Science.gov

Sample records for absolute electron-impact ionization

  1. Absolute electron-impact total ionization cross sections of chlorofluoromethanes

    NASA Astrophysics Data System (ADS)

    Martínez, Roberto; Sierra, Borja; Redondo, Carolina; Rayo, María N. Sánchez; Castaño, Fernando

    2004-12-01

    An experimental study is reported on the electron-impact total ionization cross sections (TICSs) of CCl4, CCl3F, CCl2F2, and CClF3 molecules. The kinetic energy of the colliding electrons was in the 10-85 eV range. TICSs were obtained as the sum of the partial ionization cross sections of all fragment ions, measured and identified in a linear double focusing time-of-flight mass spectrometer. The resulting TICS profiles—as a function of the electron-impact energy—have been compared both with those computed by ab initio and (semi)empirical methods and with the available experimental data. The computational methods used include the binary-encounter-Bethe (BEB) modified to include atoms with principal quantum numbers n⩾3, the Deutsch and Märk (DM) formalism, and the modified additivity rule (MAR). It is concluded that both modified BEB and DM methods fit the experimental TICS for (CF4), CClF3, CCl2F2, CCl3F, and CCl4 to a high accuracy, in contrast with the poor accord of the MAR method. A discussion on the factors influencing the discrepancies of the fittings is presented.

  2. Absolute effective cross sections of ionization of adenine and guanine molecules by electron impact

    NASA Astrophysics Data System (ADS)

    Shafranyosh, I. I.; Svida, Yu. Yu.; Sukhoviya, M. I.; Shafranyosh, M. I.; Minaev, B. F.; Baryshnikov, G. V.; Minaeva, V. A.

    2015-10-01

    Effective cross sections of the formation of positive ions of nitrous nucleic acids of adenine and guanine are determined by the crossed electron and molecular beam method in the energy interval from the threshold to 200 eV. It is found that the maximal value of the total cross section of adenine ionization is attained at an energy of 90 eV and is equal to (2.8 ± 0.6) × 10-15 cm2. The maximal value of the total cross section of guanine ionization is equal to (3.2 ± 0.7) × 10-15 cm2 and is observed at an energy of 88 eV. The energy ionization thresholds are determined, which amount to (8.8 ± 0.2) eV for adenine and to (8.3 ± 0.2) eV for guanine. The adenine and guanine mass spectra are measured. The absolute values of partial ionization cross sections of adenine and guanine molecules are determined.

  3. Electron impact ionization of glycolaldehyde

    NASA Astrophysics Data System (ADS)

    Ptasinska, Sylwia; Denifl, Stephan; Scheier, Paul; Märk, Tilmann D.

    2005-05-01

    Positive ion formation upon electron impact ionization of the monomeric and dimeric form of glycolaldehyde is studied with high electron energy resolution. In the effusive neutral beam of evaporated monomeric glycolaldehyde some ions with a mass larger than the monomer indicate the presence of weakly bound neutral dimers. The yield of all ions that originate from the electron impact ionization of these neutral dimers exhibit a strong temperature dependence that can be interpreted as being due to the formation of dimers via three body collisions and thermal decomposition of the dimeric form back into monomers at higher temperatures. Ion efficiency curves are measured and analyzed for the 10 most abundant product cations of monomeric glycolaldehyde. The appearance energies of the parent ion signals of the monomer and dimer of glycolaldehyde (10.2 and 9.51 eV, respectively) are lower than the appearance energy of the parent cation of the more complex sugar deoxyribose that was recently determined to be 10.51 eV.

  4. Electron impact ionization of Ar/sup 8 +/

    SciTech Connect

    Defrance, P.; Rachafi, S.; Jureta, J.; Meyer, F.; Chantrenne, S.

    1986-01-01

    Absolute electron impact ionization cross-sections have been measured for the Neon-like Ar/sup 8 +/ in the energy range from below the threshold for the metastable state to 2500 eV. No contribution of metastable states is observed. The results are well reproduced by the Distorted Wave Born Approximation. 12 refs., 1 fig.

  5. Measurements of absolute K-shell ionization cross sections and L-shell x-ray production cross sections of Ge by electron impact

    SciTech Connect

    Merlet, C.; Llovet, X.; Salvat, F.

    2004-03-01

    Results from measurements of absolute K-shell ionization cross sections and L{alpha} x-ray production cross sections of Ge by impact of electrons with kinetic energies ranging from the ionization threshold up to 40 keV are presented. The cross sections were obtained by measuring K{alpha} and L{alpha} x-ray intensities emitted from ultrathin Ge films deposited onto self-supporting carbon backing films. Recorded x-ray intensities were converted to absolute cross sections by using estimated values of the sample thicknesses, the number of incident electrons, and the detector efficiency. Experimental data are compared with the results of widely used simple analytical formulas, with calculated cross sections obtained from the plane-wave and distorted-wave Born approximations and with experimental data from the literature.

  6. Electron-Impact Ionization Cross Section Database

    National Institute of Standards and Technology Data Gateway

    SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access)   This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.

  7. Electron-impact double ionization of magnesium

    SciTech Connect

    Ford, M.J.; El-Marji, B.; Doering, J.P.; Moore, J.H.; Coplan, M.A.; Cooper, J.W.

    1998-01-01

    Electron-impact double-ionization cross sections differential in the angles of the two ejected electrons have been measured at impact energies of 422 and 1052 eV. The energies of the ejected electrons were fixed at 100 eV each. The cross sections are very different at the two incident energies. At 1052 eV the ejected electrons are preferentially found in the forward direction with respect to the incident beam. At 422 eV they are found in the forward and backward directions with approximately equal probability. The 422-eV cross sections are largest when the incident-electron and ejected-electron momentum vectors lie in a common plane. The observations are discussed in the context of several models for double ionization. {copyright} {ital 1998} {ital The American Physical Society}

  8. Dissociative Ionization of Benzene by Electron Impact

    NASA Technical Reports Server (NTRS)

    Huo, Winifred; Dateo, Christopher; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We report a theoretical study of the dissociative ionization (DI) of benzene from the low-lying ionization channels. Our approach makes use of the fact that electron motion is much faster than nuclear motion and DI is treated as a two-step process. The first step is electron-impact ionization resulting in an ion with the same nuclear geometry as the neutral molecule. In the second step the nuclei relax from the initial geometry and undergo unimolecular dissociation. For the ionization process we use the improved binary-encounter dipole (iBED) model. For the unimolecular dissociation step, we study the steepest descent reaction path to the minimum of the ion potential energy surface. The path is used to analyze the probability of unimolecular dissociation and to determine the product distributions. Our analysis of the dissociation products and the thresholds of the productions are compared with the result dissociative photoionization measurements of Feng et al. The partial oscillator strengths from Feng et al. are then used in the iBED cross section calculations.

  9. Electron-impact ionization of W27 +

    NASA Astrophysics Data System (ADS)

    Pindzola, M. S.; Loch, S. D.

    2016-06-01

    Electron-impact ionization cross sections for W27 + are calculated using a semirelativistic configuration-average distorted-wave (CADW) method. Calculations for direct ionization, excitation autoionization, and branching ratios are compared with recent calculations by Jonauskas et al. [Phys. Rev. A 91, 012715 (2015), 10.1103/PhysRevA.91.012715], who used fully relativistic subconfiguration-average distorted-wave (SCADW) and level-to-level distorted-wave (LLDW) methods. Reasonable agreement is found between the CADW and the recent LLDW calculations for direct ionization of the 4 l (l =0 -1 ,3 ) subshells, but not the 4 d subshell, and between the CADW and recent SCADW-LLDW calculations for excitation autoionization of the 4 l (l =0 -2 ) subshells. Reasonable agreement is also found between the CADW and the recent SCADW calculations, including branching ratios, but both differ from the recent LLDW calculations. Additional CADW calculations are made for excitation autoionization, including branching ratios involving the important 3 l (l =1 -2 ) subshells, not examined by Jonauskas et al. [Phys. Rev. A 91, 012715 (2015), 10.1103/PhysRevA.91.012715].

  10. Electron-Impact Ionization of Methane

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    We report a study of the total ionization of CH_4 by electron impact and its dissociative ionization from the ^2T_2 channel. The calculation of the total ionization cross section uses the improved Binary-Encounter-Dipole model (iBED).(W. A Huo, Phys. Rev. A (submitted for publication).) The dipole Born cross section in the model is expressed in terms of a three-term representation and the optical oscillator strengths are taken from Backx and Van der Wiel.(C. Backx and M. J. Van der Wiel, I Phys. B 18) 3020 (1975). The nuclear dynamics for the dissociation of the ^2T_2 channel is studied using the statistical model. A search of the potential energy surface of the ^2T_2 state of CH_4^+ shows two minima, of C_2v and C_3v symmetries, in agreement with earlier calculations. ((a) K. Takeshita, J. Chem. Phys. 86), 329 (1987). (b) R. F. Frey and E. R. Davidson, J. Chem. Phys. 88, 1775 (1988). The dissociation of the CH_4^+ to CH_3^+ + H goes through a saddle point. Comparison with recent experimental data will be presented and the role of Jahn-Teller effect discussed.

  11. Single ionization of helium by electron impact

    SciTech Connect

    Bray, I.; Fursa, D. V.; Kadyrov, A. S.; Stelbovics, A. T.

    2010-06-15

    We suggest that the problem of single ionization of helium by electron impact, leaving the ion in the ground state, has been solved theoretically for the full range of kinematics and collision geometries of practical interest. Following the emphasis on the study of out-of-plane geometries where the cross sections are very small [Schulz et al., Nature 422, 48 (2003)], we find that the convergent close-coupling calculations, in either a frozen- or a multicore treatment of the target, are in excellent agreement with the available measurements. Curiously, some systematic discrepancies are identified for some in-plane cases where the cross sections are an order of magnitude larger. Further measurements are required to resolve these discrepancies. If subsequent measurements confirm the present calculations, then we would have a strong case that the problem has been solved.

  12. Ionization of glycerin molecule by electron impact

    NASA Astrophysics Data System (ADS)

    Zavilopulo, A. N.; Shpenik, O. B.; Markush, P. P.; Kontrosh, E. E.

    2015-07-01

    The methods and results of studying the yield of positive ions produced due to direct and dissociative electron impact ionization of the glycerin molecule are described. The experiment is carried out using two independent setups, namely, a setup with a monopole mass spectrometer employing the method of crossing electron and molecular beams and a setup with a hypocycloidal electron spectrometer with the gas-filled cell. The mass spectra of the glycerin molecule are studied in the range of mass numbers of 10-95 amu at various temperatures. The energy dependences of the effective cross sections of the glycerin molecular ions produced by a monoenergetic electron beam are obtained and analyzed; using these dependences, the appearance energies of fragment ions are determined. The dynamics of the glycerin molecule fragment ions formation is investigated in the temperature range of 300-340 K.

  13. Electron-Impact Ionization and Dissociative Ionization of Biomolecules

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Dateo, Christopher E.

    2006-01-01

    It is well recognized that secondary electrons play an important role in radiation damage to humans. Particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. Our study of electron-impact ionization of DNA fragments uses the improved binary-encounter dipole model and covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3(sup prime)- and C5 (sup prime)-deoxyribose-phospate cross sections, differing by less than 5%. Investigation of tandem double lesion initiated by electron-impact dissociative ionization of guanine, followed by proton reaction with the cytosine in the Watson-Crick pair, is currently being studied to see if tandem double lesion can be initiated by electron impact. Up to now only OH-induced tandem double lesion has been studied.

  14. Low-energy electron-impact ionization of helium

    SciTech Connect

    Schow, E.; Hazlett, K.; Childers, J. G.; Medina, C.; Vitug, G.; Khakoo, M. A.; Bray, I.; Fursa, D. V.

    2005-12-15

    Normalized doubly differential cross sections for the electron-impact ionization of helium at low energies are presented. The data are taken at the incident electron energies of 26.3, 28.3, 30.3, 32.5, 34.3, 36.5, and 40.7 eV and for scattering angles of 10 deg. -130 deg. The measurements involve the use of the moveable target method developed at California State University Fullerton to accurately determine the continuum background in the energy-loss spectra. Normalization of experimental data is made on a relative scale to well-established experimental differential cross sections for excitation of the n=2 manifold of helium and then on an absolute scale to the well-established total ionization cross sections of Shah et al. [J. Phys. B 21, 2751 (1988)]. Comparisons are made with available experimental data and the results of the convergent close-coupling theory.

  15. Electron-impact dissociation and ionization of NO+ ions

    NASA Astrophysics Data System (ADS)

    Belic, D. S.; Urbain, X.; Cherkani-Hassani, H.; Defrance, P.

    2016-07-01

    Absolute cross sections for electron-impact ionization and dissociation of NO+ ions are reported. Simple ionization to NO2+ ion and production of singly charged N+ and O+ and doubly charged N2+ and O2+ fragments have been investigated. The animated electron-ion crossed-beam method is applied in the energy range from the respective thresholds up to 2.5 keV. The maximum of the simple ionization cross section is found to be (3.49 ± 0.07) × 10‑17 cm2 at 135 eV. The total cross sections for N+ and O+ fragments at the maximum are found to be (13.9 ± 1.0) × 10‑17 cm2 and (14.0 ± 1.4) × 10‑17 cm2, respectively, both at an energy of 85 eV. By performing careful magnetic field scans of the detected signal, contributions of dissociative excitation and dissociative ionization to N+ and O+ production are determined separately. The cross sections for asymmetric dissociative ionization to N2+ and O2+ are found to be over one order of magnitude smaller. Distributions of the kinetic energy release to the fragments are determined for all dissociation processes.

  16. Dissociative Ionization of Pyridine by Electron Impact

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher; Huo, Winifred; Kwak, Dochan (Technical Monitor)

    2002-01-01

    In order to understand the damage of biomolecules by electrons, a process important in radiation damage, we undertake a study of the dissociative ionization (DI) of pyridine (C5H5N) from the low-lying ionization channels. The methodology used is the same as in the benzene study. While no experimental DI data are available, we compare the dissociation products from our calculations with the dissociative photoionization measurements of Tixier et al. using dipole (e, e(+) ion) coincidence spectroscopy. Comparisons with the DI of benzene is also made so as to understand the difference in DI between a heterocyclic and an aromatic molecule.

  17. Electron impact multiple ionization cross sections of heavy ions

    NASA Astrophysics Data System (ADS)

    Zeng, Jiaolong; Liu, Pengfei; Dai, Jiayu; Yuan, Jianmin

    2014-05-01

    Cross sections of electron impact ionization are important in modeling both astrophysical and laboratory plasmas. For heavy ions, accurate determination of this microscopic physical quantity is difficult due to the complex atomic structure. At high incident electron energy, inner-shell excitation and ionization processes can occur, which will result in complicated decay including Auger and radiative decay processes. For deep inner-shell excitation and ionization, cascaded Auger processes are very likely. Under conditions of collisional ionization equilibrium, the balance of electron-ion recombination and electron impact single ionization determines the charge state distribution (CSD). Accurate CSD, which in turn determined by accurate cross sections, is very important in a wide regime of spectroscopic diagnostics to infer the physical conditions of plasmas such as the electron temperature, electron density, and elemental abundance. As an illustrative example, the cross sections from the ground configuration of Sn13+ in forming Sn13+, -Sn16+ are reported in detail. The contributions from the electron impact excitation, electron impact ionization and resonant excitation processes are included.

  18. Electron-Impact Ionization of Mg

    NASA Technical Reports Server (NTRS)

    Boivin, R. F.; Srivastava, S. K.

    1997-01-01

    A pulsed crossed beam technique is used to measure inonization cross-sections of metallic atoms. Relative values of cross-sections of single, double and triple inonization of magnesium have been successfully measured with good accuracy over the o-700 eV range. Absolute values of cross sections have been obtained by normalization to a theoretical value at high electron energy. Results are compared to previously published values and, for single inonization in particular, a comparison with theoretical cross-extions is perfomed.

  19. Electron-impact ionization of atomic hydrogen

    SciTech Connect

    Baertschy, Mark D.

    2000-02-14

    Since the invention of quantum mechanics, even the simplest example of collisional breakup in a system of charged particles, e{sup {minus}} + H {r_arrow} H{sup +} + e{sup {minus}} + e{sup {minus}}, has stood as one of the last unsolved fundamental problems in atomic physics. A complete solution requires calculating the energies and directions for a final state in which three charged particles are moving apart. Advances in the formal description of three-body breakup have yet to lead to a viable computational method. Traditional approaches, based on two-body formalisms, have been unable to produce differential cross sections for the three-body final state. Now, by using a mathematical transformation of the Schrodinger equation that makes the final state tractable, a complete solution has finally been achieved, Under this transformation, the scattering wave function can be calculated without imposing explicit scattering boundary conditions. This approach has produced the first triple differential cross sections that agree on an absolute scale with experiment as well as the first ab initio calculations of the single differential cross section.

  20. Electron-impact ionization of hydrogenlike ions in QED theory

    SciTech Connect

    Sun, H.-L.; Chang, J.-C.; Hsiao, J.-T.; Lin, S.-F.; Huang, K.-N.

    2010-04-15

    Relativistic cross sections for electron-impact ionization including quantum electrodynamic effects are studied for hydrogenlike ions in the two-potential formalism. Results are compared with other theoretical calculations and experimental data. Effects of the transverse-photon interaction as well as vacuum polarization potential between charges are analyzed. Systematic behaviors along the H-isoelectronic sequence are summarized.

  1. Electron-impact ionization of Se2+ and Se3+

    NASA Astrophysics Data System (ADS)

    Pindzola, M. S.; Loch, S. D.

    2016-06-01

    Electron-impact ionization cross sections for Se2+ and Se3+ are calculated using a semi-relativistic configuration-average distorted-wave (CADW) method. Good agreement between the CADW calculations and recent experimental measurements are found for the single ionization of Se2+ from threshold to 500 eV and for the double ionization of Se2+ from threshold to 225 eV. Good agreement between the CADW calculations and recent experimental measurements are also found for the single ionization of Se3+ from threshold to 200 eV and for the double ionization of Se3+ near the peak of the cross section at 350 eV. Disagreements at other incident electron energies may be due to the complexity of the ionization pathways for low charged Se atomic ions, the various theoretical approximations, and the difficulty in measuring relatively small double ionization events.

  2. Electron-impact ionization of multicharged ions at ORNL: 1985--1992

    SciTech Connect

    Gregory, D.C.; Bannister, M.E.

    1994-07-01

    Absolute cross sections are presented in graphs and tables for single ionization of forty-one ions, multiple ionization of four ions, and for dissociation and ionization of two molecular ions by electron impact. This memo is the third in a series of manuscripts summarizing previously published as well as unpublished ionization cross section measurements at ORNL; contents of the two previous memos are also referenced in this work. All work tabulated in this memo involved ion beams generated in the ORNL-ECR ion source and utilized the ORNL electron-ion crossed beams apparatus. Target ions range from atomic number Z = 8 (oxygen) to Z = 92 (uranium) in initial charge states from +1 to +16. Electron impact energies typically range from threshold to 1500 eV.

  3. Electron-Impact Total Ionization Cross Sections of Hydrocarbon Ions

    PubMed Central

    Irikura, Karl K.; Kim, Yong-Ki; Ali, M. A.

    2002-01-01

    The Binary-Encounter-Bethe (BEB) model for electron-impact total ionization cross sections has been applied to CH2+, CH3+, CH4+, C2H2+, C2H4+, C2H6+ and H3O+. The cross sections for the hydrocarbon ions are needed for modeling cool plasmas in fusion devices. No experimental data are available for direct comparison. Molecular constants to generate total ionization cross sections at arbitrary incident electron energies using the BEB formula are presented. A recent experimental result on the ionization of H3O+ is found to be almost 1/20 of the present theory at the cross section peak.

  4. Influence of renormalization shielding on the electron-impact ionization process in dense partially ionized plasmas

    SciTech Connect

    Song, Mi-Young; Yoon, Jung-Sik; Jung, Young-Dae

    2015-04-15

    The renormalization shielding effects on the electron-impact ionization of hydrogen atom are investigated in dense partially ionized plasmas. The effective projectile-target interaction Hamiltonian and the semiclassical trajectory method are employed to obtain the transition amplitude as well as the ionization probability as functions of the impact parameter, the collision energy, and the renormalization parameter. It is found that the renormalization shielding effect suppresses the transition amplitude for the electron-impact ionization process in dense partially ionized plasmas. It is also found that the renormalization effect suppresses the differential ionization cross section in the peak impact parameter region. In addition, it is found that the influence of renormalization shielding on the ionization cross section decreases with an increase of the relative collision energy. The variations of the renormalization shielding effects on the electron-impact ionization cross section are also discussed.

  5. Ionization of the glycerin molecule by the electron impact

    NASA Astrophysics Data System (ADS)

    Zavilopulo, A. N.; Shpenik, O. B.; Markush, P. P.; Kontrosh, E. E.

    2014-10-01

    The paper describes experimental method for and presents the results of studying positive ion yields produced due to direct and dissociative electron-impact ionization of the glycerin molecule. The mass spectra of the glycerin molecule are studied in the range of mass numbers of 10-95 amu at different temperatures. The energy dependences of the ionization efficiency cross sections of the glycerin molecule ions produced by a monoenergetic electron beam are analyzed; using these dependences, the appearance energies of fragment ions are determined. The dynamics of fragment ion formation is investigated in the temperature range of 300-340 K.

  6. Electron impact ionization of cycloalkanes, aldehydes, and ketones

    SciTech Connect

    Gupta, Dhanoj; Antony, Bobby

    2014-08-07

    The theoretical calculations of electron impact total ionization cross section for cycloalkane, aldehyde, and ketone group molecules are undertaken from ionization threshold to 2 keV. The present calculations are based on the spherical complex optical potential formalism and complex scattering potential ionization contribution method. The results of most of the targets studied compare fairly well with the recent measurements, wherever available and the cross sections for many targets are predicted for the first time. The correlation between the peak of ionization cross sections with number of target electrons and target parameters is also reported. It was found that the cross sections at their maximum depend linearly with the number of target electrons and with other target parameters, confirming the consistency of the values reported here.

  7. Electron-impact ionization of helium: A comprehensive experiment benchmarks theory

    SciTech Connect

    Ren, X.; Pflueger, T.; Senftleben, A.; Xu, S.; Dorn, A.; Ullrich, J.; Bray, I.; Fursa, D.V.; Colgan, J.; Pindzola, M.S.

    2011-05-15

    Single ionization of helium by 70.6-eV electron impact is studied in a comprehensive experiment covering a major part of the entire collision kinematics and the full 4{pi} solid angle for the emitted electron. The absolutely normalized triple-differential experimental cross sections are compared with results from the convergent close-coupling (CCC) and the time-dependent close-coupling (TDCC) theories. Whereas excellent agreement with the TDCC prediction is only found for equal energy sharing, the CCC calculations are in excellent agreement with essentially all experimentally observed dynamical features, including the absolute magnitude of the cross sections.

  8. Electron-impact ionization of helium for equal-energy-sharing kinematics

    SciTech Connect

    Stelbovics, A.T.; Bray, I.; Fursa, D.V.; Bartschat, K.

    2005-05-15

    The close-coupling approach to electron-helium single ionization is analyzed and several ways of defining the scattering amplitudes are determined, for both equal- and unequal-energy outgoing electrons. Nevertheless, the various definitions all lead to the same cross section. The convergent close-coupling (CCC) method with Laguerre (CCC-L) and box-based (CCC-B) target functions is applied to calculate electron-impact ionization of helium for the cases where the two outgoing electrons have equal energy. Excellent absolute agreement with experiment is obtained for all available cases of comparison.

  9. Spectroscopic investigations of L-shell ionization in heavy elements by electron impact

    NASA Astrophysics Data System (ADS)

    Rahangdale, H. V.; Mitra, D.; Das, P. K.; De, S.; Guerra, M.; Santos, J. P.; Saha, S.

    2016-05-01

    The absolute L subshell specific electron impact ionization cross sections near the ionization threshold (16 < E < 45 keV) of lead and thorium are obtained from the measured L X-ray production cross sections. Monte Carlo simulation is done to account for the effect of the backscattered electrons, and the final experimental results are compared with calculations performed using distorted wave Born approximation and the modified relativistic binary encounter Bethe model. The sensitivity of the results on the atomic parameters is explored. Observed agreements and discrepancies between the experimental results and theoretical estimates, and their dependence on the specific atomic parameters are reported.

  10. Fragmentation of the POPOP molecule by electron-impact ionization

    NASA Astrophysics Data System (ADS)

    Romanova, L. G.; Zavilopulo, A. N.; Shpenik, O. B.; Kukhto, A. V.; Agafonova, A. S.

    2008-07-01

    Single and dissociative ionizations of the POPOP molecule by electron impact in the gas phase are studied using mass spectroscopy. Fragmentation pathways of the molecule are proposed taking into account the common system of conjugated π-electrons and heteroatoms in the POPOP molecule. The appearance thresholds for certain fragments of the molecule are determined based on experimentally measured ionization cross sections as functions of the ionizing electron energy. An ion with m/z = 144 [C9H6ON]+ that is complementary to a fragment with m/z = 220 [C13H10ON]+ (present in the NIST mass spectrum database) is found for the first time in the mass spectrum of POPOP. Its appearance threshold is determined (Eap = 9.48 eV).

  11. Measurements of the electron-impact double-to-single ionization ratio using trapped lithium

    NASA Astrophysics Data System (ADS)

    Huang, M.-T.; Zhang, L.; Hasegawa, S.; Southworth, S. H.; Young, L.

    2002-07-01

    The Li2+ to Li+ production cross-section ratio of ground-state atomic Li by electron-impact ionization has been measured for electron energies ranging from 200 eV to 1500 eV. The measurements were done using a pulsed, ion imaging time-of-flight spectrometer with Li atoms confined in a magneto-optical trap. The ratios are more accurate than the single earlier result for the Li2+ to Li+ ratios, a composite of two absolute measurements, and are systematically lower. Both experiments show similar energy dependences that disagree with the trend predicted by a semiempirical formulation. These measurements provide a benchmark for theoretical studies of electron-impact double ionization.

  12. Differential studies and projectile charge effects in ionization of molecular nitrogen by positron and electron impact

    NASA Astrophysics Data System (ADS)

    de Lucio, O. G.; DuBois, R. D.

    2016-03-01

    Singly, doubly, and triply differential information, obtained from coincidence measurements, are presented for 250-eV positron- and electron-impact ionization of molecular nitrogen. Comparisons of these data as functions of energy loss, scattering, and emission angles illustrate differences associated with the sign of the projectile charge. Via a deconvolution and normalization procedure, the triply differential data are converted to absolute cross sections. By fitting the triply differential cross sections for single ionization with simple functions, the intensities, directions, and peak to background intensities of the binary peaks plus the ratio of recoil to binary interactions are compared for positron and electron impact. Formulas for the binary and recoil intensities plus for the orientation of the binary peak as a function of momentum transfer are extracted from the data. Differences in the relative amount of fragmentation as a function of energy loss are also observed.

  13. Doubly differential measurements for multiple ionization of argon by electron impact: Comparison with positron impact and photoionization

    SciTech Connect

    Santos, A.C.F.; Hasan, A.; Yates, T.; DuBois, R.D.

    2003-05-01

    Doubly differential cross sections for single and multiple ionization of Ar have been measured for 500, 750, and 1000 eV electron impact. The cross sections were measured as a function of projectile energy loss and scattering angle. The energy loss range was 0-85% of the initial projectile energy and scattering angles were between {+-}22 deg. The data were put on an absolute scale by normalizing to total ionization cross sections available in the literature and found to be in good agreement with the absolute electron impact cross sections from DuBois and Rudd. For 750 eV impact, a comparison was made between the present electron impact data and positron impact data obtained using the same experimental conditions. The same energy dependence and yields for single ionization were found for both electron and positron impact. On the other hand, the double- and triple-ionization yields are smaller for positron impact as compared to electron impact. Comparisons with photoionization data showed that for outer shell ionization the fractions of double and triple ionization of argon by photon impact are in quite good agreement with the present electron impact data.

  14. Electron-Impact Ionization Measurements Important for Solar Physics

    NASA Astrophysics Data System (ADS)

    Bannister, M. E.

    2004-05-01

    Electron impact ionization (EII) is the dominant ionization mechanism in the solar chromosphere, transition region, and corona. Analyzing spectra from this region of the sun requires accurate ionization balance calculations for plasmas in collisional ionization equilibrium as well as plasmas under conditions of non-equilibrium ionization. Here we report on a series of laboratory measurements of EII that are now underway at the ORNL Multicharged Ion Research Facility for selected ions in the heliumlike, berylliumlike, and oxygenlike isoelectronic sequences. We have found significant errors and uncertainties in the EII data for these isoelectronic sequences, primarily due to uncertainty in the fraction of metastable ions encountered in prior measurements. By determining the metastable ion fractions independent of the ionization experiments, our measurements will provide new EII data for both ground-state and metastable ions with uncertainties of 15% or less. This material is based upon work supported by NASA under Award No. NNH04AA151 issued through the Sun-Earth Connection Division's Solar & Heliospheric Physics Supporting Research and Technology Program and by the U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

  15. Electron-impact ionization of helium with large energy transfer

    SciTech Connect

    Bray, I.; Fursa, D. V.; Stelbovics, A. T.

    2006-09-15

    We consider the recently measured case of 730 eV electron-impact ionization of the ground state of helium with 205 and 500 eV coplanar outgoing electrons by Catoire et al. [J. Phys. B 39, 2827 (2006)]. These measurements, which are on a relative scale, show some unexpected structure and variation from the second-order distorted-wave Born approximation R-matrix and Brauner-Briggs-Klar theories. Using the convergent close-coupling method we provide an improved agreement with experiment, but some discrepancies still remain.

  16. Electron-impact-ionization cross section for the hydrogen atom

    NASA Astrophysics Data System (ADS)

    Hu, W.; Fang, D.; Wang, Y.; Yang, F.

    1994-02-01

    A distorted-wave Born exchange approximation was used to calculate the cross section for electron-impact ionization of the hydrogen atoms. Both the integral and energy-differential cross section were calculated. The results were compared with the latest experimental data and other theoretical calculations. Comparison shows that the calculations agree with differential cross-section measurements in general. For integral cross sections the calculation shows a better agreement with an earlier measurement [M.B. Shah, D. S. Elliott, and H. B. Gilbody, J. Phys. B 20, 3501 (1987)] in which the cross sections are normalized to the first Born approximation.

  17. Electron-impact ionization cross sections out of the ground and excited states of cesium

    SciTech Connect

    Lukomski, M.; Sutton, S.; Kedzierski, W.; Reddish, T. J.; Bartschat, K.; Bartlett, P. L.; Bray, I.; Stelbovics, A. T.; McConkey, J. W.

    2006-09-15

    An atom trapping technique for determining absolute, total ionization cross sections (TICS) out of an excited atom is presented. The unique feature of our method is in utilizing Doppler cooling of neutral atoms to determine ionization cross sections. This fluorescence-monitoring experiment, which is a variant of the 'trap loss' technique, has enabled us to obtain the experimental electron impact ionization cross sections out of the Cs state between 7 eV and 400 eV. CCC, RMPS, and Born theoretical results are also presented for both the ground and excited states of cesium and rubidium. In the low energy region (<11 eV) where best agreement between these excited state measurements and theory might be expected, a discrepancy of approximately a factor of five is observed. Above this energy there are significant contributions to the TICS from both autoionization and multiple ionization.

  18. Electron Impact Ionization of C_2F_6

    NASA Astrophysics Data System (ADS)

    Iga, Ione; Pereira Sanches, Ivana; Srivastava, Santosh Kumar

    2001-10-01

    Besides CF_4, perfluoroethane, C_2F_6, is also one of the fluorocarbon compounds most frequently used in plasma processing applications. Consequently, the knowledge of the ionization properties of C_2F6 is clearly of interest in order to model the plasma-chemical reactions. Nevertheless, only few partial ionization-cross-section measurements [1,2] for this molecule were reported in the literature. Also, the energy range covered in these studies was very limited (below 120 eV). Recently, we have studied these properties. More specifically, partial ionization cross sections (PICS) for the fragments: C^+, F^+, CF^+, CF_2^+, CF_3^+ and C_2F_5^+, produced by electron impact on C_2F_6, were measured in a single-collision condition from near ionization threshold to 1000 eV. In addition, total ionization cross sections (TICS) are also obtained by summing up the PICS's. The comparison of our measured PICS and derived TICS with available data [1-4] will be presented during the Conference. [1] H. U. Poll, J. Meischner, Contrib. Plasma Phys. 27 (1987) 359. [2] C. Q. Jiao, A Garscadden, P. D. Haaland, Chem. Phys. Lett. 310 (1999) 52. [3] H. Nishimura, W. M. Huo, M. A Ali and Y -K. Kim, J. Chem. Phys. 110 (1999) 3811. [4] L. G. Christophorou and J. K. Olthoff, J. Phys. Chem. Ref. Data 27 (1998) 1 and references therein.

  19. Electron impact ionization of highly charged lithiumlike ions

    SciTech Connect

    Wong, K L

    1992-10-01

    Electron impact ionization cross sections can provide valuable information about the charge-state and power balance of highly charged ions in laboratory and astrophysical plasmas. In the present work, a novel technique based on x-ray measurements has been used to infer the ionization cross section of highly charged lithiumlike ions on the Livermore electron beam ion trap. In particular, a correspondence is established between an observed x ray and an ionization event. The measurements are made at one energy corresponding to approximately 2.3 times the threshold energy for ionization of lithiumlike ions. The technique is applied to the transition metals between Z=22 (titanium, Ti[sup 19+]) and Z=26 (iron, Fe[sup 23+]) and to Z=56 (barium, Ba[sup 53+]). The results for the transition metals, which have an estimated 17-33% uncertainty, are in good overall agreement with a relativistic distorted-wave calculation. However, less good agreement is found for barium, which has a larger uncertainty. Methods for properly accounting for the polarization in the x-ray intensities and for inferring the charge-state abundances from x-ray observations, which were developed for the ionization measurements, as well as an x-ray model that assists in the proper interpretation of the data are also presented.

  20. Electron-impact ionization of Li2 and Li2+

    NASA Astrophysics Data System (ADS)

    Pindzola, M. S.; Robicheaux, F.; Ballance, C. P.; Colgan, J.

    2008-10-01

    Electron-impact ionization cross sections for Li2 and Li2+ are calculated using a configuration-average distorted-wave method. Bound orbitals for the molecule and its ions are calculated using a single-configuration self-consistent-field method based on a linear combination of Slater-type orbitals. The bound orbitals are transformed onto a two-dimensional lattice (r,θ) , which is variable in the radial coordinate and constant in the angular coordinate, from which Hartree with local exchange potentials are constructed. The single-particle Schrödinger equation is then solved for continuum distorted waves with S -matrix boundary conditions. Total ionization cross sections for Li2 at an equilibrium internuclear separation of R=5.0a.u. and for Li2+ at an equilibrium internuclear separation of R=5.9a.u. are presented.

  1. Electron-impact Ionization Of Li2 And Li+2

    SciTech Connect

    Colgan, James P

    2008-01-01

    Electron-impact ionization cross sections for Li{sub 2} and Li{sup +}{sub 2} are calculated using a configuration-average distorted-wave method. Bound orbitals for the molecule and its ions are calculated using a single configuration self-consistent field method based on a linear combination of Slater-type orbitals. The bound orbitals are transformed onto a two-dimensional lattice ({tau}, {theta}), which is variable in the radial coordinate and constant in the angular coordinate, from which Hartree with local exchange potentials are constructed. The single particle Schrodinger equation is then solved for continuum distorted-waves with S-matrix boundary conditions. Total ionization cross sections for Li{sub 2} at an equilibrium internuclear separation of R = 5.0 and for Li{sup +}{sub 2} at an equilibrium internuclear separation of R = 5.9 are presented.

  2. Measurements of Electron-Impact Ionization Relevant for Astrophysics

    NASA Astrophysics Data System (ADS)

    Bannister, M. E.

    2005-05-01

    For many cosmic plasmas, such as are formed in supernova remnants, stellar coronae, the interstellar medium (ISM), the intracluster medium in clusters of galaxies, and elliptical galaxies, electron impact ionization (EII) is the dominant ionization mechanism. Spectroscopic data produced by an array of past, present, and future satellite spectroscopic observatories are being used to address many fundamental questions in astrophysics. Analyzing the collected spectra from electron-ionized plasmas, however, requires accurate ionization balance calculations for plasmas in collisional ionization equilibrium (CIE) as well as plasmas under conditions of non-equilibrium ionization (NEI). Therefore accurate EII data are needed for ions found in these astrophysical environments. Here we report on recent laboratory measurements of EII at the ORNL Multicharged Ion Research Facility for selected ions in the berylliumlike isoelectronic sequence. These results are compared with state-of-the-art non-perturbative calculations for these ions. This systematic investigation of EII will continue with measurements on heliumlike and oxygenlike ions. For these isoelectronic sequences there appear to be significant errors and uncertainties in the EII data, primarily due to uncertainty in the fraction of metastable ions encountered in prior measurements. By determining the metastable ion fractions independent of the ionization experiments, our measurements will provide new EII data with uncertainties of 15% or less. This material is based upon work supported by NASA under Award Nos. NNH04AA151 and NNH04AA72I and by the U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

  3. Electron-impact ionization measurements for use in astrophysics

    NASA Astrophysics Data System (ADS)

    Bannister, Mark E.

    2006-05-01

    Spectroscopic data produced by an array of past, present, and future satellite and space observatories are being used to address many fundamental questions in astrophysics. Analyzing the collected spectra from electron-ionized plasmas, however, requires accurate ionization balance calculations for plasmas in collisional ionization equilibrium (CIE) as well as plasmas under conditions of non-equilibrium ionization (NEI). Therefore accurate electron-impact ionization (EII) data are needed for ions found in many cosmic plasmas where EII is the dominant ionization mechanism, such as supernova remnants, stellar coronae, the interstellar medium (ISM), the intracluster medium in clusters of galaxies, and elliptical galaxies. Here we report on a program of laboratory measurements of EII for ions in the berylliumlike isoelectronic sequence at the ORNL Multicharged Ion Research Facility. These results are compared with state-of-the-art non-perturbative calculations. Our studies also focus on measurements of EII for heliumlike and oxygenlike ions. For these three isoelectronic sequences there appear to be significant errors and uncertainties in the EII data used in astrophysics, primarily due to uncertainty in the fraction of metastable ions encountered in prior measurements. By determining the metastable ion fractions independently of the ionization experiments, our measurements will provide new EII data with total uncertainties of 15% or less. This material is based upon work supported by NASA under Award Nos. NNH04AA151 and NNH04AA72I and by the U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

  4. CORRIGENDUM: Corrections to the following three papers pertaining to electron impact ionization efficiency curves calculated using the BEB model for molecules containing third and fourth row atoms

    NASA Astrophysics Data System (ADS)

    Vallance, Claire; Harland, Peter W.

    2005-04-01

    Absolute electron impact ionization cross sections for CH3X, where X = H, F, Cl, Br, and I Claire Vallance et al 1997 J. Phys. B: At. Mol. Opt. Phys. 30 2465 2475 Absolute electron-impact ionization cross sections for a range of C1 to C5 chlorocarbons James E Hudson et al 2001 J. Phys. B: At. Mol. Opt. Phys. 34 3025 3039 Absolute electron impact ionization cross-sections for CO, CO2, OCS and CS2 James E Hudson et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 445 455 We have recently re-examined some published binary-encounter Bethe (BEB) calculations on the electron impact ionization cross sections for halogenated hydrocarbons and sulfur-containing molecules, and found a discrepancy with our earlier results. Please see the PDF file for full details.

  5. Cross Sections for Inner-Shell Ionization by Electron Impact

    SciTech Connect

    Llovet, Xavier; Powell, Cedric J.; Salvat, Francesc; Jablonski, Aleksander

    2014-03-15

    An analysis is presented of measured and calculated cross sections for inner-shell ionization by electron impact. We describe the essentials of classical and semiclassical models and of quantum approximations for computing ionization cross sections. The emphasis is on the recent formulation of the distorted-wave Born approximation by Bote and Salvat [Phys. Rev. A 77, 042701 (2008)] that has been used to generate an extensive database of cross sections for the ionization of the K shell and the L and M subshells of all elements from hydrogen to einsteinium (Z = 1 to Z = 99) by electrons and positrons with kinetic energies up to 1 GeV. We describe a systematic method for evaluating cross sections for emission of x rays and Auger electrons based on atomic transition probabilities from the Evaluated Atomic Data Library of Perkins et al. [Lawrence Livermore National Laboratory, UCRL-ID-50400, 1991]. We made an extensive comparison of measured K-shell, L-subshell, and M-subshell ionization cross sections and of Lα x-ray production cross sections with the corresponding calculated cross sections. We identified elements for which there were at least three (for K shells) or two (for L and M subshells) mutually consistent sets of cross-section measurements and for which the cross sections varied with energy as expected by theory. The overall average root-mean-square deviation between the measured and calculated cross sections was 10.9% and the overall average deviation was −2.5%. This degree of agreement between measured and calculated ionization and x-ray production cross sections was considered to be very satisfactory given the difficulties of these measurements.

  6. Semirelativistic model for ionization of atomic hydrogen by electron impact

    SciTech Connect

    Attaourti, Y.; Taj, S.; Manaut, B.

    2005-06-15

    We present a semirelativistic model for the description of the ionization process of atomic hydrogen by electron impact in the first Born approximation by using the Darwin wave function to describe the bound state of atomic hydrogen and the Sommerfeld-Maue wave function to describe the ejected electron. This model, accurate to first order in Z/c in the relativistic correction, shows that, even at low kinetic energies of the incident electron, spin effects are small but not negligible. These effects become noticeable with increasing incident electron energies. All analytical calculations are exact and our semirelativistic results are compared with the results obtained in the nonrelativistic Coulomb Born approximation both for the coplanar asymmetric and the binary coplanar geometries.

  7. Glow discharge electron impact ionization source for miniature mass spectrometers.

    PubMed

    Gao, Liang; Song, Qingyu; Noll, Robert J; Duncan, Jason; Cooks, R Graham; Ouyang, Zheng

    2007-05-01

    A glow discharge electron impact ionization (GDEI) source was developed for operation using air as the support gas. An alternative to the use of thermoemission from a resistively heated filament electron source for miniature mass spectrometers, the GDEI source is shown to have advantages of long lifetime under high-pressure operation and low power consumption. The GDEI source was characterized using our laboratory's handheld mass spectrometer, the Mini 10. The effects of the discharge voltage and pressure were investigated. Design considerations are illustrated with calculations. Performance is demonstrated in a set of experimental tests. The results show that the low power requirements, mechanical ruggedness, and quality of the data produced using the small glow discharge ion source make it well-suited for use with a portable handheld mass spectrometer. PMID:17441220

  8. Single electron impact ionization of the methane molecule

    NASA Astrophysics Data System (ADS)

    Bouamoud, Mammar; Sahlaoui, Mohammed; Benmansour, Nour El Houda; Atomic and Molecular Collisions Team

    2014-10-01

    Triply differential cross sections (TDCS) results of electron-impact ionization of the inner 2a1 molecular orbital of CH4 are presented in the framework of the Second Born Approximation and compared with the experimental data performed in coplanar asymmetric geometry. The cross sections are averaged on the random orientations of the molecular target for accurate comparison with experiments and are compared also with the theoretical calculations of the Three Coulomb wave (3CW) model. Our results are in good agreement with experiments and 3CW results in the binary peak. In contrast the Second Born Approximation yields a significant higher values compared to the 3CW results for the recoil peak and seems to describe suitably the recoil region where higher order effects can occur with the participation of the recoiling ion in the collision process.

  9. Cross-section measurements for electron-impact ionization of atoms

    NASA Astrophysics Data System (ADS)

    Freund, Robert S.; Wetzel, Robert C.; Shul, Randy J.; Hayes, Todd R.

    1990-04-01

    Absolute electron-impact cross sections have been measured from 0 to 200 eV for single ionization of 16 atoms (Mg, Fe, Cu, Ag, Al, Si, Ge, Sn, Pb, P, As, Sb, Bi, S, Se, and Te) with an estimated accuracy of +/-10%. Combined with our recent measurements of He, Ne, Ar, Kr, Xe, F, Cl, Br, I, Ga, and In [Wetzel et al., Phys. Rev. A 35, 559 (1987); Hayes et al., ibid. 35, 578 (1987); Shul, Wetzel, and Freund, ibid. 39, 5588 (1989)], a set of 27 atomic single-ionization cross sections has now been measured with the same apparatus. In addition, cross sections are reported for double ionization of ten atoms and triple ionization of eight atoms. The measurements are made by crossing an electron beam with a 3-keV beam of neutral atoms, prepared by charge-transfer neutralization of a mass-selected ion beam. The critical measurement of absolute neutral beam flux is made with a calibrated pyroelectric crystal. The magnitudes of the single-ionization-peak cross sections decrease monotonically across rows of the periodic table from group IIIA (Al,Ga,In) to group VIIIA (Ar,Kr,Xe), varying much more than predicted by various empirical formulas and classical and quantum-mechanical theories.

  10. Electron impact ionization of 5- and 6-chlorouracil: appearance energies

    NASA Astrophysics Data System (ADS)

    Denifl, S.; Ptasinska, S.; Gstir, B.; Scheier, P.; Märk, T. D.

    2004-03-01

    Electron impact ionization of the gas phase modified DNA/RNA bases 5- and 6-ClU was studied using a crossed electron/neutral beams technique in combination with a quadrupole mass spectrometer. 5- and 6-ClU belong to the class of halouracils which are used in radiation therapy to increase the effect of ionizing radiation to tumours, when they are incorporated into cancer tissue. Besides determining the mass spectra for both molecules at the electron energy of 70 eV, the ionization efficiency curves for each parent ion and the most abundant fragment ions were measured near the threshold and the corresponding appearance energies (AEs) were derived using an iterative, non-linear least square fitting procedure using the Marquart-Levenberg algorithm based on the Wannier threshold law. The most abundant cations observed in mass spectra have a threshold value of AE ((C3H2ClNO)+/5-ClU)=11.12+/-0.03 eV and AE ((C3H2NO)+/6-ClU)=12.06+/-0.03 eV. The present AE value for the parent ion of 5-ClU AE((5-ClU)+/5-ClU)=9.38+/-0.05 eV is in fair agreement with previous calculations at the B3LYP level of theory. The AE((6-ClU)+/6-ClU)=9.71+/-0.05 eV is 0.33 eV higher than that for 5-ClU.

  11. Electron impact ionization and multiphoton ionization of doped superfluid helium droplets: A comparison

    NASA Astrophysics Data System (ADS)

    He, Yunteng; Zhang, Jie; Kong, Wei

    2016-02-01

    We compare characteristics of electron impact ionization (EI) and multiphoton ionization (MPI) of doped superfluid helium droplets using the same droplet source. Selected dopant ion fragments from the two ionization schemes demonstrate different dependence on the doping pressure, which could be attributed to the different ionization mechanisms. While EI directly ionizes helium atoms in a droplet therefore has higher yields for bigger droplets (within a limited size range), MPI is insensitive to the helium in a droplet and is only dependent on the number of dopant molecules. The optimal timing of the ionization pulse also varies with the doping pressure, implying a velocity slip among different sized droplets. Calculations of the doping statistics and ionization probabilities qualitatively agree with the experimental data. Our results offer a word of caution in interpreting the pressure and timing dependence of superfluid helium droplets, and we also devise a scheme in achieving a high degree of doping while limiting the contribution of dopant clusters.

  12. Electron impact ionization and multiphoton ionization of doped superfluid helium droplets: A comparison.

    PubMed

    He, Yunteng; Zhang, Jie; Kong, Wei

    2016-02-28

    We compare characteristics of electron impact ionization (EI) and multiphoton ionization (MPI) of doped superfluid helium droplets using the same droplet source. Selected dopant ion fragments from the two ionization schemes demonstrate different dependence on the doping pressure, which could be attributed to the different ionization mechanisms. While EI directly ionizes helium atoms in a droplet therefore has higher yields for bigger droplets (within a limited size range), MPI is insensitive to the helium in a droplet and is only dependent on the number of dopant molecules. The optimal timing of the ionization pulse also varies with the doping pressure, implying a velocity slip among different sized droplets. Calculations of the doping statistics and ionization probabilities qualitatively agree with the experimental data. Our results offer a word of caution in interpreting the pressure and timing dependence of superfluid helium droplets, and we also devise a scheme in achieving a high degree of doping while limiting the contribution of dopant clusters. PMID:26931697

  13. Energy and angle differential cross sections for the electron-impact double ionization of helium

    SciTech Connect

    Colgan, James P; Pindzola, M S; Robicheaux, F

    2008-01-01

    Energy and angle differential cross sections for the electron-impact double ionization of helium are calculated using a non-perturbative time-dependent close-coupling method. Collision probabilities are found by projection of a time evolved nine dimensional coordinate space wave function onto fully antisymmetric products of spatial and spin functions representing three outgoing Coulomb waves. At an incident energy of 106 eV, we present double energy differential cross sections and pentuple energy and angle differential cross sections. The pentuple energy and angle differential cross sections are found to be in relative agreement with the shapes observed in recent (e,3e) reaction microscope experiments. Integration of the differential cross sections over all energies and angles yields a total ionization cross section that is also in reasonable agreement with absolute crossed-beams experiments.

  14. Electron Impact Ionization Cross Sections in Rb and Cs.

    NASA Astrophysics Data System (ADS)

    Reddish, T. J.; Lukomski, M.; Sutton, S.; Kedzierski, W.; McConkey, J. W.; Bartschat, K.; Bartlett, P. L.; Stelbovics, A. T.; Bray, I.

    2006-05-01

    We present a new atom trapping technique for determining absolute, total ionisation cross sections (TICS) out of an excited atom. The novel feature of this method is in utilizing Doppler cooling of neutral atoms to determine ionisation cross sections. This fluorescence-monitoring experiment, which is a variant of the `trap loss' technique, has enabled us to obtain the experimental electron impact ionisation cross sections out of the Cs 6^2P3/2 excited state between 7 - 400 eV. New CCC, R-Matrix with Pseudo-States (RMPS), and Born approximation single ionisation cross sections (SICS) are also presented for both the ground and excited states of Cs and Rb, and compared with the available experimental data. The comparison of the results reveals the importance of the autoionisation and multiple ionisation contributions to the TICS. The autoionisation contribution appears to be substantial for ionisation out of the Cs 6^2P and Rb 5^2P excited states; ˜ 3-4 larger than the direct ionisation contribution predicted by CCC at ˜ 30-50 eV. This surprising result shows the importance of multi-electron processes in determining the ionisation cross sections of heavy alkali atoms.

  15. Electron impact ionization cross sections of beryllium-tungsten clusters*

    NASA Astrophysics Data System (ADS)

    Sukuba, Ivan; Kaiser, Alexander; Huber, Stefan E.; Urban, Jan; Probst, Michael

    2016-01-01

    We report calculated electron impact ionization cross sections (EICSs) of beryllium-tungsten clusters, BenW with n = 1,...,12, from the ionization threshold to 10 keV using the Deutsch-Märk (DM) and the binary-encounter-Bethe (BEB) formalisms. The positions of the maxima of DM and BEB cross sections are mostly close to each other. The DM cross sections are more sensitive with respect to the cluster size. For the clusters smaller than Be4W they yield smaller cross sections than BEB and vice versa larger cross sections than BEB for clusters larger than Be6W. The maximum cross section values for the singlet-spin groundstate clusters range from 7.0 × 10-16 cm2 at 28 eV (BeW) to 54.2 × 10-16 cm2 at 43 eV (Be12W) for the DM cross sections and from 13.5 × 10-16 cm2 at 43 eV (BeW) to 38.9 × 10-16 cm2 at 43 eV (Be12W) for the BEB cross sections. Differences of the EICSs in different isomers and between singlet and triplet states are also explored. Both the DM and BEB cross sections could be fitted perfectly to a simple expression used in modeling and simulation codes in the framework of nuclear fusion research. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2015-60583-7

  16. Investigation of Ionization and Dissociation Processes Produced by Electron Impact on Molecules.

    NASA Astrophysics Data System (ADS)

    Ma, Ce.

    1990-01-01

    Absolute electron impact partial ionization cross sections for Ar and CF_4 were measured by use of a newly built pulsed electron beam time-of-flight apparatus for incident electron energies from thresholds to 500 eV. The apparatus employed consisted of a low energy electron gun, 40 mm diameter ion extraction gold screens, time-of-flight drift tubes, micro-channel plate detectors and fast time to digital electronics. A pulsed electron beam was obtained by pulsing the control grid of the electron gun. Both beam - beam experiments and beam - constant gas target pressure experiments were carried out to determine the absolute partial ionization cross sections for Ar ^{+}, Ar^{2+ }, Ar^{3+} from an argon gas target, and for CF_sp {3}{+}, CF_sp {2}{+}, CF_sp {3}{2+}, CF^ {+}, CF_sp{2} {2+}, F^{+}, C^{+} from a CF _4 gas target. By charge weighted summing of the partial ionization cross sections, the total ionization cross sections of Ar and CF_4 were obtained. The total neutral dissociation cross section for CF_4 was inferred from the total ionization cross section and the total dissociation cross section. Also, a new method for determining absolute total electron scattering cross sections with corrections for forward scattering was developed. The electron beam current was measured as function of gas target pressure and the scattering path length. The total electron scattering cross section obtained from the new model is as much as 6% larger than the cross section derived from the traditional Beer's law for Ar at an incident electron energy of 300 eV. This method is capable of yielding reliable total cross section up to 10 keV. Finally, a study of the secondary electron emission as a function of ejection angle and ejection energy for CO, the doubly differential cross section (DDCS), is presented.

  17. Excitation and ionization of highly charged ions by electron impact

    SciTech Connect

    Sampson, D.H.

    1989-11-15

    Two approaches for very rapid calculation of atomic data for high temperature plasma modeling have been developed. The first uses hydrogenic basis states and has been developed and applied in many papers discussed in previous progress reports. Hence, it is only briefly discussed here. The second is a very rapid, yet accurate, fully relativistic approach that has been developed over the past two or three years. It is described in more detail. Recently it has been applied to large scale production of atomic data. Specifically, it has been used to calculate relativistic distorted wave collision strengths and oscillator strengths for the following: all transitions from the ground level to the n=3 and 4 excited levels in the 71 Neon-like ions with nuclear charge number Z in the range 22 {le} Z {le} 92; all transitions among the 2s{sub {1/2}}, 2p{sub {1/2}} and 2p{sub 3/2} levels and from them to all nlj levels with n=3,4 and 5 in the 85 Li-like ions with 8 {le} Z {le} 92; all transitions among the 3s{sub {1/2}}, 3p{sub 3/2}, 3d{sub 3/2} and 3d{sub 5/2} levels and from them to all nlj levels with n=4 and 5 in the 71 Na-like ions with 22 {le} Z {le} 92; and all transitions among 4s{sub {1/2}}, 4p{sub {1/2}}, 4p{sub 3/2}, 4d{sub 3/2}, 4d{sub 5/2}, 4f{sub 5/2} and 4f{sub 7/2} levels and from them to all nlj levels with n=5 in the 33 Cu-like ions with 60 {le} Z {le} 92. Also the program has been extended to give cross-sections for excitation to specific magnetic sublevels of the target ion by an electron beam and very recently it has been extended to give relativistic distorted wave cross sections for ionization of highly charged ions by electron impact.

  18. Fragmentation patterns of {alpha}-phenylcinnamic acid derivatives upon electron impact ionization; a computational approach

    SciTech Connect

    Palinko, I.; Tasi, G.; Toeroek, B.

