head to calculate the dose delivered to the patient as a function of ionization chamber reading, i.e. to yield absolute dose in patients in terms of machine monitor units. The results show excellent agreement with measurements. For 50 SOBP fields considered in this study, the mean absolute difference between the experimental and the calculated value is 1.5%, where ~50% of the fields agree within 1%. This is within the uncertainties of the data. The Monte Carlo method has advantages over analytical algorithms because it takes into account scattered and secondary radiation, does not rely on empirical parameters, and provides a tool to study the influence of parts of the treatment head on the ionization chamber reading. Compared to experimental methods the Monte Carlo method has the advantage of being able to verify the dose in the patient geometry. PMID:16723767

  5. Self-reported smoking effects and comparative value between cigarettes and high dose e-cigarettes in nicotine-dependent cigarette smokers.

    PubMed

    McPherson, Sterling; Howell, Donelle; Lewis, Jennifer; Barbosa-Leiker, Celestina; Bertotti Metoyer, Patrick; Roll, John

    2016-04-01

    The objective of this experiment was to evaluate the comparative value of cigarettes versus high dose e-cigarettes among nicotine-dependent cigarette smokers when compared with money or use of their usual cigarette brand. The experiment used a within-subject design with four sessions. After baseline assessment, participants attended two 15-min unrestricted smoking sessions: one cigarette smoking session and one e-cigarette smoking session. Participants then attended two multiple-choice procedure (MCP) sessions: a session comparing cigarettes and money and a session comparing e-cigarettes and money. Participants (n=27) had used cigarettes regularly, had never used e-cigarettes, and were not currently attempting to quit smoking. The sample consisted primarily of males (72%), with a mean age of 34 years. When given the opportunity to choose between smoking a cigarette or an e-cigarette, participants chose the cigarette 73.9% of the time. Findings from the MCP demonstrated that after the first e-cigarette exposure sessions, the crossover value for cigarettes ($3.45) was significantly higher compared with the crossover value for e-cigarettes ($2.73). The higher participant preference, self-reported smoking effects, and higher MCP crossover points indicate that cigarettes have a higher comparative value than high dose e-cigarettes among e-cigarette naive smokers. PMID:26886210

  6. Assessment of Local Dose Reference Values for Recanalization of Chronic Total Occlusions and Other Occlusions in a High-Volume Catheterization Center.

    PubMed

    Maccia, Carlo; Malchair, Françoise; Gobert, Isabelle; Louvard, Yves; Lefevre, Thierry

    2015-10-15

    The increasing number and complexity of these procedures have led to a higher number of patients at risk for tissue reactions like skin injuries. Monitoring of their dose indicators is essential in recognizing these patients. The aim of this work was to determine local diagnostic reference levels (DRLs) for recanalization of chronic total occlusion (CTO) and other occlusions procedures. All data from patients who underwent cardiac procedures were reviewed and classified according to their complexity. Dose indicators such as fluoroscopy time (FT), dose area product (DAP), and air kerma at patient entrance reference point (AKr) were recorded. Correlations with patient's body mass index, operators, procedure strategy, and complexity were studied. For CTO, the mean DAP, AKr, and FT were 252 ± 234 Gycm(2), 3,985 ± 3,579 mGy, and 47 ± 36 minutes, respectively. To better reflect the non-Gaussian distribution of data, the median and the 75th percentile values were also reported: median DAP, 172 Gycm(2); 75th percentile DAP, 350 Gycm(2); median AKr, 2,714 mGy; and 75th percentile AKr, 5,921 mGy. A tentative new set of values were suggested to take into account the complexity difference in recanalization of total occlusions according to their antegrade or retrograde approach. These approach-specific DRLs for total occlusions were mean DAP (120 ± 114 Gycm(2)), mean AKr (1,789 ± 1,933 mGy), and mean FT (22 ± 18 minutes) for antegrade approach and mean DAP (459 ± 304 Gycm(2)), mean AKr (6,881 ± 4,243 mGy), and mean FT (82 ± 40 minutes) for retrograde approach. The other significant values were median DAP (84 Gycm(2)), 75th percentile DAP (147 Gycm(2)), median AKr (1,160 mGy), and 75th percentile AKr (2,176 mGy) for antegrade approach and median DAP (422 Gycm(2)), 75th percentile DAP (552 Gycm(2)), median AKr (6,295 mGy), and 75th percentile AKr (8,064 mGy) for retrograde approach. In conclusion, a set of local DRL values from a large center were assessed

  7. Limiting values of radionuclide intake and air concentration and dose conversion factors for inhalation, submersion, and ingestion: Federal guidance report No. 11

    SciTech Connect

    Eckerman, K.F.; Wolbarst, A.B.; Richardson, A.C.B.

    1988-09-01

    Radiation protection programs for workers are based, in the United States, on a hierarchy of limitations stemming from Federal guidance approved by the President. This guidance, which consists of principles, policies, and numerical primary guides, is used by Federal agencies as the basis for developing and implementing their own regulatory standards. The primary guides are usually expressed in terms of limiting doses to workers. The protection of workers against taking radioactive materials into the body, however, is accomplished largely through the use of regulations based on derived guides expressed in terms of quantities or concentrations of radionuclides. The values of these derived guides are chosen so as to assure that workers in work environments that conform to them are unlikely to receive radiation doses that exceed the primary guides. The purpose of the present report is to set forth derived guides that are consistent with current Federal radiation protection guidance. They are intended to serve as the basis for regulations setting upper bounds on the inhalation and ingestion of, and submersion in, radioactive materials in the workplace. The report also includes tables of exposure-to-dose conversion factors, for general use in assessing average individual committed doses in any population that is adequately characterized by Reference Man. 38 refs.

  8. Absolute and relative bioavailability of oral acetaminophen preparations.

    PubMed

    Ameer, B; Divoll, M; Abernethy, D R; Greenblatt, D J; Shargel, L

    1983-08-01

    Eighteen healthy volunteers received single 650-mg doses of acetaminophen by 5-min intravenous infusion, in tablet form by mouth in the fasting state, and in elixir form orally in the fasting state in a three-way crossover study. An additional eight subjects received two 325-mg tablets from two commercial vendors in a randomized crossover fashion. Concentrations of acetaminophen in multiple plasma samples collected during the 12-hr period after each dose were determined by high-performance liquid chromatography. Following a lag time averaging 3-4 min, absorption of oral acetaminophen was first order, with apparent absorption half-life values averaging 8.4 (elixir) and 11.4 (tablet) min. The mean time-to-peak concentration was significantly longer after tablet (0.75 hr) than after elixir (0.48 hr) administration. Peak plasma concentrations and elimination half-lives were similar following both preparations. Absolute systemic availability of the elixir (87%) was significantly greater than for the tablets (79%). Two commercially available tablet formulations did not differ significantly in peak plasma concentrations, time-to-peak, or total area under the plasma concentration curve and therefore were judged to be bioequivalent. PMID:6688635

  9. A Monte Carlo based three-dimensional dose reconstruction method derived from portal dose images

    SciTech Connect

    Elmpt, Wouter J. C. van; Nijsten, Sebastiaan M. J. J. G.; Schiffeleers, Robert F. H.; Dekker, Andre L. A. J.; Mijnheer, Ben J.; Lambin, Philippe; Minken, Andre W. H.

    2006-07-15

    The verification of intensity-modulated radiation therapy (IMRT) is necessary for adequate quality control of the treatment. Pretreatment verification may trace the possible differences between the planned dose and the actual dose delivered to the patient. To estimate the impact of differences between planned and delivered photon beams, a three-dimensional (3-D) dose verification method has been developed that reconstructs the dose inside a phantom. The pretreatment procedure is based on portal dose images measured with an electronic portal imaging device (EPID) of the separate beams, without the phantom in the beam and a 3-D dose calculation engine based on the Monte Carlo calculation. Measured gray scale portal images are converted into portal dose images. From these images the lateral scattered dose in the EPID is subtracted and the image is converted into energy fluence. Subsequently, a phase-space distribution is sampled from the energy fluence and a 3-D dose calculation in a phantom is started based on a Monte Carlo dose engine. The reconstruction model is compared to film and ionization chamber measurements for various field sizes. The reconstruction algorithm is also tested for an IMRT plan using 10 MV photons delivered to a phantom and measured using films at several depths in the phantom. Depth dose curves for both 6 and 10 MV photons are reconstructed with a maximum error generally smaller than 1% at depths larger than the buildup region, and smaller than 2% for the off-axis profiles, excluding the penumbra region. The absolute dose values are reconstructed to within 1.5% for square field sizes ranging from 5 to 20 cm width. For the IMRT plan, the dose was reconstructed and compared to the dose distribution with film using the gamma evaluation, with a 3% and 3 mm criterion. 99% of the pixels inside the irradiated field had a gamma value smaller than one. The absolute dose at the isocenter agreed to within 1% with the dose measured with an ionization

  10. Retention of quality and nutritional value of 13 fresh-cut vegetables treated with low-dose radiation.

    PubMed

    Fan, X; Sokorai, K J B

    2008-09-01

    Improving the microbial safety while maintaining quality of fresh fruits and vegetables will increase consumer confidence in fresh produce. This study was conducted to investigate the effects of irradiation at 1 kGy, a dose that potentially inactivates E. coli O157:H7 by 5 logs, on the quality of 13 common fresh-cut vegetables: iceberg, romaine, green and red leaf lettuce, spinach, tomato, cilantro, parsley, green onion, carrot, broccoli, red cabbage, and celery. The results showed that the appearance of irradiated samples was similar to the nonirradiated ones except that irradiated carrots, celery, cilantro, and green onions had higher appearance scores than corresponding nonirradiated vegetables. There was no difference in the instrumental texture between irradiated samples and nonirradiated ones. The aroma of several irradiated vegetables was significantly better than controls after 14-d storage, because these control samples decayed or senesced. The 1 kGy irradiation did not affect vitamin C content of most vegetables; however, irradiated green and red leaf lettuce had 24% to 53% lower vitamin C contents than the controls. Our results suggest that most fresh-cut fruits and vegetables tested can tolerate up to 1 kGy irradiation without significant losses in any of the quality attributes. PMID:18803730

  11. Absolute radiometry and the solar constant

    NASA Technical Reports Server (NTRS)

    Willson, R. C.

    1974-01-01

    A series of active cavity radiometers (ACRs) are described which have been developed as standard detectors for the accurate measurement of irradiance in absolute units. It is noted that the ACR is an electrical substitution calorimeter, is designed for automatic remote operation in any environment, and can make irradiance measurements in the range from low-level IR fluxes up to 30 solar constants with small absolute uncertainty. The instrument operates in a differential mode by chopping the radiant flux to be measured at a slow rate, and irradiance is determined from two electrical power measurements together with the instrumental constant. Results are reported for measurements of the solar constant with two types of ACRs. The more accurate measurement yielded a value of 136.6 plus or minus 0.7 mW/sq cm (1.958 plus or minus 0.010 cal/sq cm per min).

  12. [Dose loads on and radiation risk values for cosmonauts on a mission to Mars estimated from actual Martian vehicle engineering development].

    PubMed

    Shafirkin, A V; Kolomenskiĭ, A V; Mitrikas, V G; Petrov, V M

    2010-01-01

    The current design philosophy of a Mars orbiting vehicle, takeoff and landing systems and the transport return vehicle was taken into consideration for calculating the equivalent doses imparted to cosmonaut's organs and tissues by galactic cosmic rays, solar rays and the Earth's radiation belts, values of the total radiation risk over the lifespan following the mission and over the whole career period, and possible shortening of life expectancy. There are a number of uncertainties that should be evaluated, and radiation limits specified before setting off to Mars. PMID:20803991

  13. Study of absolute fast neutron dosimetry using CR-39 track detectors

    NASA Astrophysics Data System (ADS)

    El-Sersy, A. R.

    2010-06-01

    In this work, CR-39 track detectors have extensively been used in the determination of fast neutron fluence-to-dose factor. The registration efficiency, ɛ, of CR-39 detectors for fast neutrons was calculated using different theoretical approaches according to each mode of neutron interaction with the constituent atoms (H, C and O) of the detector material. The induced proton-recoiled showed the most common interaction among the others. The dependence of ɛ on both neutron energy and etching time was also studied. In addition, the neutron dose was calculated as a function of neutron energy in the range from 0.5 to 14 MeV using the values of (d E/d X) for each recoil particle in CR-39 detector. Results showed that the values of ɛ were obviously affected by both neutron energy and etching time where the contribution in ɛ from proton recoil was the most. The contribution from carbon and oxygen recoils in dose calculation was pronounced due to their higher corresponding values of d E/d X in comparison to those from proton recoils. The present calculated fluence-to-dose factor was in agreement with that either from ICRP no. 74 or from TRS no. 285 of IAEA, which reflected the importance of using CR-39 in absolute fast neutron dosimetry.

  14. Differences in 3D dose distributions due to calculation method of voxel S-values and the influence of image blurring in SPECT

    NASA Astrophysics Data System (ADS)

    Pacilio, Massimiliano; Amato, Ernesto; Lanconelli, Nico; Basile, Chiara; Torres, Leonel Alberto; Botta, Francesca; Ferrari, Mahila; Cornejo Diaz, Nestor; Coca Perez, Marco; Fernández, María; Lassmann, Michael; Vergara Gil, Alex; Cremonesi, Marta

    2015-03-01

    This study compares 3D dose distributions obtained with voxel S values (VSVs) for soft tissue, calculated by several methods at their current state-of-the-art, varying the degree of image blurring. The methods were: 1) convolution of Dose Point Kernel (DPK) for water, using a scaling factor method; 2) an analytical model (AM), fitting the deposited energy as a function of the source-target distance; 3) a rescaling method (RSM) based on a set of high-resolution VSVs for each isotope; 4) local energy deposition (LED). VSVs calculated by direct Monte Carlo simulations were assumed as reference. Dose distributions were calculated considering spheroidal clusters with various sizes (251, 1237 and 4139 voxels of 3 mm size), uniformly filled with 131I, 177Lu, 188Re or 90Y. The activity distributions were blurred with Gaussian filters of various widths (6, 8 and 12 mm). Moreover, 3D-dosimetry was performed for 10 treatments with 90Y derivatives. Cumulative Dose Volume Histograms (cDVHs) were compared, studying the differences in D95%, D50% or Dmax (ΔD95%, ΔD50% and ΔDmax) and dose profiles. For unblurred spheroidal clusters, ΔD95%, ΔD50% and ΔDmax were mostly within some percents, slightly higher for 177Lu with DPK (8%) and RSM (12%) and considerably higher for LED (ΔD95% up to 59%). Increasing the blurring, differences decreased and also LED yielded very similar results, but D95% and D50% underestimations between 30-60% and 15-50%, respectively (with respect to 3D-dosimetry with unblurred distributions), were evidenced. Also for clinical images (affected by blurring as well), cDVHs differences for most methods were within few percents, except for slightly higher differences with LED, and almost systematic for dose profiles with DPK (-1.2%), AM (-3.0%) and RSM (4.5%), whereas showed an oscillating trend with LED. The major concern for 3D-dosimetry on clinical SPECT images is more strongly represented by image blurring than by differences among the VSVs

  15. Predictive value of pyramidal lobe, percentage thyroid uptake and age for ablation outcome after 15 mCi fixed dose of radioiodine-131 in Graves’ disease

    PubMed Central

    Zaman, Maseeh uz; Fatima, Nosheen; Zaman, Unaiza; Sajjad, Zafar; Zaman, Areeba; Tahseen, Rabia

    2015-01-01

    Purpose: The purpose was to find out the efficacy of fixed 15 mCi radioactive iodine-131 (RAI) dose and predictive values of various factors for inducing hypothyroidism in Graves’ disease (GD). Materials and Methods: Retrospective study conducted from January 2012 till August 2014. Patients with GD who had a technetium-99m thyroid scan, thyroid antibodies, received fixed 15 mCi RAI and did follow endocrine clinics for at least 6 months were selected. RAI was considered successful if within 6 months of RAI therapy patients developed hypothyroidism. Results: Of the 370 patients with GD who had RAI during study period, 210 (57%) qualified study criteria. Mean age of patients was 48 ± 15 years with female: male ratio of 69:31, positive thyroid antibodies in 61%, means thyroid uptake of 15.09 ± 11.23%, and presence of pyramidal lobe in 40% of total population. Hypothyroidism was achieved in 161 (77%) patients while 49 (23%) patients failed to achieve it (remained either hyperthyroid or euthyroid on antithyroid medication). Patients who became hypothyroid were significantly younger with higher proportion of presence of thyroid antibodies and pyramidal lobe and lower percentage thyroid uptake than those who failed. Multiple logistic regression analysis revealed that age (odds ratio; OR = 2.074), pyramidal lobe (OR = 3.317), thyroid antibodies (OR = 8.198), and percentage thyroid uptake (OR = 3.043) were found to be significant prognostic risk factors for post-RAI hypothyroidism. Gender was found to have nonsignificant association with the development of hypothyroidism. Receiver operating characteristic analysis revealed age <42 years and thyroid uptake <15% as threshold values for the development of post-RAI hypothyroidism. Conclusion: We conclude that fixed (15 mCi) RAI dose is highly effective in rendering hypothyroidism in patients with GD. Age (≤42 years), thyroid uptake (≤15%) and presence of pyramidal lobe are strong predictors of hypothyroidism and must be

  16. The National Geodetic Survey absolute gravity program

    NASA Astrophysics Data System (ADS)

    Peter, George; Moose, Robert E.; Wessells, Claude W.

    1989-03-01

    The National Geodetic Survey absolute gravity program will utilize the high precision afforded by the JILAG-4 instrument to support geodetic and geophysical research, which involves studies of vertical motions, identification and modeling of other temporal variations, and establishment of reference values. The scientific rationale of these objectives is given, the procedures used to collect gravity and environmental data in the field are defined, and the steps necessary to correct and remove unwanted environmental effects are stated. In addition, site selection criteria, methods of concomitant environmental data collection and relative gravity observations, and schedule and logistics are discussed.

  17. Absolute method of measuring magnetic susceptibility

    USGS Publications Warehouse

    Thorpe, A.; Senftle, F.E.

    1959-01-01

    An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

  18. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  19. In-flight absolute radiometric calibration of the thematic mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

    1983-01-01

    The TM multispectral scanner system was calibrated in an absolute manner before launch. To determine the temporal changes of the absolute radiometric calibration of the entire system, spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM collections over White Sands, New Mexico. By entering the measured values in an atmospheric radiative transfer program, the radiance levels of the in four of the spectral bands of the TM were determined. Tables show values for the reflectance of snow at White Sands measured by a modular 8 channel radiometer, and values for exoatmospheric irradiance within the TM passbands, calculated for the Earth-Sun distance using a solar radiometer.

  20. Estimating peak skin and eye lens dose from neuroperfusion examinations: Use of Monte Carlo based simulations and comparisons to CTDIvol, AAPM Report No. 111, and ImPACT dosimetry tool values

    PubMed Central

    Zhang, Di; Cagnon, Chris H.; Villablanca, J. Pablo; McCollough, Cynthia H.; Cody, Dianna D.; Zankl, Maria; Demarco, John J.; McNitt-Gray, Michael F.

    2013-01-01

    Purpose: CT neuroperfusion examinations are capable of delivering high radiation dose to the skin or lens of the eyes of a patient and can possibly cause deterministic radiation injury. The purpose of this study is to: (a) estimate peak skin dose and eye lens dose from CT neuroperfusion examinations based on several voxelized adult patient models of different head size and (b) investigate how well those doses can be approximated by some commonly used CT dose metrics or tools, such as CTDIvol, American Association of Physicists in Medicine (AAPM) Report No. 111 style peak dose measurements, and the ImPACT organ dose calculator spreadsheet. Methods: Monte Carlo simulation methods were used to estimate peak skin and eye lens dose on voxelized patient models, including GSF's Irene, Frank, Donna, and Golem, on four scanners from the major manufacturers at the widest collimation under all available tube potentials. Doses were reported on a per 100 mAs basis. CTDIvol measurements for a 16 cm CTDI phantom, AAPM Report No. 111 style peak dose measurements, and ImPACT calculations were performed for available scanners at all tube potentials. These were then compared with results from Monte Carlo simulations. Results: The dose variations across the different voxelized patient models were small. Dependent on the tube potential and scanner and patient model, CTDIvol values overestimated peak skin dose by 26%–65%, and overestimated eye lens dose by 33%–106%, when compared to Monte Carlo simulations. AAPM Report No. 111 style measurements were much closer to peak skin estimates ranging from a 14% underestimate to a 33% overestimate, and with eye lens dose estimates ranging from a 9% underestimate to a 66% overestimate. The ImPACT spreadsheet overestimated eye lens dose by 2%–82% relative to voxelized model simulations. Conclusions: CTDIvol consistently overestimates dose to eye lens and skin. The ImPACT tool also overestimated dose to eye lenses. As such they are still

  1. Value of Combined PET/CT for Radiation Planning in CT-Guided Percutaneous Interstitial High-Dose-Rate Single-Fraction Brachytherapy for Colorectal Liver Metastases

    SciTech Connect

    Steffen, Ingo G.; Wust, Peter; Ruehl, Ricarda

    2010-07-15

    Purpose: To determine the additional value of fluorodeoxyglucose-positron emission tomography (PET) for clinical target volume definition in the planning of computed tomography (CT)-guided interstitial brachytherapy for liver metastases. Patients and Methods: A total of 19 patients with liver metastases from colorectal cancer treated in 25 sessions were included in the present study. All patients had undergone fluorodeoxyglucose-PET for patient evaluation before interstitial CT-guided brachytherapy. A contrast-enhanced CT scan of the upper abdomen was obtained for radiation planning. The clinical target volume (CTV) was defined by a radiation oncologist and radiologist. After registration of the CT scan with the PET data set, the target volume was defined again using the fusion images. Results: PET revealed one additional liver lesion that was not visible on CT. The median CT-CTV (defined using CT and magnetic resonance imaging) was 68 cm{sup 3} (range 4-260). The PET/CT-CTV (median, 78 cm{sup 3}; range, 4-273) was significantly larger, with a median gain of 24.5% (interquartile range, 2.1-71.5%; p = .022). An increased CTV was observed in 15 cases and a decrease in 6; in 4 cases, the CT-CTV and PET/CT-CTV were equal. Incomplete dose coverage of PET/CT-CTVs was indicative of early local progression (p = .004); however, CT-based radiation plans did not show significant differences in the local control rates when stratified by dose coverage. Conclusion: Retrospective implementation of fluorodeoxyglucose-PET for CTV specification for CT-guided brachytherapy for colorectal liver metastases revealed a significant change in the CTVs. Additional PET-positive tumor regions with incomplete dose coverage could explain unexpected early local progression.

  2. Absolute Antenna Calibration at the US National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.

    2012-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. Determination of antenna phase center behavior is known as "antenna calibration". Since 1994, NGS has computed relative antenna calibrations for more than 350 antennas. In recent years, the geodetic community has moved to absolute calibrations - the IGS adopted absolute antenna phase center calibrations in 2006 for use in their orbit and clock products, and NGS's CORS group began using absolute antenna calibration upon the release of the new CORS coordinates in IGS08 epoch 2005.00 and NAD 83(2011,MA11,PA11) epoch 2010.00. Although NGS relative calibrations can be and have been converted to absolute, it is considered best practice to independently measure phase center characteristics in an absolute sense. Consequently, NGS has developed and operates an absolute calibration system. These absolute antenna calibrations accommodate the demand for greater accuracy and for 2-dimensional (elevation and azimuth) parameterization. NGS will continue to provide calibration values via the NGS web site www.ngs.noaa.gov/ANTCAL, and will publish calibrations in the ANTEX format as well as the legacy ANTINFO

  3. Revisiting absolute and relative judgments in the WITNESS model.

    PubMed

    Fife, Dustin; Perry, Colton; Gronlund, Scott D

    2014-04-01

    The WITNESS model (Clark in Applied Cognitive Psychology 17:629-654, 2003) provides a theoretical framework with which to investigate the factors that contribute to eyewitness identification decisions. One key factor involves the contributions of absolute versus relative judgments. An absolute contribution is determined by the degree of match between an individual lineup member and memory for the perpetrator; a relative contribution involves the degree to which the best-matching lineup member is a better match to memory than the remaining lineup members. In WITNESS, the proportional contributions of relative versus absolute judgments are governed by the values of the decision weight parameters. We conducted an exploration of the WITNESS model's parameter space to determine the identifiability of these relative/absolute decision weight parameters, and compared the results to a restricted version of the model that does not vary the decision weight parameters. This exploration revealed that the decision weights in WITNESS are difficult to identify: Data often can be fit equally well by setting the decision weights to nearly any value and compensating with a criterion adjustment. Clark, Erickson, and Breneman (Law and Human Behavior 35:364-380, 2011) claimed to demonstrate a theoretical basis for the superiority of lineup decisions that are based on absolute contributions, but the relationship between the decision weights and the criterion weakens this claim. These findings necessitate reconsidering the role of the relative/absolute judgment distinction in eyewitness decision making. PMID:23943556

  4. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  5. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  6. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  7. SU-E-T-491: Importance of Energy Dependent Protons Per MU Calibration Factors in IMPT Dose Calculations Using Monte Carlo Technique

    SciTech Connect

    Randeniya, S; Mirkovic, D; Titt, U; Guan, F; Mohan, R

    2014-06-01

    Purpose: In intensity modulated proton therapy (IMPT), energy dependent, protons per monitor unit (MU) calibration factors are important parameters that determine absolute dose values from energy deposition data obtained from Monte Carlo (MC) simulations. Purpose of this study was to assess the sensitivity of MC-computed absolute dose distributions to the protons/MU calibration factors in IMPT. Methods: A “verification plan” (i.e., treatment beams applied individually to water phantom) of a head and neck patient plan was calculated using MC technique. The patient plan had three beams; one posterior-anterior (PA); two anterior oblique. Dose prescription was 66 Gy in 30 fractions. Of the total MUs, 58% was delivered in PA beam, 25% and 17% in other two. Energy deposition data obtained from the MC simulation were converted to Gy using energy dependent protons/MU calibrations factors obtained from two methods. First method is based on experimental measurements and MC simulations. Second is based on hand calculations, based on how many ion pairs were produced per proton in the dose monitor and how many ion pairs is equal to 1 MU (vendor recommended method). Dose distributions obtained from method one was compared with those from method two. Results: Average difference of 8% in protons/MU calibration factors between method one and two converted into 27 % difference in absolute dose values for PA beam; although dose distributions preserved the shape of 3D dose distribution qualitatively, they were different quantitatively. For two oblique beams, significant difference in absolute dose was not observed. Conclusion: Results demonstrate that protons/MU calibration factors can have a significant impact on absolute dose values in IMPT depending on the fraction of MUs delivered. When number of MUs increases the effect due to the calibration factors amplify. In determining protons/MU calibration factors, experimental method should be preferred in MC dose calculations

  8. Benchmark Dose Modeling

    EPA Science Inventory

    Finite doses are employed in experimental toxicology studies. Under the traditional methodology, the point of departure (POD) value for low dose extrapolation is identified as one of these doses. Dose spacing necessarily precludes a more accurate description of the POD value. ...

  9. Non-Invasive Method of Determining Absolute Intracranial Pressure

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor); Hargens, Alan E. (Inventor)

    2004-01-01

    A method is presented for determining absolute intracranial pressure (ICP) in a patient. Skull expansion is monitored while changes in ICP are induced. The patient's blood pressure is measured when skull expansion is approximately zero. The measured blood pressure is indicative of a reference ICP value. Subsequently, the method causes a known change in ICP and measured the change in skull expansion associated therewith. The absolute ICP is a function of the reference ICP value, the known change in ICP and its associated change in skull expansion; and a measured change in skull expansion.

  10. Absolute bioavailability and disposition of lanthanum in healthy human subjects administered lanthanum carbonate.

    PubMed

    Pennick, Michael; Dennis, Kerry; Damment, Stephen J P

    2006-07-01

    Lanthanum carbonate [La2(CO3)3] is a noncalcium, non-aluminum phosphate binder indicated for hyperphosphatemia treatment in end-stage renal disease. A randomized, open-label, parallel-group, phase I study was conducted to determine absolute bioavailability and investigate excretory routes for systemic lanthanum in healthy subjects. Twenty-four male subjects were randomized to a single lanthanum chloride (LaCl3) intravenous infusion (120 microg elemental lanthanum over a 4-hour period), a single 1-g oral dose [chewable La2(CO3)3 tablets; 4 x 250 mg elemental lanthanum], or no treatment (control). Serial blood, urine, and fecal samples were collected for 7 days postdosing. The absolute bioavailability of lanthanum [administered as La2(CO3)3] was extremely low (0.00127% +/- 0.00080%), with individual values in the range of 0.00015% to 0.00224%. Renal clearance was negligible following oral administration (1.36 +/- 1.43 mL/min). Intravenous administration confirmed low renal clearance (0.95 +/- 0.60 mL/min), just 1.7% of total plasma clearance. Fecal lanthanum excretion was not quantifiable after intravenous administration owing to high and variable background fecal lanthanum and constraints on the size of the intravenous dose. These findings demonstrate that lanthanum absorption from the intestinal tract into the systemic circulation is extremely low and that absorbed drug is cleared predominantly by nonrenal mechanisms. PMID:16809799

  11. The Preference of Visualization in Teaching and Learning Absolute Value

    ERIC Educational Resources Information Center

    Konyalioglu, Alper Cihan; Aksu, Zeki; Senel, Esma Ozge

    2012-01-01

    Visualization is mostly despised although it complements and--sometimes--guides the analytical process. This study mainly investigates teachers' preferences concerning the use of the visualization method and determines the extent to which they encourage their students to make use of it within the problem-solving process. This study was conducted…

  12. The added value of the 90-day repeated dose oral toxicity test for industrial chemicals with a low (sub)acute toxicity profile in a high quality dataset.

    PubMed

    Taylor, Katy; Andrew, David J; Rego, Laura

    2014-08-01

    A survey conducted on the EU Notification of New Substances (NONS) database suggested that for industrial chemicals with a profile of low toxicity in (sub)acute toxicity tests there is little added value to the conduct of the 90-day repeated dose study. Avoiding unnecessary animal testing is a central aim of the EU REACH chemicals legislation; therefore we sought to verify the profile using additional data. The OECD's eChemPortal was searched for substances that had both a 28-day and a 90-day study and their robust study summaries were then examined from the ECHA CHEM database. Out of 182 substances with high quality 28-day and 90-day study results, only 18 reported no toxicity of any kind in the (sub)acute tests. However, for 16 of these there were also no reported signs of toxicity at or close to the limit dose (1000mg/kgbw/d) in the 90-day study. Restricting the 'low (sub)acute toxicity in a high quality dataset' profile to general industrial chemicals of no known biological activity, whilst allowing irritant substances, increases the data set and improves the prediction to 95% (20 substances out of 21 substances). The low toxicity profile appears to be of low prevalence within industrial chemicals (10-15%), nevertheless, avoidance of the conduct of a redundant 90-day study for this proportion of the remaining REACH phase-in substances would avoid the use of nearly 50,000 animals and save industry 50million Euros, with no impact on the assessment of human health. PMID:24768988

  13. The AFGL absolute gravity program

    NASA Technical Reports Server (NTRS)

    Hammond, J. A.; Iliff, R. L.

    1978-01-01

    A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.

  14. Global absolut gravity reference system as replacement of IGSN 71

    NASA Astrophysics Data System (ADS)

    Wilmes, Herbert; Wziontek, Hartmut; Falk, Reinhard

    2015-04-01

    The determination of precise gravity field parameters is of great importance in a period in which earth sciences are achieving the necessary accuracy to monitor and document global change processes. This is the reason why experts from geodesy and metrology joined in a successful cooperation to make absolute gravity observations traceable to SI quantities, to improve the metrological kilogram definition and to monitor mass movements and smallest height changes for geodetic and geophysical applications. The international gravity datum is still defined by the International Gravity Standardization Net adopted in 1971 (IGSN 71). The network is based upon pendulum and spring gravimeter observations taken in the 1950s and 60s supported by the early free fall absolute gravimeters. Its gravity values agreed in every case to better than 0.1 mGal. Today, more than 100 absolute gravimeters are in use worldwide. The series of repeated international comparisons confirms the traceability of absolute gravity measurements to SI quantities and confirm the degree of equivalence of the gravimeters in the order of a few µGal. For applications in geosciences where e.g. gravity changes over time need to be analyzed, the temporal stability of an absolute gravimeter is most important. Therefore, the proposition is made to replace the IGSN 71 by an up-to-date gravity reference system which is based upon repeated absolute gravimeter comparisons and a global network of well controlled gravity reference stations.

  15. Standardization of the cumulative absolute velocity

    SciTech Connect

    O'Hara, T.F.; Jacobson, J.P. )

    1991-12-01

    EPRI NP-5930, A Criterion for Determining Exceedance of the Operating Basis Earthquake,'' was published in July 1988. As defined in that report, the Operating Basis Earthquake (OBE) is exceeded when both a response spectrum parameter and a second damage parameter, referred to as the Cumulative Absolute Velocity (CAV), are exceeded. In the review process of the above report, it was noted that the calculation of CAV could be confounded by time history records of long duration containing low (nondamaging) acceleration. Therefore, it is necessary to standardize the method of calculating CAV to account for record length. This standardized methodology allows consistent comparisons between future CAV calculations and the adjusted CAV threshold value based upon applying the standardized methodology to the data set presented in EPRI NP-5930. The recommended method to standardize the CAV calculation is to window its calculation on a second-by-second basis for a given time history. If the absolute acceleration exceeds 0.025g at any time during each one second interval, the earthquake records used in EPRI NP-5930 have been reanalyzed and the adjusted threshold of damage for CAV was found to be 0.16g-set.

  16. Absolute rates of hole transfer in DNA.

    PubMed

    Senthilkumar, Kittusamy; Grozema, Ferdinand C; Guerra, Célia Fonseca; Bickelhaupt, F Matthias; Lewis, Frederick D; Berlin, Yuri A; Ratner, Mark A; Siebbeles, Laurens D A

    2005-10-26

    Absolute rates of hole transfer between guanine nucleobases separated by one or two A:T base pairs in stilbenedicarboxamide-linked DNA hairpins were obtained by improved kinetic analysis of experimental data. The charge-transfer rates in four different DNA sequences were calculated using a density-functional-based tight-binding model and a semiclassical superexchange model. Site energies and charge-transfer integrals were calculated directly as the diagonal and off-diagonal matrix elements of the Kohn-Sham Hamiltonian, respectively, for all possible combinations of nucleobases. Taking into account the Coulomb interaction between the negative charge on the stilbenedicarboxamide linker and the hole on the DNA strand as well as effects of base pair twisting, the relative order of the experimental rates for hole transfer in different hairpins could be reproduced by tight-binding calculations. To reproduce quantitatively the absolute values of the measured rate constants, the effect of the reorganization energy was taken into account within the semiclassical superexchange model for charge transfer. The experimental rates could be reproduced with reorganization energies near 1 eV. The quantum chemical data obtained were used to discuss charge carrier mobility and hole-transport equilibria in DNA. PMID:16231945

  17. Absolute/convective instability of planar viscoelastic jets

    NASA Astrophysics Data System (ADS)

    Ray, Prasun K.; Zaki, Tamer A.

    2015-01-01

    Spatiotemporal linear stability analysis is used to investigate the onset of local absolute instability in planar viscoelastic jets. The influence of viscoelasticity in dilute polymer solutions is modeled with the FENE-P constitutive equation which requires the specification of a non-dimensional polymer relaxation time (the Weissenberg number, We), the maximum polymer extensibility, L, and the ratio of solvent and solution viscosities, β. A two-parameter family of velocity profiles is used as the base state with the parameter, S, controlling the amount of co- or counter-flow while N-1 sets the thickness of the jet shear layer. We examine how the variation of these fluid and flow parameters affects the minimum value of S at which the flow becomes locally absolutely unstable. Initially setting the Reynolds number to Re = 500, we find that the first varicose jet-column mode dictates the presence of absolute instability, and increasing the Weissenberg number produces important changes in the nature of the instability. The region of absolute instability shifts towards thin shear layers, and the amount of back-flow needed for absolute instability decreases (i.e., the influence of viscoelasticity is destabilizing). Additionally, when We is sufficiently large and N-1 is sufficiently small, single-stream jets become absolutely unstable. Numerical experiments with approximate equations show that both the polymer and solvent contributions to the stress become destabilizing when the scaled shear rate, η = /W e dU¯1/dx 2L ( /d U ¯ 1 d x 2 is the base-state velocity gradient), is sufficiently large. These qualitative trends are largely unchanged when the Reynolds number is reduced; however, the relative importance of the destabilizing stresses increases tangibly. Consequently, absolute instability is substantially enhanced, and single-stream jets become absolutely unstable over a sizable portion of the parameter space.

  18. Monte Carlo calculations and measurements of absorbed dose per monitor unit for the treatment of uveal melanoma with proton therapy

    PubMed Central

    Koch, Nicholas; Newhauser, Wayne D; Titt, Uwe; Gombos, Dan; Coombes, Kevin; Starkschall, George

    2014-01-01

    The treatment of uveal melanoma with proton radiotherapy has provided excellent clinical outcomes. However, contemporary treatment planning systems use simplistic dose algorithms that limit the accuracy of relative dose distributions. Further, absolute predictions of absorbed dose per monitor unit are not yet available in these systems. The purpose of this study was to determine if Monte Carlo methods could predict dose per monitor unit (D/MU) value at the center of a proton spread-out Bragg peak (SOBP) to within 1% on measured values for a variety of treatment fields relevant to ocular proton therapy. The MCNPX Monte Carlo transport code, in combination with realistic models for the ocular beam delivery apparatus and a water phantom, was used to calculate dose distributions and D/MU values, which were verified by the measurements. Measured proton beam data included central-axis depth dose profiles, relative cross-field profiles and absolute D/MU measurements under several combinations of beam penetration ranges and range-modulation widths. The Monte Carlo method predicted D/MU values that agreed with measurement to within 1% and dose profiles that agreed with measurement to within 3% of peak dose or within 0.5 mm distance-to-agreement. Lastly, a demonstration of the clinical utility of this technique included calculations of dose distributions and D/MU values in a realistic model of the human eye. It is possible to predict D/MU values accurately for clinical relevant range-modulated proton beams for ocular therapy using the Monte Carlo method. It is thus feasible to use the Monte Carlo method as a routine absolute dose algorithm for ocular proton therapy. PMID:18367789

  19. Value of Single-Dose Contrast-Enhanced Magnetic Resonance Angiography Versus Intraarterial Digital Subtraction Angiography in Therapy Indications in Abdominal and Iliac Arteries

    SciTech Connect

    Schaefer, Philipp J. Schaefer, Fritz K. W.; Mueller-Huelsbeck, Stefan; Both, Markus; Heller, Martin; Jahnke, Thomas

    2007-06-15

    The objective of the study was to prove the value of single-dose contrast-enhanced magnetic resonance angiography [three-dimensional (3D) ceMRA] in abdominal and iliac arteries versus the reference standard intra-arterial digital subtraction angiography (i.a.DSA) when indicating a therapy. Patients suspected of having abdominal or iliac artery stenosis were included in this study. A positive vote of the local Ethics Committee was given. After written informed consent was obtained, 37 patients were enrolled, of which 34 were available for image evaluation. Both 3D ceMRA and i.a. DSA were performed for each patient. The dosage for 3D ceMRA was 0.1 mmol/kg body weight in a 1.5-T scanner with a phased-array coil. The parameters of the 3D-FLASH sequence were as follows: TR/TE 4.6/1.8 ms, effective thickness 3.5 mm, matrix 512 x 200, flip angle 30{sup o}, field of view 420 mm, TA 23 s, coronal scan orientation. Totally, 476 vessel segments were evaluated for stenosis degree by two radiologists in a consensus fashion in a blinded read. For each patient, a therapy was proposed, if clinically indicated. Sensitivity, specificity, positive and negative predictive values, and accuracy for stenoses {>=}50% were 68%, 92%, 44%, 97%, and 90%, respectively. In 13/34 patients, a discrepancy was found concerning therapy decisions based on MRA findings versus therapy decisions based on the reference standard DSA. The results showed that the used MRA imaging technique of abdominal and iliac arteries is not competitive to i.a. DSA, with a high rate of misinterpretation of the MRAs resulting in incorrect therapies.

  20. Absolute instability of a viscous hollow jet

    NASA Astrophysics Data System (ADS)

    Gañán-Calvo, Alfonso M.

    2007-02-01

    An investigation of the spatiotemporal stability of hollow jets in unbounded coflowing liquids, using a general dispersion relation previously derived, shows them to be absolutely unstable for all physical values of the Reynolds and Weber numbers. The roots of the symmetry breakdown with respect to the liquid jet case, and the validity of asymptotic models are here studied in detail. Asymptotic analyses for low and high Reynolds numbers are provided, showing that old and well-established limiting dispersion relations [J. W. S. Rayleigh, The Theory of Sound (Dover, New York, 1945); S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1961)] should be used with caution. In the creeping flow limit, the analysis shows that, if the hollow jet is filled with any finite density and viscosity fluid, a steady jet could be made arbitrarily small (compatible with the continuum hypothesis) if the coflowing liquid moves faster than a critical velocity.

  1. Stitching interferometry: recent results and absolute calibration

    NASA Astrophysics Data System (ADS)

    Bray, Michael

    2004-02-01

    Stitching Interferometry is a method of analysing large optical components using a standard "small" interferometer. This result is obtained by taking multiple overlapping images of the large component, and numerically "stitching" these sub-apertures together. We have already reported the industrial use our Stitching Interferometry systems (Previous SPIE symposia), but experimental results had been lacking because this technique is still new, and users needed to get accustomed to it before producing reliable measurements. We now have more results. We will report user comments and show new, unpublished results. We will discuss sources of error, and show how some of these can be reduced to arbitrarily small values. These will be discussed in some detail. We conclude with a few graphical examples of absolute measurements performed by us.

  2. Lyman alpha SMM/UVSP absolute calibration and geocoronal correction

    NASA Technical Reports Server (NTRS)

    Fontenla, Juan M.; Reichmann, Edwin J.

    1987-01-01

    Lyman alpha observations from the Ultraviolet Spectrometer Polarimeter (UVSP) instrument of the Solar Maximum Mission (SMM) spacecraft were analyzed and provide instrumental calibration details. Specific values of the instrument quantum efficiency, Lyman alpha absolute intensity, and correction for geocoronal absorption are presented.

  3. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  4. Absolute photon-flux measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Haddad, G. N.

    1974-01-01

    Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.

  5. Absolute bioavailability, pharmacokinetics, and urinary excretion of the novel antimigraine agent almotriptan in healthy male volunteers.

    PubMed

    Jansat, Josep M; Costa, Joan; Salvà, Pau; Fernandez, Francisco J; Martinez-Tobed, Antonio

    2002-12-01

    Absolute bioavailability, pharmacokinetics, and urinary excretion of almotriptan, a novel 5-HT(1B/1D) receptor agonist, were studied in 18 healthy males following single intravenous (i.v.) (3 mg), subcutaneous (s.c.) (6 mg), and oral (25 mg) doses. Volunteers received each dose in a randomized sequence separated by a 7-day washout. Blood and urine samples for pharmacokinetic evaluations were taken for up to 24 hours after dosing. The disposition kinetics of almotriptan after i.v. and s.c. administration showed biphasic decline described by a two-compartment model. The fastest disposition phase was well observed, although estimates of the rate constant showed high variability. After s.c. administration of almotriptan, the bioavailability was 100% with a time to maximum plasma concentration (tmax) of 5 to 15 minutes, whereas after oral administration, the bioavailability was about 70% with a tmax of 1.5 to 3.0 hours. No significant differences were observed between administration routes in the elimination half-life (t(1/2), obtaining mean values ranging from 3.4 to 3.6 hours. The volume of distribution, total clearance, and t(1/2) indicated that almotriptan was extensively distributed and rapidly cleared from the body irrespective of dose or route of administration. The primary route of elimination was renal clearance (approximately 50%-60% of total body clearance). About 65% of the i.v. and s.c. dose and 45% of the oral dose were excreted unchanged in urine in 24 hours, with nearly 90% of this in the first 12 hours. Renal clearance was approximately 2- to 3-fold that of the glomerular filtration rate in man, suggesting that almotriptan is eliminated in part by renal tubular secretion. PMID:12463724

  6. Evaluation of S-values and dose distributions for {sup 90}Y, {sup 131}I, {sup 166}Ho, and {sup 188}Re in seven lobes of the rat liver

    SciTech Connect

    Xie Tianwu; Liu Qian; Zaidi, Habib

    2012-03-15

    Purpose: Rats have been widely used in radionuclide therapy research for the treatment of hepatocellular carcinoma (HCC). This has created the need to assess rat liver absorbed radiation dose. In most dose estimation studies, the rat liver is considered as a homogeneous integrated target organ with a tissue composition assumed to be similar to that of human liver tissue. However, the rat liver is composed of several lobes having different anatomical and chemical characteristics. To assess the overall impact on rat liver dose calculation, the authors use a new voxel-based rat model with identified suborgan regions of the liver. Methods: The liver in the original cryosectional color images was manually segmented into seven individual lobes and subsequently integrated into a voxel-based computational rat model. Photon and electron particle transport was simulated using the MCNPX Monte Carlo code to calculate absorbed fractions and S-values for {sup 90}Y, {sup 131}I, {sup 166}Ho, and {sup 188}Re for the seven liver lobes. The effect of chemical composition on organ-specific absorbed dose was investigated by changing the chemical composition of the voxel filling liver material. Radionuclide-specific absorbed doses at the voxel level were further assessed for a small spherical hepatic tumor. Results: The self-absorbed dose for different liver lobes varied depending on their respective masses. A maximum difference of 3.5% was observed for the liver self-absorbed fraction between rat and human tissues for photon energies below 100 keV. {sup 166}Ho and {sup 188}Re produce a uniformly distributed high dose in the tumor and relatively low absorbed dose for surrounding tissues. Conclusions: The authors evaluated rat liver radiation doses from various radionuclides used in HCC treatments using a realistic computational rat model. This work contributes to a better understanding of all aspects influencing radiation transport in organ-specific radiation dose evaluation for

  7. Improving HST Pointing & Absolute Astrometry

    NASA Astrophysics Data System (ADS)

    Lallo, Matthew; Nelan, E.; Kimmer, E.; Cox, C.; Casertano, S.