    1995-04-01

    Secondary transformations such as fragmentation and rearrangement reacting are computed for {proportional_to}-phenylcinnamic acid derivations upon electron impact ionization. (AIP) {copyright}{ital 1995 American Institute of Physics}

  19. Absolute cross sections for electronic excitations of cytosine by low energy electron impact

    PubMed Central

    Bazin, M.; Michaud, M.; Sanche, L.

    2013-01-01

    The absolute cross sections (CS) for electronic excitations of cytosine by electron impact between 5 and 18 eV were measured by electron-energy loss (EEL) spectroscopy of the molecule deposited at low coverage on an inert Ar substrate. The lowest EEL features found at 3.55 and 4.02 eV are ascribed to transitions from the ground state to the two lowest triplet 1 3A′(π→π*) and 2 3A′(π→π*) valence states of the molecule. Their energy dependent CS exhibit essentially a common maximum at about 6 eV with a value of 1.84 × 10−17 cm2 for the former and 4.94 × 10−17 cm2 for the latter. In contrast, the CS for the next EEL feature at 4.65 eV, which is ascribed to the optically allowed transition to the 2 1A′(π→π*) valence state, shows only a steep rise to about 1.04 × 10−16 cm2 followed by a monotonous decrease with the incident electron energy. The higher EEL features at 5.39, 6.18, 6.83, and 7.55 eV are assigned to the excitations of the 3 3, 1A′(π→π*), 4 1A′(π→π*), 5 1A′(π→π*), and 6 1A′(π→π*) valence states, respectively. The CS for the 3 3, 1A′ and 4 1A′ states exhibit a common enhancement at about 10 eV superimposed on a more or less a steep rise, reaching respectively a maximum of 1.27 and 1.79 × 10−16 cm2, followed by a monotonous decrease. This latter enhancement and the maximum seen at about 6 eV in the lowest triplet states correspond to the core-excited electron resonances that have been found by dissociative electron attachment experiments with cytosine in the gas phase. The weak EEL feature found at 5.01 eV with a maximum CS of 3.8 × 10−18 cm2 near its excitation threshold is attributed to transitions from the ground state to the 1 3, 1A″(n→π*) states. The monotonous rise of the EEL signal above 8 eV is attributed to the ionization of the molecule. It is partitioned into four excitation energy regions at about 8.55, 9.21, 9.83, and 11.53 eV, which correspond closely to the ionization energies of

  20. Electron impact ionization rates for interstellar H and He atoms near interplanetary shocks: Ulysses observations

    SciTech Connect

    Feldman, W.C.; Phillips, J.L.; Gosling, J.T.; Isenberg, P.A.

    1996-07-01

    Solar wind plasma data measured during the near-ecliptic phase of the Ulysses mission between October, 1990 and January, 1993 were studied to determine the relative importance of electron-impact ionization to the total ionization rates of interstellar hydrogen and helium atoms. During times of quiet flow conditions electron-impact ionization rates were found to be generally low, of the order of 1{percent} of the total ionization rates. However, just downstream of the strongest CME- and CIR-driven shock waves encountered by Ulysses, the electron impact-ionization rate at times was more than 10{percent} that of the charge-exchange rate for hydrogen and more than 100{percent} that of the photoionization rate for helium. {copyright} {ital 1996 American Institute of Physics.}

  1. An experimental investigation of the dissociative ionization process of argon cluster ions induced by electron impact

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Ma, X.; Yan, S.; Xu, S.; Zhang, S.; Zhu, X.; Li, B.; Feng, W.; Qian, D.; Zhang, R.; Guo, D.; Wen, W.; Zhang, D.; Yang, J.; Zhao, D.; Liu, H.

    2014-04-01

    Utilizing the Cold Target Recoil Ions Momentum Spectrometer (COLTRIMS), dissociative ionization of argon cluster was experimentally investigated by electron impact. The recoil ions produced both in the pure ionization process and the dissociative ionization channels are measured with collision energies from 100 and 1000 eV. The ratios of the dimer ions from pure ionization (Ar2P+) and the dimer ions from small cluster dissociation (Ar+2D) to the atomic argon ion (Ar+) in different stagnation pressures were obtained.

  2. Electron-impact ionization cross sections out of the ground and 6P2 excited states of cesium

    NASA Astrophysics Data System (ADS)

    Łukomski, M.; Sutton, S.; Kedzierski, W.; Reddish, T. J.; Bartschat, K.; Bartlett, P. L.; Bray, I.; Stelbovics, A. T.; McConkey, J. W.

    2006-09-01

    An atom trapping technique for determining absolute, total ionization cross sections (TICS) out of an excited atom is presented. The unique feature of our method is in utilizing Doppler cooling of neutral atoms to determine ionization cross sections. This fluorescence-monitoring experiment, which is a variant of the “trap loss” technique, has enabled us to obtain the experimental electron impact ionization cross sections out of the Cs 6P3/22 state between 7eV and 400eV . CCC, RMPS, and Born theoretical results are also presented for both the ground and excited states of cesium and rubidium. In the low energy region (<11eV) where best agreement between these excited state measurements and theory might be expected, a discrepancy of approximately a factor of five is observed. Above this energy there are significant contributions to the TICS from both autoionization and multiple ionization.

  3. Electron-impact multiple ionization of Ne, Ar, Kr and Xe

    NASA Astrophysics Data System (ADS)

    Montanari, C. C.; Miraglia, J. E.

    2014-05-01

    This work describes the multiple ionization cross sections of rare gases by electron-impact. We pay special attention to the high energy region (0.1-10 keV) where the direct ionization is a minor contribution and the post-collisional electron emission dominates the final target charge state. We report here electron-impact single to sextuple ionization cross sections and total ionization cross sections including direct and post-collisional processes, even in the total values. We use the continuum distorted wave and the first Born approximations adapted to describe light-particle impact, i.e. energy, mass and trajectory corrections are incorporated, the latter by considering the electron-target potential and by using the Abel transformation. Auger-type post-collisional contributions are included in the multinomial expansion through experimental branching ratios after single ionization events. Tabulations of these experimental branching ratios for all the orbitals of the four targets are included. Present results are compared with the large amount of electron-impact experimental data available. We have obtained a good description of the multiple-ionization measurements at high energies, where the post-collisional ionization dominates. At intermediate energies, our theoretical results show the correct tendency, with the electron-impact ionization cross sections being far below the proton-impact ones.

  4. Hydrocarbon rate coefficients for proton and electron impact ionization, dissociation, and recombination in a hydrogen plasma.

    SciTech Connect

    Alman, D.A.; Brooks, J.N.; Ruzic, D.N.; Wang, Z.

    1999-07-21

    We estimate cross sections and rate coefficients for proton and electron impact ionization, dissociation, and recombination of neutral and ionized hydrocarbon molecules and fragments of the form C{sub x}H{sub y}{sup k}, x = 1-3, y = 1-6, k = 0,1 in a thermalized hydrogen-electron plasma.

  5. Parametrization of electron impact ionization cross sections for CO, CO2, NH3 and SO2

    NASA Technical Reports Server (NTRS)

    Srivastava, Santosh K.; Nguyen, Hung P.

    1987-01-01

    The electron impact ionization and dissociative ionization cross section data of CO, CO2, CH4, NH3, and SO2, measured in the laboratory, were parameterized utilizing an empirical formula based on the Born approximation. For this purpose an chi squared minimization technique was employed which provided an excellent fit to the experimental data.

  6. Relativistic effects on giant resonances in electron-impact double ionization

    SciTech Connect

    Pindzola, M.S.

    1987-06-01

    The electron-impact double-ionization cross section for Fr/sup +/ is calculated in the distorted-wave Born approximation. A giant resonance in the 5d subshell ionization-autoionization contribution to the cross section is found to be quite sensitive to changes in the double-well potential caused by relativistic effects on bound-state wave functions.

  7. Electron impact ionization of Io's sodium emission cloud

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Matson, D. L.; Johnson, T. V.

    1975-01-01

    The geometry of the sodium cloud associated with Io (Jupiter I) indicates that the lifetime of the neutral sodium atoms is an order of magnitude less than the photoionization lifetime. We suggest that ionization by thermal plasma electrons in the Jovian magnetosphere is the dominant Na loss process. Using plasma densities deduced from Pioneer 10 measurements, the lifetime and density distributions are calculated for Na and other species which may be present in the cloud around Io. Electron ionization of Na is found to be an order of magnitude faster than photoionization, in agreement with the lifetime deduced from Na cloud observations.

  8. Observation of two-center interference effects for electron impact ionization of N2

    NASA Astrophysics Data System (ADS)

    Chaluvadi, Hari; Nur Ozer, Zehra; Dogan, Mevlut; Ning, Chuangang; Colgan, James; Madison, Don

    2015-08-01

    In 1966, Cohen and Fano (1966 Phys. Rev. 150 30) suggested that one should be able to observe the equivalent of Young’s double slit interference if the double slits were replaced by a diatomic molecule. This suggestion inspired many experimental and theoretical studies searching for double slit interference effects both for photon and particle ionization of diatomic molecules. These effects turned out to be so small for particle ionization that this work proceeded slowly and evidence for interference effects were only found by looking at cross section ratios. Most of the early particle work concentrated on double differential cross sections for heavy particle scattering and the first evidence for two-center interference for electron-impact triple differential cross section (TDCS) did not appear until 2006 for ionization of H2. Subsequent work has now firmly established that two-center interference effects can be seen in the TDCS for electron-impact ionization of H2. However, in spite of several experimental and theoretical studies, similar effects have not been found for electron-impact ionization of N2. Here we report the first evidence for two-center interference for electron-impact ionization of N2.

  9. Electron impact ionization rates for interstellar neutral H and He atoms near interplanetary shocks: Ulysses observations

    NASA Technical Reports Server (NTRS)

    Feldman, W. C.; Phillips, J. L.; Gosling, J. T.; Isenberg, P. A.

    1995-01-01

    During average solar wind flow conditions at 1 AU, ionization rates of interstellar neutrals that penetrate into the inner heliosphere are dominated by charge exchange with solar wind protons for H atoms, and by photoionization for He atoms. During occurrences of strong, coronal mass ejection (CME)-driven interplanetary shock waves near 1 AU, electron impact ionization can make substantial, if not dominating, contributions to interstellar neutral ionization rates in the regions downstream of the shocks. However, electron impact ionization is expected to be relatively less important with increasing heliocentric distance because of the decrease in electron temperature. Ulysses encountered many CME-driven shocks during its journey to and beyond Jupiter, and in addition, encountered a number of strong corotating interaction region (CIR) shocks. These shocks generally occur only beyond approximately 2 AU. Many of the CIR shocks were very strong rivalling the Earth's bow shock in electron heating. We have compared electron impact ionization rates calculated from electron velocity distributions measured downstream from CIR shocks using the Ulysses SWOOPS experiment to charge-exchange rates calculated from measured proton number fluxes and the photoionization rate estimated from an assumed solar photon spectrum typical of solar maximum conditions. We find that, although normally the ratio of electron-impact ionization rates to charge-exchange (for H) and to photoionization (for He) rates amounts to only about one and a few tens of percent, respectively, downstream of some of the stronger CIR shocks they amount to more than 10% and greater than 100%, respectively.

  10. Ionization yield in xenon due to electron impact

    NASA Astrophysics Data System (ADS)

    Dayashankar

    1982-04-01

    The ionization yield in xenon for complete energy degradation of electrons with initial energy up to 1 keV has been calculated by solving the generalized Fowler equation. The expression for the energy spectrum of secondary electrons from the O shell was obtained by using the empirical scaling functions to weight the Williams-Weizsäcker cross section for glancing collisions and the Mott cross section for knock-on collisions. The total ionization and excitation cross sections were taken from the recent evaluation reported by De Heer et al. Contributions from the inner-shell ionization and the Auger process were explicitly taken into account. The results are expressed in terms of the quantity W, the mean energy required to produce an ion pair. The W value is found to decrease with increasing incident energy, finally approaching a constant value of 23.1 eV for electrons with an energy above 200 eV. The results are generally in good agreement with the available experimental work.

  11. Model for the charge-transfer probability in helium nanodroplets following electron-impact ionization

    SciTech Connect

    Ellis, Andrew M.; Yang Shengfu

    2007-09-15

    A theoretical model has been developed to describe the probability of charge transfer from helium cations to dopant molecules inside helium nanodroplets following electron-impact ionization. The location of the initial charge site inside helium nanodroplets subject to electron impact has been investigated and is found to play an important role in understanding the ionization of dopants inside helium droplets. The model is consistent with a charge migration process in small helium droplets that is strongly directed by intermolecular forces originating from the dopant, whereas for large droplets (tens of thousands of helium atoms and larger) the charge migration increasingly takes on the character of a random walk. This suggests a clear droplet size limit for the use of electron-impact mass spectrometry for detecting molecules in helium droplets.

  12. Electron-impact ionization of interstellar hydrogen and helium at interplanetary shocks

    SciTech Connect

    Isenberg, P.A.; Feldman, W.C.

    1995-04-15

    The authors investigate the ionization of interstellar hydrogen and helium due to electron impact by shock-heated electrons. Taking the electron distributions measured at four interplanetary shocks at 1 AU, they show that the electrons in the downstream region of strong shocks can ionize interstellar atoms at rates matching or exceeding the nominal photoionization or charge-exchange rates. They suggest that this process may explain some puzzling observations of interstellar pickup ions made by the Ulysses spacecraft. 17 refs.

  13. Measurement of L-shell electron-impact ionization cross sections for highly charged uranium ions

    SciTech Connect

    Stoehlker, T.; Kraemer, A. |; Elliott, S.R.; Marrs, R.E.; Scofield, J.H.

    1997-10-01

    L-shell electron-impact ionization cross sections for highly charged uranium ions from fluorinelike U{sup 83+} through lithiumlike U{sup 89+} have been measured at 45-, 60-, and 75-keV electron energy. The cross sections were obtained from x-ray measurements of the equilibrium ionization balance in an electron beam ion trap. The measured cross sections agree with recent relativistic distorted wave calculations. {copyright} {ital 1997} {ital The American Physical Society}

  14. Measurement of electron-impact ionization cross sections for hydrogenlike high-Z ions

    SciTech Connect

    Marrs, R.E.; Elliott, S.R.; Scofield, J.H.

    1997-08-01

    Electron-impact ionization cross sections have been measured for the hydrogenlike ions of molybdenum, dysprosium, gold, and bismuth at selected electron energies between 1.3 and 3.9 times threshold. The cross sections were obtained from x-ray measurements of the equilibrium ionization balance in an electron beam ion trap. The measured cross sections agree with recent relativistic distorted-wave calculations that include both the Moeller interaction and exchange. {copyright} {ital 1997} {ital The American Physical Society}

  15. Simple ionization of atomic and diatomic lithium by electron impact

    NASA Astrophysics Data System (ADS)

    Joulakian, B.; Boudali, F.; Najjari, B.

    2002-01-01

    The e,2e reaction of atomic and diatomic lithium is studied. In the atomic case, the problem is treated as a four electron system for which the conservation of the total spin produces a variety of exchange terms whose importance in the determination of the transition matrix element of the ionization process is studied systematically in a very large domain of incidence energy (50 eV to 5 keV) by applying in the small and intermediate energy domain an asymptotically exact distorted wave procedure. In the diatomic case, a model potential is employed for the K shell electrons and the problem is treated as a vertical transition from the lowest vibrational and rotational level of the fundamental electronic state 1Σg of Li2 to the fundamental 2Σg state of Li2+. The comparison with experimental and recent theoretical results shows that the use of an all electron procedure improves the agreement with the experimental results.

  16. Electron Impact Ionization Cross Sections and Rate Coefficients for Single Carbon Freon Molecules

    NASA Astrophysics Data System (ADS)

    Pal, Satyendra; Kumar, Neeraj

    2015-09-01

    Single carbon Freon molecules or chlorofluorocarbons (CFCs) are important industrial material with wide-ranging applications as refrigerant, aerosol propellant and semiconductor etchant, etc. The large-scale industrial consumption is of particular environmental concern because of its potential for ozone destruction in the stratosphere. In the present work, we have extended and generalized the modified Jain-Khare (JK) semi-empirical formalism for the evaluation of the total ionization cross sections corresponding to the formation of the cations in the electron impact ionization of molecules to the electron impact ionization of single carbon freon molecules, viz. CFCl3, CF2Cl2 and CF3Cl. The integral partial and the total ionization cross sections as function of incident electron energy are evaluated in the energy range varying from ionization threshold to 1000 eV. In absence of available differential cross sections, the corresponding derived partial and total ionization cross sections revealed a reasonably good agreement with the experimental and theoretical data, wherever available. In addition to the differential and integral ionization cross sections, we have also calculated the ionization rate coefficients using the evaluated partial ionization cross sections and the Maxwell-Boltzmann distribution as a function of electron temperature/energy. The work is supported by DST, New Delhi, India.

  17. Isomer and Fluorination Effects among Fluorine Substituted Hydrocarbon C3/C4 Molecules in Electron Impact Ionization

    NASA Astrophysics Data System (ADS)

    Patel, U. R.; Joshipura, K. N.

    2015-05-01

    Electron collision processes are very important in both man-made and natural plasmas, for determining the energy balances and transport properties of electrons. Electron -molecule scattering leading to ionization represents one of the most fundamental processes in collision physics. In the gas phase, the total efficiency of the process is described by the absolute total electron impact ionization cross section. Carbon based materials are some of the widely used materials for a divertor plate and magnetically confined fusion devices. In the ``ITER,'' it is very important for steady state operation to have an estimate of the lifetime of carbon plasma facing components. Apart from fusion plasma relevance, the present theoretical study is very important in modeling and controlling other electron assisted processes in many areas. Hydrocarbons play an important role for plasma diagnostics as impurities in the Tokamak fusion divertor, as seed gases for the production of radicals and ions in low temperature plasma processing. Fluorine substituted hydrocarbons (perfluorocarbons) are important as reactants in plasma assisted fabrication processes. In the present work, we have calculated total ionization cross sections Qion for C3/C4 Hydrocarbon isomers by electron impact, and comparisons are made mutually to observe isomer effect. Comparisons are also made by substituting H atom by F atom and revealing fluorination effect. The present calculations are quite significant owing to the lack of experimental data, with just an isolated previous theoretical work in some cases.

  18. Use of the Bethe equation for inner-shell ionization by electron impact

    NASA Astrophysics Data System (ADS)

    Powell, Cedric J.; Llovet, Xavier; Salvat, Francesc

    2016-05-01

    We analyzed calculated cross sections for K-, L-, and M-shell ionization by electron impact to determine the energy ranges over which these cross sections are consistent with the Bethe equation for inner-shell ionization. Our analysis was performed with K-shell ionization cross sections for 26 elements, with L-shell ionization cross sections for seven elements, L3-subshell ionization cross sections for Xe, and M-shell ionization cross sections for three elements. The validity (or otherwise) of the Bethe equation could be checked with Fano plots based on a linearized form of the Bethe equation. Our Fano plots, which display theoretical cross sections and available measured cross sections, reveal two linear regions as predicted by de Heer and Inokuti [in Electron Impact Ionization, edited by T. D. Märk and G. H. Dunn, (Springer-Verlag, Vienna, 1985), Chap. 7, pp. 232-276]. For each region, we made linear fits and determined values of the two element-specific Bethe parameters. We found systematic variations of these parameters with atomic number for both the low- and the high-energy linear regions of the Fano plots. We also determined the energy ranges over which the Bethe equation can be used.

  19. Electron Impact Ionization of SOx, NOx and H2 SO4 - The Aerosol Relevance

    NASA Astrophysics Data System (ADS)

    Vaishnav, B. G.; Patel, U. R.; Joshipura, K. N.; Pandya, S. H.

    2016-05-01

    This paper reports our theoretical studies on electron impact ionization of reactive molecules SOx, NOx (x = 1-3) and H2 SO4, at incident energies from threshold to 2000 eV. Motivation for this work derives from the relevance of these molecules in connection with atmospheric aerosols analysis through mass spectrometric studies and quantification of mass concentrations amongst the aerosol species. The ionization efficiency of a molecule is directly proportional to ionization cross section, which represents the efficiency on a per-molecule basis. Study of electron impact ionization cross sections of molecules, like H2 SO4, versus number of electrons in the molecule can lead to information about mass concentrations of aerosol species. We have employed in this work, the well-known spherical complex potential formalism (SCOP), which provides total elastic as well as inelastic cross sections, wherein the latter includes ionization cross sections. We have developed a method to extract ionization cross section from calculated inelastic cross section by introducing a ratio function, in a semi-empirical formalism known as CSP-ic method. For SOx and NOx targets single-centre scattering calculations are performed, while for H2 SO4, the additivity rule augmented with overlap or screening corrections, has been employed. The calculated cross sections are examined as functions of incident electron energy along with comparisons (theoretical or experimental) as available.

  20. Triple differential cross sections for the ionization of water by electron impact

    NASA Astrophysics Data System (ADS)

    Tóth, Istvan; Nagy, Ladislau; Campeanu, Radu I.

    2014-12-01

    Calculated triple differential cross sections are presented for the ionization of the 3a1 orbital of water by electron impact. The cross sections are determined for symmetric coplanar and non-coplanar geometrical arrangements. The obtained results show reasonable agreement with experimental data for both geometries. Contribution to the Topical Issue "Elementary Processes with Atoms and Molecules in Isolated and Aggregated States", edited by Friedrich Aumayr, Bratislav Marinkovic, Stefan Matejcik, John Tanis and Kurt H. Becker.

  1. Electron impact and chemical ionization mass spectral analysis of a volatile uranyl derivative

    SciTech Connect

    Reutter, D.J.; Hardy, D.R.

    1981-01-01

    Quadrupole mass spectral analysis of the volatile uranium ligand complex bis (1,1,1,5,5,5-hexafluoro-2,4-pentanedionato) dioxouranium-di-n-butyl sulfoxide is described utilizing electron impact (EI) and methane chemical ionization (CI) ion sources. All major ions are tentatively identified and the potential usefulness of this complex for determining uranium isotope /sup 235/U//sup 238/U abundance is demonstrated.

  2. Accuracy of Theoretical Calculations for Electron-Impact Ionization of atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Madison, Don

    2015-09-01

    In the last two decades, there have been several close-coupling approaches developed which can accurately calculate the triply differential cross sections for electron impact ionization of effective one and two electron atoms. The agreement between experiment and theory is not particularly good for more complicated atoms and molecules. Very recently, a B-spline R-matrix with pseudostates (BSRPS) approach was used to investigate low energy electron impact ionization of neon and very good agreement with experiment was found. The perturbative 3-body distorted wave (3DW) approach which includes the exact final state electron-electron interaction (post collision interaction - PCI) gave comparably good agreement with experiment. For ionization of molecules, there have been numerous studies of high-energy electron impact. These studies are called EMS (Electron Momentum Spectroscopy) and they were very valuable in determining the accuracy of molecular wavefunctions since the measured cross sections were proportional to the momentum space molecular wavefunction. More recently, lower energy collisions have started to be measured and these cross sections are much more difficult for theory since the detailed kinematics of the experiment become important. So far, the only close coupling calculation reported for ionization of molecules is the time-dependent close-coupling calculation (TDCC) which has been developed for ionization of H2 and it yields relative good agreement with experiment. Again the molecular 3-body distorted wave (M3DW) gave equally good agreement with experiment. For polyatomic molecules, the only theory available is the M3DW. In this talk, I will show the current status of agreement between experiment and theory for low and intermediate energy single ionization of atoms and molecules. Work supported by the NSF and XSEDE.

  3. Electron impact ionization in plasma technologies; studies on atomic boron and BN molecule

    NASA Astrophysics Data System (ADS)

    Joshi, Foram M.; Joshipura, K. N.; Chaudhari, Asha S.

    2016-05-01

    Electron impact ionization plays important role in plasma technologies. Relevant cross sections on atomic boron are required to understand the erosion processes in fusion experiments. Boronization of plasma exposed surfaces of tokomaks has proved to be an effective way to produce very pure fusion plasmas. This paper reports comprehensive theoretical investigations on electron scattering with atomic Boron and Boron Nitride in solid phases. Presently we determine total ionization cross-section Qion and the summed-electronic excitation cross section ΣQexc in a standard quantum mechanical formalism called SCOP and CSP-ic methods. Our calculated cross sections are examined as functions of incident electron energy along with available comparisons.

  4. Electron-impact ionization of the K-shells of Heavy Atoms

    NASA Astrophysics Data System (ADS)

    Pindzola, M. S.

    2016-05-01

    Fully-relativistic subconfiguration-average distorted-wave (SCADW) calculations are made for the electron-impact ionization of the K-shells of heavy atoms. One set of calculations only include the two-body electrostatic interaction, while the other set includes the full two-body retarded electromagnetic interaction. The SCADW retarded electromagnetic calculations are found to be in good agreement with recent measurements made at the Institute for Physics at the University of Sao Paulo, Brazil for Au and Bi atoms. Calculations and measurements will also be presented for the K-shell ionization of the Ta atom. Work supported in part by Grants from NSF and DOE.

  5. Electron-impact ionization of the Se2+ and Se3+ atomic ions

    NASA Astrophysics Data System (ADS)

    Loch, S. D.; Pindzola, M. S.

    2016-05-01

    Semi-relativistic configuration-average distorted-wave (CADW) calculations are made for the electron-impact ionization of the Se2+ and Se3+ atomic ions. The CADW calculations are found to be in reasonable agreement with recent measurements made at the Multicharged Ion Research Facility at the University of Nevada in Reno. The CADW calculations for configurations near ionization thresholds are checked against level to level distorted-wave (LLDW) calculations. Work supported in part by Grants from NASA, NSF, and DOE.

  6. Excitation and ionization of outer shells in Rb by electron impact

    NASA Astrophysics Data System (ADS)

    Roman, V.; Kupliauskienė, A.; Borovik, A.

    2015-10-01

    The relativistic distorted-wave and binary-encounter-dipole approximations were employed for calculating the electron-impact single ionization cross sections of the 5s, 4p6, 4s2, 3d10 shells and 4p6 excitation cross section for Rb atom taking into account both configuration interaction and relativistic effects. The capabilities of the most used theoretical approaches in describing the single ionization of Rb atom were considered by comparing the present and other available calculated data with the experimental total ionization and total direct single ionization cross sections over the electron-impact energy range from the 5s threshold to 600 eV. The best agreement within experimental uncertainty was obtained by using the non-relativistic binary-encounter-dipole approximation included in the LANL Atomic Physics Codes package. At present none of the used approximations (plane-wave Born or relativistic distorted wave) can satisfactorily describe the experimental excitation-autoionization cross section in rubidium because the efficient formation of the 4p6 core-excited negative-ion rubidium states at near-threshold impact energies is ignored in calculations.

  7. Relativistic model of secondary-electron energy spectra in electron-impact ionization

    SciTech Connect

    Miller, J.H. ); Manson, S.T. )

    1991-10-01

    A relativistic model for differential electron-impact-ionization cross sections that allows the energy spectrum of secondary electrons to be calculated over a wide range of primary-electron energies is presented. The semiempirical method requires only experimental total ionization cross sections and optical oscillator strengths for the target species of interest, but other information, if available, can be incorporated to make the formulation still more accurate. Results for ionization of helium indicate that the lower limit on primary-electron energy for application of the model is about 100 eV. The simple analytic form of the model facilitates investigation of the regions of the secondary-electron energy spectrum where relativistic effects are important.

  8. Absolute cross sections for vibrational excitations of cytosine by low energy electron impact

    PubMed Central

    Michaud, M.; Bazin, M.; Sanche, L.

    2013-01-01

    The absolute cross sections (CSs) for vibrational excitations of cytosine by electron impact between 0.5 and 18 eV were measured by electron-energy loss (EEL) spectroscopy of the molecule deposited at monolayer coverage on an inert Ar substrate. The vibrational energies compare to those that have been reported from IR spectroscopy of cytosine isolated in Ar matrix, IR and Raman spectra of poly-crystalline cytosine, and ab initio calculation. The CSs for the various H bending modes at 142 and 160 meV are both rising from their energy threshold up to 1.7 and 2.1 × 10−17 cm2 at about 4 eV, respectively, and then decrease moderately while maintaining some intensity at 18 eV. The latter trend is displayed as well for the CS assigned to the NH2 scissor along with bending of all H at 179 meV. This overall behavior in electron-molecule collision is attributed to direct processes such as the dipole, quadrupole, and polarization contributions, etc. of the interaction of the incident electron with a molecule. The CSs for the ring deformation at 61 meV, the ring deformation with N-H symmetric wag at 77 meV, and the ring deformations with symmetric bending of all H at 119 meV exhibit common enhancement maxima at 1.5, 3.5, and 5.5 eV followed by a broad hump at about 12 eV, which are superimposed on the contribution due to the direct processes. At 3.5 eV, the CS values for the 61-, 77-, and 119-meV modes reach 4.0, 3.0, and 4.5 × 10−17 cm2, respectively. The CS for the C-C and C-O stretches at 202 meV, which dominates in the intermediate EEL region, rises sharply until 1.5 eV, reaches its maximum of 5.7 × 10−17 cm2 at 3.5 eV and then decreases toward 18 eV. The present vibrational enhancements, correspond to the features found around 1.5 and 4.5 eV in electron transmission spectroscopy (ETS) and those lying within 1.5–2.1 eV, 5.2–6.8 eV, and 9.5–10.9 eV range in dissociative electron attachment (DEA) experiments with cytosine in gas phase. While the ETS features

  9. A combination thermal dissociation/electron impact ionization source for RIB generation

    SciTech Connect

    Alton, G.D.; Cui, B.; Welton, R.F.

    1996-12-31

    The flourishing interest in radioactive ion beams (RIBs) with intensities adequate for astrophysics and nuclear physics research place a premium on targets that will swiftly release trace amounts of short lived radio-nuclei in the presence of bulk quantities of target material and ion sources that have the capability of efficiently ionizing the release products. Because of the low probability of simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecules containing the element of interest with conventional, hot-cathode, electron-impact ion sources, the species of interest is often distributed in several mass channels in the form of molecular sideband beams and, consequently, the intensity is diluted. The authors have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high efficiency characteristics of an electron impact ionization source to address these problems. If the concept proves to be a viable option, the source will be used as a complement to the electron beam plasma ion sources already in use at the HRIBF. The design features and principles of operation of the source are described in this article.

  10. STORAGE RING CROSS SECTION MEASUREMENTS FOR ELECTRON IMPACT IONIZATION OF Fe{sup 12+} FORMING Fe{sup 13+} AND Fe{sup 14+}

    SciTech Connect

    Hahn, M.; Novotny, O.; Savin, D. W.; Grieser, M.; Krantz, C.; Repnow, R.; Wolf, A.; Lestinsky, M.; Mueller, A.; Schippers, S.

    2011-07-10

    We report electron impact ionization cross section measurements for electron impact single ionization of Fe{sup 12+} forming Fe{sup 13+} and electron impact double ionization of Fe{sup 12+} forming Fe{sup 14+}. These are the first electron impact ionization data for any Si-like ion uncontaminated by an unknown metastable fraction. Recent distorted wave calculations agree with our single ionization results to within {approx}15%. Double ionization is dominated by inner shell ionization of a 2l electron resulting in autoionization of a second electron as the inner shell hole is filled.

  11. Use of the Bethe Equation for Inner-Shell Ionization by Electron Impact

    PubMed Central

    Powell, Cedric J.; Llovet, Xavier; Salvat, Francesc

    2016-01-01

    We analyzed calculated cross sections for K-, L-, and M-shell ionization by electron impact to determine the energy ranges over which these cross sections are consistent with the Bethe equation for inner-shell ionization. Our analysis was performed with K-shell ionization cross sections for 26 elements, with L-shell ionization cross sections for seven elements, with L3-subshell ionization cross sections for Xe, and with M-shell ionization cross sections for three elements. The validity or otherwise of the Bethe equation could be checked with Fano plots based on a linearized form of the Bethe equation. Our Fano plots, which display theoretical cross sections and available measured cross sections, reveal two linear regions as predicted by de Heer and Inokuti. For each region, we made linear fits and determined values of the two element-specific Bethe parameters. We found systematic variations of these parameters with atomic number for both the low- and the high-energy linear regions of the Fano plots. We also determined the energy ranges over which the Bethe equation can be used. PMID:27546903

  12. Electron-impact ionization and electron attachment cross sections of radicals important in transient gaseous discharges

    NASA Technical Reports Server (NTRS)

    Lee, Long C.; Srivastava, Santosh K.

    1990-01-01

    Electron-impact ionization and electron attachment cross sections of radicals and excited molecules were measured using an apparatus that consists of an electron beam, a molecular beam and a laser beam. The information obtained is needed for the pulse power applications in the areas of high power gaseous discharge switches, high energy lasers, particle beam experiments, and electromagnetic pulse systems. The basic data needed for the development of optically-controlled discharge switches were also investigated. Transient current pulses induced by laser irradiation of discharge media were observed and applied for the study of electron-molecule reaction kinetics in gaseous discharges.

  13. Electron-impact ionization of molecular hydrogen at 38 eV incident energy

    NASA Astrophysics Data System (ADS)

    Colgan, James; Ren, Xueguang; Dorn, Alexander; Pindzola, M. S.

    2016-05-01

    We report on recent measurements of the triple differential cross sections from electron-impact ionization of molecular hydrogen at an incident energy of 38 eV. Results are reported for various orientations of the target molecule, as well as various scattering angles and energy sharings of the outgoing electrons. The measurements are compared with calculations performed using a time-dependent close-coupling approach. Reasonable agreement is found between theory and measurement. We also compare and contrast our results to those obtained at higher incident electron energies, which were reported recently.

  14. Scaling law for total electron-impact ionization cross sections of Li-like ions

    SciTech Connect

    Ancarani, L.U.; Hervieux, P.-A.

    2005-09-15

    Experimental total cross sections for direct electron-impact ionization of the valence electron of several Li-like ions are seen to follow a new ab initio scaling law which is inspired by a Coulomb-Born model and the frozen-core Hartree-Fock approximation. The predictive character of this scaling law should be very useful to experimentalists and can be used to complete data tables needed for plasma or astrophysical studies. A single-parameter fit of the best available experimental data, once scaled, provides us with a single formula, for moderately charged Li-like ions, which is more accurate than Lotz semiempirical formula.

  15. Analysis and simulation for a model of electron impact excitation/deexcitation and ionization/recombination

    SciTech Connect

    Yan, Bokai; Caflisch, Russel E.; Barekat, Farzin; Cambier, Jean-Luc

    2015-10-15

    This paper describes a kinetic model and a corresponding Monte Carlo simulation method for excitation/deexcitation and ionization/recombination by electron impact in a plasma free of external fields. The atoms and ions in the plasma are represented by continuum densities and the electrons by a particle distribution. A Boltzmann-type equation is formulated and a corresponding H-theorem is formally derived. An efficient Monte Carlo method is developed for an idealized analytic model of the excitation and ionization collision cross sections. To accelerate the simulation, the reduced rejection method and binary search method are used to overcome the singular rate in the recombination process. Numerical results are presented to demonstrate the efficiency of the method on spatially homogeneous problems. The evolution of the electron distribution function and atomic states is studied, revealing the possibility under certain circumstances of system relaxation towards stationary states that are not the equilibrium states, a potential non-ergodic behavior.

  16. Ion appearance energies at electron-impact dissociative ionization of sulfur hexafluoride molecule and its fragments

    NASA Astrophysics Data System (ADS)

    Demesh, Shandor Sh.; Remeta, Eugene Yu.

    2015-07-01

    Theoretical analysis of appearance energies for SF{/k +} ( k = 0- n) ion fragments of SF6 molecule as well as F+ and F{2/+} ions at electron-impact dissociative ionization of SF n ( n = 1-6) molecules is presented. Theoretical methods of GAMESS software package were used to calculate the total energies of neutral and charged molecular and atomic fragments. The dissociative ionization process is concluded to occur via repulsive highly-excited electronic states of the SF6 molecule and its fragments, due to which the observed appearance energies exceed the theoretical values. The electron binding energies on the molecular orbitals in the SF6 molecule are compared with the ion fragment appearance energies.

  17. Fragment appearance energies in dissociative ionization of a sulfur hexafluoride molecule by electron impact

    NASA Astrophysics Data System (ADS)

    Demesh, Sh. Sh.; Zavilopulo, A. N.; Shpenik, O. B.; Remeta, E. Yu.

    2015-06-01

    Theoretical analysis of the fragment appearance energies corresponding to possible channels of formation of SF{/k +} fragments in dissociative ionization of the SF6 molecule by an electron impact is carried out. The total energies of neutral and ion molecular and atomic fragments are calculated using the theoretical methods of the GAMESS program complex. It is concluded that apart from dissociative ionization via autoionizing repulsive electronic states of the SF6 molecule, the excitation channels for SF{/k +} fragments and F2 molecules play a significant role, which leads to higher values of the observed fragment appearance energy as compared to theoretical values. The dependence of the energy corresponding to the formation of SF{/k +} c fragments on the number k of fluorine atoms is considered.

  18. Evidence of strong projectile-target-core interaction in single ionization of neon by electron impact

    SciTech Connect

    Yan, S.; Zhang, P.; Xu, S.; Ma, X.; Zhang, S. F.; Zhu, X. L.; Feng, W. T.; Liu, H. P.

    2010-11-15

    The momentum distributions of recoil ions were measured in the single ionization of neon by electron impact at incident energies between 80 and 2300 eV. It was found that there are a noticeable number of recoil ions carrying large momenta, and the relative contributions of these ions becomes more pronounced with the further decrease of incident electron energy. These observed behaviors indicate that there is a strong projectile-target-core interaction in the single-ionization reaction. By comparing our results with those of electron-neon elastic scattering, we concluded that the elastic scattering of the projectile electron on the target core plays an important role at low and intermediate collision energies.

  19. Generalized Kolbenstvedt model for electron impact ionization of the K-, L- and M-shell ions

    NASA Astrophysics Data System (ADS)

    Haque, A. K. F.; Shahjahan, M.; Uddin, M. A.; Patoary, M. A. R.; Basak, A. K.; Saha, B. C.; Malik, F. B.

    2010-04-01

    The recently proposed generalized Kolbenstvedt model (GKLV) of Haque et al (2007 Eur. Phys. J. D 42 203), for the electron impact ionization (EII) of atoms, was applied to a wide range of K-, L- and M-shell electrons of ionic targets from threshold to 1 MeV incident energy. The set of species-independent parameters, two for each of the ionized orbits, is the same as that for neutral targets, and provides an excellent account of the EII cross-sectional data for 36 ions, including those belonging to Li, Be, B, C, N, O and Ne electronic sequences as well as those having 3s-, 3p- and 3d-configurations of the M-shell in a consistent manner. The performance of GKLV is found to be better than that of the modified version of the BELL model (Haque et al 2006 Phys. Rev. A 73 052703, Haque et al 2006 Phys. Scr. 74 377).

  20. Storage Ring Cross Section Measurements for Electron Impact Ionization of Fe7+

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Becker, A.; Bernhardt, D.; Grieser, M.; Krantz, C.; Lestinsky, M.; Müller, A.; Novotný, O.; Repnow, R.; Schippers, S.; Spruck, K.; Wolf, A.; Savin, D. W.

    2015-11-01

    We have measured electron impact ionization for Fe7+ from the ionization threshold up to 1200 eV. The measurements were performed using the TSR heavy ion storage ring. The ions were stored long enough prior to measurements to remove most metastables, resulting in a beam of 94% ground-level ions. Comparing with the previously recommended atomic data, we find that the Arnaud & Raymond cross section is up to about 40% larger than our measurement, with the largest discrepancies below about 400 eV. The cross section of Dere agrees to within 10%, which is about the magnitude of the experimental uncertainties. The remaining discrepancies between our measurement and the Dere calculations are likely due to shortcomings in the theoretical treatment of the excitation-autoionization contribution.

  1. Storage ring cross section measurements for electron impact ionization of Fe8+

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Becker, A.; Bernhardt, D.; Grieser, M.; Krantz, C.; Lestinsky, M.; Müller, A.; Novotný, O.; Pindzola, M. S.; Repnow, R.; Schippers, S.; Spruck, K.; Wolf, A.; Savin, D. W.

    2016-04-01

    We have measured electron impact ionization (EII) for Fe8+ forming Fe9+ from below the ionization threshold to 1200 eV. These measurements were carried out at the TSR heavy ion storage ring. The objective of using a storage ring is to store the ion beam initially so that metastable levels decay, thereby allowing for measurements on a well-defined ground-level ion beam. In this case, however, some metastable levels were too long lived to be removed. We discuss several methods for quantifying the metastable fraction, which we estimate to be ∼30%–40%. Although metastables remain problematic, the present storage ring work improves upon other experimental geometries by limiting the metastable contamination to only a few long-lived excited levels. We discuss some future prospects for obtaining improved measurements of Fe8+ and other ions with long-lived metastable levels.

  2. Total Electron-Impact Ionization Cross-Sections of CFx and NFx (x = 1 - 3)

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Tarnovsky, Vladimir; Becker, Kurt H.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The discrepancy between experimental and theoretical total electron-impact ionization cross sections for a group of fluorides, CFx, and NFx, (x = 1 - 3), is attributed to the inadequacies in previous theoretical models. Cross-sections calculated using a recently developed siBED (simulation Binary-Encounter-Dipole) model that takes into account the shielding of the long-range dipole potential between the scattering electron and target are in agreement with experimentation. The present study also carefully reanalyzed the previously reported experimental data to account for the possibility of incomplete collection of fragment ions and the presence of ion-pair formation channels. For NF3, our experimental and theoretical cross-sections compare well with the total ionization cross-sections recently reported by Haaland et al. in the region below dication formation.

  3. Electron Impact Ionization and Dissociative Ionization of C2H2

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K.

    1995-01-01

    By utilizing a crossed electron beam collision geometry, a combination of time-of-flight (TOF) and quadrupole mass spectrometers, and the relative flow technique1 normalized values of cross sections and appearance energies (AP) were obtained for the formation of singly and multiply ionized species resulting from the ionization and dissociation of C2H2. Details ont he apparatus and technique have been published previously.2,3.

  4. Dissociative Ionization and Product Distributions of Benzene and Pyridine by Electron Impact

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Huo, Winifred M.; Fletcher, Graham D.

    2003-01-01

    We report a theoretical study of the dissociative ionization (DI) and product distributions of benzene (C6H6) and pyridine (C5H5N) from their low-lying ionization channels. Our approach makes use of the fact that electronic motion is much faster than nuclear motion allowing DI to be treated as a two-step process. The first step is the electron-impact ionization resulting in an ion with the same nuclear geometry as the neutral molecule. In the second step, the nuclei relax from the initial geometry and undergo unimolecular dissociation. For the ionization process we use the improved binary-encounter dipole (iBED) model [W.M. Huo, Phys. Rev. A64,042719-I (2001)]. For the unimolecular dissociation, we use multiconfigurational self-consistent field (MCSCF) methods to determine the steepest descent pathways to the possible product channels. More accurate methods are then used to obtain better energetics of the paths which are used to determine unimolecular dissociation probabilities and product distributions. Our analysis of the dissociation products and the thresholds of their productions for benzene are compared with the recent dissociative photoionization meausurements of benzene by Feng et al. [R. Feng, G. Cooper, C.E. Brion, J. Electron Spectrosc. Relat. Phenom. 123,211 (2002)] and the dissociative photoionization measurements of pyridine by Tixier et al. [S. Tixier, G. Cooper, R. Feng, C.E. Brion, J. Electron Spectrosc. Relat. Phenom. 123,185 (2002)] using dipole (e,e+ion) coincidence spectroscopy.

  5. Dissociative-ionization cross sections for 12-keV-electron impact on CO{sub 2}

    SciTech Connect

    Bhatt, Pragya; Singh, Raj; Yadav, Namita; Shanker, R.

    2011-10-15

    The dissociative ionization of a CO{sub 2} molecule is studied at an electron energy of 12 keV using the multiple ion coincidence imaging technique. The absolute partial ionization cross sections and the precursor-specific absolute partial ionization cross sections of resulting fragment ions are obtained and reported. It is found that {approx}75% of single ionization, 22% of double ionization, and {approx}2% of triple ionization of the parent molecule contribute to the total fragment ion yield; quadruple ionization of CO{sub 2} is found to make a negligibly small contribution. Furthermore, the absolute partial ionization cross sections for ion-pair and ion-triple formation are measured for nine dissociative ionization channels of up to a quadruply ionized CO{sub 2} molecule. In addition, the branching ratios for single-ion, ion-pair, and ion-triple formation are also determined.

  6. Vibrational overtone spectroscopy of H/sub 2/O (4. gamma. /sub OH/) using energy-selective electron impact ionization

    SciTech Connect

    Hayden, C.C.; Penn, S.M.; Carlson, K.J.; Crim, F.F.

    1988-03-24

    The authors describe a new method for obtaining vibrational overtone spectra of polyatomic molecules in supersonic expansions that uses low-energy electrons to ionize the vibrationally excited molecules. Measuring the excitation spectrum of water in the region of the third overtone of the OH stretching vibration (4..sigma../sub OH/) demonstrates the technique. The ionization process is probably not direct but may occur by electron impact excitation to vibrationally and electronically excited states from which the neutral molecule is subsequently ionizes

  7. Electron-impact ionization of P-like ions forming Si-like ions

    SciTech Connect

    Kwon, D.-H.; Savin, D. W.

    2014-03-20

    We have calculated electron-impact ionization (EII) for P-like systems from P to Zn{sup 15+} forming Si-like ions. The work was performed using the flexible atomic code (FAC) which is based on a distorted-wave approximation. All 3ℓ → nℓ' (n = 3-35) excitation-autoionization (EA) channels near the 3p direct ionization threshold and 2ℓ → nℓ' (n = 3-10) EA channels at the higher energies are included. Close attention has been paid to the detailed branching ratios. Our calculated total EII cross sections are compared both with previous FAC calculations, which omitted many of these EA channels, and with the available experimental results. Moreover, for Fe{sup 11+}, we find that part of the remaining discrepancies between our calculations and recent measurements can be accounted for by the inclusion of the resonant excitation double autoionization process. Lastly, at the temperatures where each ion is predicted to peak in abundances in collisional ionization equilibrium, the Maxwellian rate coefficients derived from our calculations differ by 50%-7% from the previous FAC rate coefficients, with the difference decreasing with increasing charge.

  8. Experimental and Theoretical Fully differential cross sections for electron impact ionization of phenol molecules

    NASA Astrophysics Data System (ADS)

    Ali, Esam; Jones, D.; Silva, G.; Chiari, L.; Neves, R.; Lopes, M.; Brunger, M.; Ning, C.; Madison, D.

    2014-10-01

    Experimental and theoretical Fully Differential Cross Sections (FDCS) are presented for 250 eV electron impact ionization of the highest and next highest occupied molecular orbitals (HOMO and NHOMO). Theoretical results are compared with experiment for in plane scattering with projectile scattering angles of 5°, 10°, and 15°. Different theoretical models are examined - the molecular 3 body distorted wave (M3DW), and the distorted wave Born approximation (DWBA), with the effects of the post collision interaction (PCI) treated either exactly or with the Ward-Macek approximations. These approximations show good agreement with experimental data for binary peaks. However, for the recoil peak region, experiment finds a noticeable peak while theory predicts no peak. No recoil peak suggests no (or very weak) nuclear scattering, so we have investigated the importance of nuclear scattering by moving the nuclei closer to the center of mass. Work supported by NSF and the XSEDE.

  9. A (e,2e +ion) study of low-energy electron-impact ionization of THF

    NASA Astrophysics Data System (ADS)

    Ali, Esam; Ren, Xueguang; Ning, Chuangang; Dorn, Alexander; Madison, Don

    2015-09-01

    We have investigated the Fully Differential Cross Sections (FDCS) for electron impact induced ionization of THF (C4H8O) by low-energy (Eo = 26 eV) for three different orbital states of the highest, next highest, and next-next highest occupied molecular orbitals (HOMO, NHOMO, and Next NHOMO). Theoretical results are compared with experiment for in plane scattering with projectile scattering angles of 15°, 25°, 35°, and 50°. Different theoretical models are examined - the molecular 3 body distorted wave (M3DW), and the distorted wave Born approximation (DWBA), with the effects of the post collision interaction (PCI) treated either exactly or with the Ward-Macek approximations. This work is supported by the US National Science Foundation under Grant No. PHY-1068237 and XSEDE resources provided by the Texas Advanced Computing Center (Grant No. TG-MCA07S029).

  10. Relativistic electronic dressing in laser-assisted ionization of atomic hydrogen by electron impact

    SciTech Connect

    Attaourti, Y.; Taj, S.

    2004-06-01

    Within the framework of the coplanar binary geometry where it is justified to use plane wave solutions for the study of the (e,2e) reaction and in the presence of a circularly polarized laser field, we introduce as a first step the Dirac-Volkov plane wave Born approximation 1 where we take into account only the relativistic dressing of the incident and scattered electrons. Then, we introduce the Dirac-Volkov plane wave Born approximation 2 where we take totally into account the relativistic dressing of the incident, scattered, and ejected electrons. We then compare the corresponding triple differential cross sections for laser-assisted ionization of atomic hydrogen by electron impact both for the nonrelativistic and the relativistic regime.

  11. Theoretical and Experimental Triple Differential Cross Sections for Electron Impact Ionization of SF6

    NASA Astrophysics Data System (ADS)

    Chaluvadi, Hari; Nixon, Kate; Murray, Andrew; Ning, Chuangang; Colgan, James; Madison, Don

    2014-10-01

    Experimental and theoretical Triply Differential Cross Sections (TDCS) will be presented for electron-impact ionization of sulfur hexafluoride (SF6) for the molecular orbital 1t1g. M3DW (molecular 3-body distorted wave) results will be compared with experiment for coplanar geometry and for perpendicular plane geometry (a plane which is perpendicular to the incident beam direction). In both cases, the final state electron energies and observation angles are symmetric and the final state electron energies range from 5 eV to 40 eV. It will be shown that there is a large difference between using the OAMO (orientation averaged molecular orbital) approximation and the proper average over all orientations and also that the proper averaged results are in much better agreement with experiment. Work supported by NSF under Grant Number PHY-1068237. Computational work was performed with Institutional resources made available through Los Alamos National Laboratory.

  12. Electron-impact excitation and ionization cross sections for ground state and excited helium atoms

    SciTech Connect

    Ralchenko, Yu. Janev, R.K.; Kato, T.; Fursa, D.V.; Bray, I.; Heer, F.J. de

    2008-07-15

    Comprehensive and critically assessed cross sections for the electron-impact excitation and ionization of ground state and excited helium atoms are presented. All states (atomic terms) with n{<=}4 are treated individually, while the states with n{>=}5 are considered degenerate. For the processes involving transitions to and from n{>=}5 levels, suitable cross section scaling relations are presented. For a large number of transitions, from both ground and excited states, convergent close coupling calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions, which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in graphical form.

  13. Electrochemical Etching and Characterization of Sharp Field Emission Points for Electron Impact Ionization.

    PubMed

    Van Well, Tyler L; Redshaw, Matthew; Gamage, Nadeesha D; Kandegedara, R M Eranjan B

    2016-01-01

    A new variation of the drop-off method for fabricating field emission points by electrochemically etching tungsten rods in a NaOH solution is described. The results of studies in which the etching current and the molarity of the NaOH solution used in the etching process were varied are presented. The investigation of the geometry of the tips, by imaging them with a scanning electron microscope, and by operating them in field emission mode is also described. The field emission tips produced are intended to be used as an electron beam source for ion production via electron impact ionization of background gas or vapor in Penning trap mass spectrometry applications. PMID:27500824

  14. S-model calculations for high-energy-electron-impact double ionization of helium

    NASA Astrophysics Data System (ADS)

    Gasaneo, G.; Mitnik, D. M.; Randazzo, J. M.; Ancarani, L. U.; Colavecchia, F. D.

    2013-04-01

    In this paper the double ionization of helium by high-energy electron impact is studied. The corresponding four-body Schrödinger equation is transformed into a set of driven equations containing successive orders in the projectile-target interaction. The transition amplitude obtained from the asymptotic limit of the first-order solution is shown to be equivalent to the familiar first Born approximation. The first-order driven equation is solved within a generalized Sturmian approach for an S-wave (e,3e) model process with high incident energy and small momentum transfer corresponding to published measurements. Two independent numerical implementations, one using spherical and the other hyperspherical coordinates, yield mutual agreement. From our ab initio solution, the transition amplitude is extracted, and single differential cross sections are calculated and could be taken as benchmark values to test other numerical methods in a previously unexplored energy domain.

  15. Comparison of experimental and theoretical electron-impact-ionization triple-differential cross sections for ethane

    NASA Astrophysics Data System (ADS)

    Ali, Esam; Nixon, Kate; Murray, Andrew; Ning, Chuangang; Colgan, James; Madison, Don

    2015-10-01

    We have recently examined electron-impact ionization of molecules that have one large atom at the center, surrounded by H nuclei (H2O , N H3 , C H4 ). All of these molecules have ten electrons; however, they vary in their molecular symmetry. We found that the triple-differential cross sections (TDCSs) for the highest occupied molecular orbitals (HOMOs) were similar, as was the character of the HOMO orbitals which had a p -type "peanut" shape. In this work, we examine ethane (C2H6 ) which is a molecule that has two large atoms surrounded by H nuclei, so that its HOMO has a double-peanut shape. The experiment was performed using a coplanar symmetric geometry (equal final-state energies and angles). We find the TDCS for ethane is similar to the single-center molecules at higher energies, and is similar to a diatomic molecule at lower energies.

  16. Triple Differential Cross Sections for Ionization of Laser-Aligned Mg Atoms by electron impact

    NASA Astrophysics Data System (ADS)

    Amami, Sadek; Madison, Don; Nixon, Kate; Murray, Andrew

    2013-09-01

    3DW (3-body distorted wave) triple differential cross sections have been calculated for electron impact ionization of magnesium atoms aligned by lasers. Calculations have been performed for the kinematics of the experiment performed by Kate Nixon and Andrew Murray at Manchester, England [K. L. Nixon and A. J. Murray 2011 Phys. Rev. Lett. 106, 123201]. An incident projectile was produced with energy of 41.91eV, scattered and ejected electrons were detected with equal energies (E1 =E2 =20eV), the scattered projectile was detected at a fixed angle of 30deg, and the ejected electrons were detected at angles ranging between 0circ; - 180circ; . The theoretical 3DW results will be compared with the experimental data. This work is supported by the US National Science Foundation under Grant.No.PHY-1068237.

  17. Absolute cross sections for electronic excitation of pyrimidine by electron impact.

    PubMed

    Regeta, Khrystyna; Allan, Michael; Mašín, Zdeněk; Gorfinkiel, Jimena D

    2016-01-14

    We measured differential cross sections for electron-impact electronic excitation of pyrimidine, both as a function of electron energy up to 18 eV, and of scattering angle up to 180°. The emphasis of the present work is on recording detailed excitation functions revealing resonances in the excitation process. The differential cross sections were summed to obtain integral cross sections. These are compared to results of R-matrix calculations, which successfully reproduce both the magnitude of the cross section and the major resonant features. Comparison of the experiment to the calculated contributions of different symmetries to the integral cross section permitted assignment of several features to specific core-excited resonances. Comparison of the resonant structure of pyrimidine with that of benzene revealed pronounced similarities and thus a dominant role of π-π(∗) excited states and resonances. Electron energy loss spectra were measured as a preparation for the cross section measurements and vibrational structure was observed for some of the triplet states. A detailed analysis of the electronic excited states of pyrimidine is also presented. PMID:26772566

  18. A new method for measuring absolute total electron-impact cross sections with forward scattering corrections

    SciTech Connect

    Ma, C.; Liescheski, P.B.; Bonham, R.A. )

    1989-12-01

    In this article we describe an experimental technique to measure the total electron-impact cross section by measurement of the attenuation of an electron beam passing through a gas at constant pressure with the unwanted forward scattering contribution removed. The technique is based on the different spatial propagation properties of scattered and unscattered electrons. The correction is accomplished by measuring the electron beam attenuation dependence on both the target gas pressure (number density) and transmission length. Two extended forms of the Beer--Lambert law which approximately include the contributions for forward scattering and for forward scattering plus multiple scattering from the gas outside the electron beam were developed. It is argued that the dependence of the forward scattering on the path length through the gas is approximately independent of the model used to describe it. The proposed methods were used to determine the total cross section and forward scattering contribution from argon (Ar) with 300-eV electrons. Our results are compared with those in the literature and the predictions of theory and experiment for the forward scattering and multiple scattering contributions. In addition, Monte Carlo simulations were performed as a further test of the method.

  19. Exchange distortion and postcollision interaction for intermediate-energy electron-impact ionization of argon

    SciTech Connect

    Prideaux, A.; Madison, D.H.; Bartschat, K.

    2005-09-15

    Measurements of fully differential cross sections for electron impact ionization of atoms have been performed for over 30 years. However, only within the last ten years has agreement between experiment and theory been achieved for ionization of hydrogen and helium. For the heavier inert gases, reasonably good agreement between experiment and theory has only been achieved for high incident energies while serious discrepancies are common for intermediate and low incident energies. It is believed that a major source of the problem stems from an improper/inadequate treatment of exchange distortion (ED) and the effects of post-collision interactions (PCIs). In this paper, two different methods for including ED are examined--one based upon the R matrix (close-coupling) approach and one originating from the single-configuration Hartree-Fock approach. In general, these two methods predict significant, but different, ED effects. The importance of PCI is studied by including the final-state Coulomb interaction directly in the final-state wave function. This procedure guarantees that PCI effects will be included to all orders of perturbation theory. For intermediate energies, PCI is an important effect and leads to an overall improvement in the agreement between experiment and theory.

  20. Exchange distortion and postcollision interaction for intermediate-energy electron-impact ionization of argon

    NASA Astrophysics Data System (ADS)

    Prideaux, A.; Madison, D. H.; Bartschat, K.

    2005-09-01

    Measurements of fully differential cross sections for electron impact ionization of atoms have been performed for over 30 years. However, only within the last ten years has agreement between experiment and theory been achieved for ionization of hydrogen and helium. For the heavier inert gases, reasonably good agreement between experiment and theory has only been achieved for high incident energies while serious discrepancies are common for intermediate and low incident energies. It is believed that a major source of the problem stems from an improper/inadequate treatment of exchange distortion (ED) and the effects of post-collision interactions (PCIs). In this paper, two different methods for including ED are examined—one based upon the R matrix (close-coupling) approach and one originating from the single-configuration Hartree-Fock approach. In general, these two methods predict significant, but different, ED effects. The importance of PCI is studied by including the final-state Coulomb interaction directly in the final-state wave function. This procedure guarantees that PCI effects will be included to all orders of perturbation theory. For intermediate energies, PCI is an important effect and leads to an overall improvement in the agreement between experiment and theory.

  1. Evaluation of the computational methods for electron-impact total ionization cross sections: Fluoromethanes as benchmarks

    NASA Astrophysics Data System (ADS)

    Torres, I.; Martínez, R.; Sánchez Rayo, M. N.; Castaño, F.

    2001-09-01

    The experimental electron-impact total ionization cross sections (TICSs, ICSs) of CF4, CHF3, CH2F2, and CH3F fluoromethanes reported so far and a new set of data obtained with a linear double focusing time-of-flight mass spectrometer have been compared with the ab initio and (semi)empirical based ICS available methods. TICSs computational methods include: two approximations of the binary-encounter dipole (BED) referred to hereafter as Kim (Kim-BEB) and Khare (Khare-BEB) methods, the Deutsch and Märk (DM) formalism, also requiring atomic and molecular ab initio information, the modified additivity rule (MAR), and the Harland and Vallance (HV) methods, both based on semiempirical or empirical correlations. The molecular ab initio information required by the Kim, Khare, and DM methods has been computed at a variety of quantum chemistry levels, with and without electron correlation and a comprehensive series of basis sets. The general conclusions are summarized as follows: the Kim method yields TICS in excellent agreement with the experimental method; the Khare method provides TICS very close to that of Kim at low electron-impact energies (<100 eV), but their Mott and Bethe contributions are noticeably different; in the Kim and Khare approximations the electron correlation methods improve the fittings to the experimental profiles in contrast with the large basis sets, that leads to poorer results; the DM formalism yields TICS profiles with shapes similar to the experimental and the BEB methods, but consistently lower and with the profiles maxima shifted towards lower incident electron energies; the MAR method supplies very good ICS profiles, between those of BEB and DM methods; finally, the empirical HV method provides rather poor fittings concomitant with the simplicity and the few empirical parameters used.

  2. Relativistic calculations of cross sections for ionization of U90+ and U91+ ions by electron impact

    NASA Astrophysics Data System (ADS)

    Fontes, Christopher J.; Sampson, Douglas H.; Zhang, Hong Lin

    1995-01-01

    Relativistic distorted-wave calculations have been made of the cross sections for electron-impact ionization of U90+ and U91+ ions with the generalized Breit interaction included between bound and free electrons. Good agreement is obtained with recent electron-beam ion-trap experiments [R. E. Marrs, S. R. Elliott, and D. A. Knapp, Phys. Rev. Lett. 72, 4082 (1994)].

  3. Experimental and Theoretical Fully differential cross sections for electron impact ionization of furfuryl molecules

    NASA Astrophysics Data System (ADS)

    Ali, Esam; Jones, Darryl; Nixon, Kate; Ning, Chuangang; Brunger, Michael; Murray, Andrew; Madison, Don

    2015-09-01

    Experimental and theoretical Fully Differential Cross Sections (FDCS) are presented for 250 eV electron impact ionization of the highest and next highest occupied molecular orbitals (HOMO and NHOMO). Theoretical results are compared with experiment for in plane scattering with projectile scattering angles of 5°, 10°, and 15°. Different theoretical models are examined - the molecular 3 body distorted wave (M3DW), and the distorted wave Born approximation (DWBA), with the effects of the post collision interaction (PCI) treated either exactly or with the Ward-Macek approximations. These approximations show good agreement with experimental data for binary peaks. However, for the recoil peak region, experiment finds a noticeable peak while theory predicts no peak. No recoil peak suggests no (or very weak) nuclear scattering, so we have investigated the importance of nuclear scattering by moving the nuclei closer to the center of mass. This work is supported by the US National Science Foundation under Grant No. PHY-1068237 and XSEDE resources provided by the Texas Advanced Computing Center (Grant No. TG-MCA07S029).

  4. Theoretical and Experimental Triple Differential Cross Sections for Electron Impact Ionization of Methane

    NASA Astrophysics Data System (ADS)

    Ch, Haari; Xu, Shenyue; Ning, Chuangang; Madison, Don; Ren, Xueguang; Pflueger, Thomas; Senftleben, Arne; Dorn, Alexander; Ullrich, Joachim

    2011-05-01

    Triple differential cross sections have been calculated and measured for 54 eV electron-impact ionization of the highest occupied molecular orbital (HOMO) 1t2 state of methane (CH4). Results will be presented both for the scattering plane and a plane in which the ejected electron is perpendicular to the incident beam direction. A systematic comparison between theoretical DWBA (distorted wave Born approximation), M3DW (molecular 3-body distorted wave), and experiment will be given for ejected electron energies ranging between 5 eV to 20 eV and scattered projectile angles ranging between 20 degrees and 55 degrees. In the perpendicular plane, better qualitative agreement between experiment and theory was found for the smaller projectile scattering angles and higher ejected electron energies. In the scattering plane on the other hand, agreement between theory and experiment tended to be better for the lower ejected electron energies. This work was supported by the National Science Foundation under Grant. No. PHY-0757749.

  5. A vortex line for K-shell ionization of a carbon atom by electron impact

    NASA Astrophysics Data System (ADS)

    Ward, S. J.; Macek, J. H.

    2014-10-01

    We obtained using the Coulomb-Born approximation a deep minimum in the TDCS for K-shell ionization of a carbon atom by electron impact for the electron ejected in the scattering plane. The minimum is obtained for the kinematics of the energy of incident electron Ei = 1801.2 eV, the scattering angle θf = 4°, the energy of the ejected electron Ek = 5 . 5 eV, and the angle for the ejected electron θk = 239°. This minimum is due to a vortex in the velocity field. At the position of the vortex, the nodal lines of Re [ T ] and Im [ T ] intersect. We decomposed the CB1 T-matrix into its multipole components for the kinematics of a vortex, taking the z'-axis parallel to the direction of the momentum transfer vector. The m = +/- 1 dipole components are necessary to obtain a vortex. We also considered the electron to be ejected out of the scattering plane and obtained the positions of the vortex for different values of the y-component of momentum of the ejected electron, ky. We constructed the vortex line for the kinematics of Ei = 1801.2 eV and θf = 4°. S.J.W. and J.H.M. acknowledge support from NSF under Grant No. PHYS- 0968638 and from D.O.E. under Grant Number DE-FG02-02ER15283, respectively.

  6. Propensity for distinguishing two free electrons with equal energies in electron-impact ionization of helium

    NASA Astrophysics Data System (ADS)

    Ren, Xueguang; Senftleben, Arne; Pflüger, Thomas; Bartschat, Klaus; Zatsarinny, Oleg; Berakdar, Jamal; Colgan, James; Pindzola, Michael S.; Bray, Igor; Fursa, Dmitry V.; Dorn, Alexander

    2015-11-01

    We report a combined experimental and theoretical study on the electron-impact ionization of helium at E0=70.6 eV and equal energy sharing of the two outgoing electrons (E1=E2=23 eV ), where a double-peak or dip structure in the binary region of the triple differential cross section is observed. The experimental cross sections are compared with results from convergent close-coupling (CCC), B -spline R-matrix-with-pseudostates (BSR), and time-dependent close-coupling (TDCC) calculations, as well as predictions from the dynamic screening three-Coulomb (DS3C) theory. Excellent agreement is obtained between experiment and the nonperturbative CCC, BSR, and TDCC theories, and good agreement is also found for the DS3C model. The data are further analyzed regarding contributions in particular coupling schemes for the spins of either the two outgoing electrons or one of the outgoing electrons and the 1 s electron remaining in the residual ion. While both coupling schemes can be used to explain the observed double-peak structure in the cross section, the second one allows for the isolation of the exchange contribution between the incident projectile and the target. For different observation angles of the two outgoing electrons, we interpret the results as a propensity for distinguishing these two electrons—one being more likely the incident projectile and the other one being more likely ejected from the target.

  7. Electron impact fragmentation of adenine: partial ionization cross sections for positive fragments

    NASA Astrophysics Data System (ADS)

    van der Burgt, Peter J. M.; Finnegan, Sinead; Eden, Samuel

    2015-07-01

    Using computer-controlled data acquisition we have measured mass spectra of positive ions for electron impact on adenine, with electron energies up to 100 eV. Ion yield curves for 50 ions have been obtained and normalized by comparing their sum to the average of calculated total ionization cross sections. Appearance energies have been determined for 37 ions; for 20 ions for the first time. All appearance energies are consistent with the fragmentation pathways identified in the literature. Second onset energies have been determined for 12 fragment ions (for 11 ions for the first time), indicating the occurrence of more than one fragmentation process e.g. for 39 u (C2HN+) and 70 u (C2H4N3+). Matching ion yield shapes (118-120 u, 107-108 u, 91-92 u, and 54-56 u) provide new evidence supporting closely related fragmentation pathways and are attributed to hydrogen rearrangement immediately preceding the fragmentation. We present the first measurement of the ion yield curve of the doubly charged parent ion (67.5 u), with an appearance energy of 23.5 ± 1.0 eV. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  8. Deep minimum in the triple differential cross sections for the electron-impact ionization of He

    NASA Astrophysics Data System (ADS)

    Colgan, James; Feagin, James; Pindzola, Michael

    2012-06-01

    We further explore the unusual deep minimum found in the triple differential cross sections for the electron-impact ionization of helium. This feature has been observed experimentally more than 15 years ago [1] and confirmed via close-coupling calculations [2]. A recent study [3] identified the minimum with a vortex in the two-electron continuum, and an analytic expansion of the electron pair about the vortex has recently been derived [4]. The imaging theorem [3] is invoked to compute the TDCS from the radial wavefunctions propagated in time via solution of the time-dependent Schr"odinger equation for the electron helium system. This allows us to more easily visualize the portion of the wavefunction that contributes to the TDCS at the specific ejected electron angles where the deep minimum is observed. Interesting features in the radial wavefunction as a function of time are found, which appear to be consistent with the prediction [3] that a vortex in the two-electron wavefunction is responsible for the observed deep minimum. [1] A. J. Murray and F. H. Read, J. Phys. B 26, L359 (1993). [2] J. Colgan et al, J. Phys. B. 42, 171001 2009. [3] J. H. Macek, et al, Phys. Rev. Letts. 104, 033201 (2010). [4] J. M. F Feagin, J. Phys. B 44, 011001 (2011).

  9. Electron-impact excitation and ionization of W3+ for the determination of tungsten influx in a fusion plasma

    NASA Astrophysics Data System (ADS)

    Ballance, C. P.; Loch, S. D.; Pindzola, M. S.; Griffin, D. C.

    2013-03-01

    Tungsten will be employed as a plasma facing material in the ITER fusion reactor under construction in Cadarache, France; therefore, there is a significant need for accurate electron-impact excitation and ionization data for the ions of tungsten. We report on the results of extensive calculations of ionization and excitation for W3+ that are intended to provide the atomic data needed for the determination of impurity influx diagnostics of tungsten in several existing tokamak reactors. The electron-impact excitation rate coefficients for this study were determined using the relativistic R-matrix method. The contribution to direct electron-impact ionization was determined using the distorted-wave approximation, the accuracy of which was verified by an R-matrix with pseudo states calculation. Contributions to total ionization from excitation autoionization were also generated from the relativistic R-matrix method. These results were then employed to calculate values of ionization per emitted photon, or SXB ratios, for four carefully selected spectral lines; these data will allow the determination of impurity influx from tungsten facing surfaces. For the range of densities of importance in the edge region of a tokamak reactor, these SXB ratios are found to be nearly independent of electron density but vary significantly with electron temperature.

  10. Electron-impact ionization of benzoic acid, nicotinic acid and their n-butyl esters

    NASA Astrophysics Data System (ADS)

    Opitz, Joachim

    2007-08-01

    Electron-impact ionization mass spectra, the decay of metastable ions, ionization and appearance energies and bond energies, as dissociation energies, are reported for the title compounds. An ionization energy of 9.47 eV was obtained for benzoic acid, 9.43 eV for benzoic acid n-butyl ester, 9.61 eV for nicotinic acid and 9.97 eV for nicotinic acid n-butyl ester. Molecular ions of both butyl esters show two common main fragmentation pathways: the first process is a McLafferty rearrangement, characterized by the transfer of one H-atom from the aliphatic ester chain, which leads to the ions of either the organic acid or 1-butene. From their appearance energies and known thermodynamic data, gas-phase formation enthalpies () of the parent n-butyl esters are calculated. Values of for benzoic acid n-butyl ester and for nicotinic acid n-butyl ester were obtained. The second process is characterized by the transfer of two H-atoms from the ester chain leading to a protonated form of the corresponding organic acids and C4H7 radicals. Good evidence is provided for the formation of methylallyl radicals. Appearance energies are used to calculate a proton affinity (PA) for benzoic acid. The obtained value of PA = (8.73 ± 0.3) eV, corresponding to a protonation of the carbonyl group, is in close corroboration with published data (PA = 8.51 eV). Activation energies for the intermediate H-transfers were found to be insignificant. This methodic gateway is applied to the system of nicotinic acid and its butyl ester. Adopting the formation of a methylallyl radical, the obtained proton affinity of nicotinic acid, PA = 8.58 eV, is very near to the published data of benzoic acid. An alternative fragmentation mechanism leading to a value of PA [approximate] 9.5 eV (typical for a protonation of the pyridine-nitrogen) is very unlikely. It is concluded that this transfer of two H-atoms from the ester chain is controlled by a charge switching between the carboxylic oxygen atoms which leads to

  11. Production of metastable Ar[sup +] ions by electron-impact ionization of Ar measured by translational-energy spectroscopy

    SciTech Connect

    Kamber, E.Y. ); Enos, C.S.; Brenton, A.G. )

    1993-07-01

    The translational-energy-spectroscopy technique has been used to measure the apparent ionization-excitation functions for the metastable states 3 [sup 4]D, 3[ital d] [sup 4]F, 3[ital d] [sup 2]F, and 3[ital d][prime] [sup 2][ital F] of an Ar[sup +] ion beam extracted from an electron-impact ion source. The initial states were identified from the measured energy loss in the translational-energy spectra for single-electron stripping from ground-state and metastable Ar[sup +] ions in collisions with O[sub 2]. This technique provides an alternative method of selectivity in the study of electron-impact ionization and excitation processes.

  12. Ionization cross-sections for the production of positive ions from H2O by electron impact

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Iga, I.; Srivastava, S. K.

    1995-01-01

    Water is present in the atmospheres of 6 of the 9 planets. Cross section values for the direct and partial ionization of H2O by electron impact have been measured and compared with previously published data. The present measurements have been carried out from thresholds to 1 KeV by utilizing a crossed electron beam and molecular beam collision geometry and an improved ion extraction technique.

  13. Importance of the recoil contribution in Two Step 2 mechanism for the electron impact double ionization process

    NASA Astrophysics Data System (ADS)

    Li, C.; Staicu Casagrande, E. M.; Lahmam-Bennani, A.

    2014-04-01

    The second order, Two-Step-2 (TS2) mechanism for electron impact double ionization (DI) of various targets at intermediate incident energy is investigated based on a kinematical analysis which assumes the DI to result from two successive (e,2e) single ionization (SI) events. The results show that under the present kinematics, the inclusion of the recoil scattering in each of these (e,2e)-SI steps (in previous studies only the binary scattering was considered) allows a more detailed understanding of the various peaks observed in the experimental angular distributions of the ejected electrons in both (e,3-1e) and (e,3e) experiments.

  14. Influence of Electron-Impact Multiple Ionization on Equilibrium and Dynamic Charge State Distributions: A Case Study Using Iron

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Savin, D. W.

    2015-02-01

    We describe the influence of electron-impact multiple ionization (EIMI) on the ionization balance of collisionally ionized plasmas. Previous ionization balance calculations have largely neglected EIMI. Here, EIMI cross-section data are incorporated into calculations of both equilibrium and non-equilibrium charge-state distributions (CSDs). For equilibrium CSDs, we find that EIMI has only a small effect and can usually be ignored. However, for non-equilibrium plasmas the influence of EIMI can be important. In particular, we find that for plasmas in which the temperature oscillates there are significant differences in the CSD when including versus neglecting EIMI. These results have implications for modeling and spectroscopy of impulsively heated plasmas, such as nanoflare heating of the solar corona.

  15. INFLUENCE OF ELECTRON-IMPACT MULTIPLE IONIZATION ON EQUILIBRIUM AND DYNAMIC CHARGE STATE DISTRIBUTIONS: A CASE STUDY USING IRON

    SciTech Connect

    Hahn, M.; Savin, D. W.

    2015-02-10

    We describe the influence of electron-impact multiple ionization (EIMI) on the ionization balance of collisionally ionized plasmas. Previous ionization balance calculations have largely neglected EIMI. Here, EIMI cross-section data are incorporated into calculations of both equilibrium and non-equilibrium charge-state distributions (CSDs). For equilibrium CSDs, we find that EIMI has only a small effect and can usually be ignored. However, for non-equilibrium plasmas the influence of EIMI can be important. In particular, we find that for plasmas in which the temperature oscillates there are significant differences in the CSD when including versus neglecting EIMI. These results have implications for modeling and spectroscopy of impulsively heated plasmas, such as nanoflare heating of the solar corona.

  16. Electron-impact dissociative double ionization of N2 and CO: Dependence of transition probability on impact energy

    NASA Astrophysics Data System (ADS)

    Pandey, A.; Kumar, P.; Banerjee, S. B.; Subramanian, K. P.; Bapat, B.

    2016-04-01

    We present an experimental and computational analysis of dissociative double ionization of N2 and CO molecules under electron impact. Experiments are performed at three energies, viz. 1, 3, and 5 keV, in order to observe the effect of impact energy on the dissociative ionization kinematics. We compare the kinetic energy release (KER) distributions of the charge symmetric dissociation channels of N22 + and CO2 + at these impact energies. An approximately linear trend between the transition energy and the expected KER values is inferred on the basis of the calculated potential energy curves of the dications. Experimentally, the normalized differential KER cross sections for these channels show an increasing trend in the low KER range and a decreasing trend in the high KER range as the electron-impact energy is increased. This observation indicates that the transition probability for excitation to different molecular ion states is not only a function of energy difference between the ground and excited states, but also a complicated function of the impact energy. In addition, nature of the observed trend in the differential KER cross sections differs significantly from their differential transition probability, which are calculated using inelastic collision model for fast-electron-impact case.

  17. Experimental and theoretical triple-differential cross sections for tetrahydrofuran ionized by low-energy 26-eV-electron impact

    NASA Astrophysics Data System (ADS)

    Ali, Esam; Ren, XueGuang; Dorn, Alexander; Ning, Chuangang; Colgan, James; Madison, Don

    2016-06-01

    We report an experimental and theoretical study of low-energy electron-impact ionization of tetrahydrofuran, which is a molecule of biological interest. The experiments were performed using an advanced reaction microscope specially built for electron-impact ionization studies. The theoretical calculations were performed within the molecular three-body distorted-wave model. Reasonably good agreement is found between experiment and theory.

  18. Plasma effect on fast-electron-impact-ionization from 2p state of hydrogen-like ions

    SciTech Connect

    Qi, Y. Y.; Ning, L. N.; Wang, J. G.; Qu, Y. Z.

    2013-12-15

    Plasma effects on the high-energy electron-impact ionization process from 2p orbital of Hydrogen-like ions embedded in weakly coupled plasmas are investigated in the first Born approximation. The plasma screening of the Coulomb interaction between charged particles is represented by the Debye Hückel model. The screening of Coulomb interactions decreases the ionization energies and varies the wave functions for not only the bound orbital but also the continuum; the number of the summation for the angular-momentum states in the generalized oscillator strength densities is reduced with the plasma screening stronger when the ratio of ε/I{sub 2p} (I{sub 2p} is the ionization energy of 2p state and ε is the energy of the continuum electron) is kept, and then the contribution from the lower-angular-momentum states dominates the generalized oscillator strength densities, so the threshold phenomenon in the generalized oscillator strength densities and the double differential cross sections are remarkable: The accessional minima, the outstanding enhancement, and the resonance peaks emerge a certain energy region, whose energy position and width are related to the vicinity between δ and the critical value δ{sub nl}{sup c}, corresponding to the special plasma condition when the bound state |nl just enters the continuum; the multiple virtual-state enhancement and the multiple shape resonances in a certain energy domain also appear in the single differential cross section whenever the plasma screening parameter passes through a critical value δ{sub nl}{sup c}, which is similar to the photo-ionization process but different from it, where the dipole transition only happens, but multi-pole transition will occur in the electron-impact ionization process, so its multiple virtual-state enhancements and the multiple shape resonances appear more frequently than the photo-ionization process.

  19. Absolute triple-differential cross sections for ionization-excitation of helium

    SciTech Connect

    Bartschat, K.; Bray, I.; Fursa, D. V.; Stelbovics, A. T.

    2007-08-15

    Triple-differential cross sections (TDCSs) for electron-impact ionization of He(1s{sup 2}){sup 1}S leading to He{sup +}(1s) are calculated using the highly accurate convergent close-coupling (CCC) method for incident projectile energies of 268.6 and 112.6 eV, with at least one of the outgoing electrons having an energy of 44 eV. These results are used to obtain absolute TDCSs from the recent experimental data [Bellm et al., Phys. Rev. A 75, 042704 (2007)] for TDCS ratios of ionization with no excitation to ionization with excitation resulting in He{sup +}(n=2,3,4). The TDCSs can be used as comparison benchmarks in future studies, and already allow us to test the accuracy of the TDCSs obtained from the hybrid distorted-wave+R-matrix (close-coupling) model, which was fairly successful in predicting the ratios, using CCC for n=1 and experimental results for n=2,3,4.

  20. STORAGE RING MEASUREMENT OF ELECTRON IMPACT IONIZATION FOR Mg{sup 7+} FORMING Mg{sup 8+}

    SciTech Connect

    Hahn, M.; Lestinsky, M.; Novotny, O.; Savin, D. W.; Bernhardt, D.; Mueller, A.; Schippers, S.; Wolf, A.

    2010-04-01

    We report electron impact ionization cross section measurements for Mg{sup 7+} forming Mg{sup 8+} at center of mass energies from approximately 200 eV to 2000 eV. The experimental work was performed using the heavy-ion storage ring TSR located at the Max-Planck-Institut fuer Kernphysik in Heidelberg, Germany. We find good agreement with distorted wave calculations using both the GIPPER code of the Los Alamos Atomic Physics Code suite and using the Flexible Atomic Code.

  1. Time-dependent close-coupling studies of the electron-impact ionization of excited-state helium

    SciTech Connect

    Colgan, J.; Pindzola, M. S.

    2002-12-01

    The time-dependent close-coupling theory is applied to the study of the electron-impact ionization of helium from the excited (1s2s) configuration. Calculations are made in an effort to resolve the discrepancy between theoretical calculations and existing experimental measurements for this cross section. We find good agreement with the existing convergent close-coupling calculations of Bray and Fursa [J. Phys. B 28, L197 (1995)], but are in substantial disagreement with the experimental measurements of this quantity by Dixon et al. [J. Phys. B 9, 2617 (1976)].

  2. Calculation of electron-impact ionization using the J-matrix method

    SciTech Connect

    Konovalov, D. A.; Bray, I.

    2010-08-15

    The J-matrix approach to electron-atom scattering is applied to ionization processes. We consider the Temkin-Poet model of e-H ionization. Convergence issues are studied with greater detail than previously possible using other close-coupling methods. The numerical strengths of the technique are emphasized with the long-term goal of application to ionization-plus-excitation processes.

  3. Molecular Data for a Biochemical Model of DNA Radiation Damage: Electron Impact Ionization and Dissociative Ionization of DNA Bases and Sugar-Phosphate Backbone

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Fletcher, Graham D.

    2004-01-01

    As part of the database for building up a biochemical model of DNA radiation damage, electron impact ionization cross sections of sugar-phosphate backbone and DNA bases have been calculated using the improved binary-encounter dipole (iBED) model. It is found that the total ionization cross sections of C3'- and C5'-deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3'- and C5'-deoxyribose-phospate cross sections, differing by less than 10%. Of the four DNA bases, the ionization cross section of guanine is the largest, then in decreasing order, adenine, thymine, and cytosine. The order is in accordance with the known propensity of oxidation of the bases by ionizing radiation. Dissociative ionization (DI), a process that both ionizes and dissociates a molecule, is investigated for cytosine. The DI cross section for the formation of H and (cytosine-Hl)(+), with the cytosine ion losing H at the 1 position, is also reported. The threshold of this process is calculated to be 17.1 eV. Detailed analysis of ionization products such as in DI is important to trace the sequential steps in the biochemical process of DNA damage.

  4. Near-threshold electron-impact doubly differential cross sections for the ionization of argon and krypton

    SciTech Connect

    Yates, Brent R.; Khakoo, Murtadha A.

    2011-04-15

    We present normalized doubly differential cross sections (DDCS's) for the near-threshold, electron-impact single ionization of argon and krypton, similar to those taken earlier for Ne and Xe [Yates et al., J. Phys. B 42, 095206 (2009)]. The Ar measurements were taken at incident energies of 17, 18, 20, and 30 eV while the Kr measurements were taken at 15, 16, 17.5, and 20 eV. The DDCS scattering angles range from 15 deg. to 120 deg. The differential data are initially normalized to available experimental cross sections for excitation of the ground np{sup 6} to the np{sup 5}(n+1)s excited states of the noble gas and, after integration, to well-established experimental total ionization cross sections of Rapp and Englander-Golden [J. Chem. Phys. 43, 1464 (1965)].

  5. Deep minimum in the Coulomb-Born TDCS for inner-shell ionization of carbon by electron impact

    NASA Astrophysics Data System (ADS)

    Ward, S. J.; Macek, J. H.

    2013-09-01

    Recently, a minimum in the TDCS of electron impact ionization of helium has been explained in terms of a vortex. We have determined the kinematics to obtain a deep minimum due to a vortex in the TDCS for K shell ionization of carbon by electron impact using the Coulomb-Born (CB1) approximation. The deep minimum occurs at an angle of the ejected electron of 239° for an incident energy of 1801 . 2 eV , a scattering angle of 4°, and energy of the ejected electron of 5 . 5 eV . At the angle of the minimum, both the real and imaginary parts of the T-matrix are zero. The integral of the velocity field around a closed path encircling the vortex position is 2 π. Following the treatment of Ref., we decomposed both the Born (B1) and the CB1 T-matrix into their multipole components. The l = 1 , m = +/- 1 CB1 multipole components are important in determining the shape of the CB1 angular distribution. S. J. W. and J. H. M. acknowledge support from NSF under grant no. PHYS-0968638 and from D.O.E. under grant number DE-FG02-02ER15283, respectively.

  6. Vacuum ultraviolet studies of electron impact of helium: Excitation of He n P Rydberg series and ionization-excitation of He nl Rydberg series

    SciTech Connect

    Shemansky, D.E.; Hall, D.T.; Ajello, J.M.; Franklin, B.

    1985-09-15

    Laboratory measurements of the electron excitation cross sections of emission in the He Rydberg series (1sS S-1snp P) for n = 2,3,4 have been obtained. The cross sections were estimated by two methods: (1) analysis of calibrated laboratory spectra placed on an absolute scale using the H Ly dissociative excitation standard and (2) analysis of relative cross section data using a modified Born approximation. A new method has been developed for the application of the Bethe-Born approximation using experimental relative excitation functions that does not require extrapolation in a Fano plot in the determination of the absolute cross section. The two methods agree to within 3% for the 58.4 nm line when allowance is made for cascade transitions. We find the direct excitation cross sections at 200 eV for the n = 2,3,4 members of the published electron impact experimental measurements of the two electron process of ionization-excitation impact are generally in agreement, especially on the energy dependence of excitation functions, but show significant differences with theoretical calculations.

  7. Ionization cross sections and rate coefficients for CFCl3 molecule by electron impact

    NASA Astrophysics Data System (ADS)

    Pal, Satyendra; Kumar, Neeraj

    2013-09-01

    Chlorofluorocarbons (CFCs) or freons are important industrial material with wide-ranging applications as refrigerant, aerosol propellant and semiconductor etchant, etc. The large-scale industrial consumption is of particular environmental concern because of its potential for ozone destruction in the stratosphere. The present work reports the calculations for differential cross sections as a function of secondary/ ejected electron energy and the scattering angle in the ionization of CFCl3 by electron collision leading to the production of various cations viz. CCl3+,CFCl2+,CCl2+,CFCl+, CCl+, Cl+, CF+, F+, and C+ through direct and dissociative ionization processes at a fixed incident electron energy of 200 eV. A modified Jain-Khare semi-empirical formalism based on oscillator strength has been employed. To the best of our knowledge, no experimental and/or theoretical data is available for comparison of the present results for differential cross sections. The corresponding derived integral cross sections in terms of the partial ionization cross sections corresponding to these cations, in the energy range varying from ionization threshold to 1000 eV, revealed a reasonably good agreement with the experimental and theoretical data, wherever available. In addition to the differential and integral ionization cross sections, we have also calculated the ionization rate coefficients using the evaluated partial ionization cross sections and the Maxwell-Boltzmann distribution as a function of electron energy.

  8. Observation of interatomic Coulombic decay and electron-transfer-mediated decay in high-energy electron-impact ionization of Ar2

    NASA Astrophysics Data System (ADS)

    Yan, S.; Zhang, P.; Ma, X.; Xu, S.; Li, B.; Zhu, X. L.; Feng, W. T.; Zhang, S. F.; Zhao, D. M.; Zhang, R. T.; Guo, D. L.; Liu, H. P.

    2013-10-01

    We measured the kinetic energy distributions of the fragment ions of doubly and quadruply ionized argon dimers using 3000 eV electron impact. For the dissociation of (Ar2)2+, the peak that indicates radiative charge transfer is observed, where the outer-shell ionization (dominant in highly charged ion collision) and the inner-shell ionization (preferential in x-ray experiments) have approximately equal contributions. For the dissociation of (Ar2)4+, the interatomic Coulombic decay and electron-transfer-mediated decay are first observed in the electron-impact process.

  9. Electron-impact total ionization cross sections of DNA sugar-phosphate backbone and an additivity principle

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.

    2005-01-01

    The improved binary-encounter dipole (iBED) model [W.M. Huo, Phys. Rev. A64, 042719-1 (2001)l is used to study the total ionization cross sections of the DNA sugar-phosphate backbone by electron impact. Calculations using neutral fragments found that the total ionization cross sections of C3' - and C5', -deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3' - and C5" -deoxyribose-phospate cross sections, differing by less than 10%. The result implies that certain properties of the-DNA, like the total singly ionization cross section, are localized properties and a building-up or additivity principle may apply. This allows us to obtain accurate properties of larger molecular systems built up from the results of smaller subsystem fragments. Calculations are underway using a negatively charged sugar-phosphate backbone with a metal counter-ion.

  10. STORAGE RING CROSS-SECTION MEASUREMENTS FOR ELECTRON IMPACT SINGLE AND DOUBLE IONIZATION OF Fe{sup 9+} AND SINGLE IONIZATION OF Fe{sup 10+}

    SciTech Connect

    Hahn, M.; Novotny, O.; Savin, D. W.; Becker, A.; Grieser, M.; Krantz, C.; Wolf, A.; Lestinsky, M.; Repnow, R.; Mueller, A.; Schippers, S.; Spruck, K.

    2012-11-20

    We have measured electron impact ionization from the ground state of Fe{sup 9+} and Fe{sup 10+} over the relative electron-ion collision energy ranges 200-1900 eV and 250-1800 eV, respectively. The ions were confined in an ion storage ring long enough for essentially all metastable levels to radiatively relax to the ground state. For single ionization, we find a number of discrepancies between the existing theoretical cross sections and our results. The calculations appear to neglect some excitation-autoionization (EA) channels, particularly from n = 3 to n' excitations, which are important near threshold, and those from n = 2 {yields} 3 excitations, which contribute at about 650 eV. Conversely, at higher energies the calculations appear to overestimate the importance of EA channels due to excitation into levels where n {>=} 4. The resulting experimental rate coefficients agree with the most recent theory for Fe{sup 9+} to within 16% and for Fe{sup 10+} to within 19% at temperatures where these ions are predicted to form in collisional ionization equilibrium. We have also measured double ionization of Fe{sup 9+} forming Fe{sup 11+} in the energy range 450-3000 eV and found that although there is an appreciable cross section for direct double ionization, the dominant mechanism appears to be through direct ionization of an inner shell electron producing an excited state that subsequently stabilizes through autoionization.

  11. A Universal model for electron impact ionization of K, L and M-shells.

    NASA Astrophysics Data System (ADS)

    Bary Malik, Fazley; Haque, A. K. F.; Uddin, M. A.; Basak, A. K.; Saha, B. C.; Karim, K. R.

    2007-06-01

    A modified version of the original Kolbenstvedt model, which has its roots in quantum electrodynamical description of electron-electron scattering, will be presented. This modified model describes reasonably well cross sections of K-shell ionization of H, He, Li, C, N, O, Mg, Si, P and S, L-shell ionization of Ag, Sn, Ba, Ho, Ta, Au, Pb, Bi and U, M-shell ionization of Pb, Bi and U, from threshold to a few GeV incident energy. The same model with slight modification to account for the ionic charge is also applicable to ionic targets such as Ne^8+, Mo^41+, U^82+ from threshold to a few MeV incident energy. Experimentally observed increase of the cross section at high energies seems to be a consequence of the Møller interaction between two interacting electrons.

  12. The study of ionization by electron impact of a substance simulating spent nuclear fuel components

    NASA Astrophysics Data System (ADS)

    Antonov, N. N.; Bochkarev, E. I.; Gavrikov, A. V.; Samokhin, A. A.; Smirnov, V. P.

    2015-11-01

    Plasma sources of model substances are necessary to solve problems associated with development of the spent nuclear fuel (SNF) plasma separation method. Lead was chosen to simulate kinetic and dynamic properties of the heavy SNF components. In this paper we present the results of a study of a lead vapor discharge with a lead concentration of 1012-1013 cm-3. Ionization was carried out by an electron beam (with energy of up to 500 eV per electron) inside a centimeter gap between planar electrodes. The discharge was numerically modeled using the hydrodynamic and single-particle approximation. Current-voltage characteristics and single ionization efficiency were obtained as functions of the vapors concentration and thermoelectric current. An ion current of hundreds of microamperes at the ionization efficiency near tenths of a percent was experimentally obtained. These results are in good agreement with our model.

  13. Flow injection of liquid samples to a mass spectrometer with ionization under vacuum conditions: a combined ion source for single-photon and electron impact ionization.

    PubMed

    Schepler, Claudia; Sklorz, Martin; Passig, Johannes; Famiglini, Giorgio; Cappiello, Achille; Zimmermann, Ralf

    2013-09-01

    Electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photo-ionization (APPI) are the most important techniques for the ionization of liquid samples. However, working under atmospheric pressure conditions, all these techniques involve some chemical rather than purely physical processes, and therefore, side reactions often yield to matrix-dependent ionization efficiencies. Here, a system is presented that combines both soft single-photon ionization (SPI) and hard 70 eV electron impact ionization (EI) of dissolved compounds under vacuum conditions. A quadrupole mass spectrometer was modified to enable direct EI, a technique developed by Cappiello et al. to obtain library-searchable EI mass spectra as well as soft SPI mass spectra of sample solutions. An electron beam-pumped rare gas excimer lamp working at 126 nm was used as well as a focusable vacuum UV light source for single-photon ionization. Both techniques, EI and SPI, were applied successfully for flow injection experiments providing library-matchable EI fragment mass spectra and soft SPI mass spectra, showing dominant signals for the molecular ion. Four model compounds were analyzed: hexadecane, propofol, chlorpropham, and eugenol, with detection limits in the picomolar range. This novel combination of EI and SPI promises great analytical benefits, thanks to the possibility of combining database alignment for EI data and molecular mass information provided by SPI. Possible applications for the presented ionization technology system are a matrix-effect-free detection and a rapid screening of different complex mixtures without time-consuming sample preparation or separation techniques (e.g., for analysis of reaction solutions in combinatorial chemistry) or a switchable hard (EI) and soft (SPI) MS method as detection step for liquid chromatography. PMID:23812882

  14. Electron impact ionization in the Martian atmosphere: Interplay between scattering and crustal magnetic field effects

    NASA Astrophysics Data System (ADS)

    Lillis, Robert J.; Fang, Xiaohua

    2015-07-01

    Precipitating electrons are typically the dominant source of energy input into Mars' nighttime upper atmosphere, with consequences for atmospheric and ionospheric structure, composition, chemistry, and electrodynamics. Mars' spatially heterogeneous crustal magnetic fields affect the fluxes of precipitating electrons, via both the magnetic mirror force and Gauss' law of conservation of magnetic flux. We use a kinetic electron transport model to examine ionization rate profiles that result from the combination of these magnetic effects and elastic and inelastic scattering by atmospheric neutrals. Specifically, we calculate ionization rates as a function of altitude, crustal magnetic field strength, and the initial energy and pitch angle of the precipitating electrons, covering the relevant ranges of these parameters. Several complex behaviors are exhibited, including bifurcating ionization peaks with distinct characteristics and energy-dependent and crustal field strength-dependent increases in ionization with decreasing pitch angle. Elucidating such behavior is important for understanding the effect of Mars' unique crustal fields on the Mars upper atmosphere and ionosphere, both to predict the consequences of measured electron precipitation and to enable, for the first time, downward coupling of global plasma models with thermosphere-ionosphere models.

  15. Use of Relativistic Effective Core Potentials in the Calculation of Electron-Impact Ionization Cross Sections

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Kim, Yong-Ki

    1999-01-01

    Based on the Binary-Encounter-Bethe (BEB) model, the advantage of using relativistic effective core potentials (RECP) in the calculation of total ionization cross sections of heavy atoms or molecules containing heavy atoms is discussed. Numerical examples for Ar, Kr, Xe, and WF6 are presented.

  16. Multiple ionization of helium and krypton by electron impact close to threshold: appearance energies and Wannier exponents

    NASA Astrophysics Data System (ADS)

    Denifl, S.; Gstir, B.; Hanel, G.; Feketeova, L.; Matejcik, S.; Becker, K.; Stamatovic, A.; Scheier, P.; Märk, T. D.

    2002-11-01

    We determined appearance energy (AE) values AE(Xn+/X) for the formation of singly (He+) and doubly charged (He2+) He ions and multiply charged Kr ions Krn+ up to n = 6 following electron impact on He and Kr atoms using a high-resolution electron impact ionization mass spectrometer. The data analysis employs an iterative, non-linear least-squares fitting routine, the Marquart-Levenberg algorithm, in conjunction with either a 2-function or a 3-function fit based on a power threshold law. This allows us to extract the relevant AEs and also the corresponding exponents for a Wannier-type power law from the measured near-threshold data. The values of the AEs determined in this work are compared with other available experimental and with spectroscopic AE values and the extracted exponents p are compared with other available experimental data and with the predictions of the various Wannier-type power law models. One observation is particularly noteworthy, namely the fact that none of the available experimental data seem to support the large values of 'p' predicted by the Wannier-Geltman and the generalized Wannier law for n > 3.

  17. Electron impact multiple ionization of neon, argon and xenon atoms close to threshold: appearance energies and Wannier exponents

    NASA Astrophysics Data System (ADS)

    Gstir, B.; Denifl, S.; Hanel, G.; Rümmele, M.; Fiegele, T.; Cicman, P.; Stano, M.; Matejcik, S.; Scheier, P.; Becker, K.; Stamatovic, A.; Märk, T. D.

    2002-07-01

    We report the results of the experimental determination of the appearance energy values AE(Xn + /X) for the formation of multiply charged Ne, Ar and Xe ions up to n = 4 (Ne), n = 6 (Ar) and n = 8 (Xe) following electron impact on Ne, Ar and Xe atoms using a dedicated high-resolution electron impact ionization mass spectrometer. The data analysis uses the Marquart-Levenberg algorithm, which is an iterative, nonlinear least-squares-fitting routine, in conjunction with either a two-function or a three-function fit based on a power threshold law. This allows us to extract the relevant AEs and corresponding exponents for a Wannier-type power law from the measured near-threshold data. The values of the AEs determined in this work are compared with other available experimental and spectroscopic values of the AEs and the extracted exponents are compared with other available experimental data and with the predictions of the various Wannier-type power law models.

  18. Effect of a vortex in the triply differential cross section for electron-impact K -shell ionization of carbon

    NASA Astrophysics Data System (ADS)

    Ward, S. J.; Macek, J. H.

    2014-12-01

    Vortices are an inherent property of the velocity fields of complex, time-dependent, Schrödinger wave functions ψ occurring where both the real and the imaginary parts of ψ vanish. They have been known since the early work of Dirac on magnetic monopoles and have frequently been studied theoretically. The possibility of observing them by exploiting an "imaging theorem" that relates atomic wave functions to measured electron momentum distributions has recently been proposed. Using the Coulomb-Born approximation, we examine ionization of a K -shell electron of a model carbon atom by fast electron impact. For an incident electron energy of 1801.2 eV and a scattering angle of 4∘, we find a vortex in the velocity field associated with a zero in the ionization T -matrix element and hence in the triply differential cross section, and we obtain a segment of the vortex line. Angular momentum transfer is essential to produce the vortex in the velocity field and the corresponding zero in the ionization T -matrix element and in the triply differential cross section.

  19. Effect of the Mo/ller interaction on electron-impact ionization of high-Z hydrogenlike ions

    NASA Astrophysics Data System (ADS)

    Moores, D. L.; Reed, K. J.

    1995-01-01

    We have investigated the effects of the Mo/ller interaction in relativistic distorted-wave calculations of cross sections for electron-impact ionization of high-Z hydrogenlike ions. We found that the Mo/ller interaction significantly increases the cross section for hydrogenlike uranium, and brings our calculated results into very good agreement with experimental results reported by Marrs, Elliott, and Knapp [Phys. Rev. Lett. 72, 4082 (1994)]. We found similar increases in the cross sections for other hydrogenlike ions. Our results also show that these effects become important at much lower collision energy than previously reported [D. L. Moores and M. S. Pindzola, Phys. Rev. A 41, 3603 (1990)]. With the Mo/ller interaction included, our cross sections for these ions are in good agreement with preliminary results obtained in recent experiments on the electron-beam ion trap (EBIT).

  20. Effect of the Moller interaction on electron-impact ionization of high-[ital Z] hydrogenlike ions

    SciTech Connect

    Moores, D.L. ); Reed, K.J. )

    1995-01-01

    We have investigated the effects of the Moller interaction in relativistic distorted-wave calculations of cross sections for electron-impact ionization of high-[ital Z] hydrogenlike ions. We found that the Moller interaction significantly increases the cross section for hydrogenlike uranium, and brings our calculated results into very good agreement with experimental results reported by Marrs, Elliott, and Knapp [Phys. Rev. Lett. [bold 72], 4082 (1994)]. We found similar increases in the cross sections for other hydrogenlike ions. Our results also show that these effects become important at much lower collision energy than previously reported [D. L. Moores and M. S. Pindzola, Phys. Rev. A [bold 41], 3603 (1990)]. With the Moller interaction included, our cross sections for these ions are in good agreement with preliminary results obtained in recent experiments on the electron-beam ion trap (EBIT).

  1. Direct evidence of two interatomic relaxation mechanisms in argon dimers ionized by electron impact

    PubMed Central

    Ren, Xueguang; Jabbour Al Maalouf, Elias; Dorn, Alexander; Denifl, Stephan

    2016-01-01

    In weakly bound systems like liquids and clusters electronically excited states can relax in inter-particle reactions via the interplay of electronic and nuclear dynamics. Here we report on the identification of two prominent examples, interatomic Coulombic decay (ICD) and radiative charge transfer (RCT), which are induced in argon dimers by electron collisions. After initial ionization of one dimer constituent ICD and RCT lead to the ionization of its neighbour either by energy transfer to or by electron transfer from the neighbour, respectively. By full quintuple-coincidence measurements, we unambiguously identify ICD and RCT, and trace the relaxation dynamics as function of the collisional excited state energies. Such interatomic processes multiply the number of electrons and shift their energies down to the critical 1–10 eV range, which can efficiently cause chemical degradation of biomolecules. Therefore, the observed relaxation channels might contribute to cause efficient radiation damage in biological systems. PMID:27000407

  2. On a source of electron impact ionization in Io's upstream atmosphere

    NASA Astrophysics Data System (ADS)

    Shaposhnikov, V. E.; Zaitsev, V. V.; Rucker, H. O.; Litvinenko, G. V.; Konovalenko, A. A.

    2013-09-01

    A mechanism for the ionization of Io's atmosphere due to the moon's motion through the Jovian magnetic field is considered. Attention is paid to the important role of charge separation in the upstream part of Io's ionosphere and accumulation of electrons and positive ions on the low and top ionospheric boundaries which results in (a) the creation of longitudinal component (with respect to the Jovian magnetic field lines) of polarization electric field, (b) the driving of Bounemann plasma turbulence, and (c) the heating of electrons and the ionization of neutrals. Estimations show that the proposed mechanism can essentially heat the electrons and increase the electron density. The increase with the plasma density and the electron temperature can result in an ionospheric plasma distribution and overcomes the difficulty with generation of the most bright part of UV emission of the Io's equatorial spots.

  3. Relativistic calculations of excitation and ionization of highly charged ions by electron impact. Final technical report

    SciTech Connect

    Sampson, D.H.

    1992-04-15

    Our rapid relativistic atomic structure program and relativistic distorted-wave programs for excitation and ionization of highly charged ions were further improved. The generalized Briet interaction and other QED corrections were added to the atomic structure program, and the speed of the distorted-wave excitation program was increased by over an order of magnitude over what it was when our initial large-scale relativistic calculations of excitation of Ne-like ions were made. The improved programs were then used to calculate collision strengths for 330 transitions in F-like ions with 22 {le} Z {le} 92 and 248 transitions in Ni-like ions with 60 {le} Z {le} 92. We expanded the relativistic collision program to include an option to use atomic structure data by the well-known multi-configuration Dirac-Fock (MCDF) program of Grant and A coworkers. This was used in calculating collision strengths for the 45 {Delta}n = 0 transitions with n=2 in Be-like ions with 8 {le} Z {le} 92. This relativistic collision strength program was also extended to include an option to include the generalized Breis interaction in the scattering matrix elements and the importance of this for He-like, He-like and Li-like ions with Z = 26, 54 and 92 was studied. The factorization method was applied to ionization. Regardless of the complexity of the ion the ionization cross sections could be written as a sum of the products of a readily calculated coefficient that depends only on ion properties and a hydrogen-like cross section. Work was also done on excitation and ionization by directive and, in some cases spin-polarized electrons, which is of interest for some EBIT experiments and the study of solar flares. We also used our extensive collision strength results to test the

  4. Relativistic calculations of excitation and ionization of highly charged ions by electron impact

    SciTech Connect

    Sampson, D.H.

    1992-04-15

    Our rapid relativistic atomic structure program and relativistic distorted-wave programs for excitation and ionization of highly charged ions were further improved. The generalized Briet interaction and other QED corrections were added to the atomic structure program, and the speed of the distorted-wave excitation program was increased by over an order of magnitude over what it was when our initial large-scale relativistic calculations of excitation of Ne-like ions were made. The improved programs were then used to calculate collision strengths for 330 transitions in F-like ions with 22 [le] Z [le] 92 and 248 transitions in Ni-like ions with 60 [le] Z [le] 92. We expanded the relativistic collision program to include an option to use atomic structure data by the well-known multi-configuration Dirac-Fock (MCDF) program of Grant and A coworkers. This was used in calculating collision strengths for the 45 [Delta]n = 0 transitions with n=2 in Be-like ions with 8 [le] Z [le] 92. This relativistic collision strength program was also extended to include an option to include the generalized Breis interaction in the scattering matrix elements and the importance of this for He-like, He-like and Li-like ions with Z = 26, 54 and 92 was studied. The factorization method was applied to ionization. Regardless of the complexity of the ion the ionization cross sections could be written as a sum of the products of a readily calculated coefficient that depends only on ion properties and a hydrogen-like cross section. Work was also done on excitation and ionization by directive and, in some cases spin-polarized electrons, which is of interest for some EBIT experiments and the study of solar flares. We also used our extensive collision strength results to test the

  5. Double ionization of single oriented water molecules by electron impact: Second-order Born description

    SciTech Connect

    Dal Cappello, C.; Champion, C.; Kada, I.; Mansouri, A.

    2011-06-15

    The double ionization of isolated water molecules fixed in space is investigated within a theoretical approach based on the second-order Born approximation. Electron angular distributions have been studied for specific kinematical conditions. The three usual mechanisms, the shake-off and the two two-step mechanisms, have been identified. A significant contribution of the two-step mechanism is clearly visible for some particular kinematics.

  6. Dissociative simple ionization of two active electron diatomic systems by fast electron impact

    NASA Astrophysics Data System (ADS)

    Lahmidi, N.; Joulakian, B.

    2005-01-01

    The dissociative (e, 2e) ionization of diatomic hydrogen and lithium by fast electrons is studied theoretically as a vertical transition from the lowest vibrational and rotational level of the fundamental electronic state 1Σ+g of H2 (and Li2) to the first dissociative 2Σu state of H2+ (and Li2+). After verification of the perturbative procedure in the non-dissociative case, for which experimental and theoretical results exist, the variation of the multiply differential cross section of the dissociative ionization is studied in a variety of situations to show the particularities of this process and motivate actually realizable complete experiments, which can detect the scattered and ejected electrons in coincidence with the bare detached nucleus. Our results show that the dynamically well understood behaviour in the case of simple (e, 2e) ionization breaks down in the dissociative case, because of the increasing influence of the electron-electron correlation of the two target electrons.

  7. An electron impact and chemical ionization study of some diethyl dicarboxylates

    NASA Astrophysics Data System (ADS)

    Harrison, Alex G.; Malat, Jan

    1997-11-01

    The electron ionization and Bronsted acid chemical ionization mass spectra of the diethyl esters of succinic acid, methylmalonic acid, glutaric acid, ethylmalonic acid and dimethylmalonic acid have been determined. The major primary fragmentation reaction of the molecular ion in the electron ionization mass spectra is by loss of OC2H5 while the MH+ ions fragment by loss of C2H5OH to form the same fragment ion. Using isotopic labelling (diethyl-d5 esters) and metastable ion studies, it is shown that the [M---OC2H5]+ ions formed from diethyl succinate and diethyl glutarate have ethyl-cationated cyclic anhydride structures which fragment further by elimination of C2H4 to form the protonated anhydride. For the remaining esters the [M---OC2H5]+ ions have an acylium ion structure and fragment primarily by elimination of CO to form, initially, substituted [alpha]-carboethoxy carbenium ions although there is significant rearrangement to protonated ethyl esters of olefinic acids prior to further fragmentation.

  8. Influence of electron impact ionization on the termination shock: model case studies

    SciTech Connect

    Soloviev, V.Y.; Schwadron, N.A.; McComas, D.J.

    2004-09-15

    We include a latitudinally localized increase in ionization and subsequent mass loading in a 2.5-dimensional magneto-hydrodynamic case study to analyze its impact on the magnetic field, the flow field geometry, and the TS location. The localized additional mass loading leads to deflection of the flow and weakens the TS. We suggest the possibility that Voyager 1 may have been inside such a region during the recent {approx} 6 month period in 2002 when Voyager 1 observed energetic particle signatures consistent with a TS crossing, but only moderate changes in the magnetic field intensity and ACR spectrum.

  9. Effect of initial-state target polarization on the single ionization of helium by 1-keV electron impact

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Yan; Ma, Xiao-Yan; Li, Xia; Miao, Xiang-Yang; Jia, Xiang-Fu

    2012-07-01

    We report new results of triple differential cross sections for the single ionization of helium by 1-KeV electron impact at the ejection energy of 10 eV. Investigations have been made for both the perpendicular plane and the plane perpendicular to the momentum transfer geometries. The present calculation is based on the three-Coulomb wave function. Here we have also incorporated the effect of target polarization in the initial state. A comparison is made between the present calculation with the results of other theoretical methods and a recent experiment [Dürr M, Dimopoulou C, Najjari B, Dorn A, Bartschat K, Bray I, Fursa D V, Chen Z, Madison D H and Ullrich J 2008 Phys. Rev. A 77 032717]. At an impact energy of 1 KeV, the target polarization is found to induce a substantial change of the cross section for the ionization process. We observe that the effect of target polarization plays a dominant role in deciding the shape of triple differential cross sections.

  10. Electron-impact excitation and ionization of atomic boron at low and intermediate energies

    NASA Astrophysics Data System (ADS)

    Wang, Kedong; Zatsarinny, Oleg; Bartschat, Klaus

    2016-05-01

    We present a comprehensive study of electron collisions with boron atoms by using the B -spline R -matrix method for electron energies ranging from threshold to 100 eV. Elastic, excitation, and ionization cross sections were obtained for all transitions between the lowest 11 states of boron. A multiconfiguration Hartree-Fock method with nonorthogonal term-dependent orbitals was employed to generate accurate wave functions for the target states. Close-coupling expansions including 13, 51, and 999 physical and pseudo-target states of boron were used to check the sensitivity of the results to changes in the theoretical model. The cross-section dataset obtained from the large-scale calculations is expected to be sufficiently accurate and comprehensive for most current modeling applications involving neutral boron.