    2007-05-01

    Accurate absolute astrometry is becoming increasingly important in an era of multi-mission archives and virtual observatories. Hubble Space Telescope's (HST's) Guidestar Catalog II (GSC2) has reduced coordinate error to around 0.25 arcsecond, a factor 2 or more compared with GSC1. With this reduced catalog error, special attention must be given to calibrate and maintain the Fine Guidance Sensors (FGSs) and Science Instruments (SIs) alignments in HST to a level well below this in order to ensure that the accuracy of science product's astrometry keywords and target positioning are limited only by the catalog errors. After HST Servicing Mission 4, such calibrations' improvement in "blind" pointing accuracy will allow for more efficient COS acquisitions. Multiple SIs and FGSs each have their own footprints in the spatially shared HST focal plane. It is the small changes over time in primarily the whole-body positions & orientations of these instruments & guiders relative to one another that is addressed by this work. We describe the HST Cycle 15 program CAL/OTA 11021 which, along with future variants of it, determines and maintains positions and orientations of the SIs and FGSs to better than 50 milli- arcseconds and 0.04 to 0.004 degrees of roll, putting errors associated with the alignment sufficiently below GSC2 errors. We present recent alignment results and assess their errors, illustrate trends, and describe where and how the observer sees benefit from these calibrations when using HST.

  8. Absolute Instability in Coupled-Cavity TWTs

    NASA Astrophysics Data System (ADS)

    Hung, D. M. H.; Rittersdorf, I. M.; Zhang, Peng; Lau, Y. Y.; Simon, D. H.; Gilgenbach, R. M.; Chernin, D.; Antonsen, T. M., Jr.

    2014-10-01

    This paper will present results of our analysis of absolute instability in a coupled-cavity traveling wave tube (TWT). The structure mode at the lower and upper band edges are respectively approximated by a hyperbola in the (omega, k) plane. When the Briggs-Bers criterion is applied, a threshold current for onset of absolute instability is observed at the upper band edge, but not the lower band edge. The nonexistence of absolute instability at the lower band edge is mathematically similar to the nonexistence of absolute instability that we recently demonstrated for a dielectric TWT. The existence of absolute instability at the upper band edge is mathematically similar to the existence of absolute instability in a gyroton traveling wave amplifier. These interesting observations will be discussed, and the practical implications will be explored. This work was supported by AFOSR, ONR, and L-3 Communications Electron Devices.

  9. Validation of GOCE by absolute and relative gravimetry

    NASA Astrophysics Data System (ADS)

    Pettersen, B. R.; Sprlak, M.; Lysaker, D. I.; Omang, O. C. D.; Sekowski, M.; Dykowski, P.

    2012-04-01

    Absolute gravimetry has been performed in 2011 by FG5 and A10 instruments in selected sites of the Norwegian first order gravity network. These observations are used as reference values to transform a large number of relative gravity values collected in 1968-1972. The outcome is a database at current epoch in a reference frame defined by the absolute gravity values. This constitutes our test field for validation of GOCE results. In the test fields, validation of GOCE-derived gravity anomalies was performed. The spectral enhancement method was applied to avoid the spectral inconsistency between the terrestrial and the satellite data. For this purpose, contributions of the EGM2008 model and a gravitational effect of a residual terrain model were calculated.

  10. Absolute negative mobility of interacting Brownian particles

    NASA Astrophysics Data System (ADS)

    Ou, Ya-li; Hu, Cai-tian; Wu, Jian-chun; Ai, Bao-quan

    2015-12-01

    Transport of interacting Brownian particles in a periodic potential is investigated in the presence of an ac force and a dc force. From Brownian dynamic simulations, we find that both the interaction between particles and the thermal fluctuations play key roles in the absolute negative mobility (the particle noisily moves backwards against a small constant bias). When no the interaction acts, there is only one region where the absolute negative mobility occurs. In the presence of the interaction, the absolute negative mobility may appear in multiple regions. The weak interaction can be helpful for the absolute negative mobility, while the strong interaction has a destructive impact on it.

  11. Development and verification of an analytical algorithm to predict absorbed dose distributions in ocular proton therapy using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Koch, Nicholas C.; Newhauser, Wayne D.

    2010-02-01

    Proton beam radiotherapy is an effective and non-invasive treatment for uveal melanoma. Recent research efforts have focused on improving the dosimetric accuracy of treatment planning and overcoming the present limitation of relative analytical dose calculations. Monte Carlo algorithms have been shown to accurately predict dose per monitor unit (D/MU) values, but this has yet to be shown for analytical algorithms dedicated to ocular proton therapy, which are typically less computationally expensive than Monte Carlo algorithms. The objective of this study was to determine if an analytical method could predict absolute dose distributions and D/MU values for a variety of treatment fields like those used in ocular proton therapy. To accomplish this objective, we used a previously validated Monte Carlo model of an ocular nozzle to develop an analytical algorithm to predict three-dimensional distributions of D/MU values from pristine Bragg peaks and therapeutically useful spread-out Bragg peaks (SOBPs). Results demonstrated generally good agreement between the analytical and Monte Carlo absolute dose calculations. While agreement in the proximal region decreased for beams with less penetrating Bragg peaks compared with the open-beam condition, the difference was shown to be largely attributable to edge-scattered protons. A method for including this effect in any future analytical algorithm was proposed. Comparisons of D/MU values showed typical agreement to within 0.5%. We conclude that analytical algorithms can be employed to accurately predict absolute proton dose distributions delivered by an ocular nozzle.

  12. Predictive value of phase I trials for safety in later trials and final approved dose: analysis of 61 approved cancer drugs.

    PubMed

    Jardim, Denis L; Hess, Kenneth R; Lorusso, Patricia; Kurzrock, Razelle; Hong, David S

    2014-01-15

    Phase I trials use a small number of patients to define a maximum tolerated dose (MTD) and the safety of new agents. We compared data from phase I and registration trials to determine whether early trials predicted later safety and final dose. We searched the U.S. Food and Drug Administration (FDA) website for drugs approved in nonpediatric cancers (January 1990-October 2012). The recommended phase II dose (R2PD) and toxicities from phase I were compared with doses and safety in later trials. In 62 of 85 (73%) matched trials, the dose from the later trial was within 20% of the RP2D. In a multivariable analysis, phase I trials of targeted agents were less predictive of the final approved dose (OR, 0.2 for adopting ± 20% of the RP2D for targeted vs. other classes; P = 0.025). Of the 530 clinically relevant toxicities in later trials, 70% (n = 374) were described in phase I. A significant relationship (P = 0.0032) between increasing the number of patients in phase I (up to 60) and the ability to describe future clinically relevant toxicities was observed. Among 28,505 patients in later trials, the death rate that was related to drug was 1.41%. In conclusion, dosing based on phase I trials was associated with a low toxicity-related death rate in later trials. The ability to predict relevant toxicities correlates with the number of patients on the initial phase I trial. The final dose approved was within 20% of the RP2D in 73% of assessed trials. PMID:24190980

  13. Optimizing Collimator Margins for Isotoxically Dose-Escalated Conformal Radiation Therapy of Non-Small Cell Lung Cancer

    SciTech Connect

    Warren, Samantha; Panettieri, Vanessa; Panakis, Niki; Bates, Nicholas; Lester, Jason F.; Jain, Pooja; Landau, David B.; Nahum, Alan E.; Mayles, W. Philip M.; Fenwick, John D.

    2014-04-01

    Purpose: Isotoxic dose escalation schedules such as IDEAL-CRT [isotoxic dose escalation and acceleration in lung cancer chemoradiation therapy] (ISRCTN12155469) individualize doses prescribed to lung tumors, generating a fixed modeled risk of radiation pneumonitis. Because the beam penumbra is broadened in lung, the choice of collimator margin is an important element of the optimization of isotoxic conformal radiation therapy for lung cancer. Methods and Materials: Twelve patients with stage I-III non-small cell lung cancer (NSCLC) were replanned retrospectively using a range of collimator margins. For each plan, the prescribed dose was calculated according to the IDEAL-CRT isotoxic prescription method, and the absolute dose (D{sub 99}) delivered to 99% of the planning target volume (PTV) was determined. Results: Reducing the multileaf collimator margin from the widely used 7 mm to a value of 2 mm produced gains of 2.1 to 15.6 Gy in absolute PTV D{sub 99}, with a mean gain ± 1 standard error of the mean of 6.2 ± 1.1 Gy (2-sided P<.001). Conclusions: For NSCLC patients treated with conformal radiation therapy and an isotoxic dose prescription, absolute doses in the PTV may be increased by using smaller collimator margins, reductions in relative coverage being offset by increases in prescribed dose.

  14. Tolerance doses for treatment planning

    SciTech Connect

    Lyman, J.T.

    1985-10-01

    Data for the tolerance of normal tissues or organs to (low-LET) radiation has been compiled from a number of sources which are referenced at the end of this document. This tolerance dose data are ostensibly for uniform irradiation of all or part of an organ, and are for either 5% (TD/sub 5/) or 50% (TD/sub 50/) complication probability. The ''size'' of the irradiated organ is variously stated in terms of the absolute volume or the fraction of the organ volume irradiated, or the area or the length of the treatment field. The accuracy of these data is questionable. Much of the data represents doses that one or several experienced therapists have estimated could be safely given rather than quantitative analyses of clinical observations. Because these data have been obtained from multiple sources with possible different criteria for the definition of a complication, there are sometimes different values for what is apparently the same endpoint. The data from some sources shows a tendancy to be quantized in 5 Gy increments. This reflects the size of possible round off errors. It is believed that all these data have been accumulated without the benefit of 3-D dose distributions and therefore the estimates of the size of the volume and/or the uniformity of the irradiation may be less accurate than is now possible. 19 refs., 4 figs.

  15. Mathematical Model for Absolute Magnetic Measuring Systems in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Fügenschuh, Armin; Fügenschuh, Marzena; Ludszuweit, Marina; Mojsic, Aleksandar; Sokół, Joanna

    2015-09-01

    Scales for measuring systems are either based on incremental or absolute measuring methods. Incremental scales need to initialize a measurement cycle at a reference point. From there, the position is computed by counting increments of a periodic graduation. Absolute methods do not need reference points, since the position can be read directly from the scale. The positions on the complete scales are encoded using two incremental tracks with different graduation. We present a new method for absolute measuring using only one track for position encoding up to micrometre range. Instead of the common perpendicular magnetic areas, we use a pattern of trapezoidal magnetic areas, to store more complex information. For positioning, we use the magnetic field where every position is characterized by a set of values measured by a hall sensor array. We implement a method for reconstruction of absolute positions from the set of unique measured values. We compare two patterns with respect to uniqueness, accuracy, stability and robustness of positioning. We discuss how stability and robustness are influenced by different errors during the measurement in real applications and how those errors can be compensated.

  16. Direct comparisons between absolute and relative geomagnetic paleointensities: Absolute calibration of a relative paleointensity stack

    NASA Astrophysics Data System (ADS)

    Mochizuki, N.; Yamamoto, Y.; Hatakeyama, T.; Shibuya, H.

    2013-12-01

    Absolute geomagnetic paleointensities (APIs) have been estimated from igneous rocks, while relative paleomagnetic intensities (RPIs) have been reported from sediment cores. These two datasets have been treated separately, as correlations between APIs and RPIs are difficult on account of age uncertainties. High-resolution RPI stacks have been constructed from globally distributed sediment cores with high sedimentation rates. Previous studies often assumed that the RPI stacks have a linear relationship with geomagnetic axial dipole moments, and calibrated the RPI values to API values. However, the assumption of a linear relationship between APIs and RPIs has not been evaluated. Also, a quantitative calibration method for the RPI is lacking. We present a procedure for directly comparing API and RPI stacks, thus allowing reliable calibrations of RPIs. Direct comparisons between APIs and RPIs were conducted with virtually no associated age errors using both tephrochronologic correlations and RPI minima. Using the stratigraphic positions of tephra layers in oxygen isotope stratigraphic records, we directly compared the RPIs and APIs reported from welded tuffs contemporaneously extruded with the tephra layers. In addition, RPI minima during geomagnetic reversals and excursions were compared with APIs corresponding to the reversals and excursions. The comparison of APIs and RPIs at these exact points allowed a reliable calibration of the RPI values. We applied this direct comparison procedure to the global RPI stack PISO-1500. For six independent calibration points, virtual axial dipole moments (VADMs) from the corresponding APIs and RPIs of the PISO-1500 stack showed a near-linear relationship. On the basis of the linear relationship, RPIs of the stack were successfully calibrated to the VADMs. The direct comparison procedure provides an absolute calibration method that will contribute to the recovery of temporal variations and distributions of geomagnetic axial dipole

  17. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  18. Monolithically integrated absolute frequency comb laser system

    DOEpatents

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  19. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  20. Absolute Gravity Datum in the Age of Cold Atom Gravimeters

    NASA Astrophysics Data System (ADS)

    Childers, V. A.; Eckl, M. C.

    2014-12-01

    The international gravity datum is defined today by the International Gravity Standardization Net of 1971 (IGSN-71). The data supporting this network was measured in the 1950s and 60s using pendulum and spring-based gravimeter ties (plus some new ballistic absolute meters) to replace the prior protocol of referencing all gravity values to the earlier Potsdam value. Since this time, gravimeter technology has advanced significantly with the development and refinement of the FG-5 (the current standard of the industry) and again with the soon-to-be-available cold atom interferometric absolute gravimeters. This latest development is anticipated to provide improvement in the range of two orders of magnitude as compared to the measurement accuracy of technology utilized to develop ISGN-71. In this presentation, we will explore how the IGSN-71 might best be "modernized" given today's requirements and available instruments and resources. The National Geodetic Survey (NGS), along with other relevant US Government agencies, is concerned about establishing gravity control to establish and maintain high order geodetic networks as part of the nation's essential infrastructure. The need to modernize the nation's geodetic infrastructure was highlighted in "Precise Geodetic Infrastructure, National Requirements for a Shared Resource" National Academy of Science, 2010. The NGS mission, as dictated by Congress, is to establish and maintain the National Spatial Reference System, which includes gravity measurements. Absolute gravimeters measure the total gravity field directly and do not involve ties to other measurements. Periodic "intercomparisons" of multiple absolute gravimeters at reference gravity sites are used to constrain the behavior of the instruments to ensure that each would yield reasonably similar measurements of the same location (i.e. yield a sufficiently consistent datum when measured in disparate locales). New atomic interferometric gravimeters promise a significant

  1. Absolute magnitudes and phase coefficients of trans-Neptunian objects

    NASA Astrophysics Data System (ADS)

    Alvarez-Candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Duffard, R.; Morales, N.; Santos-Sanz, P.; Thirouin, A.; Silva, J. S.

    2016-02-01

    Context. Accurate measurements of diameters of trans-Neptunian objects (TNOs) are extremely difficult to obtain. Thermal modeling can provide good results, but accurate absolute magnitudes are needed to constrain the thermal models and derive diameters and geometric albedos. The absolute magnitude, HV, is defined as the magnitude of the object reduced to unit helio- and geocentric distances and a zero solar phase angle and is determined using phase curves. Phase coefficients can also be obtained from phase curves. These are related to surface properties, but only few are known. Aims: Our objective is to measure accurate V-band absolute magnitudes and phase coefficients for a sample of TNOs, many of which have been observed and modeled within the program "TNOs are cool", which is one of the Herschel Space Observatory key projects. Methods: We observed 56 objects using the V and R filters. These data, along with those available in the literature, were used to obtain phase curves and measure V-band absolute magnitudes and phase coefficients by assuming a linear trend of the phase curves and considering a magnitude variability that is due to the rotational light-curve. Results: We obtained 237 new magnitudes for the 56 objects, six of which were without previously reported measurements. Including the data from the literature, we report a total of 110 absolute magnitudes with their respective phase coefficients. The average value of HV is 6.39, bracketed by a minimum of 14.60 and a maximum of -1.12. For the phase coefficients we report a median value of 0.10 mag per degree and a very large dispersion, ranging from -0.88 up to 1.35 mag per degree.

  2. Engine performance and the determination of absolute ceiling

    NASA Technical Reports Server (NTRS)

    Diehl, Walter S

    1924-01-01

    This report contains a brief study of the variation of engine power with temperature and pressure. The variation of propeller efficiency in standard atmosphere is obtained from the general efficiency curve which is developed in NACA report no. 168. The variation of both power available and power required are then determined and curves plotted, so that the absolute ceiling may be read directly from any known sea-level value of the ratio of power available to power required.

  3. On the Absolute Continuity of the Blackwell Measure

    NASA Astrophysics Data System (ADS)

    Bárány, Balázs; Kolossváry, István

    2015-04-01

    In 1957, Blackwell expressed the entropy of hidden Markov chains using a measure which can be characterised as an invariant measure for an iterated function system with place-dependent weights. This measure, called the Blackwell measure, plays a central role in understanding the entropy rate and other important characteristics of fundamental models in information theory. We show that for a suitable set of parameter values the Blackwell measure is absolutely continuous for almost every parameter in the case of binary symmetric channels.

  4. Assignment of absolute stereochemistry by computation of optical rotation angles

    NASA Astrophysics Data System (ADS)

    Kondru, Rama Krishna

    We have developed simple wire and molecular orbital models to qualitatively and quantitatively understand optical rotation angles of molecules. We reported the first ab initio theoretical approach to determine the absolute stereochemistry of a complex natural product by calculating molar rotation angles, [M]D. We applied this method for an unambiguous assignment of the absolute stereochemistry of the hennoxazole A. A protocol analogous to population analysis was devised to analyze atomic contributions to the rotation angles for oxiranes, orthoesters, and other organic compounds. The molar rotations for an indoline, an indonone, menthol and menthone were calculated using ab inito methods and compared with experimental values. We reported the first prediction of the absolute configuration of a natural product, i.e. an a priori assignment of the relative and absolute stereochemistry of pitiamide A. Furthermore, we described a strategy that may help to establish structure-function relations for rotation angles by visualizing the electric and magnetic-field perturbations to a molecule's molecular orbitals.

  5. Determination of absolute structure using Bayesian statistics on Bijvoet differences

    PubMed Central

    Hooft, Rob W. W.; Straver, Leo H.; Spek, Anthony L.

    2008-01-01

    A new probabilistic approach is introduced for the determination of the absolute structure of a compound which is known to be enantiopure based on Bijvoet-pair intensity differences. The new method provides relative probabilities for different models of the chiral composition of the structure. The outcome of this type of analysis can also be cast in the form of a new value, along with associated standard uncertainty, that resembles the value of the well known Flack x parameter. The standard uncertainty we obtain is often about half of the standard uncertainty in the value of the Flack x parameter. The proposed formalism is suited in particular to absolute configuration determination from diffraction data of biologically active (pharmaceutical) compounds where the strongest resonant scattering signal often comes from oxygen. It is shown that a reliable absolute configuration assignment in such cases can be made on the basis of Cu Kα data, and in some cases even with carefully measured Mo Kα data. PMID:19461838

  6. Dose sculpting with generalized equivalent uniform dose

    SciTech Connect

    Wu Qiuwen; Djajaputra, David; Liu, Helen H.; Dong Lei; Mohan, Radhe; Wu, Yan

    2005-05-01

    With intensity-modulated radiotherapy (IMRT), a variety of user-defined dose distribution can be produced using inverse planning. The generalized equivalent uniform dose (gEUD) has been used in IMRT optimization as an alternative objective function to the conventional dose-volume-based criteria. The purpose of this study was to investigate the effectiveness of gEUD optimization to fine tune the dose distributions of IMRT plans. We analyzed the effect of gEUD-based optimization parameters on plan quality. The objective was to determine whether dose distribution to selected structures could be improved using gEUD optimization without adversely altering the doses delivered to other structures, as in sculpting. We hypothesized that by carefully defining gEUD parameters (EUD{sub 0} and n) based on the current dose distributions, the optimization system could be instructed to search for alternative solutions in the neighborhood, and we could maintain the dose distributions for structures already satisfactory and improve dose for structures that need enhancement. We started with an already acceptable IMRT plan optimized with any objective function. The dose distribution was analyzed first. For structures that dose should not be changed, a higher value of n was used and EUD{sub 0} was set slightly higher/lower than the EUD value at the current dose distribution for critical structures/targets. For structures that needed improvement in dose, a higher to medium value of n was used, and EUD{sub 0} was set to the EUD value or slightly lower/higher for the critical structure/target at the current dose distribution. We evaluated this method in one clinical case each of head and neck, lung and prostate cancer. Dose volume histograms, isodose distributions, and relevant tolerance doses for critical structures were used for the assessment. We found that by adjusting gEUD optimization parameters, the dose distribution could be improved with only a few iterations. A larger value of n

  7. SU-E-T-179: Exploring Appropriate Offset Values for Pencil Beam and Monte Carlo Dose Optimization in Lung Stereotactic Body Radiotherapy Encompassing the Effects of Respiration and Tumor Location

    SciTech Connect

    Evans, G; Shang, C; Leventouri, T

    2014-06-01

    Purpose: Exploring appropriate offset values in dose optimization with pencil beam (PB) algorithm to minimize dosimetric differences with plans calculated with Monte Carlo (MC) for lung cancer treatment with Stereotactic Body Radiotherapy (SBRT). Methods: 20 cases of Non-Small Cell Lung Cancer, treated with gated full motion range SBRT were selected. According to the proximity of the Gross Tumor Volume (GTV) to the chest wall, two groups are defined: peripherally located when GTV merges with the chest wall for at least 50% of the lesion diameter, and centrally located when the GTV is surrounded by lung tissue. Treatment plans were created on 4D average intensity projection (AIP) CT set with Brainlab iPlanDose 4.1.2 planning system. The D97 of PTV was normalized to 50Gy using the fast PB and compared with MC. The optimized plan was then recomputed over each 4D respiratory phase, and compared with MC using the same plan MU's. Results: The mean difference in the PB and MC D97 of the ITV was 10.5% (±0.8%) of the prescription dose (50Gy). PB algorithm showed 2.3–2.4% less overestimation to the D97 of the ITV, when comparing to MC, in the maximum exhalation phase than in the maximal inhalation phase. Significantly smaller dose difference between PB and MC is also shown in plans for peripheral lesions (7.7 ± 0.7%) versus for central lesions (12.7±0.8%) (p< 0.01). Conclusion: The dosimetric differences between PB and MC can be reasonably predicted depending on the location of lesion in the lung, and may be used as offset value in dose optimization with PB. Since the maximal exhalation phase demonstrates less dose discrepancy between the two algorithms than that in maximal inhalation phase, caution is suggested when the latter is included as a major phase portion in the respiration gated lung SBRT.

  8. Absolute optical instruments without spherical symmetry

    NASA Astrophysics Data System (ADS)

    Tyc, Tomáš; Dao, H. L.; Danner, Aaron J.

    2015-11-01

    Until now, the known set of absolute optical instruments has been limited to those containing high levels of symmetry. Here, we demonstrate a method of mathematically constructing refractive index profiles that result in asymmetric absolute optical instruments. The method is based on the analogy between geometrical optics and classical mechanics and employs Lagrangians that separate in Cartesian coordinates. In addition, our method can be used to construct the index profiles of most previously known absolute optical instruments, as well as infinitely many different ones.

  9. Feasibility Study of Using Gemstone Spectral Imaging (GSI) and Adaptive Statistical Iterative Reconstruction (ASIR) for Reducing Radiation and Iodine Contrast Dose in Abdominal CT Patients with High BMI Values

    PubMed Central

    Zhu, Zheng; Zhao, Xin-ming; Zhao, Yan-feng; Wang, Xiao-yi; Zhou, Chun-wu

    2015-01-01

    Purpose To prospectively investigate the effect of using Gemstone Spectral Imaging (GSI) and adaptive statistical iterative reconstruction (ASIR) for reducing radiation and iodine contrast dose in abdominal CT patients with high BMI values. Materials and Methods 26 patients (weight > 65kg and BMI ≥ 22) underwent abdominal CT using GSI mode with 300mgI/kg contrast material as study group (group A). Another 21 patients (weight ≤ 65kg and BMI ≥ 22) were scanned with a conventional 120 kVp tube voltage for noise index (NI) of 11 with 450mgI/kg contrast material as control group (group B). GSI images were reconstructed at 60keV with 50%ASIR and the conventional 120kVp images were reconstructed with FBP reconstruction. The CT values, standard deviation (SD), signal-noise-ratio (SNR), contrast-noise-ratio (CNR) of 26 landmarks were quantitatively measured and image quality qualitatively assessed using statistical analysis. Results As for the quantitative analysis, the difference of CNR between groups A and B was all significant except for the mesenteric vein. The SNR in group A was higher than B except the mesenteric artery and splenic artery. As for the qualitative analysis, all images had diagnostic quality and the agreement for image quality assessment between the reviewers was substantial (kappa = 0.684). CT dose index (CTDI) values for non-enhanced, arterial phase and portal phase in group A were decreased by 49.04%, 40.51% and 40.54% compared with group B (P = 0.000), respectively. The total dose and the injection rate for the contrast material were reduced by 14.40% and 14.95% in A compared with B. Conclusion The use of GSI and ASIR provides similar enhancement in vessels and image quality with reduced radiation dose and contrast dose, compared with the use of conventional scan protocol. PMID:26079259

  10. An experimental measurement of galactic cosmic radiation dose in conventional aircraft between San Francisco and London compared to theoretical values for conventional and supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Wallace, R.; Boyer, M. F.

    1972-01-01

    These direct measurements are in fair agreement with computations made using a program which considers both basic cosmic ray atmospheric physics and the focusing effect of the earth's magnetic field. These measurements also agree with those made at supersonic jet aircraft altitudes in Rb-57 aircraft. It is concluded that experiments and theory show that the doses received at conventional jet aircraft altitudes are slightly higher than those encountered in supersonic flights at much higher altitudes.

  11. Absolute magnitudes of trans-neptunian objects

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Alvarez-candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Morales, N.; Santos-Sanz, P.; Thirouin, A.

    2015-10-01

    Accurate measurements of diameters of trans- Neptunian objects are extremely complicated to obtain. Radiomatric techniques applied to thermal measurements can provide good results, but precise absolute magnitudes are needed to constrain diameters and albedos. Our objective is to measure accurate absolute magnitudes for a sample of trans- Neptunian objects, many of which have been observed, and modelled, by the "TNOs are cool" team, one of Herschel Space Observatory key projects grantes with ~ 400 hours of observing time. We observed 56 objects in filters V and R, if possible. These data, along with data available in the literature, was used to obtain phase curves and to measure absolute magnitudes by assuming a linear trend of the phase curves and considering magnitude variability due to rotational light-curve. In total we obtained 234 new magnitudes for the 56 objects, 6 of them with no reported previous measurements. Including the data from the literature we report a total of 109 absolute magnitudes.

  12. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  13. GNSS Absolute Antenna Calibration at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G. L.; Bilich, A. L.; Geoghegan, C.

    2011-12-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. To help meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) now operates an absolute antenna calibration facility. Located in Corbin, Virginia, this facility uses field measurements and actual GNSS satellite signals to quantitatively determine the carrier phase advance/delay introduced by the antenna element. The NGS facility was built to serve traditional NGS constituents such as the surveying and geodesy communities, however calibration services are open and available to all GNSS users as the calibration schedule permits. All phase center patterns computed by this facility will be publicly available and disseminated in both the ANTEX and NGS formats. We describe the NGS calibration facility, and discuss the observation models and strategy currently used to generate NGS absolute calibrations. We demonstrate that NGS absolute phase center variation (PCV) patterns are consistent with published values determined by other absolute antenna calibration facilities, and compare absolute calibrations to the traditional NGS relative calibrations.

  14. Absolute photoionization cross-section of the propargyl radical

    SciTech Connect

    Savee, John D.; Welz, Oliver; Taatjes, Craig A.; Osborn, David L.; Soorkia, Satchin; Selby, Talitha M.

    2012-04-07

    Using synchrotron-generated vacuum-ultraviolet radiation and multiplexed time-resolved photoionization mass spectrometry we have measured the absolute photoionization cross-section for the propargyl (C{sub 3}H{sub 3}) radical, {sigma}{sub propargyl}{sup ion}(E), relative to the known absolute cross-section of the methyl (CH{sub 3}) radical. We generated a stoichiometric 1:1 ratio of C{sub 3}H{sub 3} : CH{sub 3} from 193 nm photolysis of two different C{sub 4}H{sub 6} isomers (1-butyne and 1,3-butadiene). Photolysis of 1-butyne yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(26.1{+-}4.2) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(23.4{+-}3.2) Mb, whereas photolysis of 1,3-butadiene yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(23.6{+-}3.6) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(25.1{+-}3.5) Mb. These measurements place our relative photoionization cross-section spectrum for propargyl on an absolute scale between 8.6 and 10.5 eV. The cross-section derived from our results is approximately a factor of three larger than previous determinations.

  15. Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Casertano, Stefano

    1991-01-01

    A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.

  16. In-flight Absolute Radiometric Calibration of the Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, D.; Savage, R. K.

    1984-01-01

    The Thematic Mapper (TM) multispectral scanner system was placed into Earth orbit on July 16, 1982, as part of NASA's LANDSAT 4 payload. To determine temporal changes of the absolute radiometric calibration of the entire system in flight, spectroradiometric measurements of the ground and the atmosphere are made simultaneously with TM image acquisitions over the White Sands, New Mexico area. By entering the measured values into an atmospheric radiative transfer program, the radiance levels at the entrance pupil of the TM in four of the TM spectral bands are determined. These levels are compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors. By reference to an adjacent, larger uniform area, the calibration is extended to all 16 detectors in each of the three bands.

  17. Absolute measurement of the extreme UV solar flux

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Ogawa, H. S.; Judge, D. L.; Phillips, E.

    1984-01-01

    A windowless rare-gas ionization chamber has been developed to measure the absolute value of the solar extreme UV flux in the 50-575-A region. Successful results were obtained on a solar-pointing sounding rocket. The ionization chamber, operated in total absorption, is an inherently stable absolute detector of ionizing UV radiation and was designed to be independent of effects from secondary ionization and gas effusion. The net error of the measurement is + or - 7.3 percent, which is primarily due to residual outgassing in the instrument, other errors such as multiple ionization, photoelectron collection, and extrapolation to the zero atmospheric optical depth being small in comparison. For the day of the flight, Aug. 10, 1982, the solar irradiance (50-575 A), normalized to unit solar distance, was found to be 5.71 + or - 0.42 x 10 to the 10th photons per sq cm sec.

  18. In-flight absolute radiometric calibration of the thematic mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

    1984-01-01

    In order to determine temporal changes of the absolute radiometric calibration of the entire TM system in flight spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM image collections over the White Sands, New Mexico area. By entering the measured values in an atmospheric radiative transfer program, the radiance levels in four of the spectral bands of the TM were determined, band 1:0.45 to 0.52 micrometers, band 2:0.53 to 0.61 micrometers band 3:0.62 to 0.70 micrometers and 4:0.78 to 0.91 micrometers. These levels were compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors.

  19. In-flight absolute radiometric calibration of the Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

    1984-01-01

    In order to determine temporal changes of the absolute radiometric calibration of the entire TM system in flight spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM image collections over the White Sands, NM area. By entering the measured values in an atmospheric radiative transfer program, the radiance levels in four of the spectral bands of the TM were determined, band 1: 0.45 to 0.52 micrometers, band 2: 0.53 to 0.61 micrometers, band 3: 0.62 to 0.70 micrometers, and 4: 0.78 to 0.91 micrometers. These levels were compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors. Previously announced in STAR as N84-15633

  20. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed. PMID:19831037

  1. Using Microsoft Excel to compute the 5% overall site X/Q value and the 95th percentile of the distribution of doses to the nearest maximally exposed offsite individual (MEOI).

    PubMed

    Vickers, Linda D

    2010-05-01

    This paper describes the method using Microsoft Excel (Microsoft Corporation One Microsoft Way Redmond, WA 98052-6399) to compute the 5% overall site X/Q value and the 95th percentile of the distribution of doses to the nearest maximally exposed offsite individual (MEOI) in accordance with guidance from DOE-STD-3009-1994 and U.S. NRC Regulatory Guide 1.145-1982. The accurate determination of the 5% overall site X/Q value is the most important factor in the computation of the 95th percentile of the distribution of doses to the nearest MEOI. This method should be used to validate software codes that compute the X/Q. The 95th percentile of the distribution of doses to the nearest MEOI must be compared to the U.S. DOE Evaluation Guide of 25 rem to determine the relative severity of hazard to the public from a postulated, unmitigated design basis accident that involves an offsite release of radioactive material. PMID:20386192

  2. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  3. Development of a graphite probe calorimeter for absolute clinical dosimetry

    SciTech Connect

    Renaud, James; Seuntjens, Jan; Sarfehnia, Arman; Marchington, David

    2013-02-15

    The aim of this work is to present the numerical design optimization, construction, and experimental proof of concept of a graphite probe calorimeter (GPC) conceived for dose measurement in the clinical environment (U.S. provisional patent 61/652,540). A finite element method (FEM) based numerical heat transfer study was conducted using a commercial software package to explore the feasibility of the GPC and to optimize the shape, dimensions, and materials used in its design. A functioning prototype was constructed inhouse and used to perform dose to water measurements under a 6 MV photon beam at 400 and 1000 MU/min, in a thermally insulated water phantom. Heat loss correction factors were determined using FEM analysis while the radiation field perturbation and the graphite to water absorbed dose conversion factors were calculated using Monte Carlo simulations. The difference in the average measured dose to water for the 400 and 1000 MU/min runs using the TG-51 protocol and the GPC was 0.2% and 1.2%, respectively. Heat loss correction factors ranged from 1.001 to 1.002, while the product of the perturbation and dose conversion factors was calculated to be 1.130. The combined relative uncertainty was estimated to be 1.4%, with the largest contributors being the specific heat capacity of the graphite (type B, 0.8%) and the reproducibility, defined as the standard deviation of the mean measured dose (type A, 0.6%). By establishing the feasibility of using the GPC as a practical clinical absolute photon dosimeter, this work lays the foundation for further device enhancements, including the development of an isothermal mode of operation and an overall miniaturization, making it potentially suitable for use in small and composite radiation fields. It is anticipated that, through the incorporation of isothermal stabilization provided by temperature controllers, a subpercent overall uncertainty will be achieved.

  4. Molecular iodine absolute frequencies. Final report

    SciTech Connect

    Sansonetti, C.J.

    1990-06-25

    Fifty specified lines of {sup 127}I{sub 2} were studied by Doppler-free frequency modulation spectroscopy. For each line the classification of the molecular transition was determined, hyperfine components were identified, and one well-resolved component was selected for precise determination of its absolute frequency. In 3 cases, a nearby alternate line was selected for measurement because no well-resolved component was found for the specified line. Absolute frequency determinations were made with an estimated uncertainty of 1.1 MHz by locking a dye laser to the selected hyperfine component and measuring its wave number with a high-precision Fabry-Perot wavemeter. For each line results of the absolute measurement, the line classification, and a Doppler-free spectrum are given.

  5. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record PMID:26478959

  6. Absolute calibration in vivo measurement systems

    SciTech Connect

    Kruchten, D.A.; Hickman, D.P.

    1991-02-01

    Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs.

  7. Correction of NIM-3A absolute gravimeter for self-attraction effect

    NASA Astrophysics Data System (ADS)

    Li, Chunjian; Xu, Jin-yi; Feng, Jin-yang; SU, Duo-wu; Wu, Shu-qing

    2015-02-01

    The mass of free-fall absolute gravimeter can produce vertical gravitational attraction to the free-falling test body during the measurement of acceleration due to gravity. The vertical gravitational attraction can cause an artificial deviation to the measured value of gravitational acceleration. This paper describes the operating principle of a free-fall absolute gravimeter and the method used to determine the reference height of a gravimeter. It also describes the physical structure of NIM-3A absolute gravimeter lately developed by National Institute of Metrology (China), and studies the correction of gravimeter for Self-attraction effect.

  8. Precise Measurement of the Absolute Fluorescence Yield

    NASA Astrophysics Data System (ADS)

    Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; di Giulio, C.; San Luis, P. Facal; Gonzales, D.; Hojvat, C.; Hörandel, J. R.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; D'Orfeuil, B. Rouille; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.

    2011-09-01

    We present preliminary results of the absolute yield of fluorescence emission in atmospheric gases. Measurements were performed at the Fermilab Test Beam Facility with a variety of beam particles and gases. Absolute calibration of the fluorescence yield to 5% level was achieved by comparison with two known light sources--the Cherenkov light emitted by the beam particles, and a calibrated nitrogen laser. The uncertainty of the energy scale of current Ultra-High Energy Cosmic Rays experiments will be significantly improved by the AIRFLY measurement.

  9. Neutron activation analysis of certified samples by the absolute method

    NASA Astrophysics Data System (ADS)

    Kadem, F.; Belouadah, N.; Idiri, Z.

    2015-07-01

    The nuclear reactions analysis technique is mainly based on the relative method or the use of activation cross sections. In order to validate nuclear data for the calculated cross section evaluated from systematic studies, we used the neutron activation analysis technique (NAA) to determine the various constituent concentrations of certified samples for animal blood, milk and hay. In this analysis, the absolute method is used. The neutron activation technique involves irradiating the sample and subsequently performing a measurement of the activity of the sample. The fundamental equation of the activation connects several physical parameters including the cross section that is essential for the quantitative determination of the different elements composing the sample without resorting to the use of standard sample. Called the absolute method, it allows a measurement as accurate as the relative method. The results obtained by the absolute method showed that the values are as precise as the relative method requiring the use of standard sample for each element to be quantified.

  10. DURATION OF IMMUNITY TO REINFECTION IN GUINEA-PIGS TREATED WITH ANTIRABIES SERUM AND VACCINE, AND THE VALUE OF BOOSTER DOSES OF VACCINE IN RE-TREATMENT.

    PubMed

    VEERARAGHAVAN, N; SUBRAHMANYAN, T P

    1963-01-01

    Studies undertaken to determine the resistance of guinea-pigs which have survived a moderate challenge as a result of treatment with serum and vaccine to subsequent severe challenges with homologous and heterologous strains of rabies street virus have shown that, even with large groups of animals, treatment with serum and vaccine saved nearly 70% of the animals against challenges of about 100 LD(50). The animals which survived such treatment and challenge continued to have a considerable degree of immunity to rechallenge even 15 months after the first treatment. There was no advantage in giving two booster doses of vaccine during this period. The immune status of rechallenged guinea-pigs seemed to depend primarily on the original treatment rather than on the strain of virus used for the first challenge. Guinea-pigs which survived an earlier challenge as a result of treatment fared better against the later challenge than fresh groups of treated but not challenged animals given the same challenge. PMID:14099676

  11. Absolute GNSS Antenna Calibration at the National Geodetic Survey

    NASA Astrophysics Data System (ADS)

    Mader, G.; Bilich, A.; Geoghegan, C.

    2012-04-01

    Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. To help meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) now operates an absolute antenna calibration facility. Located in Corbin, Virginia, this facility uses field measurements and actual GNSS satellite signals to quantitatively determine the carrier phase advance/delay introduced by the antenna element. The NGS facility was built to serve traditional NGS constituents such as the surveying and geodesy communities, however calibration services are open and available to all GNSS users as the calibration schedule permits. All phase center patterns computed by this facility will be publicly available and disseminated in both the ANTEX and NGS formats. We describe the NGS calibration facility, and discuss the observation models and strategy currently used to generate NGS absolute calibrations. We demonstrate that NGS absolute phase center variation (PCV) patterns are consistent with published values determined by other absolute antenna calibration facilities, and outline future planned refinements to the system.

  12. On the convective-absolute nature of river bedform instabilities

    NASA Astrophysics Data System (ADS)

    Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca; Chomaz, Jean Marc

    2014-12-01

    River dunes and antidunes are induced by the morphological instability of stream-sediment boundary. Such bedforms raise a number of subtle theoretical questions and are crucial for many engineering and environmental problems. Despite their importance, the absolute/convective nature of the instability has never been addressed. The present work fills this gap as we demonstrate, by the cusp map method, that dune instability is convective for all values of the physical control parameters, while the antidune instability exhibits both behaviors. These theoretical predictions explain some previous experimental and numerical observations and are important to correctly plan flume experiments, numerical simulations, paleo-hydraulic reconstructions, and river works.

  13. Prelaunch absolute radiometric calibration of LANDSAT-4 protoflight Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Ball, D. L.; Leung, K. C.; Walker, J. A.

    1984-01-01

    Results are summarized and analyzed from several prelaunch tests with a 122 cm integrating sphere used as part of the absolute radiometric calibration experiments for the protoflight TM sensor carried on the LANDSAT-4 satellite. The calibration procedure is presented and the radiometric sensitivity of the TM is assessed. The internal calibrator and dynamic range after calibration are considered. Tables show dynamic range after ground processing, spectral radiance to digital number and digital number to spectral radiance values for TM bands 1, 2, 3, 4, 5, 7 and for channel 4 of band 6.

  14. Testing and evaluation of thermal cameras for absolute temperature measurement

    NASA Astrophysics Data System (ADS)

    Chrzanowski, Krzysztof; Fischer, Joachim; Matyszkiel, Robert

    2000-09-01

    The accuracy of temperature measurement is the most important criterion for the evaluation of thermal cameras used in applications requiring absolute temperature measurement. All the main international metrological organizations currently propose a parameter called uncertainty as a measure of measurement accuracy. We propose a set of parameters for the characterization of thermal measurement cameras. It is shown that if these parameters are known, then it is possible to determine the uncertainty of temperature measurement due to only the internal errors of these cameras. Values of this uncertainty can be used as an objective criterion for comparisons of different thermal measurement cameras.

  15. Absolute partial photoionization cross sections of ozone.

    SciTech Connect

    Berkowitz, J.; Chemistry

    2008-04-01

    Despite the current concerns about ozone, absolute partial photoionization cross sections for this molecule in the vacuum ultraviolet (valence) region have been unavailable. By eclectic re-evaluation of old/new data and plausible assumptions, such cross sections have been assembled to fill this void.

  16. Increasing Capacity: Practice Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Dodds, Pennie; Donkin, Christopher; Brown, Scott D.; Heathcote, Andrew

    2011-01-01

    In most of the long history of the study of absolute identification--since Miller's (1956) seminal article--a severe limit on performance has been observed, and this limit has resisted improvement even by extensive practice. In a startling result, Rouder, Morey, Cowan, and Pfaltz (2004) found substantially improved performance with practice in the…

  17. On Relative and Absolute Conviction in Mathematics

    ERIC Educational Resources Information Center

    Weber, Keith; Mejia-Ramos, Juan Pablo

    2015-01-01

    Conviction is a central construct in mathematics education research on justification and proof. In this paper, we claim that it is important to distinguish between absolute conviction and relative conviction. We argue that researchers in mathematics education frequently have not done so and this has lead to researchers making unwarranted claims…

  18. Absolute Points for Multiple Assignment Problems

    ERIC Educational Resources Information Center

    Adlakha, V.; Kowalski, K.

    2006-01-01

    An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…

  19. Nonequilibrium equalities in absolutely irreversible processes

    NASA Astrophysics Data System (ADS)

    Murashita, Yuto; Funo, Ken; Ueda, Masahito

    2015-03-01

    Nonequilibrium equalities have attracted considerable attention in the context of statistical mechanics and information thermodynamics. Integral nonequilibrium equalities reveal an ensemble property of the entropy production σ as = 1 . Although nonequilibrium equalities apply to rather general nonequilibrium situations, they break down in absolutely irreversible processes, where the forward-path probability vanishes and the entropy production diverges. We identify the mathematical origins of this inapplicability as the singularity of probability measure. As a result, we generalize conventional integral nonequilibrium equalities to absolutely irreversible processes as = 1 -λS , where λS is the probability of the singular part defined based on Lebesgue's decomposition theorem. The acquired equality contains two physical quantities related to irreversibility: σ characterizing ordinary irreversibility and λS describing absolute irreversibility. An inequality derived from the obtained equality demonstrates the absolute irreversibility leads to the fundamental lower bound on the entropy production. We demonstrate the validity of the obtained equality for a simple model.

  20. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  1. Precision absolute positional measurement of laser beams.

    PubMed

    Fitzsimons, Ewan D; Bogenstahl, Johanna; Hough, James; Killow, Christian J; Perreur-Lloyd, Michael; Robertson, David I; Ward, Henry

    2013-04-20

    We describe an instrument which, coupled with a suitable coordinate measuring machine, facilitates the absolute measurement within the machine frame of the propagation direction of a millimeter-scale laser beam to an accuracy of around ±4 μm in position and ±20 μrad in angle. PMID:23669658

  2. Absolute cross section for recoil detection of deuterium

    NASA Astrophysics Data System (ADS)

    Besenbacher, F.; Stensgaard, I.; Vase, P.

    1986-04-01

    The D( 4He, D) 4He cross section used for recoil detection of deuterium (D) has been calibrated on an absolute scale against the cross section of the D( 3He, α)p nuclear reaction which is often used for D profiling. For 4He energies ranging from 0.8 to ~1.8 MeV. the D( 4He, D) 4He cross section varies only slightly with incident energy and recoil angle θ (for 0° ⩽ 8 ⩽ 35°) and has a value of ~ 500 mb/sr which is significantly higher than the ~ 65 mb/sr c.m.s. cross section of the D( 3He, α)p nuclear reaction. For 4He energies ranging from ~ 1.9 to ~ 2.3 MeV, the D( 4He,D) 4He cross section exhibits a fairly narrow resonance peak (fwhm ~ 70 keV), with a maximum value (for θ = 0°) of ~ 8.5 b/sr, corresponding to a 4He energy of ~ 2130 keV. The large values of the cross section in connection with the described energy dependence makes the use of forward-recoil detection of D attractive for many purposes, e.g., D Jepth profiling (with an extreme gain in sensitivity), absolute concentration or coverage measurements, and lattice-location experiments by transmission channeling.

  3. Absolute uniqueness of phase retrieval with random illumination

    NASA Astrophysics Data System (ADS)

    Fannjiang, Albert

    2012-07-01

    Random illumination is proposed to enforce absolute uniqueness and resolve all types of ambiguity, trivial or nontrivial, in phase retrieval. Almost sure irreducibility is proved for any complex-valued object whose support set has rank ⩾ 2. While the new irreducibility result can be viewed as a probabilistic version of the classical result by Bruck, Sodin and Hayes, it provides a novel perspective and an effective method for phase retrieval. In particular, almost sure uniqueness, up to a global phase, is proved for complex-valued objects under general two-point conditions. Under a tight sector constraint absolute uniqueness is proved to hold with probability exponentially close to unity as the object sparsity increases. Under a magnitude constraint with random amplitude illumination, uniqueness modulo global phase is proved to hold with probability exponentially close to unity as object sparsity increases. For general complex-valued objects without any constraint, almost sure uniqueness up to global phase is established with two sets of Fourier magnitude data under two independent illuminations. Numerical experiments suggest that random illumination essentially alleviates most, if not all, numerical problems commonly associated with the standard phasing algorithms.

  4. Experimental verification of a commercial Monte Carlo-based dose calculation module for high-energy photon beams

    NASA Astrophysics Data System (ADS)

    Künzler, Thomas; Fotina, Irina; Stock, Markus; Georg, Dietmar

    2009-12-01

    The dosimetric performance of a Monte Carlo algorithm as implemented in a commercial treatment planning system (iPlan, BrainLAB) was investigated. After commissioning and basic beam data tests in homogenous phantoms, a variety of single regular beams and clinical field arrangements were tested in heterogeneous conditions (conformal therapy, arc therapy and intensity-modulated radiotherapy including simultaneous integrated boosts). More specifically, a cork phantom containing a concave-shaped target was designed to challenge the Monte Carlo algorithm in more complex treatment cases. All test irradiations were performed on an Elekta linac providing 6, 10 and 18 MV photon beams. Absolute and relative dose measurements were performed with ion chambers and near tissue equivalent radiochromic films which were placed within a transverse plane of the cork phantom. For simple fields, a 1D gamma (γ) procedure with a 2% dose difference and a 2 mm distance to agreement (DTA) was applied to depth dose curves, as well as to inplane and crossplane profiles. The average gamma value was 0.21 for all energies of simple test cases. For depth dose curves in asymmetric beams similar gamma results as for symmetric beams were obtained. Simple regular fields showed excellent absolute dosimetric agreement to measurement values with a dose difference of 0.1% ± 0.9% (1 standard deviation) at the dose prescription point. A more detailed analysis at tissue interfaces revealed dose discrepancies of 2.9% for an 18 MV energy 10 × 10 cm2 field at the first density interface from tissue to lung equivalent material. Small fields (2 × 2 cm2) have their largest discrepancy in the re-build-up at the second interface (from lung to tissue equivalent material), with a local dose difference of about 9% and a DTA of 1.1 mm for 18 MV. Conformal field arrangements, arc therapy, as well as IMRT beams and simultaneous integrated boosts were in good agreement with absolute dose measurements in the

  5. Evaluation of six TPS algorithms in computing entrance and exit doses.

    PubMed

    Tan, Yun I; Metwaly, Mohamed; Glegg, Martin; Baggarley, Shaun; Elliott, Alex

    2014-01-01

    Entrance and exit doses are commonly measured in in vivo dosimetry for comparison with expected values, usually generated by the treatment planning system (TPS), to verify accuracy of treatment delivery. This report aims to evaluate the accuracy of six TPS algorithms in computing entrance and exit doses for a 6 MV beam. The algorithms tested were: pencil beam convolution (Eclipse PBC), analytical anisotropic algorithm (Eclipse AAA), AcurosXB (Eclipse AXB), FFT convolution (XiO Convolution), multigrid superposition (XiO Superposition), and Monte Carlo photon (Monaco MC). Measurements with ionization chamber (IC) and diode detector in water phantoms were used as a reference. Comparisons were done in terms of central axis point dose, 1D relative profiles, and 2D absolute gamma analysis. Entrance doses computed by all TPS algorithms agreed to within 2% of the measured values. Exit doses computed by XiO Convolution, XiO Superposition, Eclipse AXB, and Monaco MC agreed with the IC measured doses to within 2%-3%. Meanwhile, Eclipse PBC and Eclipse AAA computed exit doses were higher than the IC measured doses by up to 5.3% and 4.8%, respectively. Both algorithms assume that full backscatter exists even at the exit level, leading to an overestimation of exit doses. Despite good agreements at the central axis for Eclipse AXB and Monaco MC, 1D relative comparisons showed profiles mismatched at depths beyond 11.5 cm. Overall, the 2D absolute gamma (3%/3 mm) pass rates were better for Monaco MC, while Eclipse AXB failed mostly at the outer 20% of the field area. The findings of this study serve as a useful baseline for the implementation of entrance and exit in vivo dosimetry in clinical departments utilizing any of these six common TPS algorithms for reference comparison. PMID:24892349

  6. Combined Use of Absolute and Differential Seismic Arrival Time Data to Improve Absolute Event Location

    NASA Astrophysics Data System (ADS)

    Myers, S.; Johannesson, G.

    2012-12-01

    Arrival time measurements based on waveform cross correlation are becoming more common as advanced signal processing methods are applied to seismic data archives and real-time data streams. Waveform correlation can precisely measure the time difference between the arrival of two phases, and differential time data can be used to constrain relative location of events. Absolute locations are needed for many applications, which generally requires the use of absolute time data. Current methods for measuring absolute time data are approximately two orders of magnitude less precise than differential time measurements. To exploit the strengths of both absolute and differential time data, we extend our multiple-event location method Bayesloc, which previously used absolute time data only, to include the use of differential time measurements that are based on waveform cross correlation. Fundamentally, Bayesloc is a formulation of the joint probability over all parameters comprising the multiple event location system. The Markov-Chain Monte Carlo method is used to sample from the joint probability distribution given arrival data sets. The differential time component of Bayesloc includes scaling a stochastic estimate of differential time measurement precision based the waveform correlation coefficient for each datum. For a regional-distance synthetic data set with absolute and differential time measurement error of 0.25 seconds and 0.01 second, respectively, epicenter location accuracy is improved from and average of 1.05 km when solely absolute time data are used to 0.28 km when absolute and differential time data are used jointly (73% improvement). The improvement in absolute location accuracy is the result of conditionally limiting absolute location probability regions based on the precise relative position with respect to neighboring events. Bayesloc estimates of data precision are found to be accurate for the synthetic test, with absolute and differential time measurement

  7. Absolute Transition Probabilities of Lines in the Spectra of Astrophysical Atoms, Molecules, and Ions

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Smith, P. L.; Yoshino, K.

    1984-01-01

    Progress in the investigation of absolute transition probabilities (A-values or F values) for ultraviolet lines is reported. A radio frequency ion trap was used for measurement of transition probabilities for intersystem lines seen in astronomical spectra. The intersystem line at 2670 A in Al II, which is seen in pre-main sequence stars and symbiotic stars, was studied.

  8. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter

    SciTech Connect

    Harty, P. D. Ramanathan, G.; Butler, D. J.; Johnston, P. N.; Lye, J. E.; Hall, C. J.; Stevenson, A. W.

    2014-05-15

    Purpose: The absolute dose rate of the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter. The calorimetry results were compared to measurements from the existing free-air chamber, to provide a robust determination of the absolute dose in the synchrotron beam and provide confidence in the first implementation of a graphite calorimeter on a synchrotron medical beam line. Methods: The graphite calorimeter has a core which rises in temperature when irradiated by the beam. A collimated x-ray beam from the synchrotron with well-defined edges was used to partially irradiate the core. Two filtration sets were used, one corresponding to an average beam energy of about 80 keV, with dose rate about 50 Gy/s, and the second filtration set corresponding to average beam energy of 90 keV, with dose rate about 20 Gy/s. The temperature rise from this beam was measured by a calibrated thermistor embedded in the core which was then converted to absorbed dose to graphite by multiplying the rise in temperature by the specific heat capacity for graphite and the ratio of cross-sectional areas of the core and beam. Conversion of the measured absorbed dose to graphite to absorbed dose to water was achieved using Monte Carlo calculations with the EGSnrc code. The air kerma measurements from the free-air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. Results: Absolute measurements of the IMBL dose rate were made using the graphite calorimeter and compared to measurements with the free-air chamber. The measurements were at three different depths in graphite and two different filtrations. The calorimetry measurements at depths in graphite show agreement within 1% with free-air chamber measurements, when converted to absorbed dose to water. The calorimetry at the surface and free-air chamber results show agreement of order 3% when converted to absorbed dose to water. The combined standard uncertainty is 3

  9. Use of intensity quotients and differences in absolute structure refinement

    PubMed Central

    Parsons, Simon; Flack, Howard D.; Wagner, Trixie

    2013-01-01

    Several methods for absolute structure refinement were tested using single-crystal X-ray diffraction data collected using Cu Kα radiation for 23 crystals with no element heavier than oxygen: conventional refinement using an inversion twin model, estimation using intensity quotients in SHELXL2012, estimation using Bayesian methods in PLATON, estimation using restraints consisting of numerical intensity differences in CRYSTALS and estimation using differences and quotients in TOPAS-Academic where both quantities were coded in terms of other structural parameters and implemented as restraints. The conventional refinement approach yielded accurate values of the Flack parameter, but with standard uncertainties ranging from 0.15 to 0.77. The other methods also yielded accurate values of the Flack parameter, but with much higher precision. Absolute structure was established in all cases, even for a hydrocarbon. The procedures in which restraints are coded explicitly in terms of other structural parameters enable the Flack parameter to correlate with these other parameters, so that it is determined along with those parameters during refinement. PMID:23719469

  10. Use of intensity quotients and differences in absolute structure refinement.

    PubMed

    Parsons, Simon; Flack, Howard D; Wagner, Trixie

    2013-06-01

    Several methods for absolute structure refinement were tested using single-crystal X-ray diffraction data collected using Cu Kα radiation for 23 crystals with no element heavier than oxygen: conventional refinement using an inversion twin model, estimation using intensity quotients in SHELXL2012, estimation using Bayesian methods in PLATON, estimation using restraints consisting of numerical intensity differences in CRYSTALS and estimation using differences and quotients in TOPAS-Academic where both quantities were coded in terms of other structural parameters and implemented as restraints. The conventional refinement approach yielded accurate values of the Flack parameter, but with standard uncertainties ranging from 0.15 to 0.77. The other methods also yielded accurate values of the Flack parameter, but with much higher precision. Absolute structure was established in all cases, even for a hydrocarbon. The procedures in which restraints are coded explicitly in terms of other structural parameters enable the Flack parameter to correlate with these other parameters, so that it is determined along with those parameters during refinement. PMID:23719469

  11. Absolute-magnitude distributions of supernovae

    SciTech Connect

    Richardson, Dean; Wright, John; Jenkins III, Robert L.; Maddox, Larry

    2014-05-01

    The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.

  12. Absolute calibration of TFTR helium proportional counters

    SciTech Connect

    Strachan, J.D.; Diesso, M.; Jassby, D.; Johnson, L.; McCauley, S.; Munsat, T.; Roquemore, A.L.; Barnes, C.W. |; Loughlin, M. |

    1995-06-01

    The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments.

  13. Absolute enantioselective separation: optical activity ex machina.

    PubMed

    Bielski, Roman; Tencer, Michal

    2005-11-01

    The paper describes methodology of using three independent macroscopic factors affecting molecular orientation to accomplish separation of a racemic mixture without the presence of any other chiral compounds, i. e., absolute enantioselective separation (AES) which is an extension of a concept of applying these factors to absolute asymmetric synthesis. The three factors may be applied simultaneously or, if their effects can be retained, consecutively. The resulting three mutually orthogonal or near orthogonal directors constitute a true chiral influence and their scalar triple product is the measure of the chirality of the system. AES can be executed in a chromatography-like microfluidic process in the presence of an electric field. It may be carried out on a chemically modified flat surface, a monolithic polymer column made of a mesoporous material, each having imparted directional properties. Separation parameters were estimated for these media and possible implications for the natural homochirality are discussed. PMID:16342798

  14. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  15. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  16. Cytogenetic, cytotoxic and GC-MS studies on concrete and absolute oils from Taif rose, Saudi Arabia.

    PubMed

    Hagag, Heba A; Bazaid, Salih A; Abdel-Hameed, El-Sayed S; Salman, Mahmood

    2014-12-01

    Taif rose (Rosa damascena trigintipetala Dieck) is a sort of damask rose, which is considered as one of the most important economic products of Taif. In this study, the authors investigated the possible cytotoxic, genotoxic, antimutagenic and anticancer effect of concrete and absolute rose oils. The results showed that both concrete and absolute rose oils were cytotoxically and genotoxically safe at a dose of 10 μg/ml when tested on cultures of normal human blood lymphocytes. Also, the results showed significant antimutagenic activity at p < 0.001 for absolute rose oil at the same dose level when tested on cultures of normal human blood lymphocytes supplemented with 300 ng/ml mitomycin C (MMC). On the other hand, concrete and absolute oils exerted a cytotoxic activity against two kinds of human cancer cell lines: HepG2 and MCF7. Concrete oil showed cytotoxic activity against HepG2 and MCF7 with a half maximal inhibitory concentration (IC50) of 16.28 and 18.09 μg/ml, respectively, whereas absolute rose oil showed its cytotoxic activity against HepG2 and MCF7 with an IC50 of 24.94 and 19.69, respectively. From this study, it is concluded that concrete and absolute rose oils are cytotoxically and genotoxically safe at a dose of 10 μg/ml when tested on cultures of normal human blood lymphocytes. In addition, absolute oil has an antimutagenic activity at the same dose. Further investigations are needed to study the activity of higher doses of both oils in vitro and in vivo in experimental animals in order to evaluate the capability of using these oils as therapeutic for treatment of some kinds of cancers. PMID:24101441

  17. On determining absolute entropy without quantum theory or the third law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Steane, Andrew M.

    2016-04-01

    We employ classical thermodynamics to gain information about absolute entropy, without recourse to statistical methods, quantum mechanics or the third law of thermodynamics. The Gibbs–Duhem equation yields various simple methods to determine the absolute entropy of a fluid. We also study the entropy of an ideal gas and the ionization of a plasma in thermal equilibrium. A single measurement of the degree of ionization can be used to determine an unknown constant in the entropy equation, and thus determine the absolute entropy of a gas. It follows from all these examples that the value of entropy at absolute zero temperature does not need to be assigned by postulate, but can be deduced empirically.

  18. Metallic Magnetic Calorimeters for Absolute Activity Measurement

    NASA Astrophysics Data System (ADS)

    Loidl, M.; Leblanc, E.; Rodrigues, M.; Bouchard, J.; Censier, B.; Branger, T.; Lacour, D.

    2008-05-01

    We present a prototype of metallic magnetic calorimeters that we are developing for absolute activity measurements of low energy emitting radionuclides. We give a detailed description of the realization of the prototype, containing an 55Fe source inside the detector absorber. We present the analysis of first data taken with this detector and compare the result of activity measurement with liquid scintillation counting. We also propose some ways for reducing the uncertainty on the activity determination with this new technique.

  19. Silicon Absolute X-Ray Detectors

    SciTech Connect

    Seely, John F.; Korde, Raj; Sprunck, Jacob; Medjoubi, Kadda; Hustache, Stephanie

    2010-06-23

    The responsivity of silicon photodiodes having no loss in the entrance window, measured using synchrotron radiation in the 1.75 to 60 keV range, was compared to the responsivity calculated using the silicon thickness measured using near-infrared light. The measured and calculated responsivities agree with an average difference of 1.3%. This enables their use as absolute x-ray detectors.

  20. Blood pressure targets and absolute cardiovascular risk.

    PubMed

    Odutayo, Ayodele; Rahimi, Kazem; Hsiao, Allan J; Emdin, Connor A

    2015-08-01

    In the Eighth Joint National Committee guideline on hypertension, the threshold for the initiation of blood pressure-lowering treatment for elderly adults (≥60 years) without chronic kidney disease or diabetes mellitus was raised from 140/90 mm Hg to 150/90 mm Hg. However, the committee was not unanimous in this decision, particularly because a large proportion of adults ≥60 years may be at high cardiovascular risk. On the basis of Eighth Joint National Committee guideline, we sought to determine the absolute 10-year risk of cardiovascular disease among these adults through analyzing the National Health and Nutrition Examination Survey (2005-2012). The primary outcome measure was the proportion of adults who were at ≥20% predicted absolute cardiovascular risk and above goals for the Seventh Joint National Committee guideline but reclassified as at target under the Eighth Joint National Committee guideline (reclassified). The Framingham General Cardiovascular Disease Risk Score was used. From 2005 to 2012, the surveys included 12 963 adults aged 30 to 74 years with blood pressure measurements, of which 914 were reclassified based on the guideline. Among individuals reclassified as not in need of additional treatment, the proportion of adults 60 to 74 years without chronic kidney disease or diabetes mellitus at ≥20% absolute risk was 44.8%. This corresponds to 0.8 million adults. The proportion at high cardiovascular risk remained sizable among adults who were not receiving blood pressure-lowering treatment. Taken together, a sizable proportion of reclassified adults 60 to 74 years without chronic kidney disease or diabetes mellitus was at ≥20% absolute cardiovascular risk. PMID:26056340

  1. Relative errors can cue absolute visuomotor mappings.

    PubMed

    van Dam, Loes C J; Ernst, Marc O

    2015-12-01

    When repeatedly switching between two visuomotor mappings, e.g. in a reaching or pointing task, adaptation tends to speed up over time. That is, when the error in the feedback corresponds to a mapping switch, fast adaptation occurs. Yet, what is learned, the relative error or the absolute mappings? When switching between mappings, errors with a size corresponding to the relative difference between the mappings will occur more often than other large errors. Thus, we could learn to correct more for errors with this familiar size (Error Learning). On the other hand, it has been shown that the human visuomotor system can store several absolute visuomotor mappings (Mapping Learning) and can use associated contextual cues to retrieve them. Thus, when contextual information is present, no error feedback is needed to switch between mappings. Using a rapid pointing task, we investigated how these two types of learning may each contribute when repeatedly switching between mappings in the absence of task-irrelevant contextual cues. After training, we examined how participants changed their behaviour when a single error probe indicated either the often-experienced error (Error Learning) or one of the previously experienced absolute mappings (Mapping Learning). Results were consistent with Mapping Learning despite the relative nature of the error information in the feedback. This shows that errors in the feedback can have a double role in visuomotor behaviour: they drive the general adaptation process by making corrections possible on subsequent movements, as well as serve as contextual cues that can signal a learned absolute mapping. PMID:26280315

  2. Absolute distance measurements by variable wavelength interferometry

    NASA Astrophysics Data System (ADS)

    Bien, F.; Camac, M.; Caulfield, H. J.; Ezekiel, S.

    1981-02-01

    This paper describes a laser interferometer which provides absolute distance measurements using tunable lasers. An active feedback loop system, in which the laser frequency is locked to the optical path length difference of the interferometer, is used to tune the laser wavelengths. If the two wavelengths are very close, electronic frequency counters can be used to measure the beat frequency between the two laser frequencies and thus to determine the optical path difference between the two legs of the interferometer.

  3. A method to evaluate dose errors introduced by dose mapping processes for mass conserving deformations

    PubMed Central

    Yan, C.; Hugo, G.; Salguero, F. J.; Saleh-Sayah, N.; Weiss, E.; Sleeman, W. C.; Siebers, J. V.

    2012-01-01

    Purpose: To present a method to evaluate the dose mapping error introduced by the dose mapping process. In addition, apply the method to evaluate the dose mapping error introduced by the 4D dose calculation process implemented in a research version of commercial treatment planning system for a patient case. Methods: The average dose accumulated in a finite volume should be unchanged when the dose delivered to one anatomic instance of that volume is mapped to a different anatomic instance—provided that the tissue deformation between the anatomic instances is mass conserving. The average dose to a finite volume on image S is defined as dS¯=es/mS, where eS is the energy deposited in the mass mS contained in the volume. Since mass and energy should be conserved, when dS¯ is mapped to an image R(dS→R¯=dR¯), the mean dose mapping error is defined as Δdm¯=|dR¯-dS¯|=|eR/mR-eS/mS|, where the eR and eS are integral doses (energy deposited), and mR and mS are the masses within the region of interest (ROI) on image R and the corresponding ROI on image S, where R and S are the two anatomic instances from the same patient. Alternatively, application of simple differential propagation yields the differential dose mapping error, Δdd¯=|∂d¯∂e*Δe+∂d¯∂m*Δm|=|(eS-eR)mR-(mS-mR)mR2*eR|=α|dR¯-dS¯| with α=mS/mR. A 4D treatment plan on a ten-phase 4D-CT lung patient is used to demonstrate the dose mapping error evaluations for a patient case, in which the accumulated dose, DR¯=∑S=09dS→R¯, and associated error values (ΔDm¯ and ΔDd¯) are calculated for a uniformly spaced set of ROIs. Results: For the single sample patient dose distribution, the average accumulated differential dose mapping error is 4.3%, the average absolute differential dose mapping error is 10.8%, and the average accumulated mean dose mapping error is 5.0%. Accumulated differential dose mapping errors within the gross tumor volume (GTV) and planning target volume (PTV) are lower, 0

  4. Absolute Quantitative MALDI Imaging Mass Spectrometry: A Case of Rifampicin in Liver Tissues.

    PubMed

    Chumbley, Chad W; Reyzer, Michelle L; Allen, Jamie L; Marriner, Gwendolyn A; Via, Laura E; Barry, Clifton E; Caprioli, Richard M

    2016-02-16

    Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) elucidates molecular distributions in thin tissue sections. Absolute pixel-to-pixel quantitation has remained a challenge, primarily lacking validation of the appropriate analytical methods. In the present work, isotopically labeled internal standards are applied to tissue sections to maximize quantitative reproducibility and yield accurate quantitative results. We have developed a tissue model for rifampicin (RIF), an antibiotic used to treat tuberculosis, and have tested different methods of applying an isotopically labeled internal standard for MALDI IMS analysis. The application of the standard and subsequently the matrix onto tissue sections resulted in quantitation that was not statistically significantly different from results obtained using HPLC-MS/MS of tissue extracts. Quantitative IMS experiments were performed on liver tissue from an animal dosed in vivo. Each microspot in the quantitative images measures the local concentration of RIF in the thin tissue section. Lower concentrations were detected from the blood vessels and around the portal tracts. The quantitative values obtained from these measurements were comparable (>90% similarity) to HPLC-MS/MS results obtained from extracts of the same tissue. PMID:26814665

  5. Clinical characterization of a proton beam continuous uniform scanning system with dose layer stacking

    PubMed Central

    Farr, J. B.; Mascia, A. E.; Hsi, W.-C.; Allgower, C. E.; Jesseph, F.; Schreuder, A. N.; Wolanski, M.; Nichiporov, D. F.; Anferov, V.

    2008-01-01

    A proton beam delivery system on a gantry with continuous uniform scanning and dose layer stacking at the Midwest Proton Radiotherapy Institute has been commissioned and accepted for clinical use. This paper was motivated by a lack of guidance on the testing and characterization for clinical uniform scanning systems. As such, it describes how these tasks were performed with a uniform scanning beam delivery system. This paper reports the methods used and important dosimetric characteristics of radiation fields produced by the system. The commissioning data include the transverse and longitudinal dose distributions, penumbra, and absolute dose values. Using a 208 MeV cyclotron’s proton beam, the system provides field sizes up to 20 and 30 cm in diameter for proton ranges in water up to 27 and 20 cm, respectively. The dose layer stacking method allows for the flexible construction of spread-out Bragg peaks with uniform modulation of up to 15 cm in water, at typical dose rates of 1–3 Gy∕min. For measuring relative dose distributions, multielement ion chamber arrays, small-volume ion chambers, and radiographic films were employed. Measurements during the clinical commissioning of the system have shown that the lateral and longitudinal dose uniformity of 2.5% or better can be achieved for all clinically important field sizes and ranges. The measured transverse penumbra widths offer a slight improvement in comparison to those achieved with a double scattering beam spreading technique at the facility. Absolute dose measurements were done using calibrated ion chambers, thermoluminescent and alanine detectors. Dose intercomparisons conducted using various types of detectors traceable to a national standards laboratory indicate that the measured dosimetry data agree with each other within 5%. PMID:19070228

  6. Valuing Essays: Essaying Values

    ERIC Educational Resources Information Center

    Badley, Graham

    2010-01-01

    The essay regularly comes under attack. It is criticised for being rigidly linear rather than flexible and reflective. I first challenge this view by examining reasons why the essay should be valued as an important genre. Secondly, I propose that in using the essay form students and academics necessarily exemplify their own critical values. Essays…

  7. Clock time is absolute and universal

    NASA Astrophysics Data System (ADS)

    Shen, Xinhang

    2015-09-01

    A critical error is found in the Special Theory of Relativity (STR): mixing up the concepts of the STR abstract time of a reference frame and the displayed time of a physical clock, which leads to use the properties of the abstract time to predict time dilation on physical clocks and all other physical processes. Actually, a clock can never directly measure the abstract time, but can only record the result of a physical process during a period of the abstract time such as the number of cycles of oscillation which is the multiplication of the abstract time and the frequency of oscillation. After Lorentz Transformation, the abstract time of a reference frame expands by a factor gamma, but the frequency of a clock decreases by the same factor gamma, and the resulting multiplication i.e. the displayed time of a moving clock remains unchanged. That is, the displayed time of any physical clock is an invariant of Lorentz Transformation. The Lorentz invariance of the displayed times of clocks can further prove within the framework of STR our earth based standard physical time is absolute, universal and independent of inertial reference frames as confirmed by both the physical fact of the universal synchronization of clocks on the GPS satellites and clocks on the earth, and the theoretical existence of the absolute and universal Galilean time in STR which has proved that time dilation and space contraction are pure illusions of STR. The existence of the absolute and universal time in STR has directly denied that the reference frame dependent abstract time of STR is the physical time, and therefore, STR is wrong and all its predictions can never happen in the physical world.

  8. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  9. An absolute radius scale for Saturn's rings

    NASA Technical Reports Server (NTRS)

    Nicholson, Philip D.; Cooke, Maren L.; Pelton, Emily

    1990-01-01

    Radio and stellar occultation observations of Saturn's rings made by the Voyager spacecraft are discussed. The data reveal systematic discrepancies of almost 10 km in some parts of the rings, limiting some of the investigations. A revised solution for Saturn's rotation pole has been proposed which removes the discrepancies between the stellar and radio occultation profiles. Corrections to previously published radii vary from -2 to -10 km for the radio occultation, and +5 to -6 km for the stellar occultation. An examination of spiral density waves in the outer A Ring supports that the revised absolute radii are in error by no more than 2 km.

  10. Characterization of the DARA solar absolute radiometer

    NASA Astrophysics Data System (ADS)

    Finsterle, W.; Suter, M.; Fehlmann, A.; Kopp, G.

    2011-12-01

    The Davos Absolute Radiometer (DARA) prototype is an Electrical Substitution Radiometer (ESR) which has been developed as a successor of the PMO6 type on future space missions and ground based TSI measurements. The DARA implements an improved thermal design of the cavity detector and heat sink assembly to minimize air-vacuum differences and to maximize thermal symmetry of measuring and compensating cavity. The DARA also employs an inverted viewing geometry to reduce internal stray light. We will report on the characterization and calibration experiments which were carried out at PMOD/WRC and LASP (TRF).

  11. Absolute calibration of the Auger fluorescence detectors

    SciTech Connect

    Bauleo, P.; Brack, J.; Garrard, L.; Harton, J.; Knapik, R.; Meyhandan, R.; Rovero, A.C.; Tamashiro, A.; Warner, D.

    2005-07-01

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the combined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.

  12. Absolute angular positioning in ultrahigh vacuum

    SciTech Connect

    Schief, H.; Marsico, V.; Kern, K.

    1996-05-01

    Commercially available angular resolvers, which are routinely used in machine tools and robotics, are modified and adapted to be used under ultrahigh-vacuum (UHV) conditions. They provide straightforward and reliable measurements of angular positions for any kind of UHV sample manipulators. The corresponding absolute reproducibility is on the order of 0.005{degree}, whereas the relative resolution is better than 0.001{degree}, as demonstrated by high-resolution helium-reflectivity measurements. The mechanical setup and possible applications are discussed. {copyright} {ital 1996 American Institute of Physics.}

  13. Absolute Priority for a Vehicle in VANET

    NASA Astrophysics Data System (ADS)

    Shirani, Rostam; Hendessi, Faramarz; Montazeri, Mohammad Ali; Sheikh Zefreh, Mohammad

    In today's world, traffic jams waste hundreds of hours of our life. This causes many researchers try to resolve the problem with the idea of Intelligent Transportation System. For some applications like a travelling ambulance, it is important to reduce delay even for a second. In this paper, we propose a completely infrastructure-less approach for finding shortest path and controlling traffic light to provide absolute priority for an emergency vehicle. We use the idea of vehicular ad-hoc networking to reduce the imposed travelling time. Then, we simulate our proposed protocol and compare it with a centrally controlled traffic light system.

  14. HDR Brachytherapy Dose Distribution is Influenced by the Metal Material of the Applicator

    PubMed Central

    Wu, Chin-Hui; Liao, Yi-Jen; Shiau, An-Cheng; Lin, Hsin-Yu; Hsueh Liu, Yen-Wan; Hsu, Shih-Ming

    2015-01-01

    Applicators containing metal have been widely used in recent years when applying brachytherapy to patients with cervical cancer. However, the high dose rate (HDR) treatment-planning system (TPS) that is currently used in brachytherapy still assumes that the treatment environment constitutes a homogeneous water medium and does not include a dose correction for the metal material of the applicator. The primary purpose of this study was to evaluate the HDR 192Ir dose distribution in cervical cancer patients when performing brachytherapy using a metal-containing applicator. Thermoluminescent dosimeter (TLD) measurements and Monte Carlo N-Particle eXtended (MCNPX) code were used to explore the doses to the rectum and bladder when using a Henschke applicator containing metal during brachytherapy. When the applicator was assumed to be present, the absolute dose difference between the TLD measurement and MCNPX simulation values was within approximately 5%. A comparison of the MCNPX simulation and TPS calculation values revealed that the TPS overestimated the International Commission of Radiation Units and Measurement (ICRU) rectum and bladder reference doses by 57.78% and 49.59%, respectively. We therefore suggest that the TPS should be modified to account for the shielding effects of the applicator to ensure the accuracy of the delivered doses. PMID:26658746

  15. HDR Brachytherapy Dose Distribution is Influenced by the Metal Material of the Applicator.

    PubMed

    Wu, Chin-Hui; Liao, Yi-Jen; Shiau, An-Cheng; Lin, Hsin-Yu; Hsueh Liu, Yen-Wan; Hsu, Shih-Ming

    2015-01-01

    Applicators containing metal have been widely used in recent years when applying brachytherapy to patients with cervical cancer. However, the high dose rate (HDR) treatment-planning system (TPS) that is currently used in brachytherapy still assumes that the treatment environment constitutes a homogeneous water medium and does not include a dose correction for the metal material of the applicator. The primary purpose of this study was to evaluate the HDR (192)Ir dose distribution in cervical cancer patients when performing brachytherapy using a metal-containing applicator. Thermoluminescent dosimeter (TLD) measurements and Monte Carlo N-Particle eXtended (MCNPX) code were used to explore the doses to the rectum and bladder when using a Henschke applicator containing metal during brachytherapy. When the applicator was assumed to be present, the absolute dose difference between the TLD measurement and MCNPX simulation values was within approximately 5%. A comparison of the MCNPX simulation and TPS calculation values revealed that the TPS overestimated the International Commission of Radiation Units and Measurement (ICRU) rectum and bladder reference doses by 57.78% and 49.59%, respectively. We therefore suggest that the TPS should be modified to account for the shielding effects of the applicator to ensure the accuracy of the delivered doses. PMID:26658746

  16. Absolute Temperature Monitoring Using RF Radiometry in the MRI Scanner.

    PubMed

    El-Sharkawy, Abdel-Monem M; Sotiriadis, Paul P; Bottomley, Paul A; Atalar, Ergin

    2006-11-01

    Temperature detection using microwave radiometry has proven value for noninvasively measuring the absolute temperature of tissues inside the body. However, current clinical radiometers operate in the gigahertz range, which limits their depth of penetration. We have designed and built a noninvasive radiometer which operates at radio frequencies (64 MHz) with ∼100-kHz bandwidth, using an external RF loop coil as a thermal detector. The core of the radiometer is an accurate impedance measurement and automatic matching circuit of 0.05 Ω accuracy to compensate for any load variations. The radiometer permits temperature measurements with accuracy of ±0.1°K, over a tested physiological range of 28° C-40° C in saline phantoms whose electric properties match those of tissue. Because 1.5 T magnetic resonance imaging (MRI) scanners also operate at 64 MHz, we demonstrate the feasibility of integrating our radiometer with an MRI scanner to monitor RF power deposition and temperature dosimetry, obtaining coarse, spatially resolved, absolute thermal maps in the physiological range. We conclude that RF radiometry offers promise as a direct, noninvasive method of monitoring tissue heating during MRI studies and thereby providing an independent means of verifying patient-safe operation. Other potential applications include titration of hyper- and hypo-therapies. PMID:18026562

  17. Standardization of the cumulative absolute velocity. Final report

    SciTech Connect

    O`Hara, T.F.; Jacobson, J.P.

    1991-12-01

    EPRI NP-5930, ``A Criterion for Determining Exceedance of the Operating Basis Earthquake,`` was published in July 1988. As defined in that report, the Operating Basis Earthquake (OBE) is exceeded when both a response spectrum parameter and a second damage parameter, referred to as the Cumulative Absolute Velocity (CAV), are exceeded. In the review process of the above report, it was noted that the calculation of CAV could be confounded by time history records of long duration containing low (nondamaging) acceleration. Therefore, it is necessary to standardize the method of calculating CAV to account for record length. This standardized methodology allows consistent comparisons between future CAV calculations and the adjusted CAV threshold value based upon applying the standardized methodology to the data set presented in EPRI NP-5930. The recommended method to standardize the CAV calculation is to window its calculation on a second-by-second basis for a given time history. If the absolute acceleration exceeds 0.025g at any time during each one second interval, the earthquake records used in EPRI NP-5930 have been reanalyzed and the adjusted threshold of damage for CAV was found to be 0.16g-set.

  18. Absolute surface energies, fracture toughness, and cracking in nitrides

    NASA Astrophysics Data System (ADS)

    Dreyer, Cyrus E.; Janotti, Anderson; van de Walle, Chris G.

    2014-03-01

    Growth of high quality single crystals and epitaxial layers of GaN is critical for producing high-efficiency optoelectronic and power electronic devices. One of the fundamental material properties that govern growth of single crystals is the absolute surface energy of the crystallographic planes. Knowledge of these energies is required to understand and optimize growth rates of different facets in GaN, and provide fracture toughnesses for brittle fracture. By means of hybrid functional calculations, we have determined absolute surface energies for the non-polar {11-20} a and {10-10} m planes, and approximated values for polar (0001) + c and (000-1) - c planes in wurtzite GaN. For all surfaces, we consider low-energy bare and hydrogenated reconstructions under a variety of conditions relevant to experimental growth techniques. We find that the energies of the m and a planes are similar, and constant over the range of conditions studied. In contrast, the energies of the polar planes are strongly condition dependent. Even so, we find that the + c polar plane is systematically lower in energy than the - c plane. We have used our surface energies to determine brittle fracture toughnesses in AlN and GaN, as well as the critical thickness for cracking of AlGaN on GaN.

  19. Simulation of absolute amplitudes of ultrasound signals using equivalent circuits.

    PubMed

    Johansson, Jonny; Martinsson, Pär-Erik; Delsing, Jerker

    2007-10-01

    Equivalent circuits for piezoelectric devices and ultrasonic transmission media can be used to cosimulate electronics and ultrasound parts in simulators originally intended for electronics. To achieve efficient system-level optimization, it is important to simulate correct, absolute amplitude of the ultrasound signal in the system, as this determines the requirements on the electronics regarding dynamic range, circuit noise, and power consumption. This paper presents methods to achieve correct, absolute amplitude of an ultrasound signal in a simulation of a pulse-echo system using equivalent circuits. This is achieved by taking into consideration loss due to diffraction and the effect of the cable that connects the electronics and the piezoelectric transducer. The conductive loss in the transmission line that models the propagation media of the ultrasound pulse is used to model the loss due to diffraction. Results show that the simulated amplitude of the echo follows measured values well in both near and far fields, with an offset of about 10%. The use of a coaxial cable introduces inductance and capacitance that affect the amplitude of a received echo. Amplitude variations of 60% were observed when the cable length was varied between 0.07 m and 2.3 m, with simulations predicting similar variations. The high precision in the achieved results show that electronic design and system optimization can rely on system simulations alone. This will simplify the development of integrated electronics aimed at ultrasound systems. PMID:18019234

  20. Determination of the absolute contours of optical flats

    NASA Technical Reports Server (NTRS)

    Primak, W.

    1969-01-01

    Emersons procedure is used to determine true absolute contours of optical flats. Absolute contours of standard flats are determined and a comparison is then made between standard and unknown flats. Contour differences are determined by deviation of Fizeau fringe.

  1. Pharmacokinetics of marbofloxacin in pigs after intravenous and intramuscular administration of a single dose of 8 mg/kg: dose proportionality, influence of the age of the animals and urinary elimination

    PubMed Central

    Schneider, M; Paulin, A; Dron, F; Woehrlé, F

    2014-01-01

    The pharmacokinetics of marbofloxacin in pigs were evaluated as a function of dose and animal age following intravenous and intramuscular administration of a 16% solution (Forcyl®). The absolute bioavailability of marbofloxacin as well as the dose proportionality was evaluated in 27-week-old fattening pigs. Blood PK and urinary excretion of marbofloxacin were evaluated after a single intramuscular dose of 8 mg/kg in 16-week-old male pigs. An additional group of 12-week-old weaned piglets was used for the evaluation of age-related kinetics. The plasma and urine concentration of marbofloxacin was determined using a HPLC method. Pharmacokinetic parameters were calculated using noncompartmental methods. After intravenous administration in 27-week-old fattening pigs, the total body clearance was 0.065 L/h·kg. After intramuscular administration to the same animals, the mean observed Cmax was 6.30 μg/mL, and the AUCINF was 115 μg·h/mL. The absolute bioavailability was 91.5%, and dose proportionality was shown within the dose range of 4–16 mg/kg. The renal clearance was about half of the value of the total clearance. The total systemic clearance values significantly decreased as a function of age, being 0.092 L/h·kg and 0.079 L/h·kg in pigs aged 12 and 16 weeks, respectively. PMID:24666477

  2. Pharmacokinetics of marbofloxacin in pigs after intravenous and intramuscular administration of a single dose of 8 mg/kg: dose proportionality, influence of the age of the animals and urinary elimination.

    PubMed

    Schneider, M; Paulin, A; Dron, F; Woehrlé, F

    2014-12-01

    The pharmacokinetics of marbofloxacin in pigs were evaluated as a function of dose and animal age following intravenous and intramuscular administration of a 16% solution (Forcyl(®) ). The absolute bioavailability of marbofloxacin as well as the dose proportionality was evaluated in 27-week-old fattening pigs. Blood PK and urinary excretion of marbofloxacin were evaluated after a single intramuscular dose of 8 mg/kg in 16-week-old male pigs. An additional group of 12-week-old weaned piglets was used for the evaluation of age-related kinetics. The plasma and urine concentration of marbofloxacin was determined using a HPLC method. Pharmacokinetic parameters were calculated using noncompartmental methods. After intravenous administration in 27-week-old fattening pigs, the total body clearance was 0.065 L/h·kg. After intramuscular administration to the same animals, the mean observed Cmax was 6.30 μg/mL, and the AUCINF was 115 μg·h/mL. The absolute bioavailability was 91.5%, and dose proportionality was shown within the dose range of 4-16 mg/kg. The renal clearance was about half of the value of the total clearance. The total systemic clearance values significantly decreased as a function of age, being 0.092 L/h·kg and 0.079 L/h·kg in pigs aged 12 and 16 weeks, respectively. PMID:24666477

  3. Validation of a Monte Carlo simulation for dose assessment in dental cone beam CT examinations.

    PubMed

    Morant, J J; Salvadó, M; Casanovas, R; Hernández-Girón, I; Velasco, E; Calzado, A

    2012-07-01

    A Monte Carlo (MC) simulation for calculating absorbed dose has been developed and applied for dental applications with an i-CAT cone beam CT (CBCT) system. To validate the method a comparison was made between calculated and measured dose values for two different clinical protocols. Measurements with a pencil CT chamber were performed free-in-air and in a CT dose head phantom; measurements were also performed with a transmission ionization chamber. In addition for each protocol a total number of 58 thermoluminescence dosemeters (TLD) were packed in groups and placed at 16 representative anatomical locations of an anthropomorphic phantom (Remab system) to assess absorbed doses. To simulate X-ray exposure, a software application based on the EGS4 package was applied. Dose quantities were calculated for different voxelized models representing the CT ionization and transmission chambers, the TLDs, and the phantoms as well. The dose quantities evaluated in the comparison were the accumulated dose averaged along the rotation axis (D(i)), the volume average dose,D(vol) for the dosimetric phantom, the dose area product (DAP) and the absorbed dose for the TLDs. Absolute differences between measured and simulated outcomes were ≤ 2.1% for free-in-air doses; ≤ 6.2% in the 5 cavities of the CT dose head phantom; ≤ 13% for TLDs inside the primary beam. Such differences were considered acceptable in all cases and confirmed the validity of the MC program for different geometries. In conclusion, the devised MC simulation program can be a robust tool to optimize protocols and estimate patient doses for CBCT units in dental, oral and maxillofacial radiology. PMID:21807542

  4. Transient absolute robustness in stochastic biochemical networks.

    PubMed

    Enciso, German A

    2016-08-01

    Absolute robustness allows biochemical networks to sustain a consistent steady-state output in the face of protein concentration variability from cell to cell. This property is structural and can be determined from the topology of the network alone regardless of rate parameters. An important question regarding these systems is the effect of discrete biochemical noise in the dynamical behaviour. In this paper, a variable freezing technique is developed to show that under mild hypotheses the corresponding stochastic system has a transiently robust behaviour. Specifically, after finite time the distribution of the output approximates a Poisson distribution, centred around the deterministic mean. The approximation becomes increasingly accurate, and it holds for increasingly long finite times, as the total protein concentrations grow to infinity. In particular, the stochastic system retains a transient, absolutely robust behaviour corresponding to the deterministic case. This result contrasts with the long-term dynamics of the stochastic system, which eventually must undergo an extinction event that eliminates robustness and is completely different from the deterministic dynamics. The transiently robust behaviour may be sufficient to carry out many forms of robust signal transduction and cellular decision-making in cellular organisms. PMID:27581485

  5. Absolute Electron Extraction Efficiency of Liquid Xenon

    NASA Astrophysics Data System (ADS)

    Kamdin, Katayun; Mizrachi, Eli; Morad, James; Sorensen, Peter

    2016-03-01

    Dual phase liquid/gas xenon time projection chambers (TPCs) currently set the world's most sensitive limits on weakly interacting massive particles (WIMPs), a favored dark matter candidate. These detectors rely on extracting electrons from liquid xenon into gaseous xenon, where they produce proportional scintillation. The proportional scintillation from the extracted electrons serves to internally amplify the WIMP signal; even a single extracted electron is detectable. Credible dark matter searches can proceed with electron extraction efficiency (EEE) lower than 100%. However, electrons systematically left at the liquid/gas boundary are a concern. Possible effects include spontaneous single or multi-electron proportional scintillation signals in the gas, or charging of the liquid/gas interface or detector materials. Understanding EEE is consequently a serious concern for this class of rare event search detectors. Previous EEE measurements have mostly been relative, not absolute, assuming efficiency plateaus at 100%. I will present an absolute EEE measurement with a small liquid/gas xenon TPC test bed located at Lawrence Berkeley National Laboratory.