  11. Experimental and theoretical double differential cross sections for electron impact ionization of methane.

    PubMed

    Yavuz, Murat; Ozer, Zehra Nur; Ulu, Melike; Champion, Christophe; Dogan, Mevlut

    2016-04-28

    Experimental and theoretical double differential cross sections (DDCSs) for electron-induced ionization of methane (CH4) are here reported for primary energies ranging from 50 eV to 350 eV and ejection angles between 25° and 130°. Experimental DDCSs are compared with theoretical predictions performed within the first Born approximation Coulomb wave. In this model, the initial molecular state is described by using single center wave functions, the incident (scattered) electron being described by a plane wave, while a Coulomb wave function is used for modeling the secondary ejected electron. A fairly good agreement may be observed between theory and experiment with nevertheless an expected systematic overestimation of the theory at low-ejection energies (<50 eV). PMID:27131548

  12. Supplementary absolute differential cross sections for the excitation of atomic hydrogen's n=3 and 4 levels by electron impact

    SciTech Connect

    Sweeney, Christopher J.; Shyn, Tong W.; Grafe, Alan

    2004-05-01

    We have conducted measurements of absolute differential cross sections for the excitation of hydrogen atoms to their n=3(3S+3P+3D) and 4(4S+4P+4D+4F) levels. A modulated, crossed-beam method was employed, and the impact energies were 40 and 60 eV. Comparison of our results with those of others is quite favorable.

  13. Effect of fluoro substitution on the fragmentation of the K-shell excited/ionized pyridine studied by electron impact.

    PubMed

    Sakai, Masamichi; Okada, Kazumasa

    2011-07-01

    Fragmentation of the pyridine ring followed by K-shell excitation/ionization has been studied with 2-fluoropyridine (2FPy) by electron impact. Ab initio molecular orbital (MO) calculations were also carried out to investigate the electronic states correlating with specific fragment ions. The fragment ions are produced characteristically at the N 1s edge, while the spectra observed at the F 1s and C 1s edges exhibit a small difference from that at the valence ionization. The production of the C(4)H(2)(+), C(4)H(3)(+) and C(4)H(2)F(+) ions indicates that the cleavage of the N-C6 and C2-C3 bonds or the N-C2 and C5-C6 bonds is likely to occur after the N 1s excitation/ionization. Ab initio MO calculations indicate that the former fission is likely to proceed through the n(N)(1)π(2)(1)π(3)(2) and n(N)(0)π(2)(2)π(3)(2) excited states of the parent molecular dication. On the other hand, the breakage of the N-C2 and C4-C5 bonds, which specifically proceeds at the N 1s edge for 2-methylpyridine, does not occur for 2FPy. The present calculation reveals that the products of this channel are unstable by the electronegativity of fluorine and that the relative energy of the Auger-final states of 2FPy is lowered by the reorganization and electron correlation effects. PMID:21744416

  14. Electron-impact excitation and ionization of atomic boron at low and intermediate energies

    NASA Astrophysics Data System (ADS)

    Wang, Kedong; Zatsarinny, Oleg; Bartschat, Klaus

    2016-05-01

    We present a comprehensive study of electron collisions with neutral boron atoms. The calculations were performed with the B-Spline R-matrix (close-coupling) method, by employing a parallelized version of the associated computer code. Elastic, excitation, and ionization cross sections were obtained for all transitions involving the lowest 11 states of boron, for incident electron energies ranging from threshold to 100 eV. A multiconfiguration Hartree-Fock method with nonorthogonal term-dependent orbitals was used to generate accurate wave functions for the target states. Close-coupling expansions including 13, 51, and 999 physical and pseudo states were set up to check the sensitivity of the predictions to variations in the theoretical model. The cross-section dataset generated in this work is expected to be the most accurate one available today and should be sufficiently comprehensive for most modeling applications involving neutral boron. Work supported by the China Scholarship Council and the United States National Science Foundation under Grants PHY-1403245 and PHY-1520970, and by the XSEDE allocation PHY-090031.

  15. The second Born approximation for the double ionization of N2 by electron impact

    NASA Astrophysics Data System (ADS)

    Lamy, P.; Dal Cappello, C.; Charpentier, I.; Ruiz-Lopez, M. F.; Hervieux, P. A.

    2016-07-01

    In their (e,3e) and (e,3-1e) experiments of the double ionization (DI) of the outermost orbital of N2, Li et al (2012 J. Phys. B: At. Mol. Opt. Phys. 45 135201) recently showed that the process is largely dominated by a two-step-2 mechanism, which is a double interaction of the incident electron with the target. From a theoretical point of view, this should entail the use of the second Born approximation. In the past, very few theoretical calculations had been carried out this way because it requires a difficult numerical triple integration. We propose here to take into account the second Born approximation for the DI of N2 by using the closure approximation. The initial state is described by a single-center wave function derived from the usual multi-center wave function obtained in the self-consistent-field Hartree–Fock method using the linear combination of atomic orbitals-molecular orbital (LCAO-MO) approximation. The final state describes the interaction between each of the ejected electrons and the target by a Coulomb wave and the interaction between the two ejected electrons with the use of the Gamow factor. We calculate differential cross sections using the same kinematic conditions as Li et al (intermediate incident energy about 600 eV) for (e,3e) and (e,3-1e) DI of N2. The results show that the model does not allow a shift of the variation of the four-fold differential cross section near the momentum transfer to be obtained nor its opposite when we include the contribution given by the second Born approximation, as in (e,3-1e) experiments.

  16. High-resolution (e, 2e + ion) study of electron-impact ionization and fragmentation of methane

    SciTech Connect

    Ren, Xueguang Pflüger, Thomas; Weyland, Marvin; Baek, Woon Yong; Rabus, Hans; Ullrich, Joachim; Dorn, Alexander

    2015-05-07

    The ionization and fragmentation of methane induced by low-energy (E{sub 0} = 66 eV) electron-impact is investigated using a reaction microscope. The momentum vectors of all three charged final state particles, two outgoing electrons, and one fragment ion, are detected in coincidence. Compared to the earlier study [Xu et al., J. Chem. Phys. 138, 134307 (2013)], considerable improvements to the instrumental mass and energy resolutions have been achieved. The fragment products CH{sub 4}{sup +}, CH{sub 3}{sup +}, CH{sub 2}{sup +}, CH{sup +}, and C{sup +} are clearly resolved. The binding energy resolution of ΔE = 2.0 eV is a factor of three better than in the earlier measurements. The fragmentation channels are investigated by measuring the ion kinetic energy distributions and the binding energy spectra. While being mostly in consistence with existing photoionization studies the results show differences including missing fragmentation channels and previously unseen channels.

  17. Symmetry properties of the S matrix in a fully relativistic distorted-wave treatment of electron-impact ionization

    SciTech Connect

    Pyper, N. C.; Kampp, Marco; Whelan, Colm T.

    2005-05-15

    The symmetry properties of the S matrix in a fully relativistic distorted-wave treatment of electron-impact ionization are investigated. It is shown that the square modulus of the scattering matrix element in which the spin states of all four electrons are determined is not invariant under the reversal of the direction of alignment of all spins. The largest of two contributions to this noninvariance originates from the relativistic modifications of the continuum wave functions induced by the distorting potential of the target atom. A second smaller contribution is manifested on reducing the eight-dimensional matrix elements of the QED covariant propagator to purely spatial two-electron integrals. The triple differential cross section (TDCS) exhibits a spin asymmetry unless the entire scattering process occurs in a single plane. There will be a difference in the TDCS between an (e,2e) event in which the initial beam is polarized parallel or antiparallel with respect to the beam direction even if the target is unpolarized and the final spin states are not determined. The TDCS will remain unchanged if, in addition to reversal of the direction of spin alignment, one appropriate momentum component of one of the two outgoing electrons is reversed.

  18. Relativistic calculations of cross sections for ionization of U[sup 90+] and U[sup 91+] ions by electron impact

    SciTech Connect

    Fontes, C.J. ); Sampson, D.H.; Zhang, H.L. )

    1995-01-01

    Relativistic distorted-wave calculations have been made of the cross sections for electron-impact ionization of U[sup 90+] and U[sup 91+] ions with the generalized Breit interaction included between bound and free electrons. Good agreement is obtained with recent electron-beam ion-trap experiments [R. E. Marrs, S. R. Elliott, and D. A. Knapp, Phys. Rev. Lett. [bold 72], 4082 (1994)].

  19. LETTER TO THE EDITOR: The validity of classical trajectory and perturbative quantal methods for electron-impact ionization from excited states in H-like ions

    NASA Astrophysics Data System (ADS)

    Griffin, D. C.; Ballance, C. P.; Pindzola, M. S.; Robicheaux, F.; Loch, S. D.; Ludlow, J. A.; Witthoeft, M. C.; Colgan, J.; Fontes, C. J.; Schultz, D. R.

    2005-06-01

    To test the validity of classical trajectory and perturbative quantal methods for electron-impact ionization of H-like ions from excited states, we have performed advanced close-coupling calculations of ionization from excited states in H, Li2+ and B4+ using the R-matrix with pseudo states and the time-dependent close-coupling methods. Comparisons with our classical trajectory Monte Carlo (CTMC) and distorted-wave (DW) calculations show that the CTMC method is more accurate than the DW method for H, but does not improve with n and grows substantially worse with Z, while the DW method improves with Z and grows worse with n.

  20. Comparison of experimental and theoretical triple differential cross sections for the single ionization of C O2 (1 πg ) by electron impact

    NASA Astrophysics Data System (ADS)

    Ozer, Zehra N.; Ali, Esam; Dogan, Mevlut; Yavuz, Murat; Alwan, Osman; Naja, Adnan; Chuluunbaatar, Ochbadrakh; Joulakian, Boghos B.; Ning, Chuan-Gang; Colgan, James; Madison, Don

    2016-06-01

    Experimental and theoretical triple differential cross sections for intermediate-energy (250 eV) electron-impact single ionization of the CO2 are presented for three fixed projectile scattering angles. Results are presented for ionization of the outermost 1 πg molecular orbital of C O2 in a coplanar asymmetric geometry. The experimental data are compared to predictions from the three-center Coulomb continuum approximation for triatomic targets, and the molecular three-body distorted wave (M3DW) model. It is observed that while both theories are in reasonable qualitative agreement with experiment, the M3DW is in the best overall agreement with experiment.

  1. Calculation of the multifold differential cross section of the electron-impact ionization of molecular hydrogen by prolate spheroidal external complex scaling method with second Born corrections

    SciTech Connect

    Serov, Vladislav V.; Joulakian, Boghos B.

    2010-08-15

    We introduce the second Born dipole corrections in our recently developed ab initio procedure based on the driven Schroedinger equation formalism and the external scaling method for the determination of the multifold differential cross sections of the single and double ionization of molecular hydrogen by electron impact. To test our procedure, we first apply it to the excitation-ionization process of a He atom and compare the results to those of equivalent theoretical results, which are available. We then show that the introduction of the second Born correction including only dipole terms improves the agreement with the experimental results only in the case of the simple ionization. We think that the introduction of nondipole contributions in the second Born term which are not taken into account in the present work is necessary in the case of the double ionization process.

  2. Absolute beam emittance measurements at RHIC using ionization profile monitors

    SciTech Connect

    Minty, M.; Connolly, R; Liu, C.; Summers, T.; Tepikian, S.

    2014-08-15

    In the past, comparisons between emittance measurements obtained using ionization profile monitors, Vernier scans (using as input the measured rates from the zero degree counters, or ZDCs), the polarimeters and the Schottky detectors evidenced significant variations of up to 100%. In this report we present studies of the RHIC ionization profile monitors (IPMs). After identifying and correcting for two systematic instrumental errors in the beam size measurements, we present experimental results showing that the remaining dominant error in beam emittance measurements at RHIC using the IPMs was imprecise knowledge of the local beta functions. After removal of the systematic errors and implementation of measured beta functions, precise emittance measurements result. Also, consistency between the emittances measured by the IPMs and those derived from the ZDCs was demonstrated.

  3. Some recent progress on the measurement of K-shell ionization cross-sections of atoms by electron impact: Application to Ti and Cr elements

    NASA Astrophysics Data System (ADS)

    An, Z.; Liu, M. T.; Fu, Y. C.; Luo, Z. M.; Tang, C. H.; Li, C. M.; Zhang, B. H.; Tang, Y. J.

    2003-07-01

    In this paper, we have taken some measures to improve the accuracy of our experimental data for K-shell ionization cross-sections by electron impact. These measures include (1) measurement of the thin target thickness with Rutherford backscattering spectroscopy and (2) detection efficiency calibration in the lower energy region using thick carbon target bremsstrahlung by electron impact and (3) electron reflection correction and electron mean track length correction based upon Monte Carlo method. These measures are applied to the measurement of K-shell ionization cross-sections of Ti and Cr elements from the threshold energies up to 26 keV. From the comparison with some theoretical models, empirical formulae and some previous experimental data, it is concluded that these measures taken in this paper are effective in the improvement of accuracy of experimental data. The present experimental data for Ti and Cr elements also clarify the discrepancies among some experimental data sets. In addition, these measures will also be very helpful in the measurement of K-shell ionization cross-sections for lower Z elements and in the measurement of L, M-shell ionization cross-sections for medium and higher Z elements.

  4. Electron-impact ionization of laser-excited Ba-138 (... 5p6 6s 6p) and Ba-138 (... 5p6 6s 5d) atoms

    NASA Technical Reports Server (NTRS)

    Trajmar, S.; Nickel, J. C.; Antoni, T.

    1986-01-01

    Electron-impact ionization cross sections for laser-excited Ba-138 (... 5p6 6s 6p; 1P1, M = - 1) and cascade-populated Ba-138 (... 5p6 6s 5d; 1D + 3D) atoms were measured in the threshold to 10 eV energy range. The peak cross sections for the excited species are about a factor of 2 larger than that for ground-state Ba. In addition, it was demonstrated that ionization from individual magnetic substates of various hyperfine levels can be studied. The ionization cross sections in the case of Ba-138 (1P1) were found to be equal for the M = 0 and for the M = + or - 1 sublevels within the experimental error limit.

  5. Accurate determination of absolute carrier-envelope phase dependence using photo-ionization.

    PubMed

    Sayler, A M; Arbeiter, M; Fasold, S; Adolph, D; Möller, M; Hoff, D; Rathje, T; Fetić, B; Milošević, D B; Fennel, T; Paulus, G G

    2015-07-01

    The carrier-envelope phase (CEP) dependence of few-cycle above-threshold ionization (ATI) of Xe is calibrated for use as a reference measurement for determining and controlling the absolute CEP in other interactions. This is achieved by referencing the CEP-dependent ATI measurements of Xe to measurements of atomic H, which are in turn referenced to ab initio calculations for atomic H. This allows for the accurate determination of the absolute CEP dependence of Xe ATI, which enables relatively easy determination of the offset between the relative CEP measured and/or controlled by typical devices and the absolute CEP in the interaction. PMID:26125386

  6. Comparative analysis of dioxins and furans by electron impact, high-resolution mass spectrometry and by electron capture, negative ionization, low-resolution mass spectrometry

    SciTech Connect

    Koester, C.J.; Harless, R.L.; Hites, R.A.

    1990-01-01

    Electron impact, high resolution mass spectrometry (HRMS) is currently the method of choice for the analysis of polychlorinated dibenso-p-dioxins and dibenzofurans (PCDD/F) because of its ability to detect PCDD/F in the presence of interfering compounds, such as polychlorinated biphenyls (PCB), which cannot be resolved by low resolution methods. The PDCC/F analyses may also be performed using electron capture, negative ionization (ECNI) low resolution mass spectrometry, providing extensive sample preparation is done to remove interferences. Before ECNI low resolution mass spectrometry (MS) can be accepted as a routine method for PCDD/F analysis, it is necessary to show that results generated by this method are comparable to those obtained by HRMS. Known mixtures and unknown air samples were analyzed by electron impact HRMS (Finnigan MAT 90 system) and by ECNI low resolution MS (Hewlett Packard 5985B). Both instruments were fitted with a gas chromatographic inlet. The PCDD/F concentrations determined by the two techniques compare favorably, typically within 20%. The major difference between these two methods is that the ECNI low resolution method shows poor sensitivity in detecting 2,3,7,8-tetrachlorodioxin. However, ECNI MS offers the advantage of lower detection limits (50-100 fg) than electron impact HRMS (0.1 to 0.5 pg). These results suggest that ECNI low resolution MS can be a simple, low cost alternative to the common high resolution methods used for PCDD/F analysis.

  7. Ag K-shell ionization by electron impact: New cross-section measurements between 50 and 100 keV and review of previous experimental data

    NASA Astrophysics Data System (ADS)

    Vanin, V. R.; Manso Guevara, M. V.; Maidana, N. L.; Martins, M. N.; Fernández-Varea, J. M.

    2016-02-01

    We report the measurement of Ag K-shell ionization cross-section by electron impact in the range 50-100 keV and review the experimental data found in the literature. The sample consisted in a thin film of Ag evaporated on a thin C backing. The x-ray spectra generated by electron bombardment in the São Paulo Microtron were observed with a planar HPGe detector. The ratios between characteristic and bremsstrahlung x-ray yields were transformed to ionization cross sections with the help of theoretical atomic-field bremsstrahlung cross sections. The measured cross sections are compared with existing experimental values and calculations based on the semi-relativistic distorted-wave Born approximation. According to our experiment, the ratio of Ag Kβ to Kα x-ray intensities is 0.2018(24).

  8. Kinematically complete study of low-energy electron-impact ionization of neon: Internormalized cross sections in three-dimensional kinematics

    NASA Astrophysics Data System (ADS)

    Ren, Xueguang; Amami, Sadek; Zatsarinny, Oleg; Pflüger, Thomas; Weyland, Marvin; Baek, Woon Yong; Rabus, Hans; Bartschat, Klaus; Madison, Don; Dorn, Alexander

    2015-03-01

    Low-energy (E0=65 eV ) electron-impact single ionization of Ne (2 p ) has been investigated to thoroughly test state-of-the-art theoretical approaches. The experimental data were measured using a reaction microscope, which can cover nearly the entire 4 π solid angle for the secondary electron emission energies ranging from 2 to 8 eV, and projectile scattering angles ranging from 8 .5∘ to 20 .0∘ . The experimental triple-differential cross sections are internormalized across all measured scattering angles and ejected energies. The experimental data are compared to predictions from a hybrid second-order distorted-wave Born plus R -matrix approach, the distorted-wave Born approximation with the inclusion of postcollision interaction (PCI), a three-body distorted-wave approach (3DW), and a B -spline R -matrix (BSR) with pseudostates approach. Excellent agreement is found between the experiment and predictions from the 3DW and BSR models, for both the angular dependence and the relative magnitude of the cross sections in the full three-dimensional parameter space. The importance of PCI effects is clearly visible in this low-energy electron-impact ionization process.

  9. Specific fragmentation of the K-shell excited/ionized pyridine derivatives studied by electron impact: 2-, 3- and 4-methylpyridine.

    PubMed

    Sakai, Masamichi; Okada, Kazumasa; Ohno, Keiichi; Tabayashi, Kiyohiko

    2010-03-01

    Fragmentation of the pyridine ring upon K-shell excitation/ionization has been studied with gaseous 2-, 3- and 4-methylpyridine by the electron-impact method. Ab initio molecular orbital (MO) calculations were also carried out to explore electronic states correlating with specific fragments. Some specific fragmentation channels were identified from the ionic fragments enhanced characteristically at the N 1s edge. Yields of the C(2)HN(+) and C(5)H(5)(+)/C(5)H(6)(+) ions show that the fission of the N-C2 and C4-C5/C5-C6 bonds of the ring is likely to occur after the N 1s excitation and ionization. Ab initio MO calculations for the 2-methylpyridine molecule indicate that the dissociation channels to produce these ions are only accessible through the excited states of the parent molecular dication, which can be formed by Auger decays after the N 1s ionization. Fragment ions via hydrogen rearrangement are produced as well, but the rearrangement is not a phenomenon specific to the K-shell excitation/ionization. PMID:20166104

  10. Dissociation mechanisms of the Ar trimer induced by a third atom in high-energy electron-impact ionization

    NASA Astrophysics Data System (ADS)

    Yan, S.; Zhang, P.; Ma, X.; Xu, S.; Tian, S. X.; Li, B.; Zhu, X. L.; Feng, W. T.; Zhao, D. M.

    2014-06-01

    We experimentally studied the dissociation dynamics of a highly charged Ar3 cluster initiated by a high-energy electron. The dissociation patterns of the correlated ions from a two-body and a three-body Coulombic explosion (CE) of (Ar3)2+ suggest that predissociation alters the evolution of radiative charge transfer. The three-body CE in (Ar3)4+ and (Ar3)5+ is driven, after double ionization of one constituent Ar atom, by single ionization with a simultaneous interatomic Coulombic decay process.

  11. Kinematically complete study of low-energy electron-impact ionization of argon: Internormalized cross sections in three-dimensional kinematics

    NASA Astrophysics Data System (ADS)

    Ren, Xueguang; Amami, Sadek; Zatsarinny, Oleg; Pflüger, Thomas; Weyland, Marvin; Dorn, Alexander; Madison, Don; Bartschat, Klaus

    2016-06-01

    As a further test of advanced theoretical methods to describe electron-impact single-ionization processes in complex atomic targets, we extended our recent work on Ne (2 p ) ionization [X. Ren, S. Amami, O. Zatsarinny, T. Pflüger, M. Weyland, W. Y. Baek, H. Rabus, K. Bartschat, D. Madison, and A. Dorn, Phys. Rev. A 91, 032707 (2015), 10.1103/PhysRevA.91.032707] to Ar (3 p ) ionization at the relatively low incident energy of E0=66 eV. The experimental data were obtained with a reaction microscope, which can cover nearly the entire 4 π solid angle for the secondary electron emission. We present experimental data for detection angles of 10, 15, and 20∘ for the faster of the two outgoing electrons as a function of the detection angle of the secondary electron with energies of 3, 5, and 10 eV, respectively. Comparison with theoretical predictions from a B -spline R -matrix (BSR) with pseudostates approach and a three-body distorted-wave (3DW) approach, for detection of the secondary electron in three orthogonal planes as well as the entire solid angle, shows overall satisfactory agreement between experiment and the BSR results, whereas the 3DW approach faces difficulties in predicting some of the details of the angular distributions. These findings are different from our earlier work on Ne (2 p ), where both the BSR and 3DW approaches yielded comparable levels of agreement with the experimental data.

  12. Following electron impact excitations of Rn, Ra, Th, U and Pu single atom L sub-shells ionization cross section calculations by using Lotz's equation

    NASA Astrophysics Data System (ADS)

    Ayinol, M.; Aydeniz, D.

    2016-03-01

    L shell ionization cross section and Li subshells ionization cross sections of Rn, Ra, Th, U, Pu atoms calculated. For each of atoms, ten different electron impact energy values (Eo) are used. Calculations carried out by using Lotz equation in Matlab. First, calculations done for non-relativistic case by using non-relativistic Lotz equation then repeated with relativistic Lotz equation. σL total and σLi(i = 1,2,3) subshells ionisation cross section values obtained for Eo values in the energy range of ELi ionization threshold energy, σL total and σLi (i = 1,2,3) are increasing rapidly with Eo. For a fixed Eo = 3.ELi), while Z increases from 86

  13. Analysis of tert-butyldimethylsilyl derivatives in heavy gas oil from Brazilian naphthenic acids by gas chromatography coupled to mass spectrometry with electron impact ionization.

    PubMed

    Vaz de Campos, Maria Cecília; Oliveira, Eniz Conceição; Filho, Pedro José Sanches; Piatnicki, Clarisse Maria Sartori; Caramão, Elina Bastos

    2006-02-10

    Naphthenic acids, C(n)H(2n+Z)O(2), are a complex mixture of alkyl-substituted acyclic and cycle-aliphatic carboxylic acids. The content of naphthenic acids and their derivatives in crude oils is very small, which hinders their extraction from matrixes of wide and varied composition. In this work, liquid-liquid extraction, followed by solid phase extraction with an ion exchange resin (Amberlyst A-27) and ultrasound desorption were used to isolate the acid fraction from heavy gas oil of Marlim petroleum (Campos, Rio de Janeiro, Brazil). The analysis was accomplished through gas chromatography coupled to mass spectrometry with electron impact ionization, after derivatization with N-methyl-N-(tert-butyldimethylsilyl)trifluoracetamide (MTBDMSTFA). The results indicate the presence of carboxylic acids belonging to families of alicyclic and naphthenic compounds which contain up to four rings in the molecule. PMID:16439253

  14. Electron-impact ionization mass-spectrometry of molecules and clusters in a pulsed helium droplet source

    NASA Astrophysics Data System (ADS)

    Yang, Shengfu; Brereton, Scott; Ellis, Andrew M.

    2006-03-01

    A pulsed helium droplet source has been developed and characterized. The nozzle geometry was found to be critical in allowing controlled tuning of helium nanodroplet size by variation of the stagnation pressure and temperature. The average droplet size scales according to a simple p,T scaling law, placing pulsed helium nanodroplet sources on a par with cw sources for the first time. Using this pulsed source, the ability of helium nanodroplets to impede ion fragmentation in electron impact mass spectrometry has been explored. A number of haloalkanes and C1--C6 alcohols were selected as the target species. The presence of helium alters the fragmentation patterns when compared with the gas phase, with some ion product channels being more strongly affected than others. Parent ion intensities are also enhanced by the helium for alcohols, but only for the two cyclic alcohols studied, cyclopentanol and cyclohexanol, is this effect large enough to transform the parent ion from a minor product (in the gas phase) into the most abundant ion in the helium droplet experiments. The results obtained are difficult to explain solely by rapid cooling of the excited parent ions by the surrounding superfluid helium, although this undoubtedly takes place. A second factor also seems to be involved, a cage effect which favors hydrogen atom loss over other fragmentation channels.

  15. Calculation of intermediate-energy electron-impact ionization of molecular hydrogen and nitrogen using the paraxial approximation

    SciTech Connect

    Serov, Vladislav V.

    2011-12-15

    We have implemented the paraxial approximation followed by the time-dependent Hartree-Fock method with a frozen core for the single impact ionization of atoms and two-atomic molecules. It reduces the original scattering problem to the solution of a five-dimensional time-dependent Schroedinger equation. Using this method, we calculated the multifold differential cross section of the impact single ionization of the helium atom, the hydrogen molecule, and the nitrogen molecule from the impact of intermediate-energy electrons. Our results for He and H{sub 2} are quite close to the experimental data. Surprisingly, for N{sub 2} the agreement is good for the paraxial approximation combined with first Born approximation but worse for pure paraxial approximation, apparently because of the insufficiency of the frozen-core approximation.

  16. Molecular orientation effect on the differential cross sections for the electron-impact double ionization of oriented water molecules

    SciTech Connect

    Champion, C.; Dal Cappello, C.; Oubaziz, D.; Aouchiche, H.; Popov, Yu. V.

    2010-03-15

    Double ionization of isolated water molecules fixed in space is here investigated in a theoretical approach based on the first Born approximation. Secondary electron angular distributions are reported for particular (e,3e) kinematical conditions and compared in terms of shape and magnitude. Strong dependence of the fivefold differential cross sections on the molecular target orientation is clearly observed in (e,3-1e) as well as (e,3e) channels. Furthermore, for the major part of the kinematics considered, we identified the different mechanisms involved in the double ionization of water molecule, namely, the direct shake-off process as well as the two-step1 process. They are both discussed and analyzed with respect to the molecular target orientation.

  17. The Effect of the Residual Ion Potential on the Fully Differential Cross Section of Helium for Ionization by Electron Impact

    SciTech Connect

    Toth, A.; Nagy, L.

    2011-10-03

    We have carried out calculations for the fully differential cross section of the ionization of helium by electron projectiles. In order to study the effect of the residual ion potential, we employed three models, and tested them for the coplanar and perpendicular plane geometry. In spite of the simplicity of our models, the results for the coplanar case are in fair agreement with the available experimental data. The results for the perpendicular geometry need more improvement.

  18. Electron Impact Ionization: A New Parameterization for 100 eV to 1 MeV Electrons

    NASA Technical Reports Server (NTRS)

    Fang, Xiaohua; Randall, Cora E.; Lummerzheim, Dirk; Solomon, Stanley C.; Mills, Michael J.; Marsh, Daniel; Jackman, Charles H.; Wang, Wenbin; Lu, Gang

    2008-01-01

    Low, medium and high energy electrons can penetrate to the thermosphere (90-400 km; 55-240 miles) and mesosphere (50-90 km; 30-55 miles). These precipitating electrons ionize that region of the atmosphere, creating positively charged atoms and molecules and knocking off other negatively charged electrons. The precipitating electrons also create nitrogen-containing compounds along with other constituents. Since the electron precipitation amounts change within minutes, it is necessary to have a rapid method of computing the ionization and production of nitrogen-containing compounds for inclusion in computationally-demanding global models. A new methodology has been developed, which has parameterized a more detailed model computation of the ionizing impact of precipitating electrons over the very large range of 100 eV up to 1,000,000 eV. This new parameterization method is more accurate than a previous parameterization scheme, when compared with the more detailed model computation. Global models at the National Center for Atmospheric Research will use this new parameterization method in the near future.

  19. Electron-Impact Ionization of Multicharged Ions: Cross-Sections Data from Oak Ridge National Laboratory (ORNL) and the Controlled Fusion Atomic Data Center (CFADC)

    DOE Data Explorer

    This website presents experimental ionization cross sections measured using the Electron-Ion Crossed Beams apparatus in the Multicharged Ion Research Facility (MIRF) at the Physics Division of Oak Ridge National Laboratory (ORNL). The data are given in both graphical and tabular form along with the reference to the original publication of the experimental results. Also presented in the figures are theoretical cross sections supporting the experiments. For details of the theoretical work, refer to the original publication given for the particular experiment. These pages are based primarily on three technical memorandums issued by ORNL: 1(D. H. Crandall, R. A. Phaneuf, and D. C. Gregory, Electron Impact Ionization of Multicharged Ions, ORNL/TM-7020, Oak Ridge National Laboratory, 1979; 2) D. C. Gregory, D. H. Crandall, R. A. Phaneuf, A. M. Howald, G. H. Dunn, R. A. Also presented are more recent (1993-present) data, both published and unpublished. The data pages feature dynamic plotting, allowing the user to choose which sets of data to plot and zoom in on regions of interest within the plot. [Taken from http://www-cfadc.phy.ornl.gov/xbeam/index.html

  20. Electron-impact ionization of neon at low projectile energy: an internormalized experiment and theory for a complex target.

    PubMed

    Pflüger, Thomas; Zatsarinny, Oleg; Bartschat, Klaus; Senftleben, Arne; Ren, Xueguang; Ullrich, Joachim; Dorn, Alexander

    2013-04-12

    As a fundamental test for state-of-the-art theoretical approaches, we have studied the single ionization (2p) of neon at a projectile energy of 100 eV. The experimental data were acquired using an advanced reaction microscope that benefits from high efficiency and a large solid-angle acceptance of almost 4π. We put special emphasis on the ability to measure internormalized triple-differential cross sections over a large part of the phase space. The data are compared to predictions from a second-order hybrid distorted-wave plus R-matrix model and a fully nonperturbative B-spline R-matrix (BSR) with pseudostates approach. For a target of this complexity and the low-energy regime, unprecedented agreement between experiment and the BSR model is found. This represents a significant step forward in the investigation of complex targets. PMID:25167263

  1. Large-scale B-spline R-matrix calculations of electron impact excitation and ionization processes in complex atoms

    NASA Astrophysics Data System (ADS)

    Zatsarinny, Oleg

    2013-09-01

    In recent years, the B-spline R-matrix (BSR) method has been applied to the treatment of a large number of atomic structure and electron-atom collision problems. Characteristic features of the BSR approach include the use of B-splines as a universal basis to describe the projectile electron inside the R-matrix box and the employment of term-dependent, and hence non-orthogonal, orbitals to construct the target states. The latter flexibility has proven to be of crucial importance for complex targets with several partially filled subshells. The published computer code has since been updated and extended to allow for a fully relativistic description at the level of the Dirac-Coulomb hamiltonian. Also, the systematic inclusion of a large number of pseudo-states in the close-coupling expansion has made it possible to extend the range of applicability from elastic and inelastic low-energy near-threshold phenomena to intermediate energies (up to several times the ionization threshold) and, in particular, to describe ionization processes as well. The basic ideas of the BSR approach will be reviewed, and its application will be illustrated for a variety of targets. Particular emphasis will be placed on systems of relevance for applications in gaseous electronics, such as the generation of complete datasets for electron collisions with the heavy noble gases Ne-Xe. Many of our data, which are needed for the description of transport processes in plasmas, are available through the LXCat database. This work was performed in collaboration with Klaus Bartschat. It is supported by the National Science Foundation under Grant No. PHY-1212450 and the XSEDE Allocation PHY-090031.

  2. STORAGE RING CROSS SECTION MEASUREMENTS FOR ELECTRON IMPACT SINGLE AND DOUBLE IONIZATION OF Fe{sup 13+} AND SINGLE IONIZATION OF Fe{sup 16+} AND Fe{sup 17+}

    SciTech Connect

    Hahn, M.; Novotny, O.; Savin, D. W.; Becker, A.; Grieser, M.; Krantz, C.; Repnow, R.; Wolf, A.; Bernhardt, D.; Mueller, A.; Schippers, S.; Spruck, K.; Lestinsky, M.

    2013-04-10

    We report measurements of electron impact ionization for Fe{sup 13+}, Fe{sup 16+}, and Fe{sup 17+} over collision energies from below threshold to above 3000 eV. The ions were recirculated using an ion storage ring. Data were collected after a sufficiently long time that essentially all the ions had relaxed radiatively to their ground state. For single ionization of Fe{sup 13+}, we find that previous single pass experiments are more than 40% larger than our results. Compared to our work, the theoretical cross section recommended by Arnaud and Raymond is more than 30% larger, while that of Dere is about 20% greater. Much of the discrepancy with Dere is due to the theory overestimating the contribution of excitation-autoionization via n = 2 excitations. Double ionization of Fe{sup 13+} is dominated by direct ionization of an inner shell electron accompanied by autoionization of a second electron. Our results for single ionization of Fe{sup 16+} and Fe{sup 17+} agree with theoretical calculations to within the experimental uncertainties.

  3. Copper fine-structure K-shell electron impact ionization cross sections for fast-electron diagnostic in laser-solid experiments

    SciTech Connect

    Palmeri, P.; Quinet, P.; Batani, D.

    2015-03-15

    The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser-solid experiments through the K-shell emission cross section. In addition, copper is a material that has been often used in those experiments because it has a maximum total K-shell emission yield. Furthermore, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al., 2012), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the copper isonuclear ions have been calculated. In this study, the K-shell EII cross sections connecting the ground and the metastable levels of the parent copper ions to the daughter ions K-vacancy levels considered in Palmeri et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 10 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic form proposed by Davies et al. (2013)

  4. An (e, 2e + ion) study of low-energy electron-impact ionization and fragmentation of tetrahydrofuran with high mass and energy resolutions

    SciTech Connect

    Ren, Xueguang Pflüger, Thomas; Weyland, Marvin; Baek, Woon Yoon; Rabus, Hans; Ullrich, Joachim; Dorn, Alexander

    2014-10-07

    We study the low-energy (E{sub 0} = 26 eV) electron-impact induced ionization and fragmentation of tetrahydrofuran using a reaction microscope. All three final-state charged particles, i.e., two outgoing electrons and one fragment ion, are detected in triple coincidence such that the momentum vectors and, consequently, the kinetic energies for charged reaction products are determined. The ionic fragments are clearly identified in the experiment with a mass resolution of 1 amu. The fragmentation pathways of tetrahydrofuran are investigated by measuring the ion kinetic energy spectra and the binding energy spectra where an energy resolution of 1.5 eV has been achieved using the recently developed photoemission electron source. Here, we will discuss the fragmentation reactions for the cations C{sub 4}H{sub 8}O{sup +}, C{sub 4}H{sub 7}O{sup +}, C{sub 2}H{sub 3}O{sup +}, C{sub 3}H{sub 6}{sup +}, C{sub 3}H{sub 5}{sup +}, C{sub 3}H{sub 3}{sup +}, CH{sub 3}O{sup +}, CHO{sup +}, and C{sub 2}H{sub 3}{sup +}.

  5. Copper fine-structure K-shell electron impact ionization cross sections for fast-electron diagnostic in laser-solid experiments

    NASA Astrophysics Data System (ADS)

    Palmeri, P.; Quinet, P.; Batani, D.

    2015-03-01

    The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser-solid experiments through the K-shell emission cross section. In addition, copper is a material that has been often used in those experiments because it has a maximum total K-shell emission yield. Furthermore, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al., 2012), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the copper isonuclear ions have been calculated. In this study, the K-shell EII cross sections connecting the ground and the metastable levels of the parent copper ions to the daughter ions K-vacancy levels considered in Palmeri et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 10 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic form proposed by Davies et al. (2013).

  6. An (e, 2e + ion) study of low-energy electron-impact ionization and fragmentation of tetrahydrofuran with high mass and energy resolutions.

    PubMed

    Ren, Xueguang; Pflüger, Thomas; Weyland, Marvin; Baek, Woon Yoon; Rabus, Hans; Ullrich, Joachim; Dorn, Alexander

    2014-10-01

    We study the low-energy (E0 = 26 eV) electron-impact induced ionization and fragmentation of tetrahydrofuran using a reaction microscope. All three final-state charged particles, i.e., two outgoing electrons and one fragment ion, are detected in triple coincidence such that the momentum vectors and, consequently, the kinetic energies for charged reaction products are determined. The ionic fragments are clearly identified in the experiment with a mass resolution of 1 amu. The fragmentation pathways of tetrahydrofuran are investigated by measuring the ion kinetic energy spectra and the binding energy spectra where an energy resolution of 1.5 eV has been achieved using the recently developed photoemission electron source. Here, we will discuss the fragmentation reactions for the cations C4H8O(+), C4H7O(+), C2H3O(+), C3H6(+), C3H5(+), C3H3(+), CH3O(+), CHO(+), and C2H3(+). PMID:25296813

  7. Vanadium fine-structure K-shell electron impact ionization cross sections for fast-electron diagnostic in laser–solid experiments

    SciTech Connect

    Palmeri, P.; Quinet, P.; Batani, D.

    2015-09-15

    The K-shell electron impact ionization (EII) cross section, along with the K-shell fluorescence yield, is one of the key atomic parameters for fast-electron diagnostic in laser–solid experiments through the K-shell emission cross section. In addition, in a campaign dedicated to the modeling of the K lines of astrophysical interest (Palmeri et al. (2012)), the K-shell fluorescence yields for the K-vacancy fine-structure atomic levels of all the vanadium isonuclear ions have been calculated. In this study, the K-shell EII cross sections connecting the ground and the metastable levels of the parent vanadium ions to the daughter ions K-vacancy levels considered in Palmeri et al. (2012) have been determined. The relativistic distorted-wave (DW) approximation implemented in the FAC atomic code has been used for the incident electron kinetic energies up to 20 times the K-shell threshold energies. Moreover, the resulting DW cross sections have been extrapolated at higher energies using the asymptotic behavior of the modified relativistic binary encounter Bethe model (MRBEB) of Guerra et al. (2012) with the density-effect correction proposed by Davies et al. (2013)

  8. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers

    NASA Astrophysics Data System (ADS)

    Lye, J. E.; Harty, P. D.; Butler, D. J.; Crosbie, J. C.; Livingstone, J.; Poole, C. M.; Ramanathan, G.; Wright, T.; Stevenson, A. W.

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3–5% higher than the calorimetry, within the stated uncertainties.

  9. Absolute dosimetry on a dynamically scanned sample for synchrotron radiotherapy using graphite calorimetry and ionization chambers.

    PubMed

    Lye, J E; Harty, P D; Butler, D J; Crosbie, J C; Livingstone, J; Poole, C M; Ramanathan, G; Wright, T; Stevenson, A W

    2016-06-01

    The absolute dose delivered to a dynamically scanned sample in the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter anticipated to be established as a primary standard for synchrotron dosimetry. The calorimetry was compared to measurements using a free-air chamber (FAC), a PTW 31 014 Pinpoint ionization chamber, and a PTW 34 001 Roos ionization chamber. The IMBL beam height is limited to approximately 2 mm. To produce clinically useful beams of a few centimetres the beam must be scanned in the vertical direction. In practice it is the patient/detector that is scanned and the scanning velocity defines the dose that is delivered. The calorimeter, FAC, and Roos chamber measure the dose area product which is then converted to central axis dose with the scanned beam area derived from Monte Carlo (MC) simulations and film measurements. The Pinpoint chamber measures the central axis dose directly and does not require beam area measurements. The calorimeter and FAC measure dose from first principles. The calorimetry requires conversion of the measured absorbed dose to graphite to absorbed dose to water using MC calculations with the EGSnrc code. Air kerma measurements from the free air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. The two ionization chambers are secondary standards requiring calibration with kilovoltage x-ray tubes. The Roos and Pinpoint chambers were calibrated against the Australian primary standard for air kerma at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA). Agreement of order 2% or better was obtained between the calorimetry and ionization chambers. The FAC measured a dose 3-5% higher than the calorimetry, within the stated uncertainties. PMID:27192396

  10. Absolute cross sections for near-threshold electron-impact excitation of the 2s{sup 2}S{r_arrow}2p{sup 2}P transition in C{sup 3+}

    SciTech Connect

    Bannister, M.E.; Chung, Y.; Djuric, N.; Wallbank, B.; Woitke, O.; Zhou, S.; Dunn, G.H.; Smith, A.C.

    1998-01-01

    Absolute total cross sections for electron-impact excitation of the 2s{sup 2}S{r_arrow}2p{sup 2}P transition in C{sup 3+} were measured from 7.35 eV to 8.45 eV using the merged electron-ion-beams energy-loss technique. The results settle the discrepancy between two previous experiments using the crossed-beams fluorescence method, being in very good agreement with the older results [P. O. Taylor, D. Gregory, G. H. Dunn, R. A. Phaneuf, and D. H. Crandall, Phys. Rev. Lett. {bold 39}, 1256 (1977)] but less so with the more recent ones [D. W. Savin, L. D. Gardner, D. B. Reisenfeld, A. R. Young, and J. L. Kohl, Phys. Rev. A {bold 51}, 2162 (1995)]. The present measurements are also in good agreement with unitarized Coulomb-Born and close-coupling calculations. {copyright} {ital 1998} {ital The American Physical Society}

  11. Vacuum ultraviolet studies of electron impact of helium Excitation of He n1P0 Rydberg series and ionization-excitation of He(+) nl Rydberg series

    NASA Technical Reports Server (NTRS)

    Shemansky, D. E.; Hall, D. T.; Ajello, J. M.; Franklin, B.

    1985-01-01

    The cross sections for the He I 1s2 1S-1snp 1P0 series have been measured using a relative flow method, with the absolute scale fixed by the H Ly-alpha dissociative excitation cross section standard. The results are compared with those obtained using a relative cross section data analysis by modified Born approximation, and good agreement is found. Cross sections for the ionization-excitation of the He II 121.51 nm and He II 164.04 nm transmissions have been measured, and the results strongly suggest that theoretical calculations of the reactions differ fundamentally from physical reality. The failure of the theory to describe experimental results stems from the neglect in the theory of electron correlation effects between the two orbital electrons.

  12. Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source.

    PubMed

    Mühlberger, F; Saraji-Bozorgzad, M; Gonin, M; Fuhrer, K; Zimmermann, R

    2007-11-01

    Orthogonal acceleration time-of-flight mass spectrometers (oaTOFMS), which are exhibiting a pulsed orthogonal extraction of ion bunches into the TOF mass analyzer from a continuous primary ion beam, are well-suited for continuous ionization methods such as electron impact ionization (EI). Recently an electron beam pumped rare gas excimer lamp (EBEL) was introduced, which emits intensive vacuum UV (VUV) radiation at, e.g., 126 nm (argon excimer) and is well suited as the light source for soft single photon ionization (SPI) of organic molecules. In this paper, a new compact oaTOFMS system which allows switching between SPI, using VUV-light from an EBEL-light source, and conventional EI is described. With the oaTOFMS system, EBEL-SPI and EI mass spectral transients can be recorded at very high repetition rates (up to 100 kHz), enabling high duty cycles and therefore good detection efficiencies. By using a transient recorder card with the capability to perform on-board accumulation of the oaTOF transients, final mass spectra with a dynamic range of 106 can be saved to the hard disk at a rate of 10 Hz. As it is possible to change the ionization modes (EI and SPI) rapidly, a comprehensive monitoring of complex gases with highly dynamic compositions, such as cigarette smoke, is possible. In this context, the EI based mass spectra address the bulk composition (compounds such as water, oxygen, carbon dioxide, etc. in the up to percentage concentration range) as well as some inorganic trace gases such as argon, sulfur dioxide, etc. down to the low ppm level. The EBEL-SPI mass spectra on the other hand are revealing the organic composition down to the lower ppb concentration range. PMID:17900147

  13. Mass-spectrometric study of the electron-impact-induced fragmentation of the tryptophan molecule

    NASA Astrophysics Data System (ADS)

    Vukstich, V. S.; Romanova, L. G.; Megela, I. G.; Snegursky, A. V.

    2014-03-01

    The formation of ion products upon single and dissociative electron-impact ionization of the tryptophan (C11H12N2O2) molecule has been studied using mass-spectrometric techniques. The mass-spectrum of tryptophan has been obtained and interpreted, and the near-threshold ion yields from the initial molecule and the main products of its electron-impact ionization have been measured. The absolute values of ionization energy of the initial tryptophan molecule and the appearance potentials of its main fragment ions have been determined. The influence of exposure to a high-energy beam of accelerated electrons on the resulting mass spectra of initial molecule has been studied.

  14. Following electron impact excitations of single Os, Pt, Hg, Pb and Po atom L subshells ionization cross section calculations by using Lotz's equation

    NASA Astrophysics Data System (ADS)

    Aydinol, M.; Aydeniz, D.

    2016-03-01

    L shell ionization cross section and Li subshells ionization cross sections of Os, Pt, Hg, Pb, Po atoms calculated. For each atom, ten different electron impacty energy values Eoi used. Calculations carried out by using nonrelativistic Lotz equation in Matlab. Ionization cross section values obtained for Eoi values in the energy range of ELi ≤Eoi≤4ELi for each atom. Starting allmost from Eoi = ELi (i = 1,2,3) values of the each subshell ionization threshold energy, ionization cross section are increasing rapidly with Eoi. For a fixed Eoi = 3. ELi values, while Z increases from Z = 76 to Z = 84, ionization cross section are decrease. These results help to understand some results which obtained from other electron-sigle atom impact studies on σLi subshells.

  15. Two-centre partial-wave calculations for the multiply differential cross section of the simple ionization of diatomic lithium Li2 by fast electron impact

    NASA Astrophysics Data System (ADS)

    Elboudali, F.; Joulakian, B.

    2001-12-01

    The (e, 2e) ionization of diatomic lithium Li2 by fast electrons is studied by applying, for the slow ejected electron, an asymptotically exact partial-wave description, which takes into account the diatomic nature of the problem. The ionization is considered as a vertical transition from the lowest vibrational and rotational level of the fundamental electronic state 1Σg+ of Li2 to the fundamental 2Σg+ state of Li2+. After verification of the procedure on the (e, 2e) ionization of diatomic hydrogen H2 for which experimental and theoretical results exist we present the particularities and favourable directions for Li2 targets.

  16. Absolute cross sections for projectile electron loss accompanied by target multiple ionization in collisions of He+ with noble gases

    NASA Astrophysics Data System (ADS)

    Santos, A. C. F.; Sigaud, G. M.; Melo, W. S.; Sant'Anna, M. M.; Montenegro, E. C.

    2011-02-01

    Absolute cross sections for projectile electron loss accompanied by target multiple ionization in collisions between He+ ions and noble gases have been measured for energies between 1.0 and 3.5 MeV. The data have been compared with other absolute cross sections that exist in the literature for the same projectile, and with calculations for the screening mode (nucleus-electron interaction) using both perturbative (plane-wave Born approximation (PWBA)) and non-perturbative (extended classical-impulse free-collision model, sudden approximation and coupled-channel method) approaches, and for the antiscreening mode (electron-electron interaction) within the PWBA. The energy dependence of the average number of active electrons for the antiscreening has been described by means of a simple function, which is 'universal' for noble gases but projectile dependent. A previously developed method has been employed to obtain the number of active electrons for each target subshell in the high-velocity regime.

  17. Absolute cross sections for electron loss, electron capture, and multiple ionization in collisions of Li2+ with argon

    NASA Astrophysics Data System (ADS)

    Losqui, A. L. C.; Zappa, F.; Sigaud, G. M.; Wolff, W.; Sant'Anna, M. M.; Santos, A. C. F.; Luna, H.; Melo, W. S.

    2014-02-01

    Exclusive absolute cross sections for the electron loss and capture processes, accompanied by target multiple ionization and pure target multiple ionization, as well as total electron loss and capture cross sections, in collisions of Li2+ with Ar have been measured in the 0.5-3.5 MeV energy range. The experimental data of the total electron loss cross section are compared with theoretical results based on the plane-wave Born approximation and the free-collision model, and with the available experimental data. Some discrepancies are observed when comparing the experimental data with the theoretical models, which can be attributed to the competitive mechanisms that lead to electron loss. The dependences of the single-capture and transfer-ionization processes on the projectile charge state are similar to those observed for collisions between other low-charged light ions and noble-gas targets. The same behaviour is observed when one compares the present data for the single- and double-ionization cross sections with those for He2+ projectiles on Ar. These facts indicate that the dynamics of the collision does not seem to depend on the projectile species, so that few-electron projectiles may act as structureless point charges in the intermediate- to high-velocity regime.

  18. MH 2+ṡ ion production from protonated polypeptides by electron impact: observation and determination of ionization energies and a cross-section

    NASA Astrophysics Data System (ADS)

    Budnik, Bogdan A.; Zubarev, Roman A.

    2000-01-01

    Irradiation of gas-phase MH + ions of polypeptides up to MW 3493 by 11 to 70 eV electrons produced further ionization: MH ++e -→MH 2+·+2 e -, with ionization thresholds of 11.4±0.5 eV for [Arg-8]-vasopressin (MW 1084), 10.7±0.5 eV for substance P (MW 1347), 11.4±0.6 eV for renin substrate (MW 1759) and 10.6±0.4 eV for melittin (MW 2846). The ionization cross-section of vasopressin MH + ions was found to be (1.3±0.4)·10 -15 cm 2 for 20 eV electrons. The gas-phase MH 2+ṡ ions are rather stable at room temperature, with lifetimes of hundreds of seconds at 10 -10 Torr.

  19. Electron-impact spectroscopy

    NASA Technical Reports Server (NTRS)

    Trajmar, S.

    1990-01-01

    The methods of electron impact spectroscopy and cross section measurements are discussed and compared to optical spectroscopy. A brief summary of the status of this field and the available data is given.

  20. Electron-impact excitation of nitric oxide.

    NASA Technical Reports Server (NTRS)

    Stone, E. J.; Zipf, E. C.

    1972-01-01

    The absolute cross sections for the excitation of the nitrosyl cation Baer-Miescher bands, two nitric oxide bands, and several atomic nitrogen multiplets in the vacuum UV by electron impact on NO have been measured over an energy range extending from threshold to 300 eV. The variation of the dipole transition moment for the nitrosyl cation band system was also determined.

  1. Photodissociation of methyl iodide at 229. 4 nm: A determination of the fragment recoil anisotropy using energy-selective electron impact ionization and time-of-flight mass spectrometry

    SciTech Connect

    Penn, S.M.; Hayden, C.C.; Carlson Muyskens, K.J.; Crim, F.F.

    1988-09-01

    Energy-selective electron impact ionization of laser-produced photofragments together with time-of-flight mass spectrometry is a general and sensitive means of studying primary photodissociation processes. Low-energy electrons ionize photofragments without the production of background fragment ions from dissociative ionization of the parent molecules, and the time-of-flight mass spectral peak shapes provide direct information on the photofragment recoil anisotropy. In the first application of this combination of techniques, we have studied the photodissociation of methyl iodide at 229.4 nm, the short-wavelength end of the A band, in order to assess the contribution of transitions to the /sup 1/Q/sub 1/ state to the absorption profile. The results presented here show that I(/sup 2/P/sub 1//sub ///sub 2/) is the primary iodine--atom product and that the transition is largely parallel (..beta.. = (1.6 +- 0.1) for I(/sup 2/P/sub 1//sub ///sub 2/)) at 229.4 nm. These data together with previous photofragmentation results suggest that excitation to the /sup 3/Q/sub 0/ state dominates the entire A band absorption profile.

  2. Theoretical electron impact elastic, ionization and total cross sections for silicon hydrides, SiHx (x = 1, 2, 3, 4) and disilane, Si2H6 from threshold to 5 keV

    NASA Astrophysics Data System (ADS)

    Vinodkumar, M.; Limbachiya, C.; Korot, K.; Joshipura, K. N.

    2008-07-01

    In this article we report comprehensive calculations of total elastic (Qel), and total ionization cross sections, (Qion), on silicon hydrides SiHx (x = 1 4) and disilane, Si2H6 on electron impact at energies from circa threshold to 2000 eV and total (complete) cross sections (QT) up to 5 keV. Spherical complex optical potential (SCOP) formalism is employed to evaluate Qel and QT. Total ionization cross sections, Qion, are derived from total inelastic cross sections, Qinel, using our complex spherical potential ionization contribution (CSP-ic) method. Dependence of QT on the dipole polarizability of the target and incident energy is presented for these targets through analytical formula, using which calculation of QT is extended up to 5 keV. Comparison of QT for all these targets is carried out to present a general theoretical picture of collision processes and also to visualize the dependence of QT on the total number of electrons in the target and hence on the geometrical size of the target. Present calculations also provide information on the excitation processes of these targets. Present results are compared with available experimental and other theoretical data wherever available and overall good agreement is observed. There is probably no data for total elastic and total (complete) cross sections for SiHx (x = 2-3) in the present energy range and hence reported for the first time.

  3. Determination of 5alpha-androst-16-en-3alpha-ol in truffle fermentation broth by solid-phase extraction coupled with gas chromatography-flame ionization detector/electron impact mass spectrometry.

    PubMed

    Wang, Guan; Li, Yuan-Yuan; Li, Dong-Sheng; Tang, Ya-Jie

    2008-07-15

    A novel method using solid-phase extraction coupled with gas chromatography and flame ionization detector (FID)/electron impact mass spectrometry (EIMS) was developed for the determination of 5alpha-androst-16-en-3alpha-ol (androstenol), a steroidal compound belonging to the group of musk odorous 16-androstenes, in truffle fermentation broth. Comparison studies between FID and EIMS indicated two detectors gave similar quantitative results. The highest androstenol concentration of 123.5 ng/mL was detected in Tuber indicum fermentation broth, while no androstenol was found in Tuber aestivum fermentation broth. For the first time, this work confirmed the existence of androstenol in the truffle fermentation broth, which suggested truffle fermentation is a promising alternative for androstenol production on a large scale. PMID:18585987

  4. CF3+ fragmentation by electron impact ionization of perfluoro-propyl-vinyl-ethers, C5F10O, in gas phase

    NASA Astrophysics Data System (ADS)

    Kondo, Yusuke; Ishikawa, Kenji; Hayashi, Toshio; Miyawaki, Yudai; Takeda, Keigo; Kondo, Hiroki; Sekine, Makoto; Hori, Masaru

    2015-04-01

    The gas phase fragmentations of perfluoro-propyl-vinyl ether (PPVE, C5F10O) are studied experimentally. Dominant fragmentations of PPVE are found to be the result of a dissociative ionization reaction, i.e., CF3+ via direct bond cleavage, and C2F3O- and C3F7O- via electron attachment. Regardless of the appearance energy of around 14.5 eV for the dissociative ionization of CF3+, the observed ion efficiency for the CF3+ ion was extremely large the order of 10-20 cm-2, compared with only 10-21 cm-2 for the other channels. PPVE characteristically generated CF3+ as the largest abundant ion are advantageous for use of feedstock gases in plasma etching processes.