  6. Sentinel-2/MSI absolute calibration: first results

    NASA Astrophysics Data System (ADS)

    Lonjou, V.; Lachérade, S.; Fougnie, B.; Gamet, P.; Marcq, S.; Raynaud, J.-L.; Tremas, T.

    2015-10-01

    Sentinel-2 is an optical imaging mission devoted to the operational monitoring of land and coastal areas. It is developed in partnership between the European Commission and the European Space Agency. The Sentinel-2 mission is based on a satellites constellation deployed in polar sun-synchronous orbit. It will offer a unique combination of global coverage with a wide field of view (290km), a high revisit (5 days with two satellites), a high resolution (10m, 20m and 60m) and multi-spectral imagery (13 spectral bands in visible and shortwave infra-red domains). CNES is involved in the instrument commissioning in collaboration with ESA. This paper reviews all the techniques that will be used to insure an absolute calibration of the 13 spectral bands better than 5% (target 3%), and will present the first results if available. First, the nominal calibration technique, based on an on-board sun diffuser, is detailed. Then, we show how vicarious calibration methods based on acquisitions over natural targets (oceans, deserts, and Antarctica during winter) will be used to check and improve the accuracy of the absolute calibration coefficients. Finally, the verification scheme, exploiting photometer in-situ measurements over Lacrau plain, is described. A synthesis, including spectral coherence, inter-methods agreement and temporal evolution, will conclude the paper.

  7. Absolute Spectrophotometry of 237 Open Cluster Stars

    NASA Astrophysics Data System (ADS)

    Clampitt, L.; Burstein, D.

    1994-12-01

    We present absolute spectrophotometry of 237 stars in 7 nearby open clusters: Hyades, Pleiades, Alpha Persei, Praesepe, Coma Berenices, IC 4665, and M 39. The observations were taken using the Wampler single-channel scanner (Wampler 1966) on the Crossley 0.9m telescope at Lick Observatory from July 1973 through December 1974. 21 bandpasses spanning the spectral range 3500 Angstroms to 7780 Angstroms were observed for each star, with bandwiths ranging from 32Angstroms to 64 Angstroms. Data are standardized to the Hayes--Latham (1975) system. Our measurements are compared to filter colors on the Johnson BV, Stromgren ubvy, and Geneva U V B_1 B_2 V_1 G systems, as well as to spectrophotometry of a few stars published by Gunn, Stryker & Tinsley and in the Spectrophotometric Standards Catalog (Adelman; as distributed by the NSSDC). Both internal and external comparisons to the filter systems indicate a formal statistical accuracy per bandpass of 0.01 to 0.02 mag, with apparent larger ( ~ 0.03 mag) differences in absolute calibration between this data set and existing spectrophotometry. These data will comprise part of the spectrophotometry that will be used to calibrate the Beijing-Arizona-Taipei-Connecticut Color Survey of the Sky (see separate paper by Burstein et al. at this meeting).

  8. Absolute bioavailability and regional absorption of ticagrelor in healthy volunteers

    PubMed Central

    Teng, Renli; Maya, Juan

    2014-01-01

    Objective Ticagrelor is a direct-acting, reversibly-binding, oral P2Y12 receptor antagonist. It demonstrates predictable, linear pharmacokinetics. Two studies were undertaken to further elucidate the absolute bioavailability of ticagrelor and its regional absorption in the gastrointestinal (GI) tract. Design and methods In two open-label, randomized, cross-over studies, 12 volunteers received a single dose of ticagrelor: oral 90 mg and 15 mg IV (Study 1); or 100 mg oral suspension vs 100 mg immediate release (IR) tablet (Study 2). After the initial cross-over period in Study 2, patients received 100 mg suspension delivered to specific sites in the GI tract using an Enterion capsule. In both studies, plasma concentrations of ticagrelor and AR-C124910XX were measured following administration of each formulation. Results The mean absolute bioavailability of ticagrelor was 36% (95% confidence interval = 30–42%). Metabolite:parent ratios were higher after oral administration, compared with IV administration (maximum plasma concentration [Cmax] = 0.356 and 0.037; area under the plasma concentration-time curves [AUC] = 0.530 and 0.173, respectively). Following oral administration of the 100 mg IR tablet, the AUC and Cmax of ticagrelor were 78% and 58%, respectively, of those following oral administration of the 100 mg suspension. Exposure to ticagrelor decreased the further down the GI tract it was released: mean Cmax for ticagrelor was 91%, 68%, and 13% that for the oral suspension when released in the proximal small bowel, distal small bowel and ascending colon, respectively; mean AUCs were 89%, 73%, and 32%, respectively. Conclusion The mean absolute bioavailability of ticagrelor was 36% and the proportion of ticagrelor absorbed decreased the further down the GI tract it was released: the mean AUC for ticagrelor was 89% (proximal small bowel), 73% (distal small bowel), and 32% (ascending colon) that of the mean AUC for the orally

  9. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a...

  10. Dose-independent pharmacokinetics of metformin in rats: Hepatic and gastrointestinal first-pass effects.

    PubMed

    Choi, Young H; Kim, Sang G; Lee, Myung G

    2006-11-01

    Pharmacokinetic parameters of metformin were evaluated after intravenous and oral administration (50, 100, and 200 mg/kg) in rats. The hepatic, gastric, and intestinal first-pass effects were also measured after intravenous, intraportal, intragastric, and intraduodenal administration (100 mg/kg) in rats. The total area under the plasma concentration-time curve from time zero to time infinity (AUC) values were dose-proportional after both intravenous and oral dose ranges studied. After oral administration (100 mg/kg), approximately 4.39% of oral dose was not absorbed and extent of absolute oral bioavailability (F) value was approximately 29.9%. The gastrointestinal first-pass effect of metformin was approximately 53.8% of oral dose in rats (the gastric and intestinal first-pass effects were approximately 23.1 and 30.7%, respectively), and the hepatic first-pass effect was approximately 27.1% after absorption into the portal vein. Since approximately 41.8% of oral metformin was absorbed into the portal vein, the value of 27.1% is equivalent to 11.3% of oral dose. The first-pass effects of metformin in the lung and heart were almost negligible in rats. The low F value of metformin in rats was mainly due to considerable gastrointestinal first-pass effects. The stability of metformin, distribution of metformin between plasma and blood cells, and factors affecting protein binding of metformin to 4% human serum albumin were also discussed. PMID:16937336

  11. Absolute Radiation Measurements in Earth and Mars Entry Conditions

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.

    2014-01-01

    This paper reports on the measurement of radiative heating for shock heated flows which simulate conditions for Mars and Earth entries. Radiation measurements are made in NASA Ames' Electric Arc Shock Tube at velocities from 3-15 km/s in mixtures of N2/O2 and CO2/N2/Ar. The technique and limitations of the measurement are summarized in some detail. The absolute measurements will be discussed in regards to spectral features, radiative magnitude and spatiotemporal trends. Via analysis of spectra it is possible to extract properties such as electron density, and rotational, vibrational and electronic temperatures. Relaxation behind the shock is analyzed to determine how these properties relax to equilibrium and are used to validate and refine kinetic models. It is found that, for some conditions, some of these values diverge from non-equilibrium indicating a lack of similarity between the shock tube and free flight conditions. Possible reasons for this are discussed.

  12. First derivative versus absolute spectral reflectance of citrus varieties

    NASA Astrophysics Data System (ADS)

    Blazquez, Carlos H.; Nigg, H. N.; Hedley, Lou E.; Ramos, L. E.; Sorrell, R. W.; Simpson, S. E.

    1996-06-01

    Spectral reflectance measurements from 400 to 800 nm were taken from immature and mature leaves of grapefruit ('McCarty' and 'Rio Red'), 'Minneola' tangelo, 'Satsuma' mandarin, 'Dancy' tangerine, 'Nagami' oval kumquat, and 'Valencia' sweet orange, at the Florida Citrus Arboretum, Division of Plant Industry, Winter Haven, Florida. Immature and mature leaves of 'Minneola' tangelo had greater percent reflectance in the 400 to 800 nm range than the other varieties and leaf ages measured. The slope of the citrus spectral curves in the 800 nm range was not as sharp as conventional spectrometers, but had a much higher reflectance value than those obtained with a DK-2 spectrometer. Statistical analyses of absolute spectral data yielded significant differences between mature and immature leaves and between varieties. First derivative data analyses did not yield significant differences between varieties.

  13. An absolute scale for measuring the utility of money

    NASA Astrophysics Data System (ADS)

    Thomas, P. J.

    2010-07-01

    Measurement of the utility of money is essential in the insurance industry, for prioritising public spending schemes and for the evaluation of decisions on protection systems in high-hazard industries. Up to this time, however, there has been no universally agreed measure for the utility of money, with many utility functions being in common use. In this paper, we shall derive a single family of utility functions, which have risk-aversion as the only free parameter. The fact that they return a utility of zero at their low, reference datum, either the utility of no money or of one unit of money, irrespective of the value of risk-aversion used, qualifies them to be regarded as absolute scales for the utility of money. Evidence of validation for the concept will be offered based on inferential measurements of risk-aversion, using diverse measurement data.

  14. Absolute stress measurements at the rangely anticline, Northwestern Colorado

    USGS Publications Warehouse

    de la Cruz, R. V.; Raleigh, C.B.

    1972-01-01

    Five different methods of measuring absolute state of stress in rocks in situ were used at sites near Rangely, Colorado, and the results compared. For near-surface measurements, overcoring of the borehole-deformation gage is the most convenient and rapid means of obtaining reliable values for the magnitude and direction of the state of stress in rocks in situ. The magnitudes and directions of the principal stresses are compared to the geologic features of the different areas of measurement. The in situ stresses are consistent in orientation with the stress direction inferred from the earthquake focal-plane solutions and existing joint patterns but inconsistent with stress directions likely to have produced the Rangely anticline. ?? 1972.

  15. Observing absolute gravity change in the Fennoscandian postglacial rebound area

    NASA Astrophysics Data System (ADS)

    Mäkinen, J.; Engfeldt, A.; Gitlein, O.; Kaminskis, J.; Klopping, F.; Oja, T.; Paršeliunas, E.; Pettersen, B. R.; Strykowski, G.; Wilmes, H.

    2009-04-01

    Absolute gravity measurements in the Fennoscandian postglacial rebound area started already in 1976 when a team from Istituto di Metrología "G. Colonnetti" (Torino) measured six stations with the rise-and-fall gravimeter IMGC (Cannizzo et al., 1978). In 1980 two stations were measured by the team of the AN SSSR from Novosibirsk, using the gravimeter GABL (Arnautov et al., 1982). From the beginning the goal was to establish reference values for future remeasurement in order to detect gravity change due to the postglacial rebound. The maximum uplift rates are 1 cm/yr, which implies a surface gravity change of about -2 microgal/yr. In 1988, regular repeat measurements were began by the Finnish Geodetic Institute (FGI) with the JILAg-5. An important advance was the introduction of FG5 gravimeters into the work by BKG (Frankfurt a/M) and NOAA (Boulder, CO) in 1993. In 2003 annual large-scale campaigns with FG5 gravimeters started, coordinated by the Working Group for Geodynamics of the Nordic Geodetic Commission (NKG). This was prompted by the launch of the GRACE satellite gravity mission, which made it important to collect a comprehensive set of ground-truth values of gravity change during the lifetime of the satellite pair. The initial participation by gravimeter teams of Leibniz Universität Hannover, FGI and BKG has since expanded to include the University of Life Sciences (Ås, Norway) and Lantmäteriet (Gävle, Sweden). At present some 50 sites have repeated absolute measurements and most of them are co-located with continuous GPS. We give an overview of the sites, instrumentation and campaigns, and show examples of results achieved so far.

  16. Use of Absolute and Comparative Performance Feedback in Absolute and Comparative Judgments and Decisions

    ERIC Educational Resources Information Center

    Moore, Don A.; Klein, William M. P.

    2008-01-01

    Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…

  17. Confidentiality: a modified value.

    PubMed Central

    Emson, H E

    1988-01-01

    In its original expression as a medical value confidentiality may have been absolute; this concept has become eroded by patient consent, legal actions and change in the climate of public opinion. In particular requirements arising out of legal statutes and common law judgements have greatly modified the confidentiality of the doctor-patient relationship in societies deriving their law from English origins. Despite this, confidentiality remains a value which the physician must strive to preserve. He cannot however do this without considering its effect upon possible innocent third parties. PMID:3392723

  18. What Value "Value Added"?

    ERIC Educational Resources Information Center

    Richards, Andrew

    2015-01-01

    Two quantitative measures of school performance are currently used, the average points score (APS) at Key Stage 2 and value-added (VA), which measures the rate of academic improvement between Key Stage 1 and 2. These figures are used by parents and the Office for Standards in Education to make judgements and comparisons. However, simple…

  19. Absolute calibration of ultraviolet filter photometry

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Fairchild, T.; Code, A. D.

    1972-01-01

    The essential features of the calibration procedure can be divided into three parts. First, the shape of the bandpass of each photometer was determined by measuring the transmissions of the individual optical components and also by measuring the response of the photometer as a whole. Secondly, each photometer was placed in the essentially-collimated synchrotron radiation bundle maintained at a constant intensity level, and the output signal was determined from about 100 points on the objective. Finally, two or three points on the objective were illuminated by synchrotron radiation at several different intensity levels covering the dynamic range of the photometers. The output signals were placed on an absolute basis by the electron counting technique described earlier.

  20. MAGSAT: Vector magnetometer absolute sensor alignment determination

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1981-01-01

    A procedure is described for accurately determining the absolute alignment of the magnetic axes of a triaxial magnetometer sensor with respect to an external, fixed, reference coordinate system. The method does not require that the magnetic field vector orientation, as generated by a triaxial calibration coil system, be known to better than a few degrees from its true position, and minimizes the number of positions through which a sensor assembly must be rotated to obtain a solution. Computer simulations show that accuracies of better than 0.4 seconds of arc can be achieved under typical test conditions associated with existing magnetic test facilities. The basic approach is similar in nature to that presented by McPherron and Snare (1978) except that only three sensor positions are required and the system of equations to be solved is considerably simplified. Applications of the method to the case of the MAGSAT Vector Magnetometer are presented and the problems encountered discussed.

  1. Absolute geostrophic currents in global tropical oceans

    NASA Astrophysics Data System (ADS)

    Yang, Lina; Yuan, Dongliang

    2016-03-01

    A set of absolute geostrophic current (AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profiles in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin (except the North Indian Ocean, where the circulation is dominated by monsoons). The identified non-Sverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom (JEBAR) and mesoscale eddy nonlinearity.

  2. Absolute Measurement of Electron Cloud Density

    SciTech Connect

    Covo, M K; Molvik, A W; Cohen, R H; Friedman, A; Seidl, P A; Logan, G; Bieniosek, F; Baca, D; Vay, J; Orlando, E; Vujic, J L

    2007-06-21

    Beam interaction with background gas and walls produces ubiquitous clouds of stray electrons that frequently limit the performance of particle accelerator and storage rings. Counterintuitively we obtained the electron cloud accumulation by measuring the expelled ions that are originated from the beam-background gas interaction, rather than by measuring electrons that reach the walls. The kinetic ion energy measured with a retarding field analyzer (RFA) maps the depressed beam space-charge potential and provides the dynamic electron cloud density. Clearing electrode current measurements give the static electron cloud background that complements and corroborates with the RFA measurements, providing an absolute measurement of electron cloud density during a 5 {micro}s duration beam pulse in a drift region of the magnetic transport section of the High-Current Experiment (HCX) at LBNL.

  3. Swarm's Absolute Scalar Magnetometer metrological performances

    NASA Astrophysics Data System (ADS)

    Leger, J.; Fratter, I.; Bertrand, F.; Jager, T.; Morales, S.

    2012-12-01

    The Absolute Scalar Magnetometer (ASM) has been developed for the ESA Earth Observation Swarm mission, planned for launch in November 2012. As its Overhauser magnetometers forerunners flown on Oersted and Champ satellites, it will deliver high resolution scalar measurements for the in-flight calibration of the Vector Field Magnetometer manufactured by the Danish Technical University. Latest results of the ground tests carried out to fully characterize all parameters that may affect its accuracy, both at instrument and satellite level, will be presented. In addition to its baseline function, the ASM can be operated either at a much higher sampling rate (burst mode at 250 Hz) or in a dual mode where it also delivers vector field measurements as a by-product. The calibration procedure and the relevant vector performances will be discussed.

  4. Absolute nonlocality via distributed computing without communication

    NASA Astrophysics Data System (ADS)

    Czekaj, Ł.; Pawłowski, M.; Vértesi, T.; Grudka, A.; Horodecki, M.; Horodecki, R.

    2015-09-01

    Understanding the role that quantum entanglement plays as a resource in various information processing tasks is one of the crucial goals of quantum information theory. Here we propose an alternative perspective for studying quantum entanglement: distributed computation of functions without communication between nodes. To formalize this approach, we propose identity games. Surprisingly, despite no signaling, we obtain that nonlocal quantum strategies beat classical ones in terms of winning probability for identity games originating from certain bipartite and multipartite functions. Moreover we show that, for a majority of functions, access to general nonsignaling resources boosts success probability two times in comparison to classical ones for a number of large enough outputs. Because there are no constraints on the inputs and no processing of the outputs in the identity games, they detect very strong types of correlations: absolute nonlocality.

  5. Using absolute gravimeter data to determine vertical gravity gradients

    USGS Publications Warehouse

    Robertson, D.S.

    2001-01-01

    The position versus time data from a free-fall absolute gravimeter can be used to estimate the vertical gravity gradient in addition to the gravity value itself. Hipkin has reported success in estimating the vertical gradient value using a data set of unusually good quality. This paper explores techniques that may be applicable to a broader class of data that may be contaminated with "system response" errors of larger magnitude than were evident in the data used by Hipkin. This system response function is usually modelled as a sum of exponentially decaying sinusoidal components. The technique employed here involves combining the x0, v0 and g parameters from all the drops made during a site occupation into a single least-squares solution, and including the value of the vertical gradient and the coefficients of system response function in the same solution. The resulting non-linear equations must be solved iteratively and convergence presents some difficulties. Sparse matrix techniques are used to make the least-squares problem computationally tractable.

  6. New identification method for Hammerstein models based on approximate least absolute deviation

    NASA Astrophysics Data System (ADS)

    Xu, Bao-Chang; Zhang, Ying-Dan

    2016-07-01

    Disorder and peak noises or large disturbances can deteriorate the identification effects of Hammerstein non-linear models when using the least-square (LS) method. The least absolute deviation technique can be used to resolve this problem; however, its absolute value cannot meet the need of differentiability required by most algorithms. To improve robustness and resolve the non-differentiable problem, an approximate least absolute deviation (ALAD) objective function is established by introducing a deterministic function that exhibits the characteristics of absolute value under certain situations. A new identification method for Hammerstein models based on ALAD is thus developed in this paper. The basic idea of this method is to apply the stochastic approximation theory in the process of deriving the recursive equations. After identifying the parameter matrix of the Hammerstein model via the new algorithm, the product terms in the matrix are separated by calculating the average values. Finally, algorithm convergence is proven by applying the ordinary differential equation method. The proposed algorithm has a better robustness as compared to other LS methods, particularly when abnormal points exist in the measured data. Furthermore, the proposed algorithm is easier to apply and converges faster. The simulation results demonstrate the efficacy of the proposed algorithm.

  7. SU-F-18C-08: A Validation Study of a Commercially Available Software Package's Absorbed Dose Estimates in a Physical Phantom

    SciTech Connect

    Supanich, M; Siegelman, J

    2014-06-15

    Purpose: This study assesses the accuracy of the absorbed dose estimates from CT scans generated by Monte Carlo (MC) simulation using a commercially available radiation dose monitoring software program. Methods: Axial CT studies of an anthropomorphic abdomen phantom with dose bores at a central location and 4 peripheral locations were conducted using a fixed tube current at 120 kV. A 100 mm ion chamber and a 0.6 cc ion chamber calibrated at diagnostic energy levels were used to measure dose in the phantom at each of the 5 dose bore locations. Simulations using the software program's Monte Carlo engine were run using a mathematical model of the anthropomorphic phantom to determine conversion coefficients between the CTDIvol used for the study and the dose at the location of the dose bores. Simulations were conducted using both the software's generic CT beam model and a refined model generated using HVL and bow tie filter profile measurements made on the scanner used for the study. Results: Monte Carlo simulations completed using the generalized beam model differed from the measured conversion factors by an absolute value average of 13.0% and 13.8% for the 100 mm and 0.6 cc ion chamber studies, respectively. The MC simulations using the scanner specific beam model generated conversion coefficients that differed from the CTDIvol to measured dose conversion coefficients by an absolute value average of 7.3% and 7.8% for the 100 mm and 0.6 cc ion chamber cases, respectively. Conclusion: A scanner specific beam model used in MC simulations generates more accurate dose conversion coefficients in an anthropomorphic phantom than those generated with a generalized beam model. Agreement between measured conversion coefficients and simulated values were less than 20% for all positions using the universal beam model.

  8. Convective-to-absolute instability transition in a viscoelastic capillary jet subject to unrelaxed axial elastic tension.

    PubMed

    Mohamed, A Said; Herrada, M A; Gañán-Calvo, A M; Montanero, J M

    2015-08-01

    The convective-to-absolute instability transition in an Oldroyd-B capillary jet subject to unrelaxed axial stress is examined theoretically. There is a critical Weber number below which the jet is absolutely unstable under axisymmetric perturbations. We analyze the dependence of this critical parameter with respect to the Reynolds and Deborah numbers, as well as the unrelaxed axial stress. For small Deborah numbers, the unrelaxed stress destabilizes the viscoelastic jet, increasing the critical Weber number for which the convective-to-absolute instability transition takes place. If the Deborah number takes higher values, then the transitional Weber number decreases as the unrelaxed stress increases until two solution branches cross each other. The dominant branch for large axial stress leads to a threshold of this quantity above which the viscoelastic jet becomes absolutely unstable independently of the Weber number. The threshold depends on neither the Reynolds nor the Deborah number for sufficiently large values of these parameters. PMID:26382502

  9. Convective-to-absolute instability transition in a viscoelastic capillary jet subject to unrelaxed axial elastic tension

    NASA Astrophysics Data System (ADS)

    Mohamed, A. Said; Herrada, M. A.; Gañán-Calvo, A. M.; Montanero, J. M.

    2015-08-01

    The convective-to-absolute instability transition in an Oldroyd-B capillary jet subject to unrelaxed axial stress is examined theoretically. There is a critical Weber number below which the jet is absolutely unstable under axisymmetric perturbations. We analyze the dependence of this critical parameter with respect to the Reynolds and Deborah numbers, as well as the unrelaxed axial stress. For small Deborah numbers, the unrelaxed stress destabilizes the viscoelastic jet, increasing the critical Weber number for which the convective-to-absolute instability transition takes place. If the Deborah number takes higher values, then the transitional Weber number decreases as the unrelaxed stress increases until two solution branches cross each other. The dominant branch for large axial stress leads to a threshold of this quantity above which the viscoelastic jet becomes absolutely unstable independently of the Weber number. The threshold depends on neither the Reynolds nor the Deborah number for sufficiently large values of these parameters.

  10. Measurement of absolute optical thickness of mask glass by wavelength-tuning Fourier analysis.

    PubMed

    Kim, Yangjin; Hbino, Kenichi; Sugita, Naohiko; Mitsuishi, Mamoru

    2015-07-01

    Optical thickness is a fundamental characteristic of an optical component. A measurement method combining discrete Fourier-transform (DFT) analysis and a phase-shifting technique gives an appropriate value for the absolute optical thickness of a transparent plate. However, there is a systematic error caused by the nonlinearity of the phase-shifting technique. In this research the absolute optical-thickness distribution of mask blank glass was measured using DFT and wavelength-tuning Fizeau interferometry without using sensitive phase-shifting techniques. The error occurring during the DFT analysis was compensated for by using the unwrapping correlation. The experimental results indicated that the absolute optical thickness of mask glass was measured with an accuracy of 5 nm. PMID:26125394

  11. Absolute phase retrieval for defocused fringe projection three-dimensional measurement

    NASA Astrophysics Data System (ADS)

    Zheng, Dongliang; Da, Feipeng

    2014-02-01

    Defocused fringe projection three-dimensional technique based on pulse-width modulation (PWM) can generate high-quality sinusoidal fringe patterns. It only uses slightly defocused binary structured patterns which can eliminate the gamma problem (i.e. nonlinear response), and the phase error can be significantly reduced. However, when the projector is defocused, it is difficult to retrieve the absolute phase from the wrapped phase. A recently proposed phase coding method is efficient for absolute phase retrieval, but the gamma problem leads this method not so reliable. In this paper, we use the PWM technique to generate fringe patterns for the phase coding method. The gamma problem of the projector can be eliminated, and correct absolute phase can be retrieved. The proposed method only uses two grayscale values (0's and 255's), which can be used for real-time 3D shape measurement. Both simulation and experiment demonstrate the performance of the proposed method.

  12. Sounding rocket measurement of the absolute solar EUV flux utilizing a silicon photodiode

    NASA Technical Reports Server (NTRS)

    Ogawa, H. S.; Mcmullin, D.; Judge, D. L.; Canfield, L. R.

    1990-01-01

    A newly developed stable and high quantum efficiency silicon photodiode was used to obtain an accurate measurement of the integrated absolute magnitude of the solar extreme UV photon flux in the spectral region between 50 and 800 A. The adjusted daily 10.7-cm solar radio flux and sunspot number were 168.4 and 121, respectively. The unattenuated absolute value of the solar EUV flux at 1 AU in the specified wavelength region was 6.81 x 10 to the 10th photons/sq cm per s. Based on a nominal probable error of 7 percent for National Institute of Standards and Technology detector efficiency measurements in the 50- to 500-A region (5 percent on longer wavelength measurements between 500 and 1216 A), and based on experimental errors associated with the present rocket instrumentation and analysis, a conservative total error estimate of about 14 percent is assigned to the absolute integral solar flux obtained.

  13. STANDARDIZING TYPE Ia SUPERNOVA ABSOLUTE MAGNITUDES USING GAUSSIAN PROCESS DATA REGRESSION

    SciTech Connect

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Nordin, J.; Thomas, R. C.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E.; and others

    2013-04-01

    We present a novel class of models for Type Ia supernova time-evolving spectral energy distributions (SEDs) and absolute magnitudes: they are each modeled as stochastic functions described by Gaussian processes. The values of the SED and absolute magnitudes are defined through well-defined regression prescriptions, so that data directly inform the models. As a proof of concept, we implement a model for synthetic photometry built from the spectrophotometric time series from the Nearby Supernova Factory. Absolute magnitudes at peak B brightness are calibrated to 0.13 mag in the g band and to as low as 0.09 mag in the z = 0.25 blueshifted i band, where the dispersion includes contributions from measurement uncertainties and peculiar velocities. The methodology can be applied to spectrophotometric time series of supernovae that span a range of redshifts to simultaneously standardize supernovae together with fitting cosmological parameters.

  14. Monitoring Groundwater Variations Using a Portable Absolute Gravimeter

    NASA Astrophysics Data System (ADS)

    Fukuda, Yoichi; Nishijima, Jun; Hasegawa, Takashi; Sofyan, Yayan; Taniguchi, Makoto; Abidin, Hasanuddin Z.; Delinom, Robert M.

    2010-05-01

    In urbanized areas, one of the urgent problems is to monitor the groundwater variations especially connected with land subsidence. Although the groundwater variations are usually measured by water level meters, gravity measurements can provide us additional information about the water mass movements which should be beneficial for the analyses of groundwater flow and the managements of water resources as well. Therefore, in order to establish a new technique to monitor the groundwater variations by means of the gravity measurements, we investigated the applicability of a portable type absolute gravimeter (Micro-G LaCoste Inc. A10-017). We will report the results of some test measurements in Japan, and the outline of the surveys in Jakarta, Indonesia. As for the absolute gravity measurements, FG-5 of MGL would be more popular. FG-5 is a high precision absolute gravimeter with a 2ugal-accuracy for laboratory use, while the nominal accuracy of A-10 is 10ugal (measurement precision: ±5ugal). In spite of the disadvantage, A-10 is well suited for the field surveys because it is much smaller than FG-5 and can be operated with 12VDC power. The repeated measurements using A10-017 in Kyushu University show good correlations between the measured gravity values and the groundwater levels in nearby observation wells. In a geothermal plant of Takigami, we also observed the gravity changes associated with the cycle of the geothermal fluid. All these test measurements have proved that the gravimeter can achieve a 10ugal (10nm/s2) or better accuracy in the field surveys. In Jakarta, Indonesia, excess groundwater pumping is going on and it causes land subsidence. To reveal the associated gravity changes, we conducted the first gravity survey in August 2008 and the second survey in July 2009. Mainly due to the instrumental troubles during the 2008 surveys, we have not obtained enough reliable data yet. Nevertheless the result obtained so far suggested the gravity increases in the

  15. Linearization of dose-response curve of the radiochromic film dosimetry system

    SciTech Connect

    Devic, Slobodan; Tomic, Nada; Aldelaijan, Saad; DeBlois, Francois; Seuntjens, Jan; Chan, Maria F.; Lewis, Dave

    2012-08-15

    Purpose: Despite numerous advantages of radiochromic film dosimeter (high spatial resolution, near tissue equivalence, low energy dependence) to measure a relative dose distribution with film, one needs to first measure an absolute dose (following previously established reference dosimetry protocol) and then convert measured absolute dose values into relative doses. In this work, we present result of our efforts to obtain a functional form that would linearize the inherently nonlinear dose-response curve of the radiochromic film dosimetry system. Methods: Functional form [{zeta}= (-1){center_dot}netOD{sup (2/3)}/ln(netOD)] was derived from calibration curves of various previously established radiochromic film dosimetry systems. In order to test the invariance of the proposed functional form with respect to the film model used we tested it with three different GAFCHROMIC Trade-Mark-Sign film models (EBT, EBT2, and EBT3) irradiated to various doses and scanned on a same scanner. For one of the film models (EBT2), we tested the invariance of the functional form to the scanner model used by scanning irradiated film pieces with three different flatbed scanner models (Epson V700, 1680, and 10000XL). To test our hypothesis that the proposed functional argument linearizes the response of the radiochromic film dosimetry system, verification tests have been performed in clinical applications: percent depth dose measurements, IMRT quality assurance (QA), and brachytherapy QA. Results: Obtained R{sup 2} values indicate that the choice of the functional form of the new argument appropriately linearizes the dose response of the radiochromic film dosimetry system we used. The linear behavior was insensitive to both film model and flatbed scanner model used. Measured PDD values using the green channel response of the GAFCHROMIC Trade-Mark-Sign EBT3 film model are well within {+-}2% window of the local relative dose value when compared to the tabulated Cobalt-60 data. It was also

  16. Radiation carcinogenesis in man: influence of dose-response models and risk projection models in the estimation of risk coefficients following exposure to low-level radiation

    SciTech Connect

    Fabrikant, J.I.

    1982-02-01

    The somatic effects of concern in human populations exposed to low doses and low dose rates of ionizing radiations are those that may be induced by mutation in individual cells, singly or in small numbers. The most important of these is considered to be cancer induction. Current knowledge of the carcinogenic effect of radiation in man has been reviewed in two recent reports: the 1977 UNSCEAR Report; and the 1980 BEIR-III Report. Both reports emphasize that cancers of the breast, thyroid, hematopoietic tissues, lung, and bone can be induced by radiation. Other cancers, including the stomach, pancreas, pharynx, lymphatic, and perhaps all tissues of the body, may also be induced by radiation. Both reports calculate risk estimates in absolute and relative terms for low-dose, low-LET whole-body exposure, and for leukemia, breast cancer, thyroid cancer, lung cancer, and other cancers. These estimates derive from exposure and cancer incidence data at high doses and at high dose rates. There are no compelling scientific reasons to apply these values of risk to the very low doses and low dose rates of concern in human radiation protection. In the absence of reliable human data for calculating risk estimates, dose-response models have been constructed from extrapolations of animal data and high-dose-rate human data for projection of estimated risks at low doses and low dose rates. (ERB)

  17. Antiausterity activity of arctigenin enantiomers: importance of (2R,3R)-absolute configuration.

    PubMed

    Awale, Suresh; Kato, Mamoru; Dibwe, Dya Fita; Li, Feng; Miyoshi, Chika; Esumi, Hiroyasu; Kadota, Shigetoshi; Tezuka, Yasuhiro

    2014-01-01

    From a MeOH extract of powdered roots of Wikstroemia indica, six dibenzyl-gamma-butyrolactone-type lignans with (2S,3S)-absolute configuration [(+)-arctigenin (1), (+)-matairesinol (2), (+)-trachelogenin (3), (+)-nortrachelogenin (4), (+)-hinokinin (5), and (+)-kusunokinin (6)] were isolated, whereas three dibenzyl-gamma-butyrolactone-type lignans with (2R,3R)-absolute configuration [(-)-arctigenin (1*), (-)-matairesinol (2*), (-)-trachelogenin (3*)] were isolated from Trachelospermum asiaticum. The in vitro preferential cytotoxic activity of the nine compounds was evaluated against human pancreatic PANC-1 cancer cells in nutrient-deprived medium (NDM), but none of the six lignans (1-6) with (2S,3S)-absolute configuration showed preferential cytotoxicity. On the other hand, three lignans (1*-3*) with (2R,3R)-absolute configuration exhibited preferential cytotoxicity in a concentration-dependent manner with PC50 values of 0.54, 6.82, and 5.85 microM, respectively. Furthermore, the effect of (-)- and (+)-arctigenin was evaluated against the activation of Akt, which is a key process in the tolerance to nutrition starvation. Interestingly, only (-)-arctigenin (1*) strongly suppressed the activation of Akt. These results indicate that the (2R,3R)-absolute configuration of (-)-enantiomers should be required for the preferential cytotoxicity through the inhibition of Akt activation. PMID:24660468

  18. Absolute instabilities in a high-order-mode gyrotron traveling-wave amplifier.

    PubMed

    Tsai, W C; Chang, T H; Chen, N C; Chu, K R; Song, H H; Luhmann, N C

    2004-11-01

    The absolute instability is a subject of considerable physics interest as well as a major source of self-oscillations in the gyrotron traveling-wave amplifier (gyro-TWT). We present a theoretical study of the absolute instabilities in a TE01 mode, fundamental cyclotron harmonic gyro-TWT with distributed wall losses. In this high-order-mode circuit, absolute instabilities arise in a variety of ways, including overdrive of the operating mode, fundamental cyclotron harmonic interactions with lower-order modes, and second cyclotron harmonic interaction with a higher-order mode. The distributed losses, on the other hand, provide an effective means for their stabilization. The combined configuration thus allows a rich display of absolute instability behavior together with the demonstration of its control. We begin with a study of the field profiles of absolute instabilities, which exhibit a range of characteristics depending in large measure upon the sign and magnitude of the synchronous value of the propagation constant. These profiles in turn explain the sensitivity of oscillation thresholds to the beam and circuit parameters. A general recipe for oscillation stabilization has resulted from these studies and its significance to the current TE01 -mode, 94-GHz gyro-TWT experiment at UC Davis is discussed. PMID:15600760

  19. Utilizing a reference material for assessing absolute tumor mechanical properties in modality independent elastography

    NASA Astrophysics Data System (ADS)

    Kim, Dong Kyu; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    There is currently no reliable method for early characterization of breast cancer response to neoadjuvant chemotherapy (NAC) [1,2]. Given that disruption of normal structural architecture occurs in cancer-bearing tissue, we hypothesize that further structural changes occur in response to NAC. Consequently, we are investigating the use of modalityindependent elastography (MIE) [3-8] as a method for monitoring mechanical integrity to predict long term outcomes in NAC. Recently, we have utilized a Demons non-rigid image registration method that allows 3D elasticity reconstruction in abnormal tissue geometries, making it particularly amenable to the evaluation of breast cancer mechanical properties. While past work has reflected relative elasticity contrast ratios [3], this study improves upon that work by utilizing a known stiffness reference material within the reconstruction framework such that a stiffness map becomes an absolute measure. To test, a polyvinyl alcohol (PVA) cryogel phantom and a silicone rubber mock mouse tumor phantom were constructed with varying mechanical stiffness. Results showed that an absolute measure of stiffness could be obtained based on a reference value. This reference technique demonstrates the ability to generate accurate measurements of absolute stiffness to characterize response to NAC. These results support that `referenced MIE' has the potential to reliably differentiate absolute tumor stiffness with significant contrast from that of surrounding tissue. The use of referenced MIE to obtain absolute quantification of biomarkers is also translatable across length scales such that the characterization method is mechanics-consistent at the small animal and human application.

  20. MANAGEMENT OF PATIENT DOSES FROM DIGITAL X-RAY CHEST SCREENING EXAMINATIONS.

    PubMed

    Vodovatov, A V; Drozdov, A A; Telnova, A U; Bernhardsson, C

    2016-06-01

    An anthropomorphic phantom study was carried out in 2013-14 in two hospitals, one located in Russia (Mariinsky Hospital, Saint Petersburg) and the other in Sweden (Skåne University Hospital, Malmö). The aim of the study was to investigate the possibilities to reduce the patient dose from digital X-ray chest screening examinations. The existing chest imaging protocols were adjusted by changing the tube voltage, total filtration and grid in order to determine the most dose-effective combination of the examination parameters. It was possible to achieve up to 50 % dose-area product (DAP) and 30 % effective dose reduction by raising the tube voltage from 100 to 125 or 150 kV, and simultaneously decrease the total filtration to the minimum allowed by the X-ray unit (3 mm Al). The absence of a grid allowed to further reduce the DAP and effective dose by up to 80 %. Comparison between Russian and Swedish X-ray units showed the same trend in DAP and effective dose reduction, but the absolute dose values were lower by almost a factor of 10 for the Swedish units due to different image receptors and automatic exposure control settings. PMID:26769906

  1. A Monte Carlo-based method to estimate radiation dose from spiral CT: from phantom testing to patient-specific models

    NASA Astrophysics Data System (ADS)

    Jarry, G.; DeMarco, J. J.; Beifuss, U.; Cagnon, C. H.; McNitt-Gray, M. F.

    2003-08-01

    The purpose of this work is to develop and test a method to estimate the relative and absolute absorbed radiation dose from axial and spiral CT scans using a Monte Carlo approach. Initial testing was done in phantoms and preliminary results were obtained from a standard mathematical anthropomorphic model (MIRD V) and voxelized patient data. To accomplish this we have modified a general purpose Monte Carlo transport code (MCNP4B) to simulate the CT x-ray source and movement, and then to calculate absorbed radiation dose in desired objects. The movement of the source in either axial or spiral modes was modelled explicitly while the CT system components were modelled using published information about x-ray spectra as well as information provided by the manufacturer. Simulations were performed for single axial scans using the head and body computed tomography dose index (CTDI) polymethylmethacrylate phantoms at both central and peripheral positions for all available beam energies and slice thicknesses. For comparison, corresponding physical measurements of CTDI in phantom were made with an ion chamber. To obtain absolute dose values, simulations and measurements were performed in air at the scanner isocentre for each beam energy. To extend the verification, the CT scanner model was applied to the MIRD V model and compared with published results using similar technical factors. After verification of the model, the generalized source was simulated and applied to voxelized models of patient anatomy. The simulated and measured absolute dose data in phantom agreed to within 2% for the head phantom and within 4% for the body phantom at 120 and 140 kVp; this extends to 8% for the head and 9% for the body phantom across all available beam energies and positions. For the head phantom, the simulated and measured absolute dose data agree to within 2% across all slice thicknesses at 120 kVp. Our results in the MIRD phantom agree within 11% of all the different organ dose values

  2. Impact of the radiotherapy technique on the correlation between dose-volume histograms of the bladder wall defined on MRI imaging and dose-volume/surface histograms in prostate cancer patients

    NASA Astrophysics Data System (ADS)

    Maggio, Angelo; Carillo, Viviana; Cozzarini, Cesare; Perna, Lucia; Rancati, Tiziana; Valdagni, Riccardo; Gabriele, Pietro; Fiorino, Claudio

    2013-04-01

    The aim of this study was to evaluate the correlation between the ‘true’ absolute and relative dose-volume histograms (DVHs) of the bladder wall, dose-wall histogram (DWH) defined on MRI imaging and other surrogates of bladder dosimetry in prostate cancer patients, planned both with 3D-conformal and intensity-modulated radiation therapy (IMRT) techniques. For 17 prostate cancer patients, previously treated with radical intent, CT and MRI scans were acquired and matched. The contours of bladder walls were drawn by using MRI images. External bladder surfaces were then used to generate artificial bladder walls by performing automatic contractions of 5, 7 and 10 mm. For each patient a 3D conformal radiotherapy (3DCRT) and an IMRT treatment plan was generated with a prescription dose of 77.4 Gy (1.8 Gy/fr) and DVH of the whole bladder of the artificial walls (DVH-5/10) and dose-surface histograms (DSHs) were calculated and compared against the DWH in absolute and relative value, for both treatment planning techniques. A specific software (VODCA v. 4.4.0, MSS Inc.) was used for calculating the dose-volume/surface histogram. Correlation was quantified for selected dose-volume/surface parameters by the Spearman correlation coefficient. The agreement between %DWH and DVH5, DVH7 and DVH10 was found to be very good (maximum average deviations below 2%, SD < 5%): DVH5 showed the best agreement. The correlation was slightly better for absolute (R = 0.80-0.94) compared to relative (R = 0.66-0.92) histograms. The DSH was also found to be highly correlated with the DWH, although slightly higher deviations were generally found. The DVH was not a good surrogate of the DWH (R < 0.7 for most of parameters). When comparing the two treatment techniques, more pronounced differences between relative histograms were seen for IMRT with respect to 3DCRT (p < 0.0001).

  3. Gyrokinetic Statistical Absolute Equilibrium and Turbulence

    SciTech Connect

    Jian-Zhou Zhu and Gregory W. Hammett

    2011-01-10

    A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.

  4. Absolute surface energy for zincblende semiconductors

    NASA Astrophysics Data System (ADS)

    Zhang, S. B.; Wei, Su-Huai

    2003-03-01

    Recent advance in nanosciences requires the determination of surface (or facet) energy of semiconductors, which is often difficult due to the polar nature of some of the most important surfaces such as the (111)A/(111)B surfaces. Several approaches have been developed in the past [1-3] to deal with the problem but an unambiguous division of the polar surface energies is yet to come [2]. Here we show that an accurate division is indeed possible for the zincblende semiconductors and will present the results for GaAs, ZnSe, and CuInSe2 [4], respectively. A general trend emerges, relating the absolute surface energy to the ionicity of the bulk materials. [1] N. Chetty and R. M. Martin, Phys. Rev. B 45, 6074 (1992). [2] N. Moll, et al., Phys. Rev. B 54, 8844 (1996). [3] S. Mankefors, Phys. Rev. B 59, 13151 (1999). [4] S. B. Zhang and S.-H. Wei, Phys. Rev. B 65, 081402 (2002).

  5. Climate Absolute Radiance and Refractivity Observatory (CLARREO)

    NASA Technical Reports Server (NTRS)

    Leckey, John P.

    2015-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a mission, led and developed by NASA, that will measure a variety of climate variables with an unprecedented accuracy to quantify and attribute climate change. CLARREO consists of three separate instruments: an infrared (IR) spectrometer, a reflected solar (RS) spectrometer, and a radio occultation (RO) instrument. The mission will contain orbiting radiometers with sufficient accuracy, including on orbit verification, to calibrate other space-based instrumentation, increasing their respective accuracy by as much as an order of magnitude. The IR spectrometer is a Fourier Transform spectrometer (FTS) working in the 5 to 50 microns wavelength region with a goal of 0.1 K (k = 3) accuracy. The FTS will achieve this accuracy using phase change cells to verify thermistor accuracy and heated halos to verify blackbody emissivity, both on orbit. The RS spectrometer will measure the reflectance of the atmosphere in the 0.32 to 2.3 microns wavelength region with an accuracy of 0.3% (k = 2). The status of the instrumentation packages and potential mission options will be presented.

  6. Absolute decay width measurements in 16O

    NASA Astrophysics Data System (ADS)

    Wheldon, C.; Ashwood, N. I.; Barr, M.; Curtis, N.; Freer, M.; Kokalova, Tz; Malcolm, J. D.; Spencer, S. J.; Ziman, V. A.; Faestermann, Th; Krücken, R.; Wirth, H.-F.; Hertenberger, R.; Lutter, R.; Bergmaier, A.

    2012-09-01

    The reaction 126C(63Li, d)168O* at a 6Li bombarding energy of 42 MeV has been used to populate excited states in 16O. The deuteron ejectiles were measured using the high-resolution Munich Q3D spectrograph. A large-acceptance silicon-strip detector array was used to register the recoil and break-up products. This complete kinematic set-up has enabled absolute α-decay widths to be measured with high-resolution in the 13.9 to 15.9 MeV excitation energy regime in 16O; many for the first time. This energy region spans the 14.4 MeV four-α breakup threshold. Monte-Carlo simulations of the detector geometry and break-up processes yield detection efficiencies for the two dominant decay modes of 40% and 37% for the α+12C(g.s.) and a+12C(2+1) break-up channels respectively.

  7. Absolute calibration of forces in optical tweezers

    NASA Astrophysics Data System (ADS)

    Dutra, R. S.; Viana, N. B.; Maia Neto, P. A.; Nussenzveig, H. M.

    2014-07-01

    Optical tweezers are highly versatile laser traps for neutral microparticles, with fundamental applications in physics and in single molecule cell biology. Force measurements are performed by converting the stiffness response to displacement of trapped transparent microspheres, employed as force transducers. Usually, calibration is indirect, by comparison with fluid drag forces. This can lead to discrepancies by sizable factors. Progress achieved in a program aiming at absolute calibration, conducted over the past 15 years, is briefly reviewed. Here we overcome its last major obstacle, a theoretical overestimation of the peak stiffness, within the most employed range for applications, and we perform experimental validation. The discrepancy is traced to the effect of primary aberrations of the optical system, which are now included in the theory. All required experimental parameters are readily accessible. Astigmatism, the dominant effect, is measured by analyzing reflected images of the focused laser spot, adapting frequently employed video microscopy techniques. Combined with interface spherical aberration, it reveals a previously unknown window of instability for trapping. Comparison with experimental data leads to an overall agreement within error bars, with no fitting, for a broad range of microsphere radii, from the Rayleigh regime to the ray optics one, for different polarizations and trapping heights, including all commonly employed parameter domains. Besides signaling full first-principles theoretical understanding of optical tweezers operation, the results may lead to improved instrument design and control over experiments, as well as to an extended domain of applicability, allowing reliable force measurements, in principle, from femtonewtons to nanonewtons.

  8. Absolute spectrophotometry of northern compact planetary nebulae

    NASA Astrophysics Data System (ADS)

    Wright, S. A.; Corradi, R. L. M.; Perinotto, M.

    2005-06-01

    We present medium-dispersion spectra and narrowband images of six northern compact planetary nebulae (PNe): BoBn 1, DdDm 1, IC 5117, M 1-5, M 1-71, and NGC 6833. From broad-slit spectra, total absolute fluxes and equivalent widths were measured for all observable emission lines. High signal-to-noise emission line fluxes of Hα, Hβ, [Oiii], [Nii], and HeI may serve as emission line flux standards for northern hemisphere observers. From narrow-slit spectra, we derive systemic radial velocities. For four PNe, available emission line fluxes were measured with sufficient signal-to-noise to probe the physical properties of their electron densities, temperatures, and chemical abundances. BoBn 1 and DdDm 1, both type IV PNe, have an Hβ flux over three sigma away from previous measurements. We report the first abundance measurements of M 1-71. NGC 6833 measured radial velocity and galactic coordinates suggest that it is associated with the outer arm or possibly the galactic halo, and its low abundance ([O/H]=1.3× 10-4) may be indicative of low metallicity within that region.

  9. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  10. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  11. Absolute Cavity Pyrgeometer to Measure the Absolute Outdoor Longwave Irradiance with Traceability to International System of Units, SI

    SciTech Connect

    Reda, I.; Zeng, J.; Scheuch, J.; Hanssen, L.; Wilthan, B.; Myers, D.; Stoffel, T.

    2012-03-01

    This article describes a method of measuring the absolute outdoor longwave irradiance using an absolute cavity pyrgeometer (ACP), U.S. Patent application no. 13/049, 275. The ACP consists of domeless thermopile pyrgeometer, gold-plated concentrator, temperature controller, and data acquisition. The dome was removed from the pyrgeometer to remove errors associated with dome transmittance and the dome correction factor. To avoid thermal convection and wind effect errors resulting from using a domeless thermopile, the gold-plated concentrator was placed above the thermopile. The concentrator is a dual compound parabolic concentrator (CPC) with 180{sup o} view angle to measure the outdoor incoming longwave irradiance from the atmosphere. The incoming irradiance is reflected from the specular gold surface of the CPC and concentrated on the 11 mm diameter of the pyrgeometer's blackened thermopile. The CPC's interior surface design and the resulting cavitation result in a throughput value that was characterized by the National Institute of Standards and Technology. The ACP was installed horizontally outdoor on an aluminum plate connected to the temperature controller to control the pyrgeometer's case temperature. The responsivity of the pyrgeometer's thermopile detector was determined by lowering the case temperature and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The responsivity is then used to calculate the absolute atmospheric longwave irradiance with an uncertainty estimate (U{sub 95}) of {+-}3.96 W m{sup 02} with traceability to the International System of Units, SI. The measured irradiance was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the Interim World Infrared Standard Group, WISG. A total of 408 readings were collected over three different nights. The calculated irradiance measured by the ACP was 1.5 W/m{sup 2} lower than that

  12. An absolute cavity pyrgeometer to measure the absolute outdoor longwave irradiance with traceability to international system of units, SI

    NASA Astrophysics Data System (ADS)

    Reda, Ibrahim; Zeng, Jinan; Scheuch, Jonathan; Hanssen, Leonard; Wilthan, Boris; Myers, Daryl; Stoffel, Tom

    2012-03-01

    This article describes a method of measuring the absolute outdoor longwave irradiance using an absolute cavity pyrgeometer (ACP), U.S. Patent application no. 13/049, 275. The ACP consists of domeless thermopile pyrgeometer, gold-plated concentrator, temperature controller, and data acquisition. The dome was removed from the pyrgeometer to remove errors associated with dome transmittance and the dome correction factor. To avoid thermal convection and wind effect errors resulting from using a domeless thermopile, the gold-plated concentrator was placed above the thermopile. The concentrator is a dual compound parabolic concentrator (CPC) with 180° view angle to measure the outdoor incoming longwave irradiance from the atmosphere. The incoming irradiance is reflected from the specular gold surface of the CPC and concentrated on the 11 mm diameter of the pyrgeometer's blackened thermopile. The CPC's interior surface design and the resulting cavitation result in a throughput value that was characterized by the National Institute of Standards and Technology. The ACP was installed horizontally outdoor on an aluminum plate connected to the temperature controller to control the pyrgeometer's case temperature. The responsivity of the pyrgeometer's thermopile detector was determined by lowering the case temperature and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The responsivity is then used to calculate the absolute atmospheric longwave irradiance with an uncertainty estimate (U95) of ±3.96 W m-2 with traceability to the International System of Units, SI. The measured irradiance was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the Interim World Infrared Standard Group, WISG. A total of 408 readings were collected over three different nights. The calculated irradiance measured by the ACP was 1.5 W/m2 lower than that measured by the two

  13. TU-PIS-Exhibit Hall-01: CT Dose Optimization Technologies II

    SciTech Connect

    Driesser, I; Angel, E

    2014-06-15

    Partners in Solutions is an exciting new program in which AAPM partners with our vendors to present practical “hands-on” information about the equipment and software systems that we use in our clinics. The imaging topic this year is CT scanner dose optimization capabilities. Note that the sessions are being held in a special purpose room built on the Exhibit Hall Floor, to encourage further interaction with the vendors. Siemens‘ Commitment to the Right Dose in Computed Tomography Presentation Time: 11:15 - 11:45 AM Providing sustainable clinical results at highest patient safety: This is the challenge in medical imaging. Especially for Computed Tomography this means applying not simply the lowest, but the right dose for sound diagnostic imaging. Consequently, Siemens is committed to deliver the right dose in CT. In order to reduce radiation to the right dose, the first step is to provide the right dose technology. Through decades of research and development in CT imaging, Siemens CT has constantly introduced new ideas leading to a comprehensive portfolio of unique CARE technologies to deliver the right dose. For example automated kV adjustment based on patient size and the clinical question with CARE kV and three generations of iterative reconstruction. Based on the right dose technology, the next step is to actually scan at the right dose. For this, it is key to know the right dose targets for every examination. Siemens continuously involves CT experts to push developments further and outline how users can best adapt their procedures to the right dose. For users to know whether they met the right dose targets, it is therefore important to understand and monitor the actual absolute dose values. All scanners are delivered with defined default protocols which automatically use the available right dose technologies. Finally, to deliver the right dose not just in singular cases, but ideally to patients everywhere, organizations need then to manage dose across

  14. Notes on the effect of dose uncertainty

    SciTech Connect

    Morris, M.D.

    1987-01-01

    The apparent dose-response relationship between amount of exposure to acute radiation and level of mortality in humans is affected by uncertainties in the dose values. It is apparent that one of the greatest concerns regarding the human data from Hiroshima and Nagasaki is the unexpectedly shallow slope of the dose response curve. This may be partially explained by uncertainty in the dose estimates. Some potential effects of dose uncertainty on the apparent dose-response relationship are demonstrated.

  15. Luminous-flux measurements by an absolute integrating sphere

    NASA Astrophysics Data System (ADS)

    Rastello, Maria Luisa; Miraldi, Elio; Pisoni, Paolo

    1996-08-01

    We present an original implementation of the absolute-sphere method recently proposed by Ohno. The luminous-flux unit, the lumen, is realized by means of an integrating sphere with an opening calibrated by a luminous-intensity standard placed outside. The adapted experimental setup permits one to measure luminous-flux values between 5 and 2500 lm with a significant improvement with respect to the simulated performances reported in the literature. Traditionally, the luminous-flux unit, the lumen, is realized by goniophotometric techniques in which the luminous-intensity distribution is measured and integrated over the whole solid angle. Thus sphere results are compared with those obtained with the Istituto Elettrotecnico Nazionale goniophotometer. In particular, a set of standards, characterized by luminous-flux values of approximately 2000 lm, has been calibrated with both techniques. We highlight some of the problems encountered. Experimental results show that the agreement between the two methods is within the estimated uncertainty and suggest promising areas for future research.

  16. Strong thermal leptogenesis and the absolute neutrino mass scale

    SciTech Connect

    Bari, Pasquale Di; King, Sophie E.; Fiorentin, Michele Re E-mail: sk1806@soton.ac.uk

    2014-03-01

    We show that successful strong thermal leptogenesis, where the final asymmetry is independent of the initial conditions and in particular a large pre-existing asymmetry is efficiently washed-out, favours values of the lightest neutrino mass m{sub 1}∼>10 meV for normal ordering (NO) and m{sub 1}∼>3 meV for inverted ordering (IO) for models with orthogonal matrix entries respecting |Ω{sub ij}{sup 2}|∼<2. We show analytically why lower values of m{sub 1} require a higher level of fine tuning in the seesaw formula and/or in the flavoured decay parameters (in the electronic for NO, in the muonic for IO). We also show how this constraint exists thanks to the measured values of the neutrino mixing angles and could be tightened by a future determination of the Dirac phase. Our analysis also allows us to place a more stringent constraint for a specific model or class of models, such as SO(10)-inspired models, and shows that some models cannot realise strong thermal leptogenesis for any value of m{sub 1}. A scatter plot analysis fully supports the analytical results. We also briefly discuss the interplay with absolute neutrino mass scale experiments concluding that they will be able in the coming years to either corner strong thermal leptogenesis or find positive signals pointing to a non-vanishing m{sub 1}. Since the constraint is much stronger for NO than for IO, it is very important that new data from planned neutrino oscillation experiments will be able to solve the ambiguity.

  17. The absolute disparity anomaly and the mechanism of relative disparities.

    PubMed

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-06-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  18. The absolute disparity anomaly and the mechanism of relative disparities

    PubMed Central

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-01-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  19. Intravenous pharmacokinetics, oral bioavailability, dose proportionality and in situ permeability of anti-malarial lumefantrine in rats

    PubMed Central

    2011-01-01

    Background Despite the wide spread use of lumefantrine, there is no study reporting the detailed preclinical pharmacokinetics of lumefantrine. For the development of newer anti-malarial combination(s) and selection of better partner drugs, it is long felt need to understand the detailed preclinical pharmacokinetics of lumefantrine in preclinical experimental animal species. The focus of present study is to report bioavailability, pharmacokinetics, dose linearity and permeability of lumefantrine in rats. Methods A single dose of 10, 20 or 40 mg/kg of lumefantrine was given orally to male rats (N = 5 per dose level) to evaluate dose proportionality. In another study, a single intravenous bolus dose of lumefantrine was given to rats (N = 4) at 0.5 mg/kg dose following administration through the lateral tail vein in order to obtain the absolute oral bioavailability and clearance parameters. Blood samples were drawn at predetermined intervals and the concentration of lumefantrine and its metabolite desbutyl-lumefantrine in plasma were determined by partially validated LC-MS/MS method. In-situ permeability study was carried in anaesthetized rats. The concentration of lumefantrine in permeability samples was determined using RP-HPLC. Results For nominal doses increasing in a 1:2:4 proportion, the Cmax and AUC0-∞ values increased in the proportions of 1:0.6:1.5 and 1:0.8:1.8, respectively. For lumefantrine nominal doses increasing in a 1:2:4 proportion, the Cmax and the AUC0-t values for desbutyl-lumefantrine increased in the proportions of 1:1.45:2.57 and 1:1.08:1.87, respectively. After intravenous administration the clearance (Cl) and volume of distribution (Vd) of lumefantrine in rats were 0.03 (± 0.02) L/h/kg and 2.40 (± 0.67) L/kg, respectively. Absolute oral bioavailability of lumefantrine across the tested doses ranged between 4.97% and 11.98%. Lumefantrine showed high permeability (4.37 × 10-5 cm/s) in permeability study. Conclusions The pharmacokinetic

  20. Combined absolute and relative gravity measurement for microgravity monitoring in Aso volcanic field

    NASA Astrophysics Data System (ADS)

    Sofyan, Yayan; Nishijima, Jun; Yoshikawa, Shin; Fujimitsu, Yasuhiro; Kagiyama, Tsuneomi; Fukuda, Yoichi

    2014-05-01

    Absolute measurement with a portable A10-017 absolute gravimeter at some benchmarks in the Aso volcanic field are valuable for reducing uncertainties of regional gravity variations and will be useful for delineating the long term trends of gravity changes. A10 absolute gravimeter is a new generation of portable absolute instrument and has accuracy 10 microGal. To further the development of a high precision gravity data, we also conducted measurement using two relative gravimeter (Scintrex CG-5 [549] and LaCoste type G-1016) to be combined with an A10 absolute gravimeter. The using absolute gravimeter along with relative gravimeter can reduce drift correction factor and improve the result of gravity change data in microgravity monitoring. Microgravity monitoring is a valued tool for mapping the redistribution of subsurface mass and for assessing changes in the fluid as a dynamic process in volcanic field. Gravity changes enable the characterization of subsurface processes: i.e., the mass of the intrusion or hydrothermal flow. A key assumption behind gravity monitoring is that changes in earth's gravity reflect mass-transport processes at depth [1]. The absolute gravity network was installed at seven benchmarks using on May 2010, which re-occupied in October 2010, and June 2011. The relative gravity measurements were performed at 28 benchmarks in one month before the eruption on May 2011 and then followed by series of gravity monitoring after the eruption in every three to five months. Gravity measurements covered the area more than 60 km2 in the west side of Aso caldera. Some gravity benchmarks were measured using both absolute and relative gravimeter and is used as the reference benchmarks. In longer time period, the combined gravity method will improve the result of gravity change data for monitoring in the Aso volcanic field. As a result, the gravity changes detected the hydrothermal flow in the subsurface which has a correlation to water level fluctuation in the

  1. Orion Absolute Navigation System Progress and Challenge

    NASA Technical Reports Server (NTRS)

    Holt, Greg N.; D'Souza, Christopher

    2012-01-01

    The absolute navigation design of NASA's Orion vehicle is described. It has undergone several iterations and modifications since its inception, and continues as a work-in-progress. This paper seeks to benchmark the current state of the design and some of the rationale and analysis behind it. There are specific challenges to address when preparing a timely and effective design for the Exploration Flight Test (EFT-1), while still looking ahead and providing software extensibility for future exploration missions. The primary onboard measurements in a Near-Earth or Mid-Earth environment consist of GPS pseudo-range and delta-range, but for future explorations missions the use of star-tracker and optical navigation sources need to be considered. Discussions are presented for state size and composition, processing techniques, and consider states. A presentation is given for the processing technique using the computationally stable and robust UDU formulation with an Agee-Turner Rank-One update. This allows for computational savings when dealing with many parameters which are modeled as slowly varying Gauss-Markov processes. Preliminary analysis shows up to a 50% reduction in computation versus a more traditional formulation. Several state elements are discussed and evaluated, including position, velocity, attitude, clock bias/drift, and GPS measurement biases in addition to bias, scale factor, misalignment, and non-orthogonalities of the accelerometers and gyroscopes. Another consideration is the initialization of the EKF in various scenarios. Scenarios such as single-event upset, ground command, and cold start are discussed as are strategies for whole and partial state updates as well as covariance considerations. Strategies are given for dealing with latent measurements and high-rate propagation using multi-rate architecture. The details of the rate groups and the data ow between the elements is discussed and evaluated.

  2. Evaluation of the Absolute Regional Temperature Potential

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.

    2012-01-01

    The Absolute Regional Temperature Potential (ARTP) is one of the few climate metrics that provides estimates of impacts at a sub-global scale. The ARTP presented here gives the time-dependent temperature response in four latitude bands (90-28degS, 28degS-28degN, 28-60degN and 60-90degN) as a function of emissions based on the forcing in those bands caused by the emissions. It is based on a large set of simulations performed with a single atmosphere-ocean climate model to derive regional forcing/response relationships. Here I evaluate the robustness of those relationships using the forcing/response portion of the ARTP to estimate regional temperature responses to the historic aerosol forcing in three independent climate models. These ARTP results are in good accord with the actual responses in those models. Nearly all ARTP estimates fall within +/-20%of the actual responses, though there are some exceptions for 90-28degS and the Arctic, and in the latter the ARTP may vary with forcing agent. However, for the tropics and the Northern Hemisphere mid-latitudes in particular, the +/-20% range appears to be roughly consistent with the 95% confidence interval. Land areas within these two bands respond 39-45% and 9-39% more than the latitude band as a whole. The ARTP, presented here in a slightly revised form, thus appears to provide a relatively robust estimate for the responses of large-scale latitude bands and land areas within those bands to inhomogeneous radiative forcing and thus potentially to emissions as well. Hence this metric could allow rapid evaluation of the effects of emissions policies at a finer scale than global metrics without requiring use of a full climate model.

  3. Absolute optical surface measurement with deflectometry

    NASA Astrophysics Data System (ADS)

    Li, Wansong; Sandner, Marc; Gesierich, Achim; Burke, Jan

    Deflectometry utilises the deformation and displacement of a sample pattern after reflection from a test surface to infer the surface slopes. Differentiation of the measurement data leads to a curvature map, which is very useful for surface quality checks with sensitivity down to the nanometre range. Integration of the data allows reconstruction of the absolute surface shape, but the procedure is very error-prone because systematic errors may add up to large shape deviations. In addition, there are infinitely many combinations for slope and object distance that satisfy a given observation. One solution for this ambiguity is to include information on the object's distance. It must be known very accurately. Two laser pointers can be used for positioning the object, and we also show how a confocal chromatic distance sensor can be used to define a reference point on a smooth surface from which the integration can be started. The used integration algorithm works without symmetry constraints and is therefore suitable for free-form surfaces as well. Unlike null testing, deflectometry also determines radius of curvature (ROC) or focal lengths as a direct result of the 3D surface reconstruction. This is shown by the example of a 200 mm diameter telescope mirror, whose ROC measurements by coordinate measurement machine and deflectometry coincide to within 0.27 mm (or a sag error of 1.3μm). By the example of a diamond-turned off-axis parabolic mirror, we demonstrate that the figure measurement uncertainty comes close to a well-calibrated Fizeau interferometer.

  4. Absolute determination of local tropospheric OH concentrations

    NASA Technical Reports Server (NTRS)

    Armerding, Wolfgang; Comes, Franz-Josef

    1994-01-01

    Long path absorption (LPA) according to Lambert Beer's law is a method to determine absolute concentrations of trace gases such as tropospheric OH. We have developed a LPA instrument which is based on a rapid tuning of the light source which is a frequency doubled dye laser. The laser is tuned across two or three OH absorption features around 308 nm with a scanning speed of 0.07 cm(exp -1)/microsecond and a repetition rate of 1.3 kHz. This high scanning speed greatly reduces the fluctuation of the light intensity caused by the atmosphere. To obtain the required high sensitivity the laser output power is additionally made constant and stabilized by an electro-optical modulator. The present sensitivity is of the order of a few times 10(exp 5) OH per cm(exp 3) for an acquisition time of a minute and an absorption path length of only 1200 meters so that a folding of the optical path in a multireflection cell was possible leading to a lateral dimension of the cell of a few meters. This allows local measurements to be made. Tropospheric measurements have been carried out in 1991 resulting in the determination of OH diurnal variation at specific days in late summer. Comparison with model calculations have been made. Interferences are mainly due to SO2 absorption. The problem of OH self generation in the multireflection cell is of minor extent. This could be shown by using different experimental methods. The minimum-maximum signal to noise ratio is about 8 x 10(exp -4) for a single scan. Due to the small size of the absorption cell the realization of an open air laboratory is possible in which by use of an additional UV light source or by additional fluxes of trace gases the chemistry can be changed under controlled conditions allowing kinetic studies of tropospheric photochemistry to be made in open air.

  5. Absolute Radiometric Calibration of KOMPSAT-3A

    NASA Astrophysics Data System (ADS)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  6. Determination of absolute threshold and just noticeable difference in the sensory perception of pungency.

    PubMed

    Orellana-Escobedo, L; Ornelas-Paz, J J; Olivas, G I; Guerrero-Beltran, J A; Jimenez-Castro, J; Sepulveda, D R

    2012-03-01

    Absolute threshold and just noticeable difference (JND) were determined for the perception of pungency using chili pepper in aqueous solutions. Absolute threshold and JND were determined using 2 alternative forced-choice sensory tests tests. High-performance liquid chromatography technique was used to determine capsaicinoids concentration in samples used for sensory analysis. Sensory absolute threshold was 0.050 mg capsaicinoids/kg sample. Five JND values were determined using 5 reference solutions with different capsaicinoids concentration. JND values changed proportionally as capsaicinoids concentration of the reference sample solutions changed. Weber fraction remained stable for the first 4 reference capsaicinoid solutions (0.05, 0.11, 0.13, and 0.17 mg/kg) but changed when the most concentrated reference capsaicinoids solution was used (0.23 mg/kg). Quantification limit for instrumental analysis was 1.512 mg/kg capsaicinoids. Sensory methods employed in this study proved to be more sensitive than instrumental methods. Practical Application: A better understanding of the process involved in the sensory perception of pungency is currently required because "hot" foods are becoming more popular in western cuisine. Absolute thresholds and differential thresholds are useful tools in the formulation and development of new food products. These parameters may help in defining how much chili pepper is required in a formulated product to ensure a perceptible level of pungency, as well as in deciding how much more chili pepper is required in a product to produce a perceptible increase in its pungency. PMID:22384966

  7. Critical inclination for absolute/convective instability transition in inverted falling films

    NASA Astrophysics Data System (ADS)

    Scheid, Benoit; Kofman, Nicolas; Rohlfs, Wilko

    2016-04-01

    Liquid films flowing down the underside of inclined plates are subject to the interaction between the hydrodynamic and the Rayleigh-Taylor (R-T) instabilities causing a patterned and wavy topology at the free surface. The R-T instability results from the denser liquid film being located above a less dense ambient gas, and deforming into an array of droplets, which eventually drip if no saturation mechanism arises. Such saturation mechanism can actually be provided by a fluid motion along the inclined plate. Using a weighted integral boundary layer model, this study examines the critical inclination angle, measured from the vertical, that separates regimes of absolute and convective instability. If the instability is of absolute type, growing perturbations stay localized in space potentially leading to dripping. If the instability is of convective type, growing perturbations move downwards the inclined plate, forming waves and eventually, but not necessarily, droplets. Remarkably, there is a minimum value of the critical angle below which a regime of absolute instability cannot exist. This minimum angle decreases with viscosity: it is about 85° for water, about 70° for silicon oil 20 times more viscous than water, and reaches a limiting value for liquid with a viscosity larger than about 1000 times the one of water. It results that for any fluid, absolute dripping can only exist for inclination angle (taken from the vertical) larger than 57.4°.

  8. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers

    NASA Astrophysics Data System (ADS)

    Lye, J. E.; Harty, P. D.; Butler, D. J.; Crosbie, J. C.; Livingstone, J.; Poole, C. M.; Ramanathan, G.; Wright, T.; Stevenson, A. W.

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3–5% higher than the calorimetry, within the stated uncertainties.

  9. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers.

    PubMed

    Lye, J E; Harty, P D; Butler, D J; Crosbie, J C; Livingstone, J; Poole, C M; Ramanathan, G; Wright, T; Stevenson, A W

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3-5% higher than the calorimetry, within the stated uncertainties. PMID:27192396

  10. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    SciTech Connect

    Levy, R.P.

    1991-12-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examine the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute {gamma}-irradiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. A new compartmental cell model for radiation response in vitro of the oligodendrocyte population is proposed and examined in relation to the potential reaction to radiation injury in the brain.

  11. Oligodendroglial response to ionizing radiation: Dose and dose-rate response

    SciTech Connect

    Levy, R.P.

    1991-01-01

    An in vitro system using neuroglia from neonatal rat brain was developed to examining the morphologic, immunocytochemical and biochemical response of oligodendroglia to ionizing radiation. Following acute [gamma]-radiation at day-in-culture (DIC) 8, oligodendrocyte counts at DIC 14 were 55% to 65% of control values after 2 Gy, and 29% to 36% after 5 Gy. Counts increased to near-normal levels at DIC 21 in the 2 Gy group and to 75% of normal in the 5 Gy group. Myelin basic protein levels (MBP) at DIC 14 were 60% of control values after 2 Gy, and 40% after 5 Gy. At DIC 21, MBP after 2 Gy was 45% greater than that observed at DIC 14, but MBP, as a fraction of age-matched control values, dropped from 60% to 50%. Following 5 Gy, absolute MBP changed little between DIC 14 and DIC 21, but decreased from 40% to 25% of control cultures. It was concluded that oligodendrocytes in irradiated cultures had significantly lower functional capacity than did unirradiated controls. The response to split-dose irradiation indicated that nearly all sublethal damage in the oligodendrocyte population (and its precursors) was repaired within 3 h to 4 h. At DIC 14, the group irradiated in a single fraction had significantly lower oligodendrocyte counts than any group given split doses; all irradiated cultures had marked depression of MBP synthesis, but to significant differences referable to time interval between doses. At DIC 21, cultures irradiated at intervals of 0 h to 2 h had similar oligodendrocyte counts to one another, but these counts were significantly lower than in cultures irradiated at intervals of 4 h to 6 h; MBP levels remained depressed at DIC 21 for all irradiated cultures. The oligodendrocyte response to dose rate (0.03 to 1.97 Gy/min) was evaluated at DIC 14 and DIC 21. Exposure at 0.03 Gy/min suppressed oligodendrocyte counts at DIC 21 less than did higher dose rates in 5-Gy irradiated cultures.

  12. Dose correction for post-contrast T1 mapping of the heart: the MESA study.

    PubMed

    Gai, Neville D; Sandfort, Veit; Liu, Songtao; Lima, João A C; Bluemke, David A

    2016-02-01

    Post-contrast myocardial T1 (T1(myo,c)) values have been shown to be sensitive to myocardial fibrosis. Recent studies have shown differences in results obtained from T1(myo,c) and extracellular volume fraction (ECV) with respect to percentage fibrosis. By exploring the relationship between blood plasma volume and T1(myo,c), the underlying basis for the divergence can be explained. Furthermore, dose administration based on body mass index (BMI), age and gender can mitigate the divergence in results. Inter-subject comparison of T1(myo,c) required adjustment for dose (in mmol/kg), time and glomerular filtration rate. Further adjustment for effective dose based on lean muscle mass reflected by blood/plasma volume was performed. A test case of 605 subjects from the MESA study who had undergone pre- and post-contrast T1 mapping was studied. T1(myo,c) values were compared between subjects with and without metabolic syndrome (MetS), between smoking and non-smoking subjects, and subjects with and without impaired glucose tolerance, before and after dose adjustment based on plasma volume. Comparison with ECV (which is dose independent), pre-contrast myocardial T1 and blood normalized myocardial T1 values was also performed to validate the correction. There were significant differences in T1(myo,c) (post plasma volume correction) and ECV between current and former smokers (p value 0.017 and 0.01, respectively) but not T1(myo,c) prior to correction (p = 0.12). Prior to dose adjustment for plasma volume, p value was <0.001 for T1(myo,c) between MetS and non-MetS groups and was 0.13 between subjects with and without glucose intolerance; after adjustment for PV, p value was 0.63 and 0.99. Corresponding ECV p values were 0.44 and 0.99, respectively. Overall, ECV results showed the best agreement with PV corrected T1(myo,c) (mean absolute difference in p values = 0.073) and pre-contrast myocardial T1 in comparison with other measures (T1(myo,c( prior to correction, blood/plasma T1

  13. Mid-infrared absolute spectral responsivity scale based on an absolute cryogenic radiometer and an optical parametric oscillator laser

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Shi, Xueshun; Chen, Haidong; Liu, Yulong; Liu, Changming; Chen, Kunfeng; Li, Ligong; Gan, Haiyong; Ma, Chong

    2016-06-01

    We are reporting on a laser-based absolute spectral responsivity scale in the mid-infrared spectral range. By using a mid-infrared tunable optical parametric oscillator as the laser source, the absolute responsivity scale has been established by calibrating thin-film thermopile detectors against an absolute cryogenic radiometer. The thin-film thermopile detectors can be then used as transfer standard detectors. The extended uncertainty of the absolute spectral responsivity measurement has been analyzed to be 0.58%–0.68% (k  =  2).

  14. Absorbed dose to water determination with ionization chamber dosimetry and calorimetry in restricted neutron, photon, proton and heavy-ion radiation fields.

    PubMed

    Brede, H J; Greif, K-D; Hecker, O; Heeg, P; Heese, J; Jones, D T L; Kluge, H; Schardt, D

    2006-08-01

    Absolute dose measurements with a transportable water calorimeter and ionization chambers were performed at a water depth of 20 mm in four different types of radiation fields, for a collimated (60)Co photon beam, for a collimated neutron beam with a fluence-averaged mean energy of 5.25 MeV, for collimated proton beams with mean energies of 36 MeV and 182 MeV at the measuring position, and for a (12)C ion beam in a scanned mode with an energy per atomic mass of 430 MeV u(-1). The ionization chambers actually used were calibrated in units of air kerma in the photon reference field of the PTB and in units of absorbed dose to water for a Farmer-type chamber at GSI. The absorbed dose to water inferred from calorimetry was compared with the dose derived from ionometry by applying the radiation-field-dependent parameters. For neutrons, the quantities of the ICRU Report 45, for protons the quantities of the ICRU Report 59 and for the (12)C ion beam, the recommended values of the International Atomic Energy Agency (IAEA) protocol (TRS 398) were applied. The mean values of the absolute absorbed dose to water obtained with these two independent methods agreed within the standard uncertainty (k = 1) of 1.8% for calorimetry and of 3.0% for ionometry for all types and energies of the radiation beams used in this comparison. PMID:16861773

  15. Estimation of the Dose and Dose Rate Effectiveness Factor

    NASA Technical Reports Server (NTRS)

    Chappell, L.; Cucinotta, F. A.

    2013-01-01

    Current models to estimate radiation risk use the Life Span Study (LSS) cohort that received high doses and high dose rates of radiation. Transferring risks from these high dose rates to the low doses and dose rates received by astronauts in space is a source of uncertainty in our risk calculations. The solid cancer models recommended by BEIR VII [1], UNSCEAR [2], and Preston et al [3] is fitted adequately by a linear dose response model, which implies that low doses and dose rates would be estimated the same as high doses and dose rates. However animal and cell experiments imply there should be curvature in the dose response curve for tumor induction. Furthermore animal experiments that directly compare acute to chronic exposures show lower increases in tumor induction than acute exposures. A dose and dose rate effectiveness factor (DDREF) has been estimated and applied to transfer risks from the high doses and dose rates of the LSS cohort to low doses and dose rates such as from missions in space. The BEIR VII committee [1] combined DDREF estimates using the LSS cohort and animal experiments using Bayesian methods for their recommendation for a DDREF value of 1.5 with uncertainty. We reexamined the animal data considered by BEIR VII and included more animal data and human chromosome aberration data to improve the estimate for DDREF. Several experiments chosen by BEIR VII were deemed inappropriate for application to human risk models of solid cancer risk. Animal tumor experiments performed by Ullrich et al [4], Alpen et al [5], and Grahn et al [6] were analyzed to estimate the DDREF. Human chromosome aberration experiments performed on a sample of astronauts within NASA were also available to estimate the DDREF. The LSS cohort results reported by BEIR VII were combined with the new radiobiology results using Bayesian methods.

  16. Noninvasive absolute cerebral oximetry with frequency-domain near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hallacoglu, Bertan

    Near-infrared spectroscopy (NIRS) measurements of absolute concentrations of oxy-hemoglobin and deoxy-hemoglobin in the human brain can provide critical information about cerebral physiology in terms of cerebral blood volume, blood flow, oxygen delivery, and metabolic rate of oxygen. We developed several frequency domain NIRS data acquisition and analysis methods aimed at absolute measurements of hemoglobin concentration and saturation in cerebral tissue of adult human subjects. Extensive experimental investigations were carried out in various homogenous and two-layered tissue-mimicking phantoms, and biological tissues. The advantages and limitations of commonly used homogenous models and inversion strategies were thoroughly investigated. Prior to human subjects, extensive studies were carried out in in vivo animal models. In rabbits, absolute hemoglobin oxygen desaturation was shown to depend strongly on surgically induced testicular torsion. Methods developed in this study were then adapted for measurements in the rat brain. Absolute values were demonstrated to discern cerebrovascular impairment in a rat model of diet-induced vascular cognitive impairment. These results facilitated the development of clinically useful optical measures of cerebrovascular health. In a large group of human subjects, employing a homogeneous model for absolute measurements was shown to be reliable and robust. However, it was also shown to be limited due to the relatively thick extracerebral tissue. The procedure we develop in this work and the thesis thereof performs a nonlinear inversion procedure with six unknown parameters with no other prior knowledge for the retrieval of the optical coefficients and top layer thickness with high accuracy on two-layered media. Our absolute measurements of cerebral hemoglobin concentration and saturation are based on the discrimination of extracerebral and cerebral tissue layers, and they can enhance the impact of NIRS for cerebral hemodynamics and

  17. Novalis' Poetic Uncertainty: A "Bildung" with the Absolute

    ERIC Educational Resources Information Center

    Mika, Carl

    2016-01-01

    Novalis, the Early German Romantic poet and philosopher, had at the core of his work a mysterious depiction of the "absolute." The absolute is Novalis' name for a substance that defies precise knowledge yet calls for a tentative and sensitive speculation. How one asserts a truth, represents an object, and sets about encountering things…

  18. Absolute Humidity and the Seasonality of Influenza (Invited)

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  19. Karst Water System Investigated by Absolute Gravimetry

    NASA Astrophysics Data System (ADS)

    Quinif, Y.; Meus, P.; van Camp, M.; Kaufmann, O.; van Ruymbeke, M.; Vandiepenbeeck, M.; Camelbeeck, T.

    2006-12-01

    The highly anisotropic and heterogeneous hydrogeological characteristics of karst aquifers are difficult to characterize and present challenges for modeling of storage capacities. Little is known about the surface and groundwater interconnection, about the connection between the porous formations and the draining cave and conduits, and about the variability of groundwater volume within the system. Usually, an aquifer is considered as a black box, where water fluxes are monitored as input and output. However, water inflow and outflow are highly variable and cannot be measured directly. A recent project, begun in 2006 sought to constrain the water budget in a Belgian karst aquifer and to assess the porosity and water dynamics, combining absolute gravity (AG) measurements and piezometric levels around the Rochefort cave. The advantage of gravity measurements is that they integrate all the subsystems in the karst system. This is not the case with traditional geophysical tools like boring or monitoring wells, which are soundings affected by their near environment and its heterogeneity. The investigated cave results from the meander cutoff system of the Lomme River. The main inputs are swallow holes of the river crossing the limestone massif. The river is canalized and the karst system is partly disconnected from the hydraulic system. In February and March 2006, when the river spilled over its dyke and sank into the most important swallow hole, this resulted in dramatic and nearly instantaneous increases in the piezometric levels in the cave, reaching up to 13 meters. Meanwhile, gravity increased by 50 and 90 nms-2 in February and March, respectively. A first conclusion is that during these sudden floods, the pores and fine fissures were poorly connected with the enlarged fractures, cave, and conduits. With a rise of 13 meters in the water level and a 5% porosity, a gravity change of 250 nms-2 should have been expected. This moderate gravity variation suggests either a

  20. On the Error Sources in Absolute Individual Antenna Calibrations

    NASA Astrophysics Data System (ADS)

    Aerts, Wim; Baire, Quentin; Bilich, Andria; Bruyninx, Carine; Legrand, Juliette

    2013-04-01

    The two main methods for antenna calibration currently in use, are anechoic chamber measurements on the one hand and outdoor robot calibration on the other hand. Both techniques differ completely in approach, setup and data processing. Consequently, the error sources for both techniques are totally different as well. Except for the (near field) multi path error, caused by the antenna positioning device, that alters results for both calibration methods. But not necessarily with the same order of magnitude. Literature states a (maximum deviation) repeatability for robot calibration of choke ring antennas of 0.5 mm on L1 and 1 mm on L2 [1]. For anechoic chamber calibration, a value of 1.5 mm on L2 for a resistive ground plane antenna can be found in [2]. Repeatability however masks systematic errors linked with the calibration technique. Hence, comparing an individual calibration obtained with a robot to a calibration of the same antenna in an anechoic chamber, may result in differences that surpass these repeatability thresholds. This was the case at least for all six choke ring antennas studied. The order of magnitude of the differences moreover corresponded well to the values given for a LEIAT504GG in [3]. For some error sources, such as the GNSS receiver measurement noise or the VNA measurement noise, estimates can be obtained from manufacturer specifications in data sheets. For other error sources, such as the finite distance between transmit and receive antenna, or the limited attenuation of reflections on wall absorber, back-of-the-envelope calculations can be made to estimate their order of magnitude. For the error due to (near field) multi path this is harder to do, if not impossible. The more because this strongly depends on the antenna type and its mount. Unfortunately it is, again, this (near field) multi path influence that might void the calibration once the antenna is installed at the station. Hence it can be concluded that at present, due to (near

  1. Absolute judgment for one- and two-dimensional stimuli embedded in Gaussian noise

    NASA Technical Reports Server (NTRS)

    Kvalseth, T. O.

    1977-01-01

    This study examines the effect on human performance of adding Gaussian noise or disturbance to the stimuli in absolute judgment tasks involving both one- and two-dimensional stimuli. For each selected stimulus value (both an X-value and a Y-value were generated in the two-dimensional case), 10 values (or 10 pairs of values in the two-dimensional case) were generated from a zero-mean Gaussian variate, added to the selected stimulus value and then served as the coordinate values for the 10 points that were displayed sequentially on a CRT. The results show that human performance, in terms of the information transmitted and rms error as functions of stimulus uncertainty, was significantly reduced as the noise variance increased.

  2. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  3. Testing the quasi-absolute method in photon activation analysis

    SciTech Connect

    Sun, Z. J.; Wells, D.; Starovoitova, V.; Segebade, C.

    2013-04-19

    In photon activation analysis (PAA), relative methods are widely used because of their accuracy and precision. Absolute methods, which are conducted without any assistance from calibration materials, are seldom applied for the difficulty in obtaining photon flux in measurements. This research is an attempt to perform a new absolute approach in PAA - quasi-absolute method - by retrieving photon flux in the sample through Monte Carlo simulation. With simulated photon flux and database of experimental cross sections, it is possible to calculate the concentration of target elements in the sample directly. The QA/QC procedures to solidify the research are discussed in detail. Our results show that the accuracy of the method for certain elements is close to a useful level in practice. Furthermore, the future results from the quasi-absolute method can also serve as a validation technique for experimental data on cross sections. The quasi-absolute method looks promising.

  4. Learning in the temporal bisection task: Relative or absolute?

    PubMed

    de Carvalho, Marilia Pinheiro; Machado, Armando; Tonneau, François

    2016-01-01

    We examined whether temporal learning in a bisection task is absolute or relational. Eight pigeons learned to choose a red key after a t-seconds sample and a green key after a 3t-seconds sample. To determine whether they had learned a relative mapping (short→Red, long→Green) or an absolute mapping (t-seconds→Red, 3t-seconds→Green), the pigeons then learned a series of new discriminations in which either the relative or the absolute mapping was maintained. Results showed that the generalization gradient obtained at the end of a discrimination predicted the pattern of choices made during the first session of a new discrimination. Moreover, most acquisition curves and generalization gradients were consistent with the predictions of the learning-to-time model, a Spencean model that instantiates absolute learning with temporal generalization. In the bisection task, the basis of temporal discrimination seems to be absolute, not relational. PMID:26752233

  5. The Question of Absolute Space and Time Directions in Relation to Molecular Chirality, Parity Violation, and Biomolecular Homochirality

    SciTech Connect

    Quack, Martin

    2001-03-21

    The questions of the absolute directions of space and time or the “observability” of absolute time direction as well as absolute handedness-left or right- are related to the fundamental symmetries of physics C, P, T as well as their combinations, in particular CPT, and their violations, such as parity violation. At the same time there is a relation to certain still open questions in chemistry concerning the fundamental physical- chemical principles of molecular chirality and in biochemistry concerning the selection of homochirality in evolution. In the lecture we shall introduce the concepts and then report new theoretical results from our work on parity violation in chiral molecules, showing order of magnitude increases with respect to previously accepted values. We discus as well our current experimental efforts. We shall briefly mention the construction of an absolute molecular clock.