  5. The double ionization of H{sub 2} by fast electron impact: Influence of the final state electron-electron correlation

    SciTech Connect

    Chuluunbaatar, O. Gusev, A. A.; Joulakian, B. B.

    2013-02-15

    We have determined fully differential cross sections of the (e, 3e) double ionization of H{sub 2} by employing correlated initial- and final-state wave functions. We have constructed for the description of the two slow ejected electrons a symmetrized product of a correlation function and two-center continuum wave functions, which fulfill the correct boundary conditions asymptotically up to the order O((kr){sup -2}). We have shown that the introduction of the correlated part of the final-state wave function improves the results on the (e, 3-1e) of H{sub 2}.

  6. The influence of the ionizer geometry on the absolute density calibration of reactive neutral species in a molecular beam mass spectrometry.

    PubMed

    Krähling, Tobias; Ellerweg, Dirk; Benedikt, Jan

    2012-04-01

    Molecular beam mass spectrometry is a powerful diagnostic technique, which can be used for the measurement of absolute number densities of reactive species in non-equilibrium reactive plasmas. However, the calibration of absolute number densities is susceptible to systematic errors. Critical issues are the proper design of the sampling system and the correction of the background signal. Here we discuss the effect of reflections of particles from the molecular beam in an ionizer, formation of additional background particle density in the ionizer, and its effect on the density calibration of reactive particle densities. A Monte Carlo simulation of particle trajectories in the ionizer is used to estimate the detection probability of a beam particle after the collision with the ionizer wall. The simulation shows that as much as two-third of the signal can be due to scattered particles in the commercially available mass spectrometers. This effect leads to systematic underestimation of densities of reactive particles, which are reactive at the surface and, therefore, do not have any background density. A simple change in the ionizer geometry is suggested, which can significantly reduce this problem. PMID:22559583

  7. The influence of the ionizer geometry on the absolute density calibration of reactive neutral species in a molecular beam mass spectrometry

    SciTech Connect

    Kraehling, Tobias; Ellerweg, Dirk; Benedikt, Jan

    2012-04-15

    Molecular beam mass spectrometry is a powerful diagnostic technique, which can be used for the measurement of absolute number densities of reactive species in non-equilibrium reactive plasmas. However, the calibration of absolute number densities is susceptible to systematic errors. Critical issues are the proper design of the sampling system and the correction of the background signal. Here we discuss the effect of reflections of particles from the molecular beam in an ionizer, formation of additional background particle density in the ionizer, and its effect on the density calibration of reactive particle densities. A Monte Carlo simulation of particle trajectories in the ionizer is used to estimate the detection probability of a beam particle after the collision with the ionizer wall. The simulation shows that as much as two-third of the signal can be due to scattered particles in the commercially available mass spectrometers. This effect leads to systematic underestimation of densities of reactive particles, which are reactive at the surface and, therefore, do not have any background density. A simple change in the ionizer geometry is suggested, which can significantly reduce this problem.

  8. Electron impact excitation coefficients for laboratory and astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Davis, J.; Kepple, P. C.; Blaha, M.

    1976-01-01

    Electron impact excitation rate coefficients have been obtained for a number of transitions in highly ionized ions of interest to astrophysical and laboratory plasmas. The calculations were done using the method of distorted waves. Results are presented for various transitions in highly ionized Ne, Na, Al, Si, A, Ca, Ni and Fe.

  9. Ionization of xenon by electrons: Partial cross sections for single, double, and triple ionization

    SciTech Connect

    Mathur, D.; Badrinathan, C.

    1987-02-01

    High-sensitivity measurements of relative partial cross sections for single, double, and triple ionization of Xe by electron impact have been carried out in the energy region from threshold to 100 eV using a crossed-beam apparatus incorporating a quadrupole mass spectrometer. The weighted sum of the relative partial cross sections at 50 eV are normalized to the total ionization cross section of Rapp and Englander-Golden to yield absolute cross-section functions. Shapes of the partial cross sections for single and double ionization are difficult to account for within a single-particle picture. Comparison of the Xe/sup +/ data with 4d partial photoionization cross-section measurements indicates the important role played by many-body effects in describing electron-impact ionization of high-Z atoms.

  10. Ionization of water by (20-150)-keV protons: Separation of direct-ionization and electron-capture processes

    SciTech Connect

    Gobet, F.; Eden, S.; Coupier, B.; Tabet, J.; Farizon, B.; Farizon, M.; Gaillard, M.J.; Carre, M.; Ouaskit, S.; Maerk, T. D.; Scheier, P.

    2004-12-01

    Mass analyzed product ions have been detected in coincidence with the projectile following the ionization of water by proton impact. Measurement of the projectile charge state postcollision enables the different ionization processes to be identified: direct ionization, single electron capture, and double electron capture. A complete set of partial and total absolute cross sections is reported for the direct ionization and electron capture processes initiated by proton collisions at 20-150 keV. The cross sections for the direct ionization of H{sub 2}O by proton impact are compared with previous electron impact results [Straub et al., J. Chem. Phys. 108, 109 (1998)].

  11. Excitation of atomic nitrogen by electron impact.

    NASA Technical Reports Server (NTRS)

    Stone, E. J.; Zipf, E. C.

    1973-01-01

    Measurement of the absolute cross sections for the excitation of a number of N I multiplets by electron impact on atomic nitrogen. Two of these cross sections - 1134 and 1200 A - are found to be large, reaching 2.0 x 10 to the minus 16th and 2.5 x 10 to the minus 16th sq cm at their peaks, respectively. The presence of vibrationally excited molecular nitrogen in the discharged gas is confirmed, and its effect on the measurements is discussed. The ratio of the oscillator strengths of the 1200- and 1134-A resonance transitions is measured to be 2.6 plus or minus 0.3.

  12. A patient-specific quality assurance study on absolute dose verification using ionization chambers of different volumes in RapidArc treatments

    SciTech Connect

    Syam Kumar, S.A.; Sukumar, Prabakar; Sriram, Padmanaban; Rajasekaran, Dhanabalan; Aketi, Srinu; Vivekanandan, Nagarajan

    2012-01-01

    The recalculation of 1 fraction from a patient treatment plan on a phantom and subsequent measurements have become the norms for measurement-based verification, which combines the quality assurance recommendations that deal with the treatment planning system and the beam delivery system. This type of evaluation has prompted attention to measurement equipment and techniques. Ionization chambers are considered the gold standard because of their precision, availability, and relative ease of use. This study evaluates and compares 5 different ionization chambers: phantom combinations for verification in routine patient-specific quality assurance of RapidArc treatments. Fifteen different RapidArc plans conforming to the clinical standards were selected for the study. Verification plans were then created for each treatment plan with different chamber-phantom combinations scanned by computed tomography. This includes Medtec intensity modulated radiation therapy (IMRT) phantom with micro-ionization chamber (0.007 cm{sup 3}) and pinpoint chamber (0.015 cm{sup 3}), PTW-Octavius phantom with semiflex chamber (0.125 cm{sup 3}) and 2D array (0.125 cm{sup 3}), and indigenously made Circular wax phantom with 0.6 cm{sup 3} chamber. The measured isocenter absolute dose was compared with the treatment planning system (TPS) plan. The micro-ionization chamber shows more deviations when compared with semiflex and 0.6 cm{sup 3} with a maximum variation of -4.76%, -1.49%, and 2.23% for micro-ionization, semiflex, and farmer chambers, respectively. The positive variations indicate that the chamber with larger volume overestimates. Farmer chamber shows higher deviation when compared with 0.125 cm{sup 3}. In general the deviation was found to be <1% with the semiflex and farmer chambers. A maximum variation of 2% was observed for the 0.007 cm{sup 3} ionization chamber, except in a few cases. Pinpoint chamber underestimates the calculated isocenter dose by a maximum of 4.8%. Absolute dose

  13. Experimental apparatus for measurements of electron impact excitation

    NASA Technical Reports Server (NTRS)

    Lafyatis, G. P.; Kohl, J. L.; Gardner, L. D.

    1987-01-01

    An ion beam apparatus for the absolute measurement of collision cross sections in singly and multiply charged ions is described. An inclined electron and ion beams arrangement is used. Emitted photons from the decay of collision produced excited states are collected by a mirror and imaged onto a photomultiplier. Absolute measurements of the electron impact excitation of the 2s-2p transition in C(3+) were used to demonstrate the reliability of the apparatus.

  14. (18)F primary standard at ENEA-INMRI by three absolute techniques and calibration of a well-type IG11 ionization chamber.

    PubMed

    Capogni, Marco; Carconi, Pierluigi; De Felice, Pierino; Fazio, Aldo

    2016-03-01

    A new (18)F primary standardization carried out at ENEA-INMRI by three different absolute techniques, i.e. 4πγNaI(Tl)γ high-efficiency counting, TDCR and 4πβ(LS)-γ[NaI(Tl)] coincidence counting method, allowed the calibration of a fixed well-reentrant IG11 ionization chamber (IC), with an uncertainty lower than 1%, and to check the calibration factor of a portable well-type IC NPL-CRC model, previously calibrated. By the new standard the ENEA-INMRI was linked to the BIPM International Reference System (SIR) through the BIPM SIR Transfer Instrument (SIRTI). PMID:26774395

  15. Absolute dose measurements by means of a small cylindrical ionization chamber for very high dose per pulse high energy electron beams

    SciTech Connect

    Karaj, E.; Righi, S.; Di Martino, F.

    2007-03-15

    Very high dose per pulse (3-13 cGy/pulse) high energy electron beams are currently produced by special linear accelerators (linac) dedicated to Intra Operative Radiation Therapy (IORT). The electron beams produced by such linacs are collimated by special Perspex applicators of various size and cylindrically shaped. The biggest problems from the dosimetric point of view are caused by the high dose-per-pulse values and the use of inclined applicators. In this work measurements of absolute dose for the inclined applicators were done by using a small cylindrical ionization chamber, type CC01 (Wellhofer), a parallel plane ionization chamber type Markus (PTW 23343) and radiochromic films type EBT. We show a method which allows calculating the quality correction factors for CC01 chamber with an uncertainty of 1% and the absolute dose value for the inclined applicators using CC01 with an uncertainty of 3.1% for electron beams of energy of 6 and 7 MeV produced by the linac dedicated to IORT Novac7.

  16. Conception and realization of a parallel-plate free-air ionization chamber for the absolute dosimetry of an ultrasoft X-ray beam

    SciTech Connect

    Groetz, J.-E. Mavon, C.; Fromm, M.; Ounoughi, N.; Belafrites, A.

    2014-08-15

    We report the design of a millimeter-sized parallel plate free-air ionization chamber (IC) aimed at determining the absolute air kerma rate of an ultra-soft X-ray beam (E = 1.5 keV). The size of the IC was determined so that the measurement volume satisfies the condition of charged-particle equilibrium. The correction factors necessary to properly measure the absolute kerma using the IC have been established. Particular attention was given to the determination of the effective mean energy for the 1.5 keV photons using the PENELOPE code. Other correction factors were determined by means of computer simulation (COMSOL™and FLUKA). Measurements of air kerma rates under specific operating parameters of the lab-bench X-ray source have been performed at various distances from that source and compared to Monte Carlo calculations. We show that the developed ionization chamber makes it possible to determine accurate photon fluence rates in routine work and will constitute substantial time-savings for future radiobiological experiments based on the use of ultra-soft X-rays.

  17. Absolute cross sections for near-threshold electron-impact excitation of the dipole-allowed transitions 3s2 1S-->3s3p 1P in Cl5+ and 3s 2S-->3p 2P in Cl6+

    NASA Astrophysics Data System (ADS)

    Djurić, N.; Bannister, M. E.; Derkatch, A. M.; Griffin, D. C.; Krause, H. F.; Popović, D. B.; Smith, A. C.; Wallbank, B.; Dunn, G. H.

    2002-05-01

    Experimental and theoretical cross sections for electron-impact excitation of the dipole-allowed transitions 3s2 1S-->3s3p 1P in Cl5+ and 3s 2S-->3p 2P in Cl6+ near the excitation thresholds are reported. Absolute cross sections are measured using the merged electron-ion beams energy-loss technique. The intermediate-coupling frame-transformation R-matrix method is used to obtain theoretical cross sections. The total cross sections, for the transitions studied in both ions, exhibit resonance structures near threshold. There is excellent agreement between theory and experiment with respect to both the shape and the magnitude of the cross section for the 3s 2S-->3p 2P transition in Cl6+. For Cl5+, structures and trends in both the present R-matrix calculation and the previous calculation of Baluja and Mohan [J. Phys. B 20, 831 (1987)] agree well with the experimental results. However, the magnitudes of the theoretical cross sections for Cl5+ are significantly smaller than the measured cross section, which has been corrected for metastable contamination.

  18. Electron-impact excitation of neon

    NASA Astrophysics Data System (ADS)

    Ballance, Connor; Griffin, Don

    2004-05-01

    A number of convergent close-coupling and R-matrix with pseudo-state (RMPS) calculations on H-like, He-like, Li-like, and Be-like ions have demonstrated that coupling to the target continuum can have large effects on the electron-impact excitation cross sections of neutral and low-charge species. However, no one has yet attempted such advanced calculations on a system as complex as neutral neon. We report on a series of RMPS calculations of electron-impact excitation of Ne using recently developed parallel Breit-Pauli (BP) R-matrix programs. Our largest calculation was a BP calculation with 235 spectroscopic and pseudo levels in the close-coupling expansion. Although the results of this calculation clearly reveal the importance of coupling to the target continuum in this atom, the pseudo-state expansion is not yet sufficiently complete to provide reliable cross sections for energies above the ionization limit. However, this is the largest BP calculation that can be performed with present computer resources. Thus, we have also carried out a series of RMPS calculations in LS coupling with different pseudo-state expansions. Comparisons of these results have allowed us to determine the approximate size of the pseudo-state expansion required to achieve convergence in future BP calculations for neon.

  19. Electron impact cross sections for surrogates of DNA sugar phosphate backbone

    NASA Astrophysics Data System (ADS)

    Bhowmik, Pooja; Joshipura, K. N.; Pandya, Siddharth

    2012-11-01

    Ionization and elastic cross sections by electron impact on H3PO4 and OP(OCH3)3 which are substitutes for the components of DNA phosphate group. We have employed the Complex Scattering Potential-ionization contribution (CSP-ic) formalism to calculate the cross sections in the energy range from ionization threshold to 2000 eV.

  20. Modeling the electron-impact dissociation of methane

    NASA Astrophysics Data System (ADS)

    Ziółkowski, Marcin; Vikár, Anna; Mayes, Maricris Lodriguito; Bencsura, Ákos; Lendvay, György; Schatz, George C.

    2012-12-01

    The product yield of the electron-impact dissociation of methane has been studied with a combination of three theoretical methods: R-matrix theory to determine the electronically inelastic collisional excitation cross sections, high-level electronic structure methods to determine excited states energies and derivative couplings, and trajectory surface hopping (TSH) calculations to determine branching in the dissociation of the methane excited states to give CH3, CH2, and CH. The calculations involve the lowest 24 excited-state potential surfaces of methane, up to the ionization energy. According to the R-matrix calculations, electron impact preferentially produces triplet excited states, especially for electron kinetic energies close to the dissociation threshold. The potential surfaces of excited states are characterized by numerous avoided and real crossings such that the TSH calculations show rapid cascading down to the lowest excited singlet or triplet states, and then slower the dissociation of these lowest states. Product branching for electron-impact dissociation was therefore estimated by combining the electron-impact excitation cross sections with TSH product branching ratios that were obtained from the lowest singlet and triplet states, with the singlet dissociation giving a comparable formation of CH2 and CH3 while triplet dissociation gives CH3 exclusively. The overall branching in electron-impact dissociation is dominated by CH3 over CH2. A small branching yield for CH is also predicted.

  1. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  2. Absolute number densities of helium metastable atoms determined by atomic absorption spectroscopy in helium plasma-based discharges used as ambient desorption/ionization sources for mass spectrometry

    NASA Astrophysics Data System (ADS)

    Reininger, Charlotte; Woodfield, Kellie; Keelor, Joel D.; Kaylor, Adam; Fernández, Facundo M.; Farnsworth, Paul B.

    2014-10-01

    The absolute number densities of helium atoms in the 2s 3S1 metastable state were determined in four plasma-based ambient desorption/ionization sources by atomic absorption spectroscopy. The plasmas included a high-frequency dielectric barrier discharge (HF-DBD), a low temperature plasma (LTP), and two atmospheric-pressure glow discharges, one with AC excitation and the other with DC excitation. Peak densities in the luminous plumes downstream from the discharge capillaries of the HF-DBD and the LTP were 1.39 × 1012 cm- 3 and 0.011 × 1012 cm- 3, respectively. Neither glow discharge produced a visible afterglow, and no metastable atoms were detected downstream from the capillary exits. However, densities of 0.58 × 1012 cm- 3 and 0.97 × 1012 cm- 3 were measured in the interelectrode regions of the AC and DC glow discharges, respectively. Time-resolved measurements of metastable atom densities revealed significant random variations in the timing of pulsed absorption signals with respect to the voltage waveforms applied to the discharges.

  3. Electron-impact-induced {ital K} plus {ital M} shell ionization in solid targets of medium-{ital Z} elements studied by means of high-resolution x-ray spectroscopy

    SciTech Connect

    Ludziejewski, T.; Rymuza, P.; Sujkowski, Z.; Dousse, J.; Rheme, C.; Polasik, M.

    1996-07-01

    The {ital K}{beta}{sub 2} x-ray spectra of zirconium, niobium, molybdenum, and palladium bombarded by 150 and 300 keV electrons were measured with a high-resolution transmission curved crystal spectrometer. Multiconfiguration Dirac-Fock calculations were used for the decomposition of the experimental spectra into the {ital K}{beta}{sub 2}{ital M}{sup 0} (diagram) and {ital K}{beta}{sub 2}{ital M}{sup 1} (satellite) components. The probabilities of energy dependent (direct Coulomb and two-step) processes were estimated from the differences in the satellite line yields for electrons and photons. The satellite yields are found to be considerably enhanced in comparison with those for the proton-induced ionization recently measured and analyzed in the same way [T. Ludziejewski {ital et} {ital al}., Phys. Rev. A {bold 52}, 2791 (1995)]. This result indicates the importance of multielectron effects in the {ital K} plus {ital M} shell ionization by energetic projectiles. {copyright} {ital 1996 The American Physical Society.}

  4. Metastable Oxygen Production by Electron-Impact of Oxygen

    NASA Astrophysics Data System (ADS)

    Hein, J. D.; Malone, C. P.; Johnson, P. V.; Kanik, I.

    2014-12-01

    Electron-impact excitation processes involving atomic and molecular oxygen are important in atmospheric interactions. The production of long-lived metastable O(1S) and O(1D) through electron impact of oxygen-containing molecules plays a significant role in the dynamics of planetary atmospheres (Earth, Mars, Europa, Io, Enceladus) and cometary bodies (Hale-Bopp). The electron-impact excitation channels to O(1S) and O(1D) are important for determining energy partitioning and dynamics. To reliably model natural phenomena and interpret observational data, the accurate determination of underlying collision processes (cross sections, dissociation dynamics) through fundamental experimental studies is essential. The detection of metastable species in laboratory experiments requires a novel approach. Typical radiative de-excitation detection techniques cannot be performed due to the long-lived nature of excited species, and conventional particle detectors are insensitive to the low internal energies O(1S) and O(1D). We have recently constructed an apparatus to detect and characterize metastable oxygen production by electron impact using the "rare gas conversion technique." Recent results will be presented, including absolute excitation functions for target gases O2, CO, CO2, and N2O. This work was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Financial support through NASA's OPR, PATM, and MFRP programs, as well as the NASA Postdoctoral Program (NPP) are gratefully acknowledged.

  5. Absolute total and partial dissociative cross sections of pyrimidine at electron and proton intermediate impact velocities

    SciTech Connect

    Wolff, Wania Luna, Hugo; Sigaud, Lucas; Montenegro, Eduardo C.; Tavares, Andre C.

    2014-02-14

    Absolute total non-dissociative and partial dissociative cross sections of pyrimidine were measured for electron impact energies ranging from 70 to 400 eV and for proton impact energies from 125 up to 2500 keV. MOs ionization induced by coulomb interaction were studied by measuring both ionization and partial dissociative cross sections through time of flight mass spectrometry and by obtaining the branching ratios for fragment formation via a model calculation based on the Born approximation. The partial yields and the absolute cross sections measured as a function of the energy combined with the model calculation proved to be a useful tool to determine the vacancy population of the valence MOs from which several sets of fragment ions are produced. It was also a key point to distinguish the dissociation regimes induced by both particles. A comparison with previous experimental results is also presented.

  6. A new concept Tandem thermal dissociator/electron impact ion source for RIB generation

    SciTech Connect

    Alton, G.D.; Williams, C.

    1995-12-31

    An innovative thermal dissociation/electron impact ionization positive ion source is presently under design at the Oak Ridge National Laboratory for potential use for generating RIBs at the Holifield Radioactive Ion Beam Facility (HRIBF). Because of the low probability of simultaneously dissociating and efficiently ionizing the individual atomic constituents with conventional, hot-cathode, electron-impact ion sources, the ion beams extracted from these sources often appear as a mixture of several molecular sideband beams. In this way, the intensity of the species of interest is diluted. We have conceived an Ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high efficiency characteristics of an electron impact ionization source. If the concept proves to be a viable option, the source will be used as a complement to the electron beam plasma ion sources already in use at the HRIBF. The design features and principles of operation of the source are described in this article.

  7. Simultaneous ionization and excitation of helium by electron impact

    NASA Astrophysics Data System (ADS)

    Dal Cappello, C.; Roy, A. C.; Ren, X. G.; Dey, R.

    2008-02-01

    We present numerical results for He (1s2) (e, 2e) He+ reaction process for transitions to the n = 1, 2 and 3 states of He+ for noncoplanar symmetric geometry at incident energies of 1000 and 1600 eV. The calculations are performed using the plane wave impulse approximation (PWIA) and the 3C method (also called the Brauner, Briggs and Klar (BBK) model) that includes post collision interaction and multiple scattering effects. In both the methods we have used the highly correlated configuration interaction wave function for the ground state of helium. A comparison of the present theoretical cross sections with the recent measured data of Ren et al. [X.G. Ren, C.G. Ning, J.K. Deng, G.L. Su, S.F. Zhang, Y.R. Huang, G.Q. Li, Phys. Rev. A 72 (2005) 042718] shows reasonably good agreement.

  8. Absolute K-shell ionization cross sections and L{alpha} and L{beta}{sub 1} x-ray production cross sections of Ga and As by 1.5-39-keV electrons

    SciTech Connect

    Merlet, C.; Llovet, X.; Fernandez-Varea, J. M.

    2006-06-15

    Absolute K-shell ionization and L{alpha} and L{beta}{sub 1} x-ray production cross sections for Ga and As have been measured for incident electrons in the energy range from 1.5 to 39 keV. The cross sections were deduced from K{alpha}, L{alpha}, and L{beta}{sub 1} x-ray intensities emitted from ultrathin GaAs samples deposited onto self-supporting carbon films. The x-ray intensities were measured on an electron microprobe equipped with several wavelength-dispersive spectrometers and were converted into absolute cross sections by using estimated values of the target thickness, spectrometer efficiency, and number of incident electrons. Experimental results are compared with cross sections calculated from the plane-wave and distorted-wave Born approximations, the relativistic binary-encounter-Bethe model, the results of two widely used simple analytical formulas, and, whenever possible, experimental data from the literature.

  9. Implementation of the external complex scaling method in spheroidal coordinates: Impact ionization of molecular hydrogen

    SciTech Connect

    Serov, Vladislav V.; Joulakian, Boghos B.

    2009-12-15

    We develop an ab initio procedure based on the driven Schroedinger equation formalism and the external complex scaling method for the determination of the multifold differential cross sections of the single and double ionization of molecular hydrogen by single photon and fast electron impact. We take advantage of the separability of the two-center Schrodinger equation in prolate spheroidal coordinates in the numerical calculation of the two-electron two-center wave function of the initial and final states of the target. After having verified our procedure by reproducing existing confirmed triple differential cross sections of the (e,2e) ionization of H{sub 2}, we have extended our calculation to the double ionization of H{sub 2}. Our results on double photoionization agree with existing experimental results. We observe in the mean time a small difference with respect to the absolute results obtained by similar ab initio calculations using spherical bases. For the case of the double ionization by fast electron impact for which very few experimental results exist, our results confirm the existing disagreement between the theoretical results and the unique experimental one in the case of (e,3-1e). This we think makes it clear that for (e,3e) the introduction of the higher terms of the Born series for mean energy electron-impact regime is necessary.

  10. Cross sections for the production of energetic cations by electron impact on N2 and CO2

    NASA Technical Reports Server (NTRS)

    Iga, I.; Srivastava, S. K.; Rao, M. V. V. S.; Katayama, D. H.

    1995-01-01

    Dissociative ionization cross sections for the production of singly charged energetic ions by electron impact on N2 and CO2 have been measured. The ions were divided into two groups: one with energies less than 1 eV and the other with energies greater than 1 eV. The ions detected were N+ from N2 and C+, O+, and CO+ from CO2. The electron impact energy range, and cross section data on ions is given.

  11. Electron impact collision strengths for excitation of highly charged ions

    SciTech Connect

    Sampson, D.H. . Dept. of Astronomy and Astrophysics)

    1990-08-20

    The principle task given us by the Lawrence Livermore National Laboratory (LLNL) to perform under Subcontract 6181405 was to develop a method and corresponding computer programs to make very rapid, yet accurate, fully relativistic and quasirelativistic calculations of cross sections or collision strengths for electron impact excitation of highly charged ions with any value for the nuclear charge number Z. Also while this major code development was being done we were asked to calculate cross sections of interest using our previous rapid, more approximate codes, which used hydrogenic basis functions and screening constants with both the electron-electron Coulomb interaction and relativistic interactions included by perturbation theory. We were also asked to determine the branching ratio for ionization to various final states in complex cases, where two or more states corresponding to the final configuration of the ion were possible.

  12. Far-Ultraviolet Emission Cross Sections of Ne 2 and Ne 3 Excited by Electron Impact

    NASA Technical Reports Server (NTRS)

    James, Geoffrey K.; Kanik, Isik; Ajello, Joseph M.

    1995-01-01

    We have measured the electron-impact-induced fluorescence spectrum of neon in the wavelength range 120-270 nm at a spectral resolution of 0.43 nm (FWHM). The strongest lines observed in the far-ultraviolet (FUV) spectrum of neon are assigned to terms of the doublet system of Ne 2 (2s(sup 2) 2p(sup 4)nl and the triplet system of Ne 3 (2s(sup 2)2p(sup 3)3l). Our FUV spectral data, obtained at 300 eV electron-impact energy, provide absolute emission cross sections of these Ne 2 and Ne 3 lines, and are compared to previous measurements where available. In addition, the excitation function of the strongest Ne II line observed at 191.6 nm was measured from threshold to 1000 eV electron-impact energy.

  13. Absolute Zero

    NASA Astrophysics Data System (ADS)

    Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.

    2006-12-01

    Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.

  14. Electron-Impact Dissociation of Ozone Cations O3+

    SciTech Connect

    Deng, Shihu; Vane, C Randy; Bannister, Mark E; FogleJr, Michael R

    2010-01-01

    Absolute cross sections for electron-impact dissociation of O3+ ions yielding O+ and O2+ fragment ions have been measured using a crossed electron-ion beams method for energies from about 3 eV to 100 eV. While the O2+ channel dominates the dissociation cross section over the measured energy range, a strong enhancement is observed in the O+ channel at low energy.

  15. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  16. Electron-impact-induced tryptophan molecule fragmentation

    NASA Astrophysics Data System (ADS)

    Tamuliene, Jelena; Romanova, Liudmila G.; Vukstich, Vasyl S.; Papp, Alexander V.; Snegursky, Alexander V.

    2015-01-01

    The fragmentation of a gas-phase tryptophan molecule by a low-energy (<70 eV) electron impact was studied both experimentally and theoretically. Various positively charged fragments were observed and analyzed. A special attention was paid to the energy characteristics of the ionic fragment yield. The geometrical parameters of the initial molecule rearrangement were also analyzed. The fragmentation observed was due to either a simple bond cleavage or more complex reactions involving molecular rearrangements. Contribution to the Topical Issue "Elementary Processes with Atoms and Molecules in Isolated and Aggregated States", edited by Friedrich Aumayr, Bratislav Marinkovic, Stefan Matejcik, John Tanis and Kurt H. Becker.

  17. Electron-impact excitation of holmium atoms

    SciTech Connect

    Smirnov, Yu M

    2000-06-30

    The electron-impact excitation of holmium atoms was studied by the method of extended crossing beams. The cross sections and the optical excitation functions were obtained for odd levels of Ho I, including the 22014 cm{sup -1} laser level. Over 99% of the atoms were shown to reside in the ground level prior to collisions with electrons. Also measured were the excitation cross sections for six even levels, which presumably participate in the formation of inversion population in a gas-discharge holmium vapour laser. (laser applications and other topics in quantum electronics)

  18. Electron impact excitation of SF6

    NASA Technical Reports Server (NTRS)

    Trajmar, S.; Chutjian, A.

    1977-01-01

    A study of the electron impact energy-loss spectrum of SF6 under both optical (low scattering angle, high impact energy) and non-optical conditions (high scattering angle, low impact energy) has revealed a number of electronic excitation processes. With the help of theoretical calculations, several of these transitions have been assigned and approximate cross sections associated with four features have been determined. In addition, a strong resonance at 12 eV has been observed in both elastic and vibrationally inelastic (delta E = 0.092 eV) channels.

  19. Electron Impact Collision Strength in Si IX

    NASA Astrophysics Data System (ADS)

    Noman, Hala; Gokce, Y.; Nahar, Sultana; Pradhan, Anil

    2016-05-01

    Results from work in progress under Iron Project on the electron impact excitation collision strengths and rate coefficients for transitions between the fine-structure levels of the 2s2 2p2 , 2 s 2p3 , 2p4 , 2s2 2 p 3 s , 2s2 2 p 3 p , and 2s2 2 p 3 d configurations in Si IX will be presented. The fine structure collision strength has been calculated at very fine energy mesh using relativistic effects in Breit-Pauli R-matrix method. Maxwellian averaged collision strengths have been tabulated for all possible transitions among all 46 enrgy levels. We made comparisions of our results with the previously reported results in the literature and found significant differences in low the temperature range (Te < 106 K) for few of the transitions. The correction to the previous reported values results due to more extensive expansion for Si IX target states.

  20. Electron impact study of potassium hydroxide

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Trajmar, S.

    1979-01-01

    An attempt is made to measure the sum of the elastic, rotational and vibrational scattering of electrons by KOH at low impact energies (5 to 20 eV) at angles from 10 to 120 deg. Energy loss spectra taken in the 0 to 18 eV range using an electron impact spectrometer are used to identify the species contributing to electric scattering. At temperatures between 300 and 500 C, only inelastic spectral features belonging to water are detected, while at temperatures from 500 to 800 C strong atomic K lines, indicative of molecular dissociation, and H2 energy loss features become prominent. No features attributable to KOH, the KOH dimer, O2 or potassium oxides were observed, due to the effects of the dissociation products, and it is concluded that another technique will have to be developed in order to measure electron scattering by KOH.

  1. Dissociative excitation of NO2 by electron impact

    NASA Astrophysics Data System (ADS)

    Young, J. A.; Malone, C. P.; Johnson, P. V.; Liu, X.; Ajello, J. M.; Kanik, I.

    2009-09-01

    Electron-impact-induced vacuum ultraviolet emissions are measured for NO2, a species important to discharge phenomena and ozone decomposition in the Earth's atmosphere. A calibrated spectrum for 100 eV incident electrons is presented, along with cross sections for strong emission features between 80 and 160 nm. The dominant N i (2p3 4S°-3s 4P) emission at 120.1 nm is compared with that of N2 and used to provide an absolute calibration for all measured cross sections. In addition, 10-300 eV excitation functions for the N i (120.1 nm) and O i (130.4 nm) emissions are presented and interpreted. Comparisons are made with similar measurements of related species, in particular N2O and NO. Of interest, it was found that, on average, the variation in the intensity of oxygen and nitrogen emissions could be reasonably explained by the difference in the number of constituent oxygen and nitrogen atoms in each target.

  2. Electron impact rotationally elastic total cross section for formamide

    SciTech Connect

    Vinodkumar, Minaxi; Limbachiya, Chetan; Desai, Hardik Vinodkumar, P. C.

    2014-09-28

    This paper reports computational results of the total cross sections for electron impact on formamide (HCONH₂) over a wide range of energies from 0.01 eV to 5 keV. Total cross sections over such a wide range are reported for the first time as the earlier reported data is up to maximum of 12 eV. Below ionization threshold of the target, we performed ab initio calculations using UK molecular R-Matrix code within static, exchange plus polarization (SEP), and close coupling approximations. Twenty eight target states are included in close coupling formalism. Total 350 channels and 2410 configuration state functions are included in the calculations. We observe a π* shape resonance at 3.41 eV and a σ* resonance at 15.3 eV as against similar resonances reported at 3.77 eV and 14.9 eV, respectively, by Goumans et al. [J. Chem. Theory Comput. 5, 217 (2009)] using SEP model. The cross sections at higher energies are evaluated using the spherical complex optical potential formalism. The two methods are found to be consistent with a smooth cross over at 18 eV. The vertical excitation energies, electronic excitation cross sections, differential cross sections, momentum transfer, and total cross sections are computed. In absence of experimental data, we compared our computed total cross sections with available other theoretical results.

  3. Electron impact rotationally elastic total cross section for formamide

    NASA Astrophysics Data System (ADS)

    Vinodkumar, Minaxi; Limbachiya, Chetan; Desai, Hardik; Vinodkumar, P. C.

    2014-09-01

    This paper reports computational results of the total cross sections for electron impact on formamide (HCONH2) over a wide range of energies from 0.01 eV to 5 keV. Total cross sections over such a wide range are reported for the first time as the earlier reported data is up to maximum of 12 eV. Below ionization threshold of the target, we performed ab initio calculations using UK molecular R-Matrix code within static, exchange plus polarization (SEP), and close coupling approximations. Twenty eight target states are included in close coupling formalism. Total 350 channels and 2410 configuration state functions are included in the calculations. We observe a π* shape resonance at 3.41 eV and a σ* resonance at 15.3 eV as against similar resonances reported at 3.77 eV and 14.9 eV, respectively, by Goumans et al. [J. Chem. Theory Comput. 5, 217 (2009)] using SEP model. The cross sections at higher energies are evaluated using the spherical complex optical potential formalism. The two methods are found to be consistent with a smooth cross over at 18 eV. The vertical excitation energies, electronic excitation cross sections, differential cross sections, momentum transfer, and total cross sections are computed. In absence of experimental data, we compared our computed total cross sections with available other theoretical results.

  4. Electron Impact Excitation Of Ti XIX

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti M.; Keenan, F. P.

    2012-05-01

    Emission lines of Ti XIX are important for the modeling and diagnostics of lasing, fusion and astrophysical plasmas, for which atomic data are required for a variety of parameters, such as energy levels, radiative rates (A- values), and excitation rates or equivalently the effective collision strengths (Υ), which are obtained from the electron impact collision strengths (Ω). Experimentally, energy levels are available for Ti XIX on the NIST website, but there is paucity for accurate collisional atomic data. Therefore, here we report a complete set of results (namely energy levels, radiative rates, and effective collision strengths) for all transitions among the lowest 98 levels of Ti XIX. These levels belong to the (1s2) 2s2, 2s2p, 2p2, 2s3l, 2p3l, 2s4l, and 2p4l configurations. Finally, we also report the A- values for four types of transitions, namely electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2), because these are also required for plasma modeling. For our calculations of wavefunctions, we have adopted the fully relativistic GRASP code, and for the calculations of Ω, the Dirac atomic R-matrix code (DARC) of PH Norrington and IP Grant. Additionally, parallel calculations have also been performed with the Flexible Atomic Code (FAC) of Gu, so that all atomic parameters can be rigorously assessed for accuracy.

  5. Electron impact exctation of Al X

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti; Keenan, Francis

    2013-05-01

    Emission lines of Al ions, including Al X, are important for the modeling and diagnostics of lasing, fusion and astrophysical plasmas, for which atomic data are required for a variety of parameters, such as energy levels, radiative rates (A- values), and excitation rates or equivalently the effective collision strengths (Υ), which are obtained from the electron impact collision strengths (Ω). Experimentally, energy levels are available for Al X on the NIST website, but there is paucity for accurate collisional atomic data. Therefore, here we report a complete set of results (namely energy levels, radiative rates, and effective collision strengths) for all transitions among the lowest 98 levels of Al X. These levels belong to the (1s2) 2s2, 2s2p, 2p2, 2s3 l, 2p3 l, 2s4 l, and 2p4 l configurations. Finally, we also report the A- values for four types of transitions, namely electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2), because these are also required for plasma modeling. For our calculations of wavefunctions, we have adopted the fully relativistic GRASP code, and for the calculations of Ω, the Dirac atomic R-matrix code (DARC) of PH Norrington and IP Grant. Additionally, parallel ca

  6. Electron Impact Exciation of Fe IX

    NASA Astrophysics Data System (ADS)

    Tayal, Swaraj; Zatsarinny, Oleg

    2015-05-01

    Transition probabilities and electron impact excitation collision strengths and rates for astrophysically important extreme ultraviolet lines of Fe IX are calculated. The 322 fine-structure levels of the 3s2 3p6 , 3s2 3p5 3 d , 3 s 3p6 3 d , 3s2 3p5 4 s , and 3s2 3p4 3d2 configurations are included in our calculations. The collision strengths have been calculated using the B-spline Breit-Pauli R-matrix method for all fine-structure transitions among the 322 levels. The mass, Darwin, and spin-orbit relativistic effects are included in the Breit-Pauli Hamiltonian in the scattering calculation. The one-body and two-body relativistic operators are included in the multi-configuration Hartree-Fock calculations of transition probabilities. Several sets of non-orthogonal spectroscopic and correlation radial orbitals are used to obtain accurate description of Fe IX levels and to represent the scattering functions. The calculated excitation energies are in very good agreement with experiment and represents an improvement over the previous calculations. The present collision strengths show reasonable agreement with the previously available R-matrix and distorted-wave calculations. This research is supported by NASA grant from the Solar and Heliophysics Program.

  7. Electron impact excitation of helium atom

    NASA Astrophysics Data System (ADS)

    Han, Xiao-Ying; Zeng, De-Ling; Gao, Xiang; Li, Jia-Ming

    2015-08-01

    A method to deal with the electron impact excitation cross sections of an atom from low to high incident energies are presented. This method combines the partial wave method and the first Born approximation (FBA), i.e., replacing the several lowest partial wave cross sections of the total cross sections within FBA by the corresponding exact partial wave cross sections. A new set of codes are developed to calculate the FBA partial wave cross sections. Using this method, the convergent e-He collision cross sections of optical-forbidden and optical-allowed transitions at low to high incident energies are obtained. The calculation results demonstrate the validity and efficiency of the method. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921501 and 2013CB922200), the National Natural Science Foundation of China (Grant Nos. 11274035, 11275029, 11328401, 11371218, 11474031, 11474032, and 11474034), and the Foundation of Development of Science and Technology of Chinese Academy of Engineering Physics (Grant Nos. 2013A0102005 and 2014A0102005).

  8. Measurements of Electron Impact Excitation Cross Sections at the Harvard-Smithsonian Center for Astrophysics

    NASA Technical Reports Server (NTRS)

    Gardner, L. D.; Kohl, J. L.

    2006-01-01

    The analysis of absolute spectral line intensities and intensity ratios with spectroscopic diagnostic techniques provides empirical determinations of chemical abundances, electron densities and temperatures in astrophysical objects. Since spectral line intensities and their ratios are controlled by the excitation rate coefficients for the electron temperature of the observed astrophysical structure, it is imperative that one have accurate values for the relevant rate coefficients. Here at the Harvard-Smithsonian Center for Astrophysics, we have been carrying out measurements of electron impact excitation (EIE) for more than 25 years.

  9. Cross section for Ly-alpha emission by electron impact on methane

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Srivastava, S. K.

    1981-01-01

    Utilizing Lyman-alpha emission cross sections for H2 as secondary standards, absolute values of Lyman-alpha emission cross sections for CH4 have been obtained for electron impact energies varying from threshold to 100 eV. A crossed electron beam-molecular beam geometry was employed and the Lyman-alpha radiation was detected at 90 deg and 45 deg with respect to the incident electron beam by a solar blind photomultiplier in tandem with an oxygen filter. The results are compared with previous measurements. Appreciable differences among the various experimental data are found.

  10. Dissociative excitation of vacuum ultraviolet emission features by electron impact on molecular gases. 3: CO2

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; Borst, W. L.; Zipf, E. C.

    1972-01-01

    Vacuum ultraviolet multiplets of C I, C II, and O I were produced by electron impact on CO2. Absolute emission cross sections for these multiplets were measured from threshold to 350 eV. The electrostatically focused electron gun used is described in detail. The atomic multiplets which were produced by dissociative excitation of CO2 and the cross sections at 100 eV are presented. The dependence of the excitation functions on electron energy shows that these multiplets are produced by electric-dipole-allowed transitions in CO2.

  11. Electron impact mass spectrometry of oxindole, pseudoindoxyle and indolenine derivatives

    NASA Astrophysics Data System (ADS)

    Rodríguez, J. Gonzalo; Urrutia, Anahí; Canoira, Laureano

    1997-02-01

    The electron impact mass spectra of 22 compounds, grouped in five series, containing the oxindole, pseudoindoxyle and indolenine rings, some of them with potential pharmacological interest, have been studied, and their fragmentation patterns have been proposed on the basis of metastable studies, accurate mass measurements and fragmentation schemes upon electron impact of structurally related alkaloids.

  12. Electron-impact vibrational excitation of cyclopropane

    SciTech Connect

    Čurík, R. Čársky, P.; Allan, M.

    2015-04-14

    We report a very detailed test of the ab initio discrete momentum representation (DMR) method of calculating vibrational excitation of polyatomic molecules by electron impact, by comparison of its results with an extensive set of experimental data, covering the entire range of scattering angles from 10{sup ∘} to 180{sup ∘} and electron energies from 0.4 to 20 eV. The DMR calculations were carried out by solving the two-channel Lippmann-Schwinger equation in the momentum space, and the interaction between the scattered electron and the target molecule was described by exact static-exchange potential corrected by a density functional theory (DFT) correlation-polarization interaction that models target’s response to the field of incoming electron. The theory is found to quantitatively reproduce the measured spectra for all normal modes, even at the difficult conditions of extreme angles and at low energies, and thus provides full understanding of the excitation mechanism. It is shown that the overlap of individual vibrational bands caused by limited experimental resolution and rotational excitation must be properly taken into account for correct comparison of experiment and theory. By doing so, an apparent discrepancy between published experimental data could be reconciled. A substantial cross section is found for excitation of the non-symmetric HCH twisting mode ν{sub 4} of A{sub 1}{sup ″} symmetry by the 5.5 eV A{sub 2}{sup ′} resonance, surprisingly because the currently accepted selection rules predict this process to be forbidden. The DMR theory shows that the excitation is caused by an incoming electron in an f-wave of A{sub 2}{sup ′} symmetry which causes excitation of the non-symmetric HCH twisting mode ν{sub 4} of the A{sub 1}{sup ″} symmetry and departs in p- and f-waves of A{sub 2}{sup ″} symmetry.

  13. On the influence of low-energy ionizing radiation on the amino acid molecule: proline

    NASA Astrophysics Data System (ADS)

    Tamuliene, Jelena; Romanova, Liudmila; Vukstich, Vasyl; Papp, Alexander; Shkurin, Serhiy; Baliulyte, Laura; Snegursky, Alexander

    2016-06-01

    New data on the electron-impact fragmentation of the amino acid proline molecule are presented as being related to the formation of the ionized products due to the influence of low-energy ionizing radiation on the above molecule. An extensive DFT-theory based on the theoretical approach enabled the main pathways of the proline molecules fragmentation to be elucidated. A series of the produced fragments have been identified. The absolute appearance energies for some of them have been both measured experimentally and calculated theoretically. The data of the experimental studies and theoretical calculations are compared and analyzed. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic, B. Sivaraman.

  14. Electron-Impact Excitation Cross Sections for Modeling Non-Equilibrium Gas

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Liu, Yen; Panesi, Marco; Munafo, Alessandro; Wray, Alan; Carbon, Duane F.

    2015-01-01

    In order to provide a database for modeling hypersonic entry in a partially ionized gas under non-equilibrium, the electron-impact excitation cross sections of atoms have been calculated using perturbation theory. The energy levels covered in the calculation are retrieved from the level list in the HyperRad code. The downstream flow-field is determined by solving a set of continuity equations for each component. The individual structure of each energy level is included. These equations are then complemented by the Euler system of equations. Finally, the radiation field is modeled by solving the radiative transfer equation.

  15. Comment on ``Oxygen ionization rates at Mars and Venus: Relative contributions of impact ionization and charge exchange'' by M. H. Zhang, J. G. Luhmann, A. F. Nagy, J. R. Spreiter, and S. S. Stahara

    NASA Astrophysics Data System (ADS)

    Krymskii, A. M.; Breus, T. K.

    The accuracy of estimates of electron impact ionization which are based on the gasdynamic model of the solar wind interaction with Venus is discussed. Employing the hybrid simulations and in situ data on electron temperature or electron fluxes the electron impact ionization is reevaluated. The electron impact ionization rate estimated in this paper is typically 4-8 times less than the value derived from the gasdynamic model Zhang et al. [1993]. During solar maximum the photoionization rate is typically greater than the electron impact ionization rate.

  16. Electron-impact excitation of the low-lying electronic states of HCN

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Tanaka, H.; Srivastava, S. K.; Wicke, B. G.

    1977-01-01

    The first study of the low-energy electron-impact excitation of low-lying electronic transitions in the HCN molecule is reported. Measurements were made at incident electron energies of 11.6 and 21.6 eV in the energy-loss range of 3-10 eV, and at scattering angles of 20-130 deg. Inelastic scattering spectra were placed on the absolute cross-section scale by determining first the ratio of inelastic-to-elastic scattering cross sections, and then separately measuring the absolute elastic scattering cross section. Several new electronic transitions are observed which are intrinsically overlapped in the molecule itself. Assignments of these electronic transitions are suggested. These assignments are based on present spectroscopic and cross-sections measurements, high-energy electron scattering spectra, optical absorption spectra, and ab initio molecular orbital calculations.

  17. Electron impact excitation of the 3s3p 1P1 state in magnesium

    NASA Astrophysics Data System (ADS)

    Predojević, Branko

    2006-12-01

    Differential cross sections (DCSs) for electron-impact excitation of the 3s3p 1P1 resonance state of magnesium have been measured at 10, 15, 20, 40, 60, 80 and 100 eV incident electron energies (Eo). Scattered-electron intensities were measured over wide range of scattering angles from 2° to 150°. The absolute DCS scale for the 1P1 state was determined through normalizations of its relative DCSs to optical oscillator strength using forward scattering function method, except at Eo ⩽ 15 eV where the excitation function of the 3s3p 1P1 state experimentally obtained by Leep and Gallagher (1976 Phys. Rev. A 13 148) was utilized for normalization. These absolute DCSs were extrapolated to 0° and 180° and numerically integrated to yield integral, momentum transfer and viscosity cross sections. Our results are compared with available experimental and theoretical data.

  18. A novel double-focusing time-of-flight mass spectrometer for absolute recoil ion cross sections measurements.

    PubMed

    Sigaud, L; de Jesus, V L B; Ferreira, Natalia; Montenegro, E C

    2016-08-01

    In this work, the inclusion of an Einzel-like lens inside the time-of-flight drift tube of a standard mass spectrometer coupled to a gas cell-to study ionization of atoms and molecules by electron impact-is described. Both this lens and a conical collimator are responsible for further focalization of the ions and charged molecular fragments inside the spectrometer, allowing a much better resolution at the time-of-flight spectra, leading to a separation of a single mass-to-charge unit up to 100 a.m.u. The procedure to obtain the overall absolute efficiency of the spectrometer and micro-channel plate detector is also discussed. PMID:27587105

  19. Solar cycle dependence of the helium focusing cone from SOHO/UVCS observations. Electron impact rates and associated pickup ions

    NASA Astrophysics Data System (ADS)

    Lallement, R.; Raymond, J. C.; Bertaux, J.-L.; Quémerais, E.; Ko, Y.-K.; Uzzo, M.; McMullin, D.; Rucinski, D.

    2004-11-01

    The Ultraviolet Coronograph on board SOHO (UVCS) has observed the 58.4 nm glow of the interplanetary He focusing cone at regular intervals since 1996. The intensity decrease with time already observed during the first two years (Michels et al. \\cite{michels}) has dramatically amplified during the solar activity increase. Intensities seem to reach a plateau in 2001. Using a model of the cone emission which takes into account both photoionization and electron impact ionization of neutral helium we show that the photoionization increase alone cannot explain the observed intensity drop. Data can be fitted if at minimum activity the electron impact ionization rate is the solar cycle average rate predicted by Rucinski & Fahr (\\cite{1989A&A...224..290R}), and if this rate is increased by a factor of about 3.5 between 1996 and 2001. Assuming the Rucinski and Fahr radial dependence, such high electron impact rates create averaged He+ pickup ion (PUI) fluxes which may reach 50% of the fluxes of ions born after photoionization, or 35% of PUI total fluxes, as far as 1 AU from the Sun. In slow and dense solar wind enhancements, in particular in the presence of strong suprathermal tails, PUIs from electron impact could be the dominant species. This could explain a fraction of the observed correlation between He+ and H+ pickups and anticorrelation of He+ fluxes with solar wind velocity.

  20. Study of electron impact excitation of argon in the extreme ultraviolet - Emission cross section of resonance lines of Ar I, Ar II

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; James, Geoffrey K.; Franklin, Brian; Howell, Simon

    1990-01-01

    In a crossed-beam experiment under optically thin conditions the EUV spectrum of argon produced by electron impact excitation is studied. The cross sections of the resonance lines of Ar I and II are measured. The resonance lines of Ar I at 104.8 nm and 106.7 nm, and of Ar II at 91.96 nm and 93.21 nm are the most prominent features of the EUV spectrum between 40 and 110 nm. The relative-flow technique is used to measure the absolute cross sections of these lines at 200 eV. The measurements are compared with previous estimates. The measured emission cross section values at 200 eV for the Ar I lines at 104.8 nm and 106.7 nm, when compared to the electron energy loss estimates of the direct excitation cross sections, establish that cascading is larger for the Ar I resonance lines than previous emission experiments have indicated. In addition, all the emission cross sections for the Ar I and II Rydberg series in the EUV are measured at 0.5 nm resolution. The FUV spectrum is also surveyed and found to consist of Ar II multiplets from simultaneous ionization-excitation.

  1. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  2. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  3. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  4. Analysis of Volatile and Oxidation Sensitive Compounds Using a Cold Inlet System and Electron Impact Mass Spectrometry

    PubMed Central

    Sproß, Jens

    2014-01-01

    This video presents a protocol for the mass spectrometrical analysis of volatile and oxidation sensitive compounds using electron impact ionization. The analysis of volatile and oxidation sensitive compounds by mass spectrometry is not easily achieved, as all state-of-the-art mass spectrometric methods require at least one sample preparation step, e.g., dissolution and dilution of the analyte (electrospray ionization), co-crystallization of the analyte with a matrix compound (matrix-assisted laser desorption/ionization), or transfer of the prepared samples into the ionization source of the mass spectrometer, to be conducted under atmospheric conditions. Here, the use of a sample inlet system is described which enables the analysis of volatile metal organyls, silanes, and phosphanes using a sector field mass spectrometer equipped with an electron impact ionization source. All sample preparation steps and the sample introduction into the ion source of the mass spectrometer take place either under air-free conditions or under vacuum, enabling the analysis of compounds highly susceptible to oxidation. The presented technique is especially of interest for inorganic chemists, working with metal organyls, silanes, or phosphanes, which have to be handled using inert conditions, such as the Schlenk technique. The principle of operation is presented in this video. PMID:25225789

  5. Eosinophil count - absolute

    MedlinePlus

    Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

  6. High Resolution Emission Spectroscopy of the Alpha Pi-1 - Chi Sigma-1(+) Fourth Positive Band System of CO from Electron Impact

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Ajello, Joseph M.; James, Geoffrey K.; Alvarez, Marcos; Dziczek, Dariusz

    2000-01-01

    We report electron-impact induced fluorescence spectra [300 mA full width at half maximum (FWHM)] of CO for 20 and 100 eV impact energies of the spectral region of 1300 to 2050 A and high resolution spectra (FWHM) of the v'=5 to v"=l and the v'=3 to v"=O bands showing that the rotational structure of the band system are modeled accurately. The excitation function of the (0,1) band (1597 A) was measured from electron impact in the energy range from threshold to 750 eV and placed on an absolute scale from modem calibration standards.

  7. VUV study of electron impact dissociative excitation of thymine

    NASA Astrophysics Data System (ADS)

    Tiessen, C. J.; Trocchi, J. A.; Hein, J. D.; Dech, J.; Kedzierski, W.; McConkey, J. W.

    2016-06-01

    Dissociative excitation of thymine following electron impact was studied in the energy range up to 430 eV. Emissions in the vacuum ultra-violet spectral region below 150 nm were studied and found to be dominated by the hydrogen Lyman series. Emission cross section data reveal that Lyman-α excitation displays a broad maximum at an electron impact energy of 160 eV. The probability of extracting other excited atoms from the parent molecule is found to be insignificant. Possible excitation and dissociation mechanisms in the parent molecule are discussed.

  8. VUV fluorescence following electron-impact dissociative excitation of CS{sub 2}

    SciTech Connect

    Brotton, S. J.; McConkey, J. W.

    2011-01-15

    Electron-impact dissociation of CS{sub 2} has been studied by observation of the atomic spectral emission features in the range 115-170 nm. Absolute photoemission cross sections are presented over the complete wavelength range for an incident electron energy of 100 eV. As an example, the measured cross section of the strong C i emission at 165.7 nm, which is a prominent feature in many solar and other extraterrestrial spectra, is (1.45{+-}0.19)x10{sup -18} cm{sup 2}. Comparison with earlier cross-sectional measurements suggest that these were too high by a factor of more than three. Excitation functions of the dominant C i (156.1 nm) and S i (147.4 nm) emission lines have been measured for electron-impact energies from threshold to 360 eV. From appearance energy measurements in the near-threshold region, likely fragmentation channels are identified which involve both two-fragment breakup and total fragmentation of the parent CS{sub 2}.

  9. Intermediate energy cross sections for electron-impact vibrational-excitation of pyrimidine

    SciTech Connect

    Jones, D. B.; Ellis-Gibbings, L.; García, G.; Nixon, K. L.; Lopes, M. C. A.; Brunger, M. J.