  6. The Question of Absolute Space and Time Directions in Relation to Molecular Chirality, Parity Violation, and Biomolecular Homochirality

    SciTech Connect

    Quack, Martin

    2001-03-21

    The questions of the absolute directions of space and time or the 'observability' of absolute time direction as well as absolute handedness - left or right - are related to the fundamental symmetries of physics C, P, T as well as their combinations, in particular CPT, and their violations, such as parity violation. At the same time there is a relation to certain still open questions in chemistry concerning the fundamental physical-chemical principles of molecular chirality and in biochemistry concerning the selection of homochirality in evolution. In the lecture we shall introduce the concepts and then report new theoretical results from our work on parity violation in chiral molecules, showing order of magnitude increases with respect to previously accepted values. We discuss as well our current experimental efforts. We shall briefly mention the construction of an absolute molecular clock.

  7. Absolute oscillator strengths for 108 lines of Si I between 163 and 410 nanometers

    NASA Technical Reports Server (NTRS)

    Smith, Peter L.; Griesinger, Harriet E.; Cardon, Bartley L.; Huber, Martin C. E.; Tozzi, G. P.

    1987-01-01

    Measurements of neutral silicon oscillator strengths (f-values) obtained by absorption and emission techniques have been combined using the numerical procedure of Cardon et al. (1979) to produce 108 f-values for the Si I lines between 163 and 410 nm. Beam-foil-lifetime measurements were employed to determine the absolute scale. The present measurements have uncertainties of about 0.07 dex (+ or - 16 percent) at the 1-sigma level of confidence. Good agreement is obtained between the results and previous data. The data also provide upper limits for the f-values of 22 other lines and information on the lifetimes for 36 levels in Si I.

  8. Relations between erythemal UV dose, global solar radiation, total ozone column and aerosol optical depth at Uccle, Belgium

    NASA Astrophysics Data System (ADS)

    De Bock, V.; De Backer, H.; Van Malderen, R.; Mangold, A.; Delcloo, A.

    2014-06-01

    At Uccle, a long time series (1991-2013) of simultaneous measurements of erythemal ultraviolet (UV) dose, global solar radiation, total ozone column (TOC) and Aerosol Optical Depth (AOD) (at 320.1 nm) is available which allows for an extensive study of the changes in the variables over time. A change-point analysis, which determines whether there is a significant change in the mean of the time series, is applied to the monthly anomalies time series of the variables. Only for erythemal UV dose and TOC, a significant change point (without any known instrumental cause) was present in the time series around February 1998 and March 1998 respectively. The change point in TOC corresponds with results found in literature, where the change in ozone levels (around 1997) is attributed to the recovery of ozone. Linear trends were determined for the different (monthly anomalies) time series. Erythemal UV dose, global solar radiation and TOC all increase with respectively 7, 4 and 3% per decade. AOD shows an (insignificant) negative trend of -8% per decade. These trends agree with results found in literature for sites with comparable latitudes. A multiple linear regression (MLR) analysis is applied to the data in order to study the influence of global solar radiation, TOC and AOD on the erythemal UV dose. Together these parameters are able to explain 94% of the variation in erythemal UV dose. Most of the variation (56%) in erythemal UV dose is explained by global solar radiation. The regression model performs well with a slight tendency to underestimate the measured erythemal UV doses and with a Mean Absolute Bias Error (MABE) of 18%. However, in winter, negative erythemal UV dose values are modeled. Applying the MLR to the individual seasons solves this issue. The seasonal models have an adjusted R2 value higher than 0.8 and the correlation between modeled and measured erythemal UV dose values is higher than 0.9 for each season. The summer model gives the best performance, with

  9. Multiscale Reactive Molecular Dynamics for Absolute pK a Predictions and Amino Acid Deprotonation.

    PubMed

    Nelson, J Gard; Peng, Yuxing; Silverstein, Daniel W; Swanson, Jessica M J

    2014-07-01

    Accurately calculating a weak acid's pK a from simulations remains a challenging task. We report a multiscale theoretical approach to calculate the free energy profile for acid ionization, resulting in accurate absolute pK a values in addition to insights into the underlying mechanism. Importantly, our approach minimizes empiricism by mapping electronic structure data (QM/MM forces) into a reactive molecular dynamics model capable of extensive sampling. Consequently, the bulk property of interest (the absolute pK a) is the natural consequence of the model, not a parameter used to fit it. This approach is applied to create reactive models of aspartic and glutamic acids. We show that these models predict the correct pK a values and provide ample statistics to probe the molecular mechanism of dissociation. This analysis shows changes in the solvation structure and Zundel-dominated transitions between the protonated acid, contact ion pair, and bulk solvated excess proton. PMID:25061442

  10. Simplified absolute phase retrieval of dual-frequency fringe patterns in fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Lu, Jin; Mo, Rong; Sun, Huibin; Chang, Zhiyong; Zhao, Xiaxia

    2016-04-01

    In fringe projection profilometry, a simplified method is proposed to recover absolute phase maps of two-frequency fringe patterns by using a unique mapping rule. The mapping rule is designed from the rounded phase values to the fringe order of each pixel. Absolute phase can be recovered by the fringe order maps. Unlike the existing techniques, where the lowest frequency of dual- or multiple-frequency fringe patterns must be single, the presented method breaks the limitation and simplifies the procedure of phase unwrapping. Additionally, due to many issues including ambient light, shadow, sharp edges, step height boundaries and surface reflectivity variations, a novel framework of automatically identifying and removing invalid phase values is also proposed. Simulations and experiments have been carried out to validate the performances of the proposed method.

  11. Absolute intensity measurement of the 4-0 vibration-rotation band of carbon monoxide

    NASA Technical Reports Server (NTRS)

    Chackerian, C., Jr.; Valero, F. P. J.

    1976-01-01

    The absolute intensity of the 4-0 vibration band of CO is measured in spectra obtained using a 25-m base-path multiple-traversal absorption cell and a 5-m scanning spectrometer. The intensities of individual vibration-rotation lines in this band are determined from measurements of their equivalent widths, and absolute values for the rotationless transition moment and the vibration-rotation interaction factor are derived from the measured line strengths. The experimentally obtained vibration-rotation function is compared with a theoretical curve; agreement between theory and experiment is found to be good for the P-branch but poor for the R-branch. It is noted that numerical solutions to the radial Schroedinger equation lead to vibration-rotation function values that are in good agreement with the experiment.

  12. The solar absolute spectral irradiance 1150-3173 A - May 17, 1982

    NASA Technical Reports Server (NTRS)

    Mount, G. H.; Rottman, G. J.

    1983-01-01

    The full-disk solar spectral irradiance in the spectral range 1150-3173 A was obtained from a rocket observation above White Sands Missile Range, NM, on May 17, 1982, half way in time between solar maximum and solar minimum. Comparison with measurements made during solar maximum in 1980 indicate a large decrease in the absolute solar irradiance at wavelengths below 1900 A to approximately solar minimum values. No change above 1900 A from solar maximum to this flight was observed to within the errors of the measurements. Irradiance values lower than the Broadfoot results in the 2100-2500 A spectral range are found, but excellent agreement with Broadfoot between 2500 and 3173 A is found. The absolute calibration of the instruments for this flight was accomplished at the National Bureau of Standards Synchrotron Radiation Facility which significantly improves calibration of solar measurements made in this spectral region.

  13. Dose-volume modeling of the risk of postoperative pulmonary complications among esophageal cancer patients treated with concurrent chemoradiotherapy followed by surgery

    SciTech Connect

    Tucker, Susan L. . E-mail: sltucker@mdanderson.org; Liu, H. Helen; Wang, Shulian; Wei Xiong; Liao Zhongxing; Komaki, Ritsuko; Cox, James D.; Mohan, Radhe

    2006-11-01

    Purpose: The aim of this study was to investigate the effect of radiation dose distribution in the lung on the risk of postoperative pulmonary complications among esophageal cancer patients. Methods and Materials: We analyzed data from 110 patients with esophageal cancer treated with concurrent chemoradiotherapy followed by surgery at our institution from 1998 to 2003. The endpoint for analysis was postsurgical pneumonia or acute respiratory distress syndrome. Dose-volume histograms (DVHs) and dose-mass histograms (DMHs) for the whole lung were used to fit normal-tissue complication probability (NTCP) models, and the quality of fits were compared using bootstrap analysis. Results: Normal-tissue complication probability modeling identified that the risk of postoperative pulmonary complications was most significantly associated with small absolute volumes of lung spared from doses {>=}5 Gy (VS5), that is, exposed to doses <5 Gy. However, bootstrap analysis found no significant difference between the quality of this model and fits based on other dosimetric parameters, including mean lung dose, effective dose, and relative volume of lung receiving {>=}5 Gy, probably because of correlations among these factors. The choice of DVH vs. DMH or the use of fractionation correction did not significantly affect the results of the NTCP modeling. The parameter values estimated for the Lyman NTCP model were as follows (with 95% confidence intervals in parentheses): n = 1.85 (0.04, {infinity}), m = 0.55 (0.22, 1.02), and D {sub 5} = 17.5 Gy (9.4 Gy, 102 Gy). Conclusions: In this cohort of esophageal cancer patients, several dosimetric parameters including mean lung dose, effective dose, and absolute volume of lung receiving <5 Gy provided similar descriptions of the risk of postoperative pulmonary complications as a function of Radiation dose distribution in the lung.

  14. Voyager absolute far-ultraviolet spectrophotometry of hot stars

    NASA Technical Reports Server (NTRS)

    Holberg, J. B.; Forrester, W. T.; Shemansky, D. E.; Barry, D. C.

    1982-01-01

    Voyager observations in the 912-1200 A spectral region are used to indirectly intercompare absolute stellar spectrophotometry from previous experiments. Measurements of hot stars obtained by the Voyager 1 and 2 ultraviolet spectrometers show considerably higher 912-1200 A continuum fluxes than the recent observations of Brune et al. (1979) and Carruthers et al. (1981). The intercomparisons show all observations in basic agreement near 1200 A. The Carruthers et al. flux measurements are preferred down to 1050 A at which point the Voyager and Brune et al. values are respectively 60% higher and 60% lower. Below 1050 A the diasgreement among the observations becomes very large and the fluxes predicted by model atmospheres have been adopted. The pure hydrogen line-blanketed model atmosphere calculations of Wesemael et al. 1980) in comparison with Voyager observations of HZ 43 are used to adjust the Voyager calibration below 1050 A. This adjusted Voyager calibration, which is in good agreement with current model atmosphere fluxes for both early-type stars and DA white dwarfs, will be used for Voyager astronomical observations.

  15. Absolute paleointensity from Hawaiian lavas younger than 35 ka

    USGS Publications Warehouse

    Valet, J.-P.; Tric, E.; Herrero-Bervera, E.; Meynadier, L.; Lockwood, J.P.

    1998-01-01

    Paleointensity studies have been conducted in air and in argon atmosphere on nine lava flows with radiocarbon ages distributed between 3.3 and 28.2 ka from the Mauna Loa volcano in the big island of Hawaii. Determinations of paleointensity obtained at eight sites depict the same overall pattern as the previous results for the same period in Hawaii, although the overall average field intensity appears to be lower. Since the present results were determined at higher temperatures than in the previous studies, this discrepancy raises questions regarding the selection of low versus high-temperature segments that are usually made for absolute paleointensity. The virtual dipole moments are similar to those displayed by the worldwide data set obtained from dated lava flows. When averaged within finite time intervals, the worldwide values match nicely the variations of the Sint-200 synthetic record of relative paleointensity and confirm the overall decrease of the dipole field intensity during most of this period. The convergence between the existing records at Hawaii and the rest of the world does not favour the presence of persistent strong non-dipole components beneath Hawaii for this period.

  16. Quest for absolute zero in the presence of external noise

    NASA Astrophysics Data System (ADS)

    Torrontegui, E.; Kosloff, R.

    2013-09-01

    A reciprocating quantum refrigerator is analyzed with the intention to study the limitations imposed by external noise. In particular we focus on the behavior of the refrigerator when it approaches the absolute zero. The cooling cycle is based on the Otto cycle with a working medium constituted by an ensemble of noninteracting harmonic oscillators. The compression and expansion segments are generated by changing an external parameter in the Hamiltonian. In this case the force constant of the harmonic oscillators mω2 is modified from an initial to a final value. As a result, the kinetic and potential energy of the system do not commute causing frictional losses. By proper choice of scheduling function ω(t) frictionless solutions can be obtained in the noiseless case. We examine the performance of a refrigerator subject to noise. By expanding from the adiabatic limit we find that the external noise, Gaussian phase, and amplitude noises reduce the amount of heat that can be extracted but nevertheless the zero temperature can be approached.

  17. Large eddy simulation predictions of absolutely unstable round hot jet

    NASA Astrophysics Data System (ADS)

    Boguslawski, A.; Tyliszczak, A.; Wawrzak, K.

    2016-02-01

    The paper presents a novel view on the absolute instability phenomenon in heated variable density round jets. As known from literature the global instability mechanism in low density jets is released when the density ratio is lower than a certain critical value. The existence of the global modes was confirmed by an experimental evidence in both hot and air-helium jets. However, some differences in both globally unstable flows were observed concerning, among others, a level of the critical density ratio. The research is performed using the Large Eddy Simulation (LES) method with a high-order numerical code. An analysis of the LES results revealed that the inlet conditions for the velocity and density distributions at the nozzle exit influence significantly the critical density ratio and the global mode frequency. Two inlet velocity profiles were analyzed, i.e., the hyperbolic tangent and the Blasius profiles. It was shown that using the Blasius velocity profile and the uniform density distribution led to a significantly better agreement with the universal scaling law for global mode frequency.

  18. Dose reduction assessment in dynamic CT myocardial perfusion imaging in a porcine balloon-induced-ischemia model

    NASA Astrophysics Data System (ADS)

    Fahmi, Rachid; Eck, Brendan L.; Vembar, Mani; Bezerra, Hiram G.; Wilson, David L.

    2014-03-01

    We investigated the use of an advanced hybrid iterative reconstruction (IR) technique (iDose4, Philips Health- care) for low dose dynamic myocardial CT perfusion (CTP) imaging. A porcine model was created to mimic coronary stenosis through partial occlusion of the left anterior descending (LAD) artery with a balloon catheter. The severity of LAD occlusion was adjusted with FFR measurements. Dynamic CT images were acquired at end-systole (45% R-R) using a multi-detector CT (MDCT) scanner. Various corrections were applied to the acquired scans to reduce motion and imaging artifacts. Absolute myocardial blood flow (MBF) was computed with a deconvolution-based approach using singular value decomposition (SVD). We compared a high and a low dose radiation protocol corresponding to two different tube-voltage/tube-current combinations (80kV p/100mAs and 120kV p/150mAs). The corresponding radiation doses for these protocols are 7.8mSv and 34.3mSV , respectively. The images were reconstructed using conventional FBP and three noise-reduction strengths of the IR method, iDose. Flow contrast-to-noise ratio, CNRf, as obtained from MBF maps, was used to quantitatively evaluate the effect of reconstruction on contrast between normal and ischemic myocardial tissue. Preliminary results showed that the use of iDose to reconstruct low dose images provide better or comparable CNRf to that of high dose images reconstructed with FBP, suggesting significant dose savings. CNRf was improved with the three used levels of iDose compared to FBP for both protocols. When using the entire 4D dynamic sequence for MBF computation, a 77% dose reduction was achieved, while considering only half the scans (i.e., every other heart cycle) allowed even further dose reduction while maintaining relatively higher CNRf.

  19. Radiation myelopathy in the rat: an interpretation of dose effect relationships

    SciTech Connect

    Leith, J.T.; DeWyngaert, J.K.; Glicksman, A.S.

    1981-12-01

    Data were collected on the production of overt paralysis in the rat after low linear energy transfer (LET) ionizing radiation exposure of different regions of the spinal cord. Data from both single and multiple radiation exposure schedules were interpreted using the ED/sub 50/ value (estimated dose needed to produce 50% paralysis in a group of irradiated animals) as the isoeffect comparison dose. Plots were made of the reciprocal of the ED/sub 50/ total dose versus the size of the dose per fraction used. The use of multifractionation data in such a way allows implications to be made about the nature of the in vivo response curve. These reciprocal dose plots indicate that the spinal cord normal tissue system shows two responses that may be specifically characterized by the ratio of the intercept (..cap alpha..) of the linear regression fit of the reciprocal total dose versus dose per fraction curve to the slope (..beta..) of the curve (..cap alpha../..beta..). For rat spinal cord, this value is about 3.8 +/- 0.4 (standard error) for the thoraco-lumbar region and about 2.0 +/- 0.3 (standard error) for the cervical region. While absolute dose response data vary somewhat among investigators, all of the data on production of paralysis in rats show similar trends with respect to the (..cap alpha../..beta..) ratio. We feel this ratio may uniquely characterize this (and other) normal tissue systems. Knowledge of this parameter and how it varies after different treatments (e.g., high LET radiation exposure) may be important.

  20. Radiation myelopathy in the rat: an interpretation of dose effect relationships

    SciTech Connect

    Leith, J.T.; DeWyngaert, J.K.; Glicksman, A.S.

    1981-12-01

    Data were collected on the production of overt paralysis in the rat after low linear energy transfer (LET) ionizing radiation exposure of different regions of the spinal cord. Data from both single and multiple radiation exposure schedules were interpreted using the ED/sub 50/ value (estimated dose needed to produce 50% paralysis in a group of irradiated animals) as the isoeffect comparison dose. Plots were made of the reciprocal of the ED/sub 50/ total dose versus the size of the dose per fraction used. The use of multifractionation data in such a way allows implications to be made about the nature of the in vivo response curve. These reciprocal dose plots indicate that the spinal cord normal tissue system shows two responses that may be specifically characterized by the ration of the intercept (..cap alpha..) of the linear regression fit of the reciprocal total dose versus dose per fraction curve to the slope (..beta..) of the curve (..cap alpha../..beta..). For rat spinal cord, this value is about 3.8 +/- 0.4 (standard error) for the thoraco-lumbar region and about 2.0 +/- 0.3 (standard error) for the cervical region. While absolute dose response data vary somewhat among investigators, all of the data on production of paralysis in rats show similar trends with respect the the (..cap alpha../..beta..) ratio. We feel that this ratio may uniquely characterize this (and other) normal tissue systems. Knowledge of this parameter and how it varies after different treatments (e.g., high LET radiation exposure) may be important.

  1. Absolute linestrengths in the H2O2 nu6 band

    NASA Technical Reports Server (NTRS)

    May, Randy D.

    1991-01-01

    Absolute linestrengths at 295 K have been measured for selected lines in the nu6 band of H2O2 using a tunable diode-laser spectrometer. H2O2 concentrations in a flowing gas mixture were determined by ultraviolet (uv) absorption at 254 nm using a collinear infrared (ir) and uv optical arrangement. The measured linestrengths are approx. 60 percent larger than previously reported values when absorption by hot bands in H2O2 is taken into account.

  2. The orbit of Phi Cygni measured with long-baseline optical interferometry - Component masses and absolute magnitudes

    NASA Technical Reports Server (NTRS)

    Armstrong, J. T.; Hummel, C. A.; Quirrenbach, A.; Buscher, D. F.; Mozurkewich, D.; Vivekanand, M.; Simon, R. S.; Denison, C. S.; Johnston, K. J.; Pan, X.-P.

    1992-01-01

    The orbit of the double-lined spectroscopic binary Phi Cygni, the distance to the system, and the masses and absolute magnitudes of its components are presented via measurements with the Mar III Optical Interferometer. On the basis of a reexamination of the spectroscopic data of Rach & Herbig (1961), the values and uncertainties are adopted for the period and the projected semimajor axes from the present fit to the spectroscopic data and the values of the remaining elements from the present fit to the Mark III data. The elements of the true orbit are derived, and the masses and absolute magnitudes of the components, and the distance to the system are calculated.

  3. Effects of confining pressure, pore pressure and temperature on absolute permeability. SUPRI TR-27

    SciTech Connect

    Gobran, B.D.; Ramey, H.J. Jr.; Brigham, W.E.

    1981-10-01

    This study investigates absolute permeability of consolidated sandstone and unconsolidated sand cores to distilled water as a function of the confining pressure on the core, the pore pressure of the flowing fluid and the temperature of the system. Since permeability measurements are usually made in the laboratory under conditions very different from those in the reservoir, it is important to know the effect of various parameters on the measured value of permeability. All studies on the effect of confining pressure on absolute permeability have found that when the confining pressure is increased, the permeability is reduced. The studies on the effect of temperature have shown much less consistency. This work contradicts the past Stanford studies by finding no effect of temperature on the absolute permeability of unconsolidated sand or sandstones to distilled water. The probable causes of the past errors are discussed. It has been found that inaccurate measurement of temperature at ambient conditions and non-equilibrium of temperature in the core can lead to a fictitious permeability reduction with temperature increase. The results of this study on the effect of confining pressure and pore pressure support the theory that as confining pressure is increased or pore pressure decreased, the permeability is reduced. The effects of confining pressure and pore pressure changes on absolute permeability are given explicitly so that measurements made under one set of confining pressure/pore pressure conditions in the laboratory can be extrapolated to conditions more representative of the reservoir.

  4. Predicting AIDS-related events using CD4 percentage or CD4 absolute counts

    PubMed Central

    Pirzada, Yasmin; Khuder, Sadik; Donabedian, Haig

    2006-01-01

    Background The extent of immunosuppression and the probability of developing an AIDS-related complication in HIV-infected people is usually measured by the absolute number of CD4 positive T-cells. The percentage of CD4 positive cells is a more easily measured and less variable number. We analyzed sequential CD4 and CD8 numbers, percentages and ratios in 218 of our HIV infected patients to determine the most reliable predictor of an AIDS-related event. Results The CD4 percentage was an unsurpassed predictor of the occurrence of AIDS-related events when all subsets of patients are considered. The CD4 absolute count was the next most reliable, followed by the ratio of CD4/CD8 percentages. The value of CD4 percentage over the CD4 absolute count was seen even after the introduction of highly effective HIV therapy. Conclusion The CD4 percentage is unsurpassed as a parameter for predicting the onset of HIV-related diseases. The extra time and expense of measuring the CD4 absolute count may be unnecessary. PMID:16916461

  5. Demonstrating the Error Budget for the Climate Absolute Radiance and Refractivity Observatory Through Solar Irradiance Measurements

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2016-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe highaccuracy, long-term climate change trends and to use decadal change observations as a method to determine the accuracy of climate change. A CLARREO objective is to improve the accuracy of SI-traceable, absolute calibration at infrared and reflected solar wavelengths to reach on-orbit accuracies required to allow climate change observations to survive data gaps and observe climate change at the limit of natural variability. Such an effort will also demonstrate National Institute of Standards and Technology (NIST) approaches for use in future spaceborne instruments. The current work describes the results of laboratory and field measurements with the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. SOLARIS allows testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. Results of laboratory calibration measurements are provided to demonstrate key assumptions about instrument behavior that are needed to achieve CLARREO's climate measurement requirements. Absolute radiometric response is determined using laser-based calibration sources and applied to direct solar views for comparison with accepted solar irradiance models to demonstrate accuracy values giving confidence in the error budget for the CLARREO reflectance retrieval.

  6. Absolute measurement of optical flat surface shape based on the conjugate differential method.

    PubMed

    Huang, Ya; Ma, Jun; Zhu, Rihong; Yuan, Caojin; Chen, Lei; Cai, Huijuan; Sun, Weiyuan

    2015-11-16

    In this paper the conjugate differential method is proposed to measure the absolute surface shape of the flat mirror using a phase-shifting interferometer. The conjugate differential method is derived from the differential method, which extracts absolute phase differences by introducing the slight transverse shifts of the optic. It employs the measurement schemes making transverse shifts on the orthogonally bilateral symmetry positions. So the measurement procedures have been changed into four-step tests to get the phase difference map instead of three-step tests for the differential method. The precision of the slope approximation is enhanced by reducing couplings between multi-step tests, and the reliability of the measurements can be improved. Several differential wavefront reconstruction methods, such as Fourier transform, Zernike polynomial fitting and Hudgin model method, can be applied to reconstruct the absolute surface shape from the differencing phase maps in four different simulation environment. They were also used to reconstruct the absolute surface shape with the conjugate differential method in the experiment. Our method accords with the classical three-flat test better than the traditional differential method, where the deviation of RMS value between the conjugate differential method and the three-flat test is less than 0.3 nm. PMID:26698450

  7. Absolute homogeneity test of Kelantan catchment precipitation series

    NASA Astrophysics Data System (ADS)

    Ros, Faizah Che; Tosaka, Hiroyuki; Sasaki, Kenji; Sidek, Lariyah Mohd; Basri, Hidayah

    2015-05-01

    Along the Kelantan River in north east of Malaysia Peninsular, there are several areas often damaged by flood during north-east monsoon season every year. It is vital to predict the expected behavior of precipitation and river runoff for reducing flood damages of the area under rapid urbanization and future planning. Nevertheless, the accuracy and reliability of any hydrological and climate studies vary based on the quality of the data used. The factors causing variations on these data are the method of gauging and data collection, stations environment, station relocation and the reliability of the measurement tool affect the homogenous precipitation records. Hence in this study, homogeneity of long precipitation data series is checked via the absolute homogeneity test consisting of four methods namely Pettitt test, standard normal homogeneity test (SNHT), Buishand range test and Von Neumann ratio test. For homogeneity test, the annual rainfall amount from the daily precipitation records at stations located in Kelantan operated by Department of Irrigation and Drainage Malaysia were considered in this study. The missing values were completed using the correlation and regression and inverse distance method. The data network consists of 103 precipitation gauging stations where 31 points are inactive, 6 gauging stations had missing precipitation values more than five years in a row and 16 stations have records less than twenty years. So total of 50 stations gauging stations were evaluated in this analysis. With the application of the mentioned methods and further graphical analysis, inhomogeneity was detected at 4 stations and 46 stations are found to be homogeneous.

  8. Absolute Timing of the Crab Pulsar with RXTE

    NASA Technical Reports Server (NTRS)

    Rots, Arnold H.; Jahoda, Keith; Lyne, Andrew G.

    2004-01-01

    We have monitored the phase of the main X-ray pulse of the Crab pulsar with the Rossi X-ray Timing Explorer (RXTE) for almost eight years, since the start of the mission in January 1996. The absolute time of RXTE's clock is sufficiently accurate to allow this phase to be compared directly with the radio profile. Our monitoring observations of the pulsar took place bi-weekly (during the periods when it was at least 30 degrees from the Sun) and we correlated the data with radio timing ephemerides derived from observations made at Jodrell Bank. We have determined the phase of the X-ray main pulse for each observation with a typical error in the individual data points of 50 microseconds. The total ensemble is consistent with a phase that is constant over the monitoring period, with the X-ray pulse leading the radio pulse by 0.01025 plus or minus 0.00120 period in phase, or 344 plus or minus 40 microseconds in time. The error estimate is dominated by a systematic error of 40 microseconds, most likely constant, arising from uncertainties in the instrumental calibration of the radio data. The statistical error is 0.00015 period, or 5 microseconds. The separation of the main pulse and interpulse appears to be unchanging at time scales of a year or less, with an average value of 0.4001 plus or minus 0.0002 period. There is no apparent variation in these values with energy over the 2-30 keV range. The lag between the radio and X-ray pulses ma be constant in phase (i.e., rotational in nature) or constant in time (i.e., due to a pathlength difference). We are not (yet) able to distinguish between these two interpretations.

  9. Absolute versus Relative Assessments of Individual Status in Status-Dependent Strategies in Stochastic Environments.

    PubMed

    Tachiki, Yuuya; Koizumi, Itsuro

    2016-07-01

    Status-dependent strategies represent one of the most remarkable adaptive phenotypic plasticities. A threshold value for individual status (e.g., body size) is assumed above and below which each individual should adopt alternative tactics to attain higher fitness. This implicitly assumes the existence of an "absolute" best threshold value, so each individual chooses a tactic only on the basis of its own status. However, animals may be able to assess their status on the basis of surrounding individuals. This "relative" assessment considers a threshold value to be changeable depending on individual situations, which may result in significant differences in ecological and evolutionary dynamics compared with absolute assessment. Here, we incorporated Bayesian decision-making and adaptive dynamics frameworks to explore the conditions necessary for each type of assessment to evolve. Our model demonstrates that absolute assessment is always an evolutionarily stable strategy (ESS) in a stable environment, whereas relative assessment can be an ESS in stochastic environments. The consequences of future environmental change differ considerably depending on the assessment chosen. Our results underscore the need to better understand how individuals assess their own status when choosing alternative tactics. PMID:27322126

  10. Estimate Radiological Dose for Animals

    1997-12-18

    Estimate Radiological dose for animals in ecological environment using open literature values for parameters such as body weight, plant and soil ingestion rate, rad. halflife, absorbed energy, biological halflife, gamma energy per decay, soil-to-plant transfer factor, ...etc

  11. Mini-implants and miniplates generate sub-absolute and absolute anchorage

    PubMed Central

    Consolaro, Alberto

    2014-01-01

    The functional demand imposed on bone promotes changes in the spatial properties of osteocytes as well as in their extensions uniformly distributed throughout the mineralized surface. Once spatial deformation is established, osteocytes create the need for structural adaptations that result in bone formation and resorption that happen to meet the functional demands. The endosteum and the periosteum are the effectors responsible for stimulating adaptive osteocytes in the inner and outer surfaces.Changes in shape, volume and position of the jaws as a result of skeletal correction of the maxilla and mandible require anchorage to allow bone remodeling to redefine morphology, esthetics and function as a result of spatial deformation conducted by orthodontic appliances. Examining the degree of changes in shape, volume and structural relationship of areas where mini-implants and miniplates are placed allows us to classify mini-implants as devices of subabsolute anchorage and miniplates as devices of absolute anchorage. PMID:25162561

  12. Some triple-filament lead isotope ratio measurements and an absolute growth curve for single-stage leads

    USGS Publications Warehouse

    Stacey, J.S.; Delevaux, M.E.; Ulrych, T.J.

    1969-01-01

    Triple-filament analyses of three standard lead samples are used to calibrate a mass spectrometer in an absolute sense. The bias we measure is 0.0155 percent per mass unit, and the precision (for 95% confidence limits) is ??0.13% or less for all ratios relative to 204Pb. Although its precision is not quite so good as that of the lead-tetramethyl method in the analysis of large samples, the triple-filament method is less complex and is an attractive alternative for smaller sample sizes down to 500 ??g. Triple-filament data are presented for six possibly single-stage lead ores and one feldspar. These new data for ores are combined with corrected tetramethyl data for stratiform lead deposits to compute absolute parameters for a universal single-stage lead isotope growth curve. Absolute isotopic ratios for primeval lead have been determined by Oversby and because all the previous data for both meteorites and lead ores were similarly fractionated, the absolute value of 238U 204Pb = 9.09 ?? 0.06 for stratiform leads is little different from the value 8.99 ?? 0.05 originally computed by Ostic, Russell and Stanton. Absolute values for lead isotope ratios for all interlaboratory standard samples presently available from the literature are tabulated. ?? 1969.

  13. Absolute brightness temperature measurements at 2.1-mm wavelength

    NASA Technical Reports Server (NTRS)

    Ulich, B. L.

    1974-01-01

    Absolute measurements of the brightness temperatures of the Sun, new Moon, Venus, Mars, Jupiter, Saturn, and Uranus, and of the flux density of DR21 at 2.1-mm wavelength are reported. Relative measurements at 3.5-mm wavelength are also preented which resolve the absolute calibration discrepancy between The University of Texas 16-ft radio telescope and the Aerospace Corporation 15-ft antenna. The use of the bright planets and DR21 as absolute calibration sources at millimeter wavelengths is discussed in the light of recent observations.

  14. Value, Value, Where Is the Value?

    ERIC Educational Resources Information Center

    Kaufman, Roger

    2003-01-01

    Discusses measurement in performance improvement, including the Kirkpatrick four-level model of evaluation for training, and adding value. Highlights include adding value at all levels of organizational performance, for the clients and society; other models of performance improvement; the major focus of HPT (human performance technology); and…

  15. Determination of radionuclides and pathways contributing to cumulative dose. Hanford Environmental Dose Reconstruction Project: Dose code recovery activities, Calculation 004

    SciTech Connect

    Napier, B.A.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contributions of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford Site. This scoping calculation (Calculation 004) examined the contributions of numerous radionuclides to cumulative dose via environmental exposures and accumulation in foods. Addressed in this calculation were the contributions to organ and effective dose of infants and adults from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from Feeding Regime 1, as described in calculation 002. This calculation specifically addresses cumulative radiation doses to infants and adults resulting from releases occurring over the period 1945 through 1972.

  16. Optimal mapping of terrestrial gamma dose rates using geological parent material and aerogeophysical survey data.

    PubMed

    Rawlins, B G; Scheib, C; Tyler, A N; Beamish, D

    2012-12-01

    Regulatory authorities need ways to estimate natural terrestrial gamma radiation dose rates (nGy h⁻¹) across the landscape accurately, to assess its potential deleterious health effects. The primary method for estimating outdoor dose rate is to use an in situ detector supported 1 m above the ground, but such measurements are costly and cannot capture the landscape-scale variation in dose rates which are associated with changes in soil and parent material mineralogy. We investigate the potential for improving estimates of terrestrial gamma dose rates across Northern Ireland (13,542 km²) using measurements from 168 sites and two sources of ancillary data: (i) a map based on a simplified classification of soil parent material, and (ii) dose estimates from a national-scale, airborne radiometric survey. We used the linear mixed modelling framework in which the two ancillary variables were included in separate models as fixed effects, plus a correlation structure which captures the spatially correlated variance component. We used a cross-validation procedure to determine the magnitude of the prediction errors for the different models. We removed a random subset of 10 terrestrial measurements and formed the model from the remainder (n = 158), and then used the model to predict values at the other 10 sites. We repeated this procedure 50 times. The measurements of terrestrial dose vary between 1 and 103 (nGy h⁻¹). The median absolute model prediction errors (nGy h⁻¹) for the three models declined in the following order: no ancillary data (10.8) > simple geological classification (8.3) > airborne radiometric dose (5.4) as a single fixed effect. Estimates of airborne radiometric gamma dose rate can significantly improve the spatial prediction of terrestrial dose rate. PMID:23147566

  17. Mars hemispherical albedo map: absolute value and interannual variability inferred from OMEGA data.

    NASA Astrophysics Data System (ADS)

    Vincendon, M.; Audouard, J.; Langevin, Y.; Poulet, F.; Bellucci, G.; Bibring, J.-P.; Gondet, B.

    2012-04-01

    The surface reflectance integrated over all directions and solar wavelengths ("hemispherical albedo") controls the radiative budget at the surface of Mars, and hence its climate. Reference albedo maps are usually derived from nadir observation of surface reflectance through clear atmospheric conditions. However, the atmosphere of Mars is permanently loaded with a significant amount of aerosols (typical visible optical depths of 0.5 under clear atmospheric conditions), which impacts the evaluation of "aerosol free" surface reflectances from remote sensing data. Moreover, the Martian surface is usually assumed to be Lambertian, both for simplicity and due to the lack of robust constraints about its bidirectional properties. We used OMEGA visible and near-IR measurements, with an appropriate UV extrapolation, to calculate as a function of space and time the hemispherical surface albedo of Mars. The contribution of aerosols is removed using a radiative transfer model and recent aerosols properties. Uncertainties associated with this procedure are calculated. The aerosols correction increases the bright/dark surfaces contrast. Typical, mean bidirectional reflectance properties of the martian surface are estimated using MER surface measurements and CRISM remote "EPF" observations. From these constraints, we have derived a typical relationship that makes it possible to convert single nadir measurements of the reflectance into hemispherical albedo. Accounting for the BRDF of the martian surface typically modify by ± 15% the derived albedo, depending on solar zenith angles. We will present our methods and preliminary results regarding seasonal and interannual variations of the surface albedo of Mars during years 2004-2011.

  18. Absolute calibration of sniffer probes on Wendelstein 7-X.

    PubMed

    Moseev, D; Laqua, H P; Marsen, S; Stange, T; Braune, H; Erckmann, V; Gellert, F; Oosterbeek, J W

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m(2) per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m(2) per MW injected beam power is measured. PMID:27587121

  19. The conditions of absolute summability of multiple trigonometric series

    NASA Astrophysics Data System (ADS)

    Bitimkhan, Samat; Akishev, Gabdolla

    2015-09-01

    In this work necessary and sufficient conditions of absolute summability of multiple trigonometric Fourier series of functions from anisotropic spaces of Lebesque are found in terms of its best approximation, the module of smoothness and the mixed smoothness module.

  20. Absolute calibration of sniffer probes on Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m2 per MW injected beam power is measured.

  1. Utirik Atoll Dose Assessment

    SciTech Connect

    Robison, W.L.; Conrado, C.L.; Bogen, K.T

    1999-10-06

    On March 1, 1954, radioactive fallout from the nuclear test at Bikini Atoll code-named BRAVO was deposited on Utirik Atoll which lies about 187 km (300 miles) east of Bikini Atoll. The residents of Utirik were evacuated three days after the fallout started and returned to their atoll in May 1954. In this report we provide a final dose assessment for current conditions at the atoll based on extensive data generated from samples collected in 1993 and 1994. The estimated population average maximum annual effective dose using a diet including imported foods is 0.037 mSv y{sup -1} (3.7 mrem y{sup -1}). The 95% confidence limits are within a factor of three of their population average value. The population average integrated effective dose over 30-, 50-, and 70-y is 0.84 mSv (84, mrem), 1.2 mSv (120 mrem), and 1.4 mSv (140 mrem), respectively. The 95% confidence limits on the population-average value post 1998, i.e., the 30-, 50-, and 70-y integral doses, are within a factor of two of the mean value and are independent of time, t, for t > 5 y. Cesium-137 ({sup 137}Cs) is the radionuclide that contributes most of this dose, mostly through the terrestrial food chain and secondarily from external gamma exposure. The dose from weapons-related radionuclides is very low and of no consequence to the health of the population. The annual background doses in the U. S. and Europe are 3.0 mSv (300 mrem), and 2.4 mSv (240 mrem), respectively. The annual background dose in the Marshall Islands is estimated to be 1.4 mSv (140 mrem). The total estimated combined Marshall Islands background dose plus the weapons-related dose is about 1.5 mSv y{sup -1} (150 mrem y{sup -1}) which can be directly compared to the annual background effective dose of 3.0 mSv y{sup -1} (300 mrem y{sup -1}) for the U. S. and 2.4 mSv y{sup -1} (240 mrem y{sup -1}) for Europe. Moreover, the doses listed in this report are based only on the radiological decay of {sup 137}Cs (30.1 y half-life) and other

  2. Absolute and Convective Instability of a Liquid Jet in Microgravity

    NASA Technical Reports Server (NTRS)

    Lin, Sung P.; Vihinen, I.; Honohan, A.; Hudman, Michael D.

    1996-01-01

    The transition from convective to absolute instability is observed in the 2.2 second drop tower of the NASA Lewis Research Center. In convective instability the disturbance grows spatially as it is convected downstream. In absolute instability the disturbance propagates both downstream and upstream, and manifests itself as an expanding sphere. The transition Reynolds numbers are determined for two different Weber numbers by use of Glycerin and a Silicone oil. Preliminary comparisons with theory are made.

  3. Absolute biphoton meter of the quantum efficiency of photomultipliers

    NASA Astrophysics Data System (ADS)

    Ginzburg, V. M.; Keratishvili, N. G.; Korzhenevich, E. L.; Lunev, G. V.; Sapritskii, V. I.

    1992-07-01

    An biphoton absolute meter of photomultiplier quantum efficiency is presented which is based on spontaneous parametric down-conversion. Calculation and experiment results were obtained which made it possible to choose the parameters of the setup that guarantee a linear dependence of wavelength on the Z coordinate (along the axicon axis). Results of a series of absolute measurements of the quantum efficiency of a specific photomultiplier (FEU-136) are presented.

  4. Heat capacity and absolute entropy of iron phosphides

    SciTech Connect

    Dobrokhotova, Z.V.; Zaitsev, A.I.; Litvina, A.D.

    1994-09-01

    There is little or no data on the thermodynamic properties of iron phosphides despite their importance for several areas of science and technology. The information available is of a qualitative character and is based on assessments of the heat capacity and absolute entropy. In the present work, we measured the heat capacity over the temperature range of 113-873 K using a differential scanning calorimeter (DSC) and calculated the absolute entropy.

  5. Patient Dose In Diagnostic Radiology: When & How?

    NASA Astrophysics Data System (ADS)

    Lassen, Margit; Gorson, Robert O.

    1980-08-01

    Different situations are discussed in which it is of value to know radiation dose to the patient in diagnostic radiology. Radiation dose to specific organs is determined using the Handbook on Organ Doses published by the Bureau of Radiological Health of the Food and Drug Administration; the method is applied to a specific case. In this example dose to an embryo is calculated in examinations involving both fluoroscopy and radiography. In another example dose is determined to a fetus in late pregnancy using tissue air ratios. Patient inquiries about radiation dose are discussed, and some answers are suggested. The reliability of dose calculations is examined.

  6. Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Molina, M. J.

    1986-01-01

    The absorption cross sections of ozone have been measured in the wavelength range 185-350 nm and in the temperature range 225-298 K. The absolute ozone concentrations were established by measuring the pressure of pure gaseous samples in the 0.08to 300-torr range, and the UV spectra were recorded under conditions where less than 1 percent of the sample decomposed. The temperature dependence is significant for wavelengths longer than about 280 nm. The absorption cross-section values around 210 nm were found to be about 10 percent larger than the previously accepted values.

  7. Treatment outcomes and late toxicities of 869 patients with nasopharyngeal carcinoma treated with definitive intensity modulated radiation therapy: new insight into the value of total dose of cisplatin and radiation boost

    PubMed Central

    Ou, Xiaomin; Zhou, Xin; Shi, Qi; Xing, Xing; Yang, Youqi; Xu, Tingting; Shen, Chunying; Wang, Xiaoshen; He, Xiayun; Kong, Lin; Ying, Hongmei; Hu, Chaosu

    2015-01-01

    This study was to report the long-term outcomes and toxicities of nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). From 2009 to 2010, 869 non-metastatic NPC patients treated with IMRT were retrospectively enrolled. With a median follow-up of 54.3 months, the 5-year estimated local recurrence-free survival (LRFS), regional recurrence-free survival (RRFS), distant metastasis-free survival (DMFS), disease-free survival (DFS) and overall survival (OS) were 89.7%, 94.5%, 85.6%, 76.3%, 84.0%, respectively. In locally advanced NPC, gender, T, N, total dose of cisplatin more than 300 mg/m2 and radiation boost were independent prognostic factors for DMFS and DFS. Age, T, N and total dose of cisplatin were independent prognostic factors for OS. Radiation boost was an adverse factor for LRFS, RRFS, DMFS and DFS. Concurrent chemotherapy was not an independent prognostic factor for survival, despite marginally significant for DMFS in univariate analysis. Concurrent chemotherapy increased xerostomia and trismus, while higher total dose of cisplatin increased xerostomia and otologic toxicities. In conclusion, IMRT provided satisfactory long-term outcome for NPC, with acceptable late toxicities. Total dose of cisplatin was a prognostic factor for distant metastasis and overall survival. The role of concurrent chemotherapy and radiation boost in the setting of IMRT warrants further investigation. PMID:26485757

  8. Flagellar apparatus absolute orientations and the phylogeny of the green algae.

    PubMed

    O'Kelly, C J; Floyd, G L

    The absolute orientation of the flagellar apparatus in green algal motile cells is a feature of considerable value in studies of green algal systematics and phylogeny. The absolute orientation patterns found in those algae for which this feature is known or can be deduced are reviewed. Counterclockwise absolute orientation occurs in all classes except the Chlorophyceae and is considered primitive, while the clockwise absolute orientation present in most members of the Chlorophyceae is the result of progressive clockwise rotation of components during evolution. Extant intermediates documenting this rotation include Hafniomonas vegetative cells, which show counterclockwise absolute orientation, and Chaetopeltis quadriflagellate zoospores, in which the flagellar apparatus is strictly cruciate except for a slight clockwise offset of the microtubular rootlets. The V-shaped arrangement of the basal bodies in the flagellar apparatus, as well as the presence of proximal sheaths and of two layers of scales on the cell body, further identifies the Chaetopeltis zoospore as a primitive cell type within the Chlorophyceae . Trends towards the exsertion of basal bodies from a flagellar pit, either apically or laterally, the elimination of quadriflagellate cells, and, in the Chlorophyceae , an increasing amount of basal body offset, indicate advancement within the classes. Absolute orientation is conserved during flagellar apparatus replication and development. Events after flagellar apparatus division in the algae studied may be subdivided into component assembly, which is universal and preserves phylogenetically-useful features, and component reorientation, which occurs in relatively few green algae and adapts the flagellar apparatus to specialized functions. From these flagellar apparatus orientation studies, a major reevaluation of evolution within the Chlorophyceae is proposed, with weakly- thalloid algae possessing desmoschisis (e.g. Chaetopeltis ) considered primitive, and

  9. The Absolute Bioavailability and Effect of Food on the Pharmacokinetics of Odanacatib: A Stable-Label i.v./Oral Study in Healthy Postmenopausal Women.