    2015-09-07

    We report differential cross sections (DCSs) and integral cross sections (ICSs) for electron-impact vibrational-excitation of pyrimidine, at incident electron energies in the range 15–50 eV. The scattered electron angular range for the DCS measurements was 15°–90°. The measurements at the DCS-level are the first to be reported for vibrational-excitation in pyrimidine via electron impact, while for the ICS we extend the results from the only previous condensed-phase study [P. L. Levesque, M. Michaud, and L. Sanche, J. Chem. Phys. 122, 094701 (2005)], for electron energies ⩽12 eV, to higher energies. Interestingly, the trend in the magnitude of the lower energy condensed-phase ICSs is much smaller when compared to the corresponding gas phase results. As there is no evidence for the existence of any shape-resonances, in the available pyrimidine total cross sections [Baek et al., Phys. Rev. A 88, 032702 (2013); Fuss et al., ibid. 88, 042702 (2013)], between 10 and 20 eV, this mismatch in absolute magnitude between the condensed-phase and gas-phase ICSs might be indicative for collective-behaviour effects in the condensed-phase results.

  10. Electron impact cross section measurements related to 'nuclear pumping'

    NASA Technical Reports Server (NTRS)

    Trajmar, S.

    1979-01-01

    In direct nuclear pumped lasers the high energy fission fragments generate a large number of secondary electrons and these electrons are mainly responsible for achieving the population inversion in the lasing media. Laboratory measurements concerned with these electron impact processes are summarized and new results are presented on rare gases, N2, CO, CF3I and UF6.

  11. Electron impact action spectroscopy of mass/charge selected macromolecular ions: Inner-shell excitation of ubiquitin protein

    DOE PAGESBeta

    Rankovic, Milos Lj.; Giuliani, Alexandre; Milosavljevic, Aleksandar R.

    2016-02-11

    In this study, we have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS2) and allows performing action spectroscopy. Electron impact MS2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1s excitation. Both MS2 and single ionization energy dependencemore » spectra are compared with literature data obtained using the soft X-ray activation conditions.« less

  12. A Survey of Electron Impact Cross-Sections for Halogens and Halogen Compounds of Interest to Plasma Processing

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Arnold, James O. (Technical Monitor)

    1998-01-01

    Published electron impact cross section data on halogens Cl2, F2, and halogen containing compounds such as Cx Fy, HCl, Cx Cly Fz are reviewed and critically evaluated based on the information provided by various researchers. The present work reports data on electron impact excitation, ionization, dissociation, electron attachment, electron detachment, and photo detachment. Elastic scattering cross sections and data on bulk properties such as diffusion coefficients in various background gases are also evaluated. Since some of the cross sectional data is derived from indirect measurements such as drift velocity, care has been taken to reconcile the differences among the reported data with due attention to the measurement technique. In conclusion, the processes with no or very limited amount of data and questionable set of data are identified and recommendation for further research direction is made.

  13. Electron Impact Excitation of C60 Adducts: Flourescence From C60OH and C60H Species

    NASA Technical Reports Server (NTRS)

    Trajmar, S.; Kanik, I.

    1996-01-01

    An investigation concerning possible visible and UV photon emissions by gas phase C(sub 60) ( and C(sub 70)) samples under electron impact excitation was caried out in the 180-750 nm spectral region. Radiation resembling OH (A (sup 2)pi {leads to}X (sup 2){summation}) emission bands and H Balmer series was observed. Based on our investigations, it is concluded that none of the observed emission was associated with the fullerene molecule itself but with the C(sub 60)OH and C(sub 60)H adducts (which are present in the fullerene samples). We also conclude that in these adducts, simultaneous ionization and excitation take place under electron impact and the excited ionic species (C(sub 60)+OH* and C(sub 60)+H*) decay by radiation which was observed in our experiments. These surprising results reveal an interesting new character of buckyball adducts.

  14. Electron impact action spectroscopy of mass/charge selected macromolecular ions: Inner-shell excitation of ubiquitin protein

    NASA Astrophysics Data System (ADS)

    Ranković, Miloš Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.

    2016-02-01

    We have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS2) and allows performing action spectroscopy. Electron impact MS2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1 s excitation. Both MS2 and single ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.

  15. Electron-impact excitation of neon: a pseudo-state convergence study

    NASA Astrophysics Data System (ADS)

    Ballance, C. P.; Griffin, D. C.

    2004-07-01

    A number of convergent close-coupling and R-matrix with pseudo-state (RMPS) calculations for H-like, He-like, Li-like and Be-like ions have demonstrated that coupling to the target continuum can have large effects on the electron-impact excitation cross sections of neutral and low-charge species. However, no one has yet attempted such advanced calculations on a system as complex as neutral neon. We report on a series of RMPS calculations of electron-impact excitation of Ne using recently developed parallel Breit-Pauli R-matrix programs. Our largest calculation included 235 spectroscopic and pseudo-state levels in the close-coupling expansion of the target. Although the results clearly reveal the importance of coupling to the target continuum in this atom, the pseudo-state expansion is not yet sufficiently complete to provide reliable cross sections for energies above the ionization limit. However, this is the largest intermediate-coupling calculation that can be performed with present computer resources. Thus, we have also carried out a series of RMPS calculations in LS coupling with different pseudo-state expansions. Comparisons of these results have allowed us to determine the approximate size of the pseudo-state expansion required to achieve convergence in future intermediate-coupling calculations for neon.

  16. Multiply differential cross section for the total (e, 3e) K-shell vacancy creation of lithium by electron impact

    NASA Astrophysics Data System (ADS)

    Najjari, B.; Lahmidi, N.; Dorn, A.; Joulakian, B.

    2007-01-01

    Hollow Li2+(2s) production in a collision between a fast electron and a neutral lithium target is studied theoretically by a procedure which determines the fully-differential cross section of the corresponding (e, 3e) process. The calculated cross sections are obtained within the framework of the first Born approximation. The two slow emitted electrons in the continuum are described by the fully correlated three Coulomb interactions (3C). The results are compared to those of the double ionization of lithium resulting in a residual Li2+(1s). The comparison between these two channels is essential to get precious indication of the different mechanisms in double ionization of a three-electron target and to observe directly electronic correlation, which is the main cause of the double ionization by fast electron impact.

  17. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  18. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  19. Brightness measurement of an electron impact gas ion source for proton beam writing applications

    NASA Astrophysics Data System (ADS)

    Liu, N.; Xu, X.; Pang, R.; Santhana Raman, P.; Khursheed, A.; van Kan, J. A.

    2016-02-01

    We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness that is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.

  20. Brightness measurement of an electron impact gas ion source for proton beam writing applications.

    PubMed

    Liu, N; Xu, X; Pang, R; Raman, P Santhana; Khursheed, A; van Kan, J A

    2016-02-01

    We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness that is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators. PMID:26931964

  1. Electron impact excitation of atomic oxygen - Revised cross sections. [in thermosphere and auroral substorms

    NASA Technical Reports Server (NTRS)

    Zipf, E. C.; Erdman, P. W.

    1985-01-01

    Revised cross-section values for the excitation of three O I resonance transitions at 1304, 1027, and 989 A, by electron impact on atomic oxygen are presented from threshold to 300 eV. These results are smaller than the excitation cross sections used in some airglow models by a factor of about 2.8. The revised values are in good agreement with recent quantum-scattering calculations. The downward revision is required by new laboratory studies in which the direct and dissociative cross sections for 1304 A excitation were normalized with small probable error to the O and O2 ionization cross sections. The results also reflect new advances in VUV optical calibration techniques. A number of outstanding airglow problems are simplified by these revisions.

  2. Electron impact spectroscopy. [for atom and molecule quantum state investigation

    NASA Technical Reports Server (NTRS)

    Trajmar, S.

    1980-01-01

    The concepts of electron impact spectroscopy are discussed, comparing the electron spectroscopy techniques with those of the optical spectroscopy. The main advantage of the electron spectroscopy is to be found in the elimination of optical selection rules in excitation processes and the ability to scan the spectrum from the infrared to the X-ray region. The range of the method is indicated through a review of several examples, including electron impact excitation of Ba and rotational excitation of H2. The sensitivity of the method is demonstrated by vibrational excitation spectrum of N2. It is shown that the application of the method to the inner-shell excitation allows to obtain information about molecular species which are not commonly available, while spectroscopy of negative ions yields information about their energy and symmetry properties. However, the techniques are still under development and more data are expected to become available in the coming years.

  3. Electron impact excitation of autoionising states of krypton

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K.; Trajmar, S.

    1978-01-01

    Energy-loss spectra of krypton in the region between 21 and 29 eV have been obtained at electron impact energies of 30, 60 and 100 eV. For each energy, the angular distribution of intensities has been measured at 5, 10 and 15 deg scattering angles. Assignments of spectral features found in this region are suggested and a comparison is made with previous measurements.

  4. Two-step single-ionization mechanisms

    SciTech Connect

    Boeyen, R. W. van; Doering, J. P.; Watanabe, N.; Cooper, J. W.; Coplan, M. A.; Moore, J. H.

    2006-03-15

    In a recent publication [Phys. Rev. Lett. 92, 233202 (2004)] two different electron impact double ionization (e,3e) mechanisms were identified and the way in which two-electron momentum distributions for atoms and molecules could be obtained by triple coincidence (e,3e) measurements was discussed. The apparatus used detected the two ejected electrons both in and out of the scattering plane at an angle of 45 deg. to the momentum transfer direction in triple coincidence with the scattered electron. Ejected electrons detected out of the scattering plane were shown to be a result of two-step double ionization processes. With the same apparatus we have made double coincidence (e,2e) measurements of electron impact single ionization cross sections for ionization of magnesium 3s (valence) and 2p and 2s (inner) shell electrons at incident energies from 400 to 3000 eV in order to obtain more information about two-step ionization. The experimental results were compared with distorted-wave and plane-wave Born approximations carried out to second order. For the experimental conditions, two-step ionization processes involving one ionizing collision and a second elastic collision with the atomic core are the dominant contribution to the measured cross sections. Calculations are in moderate agreement with the data. The angular distributions of the ionized electrons in these two-step ionizations reflect the initial momentum distributions of the target electrons, a result that is analogous with the earlier (e,3e) measurements.

  5. Absolute keV photon yields from ultrashort laser-field-induced hot nanoplasmas

    SciTech Connect

    Dobosz, S.; Lezius, M.; Schmidt, M.; Meynadier, P.; Perdrix, M.; Normand, D.

    1997-10-01

    We study the x-ray L-shell production from large krypton clusters submitted to ultrashort and intense laser pulses. The x-ray photon emission pattern appears to be isotropic and the absolute x-ray photon yields per laser pulse are measured as a function of the laser intensity and of the estimated mean cluster size in the supersonic expansion. In particular, up to 4{times}10{sup 6} x-ray photons per laser shot are detected at intensities approaching 5{times}10{sup 17} Wthinspcm{sup {minus}2}. This allows us to determine precisely a maximum conversion efficiency of 1.7{times}10{sup {minus}8} between the incoming IR photon and the generated x-ray photon energies. Finally, the x-ray photon emission is understood as the result of highly stripped ion production with L-shell electron-impact ionization and excitation in laser-heated cluster-sized nanoplasmas. {copyright} {ital 1997} {ital The American Physical Society}

  6. Absolute measurement of the extreme UV solar flux

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Ogawa, H. S.; Judge, D. L.; Phillips, E.

    1984-01-01

    A windowless rare-gas ionization chamber has been developed to measure the absolute value of the solar extreme UV flux in the 50-575-A region. Successful results were obtained on a solar-pointing sounding rocket. The ionization chamber, operated in total absorption, is an inherently stable absolute detector of ionizing UV radiation and was designed to be independent of effects from secondary ionization and gas effusion. The net error of the measurement is + or - 7.3 percent, which is primarily due to residual outgassing in the instrument, other errors such as multiple ionization, photoelectron collection, and extrapolation to the zero atmospheric optical depth being small in comparison. For the day of the flight, Aug. 10, 1982, the solar irradiance (50-575 A), normalized to unit solar distance, was found to be 5.71 + or - 0.42 x 10 to the 10th photons per sq cm sec.

  7. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876

  8. Characterization of ice-nucleating bacteria using on-line electron impact ionization aerosol mass spectrometry.

    PubMed

    Wolf, R; Slowik, J G; Schaupp, C; Amato, P; Saathoff, H; Möhler, O; Prévôt, A S H; Baltensperger, U

    2015-04-01

    The mass spectral signatures of airborne bacteria were measured and analyzed in cloud simulation experiments at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) facility. Suspensions of cultured cells in pure water were sprayed into the aerosol and cloud chambers forming an aerosol which consisted of intact cells, cell fragments and residual particles from the agar medium in which the bacteria were cultured. The aerosol particles were analyzed with a high-resolution time-of-flight aerosol mass spectrometer equipped with a newly developed PM2.5 aerodynamic lens. Positive matrix factorization (PMF) using the multilinear engine (ME-2) source apportionment was applied to deconvolve the bacteria and agar mass spectral signatures. The bacteria mass fraction contributed between 75 and 95% depending on the aerosol generation, with the remaining mass attributed to agar. We present mass spectra of Pseudomonas syringae and Pseudomonas fluorescens bacteria typical for ice-nucleation active bacteria in the atmosphere to facilitate the distinction of airborne bacteria from other constituents in ambient aerosol, e.g. by PMF/ME-2 source apportionment analyses. Nitrogen-containing ions were the most salient feature of the bacteria mass spectra, and a combination of C4 H8 N(+) (m/z 70) and C5 H12 N(+) (m/z 86) may be used as marker ions. PMID:26149110

  9. Benchmark Calculations of Electron-Impact Differential Cross Sections

    SciTech Connect

    Bray, I.; Bostock, C. J.; Fursa, D. V.; Hines, C. W.; Kadyrov, A. S.; Stelbovics, A. T.

    2011-05-11

    The calculation of electron-atom excitation and ionization cross section is considered in both the non-relativistic and relativistic scattering theory. We consider electron collisions with H, He, Cs, and Hg. Differential cross sections for elastic scattering and ionization are presented.

  10. PULSED POSITIVE ION NEGATIVE ION CHEMICAL IONIZATION MASS SPECTROMETRIC APPLICATONS TO ENVIRONMENTAL AND HAZARDOUS WASTE ANALYSIS

    EPA Science Inventory

    The simultaneous acquisition of both positive ion and negative ion data under chemical ionization mass spectrometric conditions can aid in the confirmation of assignments made by electron impact gas chromatography mass spectrometry or electron capture gas chromatography. Pulsed p...

  11. Experimental electron-impact excitation rate coefficients for lithium-like Si XII

    NASA Astrophysics Data System (ADS)

    König, R.; Kolk, K.-H.; Kunze, H.-J.

    1993-07-01

    Absolute excitation rate coefficients have been determined experimentally for all excited states up to 1s25f of the lithium-like ion Si XII using a well diagnosed theta-pinch plasma. A new method has been developed to determine the most crucial quantity of these measurements, the absolute concentration of the silicon ions in the plasma. For this we made use of the fact that sufficiently high lying levels are in partial local thermodynamic equilibrium (PLTE) with the ground state of the next higher ionization stage. A theoretical population model has been developed to study the influence of the different processes that might contribute to the population of the different levels at our plasma parameters. For most levels the theoretical excitation rate coefficients were found to be in fair agreement with the theoretical ones. The error of the experimentally determined excitation rate coefficients is of the order of ±50%.

  12. Review of electron impact excitation cross sections for copper atom

    SciTech Connect

    Winter, N.W.; Hazi, A.U.

    1982-02-01

    Excitation of atomic copper by electron impact plays an important role in the copper vapor laser and accurate cross sections are needed for understanding and modeling laser performance. During the past seven years, there have been several attempts to normalize the relative elastic and inelastic cross sections measured by Trajmar and coworkers. However, each of these efforts have yielded different cross sections, and the uncertainty in the correct normalization of the data has been a source of confusion and concern for the kinetic modeling efforts. This difficulty has motivated us to review previous work on the electron impact excitation of copper atom and to perform new calculations of the inelastic cross sections using the impact parameter method. In this memorandum we review the previous attempts to normalize the experimental data and provide a critical assessment of the accuracy of the resulting cross sections. We also present new theoretical cross sections for the electron impact excitation of the /sup 2/S ..-->.. /sup 2/P/sup 0/ and /sup 2/S ..-->.. /sup 2/D transitions in copper. When the experimental cross sections are renormalized to the results of the impact parameter calculations, they are a factor of three smaller than those published in the latest paper of Trajmar et. al. At impact energies above 60 eV the excitation cross sections obtained with the impact parameter method agree well with the results of the very recent, unpublished, close-coupling calculations of Henry. This agreement suggests that the present normalization of the experimental cross sections is probably the most reliable one obtained to date.

  13. The absolute path command

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

  14. The absolute path command

    SciTech Connect

    Moody, A.

    2012-05-11

    The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

  15. Windowless Far-Ultraviolet Electron Impact Calibration Lamp

    NASA Astrophysics Data System (ADS)

    France, K.; McCandliss, S. R.; Pelton, R.

    2002-12-01

    We present preliminary results from a windowless calibration lamp for determining wavelength solutions and detector flat-fielding at far-ultraviolet wavelengths. This lamp produces free electrons from a filament, accelerating them toward a tungsten target by an applied voltage ( 200 - 2000 V). An emission line spectrum is produced by electrons impacting the residual gas molecules present and continuous emission is produced by bremsstrahlung as the electrons collide with the target. The emission line spectrum can be modified to provide a rich wavelength coverage by introducing different species, and spectra of H2, N2, O2, CO2, HD, and Ar have been measured at modest spectral resolution (1 Å) across the far-UV bandpass (900 - 1400 Å). The long wavelength tail of the x-ray bremsstrahlung continuum falling in this bandpass can be used to make detector flat-field measurements. The lamp is robust and compact, housed in a mini-conflat cube and operates at the ambient vacuum compatible with microchannel plate operation. It is scheduled to be tested on an upcoming sounding rocket flight. We present initial results of both electron impact and bremsstrahlung spectra and adaptability to space-based instrumentation. This work is supported by NASA grant NAG5-5315 to The Johns Hopkins University.

  16. Electron-Impact-Induced Emission Cross Sections of Atomic Oxygen

    NASA Astrophysics Data System (ADS)

    Noren, C.; Kanik, I.; James, G. K.; Ajello, J. M.; Khakoo, M. A.

    1998-05-01

    One cannot overstate the importance of ultraviolet (UV) lines of neutral atomic oxygen. For example, the atomic oxygen resonance transition at 130.4 nm is a prominent emission feature in the vacuum ultraviolet (VUV) spectrum of the Earth's aurora and dayglow as well as the atmospheres of Venus and Mars. In this poster, we present our measurements of the electron-impact emission cross sections of the 130.4 nm atomic oxygen feature from threshold to 100 eV impact energy. A high-density atomic oxygen beam, created by a microwave discharge source, was intersected at a right angle by a magnetically focused electron beam. A 0.2m UV spectrometer system was used in the present measurements. It consists of an electron-impact collision chamber in tandem with an UV spectrometer equipped with a CsI coated channel electron multiplier detector. Emitted photons corresponding to radiative decay of collisionally excited state of the 130.4 nm atomic oxygen feature were detected.

  17. Electron-impact mass spectra of carbomethoxyl derivatives of cyclopropylthiophenes

    SciTech Connect

    Kadentsev, V.I.; Kolotyrkina, N.G.; Chizhov, O.S.; Shostakovskii, V.M.; Vasil'vitskii, A.A.; Zlatkina, V.L.

    1987-01-10

    In the mass spectra of carbomethoxyl derivatives of cyclopropylthiophene, intense ion peaks are observed, corresponding to successive elimination of MeO and COOMe radicals and the neutral fragments MeOH, HCOOMe, and CO from M/sup +./, so that the number of carbomethoxyl substituents in CPR can be determined. Mono- and gem-dicarbomethoxyl derivatives of cyclopropylthiophenes are characterized by rearrangements of M/sup +./ with migration of the MeO groups to the carbon atom adjacent to the thiophene ring. The presence of a methyl substituent at this carbon atom hinders this rearrangement. For the monocarbomethoxyl derivatives of cyclopropylthiophenes under electron impact, a splitting off of the methyl substituent of the ester groups is observed.

  18. Electron impact excitation of argon in the extreme vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Mentall, J. E.; Morgan, H. D.

    1976-01-01

    Polarization-free excitation cross sections in the extreme vacuum ultraviolet have been measured for electron impact on Ar. Observed spectral features were those lines of Ar I and Ar II which lie between 700 and 1100 A. Excitation functions were measured for the Ar I resonance line at 1048 A and the Ar II resonance line at 920 A. Peak cross sections for these two lines were found to be (39.4 plus or minus 7.9) x 10 to the -18th and (6.9 plus or minus 1.4) x 10 to the -18th, respectively. At low energies, excitation of the Ar II resonance line is dominated by an electron exchange transition.

  19. Excitation of the a {sup 3{Pi}} state of CO by electron impact

    SciTech Connect

    Ristic, M. M.; Poparic, G. B.; Belic, D. S.

    2011-04-15

    Electron impact excitation of the a {sup 3{Pi}} valence state of the carbon-monoxide molecule has been studied in the energy region from threshold to 10 eV. Excitation functions for spin forbidden transitions from the {nu}=0 level of the ground X {sup 1}{Sigma}{sup +} state of CO to the {nu}{sup '}=0, 1, 2, 3, 4, and 5 levels of the a {sup 3{Pi}} state are measured. A crossed beam double trochoidal electron spectrometer is used. Forward and backward scattered electrons from the {nu}{sup '}=0 excitation channel are separated by electron beam modulation and a time-of-flight detection technique. The present results are normalized to the ground state {sup 2{Pi}} resonance vibrational excitation cross sections and absolute values of the differential cross sections at the border angles of 0 deg. and 180 deg. are determined. In this way the differential cross section measurements are completed in the full angular range from 0 deg. to 180 deg. The present results are compared to the existing literature data.

  20. Electron-impact excitation of nitric oxide (A 2Σ+-X 2Π)

    NASA Astrophysics Data System (ADS)

    Schappe, R. S.; Edgell, R. J.; Urban, E.

    2002-04-01

    We report absolute optical emission cross sections for 31 vibrational transitions of the A 2Σ+(v')-X 2Π(v'') system of nitric oxide for electron-impact energies from threshold to 740 eV using the optical method and a crossed-beam geometry. Our measurements include emission bands originating in the v'=0, 1, 2, 3 vibrational levels and terminating in the v'' levels from 0 up to 11. We find good agreement between our emission cross sections, our measurements of the emission intensities from an rf discharge, and the intensities predicted by the Franck-Condon principle. We also obtain apparent level cross sections for the v'=0, 1, 2, 3 vibrational levels of the A 2Σ+ state; despite the presence of a cascade, these level cross sections are proportional to the direct excitation rates predicted by the Franck-Condon principle. We determine the total apparent cross section for the A 2Σ+ electronic state to reach its peak value of 40×10-19 cm2 at 30 eV.

  1. Absolute and relative dosimetry for ELIMED

    SciTech Connect

    Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F.; Carpinelli, M.; Presti, D. Lo; Raffaele, L.; Tramontana, A.; Cirio, R.; Sacchi, R.; Monaco, V.; Marchetto, F.; Giordanengo, S.

    2013-07-26

    The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

  2. Fast Nitrogen Atoms from Dissociative Excitation of N2 by Electron Impact

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Ciocca, Marco

    1996-01-01

    The Doppler profiles of one of the fine structure lines of the N I (1200 A) g (sup 4)S(sup 0)-(sup 4)P multiplet and of the N II (1085 A) g (sup 3)p(sup O)-(sup 3)D multiplet have been measured. Excitation of the multiplets is produced by electron impact dissociative excitation of N2. The experimental line profiles are evaluated by fast Fourier transform (FFT) techniques and analysis of the profiles yields the kinetic energy distribution of fragments. The full width at half maximum (FWHM) of N I (1200 A) increases from 27+/-6 mA at 30 eV to 37+/-4 mA at 100 eV as the emission cross section of the dissociative ionization excitation process becomes more important relative to the dissociative excitation process. The FWHM of the N II (1085 A) line is 36+/-4 mA at 100 eV. For each multiplet the kinetic energy distribution function of each of the two fragment N atoms (ions) is much broader than thermal with a mean energy above 1.0 eV. The dissociation process with the largest cross section is predissociation and predominantly produces N atoms with kinetic energy distributions having mean energies above 0.5 eV. Dissociative processes can lead to a substantial escape flux of N I atoms from the satellites, Titan and Triton of the outer planets.

  3. Calcium - ionized

    MedlinePlus

    ... at both ionized calcium and calcium attached to proteins. You may need to have a separate ionized calcium test if you have factors that increase or decrease total calcium levels. These may include abnormal blood levels ...

  4. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  5. ABSOLUTE POLARIMETRY AT RHIC.

    SciTech Connect

    OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

    2007-09-10

    Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

  6. Electron impact excitation of resonance transitions in atomic potassium

    SciTech Connect

    Tayal, S.S.; Msezane, A.Z.

    1993-05-01

    Cross sections for electron impact excitation of the 4 s{sup 2}S - 4p {sup 2}P{sup o} and 4s {sup 2}S - 5p {sup 2}P{sup o} transitions in atomic potassium are calculated in the low-energy region from 1.5 to 30 eV using the R-matrix method. We included eight target states (4s {sup 2}S, 4p {sup 2}P{sup o}, 5s {sup 2}S, 3d {sup 2}D, 5p {sup 2}P{sup o}, 4d {sup 2}D, 6S {sup 2}S, and 4f {sup 2}F{sup o}) in the close-coupling expansion. These states are represented by extensive configuration- interaction wavefunctions constructed from the orthogonal one-electron orbitals: 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f, 5s, 5p, and 6s. The calculated results are compared with the available experiments and other calculations. The present calculation shows a resonance structure in the cross section for the excitation of the resonance 4s {sup 2}S - 4p {sup 2}P{sup o} transition around 2.5 eV.

  7. Inner-shell excitation of acetylene by electron impact

    SciTech Connect

    Michelin, S.E.; Pessoa, O.; Oliveira, H.L.; Veiteinheimer, E.; Santos, A.M.S.; Fujimoto, M.M.; Iga, I.; Lee, M.-T.

    2005-08-15

    The distorted-wave approximation (DWA) is applied to study K-shell excitation in C{sub 2}H{sub 2} by electron impact. More specifically, calculated differential and integral cross sections for the X {sup 1}{sigma}{sub g}{sup +}{yields}{sup 1,3}{pi}{sub g}(1s{sigma}{sub g}{yields}1p{pi}{sub g}) and X {sup 1}{sigma}{sub g}{sup +}{yields}{sup 1,3}{pi}{sub u}(1s{sigma}{sub u}{yields}1p{pi}{sub g}) transitions in this target in the 300-800 eV incident energy range are reported. The triplet-to-singlet ratios of respective integral cross sections, namely, RI(3:1), calculated by dividing the integral cross sections for transitions leading to the triplet core-excited states by those leading to the corresponding singlet states, are also reported as a function of incident energies. In general, our calculated sums of the generalized oscillator strength for transitions leading to the {sup 1}{pi}{sub g} and {sup 1}{pi}{sub u} excited states are in good agreement with the available experimental data. On the other hand, the present calculated integral cross sections and the corresponding data for its isoelectronic species CO are significantly different. Possible physical origins for this difference are discussed.

  8. Electron impact induced light emission from zinc atoms

    NASA Astrophysics Data System (ADS)

    Cvejanovic, Danica

    2009-10-01

    Experimental studies of electron impact excitation of zinc atom are rare, primarily due to experimental difficulties. However, zinc is an interesting target because of possible applications in light sources. Also, due to its position in periodic table, zinc is an interesting case for the fundamental understanding of momentum couplings and the role of electron correlations in complex metal atoms. Recent experimental investigations have indicated the existence of highly correlated scattering mechanisms via formation of negative ion resonances and Post Collision Interaction (PCI) in the decay of autoionizing states. These can significantly modify energy dependence of the emission cross sections at low impact energies and the studies of photon emission offer a sensitive way to investigate electron correlations. Specifically, in the lowest autoionizing region of zinc, i.e. between 10 and 15 eV, both the cross sections and polarization of emitted light are affected by the formation of short lived negative ions and PCI effects. These are associated with excitation of one of the sub-valence 3d electrons and complex correlations between inner 3d and outer excited electrons in the target and also with the slow electron released into continuum, need to be included in modeling. Also the scattering of the spin polarized electrons has shown significant spin effects when excitation proceeds via negative ion resonances. Emission cross sections and comparison with theory would be discussed at the conference.

  9. Angular dependence of L X-rays emission for Ag by 10 keV electron-impact

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Xu, Zhongfeng; Zhang, Ying; Ma, Chao; Zhu, Chengwei

    2016-08-01

    The characteristic X-ray intensities of Ag-Lα, Lβ1, Lβ2 and Lγ1 are measured in electron-impact ionization at energy of 10 keV. The emission angle in this work ranges from 0° to 20° at interval of 5°. The angular dependence of L X-ray intensity ratios has been investigated for Lα / Lβ1, Lβ2 / Lβ1 and Lγ1 / Lβ1. It is found from the experimental results that the emissions of Lβ1, Lβ2 and Lγ1 X-rays are spatially isotropic, while the Lα X-rays exhibit anisotropic emission. Consequently, the alignment behavior of vacancy states is discussed with thorough analysis of vacancy transfer process.

  10. Dissociative excitation of the N(+)(5S) state by electron impact on N2 - Excitation function and quenching

    NASA Technical Reports Server (NTRS)

    Erdman, P. W.; Zipf, E. C.

    1986-01-01

    Metastable N(+)(5S) ions were produced in the laboratory by dissociative excitation of N2 with energetic electrons. The resulting radiative decay of the N(+)(5S) state was observed with sufficient resolution to completely resolve the doublet from the nearby N2 molecular radiation. The excitation function was measured from threshold to 500 eV. The cross section peaks at a high electron energy and also exhibits a high threshold energy both of which are typical of dissociative excitation-ionization processes. This finding complicates the explanation of electron impact on N2 as the mechanism for the source of the 2145 A 'auroral mystery feature' by further increasing the required peak cross section. It is suggested that the apparent N(+)(5S) quenching in auroras may be an artifact due to the softening of the electron energy spectrum in the auroral E region.

  11. Atomic, Molecular, and Optical Physics: Optical Excitation Function of H(1s-2p) Produced by electron Impact from Threshold to 1.8 keV

    NASA Technical Reports Server (NTRS)

    James, G. K.; Slevin, J. A.; Shemansky, D. E.; McConkey, J. W.; Bray, I.; Dziczek, D.; Kanik, I.; Ajello, J. M.

    1997-01-01

    The optical excitation function of prompt Lyman-Alpha radiation, produced by electron impact on atomic hydrogen, has been measured over the extended energy range from threshold to 1.8 keV. Measurements were obtained in a crossed-beams experiment using both magnetically confined and electrostatically focused electrons in collision with atomic hydrogen produced by an intense discharge source. A vacuum-ultraviolet mono- chromator system was used to measure the emitted Lyman-Alpha radiation. The absolute H(1s-2p) electron impact excitation cross section was obtained from the experimental optical excitation function by normalizing to the accepted optical oscillator strength, with corrections for polarization and cascade. Statistical and known systematic uncertainties in our data range from +/- 4% near threshold to +/- 2% at 1.8 keV. Multistate coupling affecting the shape of the excitation function up to 1 keV impact energy is apparent in both the present experimental data and present theoretical results obtained with convergent close- coupling (CCC) theory. This shape function effect leads to an uncertainty in absolute cross sections at the 10% level in the analysis of the experimental data. The derived optimized absolute cross sections are within 7% of the CCC calculations over the 14 eV-1.8 keV range. The present CCC calculations converge on the Bethe- Fano profile for H(1s-2p) excitation at high energy. For this reason agreement with the CCC values to within 3% is achieved in a nonoptimal normalization of the experimental data to the Bethe-Fano profile. The fundamental H(1s-2p) electron impact cross section is thereby determined to an unprecedented accuracy over the 14 eV - 1.8 keV energy range.

  12. Apparatus for measuring electron-impact excitation cross sections using fast metastable atoms produced via charge exchange

    SciTech Connect

    Boffard, J.B.; Lagus, M.E.; Anderson, L.W.; Lin, C.C.

    1996-08-01

    An apparatus for measuring absolute cross sections due to electron-impact excitation out of the metastable levels of rare-gas atoms via the optical method is described with the focus specifically on excitation out of the 2{sup 3}{ital S} metastable helium level. The metastable helium target (He{asterisk}) is prepared by charge exchange between 1.6 keV He{sup +} ions and cesium vapor. An electron beam crosses the fast metastable beam target at a right angle and the fluorescence is collected at right angles to both beams. The charge transfer reaction produces He atoms mainly in the {ital n}=2 He levels. Because the target contains a negligible ground state He fraction, we can measure excitation cross sections from excitation threshold up to an arbitrarily high energy (keV regime) which represents a major improvement over previous metastable excitation cross sections measurements. The He{asterisk} target density is extremely small ({approximately}10{sup 6} atoms/cm{sup 3}) yielding minuscule signal rates. We describe steps taken to maximize the signal-to-noise ratio. We discuss the implications of using a fast beam target including both the finite flight time of the excited atoms across the light gathering region and the reduction of the cascade contributions to the apparent cross sections. A discussion of the identification and elimination of various systematic effects is also given. To measure absolute cross sections, we explicitly determine the spatial distributions of both the electron and metastable beams, as well as the spatially dependent response of the fluorescence gathering region. We determine the absolute flux of fast metastable atoms using a thermal detector calibrated with a He{sup +} ion beam. As examples, we present absolute cross sections for excitation out of the 2{sup 3}{ital S} metastable level into the 3{sup 3}{ital D} and 4{sup 3}{ital D} levels. {copyright} {ital 1996 American Institute of Physics.}

  13. Threshold law for electron-atom impact ionization

    NASA Technical Reports Server (NTRS)

    Temkin, A.

    1982-01-01

    A derivation of the explicit form of the threshold law for electron impact ionization of atoms is presented, based on the Coulomb-dipole theory. The important generalization is made of using a dipole function whose moment is the dipole moment formed by an inner electron and the nucleus. The result is a modulated quasi-linear law for the yield of positive ions which applies to positron-atom impact ionization.

  14. Implants as absolute anchorage.

    PubMed

    Rungcharassaeng, Kitichai; Kan, Joseph Y K; Caruso, Joseph M

    2005-11-01

    Anchorage control is essential for successful orthodontic treatment. Each tooth has its own anchorage potential as well as propensity to move when force is applied. When teeth are used as anchorage, the untoward movements of the anchoring units may result in the prolonged treatment time, and unpredictable or less-than-ideal outcome. To maximize tooth-related anchorage, techniques such as differential torque, placing roots into the cortex of the bone, the use of various intraoral devices and/or extraoral appliances have been implemented. Implants, as they are in direct contact with bone, do not possess a periodontal ligament. As a result, they do not move when orthodontic/orthopedic force is applied, and therefore can be used as "absolute anchorage." This article describes different types of implants that have been used as orthodontic anchorage. Their clinical applications and limitations are also discussed. PMID:16463910

  15. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  16. Kinetic theory of partially ionized complex (dusty) plasmas

    SciTech Connect

    Tsytovich, V.N.; De Angelis, U.; Ivlev, A.V.; Morfill, G.E.

    2005-08-15

    The general approach to the kinetic theory of complex (dusty) plasmas [Tsytovich and de Angelis, Phys. Plasmas 6, 1093 (1999)], which was formulated with the assumption of a regular (nonfluctuating) source of plasma particles, is reformulated to include ionization by electron impact on neutrals as the plasma source and the effects of collisions of ions and dust particles with neutrals.

  17. Two-photon double ionization of helium

    NASA Astrophysics Data System (ADS)

    van der Hart, Hugo W.; Feng, Liang; McKenna, Claire

    2003-12-01

    The combination of B-spline basis sets with R-matrix theory has provided a powerful tool for the description of double ionization processes. We demonstrate this first by investigating electron-impact ionization of Li2+. By applying the Floquet Ansatz, the same techniques can be employed to describe multiphoton double ionization processes through the R-matrix Floquet approach. Results for two-photon double ionization of He confirm the lower values of time-dependent close-coupling calculations compared to perturbation theory. The approach can be extended to quasi-two-electron systems through the use of model potentials. This is demonstrated by calculating photoionization cross sections near threshold for the m = 0 level of the 4s4p 1Po state of calcium.

  18. Electron impact cross-sections and cooling rates for methane. [in thermal balance of electrons in atmospheres and ionospheres of planets and satellites in outer solar system

    NASA Technical Reports Server (NTRS)

    Gan, L.; Cravens, T. E.

    1992-01-01

    Energy transfer between electrons and methane gas by collisional processes plays an important role in the thermal balance of electrons in the atmospheres and ionospheres of planets and satellites in the outer solar system. The literature is reviewed for electron impact cross-sections for methane in this paper. Energy transfer rates are calculated for elastic and inelastic processes using a Maxwellian electron distribution. Vibrational, rotational, and electronic excitation and ionization are included. Results are presented for a wide range of electron temperatures and neutral temperatures.

  19. High resolution multiple electron impact ionisation of He, Ne, Ar, Kr and Xe atoms close to threshold: Appearance energies and Wannier exponents

    NASA Astrophysics Data System (ADS)

    Gstir, B.; Denifl, S.; Hanel, G.; Rümmele, M.; Fiegele, T.; Stano, M.; Feketeova, L.; Matejcik, S.; Becker, K.; Scheier, P.; Märk, T. D.

    2003-05-01

    We have determined appearance energies AE(X n+ /X) for the formation of multiply charged He, Ne, Ar, Kr and Xe ions up to charge state n=2 (He), n=4 (Ne), n=6 (Ar), n=6 (Kr) and n=8 (Xe) using a recently commissioned high-resolution electron impact ionization mass spectrometer. The data analysis is based on the Marquart-Levenberg algorithm, involving an iterative, non-linear least-squares fitting of the threshold data assuming a 2-function or a 3-function fit based on a Wannier-type power law. This allows us to extract the relevant AEs and corresponding Wannier exponents.

  20. Absolute neutrino mass measurements

    NASA Astrophysics Data System (ADS)

    Wolf, Joachim

    2011-10-01

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.

  1. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  2. Principles and procedures for determining absolute differential electron-molecule (atom) scattering cross sections

    NASA Technical Reports Server (NTRS)

    Nickel, J. C.; Zetner, P. W.; Shen, G.; Trajmar, S.

    1989-01-01

    Procedures and calibration techniques for measuring the absolute elastic and inelastic differential cross sections (DCS) for electron impact on molecular (atomic) species are described and illustrated by examples. The elastic DCS for the molecule under study is first determined by calibration against helium using the relative flow technique. The second step involves the production of energy-loss spectra for the instrument response function, the unfolding of overlapping inelastic structures and the normalization of inelastic intensities to the elastic cross sections. It is concluded that this method of determining absolute differential electron-molecule (atom) scattering cross sections is generally applicable and provides reliable results.

  3. Electron-impact-excitation cross sections for electronic levels in neon for incident energies between 25 and 100 eV

    NASA Technical Reports Server (NTRS)

    Register, D. F.; Trajmar, S.; Steffensen, G.; Cartwright, D. C.

    1984-01-01

    Absolute differential cross sections (DCS's) for electron-impact excitation of the lowest forty electronic levels in atomic neon have been determined for incident electron energies of 30 and 50 eV, for the four lowest levels at 25 eV, and two levels at 100 eV. The cross sections for these forty electronic levels are grouped into fifteen features, six of which represent excitation to resolved single electronic levels and the remaining nine which contain the unresolved contributions from two or more electronic levels. These DCS's were extrapolated to 0 deg and 180 deg and integrated to yield absolute integral cross sections as a function of incident electron energy. The results are compared to other experimental and theoretical results.

  4. Multiple ionization of xenon by proton impact

    SciTech Connect

    Manson, S.T.; DuBois, R.D.

    1987-12-01

    An experimental and theoretical study of multiple ionization of xenon for 0.2- to 2.0-MeV proton impact was made. Absolute cross sections for producing xenon ions with charges from +1 to +3 were measured, and calculations of subshell cross sections were performed. Experiment and theory are consistent and indicate that multiple ionization of xenon by fast protons occurs via inner-shell ionization. This is in contrast to the lighter noble gases where direct multiple outer shell ionization can be predominant.

  5. Advances in the Metrology of Absolute Value Assignments to Isotopic Reference Materials: Consequences from the Avogadro Project

    NASA Astrophysics Data System (ADS)

    Vocke, Robert; Rabb, Savelas

    2015-04-01

    All isotope amount ratios (hereafter referred to as isotope ratios) produced and measured on any mass spectrometer are biased. This unfortunate situation results mainly from the physical processes in the source area where ions are produced. Because the ionized atoms in poly-isotopic elements have different masses, such processes are typically mass dependent and lead to what is commonly referred to as mass fractionation (for thermal ionization and electron impact sources) and mass bias (for inductively coupled plasma sources.) This biasing process produces a measured isotope ratio that is either larger or smaller than the "true" ratio in the sample. This has led to the development of numerous fractionation "laws" that seek to correct for these effects, many of which are not based on the physical processes giving rise to the biases. The search for tighter and reproducible precisions has led to two isotope ratio measurement systems that exist side-by-side. One still seeks to measure "absolute" isotope ratios while the other utilizes an artifact based measurement system called a delta-scale. The common element between these two measurement systems is the utilization of isotope reference materials (iRMs). These iRMs are used to validate a fractionation "law" in the former case and function as a scale anchor in the latter. Many value assignments of iRMs are based on "best measurements" by the original groups producing the reference material, a not entirely satisfactory approach. Other iRMs, with absolute isotope ratio values, have been produced by calibrated measurements following the Atomic Weight approach (AW) pioneered by NBS nearly 50 years ago. Unfortunately, the AW is not capable of calibrating the new generation of iRMs to sufficient precision. So how do we get iRMs with isotope ratios of sufficient precision and without bias? Such a focus is not to denigrate the extremely precise delta-scale measurements presently being made on non-traditional and tradition

  6. Ionizing radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter gives a comprehensive review on ionizing irradiation of fresh fruits and vegetables. Topics include principles of ionizing radiation, its effects on pathogenic and spoilage microorganisms, shelf-life, sensory quality, nutritional and phytochemical composition, as well as physiologic and...

  7. Scalable standard optical sources in the VUV: Emissions from electron impact on metals. [tantalum and tungsten

    NASA Technical Reports Server (NTRS)

    Hughes, R.

    1980-01-01

    The use of electron impact on metals in the development of a compact optical standard lamp in the vacuum ultraviolet is described. Two different mechanisms are exploited, transition radiation and bremsstrahlung. Transition radiation will be used as a primary standard from 1200A to 3000A using 10 keV electron impact on tungsten. Bremsstrahlung will be used in the soft X-ray region below 1200A to less than 5A as an optical transfer standard from 4 keV electron impact on tantalum or tungsten.

  8. Absolute photon-flux measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Haddad, G. N.

    1974-01-01

    Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.

  9. Comparative analysis of the optical spectra of the holmium atom excited by electron impact and ionic bombardment

    SciTech Connect

    Vasileva, E.K.; Morozov, S.N.; Ryskin, B.V.

    1988-02-01

    A comparative analysis of the optical spectra of holmium excited by electron impact and ionic bombardment is given. It is shown that under ionic bombardment, the probability of excitation of screened transitions is significantly higher than under electron impact.

  10. Absolute Identification by Relative Judgment

    ERIC Educational Resources Information Center

    Stewart, Neil; Brown, Gordon D. A.; Chater, Nick

    2005-01-01

    In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…

  11. Be Resolute about Absolute Value

    ERIC Educational Resources Information Center

    Kidd, Margaret L.

    2007-01-01

    This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

  12. Oxygen ionization rates at Mars and Venus - Relative contributions of impact ionization and charge exchange

    NASA Technical Reports Server (NTRS)

    Zhang, M. H. G.; Luhmann, J. G.; Nagy, A. F.; Spreiter, J. R.; Stahara, S. S.

    1993-01-01

    Oxygen ion production rates above the ionopauses of Venus and Mars are calculated for photoionization, charge exchange, and solar wind electron impact ionization processes. The latter two require the use of the Spreiter and Stahara (1980) gas dynamic model to estimate magnetosheath velocities, densities, and temperatures. The results indicate that impact ionization is the dominant mechanism for the production of O(+) ions at both Venus and Mars. This finding might explain both the high ion escape rates measured by Phobos 2 and the greater mass loading rate inferred for Venus from the bow shock positions.

  13. Modeling of Ionization Physics with the PIC Code OSIRIS

    SciTech Connect

    Deng, S.; Tsung, F.; Lee, S.; Lu, W.; Mori, W.B.; Katsouleas, T.; Muggli, P.; Blue, B.E.; Clayton, C.E.; O'Connell, C.; Dodd, E.; Decker, F.J.; Huang, C.; Hogan, M.J.; Hemker, R.; Iverson, R.H.; Joshi, C.; Ren, C.; Raimondi, P.; Wang, S.; Walz, D.; /Southern California U. /UCLA /SLAC

    2005-09-27

    When considering intense particle or laser beams propagating in dense plasma or gas, ionization plays an important role. Impact ionization and tunnel ionization may create new plasma electrons, altering the physics of wakefield accelerators, causing blue shifts in laser spectra, creating and modifying instabilities, etc. Here we describe the addition of an impact ionization package into the 3-D, object-oriented, fully parallel PIC code OSIRIS. We apply the simulation tool to simulate the parameters of the upcoming E164 Plasma Wakefield Accelerator experiment at the Stanford Linear Accelerator Center (SLAC). We find that impact ionization is dominated by the plasma electrons moving in the wake rather than the 30 GeV drive beam electrons. Impact ionization leads to a significant number of trapped electrons accelerated from rest in the wake.

  14. Ion/Anion Pair Production from Electron Impact

    NASA Astrophysics Data System (ADS)

    Sartor, J.; Keiling, M.; Fogle, M.; Gay, T. J.; Landers, A. L.

    2013-05-01

    One of the least studied dissociation pathways of a neutral molecule is the decay to an ion/anion pair, yet these reactions can provide new insight into fundamental molecular dynamics. We initiate these reactions with the pulsed field from a fast electron, where in principle all ion/anion pair-production modes are accessible and not limited by photo-absorption selection rules. We accomplish this by intersecting a bunched electron beam with a jet of gas over a wide range of energies, and use a fast-switched electric field to guide the ion products towards two position sensitive detectors. Using the positions and flight times of the ions, we completely determine the final state momenta. This not only allows for the discrimination of this channel from dominant contaminant reactions (particularly the electron producing ionization channels), but also yields the kinetic energy release and product angular distribution. Preliminary results for the reaction e- +O2 ==>e- +O+ +O- will be presented along with additional measurements currently underway, including the fundamental case of hydrogen. Supported by the Auburn University Undergraduate Research Fellowship Program and the US Department of Energy: Office of Basic Energy Sciences, Division of Chemical Sciences.

  15. Hyperspherical partial-wave theory applied to electron-hydrogen-atom ionization calculation for equal-energy-sharing kinematics

    SciTech Connect

    Das, J.N.; Paul, S.; Chakrabarti, K.

    2003-04-01

    Hyperspherical partial-wave theory has been applied here in a new way in the calculation of the triple differential cross sections for the ionization of hydrogen atoms by electron impact at low energies for various equal-energy-sharing kinematic conditions. The agreement of the cross section results with the recent absolute measurements of [J. Roeder, M. Baertschy, and I. Bray, Phys. Rev. A 45, 2951 (2002)] and with the latest theoretical results of the ECS and CCC calculations [J. Roeder, M. Baertschy, and I. Bray, Phys. Rev. A (to be published)] for different kinematic conditions at 17.6 eV is very encouraging. The other calculated results, for relatively higher energies, are also generally satisfactory, particularly for large {theta}{sub ab} geometries. In view of the present results, together with the fact that it is capable of describing unequal-energy-sharing kinematics [J. N. Das, J. Phys. B 35, 1165 (2002)], it may be said that the hyperspherical partial-wave theory is quite appropriate for the description of ionization events of electron-hydrogen-type systems. It is also clear that the present approach in the implementation of the hyperspherical partial-wave theory is very appropriate.

  16. Calculation of fully differential cross sections for the near threshold double ionization of helium atoms

    NASA Astrophysics Data System (ADS)

    Singh, Prithvi; Purohit, Ghanshyam; Dorn, Alexander; Ren, Xueguang; Patidar, Vinod

    2016-01-01

    Fully differential cross sectional (FDCS) results are reported for the electron-impact double ionization of helium atoms at 5 and 27 eV excess energy. The present attempt to calculate the FDCS in the second Born approximation and treating the postcollision interaction is helpful to analyze the measurements of Ren et al (2008 Phys. Rev. Lett. 101 093201) and Durr et al (2007 Phys. Rev. Lett. 98 193201). The second-order processes and postcollision interaction have been found to be significant in describing the trends of the FDCS. More theoretical effort is required to describe the collision dynamics of electron-impact double ionization of helium atoms at near threshold.

  17. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  18. Ionization chamber

    DOEpatents

    Walenta, A.H.

    An ionization chamber is described which has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionizes the gas.

  19. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  20. Measurement of the Total Cross Section for Excitation of the 2p State of Atomic Hydrogen by Electron Impact

    NASA Astrophysics Data System (ADS)

    James, Geoffrey

    1996-10-01

    The excitation function of prompt Lyman-α radiation, produced by electron impact excitation of atomic hydrogen in the energy range from threshold to 1.8keV, has been measured in a crossed-beam experiment footnote This work was performed in collaboration with J.A.Slevin, D.E.Shemansky, J.W.McConkey, D.Dziczek, I.Kanik and J.M.Ajello. Measurements were carried out using both magnetically confined and electrostatically focused electron beams in collision with atomic hydrogen produced by an intense discharge source. A vacuum ultraviolet monochromator was used to measure the emitted Lyman-α radiation. The absolute H (1s - 2p) cross section was obtained from the experimental excitation function by normalization to the known oscillator strength, with appropriate corrections for polarization and cascade. The present data are significantly different from earlier experimental results footnote R.L.Long, D.M.Cox and S.J.Smith, J.Res.Nat.Bur.Stand.Sect.A:Phys. Chem. 72A, 521 (1968) footnote J.F.Williams, J.Phys.B.:At.Mol.Opt.Phys. 14, 1197 (1981) and are in good agreement with recent theoretical convergent close coupling calculations footnote I.Bray, private communication (1996) over a two order of magnitude range in impact energy. Multistate coupling affecting the excitation function to 1keV is apparent in both the present experimental and recent theoretical results.

  1. Optical excitation function of H(1s-2p) produced by electron impact from threshold to 1.8 keV

    SciTech Connect

    James, G.K.; Slevin, J.A.; Shemansky, D.E.; McConkey, J.W.; Bray, I.; Dziczek, D.; Kanik, I.; Ajello, J.M.

    1997-02-01

    The optical excitation function of prompt Lyman-{alpha} radiation, produced by electron impact on atomic hydrogen, has been measured over the extended energy range from threshold to 1.8 keV. Measurements were obtained in a crossed-beams experiment using both magnetically confined and electrostatically focused electrons in collision with atomic hydrogen produced by an intense discharge source. A vacuum-ultraviolet monochromator system was used to measure the emitted Lyman-{alpha} radiation. The absolute H(1s-2p) electron impact excitation cross section was obtained from the experimental optical excitation function by normalizing to the accepted optical oscillator strength, with corrections for polarization and cascade. Our data are significantly different from the earlier experimental results and which are limited to energies below 200 eV. Statistical and known systematic uncertainties in our data range from {plus_minus}4{percent} near threshold to {plus_minus}2{percent} at 1.8 keV. Multistate coupling affecting the shape of the excitation function up to 1 keV impact energy is apparent in both the present experimental data and present theoretical results obtained with convergent close-coupling (CCC) theory. This shape function effect leads to an uncertainty in absolute cross sections at the 10{percent} level in the analysis of the experimental data. The derived optimized absolute cross sections are within 7{percent} of the CCC calculations over the 14 eV{endash}1.8 keV range. The present CCC calculations converge on the Bethe-Fano profile for H(1s-2p) excitation at high energy. For this reason agreement with the CCC values to within 3{percent} is achieved in a nonoptimal normalization of the experimental data to the Bethe-Fano profile. The fundamental H(1s-2p) electron impact cross section is thereby determined to an unprecedented accuracy over the 14 eV {endash} 1.8 keV energy range. (Abstract Truncated)

  2. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; Blanco, F.; García, G.; Brunger, M. J.

    2016-04-01

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20-250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron-furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

  3. Double ionization of helium by fast electrons with the Generalized Sturmian Functions method

    NASA Astrophysics Data System (ADS)

    Ambrosio, M. J.; Colavecchia, F. D.; Gasaneo, G.; Mitnik, D. M.; Ancarani, L. U.

    2015-03-01

    The double ionization of helium by high energy electron impact is studied. The corresponding four-body Schrödinger equation is transformed into a set of driven equations containing successive orders in the projectile-target interaction. The first order driven equation is solved with a generalized Sturmian functions approach. The transition amplitude, extracted from the asymptotic limit of the first order solution, is equivalent to the familiar first Born approximation. Fivefold differential cross sections are calculated for (e, 3e) processes within the high incident energy and small momentum transfer regimes. The results are compared with other numerical methods, and with the only absolute experimental data available. Our cross sections agree in shape and magnitude with those of the convergent close coupling method for the (10+10) eV and (4+4) eV emission energies. To date this had not been achieved by any two different numerical schemes when solving the three-body continuum problem for the fast projectile (e, 3e) process. Though agreement with the experimental data, in particular with respect to the magnitude, is not achieved, our findings partly clarify a long standing puzzle.

  4. Integral elastic, electronic-state, ionization, and total cross sections for electron scattering with furfural.

    PubMed

    Jones, D B; da Costa, R F; Varella, M T do N; Bettega, M H F; Lima, M A P; Blanco, F; García, G; Brunger, M J

    2016-04-14

    We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20-250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron-furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented. PMID:27083717

  5. Electron-impact excitation of the low-lying electronic states of formaldehyde

    NASA Technical Reports Server (NTRS)

    Chutjian, A.

    1974-01-01

    Electron-impact excitation has been observed at incident electron energies of 10.1 and 20.1 eV to the first five excited electronic states of formaldehyde lying at and below the 1B2 state at 7.10 eV. These excitations include two new transitions in the energy-loss range 5.6-6.2 eV and 6.7-7.0 eV which have been detected for the first time, either through electron-impact excitation or photon absorption. The differential cross sections of these new excitations are given at scattering angles between 15 and 135 deg. These cross-section ratios peak at large scattering angles - a characteristic of triplet - singlet excitations. The design and performance of the electron-impact spectrometer used in the above observations is outlined and discussed.

  6. New developments for an electron impact (e,2e)/(e,3e) spectrometer with multiangle collection and multicoincidence detection

    SciTech Connect

    Catoire, F.; Staicu-Casagrande, E. M.; Lahmam-Bennani, A.; Duguet, A.; Naja, A.; Ren, X. G.; Lohmann, B.; Avaldi, L.

    2007-01-15

    We describe new developments aimed to extend the capabilities and the sensitivity of the (e,2e)/(e,3e) multicoincidence spectrometer at Orsay University [Duguet et al., Rev. Sci. Instrum. 69, 3524 (1998)]. The spectrometer has been improved by the addition of a third multiangle detection channel for the fast ''scattered'' electron. The present system is unique in that it is the only system which combines three toroidal analyzers all equipped with position sensitive detectors, thus allowing the triple coincidence detection of the three electrons present in the final state of an electron impact double ionization process. The setup allows measurement of the angular and energy distributions of the ejected electrons over almost the totality of the collision plane as well as that of the scattered electron over a large range of scattering angles in the forward direction. The resulting gain in sensitivity ({approx}25) has rendered feasible a whole class of experiments which could not be otherwise envisaged. The setup is described with a special emphasis on the new toroidal analyzer, data acquisition hardware, and data analysis procedures. The performances are illustrated by selected results of (e,2e) and (e,3e) experiments on the rare gases.