    PubMed

    Zajic, Stefan; Rossenu, Stefaan; Hreniuk, David; Kesisoglou, Filippos; McCrea, Jacqueline; Liu, Fang; Sun, Li; Witter, Rose; Gauthier, Don; Helmy, Roy; Joss, Darrick; Ni, Tong; Stoltz, Randall; Stone, Julie; Stoch, S Aubrey

    2016-09-01

    A stable-label i.v./oral study design was conducted to investigate the pharmacokinetics (PK) of odanacatib. Healthy, postmenopausal women received oral doses of unlabeled odanacatib administered simultaneously with a reference of 1 mg i.v. stable (13)C-labeled odanacatib. The absolute bioavailability of odanacatib was 30% at 50 mg (the phase 3 dose) and 70% at 10 mg, which is consistent with solubility-limited absorption. Odanacatib exposure (area under the curve from zero to infinity) increased by 15% and 63% when 50 mg was administered with low-fat and high-fat meals, respectively. This magnitude of the food effect is unlikely to be clinically important. The volume of distribution was ∼100 liters. The clearance was ∼0.8 l/h (13 ml/min), supporting that odanacatib is a low-extraction ratio drug. Population PK modeling indicated that 88% of individuals had completed absorption of >80% bioavailable drug within 24 hours, with modest additional absorption after 24 hours and periodic fluctuations in plasma concentrations contributing to late values for time to Cmax in some subjects. PMID:27402726

  10. Medical confidentiality: an intransigent and absolute obligation.

    PubMed Central

    Kottow, M H

    1986-01-01

    Clinicians' work depends on sincere and complete disclosures from their patients; they honour this candidness by confidentially safeguarding the information received. Breaching confidentiality causes harms that are not commensurable with the possible benefits gained. Limitations or exceptions put on confidentiality would destroy it, for the confider would become suspicious and un-co-operative, the confidant would become untrustworthy and the whole climate of the clinical encounter would suffer irreversible erosion. Excusing breaches of confidence on grounds of superior moral values introduces arbitrariness and ethical unreliability into the medical context. Physicians who breach the agreement of confidentiality are being unfair, thus opening the way for, and becoming vulnerable to, the morally obtuse conduct of others. Confidentiality should not be seen as the cosy but dispensable atmosphere of clinical settings; rather, it constitutes a guarantee of fairness in medical actions. Possible perils that might accrue to society are no greater than those accepted when granting inviolable custody of information to priests, lawyers and bankers. To jeopardize the integrity of confidential medical relationships is too high a price to pay for the hypothetical benefits this might bring to the prevailing social order. PMID:3761330

  11. Results of the first North American comparison of absolute gravimeters, NACAG-2010

    USGS Publications Warehouse

    Schmerge, David; Francis, Olvier; Henton, J.; Ingles, D.; Jones, D.; Kennedy, Jeffrey R.; Krauterbluth, K.; Liard, J.; Newell, D.; Sands, R.; Schiel, J.; Silliker, J.; van Westrum, D.

    2012-01-01

    The first North American Comparison of absolute gravimeters (NACAG-2010) was hosted by the National Oceanic and Atmospheric Administration at its newly renovated Table Mountain Geophysical Observatory (TMGO) north of Boulder, Colorado, in October 2010. NACAG-2010 and the renovation of TMGO are part of NGS’s GRAV-D project (Gravity for the Redefinition of the American Vertical Datum). Nine absolute gravimeters from three countries participated in the comparison. Before the comparison, the gravimeter operators agreed to a protocol describing the strategy to measure, calculate, and present the results. Nine sites were used to measure the free-fall acceleration of g. Each gravimeter measured the value of g at a subset of three of the sites, for a total set of 27 g-values for the comparison. The absolute gravimeters agree with one another with a standard deviation of 1.6 µGal (1 Gal = 1 cm s-2). The minimum and maximum offsets are -2.8 and 2.7 µGal. This is an excellent agreement and can be attributed to multiple factors, including gravimeters that were in good working order, good operators, a quiet observatory, and a short duration time for the experiment. These results can be used to standardize gravity surveys internationally.

  12. Enantiomeric Lignans and Neolignans from Phyllanthus glaucus: Enantioseparation and Their Absolute Configurations.

    PubMed

    Wu, Zhaodi; Lai, Yongji; Zhou, Lei; Wu, Ye; Zhu, Hucheng; Hu, Zhengxi; Yang, Jing; Zhang, Jinwen; Wang, Jianping; Luo, Zengwei; Xue, Yongbo; Zhang, Yonghui

    2016-01-01

    Eight pairs of enantiomeric neolignans, norlignans, and sesquineolignans (1a/1b-8a/8b), together with five known neolignans (9a/9b and 10-12), have been isolated from 70% acetone extract of the whole plants of Phyllanthus glaucus Wall. (Euphorbiaceae). The racemic or partial racemic mixtures were successfully separated by chiral HPLC using different types of chiral columns with various mobile phases. Their structures were elucidated on the basis of extensive spectroscopic data. The absolute configurations of 2a/2b were determined by computational analysis of their electronic circular dichroism (ECD) spectrum, and the absolute configurations of other isolates were ascertained by comparing their experimental ECD spectra and optical rotation values with those of structure-relevant compounds reported in literatures. Compounds 4a/4b featured unique sesquineolignan skeletons with a novel 7-4'-epoxy-8'-8''/7'-2'' scaffold, consisting of an aryltetrahydronaphthalene and a dihydrobenzofuran moiety. The planar structures of compounds 2, 3, 7, and 8 were documented previously; however, their absolute configurations were established for the first time in this study. The antioxidant activities of 1a/1b-8a/8b were evaluated using DPPH free radical scavenging assay, and the results demonstrated that compounds 1b and 3b showed potent DPPH radical scavenging activities with IC50 values of 5.987 ± 1.212 and 9.641 ± 0.865 μg/mL, respectively. PMID:27126373

  13. Testing the absolute-tempo hypothesis: context effects for familiar and unfamiliar songs.

    PubMed

    Rashotte, Matthew A; Wedell, Douglas H

    2014-11-01

    In two experiments, we investigated context effects on tempo judgments for familiar and unfamiliar songs performed by popular artists. In Experiment 1, participants made comparative tempo judgments to a remembered standard for song clips drawn from either a slow or a fast context, created by manipulating the tempos of the same songs. Although both familiar and unfamiliar songs showed significant shifts in their points of subjective equality toward the tempo context values, more-familiar songs showed significantly reduced contextual bias. In Experiment 2, tempo pleasantness ratings showed significant context effects in which the ordering of tempos on the pleasantness scale differed across contexts, with the most pleasant tempo shifting toward the contextual values, an assimilation of ideal points. Once again, these effects were significant but reduced for the more-familiar songs. The moderating effects of song familiarity support a weak version of the absolute-tempo hypothesis, in which long-term memory for tempo reduces but does not eliminate contextual effects. Thus, although both relative and absolute tempo information appear to be encoded in memory, the absolute representation may be subject to rapid revision by recently experienced tempo-altered versions of the same song. PMID:24972559

  14. Absolute protein quantification of the yeast chaperome under conditions of heat shock

    PubMed Central

    Mackenzie, Rebecca J.; Lawless, Craig; Holman, Stephen W.; Lanthaler, Karin; Beynon, Robert J.; Grant, Chris M.; Hubbard, Simon J.

    2016-01-01

    Chaperones are fundamental to regulating the heat shock response, mediating protein recovery from thermal‐induced misfolding and aggregation. Using the QconCAT strategy and selected reaction monitoring (SRM) for absolute protein quantification, we have determined copy per cell values for 49 key chaperones in Saccharomyces cerevisiae under conditions of normal growth and heat shock. This work extends a previous chemostat quantification study by including up to five Q‐peptides per protein to improve confidence in protein quantification. In contrast to the global proteome profile of S. cerevisiae in response to heat shock, which remains largely unchanged as determined by label‐free quantification, many of the chaperones are upregulated with an average two‐fold increase in protein abundance. Interestingly, eight of the significantly upregulated chaperones are direct gene targets of heat shock transcription factor‐1. By performing absolute quantification of chaperones under heat stress for the first time, we were able to evaluate the individual protein‐level response. Furthermore, this SRM data was used to calibrate label‐free quantification values for the proteome in absolute terms, thus improving relative quantification between the two conditions. This study significantly enhances the largely transcriptomic data available in the field and illustrates a more nuanced response at the protein level. PMID:27252046

  15. The onset of absolute instability of rotating Hagen-Poiseuille flow: A spatial stability analysis

    NASA Astrophysics Data System (ADS)

    Fernandez-Feria, R.; del Pino, C.

    2002-09-01

    A spatial, viscous stability analysis of Poiseuille pipe flow with superimposed solid body rotation is considered. For each value of the swirl parameter (inverse Rossby number) L>0, there exists a critical Reynolds number Rec)(L above which the flow first becomes convectively unstable to nonaxisymmetric disturbances with azimuthal wave number n=-1. This neutral stability curve confirms previous temporal stability analyses. From this spatial stability analysis, we propose here a relatively simple procedure to look for the onset of absolute instability that satisfies the so-called Briggs-Bers criterion. We find that, for perturbations with n=-1, the flow first becomes absolutely unstable above another critical Reynolds number Ret)(L>Rec)(L, provided that L>0.38, with Ret[right arrow]Rec as L[right arrow]infinity. Other values of the azimuthal wave number n are also considered. For Re>Ret)(L, the disturbances grow both upstream and downstream of the source, and the spatial stability analysis becomes inappropriate. However, for Ret, the spatial analysis provides a useful description on how convectively unstable perturbations become absolutely unstable in this kind of flow.

  16. Absolute protein quantification of the yeast chaperome under conditions of heat shock.

    PubMed

    Mackenzie, Rebecca J; Lawless, Craig; Holman, Stephen W; Lanthaler, Karin; Beynon, Robert J; Grant, Chris M; Hubbard, Simon J; Eyers, Claire E

    2016-08-01

    Chaperones are fundamental to regulating the heat shock response, mediating protein recovery from thermal-induced misfolding and aggregation. Using the QconCAT strategy and selected reaction monitoring (SRM) for absolute protein quantification, we have determined copy per cell values for 49 key chaperones in Saccharomyces cerevisiae under conditions of normal growth and heat shock. This work extends a previous chemostat quantification study by including up to five Q-peptides per protein to improve confidence in protein quantification. In contrast to the global proteome profile of S. cerevisiae in response to heat shock, which remains largely unchanged as determined by label-free quantification, many of the chaperones are upregulated with an average two-fold increase in protein abundance. Interestingly, eight of the significantly upregulated chaperones are direct gene targets of heat shock transcription factor-1. By performing absolute quantification of chaperones under heat stress for the first time, we were able to evaluate the individual protein-level response. Furthermore, this SRM data was used to calibrate label-free quantification values for the proteome in absolute terms, thus improving relative quantification between the two conditions. This study significantly enhances the largely transcriptomic data available in the field and illustrates a more nuanced response at the protein level. PMID:27252046

  17. Design of piezoresistive MEMS absolute pressure sensor

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Pant, B. D.

    2012-10-01

    MEMS pressure sensors are one of the most widely commercialized microsensors in the MEMS industry. They have a plethora of applications in various fields including the automobile, space, biomedical, aviation and military sectors. One of the simplest and most efficient methods in MEMS pressure sensors for measuring pressure is to use the phenomenon of piezoresistance. The piezoresistive effect causes change in the resistance of certain doped materials when they are subjected to stress, as a result of energy band deformation. Piezoresistive pressure sensors consist of piezoresistors placed over a thin diaphragm which deflects under the action of the pressure to be measured. The result of this deflection causes the piezoresistors to change their resistance due to the stress experienced by them. The change is converted into electrical signals and measured in order to find the value of applied pressure. In this work, a high range (30 Bar) pressure sensor is designed based on the principle of piezoresistivity. The inaccuracies in the analytical models that are generally used to model the pressure sensor diaphragm have also been analysed. Thus, the Finite Element Method (FEM) is adopted to optimize the pressure sensor for parameters like sensitivity and linearity. This is achieved by choosing the proper shape of piezoresistor, thickness of diaphragm and the position of the piezoresistor on the pressure sensor diaphragm. For the square diaphragm, sensitivity of 5.18 mV/V/Bar and a linearity error of 0.02% are obtained. For the circular diaphragm, sensitivity of 3.69 mV/V/Bar and a linearity error of 0.011% are obtained.

  18. Uranium isotopic composition and absolute ages of Allende chondrules

    NASA Astrophysics Data System (ADS)

    Brennecka, G. A.; Budde, G.; Kleine, T.

    2015-11-01

    A handful of events, such as the condensation of refractory inclusions and the formation of chondrules, represent important stages in the formation and evolution of the early solar system and thus are critical to understanding its development. Compared to the refractory inclusions, chondrules appear to have a protracted period of formation that spans millions of years. As such, understanding chondrule formation requires a catalog of reliable ages, free from as many assumptions as possible. The Pb-Pb chronometer has this potential; however, because common individual chondrules have extremely low uranium contents, obtaining U-corrected Pb-Pb ages of individual chondrules is unrealistic in the vast majority of cases at this time. Thus, in order to obtain the most accurate 238U/235U ratio possible for chondrules, we separated and pooled thousands of individual chondrules from the Allende meteorite. In this work, we demonstrate that no discernible differences exist in the 238U/235U compositions between chondrule groups when separated by size and magnetic susceptibility, suggesting that no systematic U-isotope variation exists between groups of chondrules. Consequently, chondrules are likely to have a common 238U/235U ratio for any given meteorite. A weighted average of the six groups of chondrule separates from Allende results in a 238U/235U ratio of 137.786 ± 0.004 (±0.016 including propagated uncertainty on the U standard [Richter et al. 2010]). Although it is still possible that individual chondrules have significant U isotope variation within a given meteorite, this value represents our best estimate of the 238U/235U ratio for Allende chondrules and should be used for absolute dating of these objects, unless such chondrules can be measured individually.

  19. a Portable Apparatus for Absolute Measurements of the Earth's Gravity.

    NASA Astrophysics Data System (ADS)

    Zumberge, Mark Andrew

    We have developed a new, portable apparatus for making absolute measurements of the acceleration due to the earth's gravity. We use the method of interferometrically determining the acceleration of a freely falling corner -cube prism. The falling object is surrounded by a chamber which is driven vertically inside a fixed vacuum chamber. This falling chamber is servoed to track the falling corner -cube to shield it from drag due to background gas. In addition, the drag-free falling chamber removes the need for a magnetic release, shields the falling object from electrostatic forces, and provides a means of both gently arresting the falling object and quickly returning it to its start position, to allow rapid acquisition of data. A synthesized long period isolation device reduces the noise due to seismic oscillations. A new type of Zeeman laser is used as the light source in the interferometer, and is compared with the wavelength of an iodine stabilized laser. The times of occurrence of 45 interference fringes are measured to within 0.2 nsec over a 20 cm drop and are fit to a quadratic by an on-line minicomputer. 150 drops can be made in ten minutes resulting in a value of g having a precision of 3 to 6 parts in 10('9). Systematic errors have been determined to be less than 5 parts in 10('9) through extensive tests. Three months of gravity data have been obtained with a reproducibility ranging from 5 to 10 parts in 10('9). The apparatus has been designed to be easily portable. Field measurements are planned for the immediate future. An accuracy of 6 parts in 10('9) corresponds to a height sensitivity of 2 cm. Vertical motions in the earth's crust and tectonic density changes that may precede earthquakes are to be investigated using this apparatus.

  20. Embedded north-seeker for automatic absolute magnetic DI measurements

    NASA Astrophysics Data System (ADS)

    Gonsette, Alexandre; Rasson, Jean

    2014-05-01

    In magnetic observatory Earth magnetic field is recorded with a resolution of 0.1nT for 1min sampling (new standards impose 1pT for 1s sampling). The method universally adopted for measuring it is a combination of three instruments. Vectorial magnetometer (variometer) records variations of the three components around a reference value or a baseline. A proton or an overhauser magnetometer is an absolute instrument able to measure the modulus of the field and used to determine the F component baseline of the variometer. The declination and inclination baselines require a manual procedure to be computed. An operator manipulates a non-magnetic theodolite (also called a DIFlux) to measure the D and I angles in different configurations with a resolution of a few arcsec. The AutoDIF is a non-magnetic automatic DIFlux using the same protocol as the manual procedure. The declination defined according to the true north is determined by means of a target pointing system. Even if the technique is fast and accurate, it becomes problematic in case of unmanned deployment. In particular the area between the target and the DIFlux is out of control. Snow storm, fog, vegetation or condensation on windows are examples of perturbation preventing for finding the target. It is obvious in case of (future) seafloor observatories. A FOG based north-seeker has been implemented and mounted on the AutoDIF. The first results using a low cost gyro don't meet the Intermagnet specifications yet but are however hopeful. A 0.1° standard deviation has been reached and statistically reduced to 0.01° after less than two days in laboratory. The magnetic disturbance of the sensor is taken into account and compensated by the measurement protocol.

  1. Experimental feasibility of the airborne measurement of absolute oil fluorescence spectral conversion efficiency

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1983-01-01

    Airborne lidar oil spill experiments carried out to determine the practicability of the AOFSCE (absolute oil fluorescence spectral conversion efficiency) computational model are described. The results reveal that the model is suitable over a considerable range of oil film thicknesses provided the fluorescence efficiency of the oil does not approach the minimum detection sensitivity limitations of the lidar system. Separate airborne lidar experiments to demonstrate measurement of the water column Raman conversion efficiency are also conducted to ascertain the ultimate feasibility of converting such relative oil fluorescence to absolute values. Whereas the AOFSCE model is seen as highly promising, further airborne water column Raman conversion efficiency experiments with improved temporal or depth-resolved waveform calibration and software deconvolution techniques are thought necessary for a final determination of suitability.

  2. Absolute Position Sensing Based on a Robust Differential Capacitive Sensor with a Grounded Shield Window.

    PubMed

    Bai, Yang; Lu, Yunfeng; Hu, Pengcheng; Wang, Gang; Xu, Jinxin; Zeng, Tao; Li, Zhengkun; Zhang, Zhonghua; Tan, Jiubin

    2016-01-01

    A simple differential capacitive sensor is provided in this paper to measure the absolute positions of length measuring systems. By utilizing a shield window inside the differential capacitor, the measurement range and linearity range of the sensor can reach several millimeters. What is more interesting is that this differential capacitive sensor is only sensitive to one translational degree of freedom (DOF) movement, and immune to the vibration along the other two translational DOFs. In the experiment, we used a novel circuit based on an AC capacitance bridge to directly measure the differential capacitance value. The experimental result shows that this differential capacitive sensor has a sensitivity of 2 × 10(-4) pF/μm with 0.08 μm resolution. The measurement range of this differential capacitive sensor is 6 mm, and the linearity error are less than 0.01% over the whole absolute position measurement range. PMID:27187393

  3. Radial velocity studies and absolute parameters of contact binaries. I - AB Andromedae

    NASA Technical Reports Server (NTRS)

    Hrivnak, Bruce J.

    1988-01-01

    New radial velocity curves have been obtained for the contact binary AB And, using the cross-correlation technique. A mass ratio of 0.479 is determined, which is revised to 0.491 when the velocities are corrected for proximity effects using a light curve model. These values differ by less than ten percent from the photometric mass ratio. An analysis of the symmetric B and V light curves reported by Rigterink in 1973 using the spectroscopic mass ratio yields a consistent set of light and velocity curve elements. These also produce a reasonably good fit to the infrared J and K light curves reported by Jameson and Akinci in 1979. Absolute elements are determined, and these indicate that both components have a main-sequence internal structure. These absolute parameters, together with the Galactic kinematics, suggest an age for the system similar to or greater than that of the Sun.

  4. Absolute Position Sensing Based on a Robust Differential Capacitive Sensor with a Grounded Shield Window

    PubMed Central

    Bai, Yang; Lu, Yunfeng; Hu, Pengcheng; Wang, Gang; Xu, Jinxin; Zeng, Tao; Li, Zhengkun; Zhang, Zhonghua; Tan, Jiubin

    2016-01-01

    A simple differential capacitive sensor is provided in this paper to measure the absolute positions of length measuring systems. By utilizing a shield window inside the differential capacitor, the measurement range and linearity range of the sensor can reach several millimeters. What is more interesting is that this differential capacitive sensor is only sensitive to one translational degree of freedom (DOF) movement, and immune to the vibration along the other two translational DOFs. In the experiment, we used a novel circuit based on an AC capacitance bridge to directly measure the differential capacitance value. The experimental result shows that this differential capacitive sensor has a sensitivity of 2 × 10−4 pF/μm with 0.08 μm resolution. The measurement range of this differential capacitive sensor is 6 mm, and the linearity error are less than 0.01% over the whole absolute position measurement range. PMID:27187393

  5. The possibility of constructing the hydrogen scale of the absolute atomic masses of the elements

    NASA Astrophysics Data System (ADS)

    Kuz'min, I. I.

    2009-12-01

    The paper presents a scheme for the experimental-empirical construction of the existing chemical, physical, and carbon scales of the relative nonintegral atomic masses of the elements. The quantitative interrelation between the nonintegral relative atomic masses, their minimized fractional positive and negative natural deviations from integral numbers, and their integral parts are reproduced mathematically. Nonisotopic fractional deviations are shown to be a consequence of methodological side effects of the scheme for theoretical processing of the data of thorough physical and chemical measurements performed by Stas and Aston in constructing scales of relative atomic masses. In conformity with the Prout hypothesis, the absolute atomic mass unit and the corresponding Avogadro’s number value are suggested for the construction of the hydrogen scale of absolute atomic masses of nonisotopic elements, individual isotopes, and isotope-containing elements.

  6. Lifelong Values.

    ERIC Educational Resources Information Center

    Ferguson-Florissant School District, Ferguson, MO.

    This booklet was developed by early education teachers to help parents teach their children values necessary for learning and for living. The introduction identifies six lifelong values, discusses the important role played by parents in teaching these values, and offers a checklist of positive ways parents interact with their children. Each of the…

  7. Predictive value of early 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) during salvage chemotherapy in relapsing/refractory Hodgkin lymphoma (HL) treated with high-dose chemotherapy.

    PubMed

    Castagna, Luca; Bramanti, Stefania; Balzarotti, Monica; Sarina, Barbara; Todisco, Elisabetta; Anastasia, Antonella; Magagnoli, Massimo; Mazza, Rita; Nozza, Andrea; Giordano, Laura; Rodari, Marcello; Rinifilo, Eva; Chiti, Arturo; Santoro, Armando

    2009-05-01

    This retrospective study evaluated whether early 2-[fluorine-18]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) after two cycles of salvage chemotherapy (PET2) could predict survival after high-dose chemotherapy (HDC). Twenty-four Hodgkin lymphoma (HL) patients were included. PET2 was negative in 58% and positive in 42% of patients. Ninety per cent of patients (9/10) with positive PET2 relapsed after HDC while all but one patient with negative PET2 maintained a complete remission. The 2-year progression-free survival was 93% vs. 10% for patients with negative and positive PET2, respectively (P < 0.001). This study shows that interim PET can predict the outcome after high-dose chemotherapy in HL patients. PMID:19344403

  8. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    SciTech Connect

    Zhang, Yakun; Li, Xiang; Segars, W. Paul; Samei, Ehsan

    2014-02-15

    Purpose: Given the radiation concerns inherent to the x-ray modalities, accurately estimating the radiation doses that patients receive during different imaging modalities is crucial. This study estimated organ doses, effective doses, and risk indices for the three clinical chest x-ray imaging techniques (chest radiography, tomosynthesis, and CT) using 59 anatomically variable voxelized phantoms and Monte Carlo simulation methods. Methods: A total of 59 computational anthropomorphic male and female extended cardiac-torso (XCAT) adult phantoms were used in this study. Organ doses and effective doses were estimated for a clinical radiography system with the capability of conducting chest radiography and tomosynthesis (Definium 8000, VolumeRAD, GE Healthcare) and a clinical CT system (LightSpeed VCT, GE Healthcare). A Monte Carlo dose simulation program (PENELOPE, version 2006, Universitat de Barcelona, Spain) was used to mimic these two clinical systems. The Duke University (Durham, NC) technique charts were used to determine the clinical techniques for the radiographic modalities. An exponential relationship between CTDI{sub vol} and patient diameter was used to determine the absolute dose values for CT. The simulations of the two clinical systems compute organ and tissue doses, which were then used to calculate effective dose and risk index. The calculation of the two dose metrics used the tissue weighting factors from ICRP Publication 103 and BEIR VII report. Results: The average effective dose of the chest posteroanterior examination was found to be 0.04 mSv, which was 1.3% that of the chest CT examination. The average effective dose of the chest tomosynthesis examination was found to be about ten times that of the chest posteroanterior examination and about 12% that of the chest CT examination. With increasing patient average chest diameter, both the effective dose and risk index for CT increased considerably in an exponential fashion, while these two dose

  9. Comparison of patient specific dose metrics between chest radiography, tomosynthesis, and CT for adult patients of wide ranging body habitus

    PubMed Central

    Zhang, Yakun; Li, Xiang; Segars, W. Paul; Samei, Ehsan

    2014-01-01

    Purpose: Given the radiation concerns inherent to the x-ray modalities, accurately estimating the radiation doses that patients receive during different imaging modalities is crucial. This study estimated organ doses, effective doses, and risk indices for the three clinical chest x-ray imaging techniques (chest radiography, tomosynthesis, and CT) using 59 anatomically variable voxelized phantoms and Monte Carlo simulation methods. Methods: A total of 59 computational anthropomorphic male and female extended cardiac-torso (XCAT) adult phantoms were used in this study. Organ doses and effective doses were estimated for a clinical radiography system with the capability of conducting chest radiography and tomosynthesis (Definium 8000, VolumeRAD, GE Healthcare) and a clinical CT system (LightSpeed VCT, GE Healthcare). A Monte Carlo dose simulation program (PENELOPE, version 2006, Universitat de Barcelona, Spain) was used to mimic these two clinical systems. The Duke University (Durham, NC) technique charts were used to determine the clinical techniques for the radiographic modalities. An exponential relationship between CTDIvol and patient diameter was used to determine the absolute dose values for CT. The simulations of the two clinical systems compute organ and tissue doses, which were then used to calculate effective dose and risk index. The calculation of the two dose metrics used the tissue weighting factors from ICRP Publication 103 and BEIR VII report. Results: The average effective dose of the chest posteroanterior examination was found to be 0.04 mSv, which was 1.3% that of the chest CT examination. The average effective dose of the chest tomosynthesis examination was found to be about ten times that of the chest posteroanterior examination and about 12% that of the chest CT examination. With increasing patient average chest diameter, both the effective dose and risk index for CT increased considerably in an exponential fashion, while these two dose metrics

  10. Absolute irradiance of the Moon for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.

    2002-01-01

    The recognized need for on-orbit calibration of remote sensing imaging instruments drives the ROLO project effort to characterize the Moon for use as an absolute radiance source. For over 5 years the ground-based ROLO telescopes have acquired spatially-resolved lunar images in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands at phase angles within ??90 degrees. A numerical model for lunar irradiance has been developed which fits hundreds of ROLO images in each band, corrected for atmospheric extinction and calibrated to absolute radiance, then integrated to irradiance. The band-coupled extinction algorithm uses absorption spectra of several gases and aerosols derived from MODTRAN to fit time-dependent component abundances to nightly observations of standard stars. The absolute radiance scale is based upon independent telescopic measurements of the star Vega. The fitting process yields uncertainties in lunar relative irradiance over small ranges of phase angle and the full range of lunar libration well under 0.5%. A larger source of uncertainty enters in the absolute solar spectral irradiance, especially in the SWIR, where solar models disagree by up to 6%. Results of ROLO model direct comparisons to spacecraft observations demonstrate the ability of the technique to track sensor responsivity drifts to sub-percent precision. Intercomparisons among instruments provide key insights into both calibration issues and the absolute scale for lunar irradiance.

  11. Absolute luminosity measurements with the LHCb detector at the LHC

    NASA Astrophysics Data System (ADS)

    LHCb Collaboration

    2012-01-01

    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic ``van der Meer scan'' method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overal precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.

  12. Determination of dose distributions and parameter sensitivity. Hanford Environmental Dose Reconstruction Project; dose code recovery activities; Calculation 005

    SciTech Connect

    Napier, B.A.; Farris, W.T.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contribution of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 005) examined the contributions of numerous parameters to the uncertainty distribution of doses calculated for environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow`s milk and the third scoping study, which added additional pathways. Addressed in this calculation were the contributions to thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows` milk from Feeding Regime 1 as described in Calculation 001.

  13. Absolute Rayleigh scattering cross sections of gases and freons of stratospheric interest in the visible and ultraviolet regions

    NASA Technical Reports Server (NTRS)

    SHARDANAND; Rao, A. D. P.

    1977-01-01

    The laboratory measurements of absolute Rayleigh scattering cross sections as a function wavelength are reported for gas molecules He, Ne, Ar, N2, H2, O2, CO2, CH4 and for vapors of most commonly used freons CCl2F2, CBrF3, CF4, and CHClf2. These cross sections are determined from the measurements of photon scattering at an angle of 54 deg 44 min which yield the absolute values independent of the value of normal depolarization ratios. The present results show that in the spectral range 6943-3638A deg, the values of the Rayleigh scattering cross section can be extrapolated from one wavelength to the other using 1/lambda (4) law without knowing the values of the polarizabilities. However, such an extrapolation can not be done in the region of shorter wavelengths.

  14. Dose Reduction Techniques

    SciTech Connect

    WAGGONER, L.O.

    2000-05-16

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

  15. Simultaneous estimation of lithospheric uplift rates and absolute sea level change in southwest Scandinavia from inversion of sea level data

    NASA Astrophysics Data System (ADS)

    Nielsen, Lars; Hansen, Jens Morten; Hede, Mikkel Ulfeldt; Clemmensen, Lars B.; Pejrup, Morten; Noe-Nygaard, Nanna

    2014-11-01

    Relative sea level curves contain coupled information about absolute sea level change and vertical lithospheric movement. Such curves may be constructed based on, for example tide gauge data for the most recent times and different types of geological data for ancient times. Correct account for vertical lithospheric movement is essential for estimation of reliable values of absolute sea level change from relative sea level data and vise versa. For modern times, estimates of vertical lithospheric movement may be constrained by data (e.g. GPS-based measurements), which are independent from the relative sea level data. Similar independent data do not exist for ancient times. The purpose of this study is to test two simple inversion approaches for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates for ancient times in areas where a dense coverage of relative sea level data exists and well-constrained average lithospheric movement values are known from, for example glacial isostatic adjustment (GIA) models. The inversion approaches are tested and used for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates in southwest Scandinavia from modern relative sea level data series that cover the period from 1900 to 2000. In both approaches, a priori information is required to solve the inverse problem. A priori information about the average vertical lithospheric movement in the area of interest is critical for the quality of the obtained results. The two tested inversion schemes result in estimated absolute sea level rise of ˜1.2/1.3 mm yr-1 and vertical uplift rates ranging from approximately -1.4/-1.2 mm yr-1 (subsidence) to about 5.0/5.2 mm yr-1 if an a priori value of 1 mm yr-1 is used for the vertical lithospheric movement throughout the study area. In case the studied time interval is broken into two time intervals (before and after 1970), absolute sea level rise values of ˜0.8/1.2 mm yr-1 (before

  16. Dose-independent pharmacokinetics of ondansetron in rats: contribution of hepatic and intestinal first-pass effects to low bioavailability.

    PubMed

    Yang, Si H; Lee, Myung G

    2008-10-01

    The pharmacokinetic parameters of ondansetron were evaluated after its intravenous (at doses of 1, 4, 8 and 20 mg/kg) and oral (4, 8 and 20 mg/kg) administration to rats. The gastric, intestinal and hepatic first-pass effects of ondansetron were also evaluated after its intravenous, oral, intraportal, intragastric and intraduodenal administration at a dose of 8 mg/kg to rats. After intravenous and oral administration of ondansetron, the drug exhibits dose-independent pharmacokinetics in rats. After oral administration of ondansetron at a dose of 8 mg/kg, the unabsorbed fraction was 0.0158 of the dose, the extent of absolute oral bioavailability (F) value was 0.0407, and the hepatic and intestinal first-pass effects were 40.0% and 34.2% of the oral dose, respectively. The low F of ondansetron in rats was mainly due to considerable hepatic and intestinal first-pass effects. The lower F of ondansetron in rats (4.07%) than that in humans (62+/-15%) was mainly due to greater hepatic metabolism of the drug in rats. Ondansetron was stable in the rat gastric juices and various buffer solutions having pHs ranging from 1 to 13. The equilibrium plasma-to-blood cells partition ratio of ondansetron was 1.74-5.31. Protein binding of ondansetron to fresh rat plasma was 53.2%. PMID:18697186

  17. System and method for calibrating a rotary absolute position sensor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  18. Method and apparatus for two-dimensional absolute optical encoding

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2004-01-01

    This invention presents a two-dimensional absolute optical encoder and a method for determining position of an object in accordance with information from the encoder. The encoder of the present invention comprises a scale having a pattern being predetermined to indicate an absolute location on the scale, means for illuminating the scale, means for forming an image of the pattern; and detector means for outputting signals derived from the portion of the image of the pattern which lies within a field of view of the detector means, the field of view defining an image reference coordinate system, and analyzing means, receiving the signals from the detector means, for determining the absolute location of the object. There are two types of scale patterns presented in this invention: grid type and starfield type.

  19. Absolute and Convective Instability in Fluid-Conveying Flexible Pipes

    NASA Astrophysics Data System (ADS)

    de Langre, E.; Ouvrard, A. E.

    1998-11-01

    The effect of internal plug flow on the lateral stability of fluid conveying flexible pipes is investigated by determining the absolute/convective nature of the instability from the analytically derived linear dispersion relation. The fluid-structure interaction is modeled following the work of Gregory and Paidoussis (1966). The different domains of stability, convective instability, and absolute instability are explicitly derived in parameter space. The effect of flow velocity, mass ratio between the fluid and the structure, stiffness of the elastic foundation and axial tension is considered. Absolute instability prevails over a wide range of parameters. Convective instability only takes place at very high mass ratio, small stiffness and small axial tension. Relation is made with previous work of Brazier-Smith & Scott (1984) and Crighton (1991), considered here as a short wave approximation.

  20. Absolute surface metrology by rotational averaging in oblique incidence interferometry.

    PubMed

    Lin, Weihao; He, Yumei; Song, Li; Luo, Hongxin; Wang, Jie

    2014-06-01

    A modified method for measuring the absolute figure of a large optical flat surface in synchrotron radiation by a small aperture interferometer is presented. The method consists of two procedures: the first step is oblique incidence measurement; the second is multiple rotating measurements. This simple method is described in terms of functions that are symmetric or antisymmetric with respect to reflections at the vertical axis. Absolute deviations of a large flat surface could be obtained when mirror antisymmetric errors are removed by N-position rotational averaging. Formulas are derived for measuring the absolute surface errors of a rectangle flat, and experiments on high-accuracy rectangle flats are performed to verify the method. Finally, uncertainty analysis is carried out in detail. PMID:24922410

  1. Determination of dose distributions and parameter sensitivity

    SciTech Connect

    Napier, B.A.; Farris, W.T.; Simpson, J.C.

    1992-12-01

    A series of scoping calculations has been undertaken to evaluate the absolute and relative contribution of different radionuclides and exposure pathways to doses that may have been received by individuals living in the vicinity of the Hanford site. This scoping calculation (Calculation 005) examined the contributions of numerous parameters to the uncertainty distribution of doses calculated for environmental exposures and accumulation in foods. This study builds on the work initiated in the first scoping study of iodine in cow's milk and the third scoping study, which added additional pathways. Addressed in this calculation were the contributions to thyroid dose of infants from (1) air submersion and groundshine external dose, (2) inhalation, (3) ingestion of soil by humans, (4) ingestion of leafy vegetables, (5) ingestion of other vegetables and fruits, (6) ingestion of meat, (7) ingestion of eggs, and (8) ingestion of cows' milk from Feeding Regime 1 as described in Calculation 001.

  2. Absolute Strength of the San Andreas Fault Inferred from Tectonic Loading Simulation and CMT Data Inversion

    NASA Astrophysics Data System (ADS)

    Terakawa, T.; Matsu'Ura, M.

    2006-12-01

    a role of adjuster to keep the tectonic stress at a constant level. The spatial range of stress rotation extends to 55 km from BBS. From comparison of the characteristics of the inverted stress field with the results of numerical simulation, we can conclude the friction coefficient of BBS is 0.3, which is a half of the standard value expected from rock experiments. However, this does not mean a weak SAF. In this case the absolute strength of BBS itself reaches 140 MPa at the intermediate depth (6 km) of the seismogenic zone, because of the high normal stress due to plate convergence at BBS.

  3. Psychotropic dose equivalence in Japan.

    PubMed

    Inada, Toshiya; Inagaki, Ataru

    2015-08-01

    Psychotropic dose equivalence is an important concept when estimating the approximate psychotropic doses patients receive, and deciding on the approximate titration dose when switching from one psychotropic agent to another. It is also useful from a research viewpoint when defining and extracting specific subgroups of subjects. Unification of various agents into a single standard agent facilitates easier analytical comparisons. On the basis of differences in psychopharmacological prescription features, those of available psychotropic agents and their approved doses, and racial differences between Japan and other countries, psychotropic dose equivalency tables designed specifically for Japanese patients have been widely used in Japan since 1998. Here we introduce dose equivalency tables for: (i) antipsychotics; (ii) antiparkinsonian agents; (iii) antidepressants; and (iv) anxiolytics, sedatives and hypnotics available in Japan. Equivalent doses for the therapeutic effects of individual psychotropic compounds were determined principally on the basis of randomized controlled trials conducted in Japan and consensus among dose equivalency tables reported previously by psychopharmacological experts. As these tables are intended to merely suggest approximate standard values, physicians should use them with discretion. Updated information of psychotropic dose equivalence in Japan is available at http://www.jsprs.org/en/equivalence.tables/. [Correction added on 8 July 2015, after first online publication: A link to the updated information has been added.]. PMID:25601291

  4. Dose audit failures and dose augmentation

    NASA Astrophysics Data System (ADS)

    Herring, C.

    1999-01-01

    Standards EN 552 and ISO 11137, covering radiation sterilization, are technically equivalent in their requirements for the selection of the sterilization dose. Dose Setting Methods 1 and 2 described in Annex B of ISO 11137 can be used to meet these requirements for the selection of the sterilization dose. Both dose setting methods require a dose audit every 3 months to determine the continued validity of the sterilization dose. This paper addresses the subject of dose audit failures and investigations into their cause. It also presents a method to augment the sterilization dose when the number of audit positives exceeds the limits imposed by ISO 11137.

  5. Value Added?

    ERIC Educational Resources Information Center

    UCLA IDEA, 2012

    2012-01-01

    Value added measures (VAM) uses changes in student test scores to determine how much "value" an individual teacher has "added" to student growth during the school year. Some policymakers, school districts, and educational advocates have applauded VAM as a straightforward measure of teacher effectiveness: the better a teacher, the better students…

  6. Measurements of the reactor neutron power in absolute units

    NASA Astrophysics Data System (ADS)

    Lebedev, G. V.

    2015-12-01

    The neutron power of the reactor of the Yenisei space nuclear power plant is measured in absolute units using the modernized method of correlation analysis during the ground-based tests of the Yenisei prototypes. Results of the experiments are given. The desired result is obtained in a series of experiments carried out at the stage of the plant preparation for tests. The acceptability of experimental data is confirmed by the results of measuring the reactor neutron power in absolute units at the nominal level by the thermal balance during the life cycle tests of the ground prototypes.

  7. Notes on Van der Meer scan for absolute luminosity measurement

    NASA Astrophysics Data System (ADS)

    Balagura, Vladislav

    2011-10-01

    The absolute luminosity can be measured in an accelerator by sweeping beams transversely across each other in the so-called van der Meer scan. We prove that the method can be applied in the general case of arbitrary beam directions and a separation scan plane. A simple method to develop an image of the beam in its transverse plane from spatial distributions of interaction vertexes is also proposed. From the beam images one can determine their overlap and the absolute luminosity. This provides an alternative way of the luminosity measurement during van der Meer scan.

  8. Measurements of the reactor neutron power in absolute units

    SciTech Connect

    Lebedev, G. V.

    2015-12-15

    The neutron power of the reactor of the Yenisei space nuclear power plant is measured in absolute units using the modernized method of correlation analysis during the ground-based tests of the Yenisei prototypes. Results of the experiments are given. The desired result is obtained in a series of experiments carried out at the stage of the plant preparation for tests. The acceptability of experimental data is confirmed by the results of measuring the reactor neutron power in absolute units at the nominal level by the thermal balance during the life cycle tests of the ground prototypes.

  9. Absolute Stability Analysis of a Phase Plane Controlled Spacecraft

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Plummer, Michael; Bedrossian, Nazareth; Hall, Charles; Jackson, Mark; Spanos, Pol

    2010-01-01

    Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization.

  10. A general relativistic model for free-fall absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Tan, Yu-Jie; Shao, Cheng-Gang; Li, Jia; Hu, Zhong-Kun

    2016-04-01

    Although the relativistic manifestations of gravitational fields in gravimetry were first studied 40 years ago, the relativistic effects combined with free-fall absolute gravimeters have rarely been considered. In light of this, we present a general relativistic model for free-fall absolute gravimeters in a local-Fermi coordinates system, where we focus on effects related to the measuring devices: relativistic transverse Doppler effects, gravitational redshift effects and Earth’s rotation effects. Based on this model, a general relativistic expression of the measured gravity acceleration is obtained.

  11. Validation of Mean Absolute Sea Level of the North Atlantic obtained from Drifter, Altimetry and Wind Data

    NASA Technical Reports Server (NTRS)

    Maximenko, Nikolai A.

    2003-01-01

    Mean absolute sea level reflects the deviation of the Ocean surface from geoid due to the ocean currents and is an important characteristic of the dynamical state of the ocean. Values of its spatial variations (order of 1 m) are generally much smaller than deviations of the geoid shape from ellipsoid (order of 100 m) that makes the derivation of the absolute mean sea level a difficult task for gravity and satellite altimetry observations. Technique used by Niiler et al. for computation of the absolute mean sea level in the Kuroshio Extension was then developed into more general method and applied by Niiler et al. (2003b) to the global Ocean. The method is based on the consideration of balance of horizontal momentum.

  12. Absolute and convective instability of a viscous liquid jet surrounded by a viscous gas in a vertical pipe

    NASA Technical Reports Server (NTRS)

    Lin, S. P.; Lian, Z. W.

    1993-01-01

    The absolute and convective instability of a viscous liquid jet emanating into a viscous gas in a vertical pipe is analyzed in a parameter space spanned by the Reynolds number, the Froude number, the Weber number, the viscosity ratio, the density ratio, and the diameter ratio. The numerical results of the analysis are used to demonstrate that reduction in gravity tends to enhance the Rayleigh mode of convective instability which leads to the breakup of a liquid jet into drops of diameters comparable with the jet diameter. On the contrary, the Taylor mode of convective instability that leads to atomization is retarded at reduced gravity. The Rayleigh mode becomes absolutely unstable when the Reynolds number exceeds a critical value for a given set of the rest of the relevant parameters. The domain of absolute instability is significantly enlarged when the effect of gas viscosity is not neglected.