  7. Study of the angular distributions of X-rays emitted following L3 ionization of gold atoms by electron impact

    NASA Astrophysics Data System (ADS)

    Wright, I.; Sestric, G.; Ferguson, S.; Williams, S.

    2015-03-01

    Theoretical work suggests that when an atomic inner-shell vacancy with total angular momentum j greater than 1/2 is created by interaction with a photon or charged particle the vacancy will be aligned due to the magnetic sublevels of the ion having nonstatistical populations. The experiments we performed, testing this theory, involved measurements of the angular distributions of gold Lα, Lβ, and Ll X-rays at forward angles in the range 0 degrees to 25 degrees emitted after being bombarded with 15-keV electrons. After corrections for absorption of the characteristic X-rays within the gold target, our results suggest that the angular distributions of the Lα and Lβ X-rays are essentially isotropic, as no angular dependence was observed in our data outside of experimental uncertainties. However, the results of our experiments suggest that the angular distribution of the gold Ll X-rays may be weakly anisotropic.

  8. Electron-impact double ionization of He by applying the Jacobi matrix approach to the Faddeev-Merkuriev equations

    SciTech Connect

    Mengoue, M. Silenou; Njock, M. G. Kwato; Piraux, B.; Popov, Yu. V.; Zaytsev, S. A.

    2011-05-15

    We apply the Jacobi matrix method to the Faddeev-Merkuriev differential equations in order to calculate the three-body wave function that describes the double continuum of an atomic two-electron system. This function is used to evaluate within the first-order Born approximation, the fully differential cross sections for (e,3e) processes in helium. The calculations are performed in the case of a coplanar geometry in which the incident electron is fast and both ejected electrons are slow. Quite unexpectedly, the results obtained by reducing our double-continuum wave function to its asymptotic expression are in satisfactory agreement with all the experimental data of Lahmam-Bennani et al.[A. Lahaman-Bennani et al., Phys. Rev. A 59, 3548 (1999); A. Kheifets et al., J. Phys. B 32, 5047 (1999).] without any need for renormalizing the data. When the full double-continuum wave function is used, the agreement of the results with the experimental data improves significantly. However, a detailed analysis of the calculations shows that full convergence in terms of the basis size is not reached. This point is discussed in detail.

  9. On determining absolute entropy without quantum theory or the third law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Steane, Andrew M.

    2016-04-01

    We employ classical thermodynamics to gain information about absolute entropy, without recourse to statistical methods, quantum mechanics or the third law of thermodynamics. The Gibbs–Duhem equation yields various simple methods to determine the absolute entropy of a fluid. We also study the entropy of an ideal gas and the ionization of a plasma in thermal equilibrium. A single measurement of the degree of ionization can be used to determine an unknown constant in the entropy equation, and thus determine the absolute entropy of a gas. It follows from all these examples that the value of entropy at absolute zero temperature does not need to be assigned by postulate, but can be deduced empirically.

  10. Ionization of rubidium by 50-eV electrons

    SciTech Connect

    Haynes, M.A.; Lohmann, B.; Bray, I.; Bartschat, K.

    2004-04-01

    We report on a joint experimental and theoretical study of 50-eV electron-impact ionization of rubidium. Comparison of the experimental data with theoretical predictions from various models shows good qualitative agreement, as long as distortion and channel-coupling effects in the projectile-target interaction are accounted for. The remaining differences between experiment and theory indicate the need for further studies of this collision system.

  11. Absolute transition probabilities of phosphorus.

    NASA Technical Reports Server (NTRS)

    Miller, M. H.; Roig, R. A.; Bengtson, R. D.

    1971-01-01

    Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

  12. Excitation of the OI (3s 5S0-3p 5P; lambda 7774 A) multiplet by electron impact on O2

    NASA Technical Reports Server (NTRS)

    Erdman, P. W.; Zipf, E. C.

    1987-01-01

    Electron impact on O2 has been employed to ascertain the absolute cross-section value and emission linewidths of the OI (3s 5S0-3p 5P; 7774 A) multiplet. The emission linewidths are highly Doppler-broadened in dissociative excitation, and display two distinct kinetic energy distributions: which indicate that both purely repulsive and discrete, bound, excited molecular states, which then predissociate, are involved in the dissociation process that leads to the excitation of OI 7774 A. The magnitude of the measured cross-section and the fragment kinetic energy distribution both indicate that the previous time-of-flight studies of the metastable OI (5S0) state require reinterpretation.

  13. Electron-impact studies of atomic oxygen: II. Emission cross section measurements of the O I 3So→ 3P transition (130.4 nm)

    NASA Astrophysics Data System (ADS)

    Noren, C.; Kanik, I.; Johnson, P. V.; McCartney, P.; James, G. K.; Ajello, J. M.

    2001-07-01

    The optical excitation function of the O I 3So→ 3P transition (130.4 nm), produced by electron-impact excitation of atomic oxygen, has been measured over an extended energy range from threshold to 1.0 keV. Measurements were obtained in a crossed-beam experiment using both magnetically confined and electrostatically focused electrons in collision with atomic oxygen produced by a microwave discharge source. A 0.2 m vacuum ultraviolet monochromator system was used to measure the emitted O I radiation at 130.4 nm. The relative O I (130.4 nm) emission intensity corresponding to the 3So→ 3P transition was then put on the absolute scale by normalization to the O I (130.4 nm) cross section produced by dissociative excitation of O2 at 30 eV (Kanik et al 2000).

  14. Lucky drift impact ionization in amorphous semiconductors

    NASA Astrophysics Data System (ADS)

    Kasap, Safa; Rowlands, J. A.; Baranovskii, S. D.; Tanioka, Kenkichi

    2004-08-01

    The review of avalanche multiplication experiments clearly confirms the existence of the impact ionization effect in this class of semiconductors. The semilogarithmic plot of the impact ionization coefficient (α) versus the reciprocal field (1/F) for holes in a-Se and electrons in a-Se and a-Si :H places the avalanche multiplication phenomena in amorphous semiconductors at much higher fields than those typically reported for crystalline semiconductors with comparable bandgaps. Furthermore, in contrast to well established concepts for crystalline semiconductors, the impact ionization coefficient in a-Se increases with increasing temperature. The McKenzie and Burt [S. McKenzie and M. G. Burt, J. Phys. C 19, 1959 (1986)] version of Ridley's lucky drift (LD) model [B. K. Ridley, J. Phys. C 16, 3373 (1988)] has been applied to impact ionization coefficient versus field data for holes and electrons in a-Se and electrons in a-Si :H. We have extracted the electron impact ionization coefficient versus field (αe vs F) data for a-Si :H from the multiplication versus F and photocurrent versus F data recently reported by M. Akiyama, M. Hanada, H. Takao, K. Sawada, and M. Ishida, Jpn. J. Appl. Phys.41, 2552 (2002). Provided that one accepts the basic assumption of the Ridley LD model that the momentum relaxation rate is faster than the energy relaxation rate, the model can satisfactorily account for impact ionization in amorphous semiconductors even with ionizing excitation across the bandgap, EI=Eg. If λ is the mean free path associated with momentum relaxing collisions and λE is the energy relaxation length associated with energy relaxing collisions, than the LD model requires λE>λ. The application of the LD model with energy and field independent λE to a-Se leads to ionization threshold energies EI that are quite small, less than Eg/2, and requires the possible but improbable ionization of localized states. By making λE=λE(E ,F) energy and field dependent, we were

  15. Measurement of Absolute Carbon Isotope Ratios: Mechanisms and Implications

    NASA Astrophysics Data System (ADS)

    Vogel, J. S.; Giacomo, J. A.; Dueker, S. R.

    2012-12-01

    An accelerator mass spectrometer (AMS) produced absolute isotope ratio measurements for 14C/13C as tested against >500 samples of NIST SRM-4990-C (OxII 14C standard) to an accuracy of 2.2±0.6‰ over a period of one year with measurements made to 1% counting statistics. The spectrometer is not maximized for 13C/12C, but measured ∂13C to 0.4±0.1‰ accuracy, with known methods for improvement. An AMS produces elemental anions from a sputter ion source and includes a charge-changing collision in a gas cell to isolate the rare 14C from the common isotopes and molecular isobars. Both these physical processes have been modeled to determine the parameters providing such absolute measures. Neutral resonant ionization in a cesium plasma produces mass-independent ionization, while velocity dependent charge-state distributions in gas collisions produce relative ion beam intensities that are linear in mass at specific collision energies. The mechanisms are not specific to carbon isotopes, but stand alone absolute IRMS (AIR-MS) instruments have not yet been made. Aside from the obvious applications in metrology, AIR-MS is particularly valuable in coupled separatory MS because no internal or external standards are required. Sample definition processes can be compared, even if no exact standard reference sample exists. Isotope dilution measurements do not require standards matching the dilution end-points and can be made over an extended, even extrapolated, range.

  16. Cross Sections for Electron Impact Excitation of Ions Relevant to Planetary Atmospheres Observation

    NASA Technical Reports Server (NTRS)

    Tayal, Swaraj S.

    1998-01-01

    The goal of this research grant was to calculate accurate oscillator strengths and electron collisional excitation strengths for inelastic transitions in atomic species of relevance to Planetary Atmospheres. Large scale configuration-interaction atomic structure calculations have been performed to obtain oscillator strengths and transition probabilities for transitions among the fine-structure levels and R-matrix method has been used in the calculations of electron-ion collision cross sections of C II, S I, S II, S III, and Ar II. A number of strong features due to ions of sulfur have been detected in the spectra of Jupiter satellite Io. The electron excitation cross sections for the C II and S II transitions are studied in collaboration with the experimental atomic physics group at the Jet Propulsion Laboratory. There is excellent agreement between experiment and theory which provide an accurate and broad-base test of the ability of theoretical methods used in the calculation of atomic processes. Specifically, research problems have been investigated for: electron impact excitation cross sections of C II: electron impact excitation cross sections of S III; energy levels and oscillator strengths for transitions in S III; collision strengths for electron collisional excitation of S II; electron impact excitation of inelastic transitions in Ar II; oscillator strengths of fine-structure transitions in neutral sulfur; cross sections for inelastic scattering of electrons from atomic nitrogen; and excitation of atomic ions by electron impact.

  17. Energy Levels in Helium and Neon Atoms by an Electron-Impact Method.

    ERIC Educational Resources Information Center

    Taylor, N.; And Others

    1981-01-01

    Electronic energy levels in noble gas atoms may be determined with a simple teaching apparatus incorporating a resonance potentials tube in which the electron beam intensity is held constant. The resulting spectra are little inferior to those obtained by more elaborate electron-impact methods and complement optical emission spectra. (Author/SK)

  18. Cross-sections for the formation of negative ions by electron impact on silane

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K.; Krishnakumar, E.; De A. E Souza, A. C.

    1991-01-01

    Cross-sections and appearance potentials for the production of various negative ion species by electron impact on SiH4 have been measured. They are compared with two previous measurements which widely differ with each other. Hess' law has been applied to predict the various possible channels of dissociation.

  19. Low Energy Electron-Impact Spectroscopy of C(sup 60) Buckminsterfullerene Molecule

    NASA Technical Reports Server (NTRS)

    Trajmar, S.; Wang, S.

    1993-01-01

    The methods of electron-impact spectroscopy were utilized to obtain the first low-energy, high-resolution energy-loss spectra of gas phase pure C(sub 60) and C(sub 60) + C(sub 70) mixture buckminsterfullerene molecules.

  20. Electron-impact excitation-autoionization of helium in the S-wave limit

    SciTech Connect

    Horner, Daniel A.; McCurdy, C. William; Rescigno, Thomas N.

    2004-10-01

    Excitation of the autoionizing states of helium by electron impact is shown in calculations in the s-wave limit to leave a clear signature in the singly differential cross section for the (e,2e) process. It is suggested that such behavior should be seen generally in (e,2e) experiments on atoms that measure the single differential cross section.

  1. PARTICLE BEAM LIQUID CHROMATOGRAPHY-ELECTRON IMPACT MASS SPECTROMETRY OF DYES

    EPA Science Inventory

    A liquid chromatograph was interfaced with a triple quadrupole mass spectrometer by means of a particle beam-type interface. he system was used for the analysis and characterization by electron impact mass spectra of a series of commercial dyes. he pure dyes were separated from t...

  2. Direct Electron Impact Excitation of Rydberg-Valence States of Molecular Nitrogen

    NASA Astrophysics Data System (ADS)

    Malone, C. P.; Johnson, P. V.; Liu, X.; Ajdari, B.; Muleady, S.; Kanik, I.; Khakoo, M. A.

    2012-12-01

    Collisions between electrons and neutral N2 molecules result in emissions that provide an important diagnostic probe for understanding the ionospheric energy balance and the effects of space weather in upper atmospheres. Also, transitions to singlet ungerade states cause N2 to be a strong absorber of solar radiation in the EUV spectral range where many ro-vibrational levels of these Rydberg-valence (RV) states are predissociative. Thus, their respective excitation and emission cross sections are important parameters for understanding the [N]/[N2] ratio in the thermosphere of nitrogen dominated atmospheres. The following work provides improved constraints on absolute and relative excitation cross sections of numerous RV states of N2, enabling more physically accurate atmospheric modeling. Here, we present recent integral cross sections (ICSs) for electron impact excitation of RV states of N2 [6], which were based on the differential cross sections (DCSs) derived from electron energy-loss (EEL) spectra of [5]. This work resulted in electronic excitation cross sections over the following measured vibrational levels: b 1Πu (v‧=0-14), c3 1Πu (v‧=0-3), o3 1Πu (v‧=0-3), b‧ 1Σu+ (v‧=0-10), c‧4 1Σu+ (v‧=0-3), G 3Πu (v‧=0-3), and F 3Πu (v‧=0-3). We further adjusted the cross sections of the RV states by extending the vibronic contributions to unmeasured v‧-levels via the relative excitation probabilities (REPs) as discussed in [6]. This resulted in REP-scaled ICSs over the following vibrational levels for the singlet ungerade states: b(0-19), c3(0-4), o3(0-4), b‧(0-16), and c‧4(0-8). Comparison of the ICSs of [6] with available EEL based measurements, theoretical calculations, and emission based work generally shows good agreement within error estimations, except with the recent reevaluation provided by [1]. Further, we have extended these results, using the recent EEL data of [3], to include the unfolding of better resolved features above ~13

  3. The laser desorption/laser ionization mass spectra of some methylated xanthines and the laser desorption of caffeine and theophylline from thin layer chromatography plates

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Milnes, John; Gormally, John

    1993-02-01

    Laser desorption/laser ionization time-of-flight mass spectra of caffeine, theophylline, theobromine and xanthine are reported. These mass spectra are compared with published spectra obtained using electron impact ionization. Mass spectra of caffeine and theophylline obtained by IR laser desorption from thin layer chromatography plates are also described. The laser desorption of materials from thin layer chromatography plates is discussed.

  4. Heater-induced ionization inferred from spectrometric airglow measurements

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Miceli, R. J.; Varney, R. H.; Schlatter, N.; Huba, J. D.

    2013-12-01

    Spectrographic airglow measurements were made during an ionospheric modification experiment at HAARP on March 12, 2013. Artificial airglow enhancements at 427.8, 557.7, 630.0, 777.4, and 844.6 nm were observed. On the basis of these emissions and using a methodology based on the method of Backus and Gilbert [1968, 1970], we estimate the suprathermal electron population and the subsequent equilibrium electron density profile, including contributions from electron impact ionization. We find that the airglow is consistent with significant induced ionization in view of the spatial intermittency of the airglow.

  5. HIGH-RESOLUTION ELECTRON-IMPACT EMISSION SPECTRA AND VIBRATIONAL EMISSION CROSS SECTIONS FROM 330-1100 nm FOR N{sub 2}

    SciTech Connect

    Mangina, Rao S.; Ajello, Joseph M.; West, Robert A.; Dziczek, Dariusz

    2011-09-01

    Electron-impact emission cross sections for N{sub 2} were measured in the wavelength range of 330-1100 nm at 25 eV and 100 eV impact energies. Cross sections of several molecular emission bands of the first positive band system B {sup 3}{Pi}{sub g} {sup +}({nu}') {yields} A {sup 3}{Sigma}{sub g} {sup +}({nu}'') and the second positive band system C {sup 3}{Pi}{sub u} ({nu}') {yields} B {sup 3}{Pi}{sub g} ({nu}'') of N{sub 2}, the first negative band (1NB) system B {sup 2}{Sigma}{sub u} {sup +}({nu}') {yields} X {sup 2}{Sigma}{sub g} {sup +}({nu}'') and Meinel band system A {sup 2}{Pi}{sub u} ({nu}') {yields} X {sup 2}{Sigma}{sub g} {sup +}({nu}'') of N{sub 2} {sup +} ions as well as line emissions of N (N I) and N{sup +} (N II) in the visible-optical-near-IR wavelength range reported in this work were measured for the first time in a single experimental setup at high spectral resolving power ({lambda}/{Delta}{lambda} {approx} 10000) under single-collision-scattering geometry and optically thin conditions. Rotational emission lines of N{sub 2} and N{sub 2} {sup +} were observed for strong emission bands at a gas temperature of about 300 K. The absolute cross section of the strongest (0,0) vibrational band at 391.43 nm of 1NB was determined using the standard H{sub {alpha}} emission cross sections of H{sub 2} by electron impact at both 25 eV and 100 eV electron-impact energies, and the cross sections for the remainder of the emissions were determined using (0,0) 1NB value. A comparison of the present emission cross sections with the earlier published data from both electron energy loss and electron-impact-induced fluorescence emission is discussed.

  6. Differential and integrated cross sections for excitation to the 3s, 3p, and 3d states of atomic hydrogen by electron impact below the n=4 threshold

    SciTech Connect

    Bartlett, Philip L.; Bray, Igor; Stelbovics, Andris T.; Williams, J. F.; Mikosza, A. G.

    2006-08-15

    Integrated cross sections for the electron-impact excitation of ground-state hydrogen to the 3s, 3p, and 3d final states have been calculated using propagating exterior complex scaling and convergent close-coupling methods at energies between the n=3 and 4 excitation thresholds. The calculations are in excellent agreement and demonstrate that exterior complex scaling methods can accurately reproduce the resonance structure and magnitude of the excitation cross sections below the ionization threshold. Measurements of the separate 3s, 3p, and 3d differential cross sections were made at 12.24 eV, and are consistent with both calculations within a total experimental uncertainty of about 35%.

  7. Influence of Multiple Ionization on Charge State Distributions

    NASA Astrophysics Data System (ADS)

    Hahn, Michael; Savin, Daniel Wolf

    2015-08-01

    The spectrum emitted by a plasma depends on the charge state distribution (CSD) of the gas. For collisionally ionized plasmas, the CSD is is determined by the corresponding rates for electron-impact ionization and recombination. In astrophysics, such plasmas are formed in stars, supernova remnants, galaxies, and galaxy clusters. Current CSD calculations generally do not account for electron-impact multiple ionization (EIMI), a process in which multiple electrons are ejected by a single electron-ion collision. We have estimated the EIMI cross sections for all charge states of iron using a combination of the available experimental data and semi-empirical formulae. We then modeled the CSD and observed the influence of EIMI compared to only including single ionization. One case of interest for astrophysics is nanoflare heating, which is a leading theory to explain the heating of the solar corona. In order to determine whether this theory can indeed explain coronal heating, spectroscopic measurements are being compared to model nanoflare spectra. Such models have attempted to predict the spectra of impulsively heated plasmas in which the CSD is time dependent. These nonequilbirium ionization calculations have so far ignored EIMI, but our findings suggest that EIMI can have a significant effect on the CSD of a nanoflare-heated plasma, changing the ion abundances by up to about 50%.

  8. Optomechanics for absolute rotation detection

    NASA Astrophysics Data System (ADS)

    Davuluri, Sankar

    2016-07-01

    In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

  9. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  10. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  11. Angular momentum and orientation effects in excitation-ionization collisions

    NASA Astrophysics Data System (ADS)

    Harris, A. L.; Esposito, T. P.

    2016-08-01

    We present theoretical fully differential cross sections (FDCS) for electron-impact excitation-ionization of helium in which the final state He+ ion is oriented in a particular direction. Specifically, we study the process for He+ ions in the 2p0 state. Using our 4-body distorted wave model, we show a strong dependence of the FDCS on the ion’s orientation and trace some unexpected structures in the FDCS to the L = 2 term in the partial wave expansion for the ionized electron. A comparison is drawn to the ionization of oriented Mg (3p0) atoms, and unlike that process, we find that for excitation-ionization angular momentum must be transferred from either the projectile or the target atom.

  12. Electron-impact vibrational excitation rates in the flow field of aeroassisted orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Lee, J.-H.

    1985-01-01

    This paper examines the vibrational excitation rate processes expected in the flow field of aeroassisted orbital transfer vehicles (AOTVs). An analysis of the multiple-quantum vibrational excitation processes by electron impact is made to predict the vibrational excitation cross sections, rate coefficients, and relaxation times which control vibrational temperature. The expression for the rate of electron-vibration energy transfer is derived by solving the system of master equations which account for the multiple-level transitions. The vibrational excitation coefficients, which are the prerequisite physical quantities in solving the obtained vibrational equation, are calculated based on the theoretically predicted cross sections. These cross sections are obtained from quantum mechanical calculations, based on the concept that vibrational excitation of molecules by electron impact occurs through formation of an intermediate negative ion state. Finally, the modified Landau-Teller-type rate equation, which is suitable for the numerical calculations for the AOTV flow fields, is suggested.

  13. The role of electron-impact vibrational excitation in electron transport through gaseous tetrahydrofuran

    SciTech Connect

    Duque, H. V.; Do, T. P. T.; Konovalov, D. A.; White, R. D.; Brunger, M. J. E-mail: darryl.jones@flinders.edu.au; Jones, D. B. E-mail: darryl.jones@flinders.edu.au

    2015-03-28

    In this paper, we report newly derived integral cross sections (ICSs) for electron impact vibrational excitation of tetrahydrofuran (THF) at intermediate impact energies. These cross sections extend the currently available data from 20 to 50 eV. Further, they indicate that the previously recommended THF ICS set [Garland et al., Phys. Rev. A 88, 062712 (2013)] underestimated the strength of the electron-impact vibrational excitation processes. Thus, that recommended vibrational cross section set is revised to address those deficiencies. Electron swarm transport properties were calculated with the amended vibrational cross section set, to quantify the role of electron-driven vibrational excitation in describing the macroscopic swarm phenomena. Here, significant differences of up to 17% in the transport coefficients were observed between the calculations performed using the original and revised cross section sets for vibrational excitation.

  14. Dissociation of CH4 by electron impact: Production of metastable hydrogen and carbon fragments

    NASA Technical Reports Server (NTRS)

    Finn, T. G.; Carnahan, B. L.; Zipf, E. C.

    1974-01-01

    Metastable fragments produced by electron impact excitation of CH4 have been investigated for incident electron energies from threshold to 300 eV. Only metastable hydrogen and carbon atoms were observed. Onset energies for the production of metastable hydrogen atoms were observed at electron impact energies of 22.0 + or - .5 eV, 25.5 + or - .6 eV, 36.7 + or - .6 eV and 66 + or - 3 eV, and at 26.6 + or - .6 eV for the production of metastable carbon atoms. Most of the fragments appear to have been formed in high-lying Rydberg states. The total metastable hydrogen cross section reaches a maximum value of approximately 1 X 10 to the minus 18th power sq cm at 100 eV. At the same energy, the metastable carbon cross section is 2 x 10 to the minus 19th power sq cm.

  15. Intermediate energy electron impact excitation of composite vibrational modes in phenol

    SciTech Connect

    Neves, R. F. C.; Jones, D. B.; Lopes, M. C. A.; Nixon, K. L.; Oliveira, E. M. de; Lima, M. A. P.; Costa, R. F. da; Varella, M. T. do N.; Bettega, M. H. F.; Silva, G. B. da; Brunger, M. J.

    2015-05-21

    We report differential cross section results from an experimental investigation into the electron impact excitation of a number of the low-lying composite (unresolved) vibrational modes in phenol (C{sub 6}H{sub 5}OH). The measurements were carried out at incident electron energies in the range 15–40 eV and for scattered-electron angles in the range 10–90°. The energy resolution of those measurements was typically ∼80 meV. Calculations, using the GAMESS code, were also undertaken with a B3LYP/aug-cc-pVDZ level model chemistry, in order to enable us to assign vibrational modes to the features observed in our energy loss spectra. To the best of our knowledge, the present cross sections are the first to be reported for vibrational excitation of the C{sub 6}H{sub 5}OH molecule by electron impact.

  16. The AFGL absolute gravity program

    NASA Technical Reports Server (NTRS)

    Hammond, J. A.; Iliff, R. L.

    1978-01-01

    A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.

  17. Energy levels in helium and neon atoms by an electron-impact method

    NASA Astrophysics Data System (ADS)

    Taylor, N.; Bartle, K. D.; Mills, D.; Beard, D. S.

    1981-03-01

    Electronic energy levels in noble gas atoms may be determined with a simple teaching apparatus incorporating a resonance potentials tube in which the electron beam intensity is held constant. The resulting spectra are little inferior to those obtained by more elaborate electron-impact methods and complement optical emission spectra. Singlet-triplet energy differences may be resolved, and the spectra of helium and neon may be used to illustrate the applicability of Russell-Saunders and other, ''intermediate,'' coupling schemes.

  18. High-efficiency cross-beam magnetic electron-impact source for improved miniature Mattauch-Herzog mass spectrometer performance

    SciTech Connect

    Hadjar, O.; Fowler, W. K.

    2012-06-15

    We describe a newly designed cross-beam magnetic electron-impact ion source (CBM-EI). We demonstrate its superiority in comparison with a conventional source (CB-EI) when used with a commercial miniature sector-field-type, non-scanning mass spectrometer featuring Mattauch-Herzog geometry (MH-MS) and a permanent sector-field magnet. This paper clearly shows the value of the CBM-EI for enhancing MH-MS sensitivity. Unlike secondary electron-multiplier type detectors, the pixelated detector (IonCCD Trade-Mark-Sign ) used in the commercial MH-MS has no gain. The MH-MS/IonCCD system is therefore challenged to compete with time-of-flight and quadrupole MS systems due to their higher ion transmissions and detector gains. Using the new CBM-EI, we demonstrate an instrument sensitivity increase of 20-fold to 100-fold relative to the CB-EI-equipped instrument. This remarkable signal increase by the simple addition of the magnet assembly arises from the magnet-induced gyromotion of the thermionic electrons, which vastly increases the effective path length of the electrons through the ionization region, and the collimated nature of the electron flux, which optimizes the ion transmission through the 100-{mu}m object slit of the MH-MS. Some or all of the realized sensitivity increase may be exchanged for an increase in resolution and/or mass range through the use of a narrower object slit, or for a reduction in ion-source pressure to limit quenching. The CBM-EI should facilitate development of a differentially pumped ion source to extend the lifetime of the filament, especially in otherwise intractable applications associated with oxidizing and corrosive samples.

  19. Electron-impact excitation of the singlet states of N2. I - The Birge-Hopfield system /b 1 pi u - X 1 Sigma g +/. [in auroral zones

    NASA Technical Reports Server (NTRS)

    Zipf, E. C.; Gorman, M. R.

    1980-01-01

    Results of a study of the electron-impact excitation of the b 1 pi u state of N2, one of the singlet states thought to be excited by precipitating electrons in the auroral zones, and of its predissociation and radiative relaxation through the emission of the Birge-Hopfield band system (b 1 pi u - X 1 Sigma g +) are presented. A collimated electron beam was passed through N2 gas producing a variety of atomic states through dissociative excitation, and the radiation resulting from relaxation of these states was observed by VUV and visible-IR monochromators. Absolute emission cross sections for 11 Birge-Hopfield bands are obtained for energies from threshold to 500 eV, and used to calculate the absolute transition probabilities for BH(1, v-prime) bands and the variation of the electric dipole moment with internuclear distance. With the exception of the v-prime equals 1, 5 and 6 vibrational levels, all b 1 pi u levels are found to predissociate with a specific predissociation branching ratio greater than 0.99, representing a major source of nitrogen atoms.

  20. Collisional Ionization Equilibrium for Optically Thin Plasmas

    NASA Technical Reports Server (NTRS)

    Bryans, P.; Mitthumsiri, W.; Savin, D. W.; Badnell, N. R.; Gorczyca, T. W.; Laming, J. M.

    2006-01-01

    Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and their reliability are often highly suspect. We have utilized state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He to Zn. We have also utilized state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H to Zn. Using our data and the recommended electron impact ionization data of Mazzotta et al. (1998), we have calculated improved collisional ionization equilibrium calculations. We compare our calculated fractional ionic abundances using these data with those presented by Mazzotta et al. (1998) for all elements from H to Ni, and with the fractional abundances derived from the modern DR and RR calculations of Gu (2003a,b, 2004) for Mg, Si, S, Ar, Ca, Fe, and Ni.

  1. Influence of Multiple Ionization on Studies of Nanoflare Heated Plasmas

    NASA Astrophysics Data System (ADS)

    Hahn, Michael; Savin, Daniel Wolf

    2015-04-01

    The spectrum emitted by a plasma depends on the charge state distribution (CSD) of the gas. This, in turn, is determined by the corresponding rates for electron-impact ionization and recombination. Current CSD calculations for solar physics do not account for electron-impact multiple ionization (EIMI), a process in which multiple electrons are ejected by a single electron-ion collision. We have estimated the EIMI cross sections for all charge states of iron using a combination of the available experimental data and semi-empirical formulae. We then modeled the CSD and observed the influence of EIMI compared to only including single ionization. One case of interest for solar physics is nanoflare heating. Recent work has attempted to predict the spectra of impulsively heated plasmas in order to identify diagnostics arising from non-equilibrium ionization that can constrain the nanoflare properties, but these calculations have ignored EIMI. Our findings suggest that EIMI can have a significant effect on the CSD of a nanoflare-heated plasma, changing the ion abundances by up to about 50%.

  2. On the excitation of Lyman beta and Balmer alpha radiation by electron-impact dissociation of methane

    NASA Technical Reports Server (NTRS)

    Mclaughlin, R. W.; Zipf, E. C.

    1978-01-01

    The cross sections for the excitation of Ly-beta and H-alpha when methane is dissociated by electron impact have values of 17.1 by 10 to the -19th power sq cm and 26.0 by 10 to the -19th power sq cm, respectively, at an electron impact energy of 100 eV. These results are in disagreement with the implications of recent polarization measurements of H-alpha radiation that suggest negligible H(3p) excitation in the dissociation of CH4 by electron impact.

  3. Ultrastrong Field Ionization of Ne{sup n+} (n{<=}8): Rescattering and the Role of the Magnetic Field

    SciTech Connect

    Palaniyappan, S.; Di Chiara, A.; Chowdhury, E.; Falkowski, A.; Ongadi, G.; Huskins, E.L.; Walker, B.C.

    2005-06-24

    Ne{sup +} to Ne{sup 8+} ionization yields in 10{sup 14} W/cm{sup 2} to 10{sup 18} W/cm{sup 2} laser fields are reported over a 10{sup 9} dynamic range. A 3D relativistic rescattering model incorporating (e,2e) and (e,3e) electron impact ionization, single- and double-excitation is compared to the data. For double ionization the agreement is excellent; however, for higher charge states the model accounts for only 15% of multielectron nonsequential ionization. Rescattering is not affected by the laser magnetic field until 10{sup 17} W/cm{sup 2}.

  4. Cosmology with negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

    2016-08-01

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

  5. Communication: Electron ionization of DNA bases.

    PubMed

    Rahman, M A; Krishnakumar, E

    2016-04-28

    No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space. PMID:27131520

  6. Communication: Electron ionization of DNA bases

    NASA Astrophysics Data System (ADS)

    Rahman, M. A.; Krishnakumar, E.

    2016-04-01

    No reliable experimental data exist for the partial and total electron ionization cross sections for DNA bases, which are very crucial for modeling radiation damage in genetic material of living cell. We have measured a complete set of absolute partial electron ionization cross sections up to 500 eV for DNA bases for the first time by using the relative flow technique. These partial cross sections are summed to obtain total ion cross sections for all the four bases and are compared with the existing theoretical calculations and the only set of measured absolute cross sections. Our measurements clearly resolve the existing discrepancy between the theoretical and experimental results, thereby providing for the first time reliable numbers for partial and total ion cross sections for these molecules. The results on fragmentation analysis of adenine supports the theory of its formation in space.

  7. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams.

    PubMed

    Popescu, I A; Shaw, C P; Zavgorodni, S F; Beckham, W A

    2005-07-21

    Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 x 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 x 10(13) +/- 1.0% electrons incident on the target and a total dose of 20.87 cGy +/- 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations. PMID:16177516

  8. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams

    NASA Astrophysics Data System (ADS)

    Popescu, I. A.; Shaw, C. P.; Zavgorodni, S. F.; Beckham, W. A.

    2005-07-01

    Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 × 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 × 1013 ± 1.0% electrons incident on the target and a total dose of 20.87 cGy ± 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.

  9. Weakly ionized cosmic gas: Ionization and characterization

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.; Mendis, D. A.; Chow, V. W.

    1994-01-01

    Since collective plasma behavior may determine important transport processes (e.g., plasma diffusion across a magnetic field) in certain cosmic environments, it is important to delineate the parameter space in which weakly ionized cosmic gases may be characterized as plasmas. In this short note, we do so. First, we use values for the ionization fraction given in the literature, wherein the ionization is generally assumed to be due primarily to ionization by cosmic rays. We also discuss an additional mechanism for ionization in such environments, namely, the photoelectric emission of electrons from cosmic dust grains in an interstellar Far Ultra Violet (FUV) radiation field. Simple estimates suggest that under certain conditions this mechanism may dominate cosmic ray ionization, and possibly also the photoionization of metal atoms by the interstellar FUV field, and thereby lead to an enhanced ionization level.

  10. Rate coefficients for dissociative attachment and resonant electron-impact dissociation involving vibrationally excited O{sub 2} molecules

    SciTech Connect

    Laporta, V.; Celiberto, R.; Tennyson, J.

    2014-12-09

    Rate coefficients for dissociative electron attachment and electron-impact dissociation processes, involving vibrationally excited molecular oxygen, are presented. Analytical fits of the calculated numerical data, useful in the applications, are also provided.

  11. The H[subscript 3]PO[subscript 4] Acid Ionization Reactions: A Capstone Multiconcept Thermodynamics General Chemistry Laboratory Exercise

    ERIC Educational Resources Information Center

    Nyasulu, Frazier; Barlag, Rebecca; Wise, Lindy; McMills, Lauren

    2013-01-01

    The thermodynamic properties of weak acid ionization reactions are determined. The thermodynamic properties are corresponding values of the absolute temperature (T), the weak acid equilibrium constant (K[subscript a]), the enthalpy of ionization (delta[subscript i]H[degrees]), and the entropy of ionization (delta[subscript i]S[degrees]). The…

  12. Low pressure microplasmas enabled by field ionization: Kinetic modeling

    NASA Astrophysics Data System (ADS)

    Macheret, Sergey O.; Tholeti, Siva Sashank; Alexeenko, Alina A.

    2016-05-01

    A principle of microplasma generation that utilizes field emission of electrons at the cathode and field ionization producing ions at the anode, both processes relying on nanorods or nanotubes, is explored theoretically. In this plasma generation concept, collisional ionization of atoms and molecules by electron impact would play a negligible role. Analytical estimates as well as plasma kinetic modeling by particle-in-cell method with Monte Carlo collisions in argon confirm that this principle can enable substantial plasma densities at near-collisionless microgaps, while requiring relatively low voltages, less than 100 V. An order of magnitude increase in electron number density can be achieved due to enhancement of field emission at the cathode by positive space charge at high field ionization ion current densities.

  13. Electron-impact of the OI 1641.3 A line emission

    NASA Technical Reports Server (NTRS)

    Erdman, P. W.; Zipf, E. C.

    1986-01-01

    The cross section for the dissociative excitation of the forbidden OI(2p41D-3s3S, 1641.3 A) transition by electron impact on O2 is measured. At 100 eV, a cross section value of 1.22 x 10 to the -23/sq cm + 2 - 35 percent is found. This result is consistent with recent estimates of this branching ratio from theoretical calculations and aeronomical observations and supports the suggestion by Meier et al. (1985) that observation of the OI 1641.3 A line would be useful for remote monitoring of atomic oxygen in the upper atmosphere.

  14. Carbon monoxide dissociative attachment and resonant dissociation by electron-impact

    NASA Astrophysics Data System (ADS)

    Laporta, V.; Tennyson, J.; Celiberto, R.

    2016-02-01

    Low-energy dissociative electron attachment and resonant electron impact dissociation of CO molecule are considered. Ro-vibrationally resolved cross sections and rate coefficients for both the processes are calculated using an ab-initio model based on the low-lying \\text{X}{{}2}\\Pi resonance of CO-. Final results show that the cross sections increases very rapidly as a function of the ro-vibrational level; these cross sections should be useful for understanding kinetic dissociation of CO in strongly non-equilibrium plasmas.

  15. Differential cross sections for electron-impact vibrational-excitation of tetrahydrofuran at intermediate impact energies

    SciTech Connect

    Do, T. P. T.; Lopes, M. C. A.; Konovalov, D. A.; White, R. D.; Brunger, M. J. E-mail: darryl.jones@flinders.edu.au; Jones, D. B. E-mail: darryl.jones@flinders.edu.au

    2015-03-28

    We report differential cross sections (DCSs) for electron-impact vibrational-excitation of tetrahydrofuran, at intermediate incident electron energies (15-50 eV) and over the 10°-90° scattered electron angular range. These measurements extend the available DCS data for vibrational excitation for this species, which have previously been obtained at lower incident electron energies (≤20 eV). Where possible, our data are compared to the earlier measurements in the overlapping energy ranges. Here, quite good agreement was generally observed where the measurements overlapped.

  16. Remote lasing in air by recombination and electron impact excitation of molecular nitrogen

    NASA Astrophysics Data System (ADS)

    Peñano, Joseph; Sprangle, Phillip; Hafizi, Bahman; Gordon, Daniel; Fernsler, Richard; Scully, Marlan

    2012-02-01

    We analyze and simulate the physical mechanisms for a remote atmospheric lasing configuration which utilizes a combination of an ultrashort pulse laser to form a plasma filament of seed electrons, and a heater beam to heat the seed electrons. Nitrogen molecules are excited by electron impact and recombination processes to induce lasing in the ultraviolet. Recombination excitation, thermal excitation, gain, and saturation are analyzed and simulated. The lasing gain is sufficiently high to reach saturation within the length of the plasma filament. A remotely generated ultraviolet source may have applications for standoff detection of biological and chemical agents.

  17. The Middle Ultraviolet-Visible Spectrum of H2 Excited by Electron Impact

    NASA Technical Reports Server (NTRS)

    James, Geoffrey K.; Ajello, Joseph M.; Pryor, Wayne R.

    2000-01-01

    The electron-impact-induced emission spectrum of H2 has been measured in the extended wavelength region 175-530 mm at a spectral resolution of 1.7 mm (FWHM). The laboratory spectra are characterized by underlying H2 (a (sup 3) Sigma(sup +, sub g) to b (sup 3) Sigma(sup +, sub u) continuum emission. together with many strong lines assigned to the radiative decay of the gerade singlet states of H2, and to members of the H Balmer series resulting from dissociative excitation of H2.

  18. Improving HST Pointing & Absolute Astrometry

    NASA Astrophysics Data System (ADS)

    Lallo, Matthew; Nelan, E.; Kimmer, E.; Cox, C.; Casertano, S.

    2007-05-01

    Accurate absolute astrometry is becoming increasingly important in an era of multi-mission archives and virtual observatories. Hubble Space Telescope's (HST's) Guidestar Catalog II (GSC2) has reduced coordinate error to around 0.25 arcsecond, a factor 2 or more compared with GSC1. With this reduced catalog error, special attention must be given to calibrate and maintain the Fine Guidance Sensors (FGSs) and Science Instruments (SIs) alignments in HST to a level well below this in order to ensure that the accuracy of science product's astrometry keywords and target positioning are limited only by the catalog errors. After HST Servicing Mission 4, such calibrations' improvement in "blind" pointing accuracy will allow for more efficient COS acquisitions. Multiple SIs and FGSs each have their own footprints in the spatially shared HST focal plane. It is the small changes over time in primarily the whole-body positions & orientations of these instruments & guiders relative to one another that is addressed by this work. We describe the HST Cycle 15 program CAL/OTA 11021 which, along with future variants of it, determines and maintains positions and orientations of the SIs and FGSs to better than 50 milli- arcseconds and 0.04 to 0.004 degrees of roll, putting errors associated with the alignment sufficiently below GSC2 errors. We present recent alignment results and assess their errors, illustrate trends, and describe where and how the observer sees benefit from these calibrations when using HST.

  19. Absolute oral bioavailability of ciprofloxacin.

    PubMed

    Drusano, G L; Standiford, H C; Plaisance, K; Forrest, A; Leslie, J; Caldwell, J

    1986-09-01

    We evaluated the absolute bioavailability of ciprofloxacin, a new quinoline carboxylic acid, in 12 healthy male volunteers. Doses of 200 mg were given to each of the volunteers in a randomized, crossover manner 1 week apart orally and as a 10-min intravenous infusion. Half-lives (mean +/- standard deviation) for the intravenous and oral administration arms were 4.2 +/- 0.77 and 4.11 +/- 0.74 h, respectively. The serum clearance rate averaged 28.5 +/- 4.7 liters/h per 1.73 m2 for the intravenous administration arm. The renal clearance rate accounted for approximately 60% of the corresponding serum clearance rate and was 16.9 +/- 3.0 liters/h per 1.73 m2 for the intravenous arm and 17.0 +/- 2.86 liters/h per 1.73 m2 for the oral administration arm. Absorption was rapid, with peak concentrations in serum occurring at 0.71 +/- 0.15 h. Bioavailability, defined as the ratio of the area under the curve from 0 h to infinity for the oral to the intravenous dose, was 69 +/- 7%. We conclude that ciprofloxacin is rapidly absorbed and reliably bioavailable in these healthy volunteers. Further studies with ciprofloxacin should be undertaken in target patient populations under actual clinical circumstances. PMID:3777908

  20. Absolute Instability in Coupled-Cavity TWTs

    NASA Astrophysics Data System (ADS)

    Hung, D. M. H.; Rittersdorf, I. M.; Zhang, Peng; Lau, Y. Y.; Simon, D. H.; Gilgenbach, R. M.; Chernin, D.; Antonsen, T. M., Jr.

    2014-10-01

    This paper will present results of our analysis of absolute instability in a coupled-cavity traveling wave tube (TWT). The structure mode at the lower and upper band edges are respectively approximated by a hyperbola in the (omega, k) plane. When the Briggs-Bers criterion is applied, a threshold current for onset of absolute instability is observed at the upper band edge, but not the lower band edge. The nonexistence of absolute instability at the lower band edge is mathematically similar to the nonexistence of absolute instability that we recently demonstrated for a dielectric TWT. The existence of absolute instability at the upper band edge is mathematically similar to the existence of absolute instability in a gyroton traveling wave amplifier. These interesting observations will be discussed, and the practical implications will be explored. This work was supported by AFOSR, ONR, and L-3 Communications Electron Devices.

  1. Extreme ionization of Xe clusters driven by ultraintense laser fields

    SciTech Connect

    Heidenreich, Andreas; Last, Isidore; Jortner, Joshua

    2007-08-21

    We applied theoretical models and molecular dynamics simulations to explore extreme multielectron ionization in Xe{sub n} clusters (n=2-2171, initial cluster radius R{sub 0}=2.16-31.0 A ring ) driven by ultraintense infrared Gaussian laser fields (peak intensity I{sub M}=10{sup 15}-10{sup 20} W cm{sup -2}, temporal pulse length {tau}=10-100 fs, and frequency {nu}=0.35 fs{sup -1}). Cluster compound ionization was described by three processes of inner ionization, nanoplasma formation, and outer ionization. Inner ionization gives rise to high ionization levels (with the formation of (Xe{sup q+}){sub n} with q=2-36), which are amenable to experimental observation. The cluster size and laser intensity dependence of the inner ionization levels are induced by a superposition of barrier suppression ionization (BSI) and electron impact ionization (EII). The BSI was induced by a composite field involving the laser field and an inner field of the ions and electrons, which manifests ignition enhancement and screening retardation effects. EII was treated using experimental cross sections, with a proper account of sequential impact ionization. At the highest intensities (I{sub M}=10{sup 18}-10{sup 20} W cm{sup -2}) inner ionization is dominated by BSI. At lower intensities (I{sub M}=10{sup 15}-10{sup 16} W cm{sup -2}), where the nanoplasma is persistent, the EII contribution to the inner ionization yield is substantial. It increases with increasing the cluster size, exerts a marked effect on the increase of the (Xe{sup q+}){sub n} ionization level, is most pronounced in the cluster center, and manifests a marked increase with increasing the pulse length (i.e., becoming the dominant ionization channel (56%) for Xe{sub 2171} at {tau}=100 fs). The EII yield and the ionization level enhancement decrease with increasing the laser intensity. The pulse length dependence of the EII yield at I{sub M}=10{sup 15}-10{sup 16} W cm{sup -2} establishes an ultraintense laser pulse length

  2. Absolute negative mobility of interacting Brownian particles

    NASA Astrophysics Data System (ADS)

    Ou, Ya-li; Hu, Cai-tian; Wu, Jian-chun; Ai, Bao-quan

    2015-12-01

    Transport of interacting Brownian particles in a periodic potential is investigated in the presence of an ac force and a dc force. From Brownian dynamic simulations, we find that both the interaction between particles and the thermal fluctuations play key roles in the absolute negative mobility (the particle noisily moves backwards against a small constant bias). When no the interaction acts, there is only one region where the absolute negative mobility occurs. In the presence of the interaction, the absolute negative mobility may appear in multiple regions. The weak interaction can be helpful for the absolute negative mobility, while the strong interaction has a destructive impact on it.

  3. Autoionization states in CO{sub 2} and CS{sub 2} studied by electron impact

    SciTech Connect

    Wen, A.T.; Tremblay, D.; Tremblay, B.; Gourier, C.; Roy, D.

    1993-12-01

    A multi-angle-detector electron scattering spectrometer has been adapted to electron ejection measurements. A study of autoionization from Rydberg states has been carried out for CO{sub 2} in the continuum region 15-19 eV by low-energy electron impact. Observations have been made of structure due to excitation of these states by slow electron scattering and their decay by ejection of electrons. A multi-angle parallel detection technique has been used and this has enabled some CO{sub 2} autoionizing states resulting from non-dipole transitions to be observed clearly. The major features appearing in the ejected electron spectra of CO{sub 2} have tentatively been classified and/or assigned, and the spectral behaviour (intensity, width, and shape) of these features has been addressed as a function of incident energy and angle of ejection. In addition to the features already known, new features have been observed, and they seem to be rather sensitive to electron impact energies employed. Studies of autoionizing states in CS{sub 2} in the energy region 11-14 eV are also presented.

  4. Atomic Oxygen Emission Cross Sections resulting from Electron Impact in the FUV

    NASA Astrophysics Data System (ADS)

    Noren, C.; Kanik, I.; James, G. K.; Khakoo, M. A.

    1998-10-01

    The atomic oxygen emissions from astronomical sources provide valuable (perhaps unique) information on densities, gas dynamics, etc. of the atmospheres of the planets and their satellites. For example, the atomic oxygen resonance transition at 130.4 nm is a prominent emission feature in the vacuum ultraviolet spectrum of the Earth's aurora and day glow as well as the atmospheres of Europa, Ganymede, Mars and Venus. In this poster we present our measurements of the electron impact emission cross sections of the 130.4 nm atomic oxygen feature from threshold to 1000 eV impact energy. A high density atomic oxygen beam, created by a microwave discharge source, was intersected at right angles by a magnetically focused electron beam. The experimental apparatus consists of an electron impact collision chamber in tandem with a 0.2m UV spectrometer equipped with a CsI coated channel electron multiplier detector. Emitted photons corresponding to radiative decay of collisionally excited state of the 130.4 nm atomic oxygen feature were detected.

  5. Metrological activity determination of 133Ba by sum-peak absolute method

    NASA Astrophysics Data System (ADS)

    da Silva, R. L.; de Almeida, M. C. M.; Delgado, J. U.; Poledna, R.; Santos, A.; de Veras, E. V.; Rangel, J.; Trindade, O. L.

    2016-07-01

    The National Laboratory for Metrology of Ionizing Radiation provides gamma sources of radionuclide and standardized in activity with reduced uncertainties. Relative methods require standards to determine the sample activity while the absolute methods, as sum-peak, not. The activity is obtained directly with good accuracy and low uncertainties. 133Ba is used in research laboratories and on calibration of detectors for analysis in different work areas. Classical absolute methods don't calibrate 133Ba due to its complex decay scheme. The sum-peak method using gamma spectrometry with germanium detector standardizes 133Ba samples. Uncertainties lower than 1% to activity results were obtained.

  6. Measurement of the Electron Impact Photoemission Cross Sections of the 92.0 NM and 93.2 NM Emission Lines of Argon II for the VUV Radiometric Project.

    NASA Astrophysics Data System (ADS)

    McPherson, Leroy Armon, Jr.

    Measurements of the electron impact photoemission cross sections for 92.0 nm and 93.2 nm radiation from Ar II have been made. The unpolarized radiation is produced by transitions from the 3s3p('6) ('2)S(,1/2) state to the 3s('2)3p('5) ('2)P(,1/2'3/2) states. The cross sections were determined at an incident electron energy of 100 eV and found to be (5.81 (+OR-) 0.48) x 10('-18) cm('2) for the 92.0 nm line (S(,1/2)(--->)P(,3/2)) and (3.00 (+OR -) 0.25) x 10('-18) cm('2) for the 93.2 nm line (S(,1/2)( --->)P(,1/2)). The Ar II photoemission cross sections will be part of an atlas of electron impact photoemission cross sections for emission lines throughout the vuv wavelength region. This atlas will form the basis of a new portable primary vuv radiometric standard. The new intensity standard consists of an electron beam used to excite gas atoms which subsequently emit characteristic line radiation. The absolute photon flux emitted in an emission line can be determined if the electron impact photoemission cross section for the emission line is known, along with the target gas density and the electron beam current. The absolute radiometric standard can be used to determine the detection efficiency of any uncalibrated spectrometer-detector system. The cross section measurements were made using a spectrometer with an optical system similar to the Seya -Namioka design. A type IV holographic grating with an aluminum surface overcoated with MgF(,2) was used. The detector was a venetian blind photomultiplier with a BeCu cathode. The detection efficiency was determined by using well parameterized synchrotron radiation from SURF-II at the National Bureau of Standards in Gaithersburg, Maryland. A large multiadjustable manipulator positioned the spectrometer to view a beam of synchrotron radiation as if it originated from points along the electron beam. The spectrometer -detector system response was determined separately for incident synchrotron radiation polarized both parallel

  7. Electron-impact rotational excitation of H3+: relevance for thermalization and dissociation dynamics

    NASA Astrophysics Data System (ADS)

    Faure, Alexandre; Wiesenfeld, Laurent; Valiron, Pierre; et al.

    2006-11-01

    The triple-deck equations for the flow over a hump, a corner and a wedged trailing edge are solved numerically using a novel method based on spectral collocation. It is found that for the flow over a corner, separation begins at a scaled angle g of 2.09, and for the wedged trailing edge for a wedge angle of 2.56. Here g is defined in terms of the small physical angle } by g = Re1/4u-1/2}, u = 0.3320, and Re is the Reynolds number. The absolute instability of the nonlinear mean flows computed is investigated. It is found that the flow over a hump is inviscidly absolutely unstable with the maximum absolute unstable growth rate occurring near the maximum height of the hump, and increasing with hump size. The wake region behind the wedged trailing edge is also found to be absolutely unstable beyond a critical wedge angle, and the extent of the region of absolute instability increases with increasing wedge angle and separation. Keywords: BOUNDARY LAYER SEPARATION STABILITY TRIPLE DECK Full Text Access Full Text Available The full text of this article is available. You may view the article as (a): PDF Although it may be a lengthier download, this is the most authoritative online format. Open: Entire document One page at a time

  8. Electron ionization of open/closed chain isocarbonic molecules relevant in plasma processing: Theoretical cross sections

    SciTech Connect

    Patel, Umang R.; Joshipura, K. N.; Pandya, Siddharth H.; Kothari, Harshit N.

    2014-01-28

    In this paper, we report theoretical electron impact ionization cross sections from threshold to 2000 eV for isocarbonic open chain molecules C{sub 4}H{sub 6}, C{sub 4}H{sub 8}, C{sub 4}F{sub 6} including their isomers, and closed chain molecules c-C{sub 4}H{sub 8} and c-C{sub 4}F{sub 8}. Theoretical formalism employed presently, viz., Complex Scattering Potential-ionization contribution method has been used successfully for a variety of polyatomic molecules. The present ionization calculations are very important since results available for the studied targets are either scarce or none. Our work affords comparison of C{sub 4} containing hydrocarbon versus fluorocarbon molecules. Comparisons of the present ionization cross sections are made wherever possible, and new ionization data are also presented.

  9. Inequalities, Absolute Value, and Logical Connectives.

    ERIC Educational Resources Information Center

    Parish, Charles R.

    1992-01-01

    Presents an approach to the concept of absolute value that alleviates students' problems with the traditional definition and the use of logical connectives in solving related problems. Uses a model that maps numbers from a horizontal number line to a vertical ray originating from the origin. Provides examples solving absolute value equations and…

  10. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  11. Monolithically integrated absolute frequency comb laser system

    DOEpatents

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  12. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  13. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  14. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  15. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  16. Single ionization of helium by 730-eV electrons

    SciTech Connect

    Stevenson, M. A.; Lohmann, B.; Bray, I.; Fursa, D. V.; Stelbovics, A. T.

    2007-03-15

    We present fully differential measurements of 730-eV electron-impact single ionization of the ground state of helium with 205- or 100-eV outgoing electrons. Internormalized data are obtained for coplanar geometries with the fast electron detected at {theta}{sub A}=6 degree sign , 9 degree sign , and 12 degree sign . The data are compared, where possible, with the corresponding data of Catoire et al. [J. Phys. B 39, 2827 (2006)] and the convergent close-coupling theory. An improved agreement is found between the present measurements and the theory.

  17. Angular momentum transfer and polarization degree of ions with one-valence electron by electron impact

    NASA Astrophysics Data System (ADS)

    Akita, Kenichi; Kai, Takeshi; Nakazaki, Shinobu; Igarashi, Akinori

    2009-04-01

    We carry out the R-matrix calculations for electron-impact excitations of ions with one valence electron. The integral cross sections and polarization degree are obtained for the excitation process from the ground state to the first 2P° state of Li2+, B2+ and Al2+ as functions of electron incident energy. The differential cross sections and angular momentum transfer are also shown at non-resonant low-energy points. As for the angular momentum transfer (L⊥) at small scattering angles, they are negative for B2+ and Al2+, while it is positive for Li2+. Thus L⊥ of doubly charged ions with one-valence electron is not simple.

  18. Integral cross sections for electron impact excitation of vibrational and electronic states in phenol.

    PubMed

    Neves, R F C; Jones, D B; Lopes, M C A; Blanco, F; García, G; Ratnavelu, K; Brunger, M J

    2015-05-21

    We report on measurements of integral cross sections (ICSs) for electron impact excitation of a series of composite vibrational modes and electronic-states in phenol, where the energy range of those experiments was 15-250 eV. There are currently no other results against which we can directly compare those measured data. We also report results from our independent atom model with screened additivity rule correction computations, namely, for the inelastic ICS (all discrete electronic states and neutral dissociation) and the total ionisation ICS. In addition, for the relevant dipole-allowed excited electronic states, we also report f-scaled Born-level and energy-corrected and f-scaled Born-level (BEf-scaled) ICS. Where possible, our measured and calculated ICSs are compared against one another with the general level of accord between them being satisfactory to within the measurement uncertainties. PMID:26001459

  19. Electron impact ionisation cross sections for atomic and molecular allotropes of phosphorous and arsenic

    NASA Astrophysics Data System (ADS)

    Bhutadia, Harshad; Chaudhari, Ashok; Vinodkumar, Minaxi

    2015-12-01

    We report electron impact total ionisation cross sections for phosphorous (P), arsenic (As), diphosphorous (P2), diarsenic (As2), tetra phosphorous (P4) and tetra arsenic (As4) from the threshold of the target to 2000 eV. We employed spherical complex optical potential to compute total inelastic cross sections (Qinel). The total ionisation cross section is extracted from the total inelastic cross section using the complex scattering potential-ionisation contribution method. The results of most of the targets studied here compare well with the measurements and the theoretical data wherever available. The correlation between the peak of ionisation cross sections with the number of target electrons and polarisability is also reported. It is observed that the maximum ionisation cross sections depend linearly on the number of target electrons and polarisability of the target. This linear correlation is used to predict the maximum ionisation cross sections for the targets (I2, HI and PF3) where no experimental data are available.

  20. In-depth sphingomyelin characterization using electron impact excitation of ions from organics and mass spectrometry.

    PubMed

    Baba, Takashi; Campbell, J Larry; Le Blanc, J C Yves; Baker, Paul R S

    2016-05-01

    Electron impact excitation of ions from organics (EIEIO), also referred to as electron-induced dissociation, was applied to singly charged SM molecular species in the gas phase. Using ESI and a quadrupole TOF mass spectrometer equipped with an electron-ion reaction device, we found that SMs fragmented sufficiently to identify their lipid class, acyl group structure, and the location of double bond(s). Using this technique, nearly 200 SM molecular species were found in four natural lipid extracts: bovine milk, porcine brain, chicken egg yolk, and bovine heart. In addition to the most common backbone, d18:1, sphingosines with a range of carbon chain lengths, sphingadienes, and some sphinganine backbones were also detected. Modifications in natural SMs were also identified, including addition of iodine/methanol across a carbon-carbon double bond. This unparalleled new approach to SM analysis using EIEIO-MS shows promise as a unique and powerful tool for structural characterization. PMID:27005317

  1. Differential cross sections for electron-impact excitation of the electronic states of N sub 2

    SciTech Connect

    Brunger, M.J.; Teubner, P.J.O. )

    1990-02-01

    Differential cross sections for the electron-impact excitation of the first ten electronic states of N{sub 2} have been determined at five incident energies ranging from 15 to 50 eV. These differential cross sections were obtained for the scattering range 10{degree}--90{degree} by analyzing electron-energy-loss spectra in N{sub 2} at a number of fixed scattering angles within that range. The present study represents a comprehensive remeasurement of the earlier work of Cartwright and co-workers (Phys. Rev. A 16, 1013 (1977)) and was undertaken with a view to resolving certain anomalies which have been reported in the literature when the earlier cross-section set has been applied to model calculations of swarm parameters.

  2. EUV studies of N2 and O2 produced by low energy electron impact

    NASA Technical Reports Server (NTRS)

    Morgan, H. D.; Mentall, J. E.

    1983-01-01

    The emission spectra resulting from electron impact excitation on molecular nitrogen and oxygen in the 500-1200 A spectral region are investigated. Electron energies are from 0 to 300 eV. Numerous bands of N2 are found between 800 and 1000 A. Excitation functions are measured for the NII 916 A, the OI 879 A, and the OII 834 multiplets, and nitrogen band emission. Cross sections were measured at 200 eV for several of the band emissions plus the NI 1135 A, NI 1164 A, NI 1177 A, NII 776 A, NII 1084 A, OI 1152 A, OI 1041 A, OI 999 A, OI 989 A, OI 879 A, OII 834 A, OII 616 A, OII 555 A, OII 539 A, and OII 718 A multiplets.

  3. Plasma-screening effects on the electron-impact excitation of hydrogenic ions in dense plasmas

    NASA Technical Reports Server (NTRS)

    Jung, Young-Dae

    1993-01-01

    Plasma-screening effects are investigated on electron-impact excitation of hydrogenic ions in dense plasmas. Scaled cross sections Z(exp 4) sigma for 1s yields 2s and 1s yields 2p are obtained for a Debye-Hueckel model of the screened Coulomb interaction. Ground and excited bound wave functions are modified in the screened Coulomb potential (Debye-Hueckel model) using the Ritz variation method. The resulting atomic wave functions and their eigenenergies agree well with the numerical and high-order perturbation theory calculations for the interesting domain of the Debye length not less than 10. The Born approximation is used to describe the continuum states of the projectile electron. Plasma screening effects on the atomic electrons cannot be neglected in the high-density cases. Including these effects, the cross sections are appreciably increased for 1s yields 2s transitions and decreased for 1s yields 2p transitions.

  4. Electron-impact excitation rate-coefficients and polarization of subsequent emission for Ar+ ion

    NASA Astrophysics Data System (ADS)

    Dipti; Srivastava, Rajesh

    2016-06-01

    Electron impact excitation in Ar+ ions has been studied by using fully relativistic distorted wave theory. Calculations are performed to obtain the excitation cross-sections and rate-coefficients for the transitions from the ground state 3p5 (J=3/2) to fine-structure levels of excited states 3p44s, 3p44p, 3p45s, 3p45p, 3p43d and 3p44d. Polarization of the radiation following the excitation has been calculated using the obtained magnetic sub-level cross-sections. Comparison of the present rate-coefficients is also done with the previously reported theoretical results for some unresolved fine structure transitions.

  5. Integral cross sections for electron impact excitation of vibrational and electronic states in phenol

    SciTech Connect

    Neves, R. F. C.; Jones, D. B.; Lopes, M. C. A.; Blanco, F.; García, G.; Ratnavelu, K.; Brunger, M. J.

    2015-05-21

    We report on measurements of integral cross sections (ICSs) for electron impact excitation of a series of composite vibrational modes and electronic-states in phenol, where the energy range of those experiments was 15–250 eV. There are currently no other results against which we can directly compare those measured data. We also report results from our independent atom model with screened additivity rule correction computations, namely, for the inelastic ICS (all discrete electronic states and neutral dissociation) and the total ionisation ICS. In addition, for the relevant dipole-allowed excited electronic states, we also report f-scaled Born-level and energy-corrected and f-scaled Born-level (BEf-scaled) ICS. Where possible, our measured and calculated ICSs are compared against one another with the general level of accord between them being satisfactory to within the measurement uncertainties.

  6. Electron-impact excitation of the n 1P levels of helium - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Cartwright, David C.; Csanak, George; Trajmar, Sandor; Register, D. F.

    1992-01-01

    New experimental electron-energy-loss data have been used to extract differential and integral cross sections for excitation of the 2 1P level, and for the overlapping (3 1P, 3 1D, 3 3D) levels of helium, at 30-, 50-, and 100-eV incident electron energies. First-order many-body theory (FOMBT) has been used to calculate the differential and integral cross sections for excitation of the n 1P (n = 2,...,6) levels of helium by electron impact, for incident electron energies from threshold to 500 eV. Detailed comparisons between these two new sets of data are made as well as comparisons with appropriate published experimental and theoretical results. A simple scaling relationship is derived from the FOMBT results for n = 2,...,6 that provides differential and integral cross sections for all symmetry final levels of helium with n = 6 or greater.

  7. An investigation of the second negative system of O2(+) by electron impact. [of atmospheric species

    NASA Technical Reports Server (NTRS)

    James, G. K.; Ajello, J. M.; Franklin, B.; Shemansky, D. E.; Siskind, D.

    1988-01-01

    Emission spectrum of O2 from 115 to 300 nm induced by electron impact at 200 eV was obtained using a crossed-beam configuration under optically thin conditions. The second negative system of O2(+) was observed in the range 186-300 nm. Model calculations were performed to derive the contribution made by the second negative system of O2(+) to auroral spectra in the same wavelength range. Observations of the spectral region from 140 to 185 nm, carried out to verify the report of Erdman and Zipf (1986) on the O or O(+) transitions showed no detectable O or O(+) transitions with a cross section upper limit of 10 to the -21 sq cm.

  8. Electron-Impact Induced Fluorescence Cross Sections of Atomic Oxygen Important to Astrophysics

    NASA Astrophysics Data System (ADS)

    Noren, C.; Kanik, I.; James, G. K.; Ajello, J. M.

    1997-10-01

    There is a severe lack of available experimental cross section data, especially in the low energy regime, for electron-atom collisions involving neutral species such as OI, NI, CI, etc. This situation is in imbalance with the wealth of observational data currently available from UV spectrographs (IUE, HST, Copernicus, Voyager etc.). One cannot overstate the importance of ultraviolet (UV) lines of neutral oxygen, which is the third most abundant element within normal stars. In this poster we present the preliminary measurements of the emission cross sections of the atomic oxygen 1304-ÅEUV triplet lines resulting from low energy electron impact. A high density atomic oxygen beam, created by a microwave discharge source, was intersected at a right angle by a magnetically focused electron beam. A 0.2m Acton spectrometer in tandem with a CsI coated channel electron multiplier was used to analyze the resulting EUV lines emitted perpendicular to both the atomic and electron beams.

  9. An investigation of the second negative system of O2(+) by electron impact

    NASA Astrophysics Data System (ADS)

    James, G. K.; Ajello, J. M.; Franklin, B.; Shemansky, D. E.; Siskind, D.

    1988-09-01

    Emission spectrum of O2 from 115 to 300 nm induced by electron impact at 200 eV was obtained using a crossed-beam configuration under optically thin conditions. The second negative system of O2(+) was observed in the range 186-300 nm. Model calculations were performed to derive the contribution made by the second negative system of O2(+) to auroral spectra in the same wavelength range. Observations of the spectral region from 140 to 185 nm, carried out to verify the report of Erdman and Zipf (1986) on the O or O(+) transitions showed no detectable O or O(+) transitions with a cross section upper limit of 10 to the -21 sq cm.

  10. Electron-impact excitation of carbon and silicon in the distorted-wave approximation

    NASA Technical Reports Server (NTRS)

    Pindzola, M. S.; Bhatia, A. K.; Temkin, A.

    1977-01-01

    The 3P to 1D electron-impact excitation cross section within the ground configuration of both neutral carbon and silicon is calculated in the distorted-wave approximation of the two-state Hartree-Fock coupled equations. An essential element of the present treatment is that orthogonality to core orbitals is not assumed in deriving equations for the scattering orbitals. A local adiabatic polarization potential is also added to the distorted-wave equations. Both elements are necessary in getting good agreement with close-coupling results for carbon to low impacting energies. The agreement is sufficiently good that predictions for silicon should be accurate to within a factor of 2.

  11. Electron-impact dissociation cross sections of vibrationally excited He_{2}^{+} molecular ion

    NASA Astrophysics Data System (ADS)

    Celiberto, R.; Baluja, K. L.; Janev, R. K.; Laporta, V.

    2016-01-01

    Electron-impact cross sections for the dissociation process of vibrationally excited He2+ molecular ion, as a function of the incident electron energy are calculated for the dissociative transition \\text{X}{{ }2}Σu+\\to \\text{A}{{ }2}Σg+ by using the R-matrix method in the adiabatic-nuclei approximation. The potential energy curves for the involved electronic states and transition dipole moment, also calculated with the R-matrix method, were found to be in good agreement with the results reported in literature. The vibrationally resolved dissociation cross sections of He2+(v) exhibit a resonant structure around 7 eV. The observed strong variation of the magnitude of this structure with the vibrational level is explained in terms of the overlap of initial and final (continuum) state wave functions in the Franck–Condon region.

  12. Electron impact excitation of the Ne II and Ne III fine structure levels

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Loch, S. D.; Pindzola, M. S.; Cumbee, R.; Stancil, P. C.; Ballance, C. P.; McLaughlin, B. M.

    2016-05-01

    Electron impact excitation cross sections and rate coefficients of the low lying levels of the Ne II and Ne III ions are of great interest in cool molecular environments including young stellar objects, photodissociation regions, active galactic nuclei, and X-ray dominated regions. We have carried out details computations for cross sections and rate coefficients using the Dirac R-matrix codes (DARC), the Breit-Pauli R-matrix codes (BP) and the Intermediate Coupling Frame Transformation (ICFT) codes, for both Ne II and Ne III. We also compare our results with previous calculations. We are primarily interested in rate coefficients in the temperature range below 1000 K, and the focus is on obtaining the most accurate rate coefficients for those temperatures. We present both a recommended set of effective collision strengths and an indication of the uncertainties on these values. Work at Auburn University and UGA partly supported by NASA Grant NNX15AE47G.

  13. Rate-coefficients and polarization results for the electron-impact excitation of Ar+ ion

    NASA Astrophysics Data System (ADS)

    Srivastava, Rajesh; Dipti, Dipti

    2016-05-01

    A fully relativistic distorted wave theory has been employed to study the electron impact excitation in Ar+ ion. Results have been obtained for the excitation cross-sections and rate-coefficients for the transitions from the ground state 3p5 (J = 3/2) to fine-structure levels of excited states 3p4 4 s, 3p4 4 p , 3p4 5 s, 3p4 5 p, 3p4 3 d and 3p4 4 d. Polarization of the radiation following the excitation has been calculated using the obtained magnetic sub-level cross-sections. Comparison of the present rate-coefficients is also done with the previously reported theoretical results for some unresolved fine structure transitions. Work is supported by DAE-BRNS Mumbai and CSIR, New Delhi.

  14. Electron impact polarization of atomic spectral lines. I - A general theoretical scheme

    NASA Technical Reports Server (NTRS)

    Fineschi, Silvano; Degl'innocenti, Egidio L.

    1992-01-01

    A suitable theoretical scheme able to describe, in a wide variety of astrophysical situations, the phenomenon of atomic line polarization by electron impact is developed. Starting from the general principles of quantum mechanics and assuming the Born approximation, the rate equations for the density matrix elements of a multilevel atomic system, interacting with a nonrelativistic electron beam having any kind of angular distribution, are derived in full generality. The resulting theory generalizes the previous ones by accounting for the collisional rates and the cross sections concerning both inelastic and superelastic collisions (in any geometrical situation), and, moreover, by taking into account the coherences among Zeeman sublevels split by a magnetic field. As an example of particular relevance, the general formulas derived in the first sections of the paper are subsequently particularized to the case of the electric dipole interaction.

  15. Fluorescence polarization of helium negative-ion resonances excited by polarized electron impact

    NASA Astrophysics Data System (ADS)

    Maseberg, J. W.; Gay, T. J.

    2006-12-01

    We have investigated helium (1s3d) 3D → (1s2p) 3P (588 nm) fluorescence produced by electron impact excitation in the vicinity of the (2s22p) 2P and (2s2p2) 2D negative-ion resonances at 57.2 and 58.3 eV, respectively. In contrast to previous work, we use spin-polarized incident electrons and report the relative Stokes parameters P1, P2 and P3 in the 55-60 eV region. Our failure to see discernable resonance effects in P2 indicates that even though the lifetime of these resonances is significant (~10 fs), magnetic forces acting on the temporarily captured electron are small. Resonant structures in the values of P1 and P3 are observed because the polarization contributions of resonant states are generally different than those from direct excitation of the 3 3D state.

  16. Electron-impact excitation of diatomic hydride cations - I. HeH+, CH+, ArH+

    NASA Astrophysics Data System (ADS)

    Hamilton, James R.; Faure, Alexandre; Tennyson, Jonathan

    2016-01-01

    R-matrix calculations combined with the adiabatic nuclei approximation are used to compute electron-impact rotational excitation rates for three closed-shell diatomic cations, HeH+, CH+, ArH+. Comparisons with previous studies show that an improved treatment of threshold effects leads to significant changes in the low temperature rates; furthermore the new calculations suggest that excitation of CH+ is dominated by ΔJ = 1 transitions as is expected for cations with a large dipole moment. A model for ArH+ excitation in the Crab nebula is presented which gives results consistent with the observations for electron densities in the range 2-3 × 103 cm-3.

  17. New fine structure cooling rate. [electron impact transitions in the ionosphere

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.

    1976-01-01

    One of the dominant electron cooling processes in the ionosphere is caused by electron impact induced fine structure transitions among the ground state levels of atomic oxygen. This fine structure cooling rate is based on theoretical cross sections. Recent advances in the numerical cross section determinations to include polarization effects and more accurate representations of the atomic target result in new lower values. These cross sections are employed in this paper to derive a new fine structure cooling rate which is between 40% and 60% of the currently used rate. A new generalized formula is presented for the cooling rate (from which the fine structure cooling rate is derived), valid for arbitrary mass and temperature difference of the colliding particles and arbitrary inelastic energy difference.

  18. Low-Energy Electron Impact Excitation of the (010) Bending Mode of CO2

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    Low-energy electron impact excitation of the fundamental modes of CO2 has been extensively studied, both experimentally and theoretically. Much attention has been paid to the virtual state feature in the the (100) mode excitation and the (sup 2)II(sub upsilon) resonance feature around 3.8 eV, which is observable in all three fundamental modes. For the excitation of the (010) mode away from the resonance region, the Born dipole approximation was generally considered adequate. The present study employs the Born dipole approximation to treat the long range interaction and the Schwinger multichannel method for the short range interaction. The roles of the two interaction potentials will be compared.

  19. Electron-impact calculations of near-neutral atomic systems utilising Petascale computer architectures

    NASA Astrophysics Data System (ADS)

    Ballance, Connor

    2013-05-01

    Over the last couple of decades, a number of advanced non-perturbative approaches such as the R-matrix, TDCC and CCC methods have made great strides in terms of improved target representation and investigating fundamental 2-4 electron problems. However, for the electron-impact excitation of near-neutral species or complicated open-shell atomic systems we are forced to make certain compromises in terms of the atomic structure and/or the number of channels included in close-coupling expansion of the subsequent scattering calculation. The availability of modern supercomputing architectures with hundreds of thousands of cores, and the emergence new opportunities through GPU usauge offers one possibility to address some of these issues. To effectively harness this computational power will require significant revision of the existing code structures. I shall discuss some effective strategies within a non-relativistic and relativistic R-matrix framework using the examples detailed below. The goal is to extend existing R-matrix methods from 1-2 thousand close coupled channels to 10,000 channels. With the construction of the ITER experiment in Cadarache, which will have Tungsten plasma-facing components, there is an urgent diagnostic need for the collisional rates for the near-neutral ion stages. In particular, spectroscopic diagnostics of impurity influx require accurate electron-impact excitation and ionisation as well as a good target representation. There have been only a few non-perturbative collisional calculations for this system, and the open-f shell ion stages provide a daunting challenge even for perturbative approaches. I shall present non-perturbative results for for the excitation and ionisation of W3+ and illustrate how these fundamental calculations can be integrated into a meaningful diagnostic for the ITER device. We acknowledge support from DoE fusion.

  20. Ionization potentials of seaborgium

    SciTech Connect

    Johnson, E.; Pershina, V.; Fricke, B.

    1999-10-21

    Multiconfiguration relativistic Dirac-Fock values were calculated for the first six ionization potentials of seaborgium and of the other group 6 elements. No experimental ionization potentials are available for seaborgium. Accurate experimental values are not available for all of the other ionization potentials. Ionic radii for the 4+ through 6+ ions of seaborgium are also presented. The ionization potentials and ionic radii obtained will be used to predict some physiochemical properties of seaborgium and its compounds.

  1. Ionization Energies of Lanthanides

    ERIC Educational Resources Information Center

    Lang, Peter F.; Smith, Barry C.

    2010-01-01

    This article describes how data are used to analyze the pattern of ionization energies of the lanthanide elements. Different observed pathways of ionization between different ground states are discussed, and the effects of pairing, exchange, and orbital interactions on ionization energies of the lanthanides are evaluated. When all the above…

  2. Calculation of Ground State Rotational Populations for Kinetic Gas Homonuclear Diatomic Molecules including Electron-Impact Excitation and Wall Collisions

    SciTech Connect

    David R. Farley

    2010-08-19

    A model has been developed to calculate the ground-state rotational populations of homonuclear diatomic molecules in kinetic gases, including the effects of electron-impact excitation, wall collisions, and gas feed rate. The equations are exact within the accuracy of the cross sections used and of the assumed equilibrating effect of wall collisions. It is found that the inflow of feed gas and equilibrating wall collisions can significantly affect the rotational distribution in competition with non-equilibrating electron-impact effects. The resulting steady-state rotational distributions are generally Boltzmann for N≥3, with a rotational temperature between the wall and feed gas temperatures. The N=0,1,2 rotational level populations depend sensitively on the relative rates of electron-impact excitation versus wall collision and gas feed rates.

  3. Laboratory studies of UV emissions of H2 by electron impact - The Werner- and Lyman-band systems

    NASA Technical Reports Server (NTRS)

    Ajello, J. M.; Srivastava, S. K.; Yung, Y. L.

    1982-01-01

    The vacuum ultraviolet electron-impact-induced fluorescence emissions of H2 were studied for the Lyman and Werner band systems in the range of 120-170 nm, using an optical system containing a photomultiplier and a spectrometer, over an energy range from threshold to 400 eV. The emission cross sections for the Lyman and Werner transitions at 100 eV are determined. The cross-section ratio is in excellent agreement with theoretical calculations and experimental data for the optical oscillator strengths. The cross-section for cascading to the B state is stated as a percentage of the total emission cross section at both 100 and 300 eV, increasing substantially at 20 eV. The vibrational population distribution of the B state is found to be a function of electron-impact energy as the importance of cascading relative to direct excitation changes with electron-impact energy.

  4. Absolute optical instruments without spherical symmetry

    NASA Astrophysics Data System (ADS)

    Tyc, Tomáš; Dao, H. L.; Danner, Aaron J.

    2015-11-01

    Until now, the known set of absolute optical instruments has been limited to those containing high levels of symmetry. Here, we demonstrate a method of mathematically constructing refractive index profiles that result in asymmetric absolute optical instruments. The method is based on the analogy between geometrical optics and classical mechanics and employs Lagrangians that separate in Cartesian coordinates. In addition, our method can be used to construct the index profiles of most previously known absolute optical instruments, as well as infinitely many different ones.

  5. Electron-Impact Excitation of the B ^1SIGMA^+, C^1SIGMA^+ and E^1PI States of

    NASA Technical Reports Server (NTRS)

    Kanik, I.; Ratliff, M.; Trajmar, S.

    1993-01-01

    Electron impact excitation of CO plays an important role in planetary atmospheres andinterstellar clouds. At the present time, serious discrepancies exist among excitation cross sectionsreported in the literature for this molecule. We measured electron impact excitation cross sections forB^1SIGMA^+right arrowX^1SIGMA^+, C^1SIGMA^+right arrowX^1SIGMA^+ and E^1PIrightarrowX^1SIGMA^+ states of CO at 100eV impact energy using electron energy-loss spectroscopy.

  6. Absolute magnitudes of trans-neptunian objects

    NASA Astrophysics Data System (ADS)

    Duffard, R.; Alvarez-candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Morales, N.; Santos-Sanz, P.; Thirouin, A.

    2015-10-01

    Accurate measurements of diameters of trans- Neptunian objects are extremely complicated to obtain. Radiomatric techniques applied to thermal measurements can provide good results, but precise absolute magnitudes are needed to constrain diameters and albedos. Our objective is to measure accurate absolute magnitudes for a sample of trans- Neptunian objects, many of which have been observed, and modelled, by the "TNOs are cool" team, one of Herschel Space Observatory key projects grantes with ~ 400 hours of observing time. We observed 56 objects in filters V and R, if possible. These data, along with data available in the literature, was used to obtain phase curves and to measure absolute magnitudes by assuming a linear trend of the phase curves and considering magnitude variability due to rotational light-curve. In total we obtained 234 new magnitudes for the 56 objects, 6 of them with no reported previous measurements. Including the data from the literature we report a total of 109 absolute magnitudes.

  7. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  8. Ambient Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Min-Zong; Yuan, Cheng-Hui; Cheng, Sy-Chyi; Cho, Yi-Tzu; Shiea, Jentaie

    2010-07-01

    Mass spectrometric ionization methods that operate under ambient conditions and require minimal or no sample pretreatment have attracted much attention in such fields as biomedicine, food safety, antiterrorism, pharmaceuticals, and environmental pollution. These technologies usually involve separate ionization and sample-introduction events, allowing independent control over each set of conditions. Ionization is typically performed under ambient conditions through use of existing electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) techniques. Rapid analyses of gas, liquid, and solid samples are possible with the adoption of various sample-introduction methods. This review sorts different ambient ionization techniques into two main subcategories, primarily on the basis of the ionization processes, that are further differentiated in terms of the approach used for sampling.

  9. Physics of Partially Ionized Plasmas

    NASA Astrophysics Data System (ADS)

    Krishan, Vinod

    2016-05-01

    Figures; Preface; 1. Partially ionized plasmas here and everywhere; 2. Multifluid description of partially ionized plasmas; 3. Equilibrium of partially ionized plasmas; 4. Waves in partially ionized plasmas; 5. Advanced topics in partially ionized plasmas; 6. Research problems in partially ionized plasmas; Supplementary matter; Index.

  10. Lattice-Boltzmann simulation of laser interaction with weakly ionized helium plasmas

    SciTech Connect

    Li Huayu; Ki, Hyungson

    2010-07-15

    This paper presents a lattice Boltzmann method for laser interaction with weakly ionized plasmas considering electron impact ionization and three-body recombination. To simulate with physical properties of plasmas, the authors' previous work on the rescaling of variables is employed and the electromagnetic fields are calculated from the Maxwell equations by using the finite-difference time-domain method. To calculate temperature fields, energy equations are derived separately from the Boltzmann equations. In this way, we attempt to solve the full governing equations for plasma dynamics. With the developed model, the continuous-wave CO{sub 2} laser interaction with helium is simulated successfully.

  11. Angular distribution of Auger electrons due to 3d-shell ionization of krypton

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1977-01-01

    Cross sections for electron impact ionization of krypton due to ejection of a 3rd shell electron have been calculated using screened hydrogenic and Hartree-Slater wave functions for target atom. While the total ionization cross sections in the two approximations are within 10% of each other, the Auger electron angular distribution, related to cross sections for specific magnetic quantum numbers of the 3rd electrons, is widely different in the two approximations. The angular distribution due to Hartree-Slater approximation is in excellent agreement with measurement. The physical reason for the discrepancies in the two approximations is explained.

  12. Angular distribution of Auger electrons due to 3d-shell impact ionization of krypton

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1977-01-01

    Cross sections for electron impact ionization of krypton due to ejection of a 3d-shell electron have been calculated using screened hydrogenic and Hartree-Slater wavefunctions for the target atom. While the total ionization cross sections in the two approximations are within 10% of each other, the Auger electron angular distribution, related to cross sections for specific magnetic quantum numbers of the 3d electrons, are widely different in the two approximations. The angular distribution due to the Hartree-Slater approximation is in excellent agreement with measurement. The physical reason for the discrepancies in the two approximations is explained.

  13. Multiphoton ionization/dissociation of cyclopentanone at the lower Rydberg states

    NASA Astrophysics Data System (ADS)

    Philis, John G.; Kosmidis, Constantine; Tzallas, Paraskevas

    1998-12-01

    The 2-photon excitation of the 3p and 3d Rydberg states in jet-cooled cyclopentanone has been investigated by resonance enhanced multiphoton ionization (REMPI) in a time of flight mass spectrometer. The three 3px,y,z components are clearly resolved while the case for the 3di excitations is obscure due to the S1 one-photon resonance. The ns laser induced mass spectra are characteristic of hard ionization while the fs laser induced mass spectrum is very similar to the Electron Impact one.

  14. Laser ionization and spectroscopy of Cu in superfluid helium nanodroplets

    PubMed Central

    Lindebner, Friedrich; Kautsch, Andreas; Koch, Markus; Ernst, Wolfgang E.

    2014-01-01

    Mass and optical spectroscopic methods are used for the analysis of copper (Cu) atoms and clusters doped to helium nanodroplets (HeN). A two-color resonant two-photon ionization scheme is applied to study the Cu 2P1/2,3/2∘←2S1/2 ground state transition. The absorption is strongly broadened for Cu atoms submerged inside helium nanodroplets and a comparison with computed literature values is provided. An observed ejection of the dopant from the droplet is triggered upon excitation, populating energetically lower states. The formation of Cun clusters up to Cu7 inside helium nanodroplets was observed by means of electron impact ionization mass spectroscopy. PMID:25844053

  15. Electron- and photon-impact ionization of furfural

    SciTech Connect

    Jones, D. B.; Ali, E.; Madison, D. H. E-mail: madison@mst.edu; Nixon, K. L.; Limão-Vieira, P. E-mail: madison@mst.edu; Hubin-Franskin, M.-J.; Delwiche, J.; Ning, C. G.; Colgan, J.; Murray, A. J.; and others

    2015-11-14

    The He(I) photoelectron spectrum of furfural has been investigated, with its vibrational structure assigned for the first time. The ground and excited ionized states are assigned through ab initio calculations performed at the outer-valence Green’s function level. Triple differential cross sections (TDCSs) for electron-impact ionization of the unresolved combination of the 4a″  +  21a′ highest and next-highest occupied molecular orbitals have also been obtained. Experimental TDCSs are recorded in a combination of asymmetric coplanar and doubly symmetric coplanar kinematics. The experimental TDCSs are compared to theoretical calculations, obtained within a molecular 3-body distorted wave framework that employed either an orientation average or proper TDCS average. The proper average calculations suggest that they may resolve some of the discrepancies regarding the angular distributions of the TDCS, when compared to calculations employing the orbital average.

  16. Electron- and photon-impact ionization of furfural

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Ali, E.; Nixon, K. L.; Limão-Vieira, P.; Hubin-Franskin, M.-J.; Delwiche, J.; Ning, C. G.; Colgan, J.; Murray, A. J.; Madison, D. H.; Brunger, M. J.

    2015-11-01

    The He(i) photoelectron spectrum of furfural has been investigated, with its vibrational structure assigned for the first time. The ground and excited ionized states are assigned through ab initio calculations performed at the outer-valence Green's function level. Triple differential cross sections (TDCSs) for electron-impact ionization of the unresolved combination of the 4a″ + 21a' highest and next-highest occupied molecular orbitals have also been obtained. Experimental TDCSs are recorded in a combination of asymmetric coplanar and doubly symmetric coplanar kinematics. The experimental TDCSs are compared to theoretical calculations, obtained within a molecular 3-body distorted wave framework that employed either an orientation average or proper TDCS average. The proper average calculations suggest that they may resolve some of the discrepancies regarding the angular distributions of the TDCS, when compared to calculations employing the orbital average.

  17. Theoretical studies of photoexcitation and ionization in H2O

    NASA Technical Reports Server (NTRS)

    Diercksen, G. H. F.; Kraemer, W. P.; Rescigno, T. N.; Bender, C. F.; Mckoy, B. V.; Langhoff, S. R.; Langhoff, P. W.

    1982-01-01

    Theoretical studies using Franck-Condon and static-exchange approximations are reported for the complete dipole excitation and ionization spectrum in H2O, where (1) large Cartesian Gaussian basis sets are used to represent the required discrete and continuum electronic eigenfunctions at the ground state equilibrium geometry, and (2) previously devised moment-theory techniques are employed in constructing the continuum oscillator-strength densities from the calculated spectra. Comparisons are made of the calculated excitation and ionization profiles with recent experimental photoabsorption studies and corresponding spectral assignments, electron impact-excitation cross sections, and dipole and synchrotron-radiation studies of partial-channel photoionization cross sections. The calculated partial-channel cross sections are found to be atomic-like, and dominated by 2p-kd components. It is suggested that the latter transition couples with the underlying 1b(1)-kb(1) channel, accounting for a prominent feature in recent synchrotron-radiation measurements.

  18. Electron impact excitation of the electronic states of N2. III - Transitions in the 12.5-14.2-eV energy-loss region at incident energies of 40 and 60 eV

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Trajmar, S.; Cartwright, D. C.

    1977-01-01

    Analysis of electron energy-loss data at incident electron energies of 40 and 60 eV has led to the determination of normalized absolute differential cross sections for electron-impact excitation of five optically-allowed singlet states, two known triplet states, and two unknown triplet-like states of N2, lying in the energy-loss range 12.5-14.2 eV. The range of scattering angles was 5 to 138 deg. The optically allowed transitions and the known triplet excitations are identified. Cross sections for excitation to two unidentified triplet-like states at 13.155 and 13.395 eV were also obtained. The relationship of the generalized oscillator strength for the dipole-allowed states obtained from the described data to known optical oscillator strengths is discussed.

  19. Femtosecond growth dynamics of an underdense ionization front measured by spectral blueshifting

    SciTech Connect

    Wood, W.M.; Siders, C.W.; Downer, M.C.

    1993-06-01

    A comprehensive report of time-resolved spectral blue shifts of 100-femtosecond laser pulses caused by ionization of atmospheric density N{sub 2} and noble gases subjected to high (10{sup 14} W/cm{sup 2} - 10{sup 16} W/cm{sup 2}) light intensities is presented. Included are data for two experiments: (1) self-shifting of the ionizing laser pulses for varying peak intensities, pressures (1-5 atm.), and gas species; and (2) time-resolved blueshifts of a weak copropagating probe pulse for the same range of ionization conditions. The self-shift data reveal a universal, reproducible pattern in the shape of the blueshifted spectra: as laser intensity, gas pressure, or atomic number increase, the self-blueshifted spectra develop from a near replica of the incident pulse spectrum into a complex structure consisting of two spectral peaks. The time-resolved data reveal different temporal dependence for each of these two features. A quantitative model for a simplified cylindrical focal geometry is presented which explains the presence of the two spectral features in terms of two distinct ionization mechanisms: collisionless tunneling ionization, which dominates early in the ionizing pulse profile, and electron impact ionization, which dominates during the intense maximum of the ionizing pulse. Transient resonant enhancements may also contribute to ionization near the peak of the pulse.

  20. Femtosecond growth dynamics of an underdense ionization front measured by spectral blueshifting

    SciTech Connect

    Wood, W.M.; Siders, C.W.; Downer, M.C.

    1993-01-01

    A comprehensive report of time-resolved spectral blue shifts of 100-femtosecond laser pulses caused by ionization of atmospheric density N[sub 2] and noble gases subjected to high (10[sup 14] W/cm[sup 2] - 10[sup 16] W/cm[sup 2]) light intensities is presented. Included are data for two experiments: (1) self-shifting of the ionizing laser pulses for varying peak intensities, pressures (1-5 atm.), and gas species; and (2) time-resolved blueshifts of a weak copropagating probe pulse for the same range of ionization conditions. The self-shift data reveal a universal, reproducible pattern in the shape of the blueshifted spectra: as laser intensity, gas pressure, or atomic number increase, the self-blueshifted spectra develop from a near replica of the incident pulse spectrum into a complex structure consisting of two spectral peaks. The time-resolved data reveal different temporal dependence for each of these two features. A quantitative model for a simplified cylindrical focal geometry is presented which explains the presence of the two spectral features in terms of two distinct ionization mechanisms: collisionless tunneling ionization, which dominates early in the ionizing pulse profile, and electron impact ionization, which dominates during the intense maximum of the ionizing pulse. Transient resonant enhancements may also contribute to ionization near the peak of the pulse.

  1. Femtosecond growth dynamics of an underdense ionization front measured by spectral blueshifting

    NASA Astrophysics Data System (ADS)

    Wood, W. M.; Siders, C. W.; Downer, M. C.

    A comprehensive report of time-resolved spectral blue shifts of 100-femtosecond laser pulses caused by ionization of atmospheric density N(sub 2) and noble gases subjected to high (10(sup 14) W/cm(sup 2) - 10(sup 16) W/cm(sup 2)) light intensities is presented. Included are data for two experiments: (1) self-shifting of the ionizing laser pulses for varying peak intensities, pressures (1-5 atm.), and gas species; and (2) time-resolved blueshifts of a weak copropagating probe pulse for the same range of ionization conditions. The self-shift data reveal a universal, reproducible pattern in the shape of the blueshifted spectra: as laser intensity, gas pressure, or atomic number increase, the self-blueshifted spectra develop from a near replica of the incident pulse spectrum into a complex structure consisting of two spectral peaks. The time-resolved data reveal different temporal dependence for each of these two features. A quantitative model for a simplified cylindrical focal geometry is presented which explains the presence of the two spectral features in terms of two distinct ionization mechanisms: collisionless tunneling ionization, which dominates early in the ionizing pulse profile, and electron impact ionization, which dominates during the intense maximum of the ionizing pulse. Transient resonant enhancements may also contribute to ionization near the peak of the pulse.

  2. Treatment of Electronic Energy Level Transition and Ionization Following the Particle-Based Chemistry Model

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Lewis, Mark

    2010-01-01

    A new method of treating electronic energy level transitions as well as linking ionization to electronic energy levels is proposed following the particle-based chemistry model of Bird. Although the use of electronic energy levels and ionization reactions in DSMC are not new ideas, the current method of selecting what level to transition to, how to reproduce transition rates, and the linking of the electronic energy levels to ionization are, to the author s knowledge, novel concepts. The resulting equilibrium temperatures are shown to remain constant, and the electronic energy level distributions are shown to reproduce the Boltzmann distribution. The electronic energy level transition rates and ionization rates due to electron impacts are shown to reproduce theoretical and measured rates. The rates due to heavy particle impacts, while not as favorable as the electron impact rates, compare favorably to values from the literature. Thus, these new extensions to the particle-based chemistry model of Bird provide an accurate method for predicting electronic energy level transition and ionization rates in gases.

  3. Surface ionization mass spectrometry of drugs in the thermal and hyperthermal energy range -- a comparative study

    NASA Astrophysics Data System (ADS)

    Dagan, Shai; Amirav, Aviv; Fujü, Toshihiro

    1995-12-01

    Thermal and hyperthermal surface ionization (SI) mass spectra of nicotine, caffeine and lidocaine were obtained using a rhenium oxide surface. Thermal surface ionization was studied on an oxidized surface positioned inside an electron impact ion source, while hyperthermal surface ionization (HSI) was obtained upon seeding the compounds into a hydrogen or helium supersonic molecular beam that scattered from the rhenium oxide surface. Both HSI and SI provide rich, informative and complementary mass spectral information. The results indicate that SI follows thermal dissociation processes on the surface prior to the desorption of the ion, while in HSI no thermal equilibrium is established and the ionization process is impulsive, followed by mostly unimolecular ion dissociation. HSI mass spectra are similar to electron impact mass spectra in the fragment ion masses, but the observed relative intensities are different. HSI is a softer ionization method compared to SI, and enables the degree of ion fragmentation to be tuned so that it can be minimized to a low level at low molecular kinetic energy. In SI, limited control over the degree of fragmentation is possible through the surface temperature. The analytical mass spectrometric applications of SI and HSI are briefly mentioned.

  4. Vacuum ultraviolet electron impact excitation of the styrene molecule: cross sections and oscillator strengths

    NASA Astrophysics Data System (ADS)

    Boechat-Roberty, H. M.; Lucas, C. A.; Lopes, M. C. A.; Rocco, M. L. M.; de Souza, G. G. B.

    2009-05-01

    The vacuum ultraviolet electronic excitation of the styrene molecule has been studied in the 0-50 eV energy range, using angle-resolved electron-energy-loss spectroscopy at an incident energy of 1 keV. Intense new features have been observed at 10.3, 11.8, 13.7 and 17.1 eV. They were tentatively assigned to high-energy transitions originating from σ electrons or to double excitations involving π electrons. The absolute generalized oscillator strengths and absolute inelastic differential cross sections have been determined for the band centred at 5.3 eV, associated with the 2,3 1A'<--1 1A' transitions. The absolute elastic differential cross section has also been determined over an angular range of 2.5°-22.0°. The valence photoabsorption spectrum of styrene, derived from the electron-energy-loss spectrum, is compared to a previously measured benzene spectrum in the 3-45 eV energy range.

  5. Improved atomic data for electron-transport predictions by the codes TIGER and TIGERP. I. Inner-shell ionization by electron collision

    SciTech Connect

    Peek, J.M.; Halbleib, J.A.

    1983-01-01

    The inner-shell ionization data for electron-target collisions now in use in the TIGER and TIGERP electron-transport codes are extracted and compared with other data for these processes. The TIGER cross sections for K-shell ionization by electron collisions are found to be seriously in error for large-Z targets and incident electron energies greater than 1 MeV. A series of TIGER and TIGERP runs were carried out with and without improved K-shell electron ionization cross section data replacing that now in use. The relative importance of electron-impact and photon ionization of the various subshells was also extracted from these runs. In general, photon ionization dominated in the examples studied so the sensitivity of many predicted properties to errors in the electron-impact subshell ionization data was not large. However, some differences were found and, as all possible applications were not covered in this study, it is recommended that these electron-impact data now in TIGER and TIGERP be replaced. Cross section data for the processes under study are reviewed and those that are most suitable for this application are identified. 19 references, 9 figures, 2 tables.

  6. Absolute photoionization cross-section of the methyl radical.

    SciTech Connect

    Taatjes, C. A.; Osborn, D. L.; Selby, T.; Meloni, G.; Fan, H.; Pratt, S. T.; Chemical Sciences and Engineering Division; SNL

    2008-01-01

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH{sub 3} photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; {sigma}{sub CH}(10.2 eV) = (5.7 {+-} 0.9) x 10{sup -18} cm{sup 2} and {sigma}{sub CH{sub 3}}(11.0 eV) = (6.0 {+-} 2.0) x 10{sup -18} cm{sup 2}. The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH{sub 3} and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.460 eV, (5.5 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.466 eV, and (4.9 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  7. Electron-impact rotationally elastic total cross sections for H{sub 2}CO and HCOOH over a wide range of incident energy (0.01-2000 eV)

    SciTech Connect

    Vinodkumar, Minaxi; Bhutadia, Harshad; Antony, Bobby; Mason, Nigel

    2011-11-15

    This paper reports computational results of the total cross sections for electron impact on H{sub 2}CO and HCOOH over a wide range of electron impact energies from 0.01 eV to 2 keV. The total cross section is presented as sum of the elastic and electronic excitation cross sections for incident energies. The calculation uses two different methodologies, below the ionization threshold of the target the cross section is calculated using the UK molecular R-matrix code through the Quantemol-N software package while cross sections at higher energies are evaluated using the spherical complex optical potential formalism. The two methods are found to be consistent at the transition energy ({approx}15 eV). The present results are, in general, found to be in good agreement with previous experimental and theoretical results (wherever available) and, thus, the present results can serve as a benchmark for the cross section over a wide range of energy.

  8. Calculation of total and ionization cross sections for electron scattering by primary benzene compounds

    NASA Astrophysics Data System (ADS)

    Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby

    2016-07-01

    The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section.

  9. Calculation of total and ionization cross sections for electron scattering by primary benzene compounds.

    PubMed

    Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby

    2016-07-21

    The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section. PMID:27448889

  10. Electron-impact excitation collision strengths and theoretical line intensities for transitions in S III

    SciTech Connect

    Grieve, M. F. R.; Ramsbottom, C. A.; Hudson, C. E.; Keenan, F. P.

    2014-01-01

    We present Maxwellian-averaged effective collision strengths for the electron-impact excitation of S III over a wide range of electron temperatures of astrophysical importance, log T{sub e} (K) = 3.0-6.0. The calculation incorporates 53 fine-structure levels arising from the six configurations—3s {sup 2}3p {sup 2}, 3s3p {sup 3}, 3s {sup 2}3p3d, 3s {sup 2}3p4s, 3s {sup 2}3p4p, and 3s {sup 2}3p4d—giving rise to 1378 individual lines and is undertaken using the recently developed RMATRX II plus FINE95 suite of codes. A detailed comparison is made with a previous R-matrix calculation and significant differences are found for some transitions. The atomic data are subsequently incorporated into the modeling code CLOUDY to generate line intensities for a range of plasma parameters, with emphasis on allowed ultraviolet extreme-ultraviolet emission lines detected from the Io plasma torus. Electron density-sensitive line ratios are calculated with the present atomic data and compared with those from CHIANTI v7.1, as well as with Io plasma torus spectra obtained by Far-Ultraviolet Spectroscopic Explorer and Extreme-Ultraviolet Explorer. The present line intensities are found to agree well with the observational results and provide a noticeable improvement on the values predicted by CHIANTI.

  11. Electron-impact study of PO2 using the R-matrix method

    NASA Astrophysics Data System (ADS)

    Bharadvaja, Anand; Kaur, Savinder; Baluja, K. L.

    2013-06-01

    The R-matrix approach is used to study the electron scattering from PO2 radical at low electron impact energies. The elastic scattering phenomenon is studied in static-exchange, one-state and many-states close-coupling approximation. The elastic differential cross sections, corresponding momentum-transfer cross sections, and collision frequency are calculated in the one-state configuration interaction approximation only. Calculations reveal a stable bound state of PO2- having symmetry 1A1, a configuration of ⋯8a12,⋯2b12,⋯5b22,⋯1a22, and vertical electron affinity of 2.94 eV. The excited state of anion PO2- having symmetry 3B1 is also just bound relative to the ground state of PO2 at its equilibrium geometry. The shape, core-excited, and Feshbach resonances are analyzed in different symmetries up to 7 eV. The partial waves up to l=4 are used to represent continuum electron. The converged cross sections are obtained for the partial waves having l greater than 4 by applying Born correction. Certain interesting spectroscopic properties of radical are also reported.

  12. Measurements of Charging of Apollo 17 Lunar Dust Grains by Electron Impact

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.

    2008-01-01

    It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron size dust grains with unusually high adhesive characteristics. The dust grains observed to be levitated and transported on the lunar surface are believed to have a hazardous impact on the robotic and human missions to the Moon. The observed dust phenomena are attributed to the lunar dust being charged positively during the day by UV photoelectric emissions, and negatively during the night by the solar wind electrons. The current dust charging and the levitation models, however, do not fully explain the observed phenomena, with the uncertainty of dust charging processes and the equilibrium potentials of the individual dust grains. It is well recognized that the charging properties of individual dust grains are substantially different from those determined from measurements made on bulk materials that are currently available. An experimental facility has been developed in the Dusty Plasma Laboratory at MSFC for investigating the charging and optical properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present the laboratory measurements on charging of Apollo 17 individual lunar dust grains by a low energy electron beam. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission process are discussed.

  13. Energy levels, transition probabilities, and electron impact excitations for La XXX

    SciTech Connect

    Zhong, J.Y. . E-mail: jyzhong@aphy.iphy.ac.cn; Zhao, G.; Zhang, J.

    2006-09-15

    energy levels, spontaneous radiative decay rates, and electron impact collision strengths are calculated for La XXX. The data refer to 107 fine-structure levels belonging to the configurations (1s{sup 2}2s{sup 2}2p{sup 6})3s{sup 2}3p{sup 6}3d{sup 10}, 3s{sup 2}3p{sup 6}3d{sup 9}4l, 3s{sup 2}3p{sup 5}3d{sup 10}4l, and 3s3p{sup 6}3d{sup 10}4l (l = s, p, d, f). The collision strengths are calculated with a 20-collision-energy grid in terms of the energy of the scattered electron between 10 and 10,000 eV by using the distorted-wave approximation. Effective collision strengths are obtained at seven electron temperatures: T {sub e} (eV) = 10, 100, 300, 500, 800, 1000, and 1500 by integrating the collision strengths over a Maxwellian electron distribution. Coupled with these atomic data, a hydrodynamic code MED103 can be used to simulate the Ni-like La X-ray laser at 8.8 nm.

  14. Valence-Shell Excitations of Nitrous Oxide Studied by Fast Electron Impact

    NASA Astrophysics Data System (ADS)

    Liu, Ya-Wei; Wang, You-Yan; Zhu, Lin-Fan

    2012-04-01

    The valence-shell excitations of nitrous oxide are studied by fast electron energy loss spectroscopy. From the spectra measured at 2.5 keV and scattering angles of 3.5°-8.5°, it is found that the asymmetric peak of the transition B1Δ can be well fitted by Haarhoff-Van der Linde function, while the symmetric peaks of the transitions of C1Π and D1Σ+ can be well fitted by the Voigt function. The parameters of the peak profiles of B1Δ, C1Π and D1Σ+, i.e., their energy level positions and linewidths, are determined. With the aid of these parameters, the overlapping spectra measured at the low-energy electron impact can be deconvolved, which provides the possibility to determine the quantitative differential cross sections. The present results also show that the peak profiles of the transitions of B1Δ, C1Π and D1Σ+, are independent of the momentum transfer.

  15. Electron impact collision strengths in Si IX, Si X, and Si XI

    SciTech Connect

    Liang Guiyun; Zhao Gang . E-mail: gzhao@bao.ac.cn; Zeng Jiaolong

    2007-05-15

    Electron impact collision strengths among 560 levels of Si IX, 320 levels of Si X, and 350 levels of Si XI have been calculated using the Flexible Atomic Code of Gu [M.F. Gu, Astrophys. J. 582 (2003) 1241]. Collision strengths {omega} at 10 scattered electron energies, namely 10, 50, 100, 200, 400, 600, 800, 1000, 1500, and 2000 eV, are reported. Assuming a Maxwellian energy distribution, effective collision strengths Y are obtained on a finer electron temperature grid of 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0 MK, which covers the typical temperature range of astrophysical hot plasmas. Additionally, radiative rates A and weighted oscillator strengths gf are given for the more probable transitions among these levels. Comparisons of our results with available predictions reported in earlier literature are made and the accuracy of the data is assessed. Most transitions exhibit a good agreement, but large differences in gf appear for a few cases, which are due to the different configuration interactions included in different theoretical calculations. For excitations among levels of the ground and lower excited configurations, large discrepancies of Y may have resulted from the consideration of resonance effects in earlier works.

  16. Analysis of density effects in plasmas and their influence on electron-impact cross sections

    NASA Astrophysics Data System (ADS)

    Belkhiri, M.; Poirier, M.

    2014-12-01

    Density effects in plasmas are analyzed using a Thomas-Fermi approach for free electrons. First, scaling properties are determined for the free-electron potential and density. For hydrogen-like ions, the first two terms of an analytical expansion of this potential as a function of the plasma coupling parameter are obtained. In such ions, from these properties and numerical calculations, a simple analytical fit is proposed for the plasma potential, which holds for any electron density, temperature, and atomic number, at least assuming that Maxwell-Boltzmann statistics is applicable. This allows one to analyze perturbatively the influence of the plasma potential on energies, wave functions, transition rates, and electron-impact collision rates for single-electron ions. Second, plasmas with an arbitrary charge state are considered, using a modified version of the Flexible Atomic Code (FAC) package with a plasma potential based on a Thomas-Fermi approach. Various methods for the collision cross-section calculations are reviewed. The influence of plasma density on these cross sections is analyzed in detail. Moreover, it is demonstrated that, in a given transition, the radiative and collisional-excitation rates are differently affected by the plasma density. Some analytical expressions are proposed for hydrogen-like ions in the limit where the Born or Lotz approximation applies and are compared to the numerical results from the FAC.

  17. Resonance enhanced electron impact excitation for P-like Cu XV

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Yan, Jun; Li, Chuan-Ying; Huang, Min; Chen, Chong-Yang

    2015-11-01

    Employing both the Dirac R-matrix and the relativistic distorted wave with independent process and isolated resonance approaches, we report resonance enhanced electron impact excitation data (specifically, effective collision strengths) among the lowest 41 levels from the n = 3 configurations of Cu XV. The results show that the latter approach can obtain resonance contributions reasonably well for most excitations of Cu XV, though a comparison between the two approaches shows that the close-coupling effects are truly significant for rather weak excitations, especially for two-electron excitations from the 3s3p4 to 3s23p23d configuration. Resonance contributions are significant (more than two orders of magnitude) for many excitations and dramatically influence the line intensity ratios associated with density diagnostics. Project supported by the National Natural Science Foundation of China (Grant Nos. 11076009 and 11374062), the Chinese Association of Atomic and Molecular Data, the Chinese National Fusion Project for ITER (Grant No. 2015GB117000), and the Leading Academic Discipline Project of Shanghai, China (Grant No. B107).

  18. Effective collision strengths for electron impact excitations in S II. [Plasma torus of Io

    SciTech Connect

    Tayal, S.S.; Henry, R.J.W.; Nakazaki, S.

    1987-02-01

    Electron impact collision strengths for forbidden, semiforbidden, and allowed transitions in S II calculated using the R-matrix method are presented. Configuration interaction wave functions are used to represent the six target states included in the calculation. At low impact energies the collision strengths are dominated by resonances for several transitions. The contribution from higher partial waves is obtained in the close-coupling approximation with exchange terms omitted. Results are presented for the effective collision strengths over a wide temperature range (5000-150,000 K) of astrophysical interest. The present results for the 4S(0) yields 2P(0) transition are 20-30 percent lower than previous calculations, while for the 4S(0) yields 2D(0) transition they are in good agreement. The results are approximately 30 percent higher than those of Ho and Henry (1983) for the 4S(0) yields 2P(0) transition at 80,000 K, and the difference between the two results increases with decreasing temperatures (under 80,000 K). 38 references.

  19. Medium-resolution studies of extreme-ultraviolet emission from CO by electron impact

    NASA Technical Reports Server (NTRS)

    Kanik, Isik; James, Geoffrey K.; Ajello, Joseph M.

    1995-01-01

    We report medium-resolution (0.025 nm full width at half maximum (FWHM)) electron impact-induced emission spectra of CO for 20, 100, and 200 eV impact energies. The emission spectra correspond to the extreme ultraviolet transitions from the B (sup 1)Sigma(sup +)(0), and E (sup 1)Pi(0) vibronic states to the X (sup 1)Sigma(sup +)(0) ground state. The present measurements are carried out at 20 times higher spectral resolution (to separate the many blended components) compared to our previous measurements, which were at a spectral resolution of 0.5 nm FWHM. The emission cross sections corresponding to the B (sup 1)Sigma(sup +)(0) yields X (sup 1)Sigma(sup +)(0), C (sup 1)Sigma(sup +)(0) yields X (sup 1)Sigma(sup +)(0), and E (sup 1)Pi(0) yields X (sup 1)Sigma(sup +)(0) resonance transitions were measured. In addition, excitation functions (0-1 keV) extending well into the Born region have been measured for the strong transitions (B (sup 1)Sigma(sup +)(0) yields X (sup 1)Sigma(sup +)(0) and C (sup 1)Sigma(sup +)(0)) and oscillator strengths have been determined, using a modified Born approximation analytic fit to the measured excitation function.

  20. Theoretical and experimental differential cross sections for electron impact excitation of the electronic bands of furfural.

    PubMed

    Jones, D B; Neves, R F C; Lopes, M C A; da Costa, R F; do N Varella, M T; Bettega, M H F; Lima, M A P; García, G; Limão-Vieira, P; Brunger, M J

    2016-03-28

    We report results from a joint experimental and theoretical investigation into electron scattering from the important industrial species furfural (C5H4O2). Specifically, differential cross sections (DCSs) have been measured and calculated for the electron-impact excitation of the electronic states of C5H4O2. The measurements were carried out at energies in the range 20-40 eV, and for scattered-electron angles between 10° and 90°. The energy resolution of those experiments was typically ∼80 meV. Corresponding Schwinger multichannel method with pseudo-potential calculations, for energies between 6-50 eV and with and without Born-closure, were also performed for a sub-set of the excited electronic-states that were accessed in the measurements. Those calculations were undertaken at the static exchange plus polarisation-level using a minimum orbital basis for single configuration interaction (MOB-SCI) approach. Agreement between the measured and calculated DCSs was qualitatively quite good, although to obtain quantitative accord, the theory would need to incorporate even more channels into the MOB-SCI. The role of multichannel coupling on the computed electronic-state DCSs is also explored in some detail. PMID:27036450