  13. Absolute flatness measurements of silicon mirrors by a three-intersection method by near-infrared interferometry.

    PubMed

    Uchikoshi, Junichi; Hayashi, Yoshinori; Ajari, Noritaka; Kawai, Kentaro; Arima, Kenta; Morita, Mizuho

    2013-01-01

    Absolute flatness of three silicon plane mirrors have been measured by a three-intersection method based on the three-flat method using a near-infrared interferometer. The interferometer was constructed using a near-infrared laser diode with a 1,310-nm wavelength light where the silicon plane mirror is transparent. The height differences at the coordinate values between the absolute line profiles by the three-intersection method have been evaluated. The height differences of the three flats were 4.5 nm or less. The three-intersection method using the near-infrared interferometer was useful for measuring the absolute flatness of the silicon plane mirrors. PMID:23758916

  14. Measurement of statistical evidence on an absolute scale following thermodynamic principles.

    PubMed

    Vieland, V J; Das, J; Hodge, S E; Seok, S-C

    2013-09-01

    Statistical analysis is used throughout biomedical research and elsewhere to assess strength of evidence. We have previously argued that typical outcome statistics (including p values and maximum likelihood ratios) have poor measure-theoretic properties: they can erroneously indicate decreasing evidence as data supporting an hypothesis accumulate; and they are not amenable to calibration, necessary for meaningful comparison of evidence across different study designs, data types, and levels of analysis. We have also previously proposed that thermodynamic theory, which allowed for the first time derivation of an absolute measurement scale for temperature (T), could be used to derive an absolute scale for evidence (E). Here we present a novel thermodynamically based framework in which measurement of E on an absolute scale, for which "one degree" always means the same thing, becomes possible for the first time. The new framework invites us to think about statistical analyses in terms of the flow of (evidential) information, placing this work in the context of a growing literature on connections among physics, information theory, and statistics. PMID:23463577

  15. Final report on the Seventh International Comparison of Absolute Gravimeters (ICAG 2005)

    USGS Publications Warehouse

    Jiang, Z.; Francis, O.; Vitushkin, L.; Palinkas, V.; Germak, A.; Becker, M.; D'Agostino, G.; Amalvict, M.; Bayer, R.; Bilker-Koivula, M.; Desogus, S.; Faller, J.; Falk, R.; Hinderer, J.; Gagnon, C.; Jakob, T.; Kalish, E.; Kostelecky, J.; Lee, C.; Liard, J.; Lokshyn, Y.; Luck, B.; Makinen, J.; Mizushima, S.; Le, Moigne N.; Origlia, C.; Pujol, E.R.; Richard, P.; Robertsson, L.; Ruess, D.; Schmerge, D.; Stus, Y.; Svitlov, S.; Thies, S.; Ullrich, C.; Van Camp, M.; Vitushkin, A.; Ji, W.; Wilmes, H.

    2011-01-01

    The Bureau International des Poids et Mesures (BIPM), S??vres, France, hosted the 7th International Comparison of Absolute Gravimeters (ICAG) and the associated Relative Gravity Campaign (RGC) from August to September 2005. ICAG 2005 was prepared and performed as a metrological pilot study, which aimed: To determine the gravity comparison reference values; To determine the offsets of the absolute gravimeters; and As a pilot study to accumulate experience for the CIPM Key Comparisons. This document presents a complete and extensive review of the technical protocol and data processing procedures. The 1st ICAG-RGC comparison was held at the BIPM in 1980-1981 and since then meetings have been organized every 4 years. In this paper, we present an overview of how the meeting was organized, the conditions of BIPM gravimetric sites, technical specifications, data processing strategy and an analysis of the final results. This 7th ICAG final report supersedes all previously published reports. Readings were obtained from participating instruments, 19 absolute gravimeters and 15 relative gravimeters. Precise levelling measurements were carried out and all measurements were performed on the BIPM micro-gravity network which was specifically designed for the comparison. ?? 2011 BIPM & IOP Publishing Ltd.

  16. Temperature-dependent Absolute Refractive Index Measurements of Synthetic Fused Silica

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Frey, Bradley J.

    2006-01-01

    Using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have measured the absolute refractive index of five specimens taken from a very large boule of Corning 7980 fused silica from temperatures ranging from 30 to 310 K at wavelengths from 0.4 to 2.6 microns with an absolute uncertainty of plus or minus 1 x 10 (exp -5). Statistical variations in derived values of the thermo-optic coefficient (dn/dT) are at the plus or minus 2 x 10 (exp -8)/K level. Graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient are presented for selected wavelengths and temperatures along with estimates of uncertainty in index. Coefficients for temperature-dependent Sellmeier fits of measured refractive index are also presented to allow accurate interpolation of index to other wavelengths and temperatures. We compare our results to those from an independent investigation (which used an interferometric technique for measuring index changes as a function of temperature) whose samples were prepared from the same slugs of material from which our prisms were prepared in support of the Kepler mission. We also compare our results with sparse cryogenic index data from measurements of this material from the literature.

  17. Effective light absorption and absolute electron transport rates in the coral Pocillopora damicornis.

    PubMed

    Szabó, Milán; Wangpraseurt, Daniel; Tamburic, Bojan; Larkum, Anthony W D; Schreiber, Ulrich; Suggett, David J; Kühl, Michael; Ralph, Peter J

    2014-10-01

    Pulse Amplitude Modulation (PAM) fluorometry has been widely used to estimate the relative photosynthetic efficiency of corals. However, both the optical properties of intact corals as well as past technical constrains to PAM fluorometers have prevented calculations of the electron turnover rate of PSII. We used a new Multi-colour PAM (MC-PAM) in parallel with light microsensors to determine for the first time the wavelength-specific effective absorption cross-section of PSII photochemistry, σII(λ), and thus PAM-based absolute electron transport rates of the coral photosymbiont Symbiodinium both in culture and in hospite in the coral Pocillopora damicornis. In both cases, σII of Symbiodinium was highest in the blue spectral region and showed a progressive decrease towards red wavelengths. Absolute values for σII at 440 nm were up to 1.5-times higher in culture than in hospite. Scalar irradiance within the living coral tissue was reduced by 20% in the blue when compared to the incident downwelling irradiance. Absolute electron transport rates of P. damicornis at 440 nm revealed a maximum PSII turnover rate of ca. 250 electrons PSII(-1) s(-1), consistent with one PSII turnover for every 4 photons absorbed by PSII; this likely reflects the limiting steps in electron transfer between PSII and PSI. Our results show that optical properties of the coral host strongly affect light use efficiency of Symbiodinium. Therefore, relative electron transport rates do not reflect the productivity rates (or indeed how the photosynthesis-light response is parameterised). Here we provide a non-invasive approach to estimate absolute electron transport rates in corals. PMID:25146689

  18. Absolute radiometric calibration of Landsat using a pseudo invariant calibration site

    USGS Publications Warehouse

    Helder, D.; Thome, K.J.; Mishra, N.; Chander, G.; Xiong, Xiaoxiong; Angal, A.; Choi, Tae-young

    2013-01-01

    Pseudo invariant calibration sites (PICS) have been used for on-orbit radiometric trending of optical satellite systems for more than 15 years. This approach to vicarious calibration has demonstrated a high degree of reliability and repeatability at the level of 1-3% depending on the site, spectral channel, and imaging geometries. A variety of sensors have used this approach for trending because it is broadly applicable and easy to implement. Models to describe the surface reflectance properties, as well as the intervening atmosphere have also been developed to improve the precision of the method. However, one limiting factor of using PICS is that an absolute calibration capability has not yet been fully developed. Because of this, PICS are primarily limited to providing only long term trending information for individual sensors or cross-calibration opportunities between two sensors. This paper builds an argument that PICS can be used more extensively for absolute calibration. To illustrate this, a simple empirical model is developed for the well-known Libya 4 PICS based on observations by Terra MODIS and EO-1 Hyperion. The model is validated by comparing model predicted top-of-atmosphere reflectance values to actual measurements made by the Landsat ETM+ sensor reflective bands. Following this, an outline is presented to develop a more comprehensive and accurate PICS absolute calibration model that can be Système international d'unités (SI) traceable. These initial concepts suggest that absolute calibration using PICS is possible on a broad scale and can lead to improved on-orbit calibration capabilities for optical satellite sensors.

  19. Absolute determination of inelastic mean-free paths and surface excitation parameters by absolute reflection electron energy loss spectrum analysis

    NASA Astrophysics Data System (ADS)

    Nagatomi, T.; Goto, K.

    2005-11-01

    An analytical approach was proposed for simultaneously determining an inelastic mean-free path (IMFP) and a surface excitation parameter (SEP) with absolute units by the analysis of an absolute experimental reflection electron energy loss spectrum. The IMFPs and SEPs in Ni were deduced for electrons of 300 to 3000 eV. The obtained IMFPs were in good agreement with those calculated using the TPP-2M equation. The Chen-type empirical formula was proposed for determining the SEP. The results confirmed the applicability of the present approach for determining the IMFP and SEP for medium-energy electrons.

  20. CBCT with specification of imaging dose and CNR by anatomical volume of interest

    SciTech Connect

    Leary, Del; Robar, James L.

    2014-01-15

    Purpose: A novel method has been developed for volume of interest (VOI) cone-beam CT (CBCT) imaging using a 2.35 MV/Carbon target linac imaging beam line combined with dynamic multileaf collimator sequences. Methods: The authors demonstrate the concept of acquisition of multiple, separate imaging volumes, where volumes can be either completely separated or nested, and are associated with predetermined imaging dose and contrast-to-noise ratio (CNR) characteristics. Two individual MLC sequences were established in the planning system (Eclipse, Varian Medical) to collimate the beam according to a defined inner VOI (e.g., containing a target volume under image guidance) and an outer VOI (e.g., including surrounding landmarks or organs-at-risk). MLC sequences were interleaved as a function of gantry angle to produce a reconstructed CBCT image with nested VOIs. By controlling the ratio of inner-to-outer ratio of MLC segments (and thus Monitor Units) during acquisition, the relative dose and CNR in the two volumes can be controlled. Inner-to-outer ratios of 2:1 to 6:1 were examined. Results: The concept was explored using an anatomical head phantom to assess image quality. A geometric phantom was used to quantify absolute dose and CNR values for the various sequences. The authors found that the dose in the outer VOI decreased by a functional relationship dependent on the inner-to-outer sequence ratio, while the CNR varied by the square root of dose, as expected. Conclusions: In this study the authors demonstrate flexibility in VOI CBCT by tailoring the imaging dose and CNR distribution in separate volumes within the patient anatomy. This would allow for high quality imaging of a target volume for alignment purposes, with simultaneous low dose imaging of the surrounding anatomy (e.g., for coregistration)

  1. High doses of pseudoephedrine hydrochloride accelerate onset of CNS oxygen toxicity seizures in unanesthetized rats.

    PubMed

    Pilla, R; Held, H E; Landon, C S; Dean, J B

    2013-08-29

    Pseudoephedrine (PSE) salts (hydrochloride and sulfate) are commonly used as nasal and paranasal decongestants by scuba divers. Anecdotal reports from the Divers Alert Network suggest that taking PSE prior to diving while breathing pure O₂ increases the risk for CNS oxygen toxicity (CNS-OT), which manifests as seizures. We hypothesized that high doses of PSE reduce the latency time to seizure (LS) in unanesthetized rats breathing 5 atmospheres absolute (ATA) of hyperbaric oxygen. Sixty-three male rats were implanted with radio-transmitters that recorded electroencephalogram activity and body temperature. After ≥7-day recovery, and 2 h before "diving", each rat was administered either saline solution (control) or PSE hydrochloride intragastrically at the following doses (mg PSE/kg): 0, 40, 80, 100, 120, 160, and 320. Rats breathed pure O₂ and were dived to 5ATA until the onset of behavioral seizures coincident with neurological seizures. LS was the time elapsed between reaching 5ATA and exhibiting seizures. We observed a significant dose-dependent decrease in the LS at doses of 100-320 mg/kg, whereas no significant differences in LS from control value were observed at doses ≤80 mg/kg. Our findings showed that high doses of PSE accelerate the onset of CNS-OT seizures in unanesthetized rats breathing 5ATA of poikilocapnic hyperoxia. Extrapolating our findings to humans, we conclude that the recommended daily dose of PSE should not be abused prior to diving with oxygen-enriched gas mixes or pure O₂. PMID:23624060

  2. Absolutely continuous spectrum and ballistic transport in a one-dimensional quasiperiodic system

    NASA Astrophysics Data System (ADS)

    Pal, Biplab; Chakrabarti, Arunava

    2013-02-01

    We analyse a quasiperiodic arrangement of four atomic sites sitting at the vertices of a diamond shaped plaquette and single isolated sites, occupying a one dimensional backbone following a Fibonacci quasicrystal pattern. We work within a tight binding formalism. It is shown that, even with this simple deviation from pure one dimension, a definite relation between the numerical values of the system parameters will render all the single particle states completely extended. The spectrum will be absolutely continuous with the transmission completely ballistic throughout the band, completely violating the Cantor set character of the usual Fibonacci quasiperiodic chains.

  3. Variations in in-flight absolute radiometric calibration. [satellite remote sensors

    NASA Technical Reports Server (NTRS)

    Slater, Philip N.

    1986-01-01

    Variations in the in-flight absolute radiometric calibration of the Coastal Zone Color Scanner and the Thematic Mapper (TM) are reviewed. At short wavelengths, the sensors show a gradual reduction in response, while in the mid-IR the TM shows oscillatory variations. One set of measurements made at White Sands, New Mexico shows anomalous results in TM bands 2 and 4. The results of a reflectance-based and a radiance-based calibration method at White Sands are described. An analysis of the radiance-based method shows the value of such measurements from helicopter altitudes for calibration.

  4. Revised Pioneer 10 absolute electron intensities in the inner Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Van Allen, J. A.

    1977-01-01

    Improved techniques for the analysis of Pioneer 10 Jupiter encounter data are used to obtain significantly more reliable values for energetic electron (Ee less than 21 MeV) intensities within the inner magnetosphere. The revised absolute intensities of electrons in the energy range 0.06-21 MeV are less than previous estimates by factors as great as 10 for L not exceeding 6. Previously published intensities at greater radial distances for Ee less than 21 MeV and at all radial distances for Ee greater than 21 MeV are not affected by the revisions.

  5. A New Measurement of the Absolute Spectral Reflectance of the Moon

    NASA Technical Reports Server (NTRS)

    Lawrence, S. J.; Lau, E.; Steutel, D.; Stopar, J. D.; Wilcox, B. B.; Lucey, P. G.

    2003-01-01

    The spectral reflectance of the Moon is an important property for studies of lunar geology, quantitative physical modeling of the moon, and in-flight calibration of spacecraft sensors. Previous studies have claimed that telescopic absolute reflectance values for the Moon are greater than laboratory reflectance measurements by a factor of two. In order to confirm these results, we performed ground-based observations of the lunar surface using a visible/near-infrared spectroradiometer and compared the measured lunar surface radiance to solar radiance corrected for atmospheric scattering and absorption. These data were compared to previously obtained laboratory reflectance measurements from Apollo soil samples.

  6. Nitrogen-containing bibenzyls from Pleione bulbocodioides: absolute configurations and biological activities.

    PubMed

    Li, Yuan; Zhang, Fan; Wu, Ze-Hong; Zeng, Ke-Wu; Zhang, Chen; Jin, Hong-Wei; Zhao, Ming-Bo; Jiang, Yong; Li, Jun; Tu, Peng-Fei

    2015-04-01

    Four new pyrrolidone substituted bibenzyls, dusuanlansins A-D (1-4) were isolated from the pseudo bulbs of Pleione bulbocodioides, along with 19 known compounds (5-23). Compounds 1-4 are two pairs of epimers of pyrrolidone substituted bibenzyls, which were separated successfully by a Chiralcel OD-RH C18 column. Their absolute configurations were elucidated by calculated ECD. Biological investigations showed that compounds 5 and 7 exhibited potent anti-inflammatory activities on LPS-stimulated NO production in BV-2 microglial cells, with IC50 values of 2.46 and 3.14μM, respectively. PMID:25647325

  7. Absolute beam flux measurement at NDCX-I using gold-melting calorimetry technique

    SciTech Connect

    Ni, P.A.; Bieniosek, F.M.; Lidia, S.M.; Welch, J.

    2011-04-01

    We report on an alternative way to measure the absolute beam flux at the NDCX-I, LBNL linear accelerator. Up to date, the beam flux is determined from the analysis of the beam-induced optical emission from a ceramic scintilator (Al-Si). The new approach is based on calorimetric technique, where energy flux is deduced from the melting dynamics of a gold foil. We estimate an average 260 kW/cm2 beam flux over 5 {micro}s, which is consistent with values provided by the other methods. Described technique can be applied to various ion species and energies.

  8. Series that Converge Absolutely but Don't Converge

    ERIC Educational Resources Information Center

    Kantrowitz, Robert; Schramm, Michael

    2012-01-01

    If a series of real numbers converges absolutely, then it converges. The usual proof requires completeness in the form of the Cauchy criterion. Failing completeness, the result is false. We provide examples of rational series that illustrate this point. The Cantor set appears in connection with one of the examples.

  9. Population-based absolute risk estimation with survey data.

    PubMed

    Kovalchik, Stephanie A; Pfeiffer, Ruth M

    2014-04-01

    Absolute risk is the probability that a cause-specific event occurs in a given time interval in the presence of competing events. We present methods to estimate population-based absolute risk from a complex survey cohort that can accommodate multiple exposure-specific competing risks. The hazard function for each event type consists of an individualized relative risk multiplied by a baseline hazard function, which is modeled nonparametrically or parametrically with a piecewise exponential model. An influence method is used to derive a Taylor-linearized variance estimate for the absolute risk estimates. We introduce novel measures of the cause-specific influences that can guide modeling choices for the competing event components of the model. To illustrate our methodology, we build and validate cause-specific absolute risk models for cardiovascular and cancer deaths using data from the National Health and Nutrition Examination Survey. Our applications demonstrate the usefulness of survey-based risk prediction models for predicting health outcomes and quantifying the potential impact of disease prevention programs at the population level. PMID:23686614

  10. Relative versus Absolute Stimulus Control in the Temporal Bisection Task

    ERIC Educational Resources Information Center

    de Carvalho, Marilia Pinhiero; Machado, Armando

    2012-01-01

    When subjects learn to associate two sample durations with two comparison keys, do they learn to associate the keys with the short and long samples (relational hypothesis), or with the specific sample durations (absolute hypothesis)? We exposed 16 pigeons to an ABA design in which phases A and B corresponded to tasks using samples of 1 s and 4 s,…

  11. Absolute calibration of Landsat instruments using the moon.

    USGS Publications Warehouse

    Kieffer, H.H.; Wildey, R.L.

    1985-01-01

    A lunar observation by Landsat could provide improved radiometric and geometric calibration of both the Thematic Mapper and the Multispectral Scanner in terms of absolute radiometry, determination of the modulation transfer function, and sensitivity to scattered light. A pitch of the spacecraft would be required. -Authors

  12. Absence of absolutely continuous spectrum for random scattering zippers

    NASA Astrophysics Data System (ADS)

    Boumaza, Hakim; Marin, Laurent

    2015-02-01

    A scattering zipper is a system obtained by concatenation of scattering events with equal even number of incoming and outgoing channels. The associated scattering zipper operator is the unitary analog of Jacobi matrices with matrix entries. For infinite identical events and independent and identically distributed random phases, Lyapunov exponents positivity is proved and yields absence of absolutely continuous spectrum by Kotani's theory.

  13. Individual Differences in Absolute and Relative Metacomprehension Accuracy

    ERIC Educational Resources Information Center

    Maki, Ruth H.; Shields, Micheal; Wheeler, Amanda Easton; Zacchilli, Tammy Lowery

    2005-01-01

    The authors investigated absolute and relative metacomprehension accuracy as a function of verbal ability in college students. Students read hard texts, revised texts, or a mixed set of texts. They then predicted their performance, took a multiple-choice test on the texts, and made posttest judgments about their performance. With hard texts,…

  14. Absolute Radiometer for Reproducing the Solar Irradiance Unit

    NASA Astrophysics Data System (ADS)

    Sapritskii, V. I.; Pavlovich, M. N.

    1989-01-01

    A high-precision absolute radiometer with a thermally stabilized cavity as receiving element has been designed for use in solar irradiance measurements. The State Special Standard of the Solar Irradiance Unit has been built on the basis of the developed absolute radiometer. The Standard also includes the sun tracking system and the system for automatic thermal stabilization and information processing, comprising a built-in microcalculator which calculates the irradiance according to the input program. During metrological certification of the Standard, main error sources have been analysed and the non-excluded systematic and accidental errors of the irradiance-unit realization have been determined. The total error of the Standard does not exceed 0.3%. Beginning in 1984 the Standard has been taking part in a comparison with the Å 212 pyrheliometer and other Soviet and foreign standards. In 1986 it took part in the international comparison of absolute radiometers and standard pyrheliometers of socialist countries. The results of the comparisons proved the high metrological quality of this Standard based on an absolute radiometer.

  15. Multifrequency continuous wave terahertz spectroscopy for absolute thickness determination

    SciTech Connect

    Scheller, Maik; Baaske, Kai; Koch, Martin

    2010-04-12

    We present a tunable multifrequency continuous wave terahertz spectrometer based on two laser diodes, photoconductive antennas, and a coherent detection scheme. The system is employed to determine the absolute thickness of samples utilizing a proposed synthetic difference frequency method to circumvent the 2pi uncertainty known from conventional photomixing systems while preserving a high spatial resolution.

  16. Ion chambers simplify absolute intensity measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Sampson, J. A. R.

    1966-01-01

    Single or double ion chamber technique measures absolute radiation intensities in the extreme vacuum ultraviolet region of the spectrum. The ion chambers use rare gases as the ion carrier. Photon absorbed by the gas creates one ion pair so a measure of these is a measure of the number of incident photons.

  17. Urey: to measure the absolute age of Mars

    NASA Technical Reports Server (NTRS)

    Randolph, J. E.; Plescia, J.; Bar-Cohen, Y.; Bartlett, P.; Bickler, D.; Carlson, R.; Carr, G.; Fong, M.; Gronroos, H.; Guske, P. J.; Herring, M.; Javadi, H.; Johnson, D. W.; Larson, T.; Malaviarachchi, K.; Sherrit, S.; Stride, S.; Trebi-Ollennu, A.; Warwick, R.

    2003-01-01

    UREY, a proposed NASA Mars Scout mission will, for the first time, measure the absolute age of an identified igneous rock formation on Mars. By extension to relatively older and younger rock formations dated by remote sensing, these results will enable a new and better understanding of Martian geologic history.

  18. Is There a Rule of Absolute Neutralization in Nupe?

    ERIC Educational Resources Information Center

    Krohn, Robert

    1975-01-01

    A previously prosed rule of absolute neutralization (merging underlying low vowels) is eliminated in an alternative analysis including instead a rule that "breaks" the feature matrix of certain low vowels and redistributes the features of each vowel as a sequence of vowel-like transition plus (a). (Author/RM)

  19. Hitting the target: relatively easy, yet absolutely difficult.

    PubMed

    Mapp, Alistair P; Ono, Hiroshi; Khokhotva, Mykola

    2007-01-01

    It is generally agreed that absolute-direction judgments require information about eye position, whereas relative-direction judgments do not. The source of this eye-position information, particularly during monocular viewing, is a matter of debate. It may be either binocular eye position, or the position of the viewing-eye only, that is crucial. Using more ecologically valid stimulus situations than the traditional LED in the dark, we performed two experiments. In experiment 1, observers threw darts at targets that were fixated either monocularly or binocularly. In experiment 2, observers aimed a laser gun at targets while fixating either the rear or the front gunsight monocularly, or the target either monocularly or binocularly. We measured the accuracy and precision of the observers' absolute- and relative-direction judgments. We found that (a) relative-direction judgments were precise and independent of phoria, and (b) monocular absolute-direction judgments were inaccurate, and the magnitude of the inaccuracy was predictable from the magnitude of phoria. These results confirm that relative-direction judgments do not require information about eye position. Moreover, they show that binocular eye-position information is crucial when judging the absolute direction of both monocular and binocular targets. PMID:17972479

  20. Absolute Risk Aversion and the Returns to Education.

    ERIC Educational Resources Information Center

    Brunello, Giorgio

    2002-01-01

    Uses 1995 Italian household income and wealth survey to measure individual absolute risk aversion of 1,583 married Italian male household heads. Uses this measure as an instrument for attained education in a standard-log earnings equation. Finds that the IV estimate of the marginal return to schooling is much higher than the ordinary least squares…

  1. Improved cavity-type absolute total-radiation radiometer

    NASA Technical Reports Server (NTRS)

    Kendall, J. M., Sr.; Plamondon, J. A., Jr.

    1967-01-01

    Conical cavity-type absolute radiometer measures the intensity of radiant energy to an accuracy of one to two percent in a vacuum of ten to the minus fifth torr or lower. There is a uniform response over the ultraviolet, visible, and infrared range, and it requires no calibration or comparison with a radiation standard.

  2. Absolute Interrogative Intonation Patterns in Buenos Aires Spanish

    ERIC Educational Resources Information Center

    Lee, Su Ar

    2010-01-01

    In Spanish, each uttered phrase, depending on its use, has one of a variety of intonation patterns. For example, a phrase such as "Maria viene manana" "Mary is coming tomorrow" can be used as a declarative or as an absolute interrogative (a yes/no question) depending on the intonation pattern that a speaker produces. Patterns of usage also…

  3. Absolute configurations of zingiberenols isolated from ginger (Zingiber officinale) rhizomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sesquiterpene alcohol zingiberenol, or 1,10-bisaboladien-3-ol, was isolated some time ago from ginger, Zingiber officinale, rhizomes, but its absolute configuration had not been determined. With three chiral centers present in the molecule, zingiberenol can exist in eight stereoisomeric forms. ...

  4. Absolute intensity and polarization of rotational Raman scattering from N2, O2, and CO2

    NASA Technical Reports Server (NTRS)

    Penney, C. M.; St.peters, R. L.; Lapp, M.

    1973-01-01

    An experimental examination of the absolute intensity, polarization, and relative line intensities of rotational Raman scattering (RRS) from N2, O2, and CO2 is reported. The absolute scattering intensity for N2 is characterized by its differential cross section for backscattering of incident light at 647.1 nm, which is calculated from basic measured values. The ratio of the corresponding cross section for O2 to that for N2 is 2.50 plus or minus 5 percent. The intensity recent for N2, O2, and CO2 are shown to compare favorably to values calculated from recent measurements of the depolarization of Rayleigh scattering plus RRS. Measured depolarizations of various RRS lines agree to within a few percent with the theoretical value of 3/4. Detailed error analyses are presented for intensity and depolarization measurements. Finally, extensive RRS spectra at nominal gas temperatures of 23 C, 75 C, and 125 C are presented and shown to compare favorably to theoretical predictions.

  5. MO-E-17A-04: Size-Specific Dose Estimate (SSDE) Provides a Simple Method to Calculate Organ Dose for Pediatric CT Examinations

    SciTech Connect

    Moore, B; Brady, S; Kaufman, R; Mirro, A

    2014-06-15

    Purpose: Investigate the correlation of SSDE with organ dose in a pediatric population. Methods: Four anthropomorphic phantoms, representing a range of pediatric body habitus, were scanned with MOSFET dosimeters placed at 23 organ locations to determine absolute organ dosimetry. Phantom organ dosimetry was divided by phantom SSDE to determine correlation between organ dose and SSDE. Correlation factors were then multiplied by patient SSDE to estimate patient organ dose. Patient demographics consisted of 352 chest and 241 abdominopelvic CT examinations, 22 ± 15 kg (range 5−55 kg) mean weight, and 6 ± 5 years (range 4 mon to 23 years) mean age. Patient organ dose estimates were compared to published pediatric Monte Carlo study results. Results: Phantom effective diameters were matched with patient population effective diameters to within 4 cm. 23 organ correlation factors were determined in the chest and abdominopelvic region across nine pediatric weight subcategories. For organs fully covered by the scan volume, correlation in the chest (average 1.1; range 0.7−1.4) and abdominopelvic (average 0.9; range 0.7−1.3) was near unity. For organs that extended beyond the scan volume (i.e., skin, bone marrow, and bone surface), correlation was determined to be poor (average 0.3; range: 0.1−0.4) for both the chest and abdominopelvic regions, respectively. Pediatric organ dosimetry was compared to published values and was found to agree in the chest to better than an average of 5% (27.6/26.2) and in the abdominopelvic region to better than 2% (73.4/75.0). Conclusion: Average correlation of SSDE and organ dosimetry was found to be better than ± 10% for fully covered organs within the scan volume. This study provides a list of organ dose correlation factors for the chest and abdominopelvic regions, and describes a simple methodology to estimate individual pediatric patient organ dose based on patient SSDE.

  6. [Absolute bioavailability of a special sustained-release acetylsalicylic acid formulation].

    PubMed

    Lücker, P W; Swoboda, M; Wetzelsberger, N

    1989-03-01

    Absolute Bioavailability of a Special Acetylsalicylic Acid Sustained Release Formulation. The absolute bioavailability of an acetylsalicylic acid (ASA) sustained release formulation (Contrheuma retard), containing 300 mg ASA as initial dose and 350 mg in a retard formulation, was determined in comparison to a standard ASA solution for intravenous administration in a two-treatment, two-period cross-over trial with 6 healthy male volunteers by comparing the areas under the plasma-fluctuation-time curves of the primary metabolite. In addition, it was examined by comparison of the mean times after administration of both formulations, whether the test formulation meets the requirements of a sustained release formulation. The investigations led to the following results: The absolute bioavailability of the test formulation was 95%. The statistical comparison of the areas under the concentration-time courses allowed no decision (neither for equivalence nor difference). The maximal concentration of SA after intravenous administration of the standard formulation was reached after 0.4 h on an average and amounted to 62 micrograms/ml. After oral administration of the test formulation, a mean concentration maximum of 28 micrograms/ml was calculated, which had been reached after about 2 h. The differences are statistically significant. The mean time for SA was 6 h after the standard formulation, whereas after administration of the test compound, a mean of 11.5 h was calculated. 24 h following administration, the concentration of SA was 1.3 micrograms/ml after intravenous administration of the standard formulation and 5.5 micrograms/ml after administration of the test formulation. These differences, too, are statistically significant. From the comparison of the mean time for SA, a retard factor of 1.9 was calculated. PMID:2757664

  7. Four Years of Absolute Gravity in the Taiwan Orogen (AGTO)

    NASA Astrophysics Data System (ADS)

    Mouyen, Maxime; Masson, Frédéric; Hwang, Cheinway; Cheng, Ching-Chung; Le Moigne, Nicolas; Lee, Chiung-Wu; Kao, Ricky; Hsieh, Nicky

    2010-05-01

    AGTO is a scientific project between Taiwanese and French institutes, which aim is to improve tectonic knowledge of Taiwan primarily using absolute gravity measurements and permanent GPS stations. Both tools are indeed useful to study vertical movements and mass transfers involved in mountain building, a major process in Taiwan located at the convergent margin between Philippine Sea plate and Eurasian plate. This convergence results in two subductions north and south of Taiwan (Ryukyu and Manilla trenches, respectively), while the center is experiencing collision. These processes make Taiwan very active tectonically, as illustrated by numerous large earthquakes and rapid uplift of the Central Range. High slopes of Taiwan mountains and heavy rains brought by typhoons together lead to high landslides and mudflows risks. Practically, absolute gravity measurements have been yearly repeated since 2006 along a transect across south Taiwan, from Penghu to Lutao islands, using FG5 absolute gravimeters. This transect contains ten sites for absolute measurements and has been densified in 2008 by incorporating 45 sites for relative gravity measurements with CG5 gravimeters. The last relative and absolute measurements have been performed in November 2009. Most of the absolute sites have been measured with a good accuracy, about 1 or 2 ?Gal. Only the site located in Tainan University has higher standard deviation, due to the city noise. We note that absolute gravity changes seem to follow a trend in every site. However, straightforward tectonic interpretation of these trends is not valuable as many non-tectonic effects are supposed to change g with time, like groundwater or erosion. Estimating and removing these effects leads to a tectonic gravity signal, which has theoretically two origins : deep mass transfers around the site and vertical movements of the station. The latter can be well constrained by permanent GPS stations located close to the measurement pillar. Deep mass

  8. Four Years of Absolute Gravity in the Taiwan Orogen (AGTO)

    NASA Astrophysics Data System (ADS)

    Mouyen, M.; Masson, F.; Hwang, C.; Cheng, C.; Le Moigne, N.; Lee, C.; Kao, R.; Hsieh, N.

    2009-12-01

    AGTO is a scientific project between Taiwanese and French institutes which aim is to improve tectonic knowledge of Taiwan primarily using absolute gravity measurements and permanent GPS stations. Both tools are indeed useful to study vertical movements and mass transfers involved in mountain building, a major process in Taiwan located at the convergent margin between Philippine Sea plate and Eurasian plate. This convergence results in two subductions north and south of Taiwan (Ryukyu and Manilla trenches, respectively), while the center is experiencing collision. These processes make Taiwan very active tectonically, as illustrated by numerous large earthquakes and rapid uplift of the Central Range. High slopes of Taiwan mountains and heavy rains brought by typhoons together lead to high landslides and mudflows risks. Practically, absolute gravity measurements have been yearly repeated since 2006 along a transect across south Taiwan, from Penghu to Lutao island, using FG5 absolute gravimeters. This transect contains ten sites for absolute measurements and has been densified in 2008 by incorporating 45 sites for relative gravity measurements with CG5 gravimeters. At the end of 2009, the relative gravity network will be densified again in its eastern part, i.e. in the Longitudinal Valley and the Central Range. A fourth set of absolute gravity measurements will also be performed at the same period. Most of the absolute sites have been measured with a good accuracy, about 1 or 2 μGal. Only the site located in Tainan University has higher standard deviation, due to the city noise. The stronger change in gravity reaches -7 μGal a -1 west of the Longitudinal Valley and might be explained by tectonic movement along a fault. A large decrease of -5 μGal a-1 is also measured in Tainan city and could be correlated with uplift of this region, also denoted by InSAR, leveling and GPS. Changes occurring in the Central Range are more difficult to interpret due to the small

  9. An evaluation of the accuracy of geomagnetic data obtained from an unattended, automated, quasi-absolute station

    USGS Publications Warehouse

    Herzog, D.C.

    1990-01-01

    A comparison is made of geomagnetic calibration data obtained from a high-sensitivity proton magnetometer enclosed within an orthogonal bias coil system, with data obtained from standard procedures at a mid-latitude U.S. Geological Survey magnetic observatory using a quartz horizontal magnetometer, a Ruska magnetometer, and a total field magnetometer. The orthogonal coil arrangement is used with the proton magnetometer to provide Deflected-Inclination-Deflected-Declination (DIDD) data from which quasi-absolute values of declination, horizontal intensity, and vertical intensity can be derived. Vector magnetometers provide the ordinate values to yield baseline calibrations for both the DIDD and standard observatory processes. Results obtained from a prototype system over a period of several months indicate that the DIDD unit can furnish adequate absolute field values for maintaining observatory calibration data, thus providing baseline control for unattended, remote stations. ?? 1990.

  10. EXOMARS IRAS (DOSE) radiation measurements.

    NASA Astrophysics Data System (ADS)

    Federico, C.; Di Lellis, A. M.; Fonte, S.; Pauselli, C.; Reitz, G.; Beaujean, R.

    The characterization and the study of the radiations on their interaction with organic matter is of great interest in view of the human exploration on Mars. The Ionizing RAdiation Sensor (IRAS) selected in the frame of the ExoMars/Pasteur ESA mission is a lightweight particle spectrometer combining various techniques of radiation detection in space. It characterizes the first time the radiation environment on the Mars surface, and provide dose and dose equivalent rates as precursor information absolutely necessary to develop ways to mitigate the radiation risks for future human exploration on Mars. The Martian radiation levels are much higher than those found on Earth and they are relatively low for space. Measurements on the surface will show if they are similar or not to those seen in orbit (modified by the presence of ``albedo'' neutrons produced in the regolith and by the thin Martian atmosphere). IRAS consists of a telescope based on segmented silicon detectors of about 40\\userk\\milli\\metre\\user;k diameter and 300\\user;k\\micro\\metre\\user;k thickness, a segmented organic scintillator, and of a thermoluminescence dosimeter. The telescope will continuously monitor temporal variation of the particle count rate, the dose rate, particle and LET (Linear Energy Transfer) spectra. Tissue equivalent BC430 scintillator material will be used to measure the neutron dose. Neutrons are selected by a criteria requiring no signal in the anti-coincidence. Last, the passive thermoluminescence dosimeter, based on LiF:Mg detectors, regardless the on board operation timing, will measure the total dose accumulated during the exposure period and due to beta and gamma radiation, with a responsivity very close to that of a human tissue.

  11. Bayesian estimation of dose thresholds

    NASA Technical Reports Server (NTRS)

    Groer, P. G.; Carnes, B. A.

    2003-01-01

    An example is described of Bayesian estimation of radiation absorbed dose thresholds (subsequently simply referred to as dose thresholds) using a specific parametric model applied to a data set on mice exposed to 60Co gamma rays and fission neutrons. A Weibull based relative risk model with a dose threshold parameter was used to analyse, as an example, lung cancer mortality and determine the posterior density for the threshold dose after single exposures to 60Co gamma rays or fission neutrons from the JANUS reactor at Argonne National Laboratory. The data consisted of survival, censoring times and cause of death information for male B6CF1 unexposed and exposed mice. The 60Co gamma whole-body doses for the two exposed groups were 0.86 and 1.37 Gy. The neutron whole-body doses were 0.19 and 0.38 Gy. Marginal posterior densities for the dose thresholds for neutron and gamma radiation were calculated with numerical integration and found to have quite different shapes. The density of the threshold for 60Co is unimodal with a mode at about 0.50 Gy. The threshold density for fission neutrons declines monotonically from a maximum value at zero with increasing doses. The posterior densities for all other parameters were similar for the two radiation types.

  12. The Value of Imaging Part II: Value beyond Image Interpretation.

    PubMed

    Duong, Phuong-Anh T; Pastel, David A; Sadigh, Gelareh; Ballard, David; Sullivan, Joseph C; Bresnahan, Brian; Buch, Karen; Duszak, Richard

    2016-01-01

    Although image interpretation is an essential part of radiologists' value, there are other ways in which we contribute to patient care. Part II of the value of imaging series reviews current initiatives that demonstrate value beyond the image interpretation. Standardizing processes, reducing the radiation dose of our examinations, clarifying written reports, improving communications with patients and providers, and promoting appropriate imaging through decision support are all ways we can provide safer, more consistent, and higher quality care. As payers and policy makers push to drive value, research that demonstrates the value of these endeavors, or lack thereof, will become increasingly sought after and supported. PMID:26683509

  13. Determination of RW3-to-water mass-energy absorption coefficient ratio for absolute dosimetry.

    PubMed

    Seet, Katrina Y T; Hanlon, Peta M; Charles, Paul H

    2011-12-01

    The measurement of absorbed dose to water in a solid-phantom may require a conversion factor because it may not be radiologically equivalent to water. One phantom developed for the use of dosimetry is a solid water, RW3 white-polystyrene material by IBA. This has a lower mass-energy absorption coefficient than water due to high bremsstrahlung yield, which affects the accuracy of absolute dosimetry measurements. In this paper, we demonstrate the calculation of mass-energy absorption coefficient ratios, relative to water, from measurements in plastic water and RW3 with an Elekta Synergy linear accelerator (6 and 10 MV photon beams) as well as Monte Carlo modeling in BEAMnrc and DOSXYZnrc. From this, the solid-phantom-to-water correction factor was determined for plastic water and RW3. PMID:21960410

  14. Absolute spectral response measurements of different photodiodes useful for applications in the UV spectral region

    NASA Astrophysics Data System (ADS)

    Pelizzo, Maria G.; Ceccherini, Paolo; Garoli, Denis; Masut, Pietro; Nicolosi, Piergiorgio

    2004-09-01

    Long UV radiation exposure can result in damages of biological tissues, as burns, skin aging, erythema and even melanoma cancer. In the past years an increase of melanoma cancer has been observed and associated to the atmospheric ozone deployment. Attendance of sun tanning unit centers has become a huge social phenomena, and the maximum UV radiation dose that a human being can receive is regulated by law. On the other side, UV radiation is largely used for therapeutic and germicidal purposes. In all these areas, spectroradiometer and radiomenter are needed for monitoring UVA (315-400 nm), UVB (280-315 nm) and UVC (100-280 nm) irradiance. We have selected some commercial photodiodes which can be used as solid state detectors in these instruments. We have characterized them by measuring their absolute spectral response in the 200 - 400 nm spectral range.

  15. Make your values mean something.

    PubMed

    Lencioni, Patrick M

    2002-07-01

    Take a look at this list of corporate values: Communication. Respect. Integrity. Excellence. They sound pretty good, don't they? Maybe they even resemble your own company's values. If so, you should be nervous. These are the corporate values of Enron, as claimed in its 2000 annual report. And they're absolutely meaningless. Indeed, most values statements, says the author, are bland, toothless, or just plain dishonest. And far from being harmless, as some executives assume, they're often highly destructive. Empty values statements create cynical and dispirited employees and undermine managerial credibility. But coming up with strong values--and sticking to them--isn't easy. Organizations that want their values statements to really mean something should follow four imperatives. First, understand the different types of values: core, aspirational, permission-to-play, and accidental. Confusing them with one another can bewilder employees and make management seem out of touch. Second, be aggressively authentic. Too many companies view a values initiative in the same way they view a marketing launch: a onetime event measured by the initial attention it receives, not by its content. Third, own the process. Values initiatives are about imposing a set of fundamental, strategically sound beliefs on a broad group of people. That's why the best values efforts are driven by small teams. Finally, weave core values into everything. It's not enough to hang your values statement on the wall; it must be integrated into every employee-related process--hiring methods, performance management systems, even dismissal policies. Living by stated corporate values is difficult. But the benefits of doing so can be profound; so can the damage from adopting a hollow set of corporate values. PMID:12140851

  16. Enantiomeric Lignans and Neolignans from Phyllanthus glaucus: Enantioseparation and Their Absolute Configurations

    PubMed Central

    Wu, Zhaodi; Lai, Yongji; Zhou, Lei; Wu, Ye; Zhu, Hucheng; Hu, Zhengxi; Yang, Jing; Zhang, Jinwen; Wang, Jianping; Luo, Zengwei; Xue, Yongbo; Zhang, Yonghui

    2016-01-01

    Eight pairs of enantiomeric neolignans, norlignans, and sesquineolignans (1a/1b–8a/8b), together with five known neolignans (9a/9b and 10–12), have been isolated from 70% acetone extract of the whole plants of Phyllanthus glaucus Wall. (Euphorbiaceae). The racemic or partial racemic mixtures were successfully separated by chiral HPLC using different types of chiral columns with various mobile phases. Their structures were elucidated on the basis of extensive spectroscopic data. The absolute configurations of 2a/2b were determined by computational analysis of their electronic circular dichroism (ECD) spectrum, and the absolute configurations of other isolates were ascertained by comparing their experimental ECD spectra and optical rotation values with those of structure-relevant compounds reported in literatures. Compounds 4a/4b featured unique sesquineolignan skeletons with a novel 7-4′-epoxy-8′-8′′/7′-2′′ scaffold, consisting of an aryltetrahydronaphthalene and a dihydrobenzofuran moiety. The planar structures of compounds 2, 3, 7, and 8 were documented previously; however, their absolute configurations were established for the first time in this study. The antioxidant activities of 1a/1b–8a/8b were evaluated using DPPH free radical scavenging assay, and the results demonstrated that compounds 1b and 3b showed potent DPPH radical scavenging activities with IC50 values of 5.987 ± 1.212 and 9.641 ± 0.865 μg/mL, respectively. PMID:27126373

  17. Valuing Difference?

    ERIC Educational Resources Information Center

    Watters, Kate

    2005-01-01

    How well are adult and community learning providers doing when it comes to ensuring equality of opportunity (EO) and valuing diversity? Many are in transition from a defensive position of emphasising legal compliance towards making respect for diversity intrinsic to their strategic aims, plans and actions, according to the February edition of…

  18. Value Added

    ERIC Educational Resources Information Center

    Wilson, M. Roy

    2015-01-01

    With more than a thousand honors programs or colleges in the United States and that number growing every year, defining the value of honors is a significant undertaking. Honors seems to have become an obligatory upgrade that no college or university president can afford to be without, but there is more than institutional trending to be considered,…

  19. Value Added

    ERIC Educational Resources Information Center

    Welch, Matt

    2004-01-01

    This article profiles retiring values teacher Gene Doxey and describes his foundational contributions to the students of California's Ramona Unified School District. Every one of the Ramona Unified School District's 7,200 students is eventually funneled through Doxey's Contemporary Issues class, a required rite of passage between elementary school…

  20. Adding Value.

    ERIC Educational Resources Information Center

    Orsini, Larry L.; Hudack, Lawrence R.; Zekan, Donald L.

    1999-01-01

    The value-added statement (VAS), relatively unknown in the United States, is used in financial reports by many European companies. Saint Bonaventure University (New York) has adapted a VAS to make it appropriate for not-for-profit universities by identifying stakeholder groups (students, faculty, administrators/support personnel, creditors, the…